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Abstract Traffic measurement and monitoring are an important component of network management and traf-

fic engineering. With high-speed Internet backbone links, efficient and effective packet sampling techniques

for traffic measurement and monitoring are not only desirable, but also increasingly becoming a necessity.

Since the utility of sampling depends on the accuracy and economy of measurement, it is important to control

sampling error. In this paper, we propose an adaptive packet sampling technique for flow-level traffic measure-

ment with stratification approach. We employ and advance sampling theory in order to ensure the accurate

estimation of large flows. With real network traces, we demonstrate that the proposed sampling technique pro-

vides unbiased estimation of flow size with controllable error bound, in terms of both packet and byte counts

for elephant flows, while avoiding excessive oversampling.
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1 Introduction

Traffic measurement and monitoring serve as the basis for a wide range of IP network operations, management

and engineering tasks. Particularly, flow-level measurement is required for applications such as traffic profiling,

usage-based accounting, traffic engineering, traffic matrix, and QoS monitoring. With today’s high-speed (e.g.,

Gbps or Tbps) links, monitoring every packet traversing a measurement point may no longer be feasible.

Because flow statistics are typically maintained by software, the processing speed cannot match the line speed.

Capturing every packet requires too much processing capacity, cache memory, and I/O and network bandwidth,

in order to update, store, and export flow records. Packet sampling has been suggested as a scalable alternative

to address this problem. Both the Internet IETF (Internet Engineering Task Force) working groups, IPFIX (IP

Flow Information Export) [14] and PSAMP (Packet Sampling) [18], have recommended the use of packet

sampling. Static sampling method such as “1 out of k” is being used by Cisco and Juniper for high-speed

backbone routers [16,19].

The fundamental question regarding sampling is its accuracy. An inaccurate packet sampling not only de-

feats the purpose of traffic measurement and monitoring, but worse, can lead to wrong decisions by network

operators. Particularly, when it comes to accounting, users would not make monetary commitment based on

erroneous and unreliable data. Efficiency of packet sampling is also an important concern. Excessive over-

sampling should also be avoided for the measurement solution to be scalable, especially in the presence of

well known high day/night traffic fluctuations (see Figure 6 for example). Therefore, it is important to control

the accuracy of estimation in order to balance the trade-off between the utility and overhead of measurement.

Given the dynamic nature of network traffic, static sampling, where a fixed sampling rate is used, does not al-

ways ensure the accuracy of estimation, and tends to oversample at peak periods when economy and timeliness

are most critical.

Packet sampling for flow-level measurement is a particularly challenging problem. One issue is the diversity

of flows; flows can vary drastically in their volumes. The dynamics of flows is another issue; flows arrive at

random times and stay active for random durations. The rate of a flow (i.e., the number of packets generated

by a flow per unit of time) may also vary over time, further complicating the matter of packet sampling.

How can we ensure accuracy of measurement of dynamic flows with a pre-specified error bound? How to

decide on a sampling rate to avoid excessive oversampling while ensuring accuracy? How to perform sampling

procedure and estimate flow volume? To answer these questions, we advance a theoretical framework and

develop an adaptive packet sampling technique using stratified random sampling.

The technique is aimed for accurate estimation of large or elephant flows using packet sampling. That we

focus only on large flows is justified by many recent studies ([2,10,11]) which demonstrate the prevalence of

the “elephant and mice phenomenon” for flows defined at various levels of granularity: a small percentage of
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flows typically accounts for a large percentage of the total traffic. Therefore, for many monitoring and mea-

surement applications, accurate estimation of flow statistics for elephant flows is often sufficient. We propose a

random sampling with time stratification approach to circumvent the issues caused by flow dynamics. Through

theoretical analysis, we establish the properties of the proposed adaptive stratified random sampling technique

for flow-level measurement. Using real packet traffic traces, we demonstrate that the proposed technique in-

deed produces the desired accuracy of flow volume estimation, while at the same time achieving significant

reduction in the amount of packet samples and flow cache size.

The remainder of the section is organized as follows. In Section 2 we outline related works and the chal-

lenges in packet sampling for flow measurement. In Section 3 we provide an overview of our approach and

formally state the problem. In Section 4, we analyze how sampling errors can be bounded within pre-specified

accuracy parameters under dynamic traffic conditions. Experimental results using network traffic traces are

presented in Section 5. The paper is summarized in Section 6.

2 Related Work and Background

2.1 Related Works

Statistical sampling of network traffic was first used in [4] for measuring traffic on the NSFNET backbone in

the early 1990’s. Claffy et al. evaluated classical event and time driven static sampling methods to estimate

statistics of distributions of packet size and inter-arrival time. Hash based sampling proposed in [5] employs

the same hashing function at all links in a network, to sample same set of packets at different links, and to

infer statistics on the spatial relations of the network traffic. The study in [15] presents an algorithm to bound

flow packet count estimation error of the top k largest flows under a static traffic model. A size-dependent flow

sampling method proposed in [6] addresses the issue of reducing the bandwidth needed for the transmission of

traffic measurement to a management center for later analysis. For the purpose of usage-based charging, flows

are probabilistically sampled depending on their sizes, assuming flow statistics are known a priori. In [9], a

probabilistic packet sampling method is used to identify large byte count flows. Once a packet from a flow is

sampled or identified, all the subsequent packets belonging to the flows are sampled. The problem of estimating

flow distributions using packet sampling has been studied in [7] and [13]. Statistical inference technique and

protocol level information are used to estimate the shape of the flow distribution in [7]. Authors in [13]

compares packet sampling and flow sampling, and show flow sampling performs better in recovering flow

distribution. Our work differs from the above, in that we use packet sampling to estimate large flows accurately

under dynamic traffic conditions.
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Table 1 Summary of traces used.

Trace Link Speed Duration Avg Load
Π1 OC3 Auck-II 4hr 152Kbps
Π2 OC3 Tier-1 Backbone 30min 49.1Mbps
Π3 OC12 Tier-1 Backbone 30min 43.4Mbps
Π4 OC48 Tier-1 Backbone 30min 510.9Mbps
Π5 OC12 Tier-1 Backbone 24hr 5.2Mbps

2.2 Background

In this paper, we present flow statistics and experimental results using flows of 5-tuple (source/destination

IP addresses, port numbers and protocol number) with a 60sec timeout value, for illustrational consistency.

Our technique, however, providing bounded accuracy in flow volume estimation, applies to any kind of flow

definition. The packet traces used in this study are obtained from a public measurement infrastructure [17] and

a commercial tier-1 ISP backbone network. The trace statistics are listed in Table 1.
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Fig. 1 Elephants-mice behavior.
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Fig. 2 Many small flows.

As a first step toward designing a sampling technique, let us observe and discuss flow characteristics and

their impacts on packet sampling.

First, flows are diverse in their sizes. Note that extremely small flows (e.g., with 10 or fewer packets)

may not be detected at all using any packet sampling; thus, it would be infeasible to achieve any reasonable

degree of accuracy. Fortunately, for many traffic engineering applications, it is sufficient to provide an accurate

estimate of flow sizes for only large flows. This is due to the fact that the small percentage of large flows

typically accounts for a large percentage of total traffic. This is evident in Figure 1 where we order the flows

based on their packet counts, and plot the cumulative probability they account for the total traffic (in terms of
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packet count). We see that less than 10 ∼ 20% of the top-ranked flows are responsible for more than 80% of

the total traffic different links, which is referred as the “elephants and mice phenomenon”. This motivates us to

develop a packet sampling technique to accurately estimate elephant flows. Such a packet sampling technique

reduces the per-packet processing overhead such as classification and flow statistics update. Meanwhile, packet

sampling may also relieve the per-flow overhead. Figure 2 shows the cumulative probability distribution of flow

sizes in terms of packet count (i.e., number of packets) for flows in the traces. The many of the flows (over 80%

of flows) are small (e.g., with 10 or fewer packets), while a small percentage of them are large. This implies

that many small flows may not be detected by packet sampling, leading to a reduction in flow cache size.

On the other hand, there are challenges involved in packet sampling for flow measurement. First, packet

rate of a flow, i.e., the byte/packet counts over time, varies a lot within a flow’s lifetime. This variable packet

rate within a flow make it difficult to define elephant flows [2]. Furthermore, flows are dynamic in their arrival

time, duration, and rate over time (the number of packets/bytes generated by a flow per unit of time); flows

arrive at random time, and stay active for a random duration. furthermore, the rate of a flow varies during the

flow duration. In order to achieve both sampling accuracy and efficiency at the same time, it is important to

adapt the sampling rate according to changes in the traffic. Such problems become more acute in case of attack

or long-term daily scale, where day time traffic rate differs significantly from night time as shown Figure 6.

However, it is hard to decide a sampling interval and an optimal sampling probability on an interval, due to the

dynamic flow arrival and duration.

3 Our Approach and Problem Formulation

In this section, we first outline our approach to tackle the challenges of flow measurement with sampling. We

then state our flow measurement problem formally.

In this paper, we define a large or elephant flow in terms of a packet count. Thus, sampling decision will

not be made based on the packet content such as packet size. The formal definition will be given later. Packet

count is an important resource usage measure of a flow in a router, since many tasks in a router are done on

per-packet basis such as packet classification, flow statistic update, and routing decision. Moreover, a set of

flows with large packet count contains flows with large byte count, as is evident in Figure 3, where we observe

that flows with large byte count also have large packet count. It is because a flow consists of packets whose

sizes cannot be arbitrarily large. The maximum packet size is limited by MTU (Maximum Transmission Unit)

on a path.1 This suggests that a sampling scheme without using packet size captures flows with large byte count

as well. Note that by relying only on packet count in the definition of elephant flows, the sampling technique

is content-independent which does not incur per packet processing overhead.
1 Note that the linear lines in Figure 3 are due to the dominant packet sizes (40, 570, and 1500 bytes).
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For accuracy and efficiency of sampling, a sampling interval should be determined, for which a sampling

rate is adjusted in accordance with the changing traffic condition. However, it is very hard to define a sam-

pling interval that is valid for all elephant flows, due to dynamic arrival and duration of flows. We tackle this

problem with a time stratification approach. As illustrated in Figure 4, we divide time into predetermined,

non-overlapping intervals called strata or a block. For each block, we samples packets with the same proba-

bility (i.e., via simple random sampling). At the end of each block, flow statistics are estimated. Then, a flow’s

volume is naturally summarized into a single estimation record at the end of the last time block enclosing the

flow. Notice that from each flow’s point of view, its duration is divided or stratified in a fixed time. The prede-

termined time blocks enable us to estimate flow volume, without knowing dynamic flow arrival times and their

durations.
We classify flows based on proportion of packet count over a time interval that encompasses the flow

duration; i.e., a flow is referred to as an elephant flow in our study if its packet count proportion is larger than

a pre-specified threshold (for example, 1% of total traffic). The proposed definition of elephant flow captures

large packet and byte count flows as well as high rate (or bursty) flows. Furthermore, it removes the difficulty

dealing with intra-flow rate variability. Flows with packet count over a certain threshold captures naturally

high byte count flows as well as high packet count flows, as discussed before. The proportion tells us how

bursty a flow is or rate of a (entire) flow, compared to other simultaneous flows. Since the proportion is defined

over the time interval enclosing a flow, it eliminates the intra-flow rate fluctuation issue.
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Fig. 4 Our approach.

A time block is the minimum time scale over which an elephant flow (packet count proportion) is identified.

It is also the minimum time scale over which the sampling rate can be adjusted. The sampling rate of a block is
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set to collect the required number of samples in a block in order to bound the estimation error of the smallest

(threshold) elephant flow. Given the arbitrary length of elephant flow duration, the sampling frame for a flow

could be one block or a series of consecutive blocks in the stratified sampling. We prove the accuracy of flow

estimation is bounded for the defined elephant flows with the proposed technique, regardless of the flow’s rate

variability over multiple blocks.

Below is the formal definition of an elephant flow.

Definition 1 (Elephant Flow) Consider a quantized time interval that contains an entire duration of flow

f . Suppose the interval consists of L consecutive (time) blocks where total mi packets are seen in block i

(i = 1 . . . L). Let mf packets belong to flow f out of total m packets. If the proportion of flow packet count pf

is greater than a threshold pθ, then we call the flow an elephant.

mf

m
=

∑L
h=1 mf

h∑L
h=1 mh

= pf ≥ pθ (1)

The online identification of a flow as an elephant or a mouse can be done by just keeping one counter of

the total packet for blocks of a flow duration. When the flow expires, the packet count proportion of the flow

over the total packet counts during the blocks indicates whether the flow is an elephant or not. If it is indicated

as an elephant, the flow volume estimation should be accurate within the pre-specified error bound.

Our objective is to bound the relative error of packet count estimation, m̂f and byte count estimation, v̂f

for the elephant flows, i.e., given prescribed error tolerance level, {η, ε}, (where (1 − η) and ε are referred as

reliability and precision respectively, and 0 ≤ η ≤ 1), flow packet count and byte count estimation error have

to be bounded respectively as:

Pr

{∣∣∣∣
m̂f −mf

mf

∣∣∣∣ > ε

}
≤ η and Pr

{∣∣∣∣
v̂f − vf

vf

∣∣∣∣ > ε

}
≤ η (2)

where pf ≥ pθ for flow f . In other words, we want the relative error in flow volume estimation using random

sampling to be bounded by ε with a high probability 1− η.

4 Theoretical Framework of Adaptive Random Sampling for Flow Volume Measurement

In this section, we analyze the minimum number of samples required within a time block to bound sampling

errors, and describe how to determine sampling probability. We then discuss the optimal sampling probability

and our prediction approach to approximate optimal sampling. Finally we describe the statistical properties of

the proposed technique and how the accuracy is achieved for flows of arbitrary lengths.
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Fig. 5 Flow packet count and byte count vs. SCV.
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Fig. 7 Adaptive random samping for flow volume measurement.

4.1 Required Number of Samples

Our approach and analysis framework are based on random sampling. The assumptions we make in the analysis

are: sample size n is reasonably large (> 30 packets) and the population size m is large enough compared

to the sample size (m À n) so that the sampling fraction is small. Then, the sampling distribution of the

sample mean for random samples has a normal distribution with the mean µ and standard deviation σ√
n

,

regardless of the distribution of population, from the Central Limit Theorem. µ and σ are the population mean

and the standard deviation, respectively. Recall that the requirement of samples being i.i.d (independent and
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identically distributed) for the condition of the theorem is simply achieved by random sampling from the

common population. 2

Using a simple random sampling, a flow packet count is estimated as follows: consider a unit time interval

that contains an entire duration of flow f , in which m packets are seen. From these, n packets are randomly

sampled (n < m), and nf packets belong to flow f . Then the packet count of flow f , mf is estimated by m̂f

using the sample proportion p̂f :

m̂f = m · nf

n
= m · p̂f (3)

A proportion may be considered to be a special case of the mean where a variable I takes on only the values 0

and 1. For example, suppose we wish to find the proportion of a particular flow f . Let there be m packets, and

let Ii = 1 if ith packet belongs to the flow f , and Ii = 0 otherwise. Then the number of packets belonging to

the flow f is mf =
∑m

i=1 Ii. The flow proportion of packets is computed by to the total packet count during

the interval pf = mf

m =
Pm

i=1 Ii

m . Let Î1, Î2, . . . , În be n random samples, and nf packets of them belong to

flow f . The sample proportion of flow f is therefore defined as

p̂f =
nf

n
=

∑n
j=1 Îj

n
(4)

Within a time block, a fixed sampling probability is used. Then, from the Central Limit Theorem of random

samples [1], as the sample size n →∞, the sample mean p̂f approaches the population mean pf and variance

σ2
p̂f = pf (1 − pf )/n regardless of the distribution of population. Thus, the sample proportion can be written

with its mean and variance,

p̂f ≈ pf +

√
pf (1− pf )√

n
Yp (5)

where Yp ∼ N(0, 1), and the subscript p stands for packet count.

Now Eq. (2) can be rewritten as follows:

P

{∣∣∣∣∣
mp̂f −mpf

mpf

∣∣∣∣∣ > ε

}
= P

{∣∣∣∣
p̂f − pf

σp̂f

∣∣∣∣ >
pf
√

nε√
pf (1− pf )

}

≈ 2

(
1− Φ

( √
pf
√

nε√
(1− pf )

))
≤ η (6)

2 It is important to understand that a randomizing eliminates correlation. For example, in [8], the randomizing technique is

used to destroy correlation for the purpose of investigating the impact of long range dependence on the queueing performance.
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where Φ(·) is the cumulative distribution function (c.d.f) of the standard normal distribution. By solving the

inequality in Eq. (6) with respect to n, we can derive the minimum required number of samples n∗,p to estimate

flow packet count within the given error tolerance level

n ≥ n∗,p =
⌈
zp ·

(
1− pf

pf

)⌉
= dzp · Cθe (7)

where zp =
(

Φ−1(1−η/2)
ε

)2

, and Cθ =
(

1−pθ

pθ

)
are contant. With at least n∗,p number of random samples,

simple random sampling can provide pre-specified accuracy {η, ε} for any flows whose proportion is larger

than a pre-defined elephant threshold pθ. Eq. (7) concisely relates the minimum number of packet samples to the

estimation accuracy and the elephant flow threshold. Moreover, given accuracy and elephant flow threshold,

it shows that the amount of measurement needed remains constant regardless of the traffic fluctuation, which

makes the technique truely scalable as opposed to static sampling.

4.1.1 Flow Byte Count Estimation

For the defined elephant flows, we also aim to measure flow byte count accurately, in addition to flow packet

counts. The actual byte count of a flow f is expressed as vf = mfµf = mpfµf , where µf is the actual average

packet size of flow f . Similarly the estimated flow byte count v̂f can be written as

v̂f = m̂f µ̂f = mp̂f µ̂f (8)

where µ̂f is the estimated average packet size of flow f . Eq. (8) tells us that there are two levels of uncertainties

are involved for flow byte count estimation, namely the estimations of flow proportion (p̂f ) and flow’s average

packet size (µ̂f ).

The flow byte count estimation can be quantified with the help of the following two lemmas, which are

the consistency of sample proportion, and an extension of the Central Limit Theorem for a sum of a random

number of random variables, respectively:

Lemma 1 nf

n·pf → 1 almost surely as n →∞ by the strong law of large numbers.

Lemma 2 (p369, problem 27.14 in [3]) Let X1, X2, . . . be independent, identically distributed random vari-

ables with mean µ and variance σ2. For each positive n, let Fn be a random positive integer variable. It does

not need to be independent of the Xm’s. Let Wn =
∑Fn

i=1 Xi. Suppose then as n → ∞, Fn

n converges to 1

almost surely. Then as n →∞,

Wn − Fnµ

σ
√

n
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converges in distribution to a N(0, 1) random variable.

Applying these lemmas, the byte count of a flow can be approximated with the sum of two normal random

variables as

v̂f = mpfµf + m

[√
pf

√
n

(
µf

√
1− pfYp + σfYb

)]
(9)

where Yb, Yp ∼ N(0, 1).

Then, the required number of samples for flow byte count estimation can be obtained similarly to the flow

packet count estimation,

n ≥ n∗,b,f =
⌈
zp ·

(
1− pf + Sf

pf

)⌉
(10)

where Sf = (σf/µf )2 is the squared coefficient of variation (SCV) of packet sizes of flow f . Eq. (10) reveals

that the required number of samples for a flow byte count estimation is related to the variability of packet sizes

of a flow as well as packet count proportion and accuracy.

Our observation shown in Figure 5 sheds light on the problem of flow byte count estimation. Even though

the variability of packet sizes (SCV) of a flow ranges widely in general (from 0.00007 to 8), it is very limited for

large flows. This means large flows tend to have packets of similar sizes. One can effectively give a reasonable

bound on the SCV of elephant flows, around 0.2(< 1) for example. Therefore, the number of required samples

to bound estimation error for flow byte count can be obtained by

n ≥ n∗,b = dzp ·Bθe (11)

where Bθ =
(

1−pθ+Sθ

pθ

)
.

4.2 Optimal Sampling Probability and Prediction of Total Packet Count

With the required number of samples computed, the optimal sampling probability of a block to produce n∗

(n∗,p or n∗,b) samples would be

psp =
n∗

mh
(12)

where mh is the total number of packets in a block h. n∗ can be n∗,p only for flow packet count or n∗,b for

flow byte count as well.
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Fig. 8 Actual vs. estimated flow volume (trace Π1, {η, ε} =

{0.1, 0.1}).
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Fig. 9 Relative error of elephant flows (trace Π1,{η, ε} =

{0.1, 0.1}).

However, we cannot accurately choose the sampling rate when the population size (total packet count of

the observation time block) is unknown. We compute the sampling probability at the beginning of a block

by predicting the total packet count. We employ an the AR (Auto-Regressive) model [12] for predicting the

total traffic packet count m, as compared to other time series models, since it is easier to understand and

computationally more efficient making it suitable for online implementation.

Through empirical studies, we have found that AR(1) with a small number of past total packet count values

(around 5) is sufficient to yield a good prediction. For the currently active flows, their statistics are updated

using the sampling rate at the end of a block h as follows:

m̂f
h = m̂f

h−1 +
mh

nh
n̂f

h, v̂f
h = v̂f

h−1 +
mh

nh
n̂f

hµ̂f
h (13)

Figure 7 shows the flow chart of the adaptive random sampling procedure.

4.3 Accuracy of Stratified Random Sampling: Statistical Properties

Now we discuss the statistical properties of the proposed technique. Consider a flow whose enclosing interval

consists of L number of blocks. Then, from the flow’s point of view, n∗ ·L packets are sampled for the L blocks

and for each block a simple random sampling is used, which is equivalent to a stratified random sampling with

an equal number of samples per stratum. Stratified random sampling is known to provide unbiased estimators

for the population mean, total, and proportion, in that their expectations are equal to the values of population

(E(p̂f ) = pf , E(v̂f ) = vf ). The technique is also consistent, since the estimation approaches the population

parameter as the number of samples increases. i.e., p̂f → pf as n →∞ (or m).

Efficiency of a sampling describes how closely a sampling distribution is concentrated around the popula-

tion parameter. For consistent estimators, efficiency can be measured by the variance, where a smaller vari-
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ance is preferred. An estimator of a smaller variance gives more accurate estimation, given the same number

of samples. Notice that the analysis and the required number of samples are based on simple random sam-

pling. We compare the variance of proposed stratified random sampling with simple random sampling. Due

to space limitation, we simplify the discussion of the variance to a mean (such as p̂f or µ̂f ) estimation. The

variance of total estimation (m̂f or v̂f ) is easily found by using the results of a variance of mean estimation

(e.g., V ar(m̂f ) = V ar(mp̂f ) = m2V ar(p̂f )). The variance of simple random sampling with n samples is

V ar(X̂sim,n) = σ2

n , where σ2 is the population variance [20]. Thus, the accuracy (or variance) of a simple

random sampling depends on the variance of the actual population (σ2) and a sample size (n).

Now, we consider flows with arbitrary duration which stay active L(≥ 1) blocks. We establish the following

theorem to show that the proposed stratified random sampling provides the pre-specified error tolerance.

Lemma 3 The variance of stratified random sampling with an equal number of n∗ samples for each L strata

is smaller than the variance of simple random sampling with n samples.

V ar(p̂str(eq),n∗L) ≤ V ar(p̂sim,n∗) (14)

Proof

V ar(p̂str,n·L) =
L

m2

∑L
i=1 m2

i σ
2
i

nL
=

1
mn

L∑

i=1

miσ
2
i ·

mi

m

≤ 1
mn

L∑

i=1

miσ
2
i ≤ V ar(X̂sim,n)

where σ2
i is a population variance in block i.

Therefore, the accuracy in estimation of a flow with arbitrary duration satisfies the given bound with the

proposed stratified random sampling.

5 Experimental Results

In this section, we evaluate the performance of our adaptive packet sampling technique using real network
traces.

We first validate the accuracy of the proposed sampling technique. In Figure 8, all the estimated flow

volumes using sampled packets are compared to the actual flow volumes, to show the performance qualitatively.

It can be observed that small volume flow estimations (indirectly, low proportion flows) are more off from the

actual volumes, while high volume flow estimations (elephants) tend to be more close to the actual volumes.



14 Baek-Young Choi, Zhi-Li Zhang

Table 2 Sampling fraction and flow cache size reduction (Trace Π5).

Parameters Sampling fraction Flow cache reduction
{η, ε, pθ, Sθ} Adapt. Static Adapt. Static

{.15, .15, .01, .0} .0043 .0010 .291 .547
{.15, .15, .01, .2} .0086 .0223 .433 .697
{.1, .1, .01, .0} .0062 .0192 .343 .581
{.1, .1, .01, .2} .0101 .0311 .459 .711

Figure 9 shows the cumulative probability of the relative error estimating elephant flows. There are a few flows

shortened due to timeout. Their relative error are close to 1, because 1 or 2 packet flows from the broken flows

are compared the original flow (left plot). However, after removing statistics of those flows (right plot), the

cumulative probability of relative error being less than ε is higher than 1− η. For elephants whose threshold is

higher than the threshold, the achieved accuracy is supposed to be better. Thus the statistical accuracy among

all elephants becomes better than the specified, as in Figure 9.

Next, we examine the efficiency of the adaptive sampling in terms of reduction in packet measurement

and flow cache size. A sampling fraction which is the ratio of the number of samples over the total number

of packets, determines the resource usage efficiency. We compare the sampling fraction from a trace using

adaptive sampling and static sampling. The average sampling rate of the adaptive sampling method is used

for the sampling rate of the static sampling method. In adaptive sampling, higher accuracy requires a larger

number of samples, while larger block size decreases the sampling rate. As shown in Table 5, the sampling

fraction is higher for the static sampling scheme for various block sizes and accuracy parameters. Since the

processing overhead is a function of the number of packets sampled, the advantage of the adaptive sampling is

clear.
Table 5 also shows flow cache size reduction for both adaptive and static sampling with various traces and

various sampling rates. Flow cache size reduction is computed in terms of average flow cache size in case of

using sampling compared to one without sampling for the trace. Note that flow statistics should be kept for a

longer time when sampling is used, since the timeout value inversely increases with sampling rate. Nontheless

Table 5 illustrates that packet sampling indeed reduces flow cache size for all cases of sampling rate and traces,

and the adaptive sampling performs better than static sampling.

6 Summary

In this paper, we have addressed the problem of flow volume measurement using a packet sampling. Since

a small percentage of flows are observed to account for a large percentage of the total traffic, we focused

on the accurate measurement of elephant flows. We proposed an adaptive sampling method that adjusts the
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sampling rate so as to bound the error in flow volume estimation without excessive oversampling. It enables us

to control the accuracy of estimation, in turn, the tradeoff of the utility and overhead of measurement. Based

on stratification approach, the proposed method divides time into strata, and within each stratum, samples

packets randomly at a rate determined to collect the minimum number of samples needed to achieve the desired

accuracy. Thus, sampling rates are adapted inversely to total traffic amount. Unlike static sampling where the

amount of samples increases proportionally with the amount of traffic, our scheme collects a fixed number of

samples on each stratum, regardless of total traffic. Therefore, the proposed scheme becomes truely scalable as

opposed to static sampling. The technique can be applied to any granularity of flow definition. Through analysis

and experimentation we have shown that the proposed method provides accurate and unbiased estimation of

byte and packet counts of elephant flows without excessive oversampling.
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