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We develop a first-order approximation method for the influence of spin on the motion of extended
spinning test masses in a gravitational field. This approach is illustrated for approximately circular
equatorial motion in the exterior Kerr spacetime. In this case, the analytic results for the first-order
approximation are compared to the numerical integration of the exact system and the limitations of the
first-order results are pointed out. Furthermore, we employ our analytic results to illustrate the grav-
itomagnetic clock effect for spinning particles.

DOI: 10.1103/PhysRevD.74.124006 PACS numbers: 04.20.Cv

I. INTRODUCTION

Imagine the motion of an extended spinning body in the
exterior vacuum region of an astronomical source. Let T��

be the energy-momentum of the extended test mass; then,
the motion is governed by the four equations that are given
by the dynamical law T��;� � 0. Consider a representative
point inside the extended test body (the ‘‘center of mass’’)
such that u�s � dx�=d� is its four-velocity vector and � is
the proper time along its worldline. The equations of
motion can then be expressed relative to the chosen world-
line. This has been accomplished in an elegant manner by
Dixon [1]. Using Synge’s world function [2], Dixon has
defined the infinite set of multipole moments of T�� in a
way that is qualitatively similar to the standard nonrelativ-
istic theory and thereby expressed the equations of motion
as [1]
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R����u
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Here, the momentum vector P� and the spin tensor S�� are
the first two moments of T��, while the Dixon force F �

and torque T �� are given in terms of the quadrupole and
higher moments of the test body. It is necessary to add a
supplementary condition to Eqs. (1) and (2) in order to fix
an appropriate center-of-mass trajectory. It turns out that
for an extended body the appropriate condition is [3]

 S��P� � 0: (3)

The work of Dixon provides a natural generalization of the
previous results of Mathisson [4] and Papapetrou [5] that
were limited to pole-dipole particles.

In the present paper, we are interested in the dynamics of
an extended body of mass m and spin s in the field of a
rotating mass M� m; therefore, we consider Eqs. (1)–(3)
without the quadrupole and higher moments, i.e., F � � 0
and T �� � 0. The resulting reduced Mathisson-
Papapetrou-Dixon (MPD) equations then lead to natural
definitions for the mass m and spin s of the extended test
particle that are preserved throughout the motion. We
assume that the metric tensor has signature �2 and we
use units such that c � G � 1, unless otherwise specified.
It then follows from Eqs. (1)–(3) that in this case the mass
of the extended particle is given by m � ��P�P��

1=2,
which is a constant of the motion. The spin vector is then
defined by

 S� � �
1

2m
�����P

�S��; S�� �
1

m
�����P�S�; (4)

where ����� is the Levi-Civita tensor given by ����� ��������
�g
p

����� in terms of the alternating symbol with
�0123 � 1. It follows from the reduced MPD equations
that s2 � S�S� �

1
2S��S

�� is a constant of the motion.
Moreover, the requirement that the dipole force be much
smaller than the monopole force implies that s� mr,
where r is the distance between m and M; that is, the
Møller radius of the extended test particle (s=m) must be
very small compared to its distance from the source.

In a recent paper [6], an approximation scheme has been
introduced to deal with this extended pole-dipole system in
most astrophysical situations. This scheme is based on the
circumstance that m�1P� � u�s is small and of order
�M=r��s=�mr�	2 � 1. In this approach, it then turns out
that to first order in s=�mr� one can assume that P� and u�s
are parallel, namely, P� 
 mu�s ; therefore, it follows from
Eqs. (1)–(3) in this case that
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(5)
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The second section of Ref. [6] should be consulted for the
details of the derivation of these equations.

In the absence of spin, system (5) simply reduces to the
geodesic equation for the motion of the center of mass of
the spinless extended particle, as expected [7]. In Sec. II,
we solve system (5) assuming that in the zeroth order of
approximation the worldline for a spinless particle is a
timelike geodesic. The motion away from the geodesic is
then of first order in s=�mr� in our approach. This method
is employed to study approximately circular motion near
the equatorial plane of a Kerr source of mass M and
angular momentum J � Ma in Sec. III. That is, we assume
that in the absence of spin, the test mass follows a stable
equatorial circular geodesic orbit in the exterior Kerr
spacetime. Our approximate analytic results based on sys-
tem (5) are compared with the numerical solution of the
extended pole-dipole system, Eqs. (1)–(3), in Kerr space-
time in Sec. IV. Section V is devoted to the gravitomagnetic
clock effect. A brief discussion of our results is contained
in Sec. VI. The appendices contain further developments of
our main results.

II. FIRST-ORDER APPROXIMATION

Consider the motion of an extended spinning test parti-
cle in a gravitational field. Let u� be the four-velocity of
the particle in the absence of spin and ���̂ be the ortho-
normal tetrad frame that is parallel propagated along the
reference geodesic x��	�, where u� � dx�=d	 and 	 is the
proper time of the spinless particle. More specifically, we
imagine that along the unperturbed reference geodesic
worldline x��	�, the Mathisson-Papapetrou spin-curvature
interaction is ‘‘turned on’’ at 	 � 0 and the spinning par-
ticle then follows x�s �	� for 	 > 0. Let 
x��	� � x�s �	� �
x��	� be the deviation between the neighboring worldlines
at the same time 	 > 0 such that �
x��u� � 0. We will
work to linear order in the small quantity s=�mr� � 1.
Here 
x��	� is a vector field defined orthogonally along
x��	� such that it connects the reference geodesic to the
path of the spinning particle in a way that amounts to a
unique identification of events along the perturbed trajec-
tory using the proper time of the geodesic worldline x�. It
follows that we can write

 
x� � Xi�	���{̂; (6)

where X�	� can be determined by the equations of motion
(5). To this end, we establish a Fermi normal coordinate
system along x��	� based on the local frame ���̂ and solve
the equations of motion in this Fermi coordinate system.
The procedure that we follow is described in detail in
Appendix A. Here we provide a general summary of our
approximation method.

To linear order in our approximation scheme, it follows
from Eq. (5) that the spin tensor S�� is parallel propagated
along the unperturbed trajectory and S��u� � 0. One can
then write

 S�� � ��{̂�
�
|̂S
{̂ |̂; (7)

where S{̂ |̂ are constants of the motion. Moreover, it is
simple to show that in the linear approximation scheme
under consideration in this paper, S�u� � 0, so that for
S�̂ � S����̂ we have S0̂ � 0 and

 S{̂ �
1
2�ijkS

|̂ k̂: (8)

Here, we have used the fact that ������� 0̂
��

1̂
��

2̂
��

3̂
� 1,

since �0̂ 1̂ 2̂ 3̂ � 1; hence, det����̂� � ��g�
�1=2, which is a

consequence of the orthonormality of the tetrad frame.
Consider next the components of the spacetime

curvature tensor measured by a free observer moving
along the reference geodesic. These components,
R�����

�
�̂�

�
�̂
���̂�

�

̂
, can be expressed as a 6� 6 matrix

(R��), where the indices � and � range over the set {01,
02, 03, 23, 31, 12}. One can then write

 R �
E H

H y D

� �
; (9)

where E, H , and D are 3� 3 matrices representing,
respectively, the electric, magnetic, and spatial compo-
nents of the Riemannian curvature. In general, E and D
are symmetric and H is traceless. In a background Ricci-
flat spacetime, D � �E, E is traceless and H is symmet-
ric (H �H y). In this case, the curvature is completely
determined by its electric and magnetic components. These
are given in general by

 E {̂ |̂ � R������ 0̂
��{̂�

�
0̂
��|̂; (10)

 H {̂ |̂ �
1
2�j

klR������0̂
��{̂�

�
k̂
��

l̂
; (11)

and, as described below, play important roles in our ap-
proximation scheme.

It is shown in Appendix A that the worldline of the
spinning particle is given, in our linear approximation, by

 x�s �	� � x��	� � Xi�	���{̂; (12)

where X�	� is a solution of the system

 

dXi

d	
� Vi; (13)

 

dVi

d	
� E {̂ |̂�	�X

j �
1

m
H {̂ |̂�	�S

|̂; (14)

with the boundary conditions that at 	 � 0, X�0� � 0, and
V�0� � 0. The unique solution of this system is thus due to
the spin-curvature force folded together with the tidal
influence of the background gravitational field. In fact,
system (13) and (14) can be solved with the method of
variation of parameters [8] once the fundamental solution
of the homogeneous part is available. In the absence of
spin, the system simply reduces to the Jacobi equation in
the Fermi coordinate system; therefore, system (13) and

BAHRAM MASHHOON AND DINESH SINGH PHYSICAL REVIEW D 74, 124006 (2006)

124006-2



(14) can be solved once the Jacobi fields along the path
of the reference geodesic are completely known. The gen-
eral solution of system (13) and (14) is discussed in
Appendix A. In the following section, we apply this
method to Kerr spacetime; that is, we solve Eqs. (13) and
(14) for the case of a spinning test particle that follows an
approximately circular equatorial orbit in the exterior Kerr
field. The Kerr field, which represents the exact gravita-
tional field of a rotating black hole, has been chosen here
for the sake of simplicity; in principle, one could employ
any other exact solution of the gravitational field equations
describing the exterior field of a rotating mass [9].

III. KERR SPACETIME

Consider circular geodesic orbits about a Kerr source of
mass M and angular momentum J. In standard Boyer-
Lindquist coordinates �t; r; �; �, the geodesic equation
for a circular equatorial orbit of fixed ‘‘radius’’ r > 2M
and � � �=2 reduces to

 t �
1

N
�1� a�K�	;  �

1

N
�K	; (15)

where a � J=M > 0 and we have chosen boundary con-
ditions such that t �  � 0 at 	 � 0,

 N �

�����������������������������������
1�

3M
r
� 2a�K

s
(16)

and

 �K � �

�����
M

r3

s
(17)

is the Keplerian frequency of the orbit. Here the upper sign
indicates an orbit that rotates in the same sense as the
source, while the lower sign indicates a counterrotating
orbit. The energy E and orbital angular momentum L
associated with these circular orbits are given by

 E �
1

N

�
1�

2M
r
� a�K

�
;

L �
r2�K

N

�
1� 2a�K �

a2

r2

�
:

(18)

A detailed discussion of Kerr geodesics can be found in
Refs. [10,11] and references therein. Furthermore, the
motion of spinning test particles in Kerr and other astro-
physically interesting spacetimes has been studied by a
number of authors using other approaches, as can be seen
from a perusal of Refs. [12–23].

It is possible to set up an orthonormal parallel-
propagated frame ���̂ along the geodesic worldline of
the spinless test particle such that ��

0̂
� dx�=d	 is the

particle’s four-velocity vector and ��{̂, i � 1, 2, 3, are unit
gyro axes that form the particle’s local spatial frame. It
follows that in �t; r; �; � coordinates [24]

 ��
0̂
�

�
1� a�K

N
; 0; 0;

�K

N

�
; (19)

 ��
1̂
�

�
�
L
rA

sin�; A cos�; 0;�
E
rA

sin�
�
; (20)

 ��
2̂
�

�
0; 0;

1

r
; 0
�
; (21)

 ��
3̂
�

�
L
rA

cos�; A sin�; 0;
E
rA

cos�
�
; (22)

where � � �K	 and A is given by

 A �

����������������������������
1�

2M
r
�
a2

r2

s
: (23)

Furthermore, the electric and magnetic components of the
spacetime curvature are given by [24]

 E �
k1 0 k0

0 k2 0
k0 0 k3

0@ 1A; H �

0 h 0
h 0 h0

0 h0 0

0@ 1A; (24)

where k2 � ��k1 � k3� is a constant given by k2 �
k�3�2 � 2� and
 

k1 � k�1� 3�2cos2��;

k3 � k�1� 3�2sin2��;

k0 � �3�2k sin� cos�;

(25)

 h � �3�2�k cos�; h0 � �3�2�k sin�: (26)

Here

 k �
M

r3 � �2
K; (27)

while � and � constitute a Lorentz pair, � � 1=
���������������
1� �2

p
,

given by

 � �
1

A

�
r�K �

a
r

�
; � �

A
N
: (28)

The results presented here for the electric components of
the curvature tensor are consistent with the work of Marck
[25].

We can now employ these results in order to find the
perturbed orbit x�s �	� � �ts; rs; �s; s� given by Eq. (12),
namely,

 ts �
1� a�K

N
	�

L
rA
��X sin�� Z cos��; (29)

 rs � r� A�X cos�� Z sin��; (30)

 �s �
�
2
�
Y
r
; (31)
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 s �
�K

N
	�

E
rA
��X sin�� Z cos��; (32)

where X � �X; Y; Z� and the tetrad frame given by
Eqs. (19)–(22) has been used. It is useful to write S{̂ in
terms of spherical polar coordinates �s; #;’� with respect
to the local tetrad frame as

 S1̂ � s sin# cos’; S2̂ � �s cos#;

S3̂ � s sin# sin’;
(33)

so that s cos# is the component of the spin vector along the
rotation axis of the Kerr source. Then system (13) and (14)
takes the form

 

d2X

d�2 � �3�
2cos2�� 1�X� 3�2 sin� cos�Z

� 3�2�
�
s
m

cos#
�

cos�; (34)

 

d2Y

d�2
� �2� 3�2�Y � 3�2�

�
s
m

sin#
�

cos��� ’�;

(35)

 

d2Z

d�2 � 3�2 sin� cos�X� �3�2sin2�� 1�Z

� 3�2�
�
s
m

cos#
�

sin�; (36)

with the boundary conditions that X � 0 and _X � 0 at
� � 0. Here an overdot denotes differentiation with re-
spect to �. Let us now consider a rotation about the vertical
axis by an angle � so that the rotated coordinate axes
correspond to the radial, vertical, and tangential directions;
that is, Y0 � Y and

 X0 � X cos�� Z sin�; Z0 � �X sin�� Z cos�:

(37)

We note that x�s can be conveniently expressed in terms of
the rotated coordinates �X0; Y0; Z0�, as they appear explic-
itly in Eqs. (29)–(32) for the perturbed orbit.

It is possible to show that under rotation (37), Eqs. (34)–
(36) take the form

 

�X 0 � 2 _Z0 � 3�2X0 � 3�2�
�
s
m

cos#
�
; (38)

 

�Y 0 � �3�2 � 2�Y0 � �3�2�
�
s
m

sin#
�

cos��� ’�;

(39)

 

�Z 0 � 2 _X0 � 0; (40)

with the boundary conditions that at � � 0, X0 � 0, and
_X0 � 0. The unique solution of this system is given by

 X0 �
3

�2 �
2�
�
s
m

cos#
�
�1� cos����	; (41)

 

Y0 �
1

�

�
s
m

sin#
��

cos’ cos���� �
1

�
sin’ sin����

� cos��� ’�
�
; (42)

 Z0 � �
6

�3 �
2�
�
s
m

cos#
�
���� sin����	: (43)

Here

 � �
�����������������
4� 3�2

q
; � �

�����������������
3�2 � 2

q
(44)

are such that �j�Kj and �j�Kj are the proper radial and
vertical epicyclic frequencies, respectively.

It follows from these results that the orbit of the spinning
particle in the standard Kerr coordinate system is given by

 ts �
1� a�K

N
	�

6

�3 �
2�
�
s
mr

cos#
�
L
A
�sin���� � ��	;

(45)

 rs � r
�
1�

3

�2 �
2�
�
s
mr

cos#
�
A�1� cos����	

�
; (46)

 

�s �
�
2
�

1

�

�
s
mr

sin#
��

cos’ cos����

�
1

�
sin’ sin���� � cos��� ’�

�
; (47)

 s �
�K

N
	�

6

�3 �
2�
�
s
mr

cos#
�
E
A
�sin���� � ��	:

(48)

The perturbation in s is simply E=L times the perturba-
tion in ts. In Eqs. (45)–(48), the temporal parameter 	 can
be replaced by �, which is the proper time of the perturbed
worldline, since 	 � ��O�s2� by Eqs. (A7)–(A9) of
Appendix A. It is interesting to note here the role of spin
length scales

 s �
�
s
m

�
cos#; ~s �

�
s
m

�
sin# (49)

in the worldline of the particle; the perturbations in ts, rs,
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and s are proportional to s, while the polar motion away
from the equatorial plane is proportional to ~s.

Equations (45)–(48), involving the first-order perturba-
tion terms proportional to s=�mr�, should be viewed as
containing the zeroth and first-order terms of a perturbation
expansion in powers of a sufficiently small parameter
s=�mr� � 1. Moreover, for a black hole (a � M), � in
Eqs. (45)–(48) is positive for corotating orbits and negative
for counterrotating orbits, while �2 monotonically de-
creases from 4=3 at the last stable circular orbit to unity
at infinity. Similarly, j�j decreases monotonically from
1=2 to zero over the same range; in fact, for r� M and
r� a, j�j 


����������
M=r

p
.

It is interesting to mention here the behavior of � for
a >M. As before, � is negative for counterrotating orbits,
while for corotating orbits � can be positive or negative. In
fact, for a corotating orbit in this case (a >M), � is
positive for r > a2=M, negative for r < a2=M, and zero
for r � a2=M.

In Eq. (46), it is important to note the periodic motion in
the radius: it oscillates between r and r� 6A�2�s=�2

with a proper period of 2�=��j�Kj�. For the motion of the
Earth about the Sun, r� M and the Møller radius of the
Earth is about 200 cm, so that the amplitude of this periodic
variation in the astronomical unit amounts to

 


r
r



6

c
j�Kjs

 � 10�14; (50)

which is a few orders of magnitude too small to be mea-
surable at present. In this connection, it is interesting to
note that a secular increase of the astronomical unit,
amounting to about 103 cm per century, has been recently
reported based on the analysis of radiometric data [26,27].
Furthermore, the polar motion about the equatorial plane as
given by Eq. (47) consists of a superposition of two fre-
quencies: j�Kj and �j�Kj. For r� M � a, this motion in
the polar direction exhibits a beat phenomenon. That is, the
‘‘fast’’ harmonic oscillation at essentially the Keplerian
frequency j�Kj is modulated by a ‘‘slow’’ beat frequency

 !g=2, where !g � 3GMj�Kj=�2c

2r� is the ‘‘geodetic’’
(i.e., de Sitter-Fokker) precession frequency for the unper-
turbed orbit. The net amplitude (in radians) of the polar
motion for r� M � a is independent of c and is given by
~s=

�����������
GMr
p

. Nevertheless, this maximum amplitude is a rela-
tivistic effect and builds up over a ‘‘long’’ time scale; this
circumstance is reminiscent of another phenomenon re-
lated to relativistic nutation [28]. For the Earth, the yearly
spin-induced up and down polar motion about the ecliptic
has a net amplitude of about 106 cm and beat period of
108 years; that is, the amplitude of the polar motion away
from the ecliptic develops gradually and reaches a maxi-
mum of about 10 kilometers over a period of about 25�
106 years.

It would be very interesting to search for these radial and
polar motions in the strong-field regime close to black
holes or in relativistic binary systems.

Let us now compare and contrast these analytic (but
approximate) results with the numerical analysis of the
exact equations in Sec. IV.

IV. NUMERICAL INTEGRATION OF MPD
EQUATIONS

To determine the domain of validity of our linear ap-
proximation scheme, it is interesting to make a numerical
comparison of our results with the full MPD equations,
which must be written in a form that is suitable for nu-
merical integration. A direct comparison is possible once
the reduced MPD equations are expressed in terms of
proper time � as [29]

 

dP�

d�
� �����P�u�s �

1

2m
R�����

��
��S�P�u

�
s ; (51)

 

dS�

d�
� �����S�u�s

�

�
1

2m3 R�����
��

��S
�P�S�u�s

�
P�; (52)

 

dx�

d�
� u�s �N

�
P� �

1

2

S��R����P�S��

m2 � 1
4R����S

��S��

�
; (53)

where N � �u�s P�=m2 is a normalization parameter
such that g��u

�
s u�s � �1 throughout the spinning parti-

cle’s motion.
We wish to integrate these equations numerically in Kerr

spacetime with the same boundary conditions as in the
linear approximation. Thus, we assume that at � � 0 the
particle starts from x��� � 0� � �0; r; �=2; 0� in Boyer-
Lindquist coordinates. Moreover, we choose initial condi-
tions for the linear momentum such that P��� � 0� �
mu�s �� � 0�, where

 u�s �� � 0� � ��
0̂

(54)

is given by Eq. (19) and corresponds to a stable circular
equatorial orbit around the Kerr source. The initial con-
ditions for the components of the spin vector are given by

 S��� � 0� � ���̂�� � 0�S�̂: (55)

Using Eqs. (20)–(22) and (33) with S0̂ � 0, we find
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 S��� � 0� �
�
mL~s
rA

sin’;mA~s cos’;�
ms

r
;
mE~s
rA

sin’
�

(56)

in Boyer-Lindquist coordinates. In this way, Eqs. (45)–(48)
should provide the linear approximation to the full solution
of Eqs. (51)–(53), since, as shown in Appendix A, 	 �
��O�s2�. The results of the integration of the reduced
MPD equations for the specific case of a prograde orbit
with m � 10�2M, # � ’ � �=4, a � 0:5M, and r �

10M are presented in Figs. 1–3. Specifically, the spherical
polar coordinates �r; �; � characterizing the orbit of the
spinning particle in the standard Boyer-Lindquist coordi-
nates are plotted versus proper time � in Figs. 1–3,
respectively.

The results of the numerical integration of the reduced
MPD equations confirm that Eqs. (45)–(48) provide the
proper linear approximation to these equations. It is im-
portant to remark that these linear terms primarily exhibit
the results of spin-orbit coupling (cf. Appendix B); that is,
the rotation of the central source, though possibly impor-
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FIG. 1 (color online). The orbital radial coordinate rs��� for various choices of s=�mr�, where m � 10�2M, r � 10M, # � ’ �
�=4, and a � 0:50.
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tant, is not crucial for the existence of the main phenomena
associated with the motion of the particle in the first-order
approximation. However, the rotation of the source could
play a significant role in the difference between prograde
and retrograde motion as in the clock effect discussed in
Sec. V.

Beyond the linear approximation, it appears from
Figs. 1–3 that for radial motion nonlinear spin terms
introduce a complex beat phenomenon involving at least
two periods. Of these, the higher frequency is about the
same as the beat frequency in the case of polar motion.
Furthermore, nonlinear spin effects are responsible for the

reduction of the beat amplitude in the polar motion. On the
other hand, the azimuthal motion appears to be essentially
unaffected by the nonlinearities; therefore, only the graphs
for the highest magnitude of spin considered here are
presented in Fig. 3.

V. GRAVITOMAGNETIC CLOCK EFFECT

It follows from the results of the previous section that the
analytic formulas involving s=�mr� to first order are a good
approximation to the exact solution of the reduced MPD
equations; to go further, higher-order terms in spin must be
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FIG. 2 (color online). The orbital polar angle �s��� for various choices of s=�mr�, wherem � 10�2M, r � 10M, # � ’ � �=4, and
a � 0:50.
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taken into account. On the other hand, the analytic formu-
las can be safely applied within their theoretical limits of
validity to illustrate a general feature of motion about a
rotating source, namely, the gravitomagnetic clock effect
[30–33]. In its simplest form, the effect involves a spinless
‘‘clock’’ on a circular orbit in the equatorial plane of a
rotating source. The difference in the proper periods of two
clocks on the same orbit but moving in opposite directions
is given by 	� � 	� 
 4�J=�Mc2� for r� 2GM=c2.
Here 	��	�� is the proper period for the prograde (retro-
grade) motion. To lowest order, this remarkable effect is
independent of Newton’s constant of gravitation G and the
radius of the orbit. Moreover, the prograde motion is
slower than the retrograde motion. For satellites in circular
orbit about the Earth, 	� � 	� 
 10�7 s; however, mea-
suring this effect will not be simple [31].

The purpose of this section is to show that for a spinning
clock, the analogous result to first order in s=�mr� is

 	� � 	� 
 4�
�
J

Mc2 � 6
s

mc2 �ŝ � Ĵ�

�
; (57)

based on azimuthal closure involving Eq. (48). This con-
stitutes a generalization of previous results [18,19,34] that
involved only ŝ � Ĵ � �1.

Imagine a spinning particle revolving around a Kerr
source in accordance with Eqs. (45)–(48). After an integral
number p of complete orbits with p� 1, the change in s

over a period of time p	��p	�� for the corotating (coun-
terrotating) clock is 2�p��2�p�. For p� 1, we can drop
the sin���� term in Eq. (48) in comparison with ��; then,
we find that the resulting expressions for 	� and 	� are
such that the one for 	� changes over to the one for 	� if
a! �a and s! �s. To first order in a=r and s=�mr�, we
have

 	� � CTK �
2�
C

�
a� 6s

B2C2

D2

�
; (58)

where

 B �

�����������������
1�

2M
r

s
; C �

�����������������
1�

3M
r

s
; D �

�����������������
1�

6M
r

s
;

(59)

TK � 2�=j�Kj is the Keplerian period and s given by
Eq. (49) is proportional to the component of the specific
spin of the clock along the axis of rotation of the source.
Let us note that 	� � 	� computed from Eq. (58) for r�
2M would result in Eq. (57).

It is interesting to remark here that in the equatorial
plane of Kerr spacetime,

 t� � t� � 4�a; (60)

which is another manifestation of the special gravitomag-
netic temporal structure around the rotating source. Here
t� and t� are the periods of geodesic motion around the
same circular orbit according to the static inertial observers
at spatial infinity. Substituting Eq. (58) in Eq. (45), we find
along the same lines as before that the corresponding result
for the motion of a spinning particle to first order in s=�mr�
and a=r is t� � TK � 2��a� 6sC2=D2�, so that

 t� � t� � 4�
�
a� 6s

C2

D2

�
: (61)

These results are in qualitative agreement with previous
work in this direction [18,19,34] that has been restricted to
circular orbits for the motion of the spinning particle
around the Kerr source with the corresponding limitation
that the spin of the particle has to be parallel or antiparallel
to the Kerr axis [15]. In this connection, it is important to
remark here that Eqs. (45)–(48) explicitly forbid a circular
equatorial orbit with cos# � �1. Thus, a direct quantita-
tive comparison with previous work is not possible in this
case. The contribution of spin to the clock effect is further
elucidated in Appendix B.

VI. CONCLUSION

We have developed in this paper a general first-order
approximation scheme for the effect of spin on the motion
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FIG. 3 (color online). The orbital azimuthal angle s���, where m � 10�2M, r � 10M, # � ’ � �=4, and a � 0:50.
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of an extended spinning test particle in a gravitational field
in accordance with the MPD equations that are based on
the multipole expansion method. We have neglected the
influence of quadrupole and higher moments on the mo-
tion. For the astrophysically interesting case of motion in
the field of a central source, we must have s=�mcr� � 1,
where s=�mc� is the Møller radius of the extended test
particle. Thus the influence of the spin of the particle on
its motion is treated to linear order throughout. It turns out
that in this approximation the spin is parallel transported
along the nongeodesic path of the test particle. To illustrate
our general approach, the motion of spinning test particles
along nearly circular equatorial orbits in the exterior gravi-
tational field of a Kerr source has been investigated in
detail and the results of the first-order approximation
scheme have been numerically compared with the corre-
sponding solution of the full MPD equations. As expected,
the results are essentially identical for s=�mcr� sufficiently
small compared to unity; moreover, we have described the
deviations that appear when s=�mcr� is not so small.

The astrophysical implications of our results have been
briefly mentioned in Sec. III. For the motion of the Earth
about the Sun, for instance, the spin-induced deviations
from Keplerian motion are too small to be observationally
significant at present; however, the spin-dependent terms
could become important in binary pulsars [35,36]. Fur-
thermore, we have elucidated the gravitomagnetic clock
effect for spinning particles in accordance with our first-
order approximation method.
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APPENDIX A: MPD EQUATIONS IN FERMI
NORMAL COORDINATES

Consider a Fermi normal coordinate system that is con-
structed about the reference geodesic x��	� and is based
upon the parallel-propagated orthonormal frame ���̂.
Specifically, along the worldline of the spinning particle
x�s , let us imagine an event Qs with Fermi coordinates
X� � �T;X�; then, there exists a unique spacelike geodesic
of proper length l that connects Qs orthogonally to the
reference geodesic x� at the event Q0 with proper time 	
such that

 T � 	; Xi � ln���{̂; (A1)

where n� � �dx�=dl�Q0
is the unit vector tangent to the

unique spacelike geodesic at Q0 such that n�u� � 0. Thus
the spinless reference particle following x��	� perma-
nently occupies the spatial origin of this Fermi coordinate
system and has Fermi coordinates �T; 0�, where T � 	. The
spacetime metric in Fermi coordinates is given by

 g00 � �1� R0̂ {̂ 0̂ |̂�T�X
iXj � � � � ; (A2)

 g0i � �
2

3
R0̂ |̂ {̂ k̂�T�X

jXk � � � � ; (A3)

 gij � 
ij �
1

3
R{̂ k̂ |̂ l̂�T�X

kXl � � � � ; (A4)

where R�̂ �̂ �̂ 
̂, given by the projection of the Riemann
curvature tensor on the tetrad frame of the spinless refer-
ence particle, is in fact the Riemann tensor in the Fermi
coordinate system evaluated at its spatial origin. The Fermi
coordinate system is admissible within a cylindrical space-
time region around the worldline of the reference geodesic
such that jXj<Ra�T�, where Ra is a certain minimum
radius of curvature of spacetime.

The Mathisson-Papapetrou-Dixon equations of motion
of the spinning particle within the framework of our first-
order approximation scheme (based on s� mr) can be
expressed in the Fermi coordinate system as

 

DU�

d�
�A�; A� � �

1

2m
R����U

�S��; (A5)

 

DS��

d�
� 0; S��U

� � 0; (A6)

where U� � dX�=d� is the four-velocity of the spinning
particle. Let us write this as

 U� � ��1;V�; � �
dT
d�

; V �
dX
dT

: (A7)

Then,

 ��2 � �g00 � 2g0iV
i � gijV

iVj > 0; (A8)

sinceU� is a timelike unit vector. To characterize the order
of various quantities in accordance with our perturbation
method, it is convenient to write

 X �T� � O�s�; V�T� � O�s�;
1

�2 � 1�O�s2�;

(A9)

and so on; in particular, it follows that � � T �O�s2�. We
have already discussed the consequences of Eq. (A6) in
Sec. II; therefore, we concentrate here on Eq. (A5). We find
[6,37]

 

d2Xi

dT2
� ��i�� � �0

��V
i�
dX�

dT
dX�

dT
�

1

�2 �A
i �A0Vi�;

(A10)

where

 A 0 � 0; Ai �
1

2m
R0̂ {̂ |̂ k̂�T�S

|̂ k̂: (A11)

We note that the Mathisson-Papapetrou acceleration is
given by
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 A i �
1

m
H ijS|̂ (A12)

based on the definitions introduced in Sec. II. Moreover, of
the connection coefficients in Eq. (A10) only �i00 � EijX

j

makes a non-negligible contribution. Thus taking due ac-
count of our first-order approximation scheme, we find that
Eqs. (A10)–(A12) reduce to

 

d2Xi

dT2
� EijXj �Ai (A13)

with the boundary conditions thatX � 0 and V � 0 at T �
0. We now turn to the general solution of Eq. (A13), which
may be expressed as

 

d�

dT
�

0 I
�E 0

� �
�� �; (A14)

where I is the 3� 3 unit matrix and

 � �
X
V

� �
; � �

0
A

� �
: (A15)

Let  be a general solution of the homogeneous (Jacobi)
system with � � 0; then,

  �
X6

i�1

ci i; (A16)

where the ci; i � 1; 2; � � � ; 6, are arbitrary constants that
physically correspond to the initial position and velocity of
a free particle following the Jacobi equation and  i; i �
1; 2; � � � ; 6, form a fundamental set of solutions of the
Jacobi system. According to the method of variation of
parameters [8], we seek a solution of the inhomogeneous
Eq. (A14) by assuming that ci ! Ci�T�, i.e., we let

 � �
X6

i�1

Ci�T� i: (A17)

Substitution of Eq. (A17) in Eq. (A14) results in

 

X6

i�1

dCi
dT

 i � �: (A18)

Consider a 6� 6 matrix � that is the fundamental matrix
solution of the homogeneous Jacobi system and contains
 1;  2; � � � ;  6 as its column vectors. Then � � �C,
where C is a column vector with C1; C2; � � � ; C6 as its
elements, and Eq. (A18) can be written as

 

dC
dT
� ��1�: (A19)

With the initial conditions that � � C � 0 at T � 0, the
solution of Eq. (A14) is

 ��T� � ��T�
Z T

0
��1�T0���T0�dT0: (A20)

In principle, the trajectory of the spinning particle can
thus be determined in the Fermi coordinate system. To
express this trajectory in terms of the original background
coordinate system, it is in general necessary to have the
explicit coordinate transformation between the two sys-
tems of coordinates. This turns out to be possible only in
very special situations [38,39]. However, our first-order
approximation scheme makes it possible to proceed as
follows. The deviation vector 
x� may be written as

x� 
 ln�, since l�Ra. Therefore, regarding 
x� as
a vector field along the reference geodesic, we can write

x� � Xi�	���{̂, where the Fermi temporal coordinate in
the solution of Eq. (A13), namely, X�T�, has been replaced
by 	. It follows that x�s � x� � Xi��{̂; in this way, we
recover Eqs. (6) and (12) of Sec. II.

APPENDIX B: HEURISTIC INTERPRETATION OF
THE CLOCK EFFECT FOR SPINNING PARTICLES

The purpose of this appendix is to provide an intuitive
physical understanding for the appearance of terms pro-
portional to s in the discussion of the gravitomagnetic
clock effect in Sec. V. The existence of such a term was
first pointed out in Ref. [18] and has been further studied in
[19,34]. The approach adopted here is based on the grav-
itoelectromagnetic (GEM) analogy; we follow here the
basic conventions of Ref. [40].

Consider a spinning particle in orbit about a central
nonrotating source. In the rest frame of the particle, the
central source revolves around the particle and this motion
generates a gravitomagnetic field. The resulting spin-
gravitomagnetic field interaction, just as in the electro-
magnetically analogous case of the hydrogen atom, must
be corrected by taking due account of Thomas precession,
which in the gravitational case becomes the de Sitter-
Fokker (geodetic) precession. The combined interaction
due to these terms is of the spin-orbit coupling form [36].
Specifically, in the rest frame of the spinning particle, the
gravitomagnetic field Bg is proportional to ��v=c� �Eg,
where Eg � GMr=r3. The corresponding contribution to
the Hamiltonian, i.e. the analogue of �� � B, would be
[40]

 

1

c
s � Bg � �0

�
GM

mc2r3

�
s �L; (B1)

where L � mr� v and �0 is a numerical factor that is
expected to be of order unity. Furthermore, the geodetic
precession frequency is given by

 ! g �
3

2

�
GM

mc2r3

�
L; (B2)

hence the corresponding contribution to the Hamiltonian
would be

 s �!g �
3

2

�
GM

mc2r3

�
s � L: (B3)
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Therefore, the net Hamiltonian for the motion of the par-
ticle may be taken to be of the form

 H �
p2

2m
�
GMm
r
� �

�
GM

mc2r3

�
s �L (B4)

in this simple GEM model. Here,

 � � �0 �
3
2: (B5)

In Eq. (B4), the spin-orbit term is a small relativistic
correction to the Newtonian dynamics and turns out to be
the source of the spin-dependence of the clock effect [34].

It follows from Hamilton’s equations of motion for
Eq. (B4) that

 

dr
dt
�
p

m
� �

�
GM

mc2r3

�
s� r; (B6)

 

dp
dt
� �

�
GMm

r3

�
r� 3�

�
GM

mc2r5

�
�s �L�r

� �
�
GM

mc2r3

�
p� s: (B7)

Thus the canonical momentum can be expressed as

 p � mv� �
�
GM

c2r3

�
r� s (B8)

and the equation of motion of the spinning particle is then
given by the substitution of Eq. (B8) in Eq. (B7). To first
order in the spin-dependent contribution, the result is

 

d2r

dt2
�

�
GM

r3

�
r �

F

m
; (B9)

where F is the spin-dependent force given by
 

F � �
�
GM

c2r3

��
3

r
dr
dt
�r� s� � 2�v� s� �

3

r2 ��r� v� � s	r

�
:

(B10)

Consider an initially circular Keplerian orbit of radius r
in the equatorial �x; y� plane. At t � 0, the orbit is per-
turbed by the spin-dependent force

 F � ��K

�
GM

c2r3

�
��s cos#�r� 2�s � r�ẑ	; (B11)

where s � �s; #; ’� in spherical polar coordinates and

 r � r��cos�Kt�x̂� �sin�Kt�ŷ	: (B12)

Let us write the equation of the perturbed orbit in cylin-
drical coordinates as

 rs � r�1� f�; s � �Kt� q; zs � rh; (B13)

where f, q, and h denote spin-dependent perturbations.
Imposing the boundary conditions that at t � 0,

 f � q � h � 0;
df
dt
�
dq
dt
�
dh
dt
� 0; (B14)

we find, using the method developed in Ref. [41], that

 rs � r� �

���������
GM

c2r

s
s�1� cos�Kt�; (B15)

 s � �Kt�
2

c
��Ks

��Kt� sin�Kt�; (B16)

 zs � �

���������
GM

c2r

s
~s�sin��Kt� ’��Kt� sin’ sin�Kt	: (B17)

It is interesting to compare Eqs. (B15)–(B17) with
Eqs. (45)–(48); in fact, to lowest relativistic order, we
find from the latter equations the same results as
Eqs. (B15) and (B16) with � � 3. Moreover, with �� 

�Kt, � 
 1� �3=2��2, and �2 
 GM=�c2r�, Eq. (47) im-
plies that

 �s 

�
2
�

3

2

���������
GM

c2r

s
~s
r
�sin��Kt� ’��Kt� sin’ sin�Kt	:

(B18)

We note that zs � rs cos#s, so that one obtains from
Eqs. (45)–(48) that

 zs 

3

2

���������
GM

c2r

s
~s�sin��Kt� ’��Kt� sin’ sin�Kt	; (B19)

which is smaller by a numerical factor of 1=2 than the
expression given by Eq. (B17) with � � 3. Nevertheless, it
is rather remarkable that our simple model, based on the
GEM analogy, predicts the main qualitative features of the
perturbed orbit. In particular, it follows from Eq. (B16) that

 t� � TK � 4��s; (B20)

hence, for � � 3 the spin part of the clock effect is
recovered.

We have thus far ignored the proper rotation of the
central source. The rotation of the source would generate
a gravitomagnetic field and the spin of the test mass
naturally couples to this gravitomagnetic field as described
in detail in Ref. [6]. It turns out, however, that the corre-
sponding dominant ‘‘hyperfine’’ coupling term is indepen-
dent of the sense of the orbit and hence does not contribute
to the main spin-dependent gravitomagnetic clock effect
under consideration here.

Finally, a remark is in order here regarding the fact that
with � � 3 and � � �0 � 3=2, we have �0 � 3=2, so that
the s �Bg=c and geodetic terms, given, respectively, by
Eqs. (B1) and (B3), contribute equally to the net spin-orbit
coupling term in the classical Hamiltonian (B4). As noted
in Ref. [34], a similar result has been obtained in the
treatment of a Dirac particle in the Schwarzschild field
[42–45].
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