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LANDSCAPE ANALYSIS USING A GIS METHODOLOGY FOR THE 

EVALUATION AND PREDICTION OF RELATIONSHIPS OF AMPHIBIAN 

HEALTH IN MISSOURI WETLANDS  

 
Abstract 

 
It is important for state departments of transportation (DOTs) to make decisions 

regarding transportation route locations that minimize negative impacts to wetland fauna.  

Here a new methodology to quantify wetland health is developed using landscape 

characteristics for 49 wetlands in northern Missouri and relating them to wetland health.  

Wetland health was defined in this project as the presence of sensitive or rare amphibian 

species, such as tiger salamanders or northern crayfish frogs, which are very sensitive to 

habitat disturbance.  The biology assessment involved in this project was performed as 

part of other research.  Crops, forest, grass, and herbaceous land covers, length of stream, 

length of roads, length of flowpath from wetland to stream, change in elevation between 

wetland and nearest drainage channel are landscape characteristics that are considered 

because they are assumed to affect positively or negatively wetland habitat for 

amphibians.  A commercial geographic information system (GIS) ArcGIS 9.2 was used 

to quantify the landscape characteristics.  Two types of wetlands were identified: non-

pairs and pairs.  Non-pair wetlands were defined as those wetlands in which the 600 m 

buffer zone and beyond did not overlap with the buffer zones of other wetland.  A pair 

wetland was defined as one in which the concentric rings of the buffer zones overlapped 

with the concentric rings of another wetland.  Five buffers were generated around each 

wetland encompassing 0-300 meters, 0-600 meters, 0-900 meters, 0-1500 meters, and 0-
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2100 meters.  A distance parameter was incorporated in the variable values because it 

was hypothesized that distance from the landscape feature to the wetlands could be a 

factor for the prediction of the health of the wetlands.  The variables were then 

normalized which allows for the addition and subtraction of dimensionless landscape 

characteristics with different units (e.g., length of roads, grass area).  Multiple linear 

regression analyses were performed at the different spatial scales mentioned above, to 

test the relationship between wetland health and landscape variables.  It was found that 

proximity to roads negatively affects wetland health up to a distance of 900 meters, while 

crops can have a negative effect up to a distance up to 2100 meters.  
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Chapter 1 
 

 

 

1. Introduction 

1.1. Wetlands 

Wetlands are the integration of aquatic and terrestrial systems (Euliss et al. 2004).  

The Clean Water Act (CWA) defines wetlands as: "those areas that are inundated or 

saturated by surface or groundwater at a frequency and duration sufficient to support, and 

that under normal circumstances do support, a prevalence of vegetation typically adapted 

for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs 

and similar areas" (40 CFR 230.3(t)).   

Wetlands have decreased in areal extent in the past several centuries due to the 

belief that they were worthless lands and because of the increase in the demand for 

agricultural lands. Approximately 50% of wetlands in the conterminous United States 

have been drained since European settlement, usually for agricultural purposes (Tiner 

1984). Wetlands are transitional areas between aquatic ecosystem and upland areas 

National Research Council (NRC 1995).  NRC stated that wetlands are lands subject to 

periodic inundation or saturated soil conditions and that they are characterized by plants 

that grow in saturated conditions and soils reflecting periodic inundation.   

Two operational wetland definitions are the most common: those of the U.S. Fish 

and Wildlife Service (FWS) and the U.S. Army Corps of Engineers (USACE).  The FWS 

defines wetlands as “lands transitional between terrestrial and aquatic systems where the 
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water table is usually at or near the surface or the land is covered by shallow water.  For 

purposes of this classification, wetlands must have one or more of the following three 

attributes: (1) the land periodically supports predominately hydrophytes; (2) the substrate 

is predominately undrained hydric soil; and (3) the substrate is nonsoil, is saturated with 

water or covered by shallow water at some time during growing season of each year” 

(FWS 2009).  The USACE uses a wetland definition that is slightly different from the 

CWA: “those areas that are inundated or saturated at a frequency and duration sufficient 

to support, and that under normal circumstances do support, a prevalence of vegetation 

typically adapted for life in saturated conditions.  Wetlands generally include swamps, 

marshes, bogs and similar areas” (USACE 1987).   

Wetlands perform a number of critical functions.  They moderate the impacts 

from flooding, control erosion, purify water, and provide habitat for fish and wildlife 

(EPA 2009).  Wetlands act as a “sponge” for flood water and release it back into the 

surrounding area at a later time.  The rushing water during a storm is attenuated by 

wetland vegetation, which reduces the erosive effects by slowing the velocity of 

floodwaters and settling the suspended soil particles.  Wetlands act as filters, because of 

the location between land and water.  They intercept pollutants before they enter lakes, 

rivers or streams because pollutants are filtered by the soil and plants.  Wetlands provide 

essential habitat for various species: birds, reptiles, amphibians, fish, insects and 

mammals, of which 45% are rare or endangered due to the high rate of wetland loss (EPA 

2009).    
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1.2. Amphibians 

Amphibians are the most highly threatened group of vertebrates (Houlahan et al. 

2000; Stuart et al. 2004), as they are sensitive to habitat disturbances, especially in the 

larval stage (Hecnar and M'Closkey 1996).  Amphibians can act as ecological indicators 

of wetland health (Hecnar and M’Closkey 1996).  For biological assessments, they are 

especially promising because they provide a firm linkage between wetlands and 

surrounding landscapes features (EPA 2009).  Amphibians are often considered having a 

higher level of exposure and vulnerability to changes in their environment than many 

other vertebrates due to their physiology and habitat requirements (Sparling et al. 2000).   

In this research, data on amphibian presence/absence are used to indicate wetland 

health.  The amphibian data will provide the framework for the development of a model 

based on landscape characteristics for predicting the health of wetlands.  

1.3. Landscape surrounding wetlands 

The distribution of amphibians in terrestrial habitats is essential to determining 

how much habitat is necessary to ensure persistence of an amphibian population 

(Tremham et al. 2005).  Human activities kilometers away from a wetland might have an 

effect on the biological community of the wetland (Findlay et al. 2000).  Knowing about 

how landscape variables affect the distribution of species is useful for the conservation of 

the species and landscape planning (Pellet et al. 2004).  Law et al. (1991) stated that 

determining the most relevant physical parameters in a landscape can be used as a basis 

for decision-making and the design of responses to specific environmental management 

challenges.   
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Terrestrial habitats surrounding and adjacent to wetlands are critical for the 

management of natural resources and biodiversity conservation (Semlitsch and Jensen, 

2003).  The land immediately adjacent to a wetland is as important as the riparian areas 

surrounding the wetlands.  For instance the composition of landscape features 

surrounding wetlands has been shown to be important for pond-breeding amphibian 

species (Zanini et al. 2008).   

1.4. Compensatory wetlands 

Urban development and commercial activities often result in wetlands losses and 

degraded wetland functions.  In particular, construction of highways, airports, urban 

developments, sewage treatment plants and commercialized areas frequently affect 

wetlands values (USACE 2009).   

Section 404 of the CWA regulates the alteration of wetlands.  The objective of the 

CWA is to “to restore and maintain the chemical, physical, and biological integrity of the 

Nation’s waters” (EPA 2009).  The CWA prohibits the disposal of fill material in waters 

of the United States, including wetlands without a permit.  The impact of a proposed 

discharge needs to be avoided and minimized.  If the impact is unavoidable, 

compensatory mitigation, such as wetland mitigation banking, is necessary to replace the 

functions of the wetland that might be lost.   

EPA defines a wetland mitigation bank as: “a wetland area that has been restored 

and protected to provide compensation for impacts to wetlands” (EPA 2009).   A 

mitigation bank is created when a government agency, corporation, or other bank sponsor 

undertakes wetland restoration and protection activities under a formal agreement with 
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the USACE.  Under the CWA section 404, those who intend to deposit fill in or dredge a 

wetland or other waters of the U.S. must apply for a permit from the USACE (EPA 

2009).    

The EPA and the USACE promote a policy of no net loss of wetlands by 

implementing wetland restoration and protection policies.  This is accomplished by 

increasing the effective use of wetland mitigation banks and the strengthening of 

requirements for wetland mitigation. The wetlands compensatory mitigation requirements 

emphasize best available science, promote innovation and focus on results.  When 

applicants cannot avoid impacting a wetland, federal regulations require that they replace 

it with a mitigation wetland.   

2. Justification for research 

Many species of amphibians require both aquatic and terrestrial habitats and are 

limited to areas where there is sufficient moisture for reproduction and survival and 

access to adjacent terrestrial habitat (Jameson 1957; Wilbur 1987; John-Alder and Morrin  

1990; Vos and Stumpel 1995).   

Few attempts have been made to model amphibian population dynamics (Halley 

et al. 1996; Gibbs 1993) and fewer have been spatially explicit to consider landscape 

complementation (Vos and Stumpel, 1995).  Zanini et al. (2008) stated that increasing 

urbanization and habitat alteration make it particularly important to find ways to assess 

the impact of land cover changes on the distribution of natural populations.   
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3. Objectives  

The objectives of this study are to associate landscape features surrounding 

constructed wetlands to amphibian health.  Biological amphibian assessment data from 

forty-nine constructed wetlands in Missouri were used in this study to relate amphibian 

health to landscape characteristics.  Some of the wetlands are under the Missouri 

Department of Transportation (MoDOT) jurisdiction and some of them are under the 

Missouri Department of Conservation (MDC) jurisdiction.  Personnel from both agencies 

collaborated in the various project activities.   

The biological assessment consisted of amphibian surveys which were conducted 

at each wetland during three time periods in 2006 (March/April, May/June, and 

July/August).  Data from all three periods were pooled (Shulse 2009) and analyzed in 

first stage of the overall research project. 

The overall objective of this research project is to create a document for MoDOT 

that will help in the evaluation of future rights-of-way (ROW) that will minimize the 

negative impacts to wetlands health.  The specific goal of this part of the research is to 

analyze spatial landscape characteristics for all wetlands in the study to predict wetland 

health using amphibians as a surrogate, which will help in the decision making for the 

most appropriate location of a ROW.  The specific four goals of this portion of the study 

are to: 

• Identify characteristics of the landscape surrounding wetlands which can be used 

to predict wetland health. 
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 Link the landscape characteristics of wetlands with the quality of amphibian 

habitat.  The features around each wetland will be determined using ArcGIS 9.2 

(ESRI 2009), which will be used to assess the spatial characteristics of the 

landscape surrounding the wetlands which will be use in the future evaluation of 

proposed ROW locations. 

 Derive equations for predicting wetland health using landscape parameters 

extracted from GIS.  Such approaches are necessary because biological 

assessments are costly, time consuming and related studies or data are not always 

accessible.  Analyzing information such as: land use/land cover areas, roads, 

streams and elevations, one can estimate the impact a proposed road can have on 

the amphibian population.  The methodology included the quantification of the 

variables to predict wetland health, the use of a distance component in each 

variable to assess the impact of the closeness of the wetland edge to the feature 

and the normalization of the variables which allowed the sum of the variables 

with different units.   

 Analyze the set of equations to derive patterns and trends that can be of potential 

use in the decision making process for locating ROWs. 
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4. Benefit from the research 

It is critical, whenever possible, to manage existing natural wetlands in a manner 

consistent with amphibian conservation and to use every opportunity to re-create quality 

amphibian habitat when mitigation is necessary (Leja 1998).  The purposes of this study 

are the quantification of the landscape characteristics surrounding the constructed 

wetlands in the study and the prediction of the extent to which the landscape conditions 

impact the health of the habitat.   

Use of this methodology will help in the decision-making process for the 

optimum location of a proposed ROW to where it causes the least impact on the 

amphibian population.  The derived model, through the resulting guidance document, will 

aid in the initial suitability assessment for ROW locations by MoDOT.  The guidance 

document could also be used by agencies such as MDC to make decisions regarding the 

future sitting and development of artificial wetlands to improve and extend habitat.  
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Chapter 2 
 

 

 

2. Literature Review 

2.1. Wetlands  
 

Wetlands were classified in the past as worthless land.  Many were drained, filled 

and completely lost. Approximately 53% of the wetlands estimated to have originally 

existed in the conterminous United States from 1780s were lost by the mid 1980s, 

primarily due to human-induced land use conversion (Dahl and Johnson, 1991).  For 

example, Missouri had as much as 4.8 million acres of wetlands before European 

settlement. By 1980, the number of wetlands in the state had dropped dramatically, to 

643,000 acres (Missouri Department of Natural Resources 2008).  Today however they 

are recognized as a necessary component of a vital landscape.   

Wetlands are areas of seasonally, intermittently or permanently waterlogged soil 

or inundated land.  They are areas where water covers the soil, or where water is present 

either at or near the surface of the soil all year or for varying periods of time during the 

year (EPA 1995).  More precisely, USACE (1987) defines wetlands as “those areas that 

are inundated or saturated at a frequency and duration sufficient to support, and that 

under normal circumstances do support, a prevalence of vegetation typically adapted for 

life in saturated conditions.”   

There are many different types of wetlands, each with its own unique properties 

and characteristics. The main types of wetlands are marshes, swamps, bogs, and fens 
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(EPA 2009).  Marshes are defined as wetlands frequently or continually inundated with 

water, characterized by emergent soft-stemmed vegetation adapted to saturated soil 

conditions.  They receive most of their water from surface water, and some are fed by 

groundwater. Marshes are divided into two primary categories: tidal and non-tidal.  Tidal 

marshes are influenced by the motion of ocean tides and they can be found along 

protected coastlines in middle and high latitudes worldwide.  They are most prevalent in 

the United States on the eastern coast from Maine to Florida and continuing on to 

Louisiana and Texas along the Gulf of Mexico.  Some are freshwater marshes, others are 

brackish (somewhat salty), and still others are saline.  Non-tidal marshes are mostly 

freshwater marshes, but some are brackish or alkaline. They occur along streams in 

poorly drained depressions, and in shallow water along the boundaries of rivers, lakes 

and ponds.  Non-tidal marshes are the most frequent and widely distributed wetlands in 

North America. 

A swamp is any wetland dominated by woody plants. They are characterized by 

saturated soils during the growing season, and standing water during certain times of the 

year.  Some swamps are dominated by shrubs, plants, birds, fish, and invertebrates (e.g., 

freshwater shrimp, crayfish, and clams). Swamps are divided into two major classes: 

forested swamps, and shrub swamps.  Forested swamps are found throughout the United 

States.  They are often inundated with floodwater from nearby rivers and streams. 

Sometimes, they are covered by many feet of very slowly moving or standing water. 

Shrub swamps are similar to forested swamps, except that shrubby vegetation 

predominates.  

http://www.epa.gov/owow/wetlands/types/marsh.html#tidal�
http://www.epa.gov/owow/wetlands/types/marsh.html#nontidal�
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Bogs are wetlands characterized by spongy peat deposits, acidic waters, and a 

floor covered by a thick carpet of sphagnum moss. Bogs receive all or most of their water 

from precipitation rather than from runoff, groundwater or streams. As a result, bogs are 

low in the nutrients needed for plant growth, a condition that is made worse by acid 

forming peat mosses.  The demanding physical and chemical characteristics of bogs 

result in the presence of plant and animal communities that demonstrate many special 

adaptations to low nutrient levels, waterlogged conditions, and acidic waters, such as 

carnivorous plants. 

Fens are peat-forming wetlands that receive nutrients from sources other than 

precipitation: usually from upslope sources through drainage from surrounding mineral 

soils and from groundwater movement. Fens are less acidic than bogs and have higher 

nutrient levels.  They are able to support a much more diverse plant and animal 

community. These systems are often covered by grasses, sedges, rushes, and wildflowers.  

Wetlands are among the most productive ecosystems in the world, comparable to 

rain forests and coral reefs.  Wetlands are important systems that support both aquatic 

and terrestrial species.  They provide shelter and sustain a diversity of fauna including 

invertebrates, water birds, fish and amphibians.  They provide great volumes of food that 

attract many animal species. These animals use wetlands for part of or all of their life-

cycle (EPA 1995). 

Wetlands are places where sediments accumulate, nutrients are recycled and 

water is purified.  Wetlands have important filtering capabilities for intercepting surface 

water runoff from higher dry land before the runoff reaches open water.  As the runoff 
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water passes through, the wetlands retain excess nutrients and some pollutants, and 

reduce sediment that would clog waterways and affect fish and amphibian egg 

development (EPA 1995). 

2.2. Clean Water Act 

 The Clean Water Act (CWA) was passed in 1972 to protect the Nation's 

waterways and to stop pollution from being discharged into waterways. The objective of 

the CWA is to restore and maintain the chemical, physical, and biological integrity of the 

nation's waters by reducing the impact of point and nonpoint pollution sources, providing 

assistance to publicly owned treatment works for the improvement of wastewater 

treatment.   

Pollution originating from a single, identifiable source, such as a discharge pipe 

from a factory or sewage plant, is called point-source pollution. Pollution that does not 

originate from a single source, or point, is called nonpoint-source pollution.  Pollutants 

regulated under the CWA include "priority" pollutants (including various toxic 

pollutants) "conventional" pollutants (such as biochemical oxygen demand [BOD], total 

suspended solids [TSS], fecal coliform, oil and grease, and pH), and "non-conventional" 

pollutant (including any pollutant not identified as either conventional or priority). The 

CWA regulates both direct and indirect discharges. Direct discharges involves the 

discharge of pollutants to waters of the US (40 CFR 122).  Indirect discharges means a 

non-domestic discharge introducing pollutants to a publicly owned treatment works (40 

CFR 403.3).   
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2.2.1. Section 404 of the Clean Water Act 

 Section 404 of the CWA regulates the discharge of dredged and fill material into 

the waters of the United States, including lakes, rivers, and wetlands.  The Code of 

Federal Regulations (40 CFR 230.3(s)) defines the term “waters of the United States” as:   

1. “All waters which are currently used, or were used in the past, or may be 

susceptible to use in interstate or foreign commerce, including all waters which 

are subject to the ebb and flow of the tide;  

2. All interstate waters including interstate wetlands;  

3. All other waters such as intrastate lakes, rivers, streams (including intermittent 

streams), mudflats, sandflats, wetlands, sloughs, prairiepotholes, wet meadows, 

playa lakes, or natural ponds, the use, degradation or destruction of which could 

affect interstate or foreign commerce including any such waters:  

a. Which are or could be used by interstate or foreign travelers for 

recreational or other purposes; or  

b. From which fish or shellfish are or could be taken and sold in interstate or 

foreign commerce; or  

c. Which are used or could be used for industrial purposes by industries in 

interstate commerce;  

4. All impoundments of waters otherwise defined as waters of the United States 

under this definition;  

5. Tributaries of waters identified in (1) through (4);  

6. The territorial seas;  
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7. Wetlands adjacent to waters (other than waters that are themselves wetlands) 

identified (1) through (6); waste treatment systems, including treatment ponds or lagoons 

designed to meet the requirements of CWA.”  

In 1972, the United States, through the CWA, began to regulate wetland areas.  

Section 404 prohibits actions harmful to wetlands where such impacts can be avoided.  

When the impacts are unavoidable, the impact must be mitigated by creating or 

enhancing wetlands to compensate for any unavoidable loss in wetland area and function 

(40 CFR 230.10(a)(3)). “No net loss” of wetlands is a federal policy goal that emerged in 

1989 and it means that wetlands should be conserved wherever possible, and that acres of 

wetlands converted to other uses must be offset through restoration and creation of other 

wetlands, maintaining or increasing the total wetland resource base (United States 

Department of Agriculture [USDA] 1998). 

The USACE and the EPA define “waters of the United States” to include most 

wetlands.  Regulated activities under this program, besides filling or excavating in a 

wetland for development, include water resources projects such as construction of dams 

or bridges, stream channelization and diversion, infrastructure development and wetland 

conversion for farming and forestry.  Section 404 establishes a permit program to ensure 

that such activities comply with environmental requirements.  

The USACE or a state program approved by the EPA, has the authority to issue 

such permits and to decide whether to attach conditions to them. To achieve no net loss 

of wetlands within the Section 404 program, a permittee is first expected to avoid 

deliberate discharge of materials into wetlands and then to minimize discharges that 
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cannot be avoided. When damages are unavoidable, the USACE can require the permittee 

to provide “compensatory mitigation” as a condition of issuing a permit.  Compensatory 

mitigation specifically refers to restoration, creation, enhancement, and in some cases, 

preservation, of other wetlands as compensation for impacts to natural wetlands.  The 

permit recipient, either on a permit-by-permit basis or within a single-user mitigation 

bank, carries out “permittee-responsible” mitigation.   In third-party mitigation (i.e., 

commercial mitigation bank, in-lieu fee program, cash donation, or revolving fund 

program), another party accepts a payment from the permittee and assumes the 

permittee's mitigation obligation. Most compensatory mitigation has been undertaken by 

permit recipients, rather than by third parties.  The Katy-Cypress Wetlands Mitigation 

Bank (KCWMB), in the state of Texas, is one example of a privately owned wetland 

which allows landowners to meet federal and state wetland guidelines.  The owners of 

KCWMB can sell wetlands to landowners to offset any wetland that is impacted ensuring 

no net loss of wetlands (KCWMB, 2010). 

2.2.2. MoDOT policies and regulations 

 Missouri Department of Transportation (MoDOT) projects relating to waters of 

the U.S. include potential stream impacts at linear crossings, filling of jurisdictional 

wetlands, stream channelization, and filling of designated special aquatic sites (MoDOT 

2009).  Under Section 404 of the CWA, any impacts to wetlands are required to be 

mitigated by the construction of a new wetlands.  MoDOT creates mitigation wetlands 

near impacted wetlands, often adjacent to the road (MoDOT 2007).   
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The CWA requires the Federal Highway Administration (FHWA) and MoDOT to 

evaluate every project and determine whether the project could have a negative impact on 

any waters of the U.S. including wetlands.  The FHWA and MoDOT must use the best 

available scientific information and the 1987 USACE Wetland Delineation Manual 

(USACE 1987) to evaluate their projects and they must provide data to support their 

determination of impact. Under section 404 of the CWA, no action can be taken that will 

fill waters of the U.S. without first obtaining authorization under a nationwide or 

individual permit, based on the extent of impacts. One option for wetland and stream 

mitigation is to construct a wetland and/or stream bank mitigation before mitigation is 

needed for a specific project (MoDOT 2007).  The wetland and stream mitigation bank 

concept is explicit in federal and state guidance for unavoidable wetland and stream 

impacts permitted under section 404 of the CWA.  The idea uses a banking analogy 

where constructed wetland or stream mitigation (money) is given credit (deposited) to an 

account to be used (spent) in the future (NRC 2001). 

2.3. Wetland mitigation 

Mitigation measures can take five different forms (40 CFR 1508.20): 

1. “Avoiding the impact 

2. Minimizing the impact 

3. Rectifying the impact 

4. Reducing or eliminating the impact 

5. Compensating for the impact.” 

http://epg.modot.org/index.php?title=127.17_Wetland_and_Stream_Mitigation_Banking�
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Wetland mitigation is the replacement of wetland functions through the creation 

or restoration of wetlands. Mitigation is required as a condition of many permits issued 

under state law (Part 303, Wetlands Protection of the Natural Resources and 

Environmental Protection Act, 1994) and federal law (Section 404 of the Clean Water 

Act). The goal of wetland mitigation is to replace wetland functions which provide public 

benefits, such as flood storage, water quality protection, fish and wildlife habitat, and 

groundwater recharge.  

2.4. Wetland Animals 

Wetlands are home to a diverse plants and animals. Wetlands provide habitat for a 

multitude of land animals, semi-aquatic animals (e.g. snakes, turtles, alligators, beavers 

and muskrats), and plants.  Different species of birds can be found around some wetlands, 

swamps especially, because they are often home to dead trees, which make great places 

for birds to nest (EPA 2009).  

2.4.1. Amphibians 
 

Amphibians are the group of the vertebrate animal taxa that have the highest 

proportion of species threatened with extinction (Stuart et al. 2004).  Many amphibian 

populations have disappeared or are in decline throughout the world.  Further, more than 

60 different species of amphibians with severe abnormalities have been found in the U.S. 

and several other countries (Blaustein et al. 2003).   

Amphibians live in diverse habitats, often in large numbers, and fullfill several 

important ecological roles. As consumers, amphibians help regulate populations of the 

organisms they consume, chiefly invertebrates. Amphibians are consumed by a variety of 
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larger predators such as reptiles, birds, mammals, fish, predatory invertebrates, and other 

amphibians. When consumed by larger predators, energy and nutrients is transformed 

from the predator (FWS 2009). 

Current wetland regulations focus primarily on aquatic habitats, and criteria to 

define critical upland habitats and regulations to protect them are often ambiguous or 

lacking (Porej et al. 2004).  Pond-breeding amphibians are an integral part of wetland 

ecosystems. However, the replacement or creation of quality amphibian habitat is usually 

not one of the goals of wetland replacement (Porej et al. 2004).   

Dodd and Smith (2003) stated that the species with complex life cycles such as 

pond-breeding amphibians (e.g., pond frogs, spadefoot frogs) need special attention 

because of the spatial heterogeneity of the habitats they require for living.  Pond-breeding 

amphibians require aquatic and terrestrial habitats to complete their lifecycles, and 

preservation of both habitats is necessary for maintaining local populations. The 

amphibian life is associated with the biphasic life cycle in which adults move to a water 

body to breed and deposit eggs that then hatch into tadpoles or larvae.  The larvae 

metamorphose into juveniles over time.  The juveniles disperse to other semiaquatic or 

terrestrial habitat (hundreds or even thousands of meters from the breeding sites).  Most 

of their life cycle is spent in terrestrial habitats, where juveniles and adults feed and find 

refuge.    

Semlitsch (1998) states that part of the reason that terrestrial habitats adjacent to 

wetlands are not protected is due to the lack of a clear understanding of the distances 

from shorelines that are biologically relevant to the wetlands.  Semlitsch and Jensen 
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(2003) proposed the use of stratified criteria that would include three terrestrial zones 

adjacent to core aquatic and wetlands habitats (Figure 2.1): 

• The Aquatic Buffer, the first terrestrial zone (measured from the wetland edge), 

would buffer the core aquatic habitat and protect water resources.   

• The Core Habitat, the second terrestrial zone (measured from the wetland edge), 

would comprise the core terrestrial habitat defined by semi-aquatic species or 

species-group use. 

• The Terrestrial Buffer, the third terrestrial zone (measured from the outward edge 

of the second zone), would buffer the core terrestrial habitat from edge effects and 

surrounding land use practices.   

 

Figure 2.1.  Zones for protection of wetlands (Semlitsch and Jensen 2001). 
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2.5. Geographic Information Systems 
 

Geographic information systems (GIS) have increased in use primarily because 

they provide an efficient method of managing complex data and information that have a 

spatial context (Stanley et al. 2005).  The most commonly used representations of space 

in a GIS are the vector and raster data models.  The vector model uses points, lines, and 

polygons objects to represent data (Berry 1997).  In a raster model, systematically spaced 

grid cells serve as the basic unit of analysis.   

In the vector structure, geographic features are represented by points, lines and 

polygons that are referenced according to their location on the Earth’s surface given the 

application of some reference coordinate system (Garbrecht et al. 2001).  Objects in the 

vector structure can be subject to certain topological rules, that describes the object’s 

spatial relationship to other (i.e. neighboring) objects.  This explicit and unambiguous 

definition of and linkage between objects makes vector structure attractive and allows for 

automated analysis and interpretation of spatial data in GIS environments (Meijerink et 

al. 1994).   

The raster structure divides space into a systematically spaced two-dimensional 

grid cell, where each cell contains a value representing the attribute being mapped.  Each 

grid cell is referenced by a row and column number, corner cells registered to geographic 

coordinates.  In the raster model, a point is represented by a single grid cell, a line by a 

string of connected cells, and areas by a group of adjacent cells (Garbrecht et al. 2001).    

 Vector and raster structures have both advantages and disadvantages.  Vectors 

structures are well suited to represent networks, connected objects and features that are 
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defined by discrete boundaries, while raster structures are best when the attributes they 

represent are continuously and smoothly varying in space (Garbrecht et. al 2001). 

GIS software allows environmental data to be stored, analyzed and displayed 

spatially (Nuckols et al. 2004).  Geographically referenced data can be imported and 

topology can be generated among these features to construct a data layer.  Tabular 

(attribute) data corresponding to features in the layer can also be associated with each 

data layer.  Analytical functions within the GIS software can be used to query and 

transform both topology and attribute data through linkages established within a database 

management system (Nuckols et al. 2004).  GIS provides the framework for making 

information usable for planners and decision makers with powerful analysis and 

visualization capabilities (Stanley et al. 2005).   

2.6. Biological Assessments 
 

Biological assessments are powerful tools for evaluating the health of wetlands.  

The information provided by these assessments can lead to the development of biological 

guides for ecologically effective designs.  They can be used to help evaluate the 

performance of restoration, best management practices and construction projects.   

Micacchion (2002) developed the Amphibian Index of Biotic Integrity (AmphiBI) 

for Wetlands for the State of Ohio.   Data from natural wetlands was used to develop the 

AmphiBI that is now applied in Ohio's wetland protection program. The AmphiBI is a 

composite, cumulative score based on five different measurements ("metrics") of 

amphibian habitat quality for a particular wetland.  The “metrics” are described below.   
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• The first metric is the Amphibian Quality Assessment Index (AQAI).  To 

determine the AQAI, each species of wetland breeding amphibians is given a 

tolerance coefficient (Table 2.1) from 1 to 10.  The higher the number, the less 

disturbance that the species is deemed to tolerate and the more specific and 

narrow their habitat needs.  The AQAI is calculated by sampling adult and larval 

amphibian populations in a given wetland and multiplying the number by the 

tolerance coefficient and summing over the species. An example is shown in 

Table 2. 2, where the AQAI value is 5.79. 

• The number of salamander species present is deemed to be a good general 

indicator of habitat quality. 

Table 2.1. Wetland Amphibian Tolerance Coefficients and Rationale (Micacchion 2002). 
 

Species Tolerance 
Coefficient Rationale 

Ambystoma jeffersonianum 
complex (includes A. 
platineum and A. tremblayi) 

5 
Jefferson salamanders and associated hybrids require 
relatively intact wooded habitat adjacent to breeding pools 
with low to moderate levels of disturbance 

Ambystoma opacum 9 Marbled salamanders require intact mature woods and vernal 
pools that fill in the late fall/early winter 

Ambystoma maculatum 8 
Spotted salamanders have only been collected in least 
disturbed wetlands or moderately disturbed wetlands where 
the disturbance has been recent 

Ambystoma texanum 4 
Smallmouth salamanders are the most ubiquitous of the 
ambystomid salamanders and will tolerate wetlands with 
relatively short hydro-periods 

Ambystoma tigrinum 6 
Tiger salamanders have been found in a range of wetlands 
with pools that have deep, long lasting hydrology and nearby 
uplands that are reasonably intact 

Ambystoma laterale 
 10 

Blue spotted salamanders are listed as state “endangered” 
due to their extremely limited range and can only be found 
in a few counties in extreme NW Ohio 

Hyla versicolor and Hyla 
chrysoscelis 
 

5 
Tree frogs require some shrubs or trees adjacent to breeding 
pools and are less tolerant of other disturbances than most 
anurans 

Bufo spp 
 1 

American and Fowler’s toads require little except enough 
water to allow for their short reproductive cycle and will 
tolerate disturbances other amphibians cannot 
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Table 2.1. Wetland Amphibian Tolerance Coefficients and Rationale [Micacchion 2002] 
(cont). 

 

Hemidactylium scutatum 10 
Four-toed salamanders are listed as state “special interest” 
and have a high fidelity to undisturbed forested sites with 
vernal pools 

Notophthalmus viridescens 9 Red spotted newts are extremely intolerant of disturbance 
and are found only in well buffered intact wetlands 

Rana catesbeiana 2 
Bullfrogs which are widely spread, are most common in 
marshes, but can be found in forested and shrub sites and are 
tolerant of most disturbances 

Rana pipiens pipiens 2 
Leopard frogs breed in a range of sites, the main requirement 
is enough water for their breeding cycle and some suitable 
adjacent habitat 

Rana clamitans melanota 3 Green frogs are found in a wide range of wetlands and are 
tolerant of most disturbances 

Rana sylvatica 7 
Wood frogs are dependent on forested wetlands and adjacent 
areas and require pools within a landscape of minimal 
disturbance 

Pseudacris crucifer 2 2 
Spring peepers breed in a range of sites, main requirement is 
enough water for breeding cycle and some suitable adjacent 
habitat 

Pseudacris triseriata 3 Western chorus frogs are slightly less tolerant of disturbance 
than the closely related P. crucifer 

 
 
Table 2. 2. Calculation of AQAI for a hypothetical forested vernal pool 
(Micacchion 2002) 
 

Species 
Number of 
Individuals 

 

Tolerance 
Coefficient 

 

Subtotals 
 

Ambystoma maculatum 50 8 400 
Ambystoma 
jeffersonianum 

30 5 150 

Ambystoma texanum 20 4 80 
Notophthalmus 
viridescens 

25 9 225 

Pseudacris crucifer 30 2 60 
Hyla versicolor 20 5 100 
Rana pipiens pipiens 30 2 60 
Rana clamitans melanota 2 3 6 
Totals 187 -- 1081 

AQAI = (1081/187) = 5.79 
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• The relative abundance of sensitive species is based on the total number of 

individuals of all species divided by the total number of disturbance intolerant 

species individuals in the wetland amphibian population (meaning they have a  

tolerance coefficient of 6 or greater). 

• The relative abundance of tolerant species is based on the total population divided 

by individuals belonging to species more tolerant of disturbance (coefficients 1-

5).  These two metrics (relative abundance of sensitive species and relative 

abundance of tolerant species) are justified by the correlation between a) relative 

abundance of species, by tolerance, and b) the Ohio Rapid Assessment Method 

(ORAM) (Micacchion 2004) score, which is an assessment method designed to 

rate overall resource intactness (i.e., habitat quality), and upon which the wetland 

category (1 =low quality, 2 = medium quality, 3 = high quality) is determined 

(Micacchion 2004).  ORAM is an index that categorizes wetlands by type and 

level of human disturbance.   

• The presence of Spotted Salamanders and Wood Frogs is deemed to be itself a 

significant indicator of the biotic integrity of amphibian habitat.   

The AmphIBI provides a score for the amphibian community that correlates strongly with 

the intactness (quality) of the wetland occupied.  The AmphIBI is constructed from a sum 

of values assigned to each of these metrics.  The values for each metric are 0, 3, 7, or 10.  

The “breakpoints” for each of these criteria are shown in Table 2. 3 
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Table 2. 3. Scoring breakpoints for assigning metric scores for AmphiBI (Micacchion 
2004) 

 
Metric Score 0 Score 3 Score 7 Score 10 

AQAI <3.00 3.00 - 4.49 4.50 - 5.49 ≥ 5.5 
 

Rel. Abundance 
Sensitive 
Species 

0% 0.01 - 9.99% 10 - 49.99% ≥ 50% 
 

Rel. Abundance 
Tolerant Species 

>80% 50.01 - 79.99% 25.01 - 50% ≤25% 

# of Pond-
Breeding 
Salamander 
Species 

0-1 2 3 >3 

Spotted 
Salamanders 
or Wood Frogs 

Absent --- --- present 

 

Hartel et al. (2006) conducted a four-year study regarding the distribution and 

aquatic habitat use of amphibian communities in two river basins in Transylvania 

(Romania).  The objectives of their project were to inventory habitat diversity and habitat 

use by amphibians and to identify the most important factors influencing the amphibian 

species richness in the areas investigated.  A total of 513 ponds were surveyed during this 

study, 84 of which were permanent.  Each pond and its surroundings in a 800 m buffer 

was characterized using a number of habitat variables.  The researchers used 17 variables 

for permanent ponds and 15 variables for temporary ponds, to characterize the breeding 

ponds and their surroundings terrestrial habitats.  The variables for permanent ponds 

included area of pond, elevation, maximum depth, arable land within an 800 meter 

buffer, pH, conductivity, age, distance from various land uses (i.e., forest, green 

corridors, road, main urban areas, pastures/grass land, main urban areas and main roads) 
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and the presence of dirt roads.  The variables used for temporary ponds are the same 

except that age and the main urban areas were not used in this case.  The researchers used 

an additional variable: a combination of main roads and urban areas for the temporary 

ponds.   They found that species richness (14 amphibian species) is significantly higher in 

permanent ponds than in temporary ponds.  They concluded that the presence of high 

traffic roads within an 800-meter radius circle around a wetland explains more variation 

in species richness than the other habitat parameters considered in the case of permanent 

ponds.  Also, the presence of dirt roads within a 800-meter radius circle around a wetland 

is the most important habitat factor in the case of temporary ponds.   

2.7. Wetland Assessment 

Wetland assessment procedures are tools in the trade of wetland science that 

provide a definitive procedure for identifying, characterizing, or measuring wetland 

functions and/or social benefits. They are used in a variety of contexts for regulatory, 

planning, management, and educational purposes.   

The purpose of the USACE Wetlands Delineation Manual (1987) is to provide 

users with guidelines and methods to determine whether an area is a wetland for purposes 

of section 404 regulation under the CWA.  The objectives of the manual are to present 

technical guidelines for identifying wetlands and distinguishing them from aquatic habitat 

and other nonwetlands, providing methods for applying the technical guidelines, and 

providing supporting information useful in applying the technical guidelines.  The 

manual is limited in scope to wetlands that are a subset of “water of the United States” 

and are subject to section 404 requirements.  It organizes environmental characteristics of 
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a potential wetland into three categories: soils, vegetation, and hydrology.  The manual 

contains criteria for each category. With this approach, an area that meets all three criteria 

is considered a wetland.  The USACE definition states that the term "wetlands" means 

“those areas that are inundated or saturated by surface water or groundwater at a 

frequency and duration sufficient to support, and that under normal circumstances do 

support, a prevalence of vegetation typically adapted for life in saturated soil conditions. 

Wetlands generally include swamps, marshes, bogs, and similar areas”(33 CFR 

328.3(b)). 

The Wetlands Value Assessment (WVA) methodology (Mitchell 1992) is a 

quantitative habitat-based assessment model used primarily to prioritize project proposals 

submitted for funding within the guidelines of the Coastal Wetland Planning Protection 

and Restoration Act (CWPPRA).  The methodology was developed by the FWS for 

application to the Louisiana coastal wetland types (fresh marsh, brackish marsh, saline 

marsh and cypress-tupelo swamp) that provide resting, foraging, breeding and nursery 

habitat to a diverse assemblage of fish and wildlife species.  The methodology assesses 

changes in wetland quality and quantity that are expected as a result of a proposed 

project.  The WVA is used to assess the effect of changes in wetland habitat on the fish 

and wildlife community.  The methodology works under the assumption that optimal 

conditions for general fish and wildlife habitat within a given coastal wetland type can be 

characterized, and that existing or predicting conditions can be compared to the optimum 

to provide an index of habitat quality.  Habitat quality is estimated through the use of a 
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mathematical model developed specifically for each wetland type.  Each wetland model 

consists of: 

1. a list of variables that are considered important in characterizing fish and wildlife 

habitat for each wetland type, 

2.  a Suitability Index graph for each variable, which defines the assumed 

relationship between habitat quality and different variable values and 

3.  a mathematical formula that combines the Suitability Index value, for each 

variable into a single value for wetland habitat quality, this single value is referred 

to as the Habitat Suitability Index (HIS).   

The variables considered appropriate for describing habitat quality; in each 

wetland type were selected through a two-part procedure: 

1. compiling a list of environmental variables thought to be important in 

characterizing fish and wildlife habitat in a coastal marsh or swamp system, and 

2. reviewing variables used in species-specific models published by the FWS. 

Some of the variables considered for all the types of wetlands are: 

1. percent of wetland covered by persistent emergent vegetation, 

2. percent of open water area dominated by aquatic vegetation, 

3. water duration in relation to wetland surface, 

4. percent of open water area ≤ 1.5 feet deep in relation to wetland surface, 

5. average annual salinity, and 

6. aquatic organism access (project area wetlands considered accessible by the 

organisms, such as fish and shellfish). 
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The final step in the WVA model development was to construct a mathematical 

formula that combines all suitability indices for each wetland type into the single HIS 

value.  The individual suitability indices range from 0.0 to 1.0.  The HIS also ranges from 

0.0 to 1.0 and is a numerical representation of the overall habitat quality of the particular 

wetland study area being evaluated.   The net benefits of a proposed project are estimated 

by predicting habitat conditions into the future for two scenarios: with the proposed 

project in place and without the proposed project.  The output of the HIS model is 

assumed to have a linear relationship with the suitability of a coastal wetland system in 

providing fish and wildlife habitat.  The goal is achieved through models built to estimate 

relationships between changes in habitat variables and habitat quality for the broadest 

possible range of fish and wildlife species.  A ranking system is used to quantify changes 

in habitat quality and quantity that are projected to occur as a result of proposed wetland 

enhancement projects.  

2.8. Wetlands and GIS 

GIS is a useful tool for quantifying wetland habitat information.  The technique 

can be useful for determining the best land use practices for landowners and managers 

and for identifying critical habitats for endangered or threatened wildlife population, 

which depend on adequate surrounding habitats for their survival, breeding, or both 

(Rieker et al. 2006). 

Various GIS-based spatial decision support systems have been developed as 

primary means for use in wetland analysis.   Ji et al. (1993) developed a GIS-based 

decision support function as a part of a spatial decision support system project (SDSS), 
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which was applied in coastal wetland permit analysis.  The researchers define SDSS as a 

multidisciplinary approach which requires computerized analytical modeling abilities to 

manipulate large quantities of spatial-temporal data according to a defined set of 

objectives or constraints. The SDSS needs a mechanism to provide quick responses for 

dynamic resource and environmental issues (not specified).  An analytical model, the 

wetland value assessment (WVA) methodology, described earlier, was implemented in 

the developed model.  The system functional design includes: decision support 

requirements in coastal resource management, environmental impact assessment, and 

environmental database management.  The system is designed as a decision-making 

mechanism with three subsystems: a resource management subsystem (RMS), an 

environmental impact assessment (EIAS), and environmental database management 

subsystem (EDBMS).    

The RMS focuses on wetlands planning and landscape management issues that 

require rule-based modeling and spatial analysis (no more details are specified in the 

paper).  The EIAS is focused on the following major coastal environmental impact issues:  

1. coastal marine oil spill risk assessment, environmental sensitivity modeling, and 

contingency planning, 

2. natural hazard damage assessment, and 

3. coastal ecological risk assessment that emphasizes the impact of human and 

economic activities on the coastal ecological environments. 
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The EDBMS was designed to be composed of both vector-and raster-based GIS 

databases as well as associated environmental data and to provide an interface between 

the modeling subsystems (RMS and EIAS) and the host GIS.   

 The integration of this spatial decision support system into a host GIS 

environment involves complex system engineering for which development strategies 

were designed as follows, 

1. System residence environment.  The three subsystems will be integrated as the 

functional complement to ARC/INFO, the host GIS.  The system can be invoked 

in the ARC/INFO operating environment and has access to ARC/INFO data 

handling and analysis modules.  The coupled SDSS-GIS system will be able to 

share both GIS and SDSS capabilities (GIS analysis, graphic display, tabular 

reporting and analytical modeling). 

2. System structure tree.  The system is designed with a hierarchical structure.  The 

first level is the system root, the ARC environment, from which the system is 

started.  The subsystem run is performed at the second level of the system.   The 

third level consists of the performance of different analytical modeling functions 

(not specified). 

3. Model embedding.  This is the core task of SDSS development.  Models and other 

analysis approaches can be coded into the GIS environment with either ARC 

macro language (AML) or C language.  The model integration into the GIS can be 

accomplished with the following approaches: 
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a. the models are coupled with the relational database management system  

to retrieve model inputs from the database, 

b. the analytical modeling becomes a part of the GIS operation, and 

c. the domain decision-making processes are supported by generic GIS 

analysis, graphic display, and tabular reporting capabilities.   

4. Modularity.  The model base is designed to include three major modules: an 

analytical modeling module that contains all domain models, a modeling control 

module that provides a modeling inference mechanism (model interpreter) as well 

as decision supporting utility module including capabilities for retrieving 

multimedia information, graphic display of study areas, viewing and updating of 

model rules, and displaying decision-making rules.   

5. Customized system interface.  A customized system interface is a controlling 

component of the SDSS that provides the user with an interactive means to 

operate the system and perform the spatial decision- making tasks.  The interface 

is developed as a menu-driven system created with AML that represents features 

of both GIS and SDSS in an integrated format.  The system interface has the 

following capabilities: increasing ease of use of the system, providing a means to 

associate and manipulate all system resources in spatial decision-making and 

organizing the complex decision-making process into an efficient, integrated 

format and receiving initial modeling inputs.   

Ji (1996) developed an approach using decision support GIS for handling 

information in ecosystem management and describes ways in which technical barriers 
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can affect ecosystem management.  The following technical barriers were identified by 

resource managers and researchers in information synthesis and analysis in ecosystem 

management.  

1. A large volume of various spatial and non-spatial data are obtained using different  

procedures and recording standards and thus are not in a ready format to support 

management at an ecosystem level. 

2. When pursuing an ecosystem approach, scientists lack trainig, models and tools 

for information synthesis, environmental modeling, and ecological predictions at 

various spatial and temporal scales.  Resource managers require new tools for 

management decision analysis and adaptation of resource management measures 

based on the most currently available scientific information. 

3. Techniques are needed to combine spatial and temporal information in order to 

understand natural resource processes in relation to spatiotemporal dynamics of 

ecosystems.   

To overcome these technical barriers, the author conducted research to study 

spatial analysis methodologies capable of: 

1. compiling, synthesizing, and analyzing existing natural resources data for 

application issues in ecosystem management, focusing on data sets derived from 

past and current resource programs at a regional level,  

2. exploring the new methods for use of spatial data and models at a landscape scale, 

and  
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3. developing customized application tools that make data and information and 

analytical methods easily available for resource managers and scientists.  

Computerized GIS and remote sensing data were used as the primary technical 

means to develop decision support capabilities that included information synthesis, 

analytical visualization, spatial simulation, and modeling.  Information synthesis included 

the two related components of designing an appropriate information structure for specific 

management tasks and integrating related data sets in specific technical application 

(ecosystem database).  Each ecosystem database has one or more theme layers, possibly 

along with subtheme layers, and ancillary layers which are ecologically or geographically 

related to the subtheme layers.  This database structure can provide a framework to 

synthesize related information in the context of a specific management theme by using 

interrelated data layer customized menus with the decision-support GIS.   

The analytical visualization consists of the spatial domain of specific natural 

resources, identification of the resource characteristics, and examination of the spatial 

relations to other related resources or environmental processes.  Implementation can be 

facilitated by analytical visualization with a decision support GIS.  Examples include: 

interactive querying and displaying of GIS data sets through customized interface 

operations, graphically defining a spatial data search, and overlaying a large set of 

satellite imagery based on the areal extent of a displayed boundary of a vector data set, 

and identifying rule-based attribute information.   

The researcher (Ji, 1996) stated that simulation and modeling possess spatial 

properties and are often constrained by temporal variables.  With a decision-support GIS, 
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spatial simulation and modeling are tightly coupled with the GIS database for input and 

output, and are usually implemented through a customized interface by selecting 

embedded algorithms and analytical criteria.   This study technique was developed to 

simulate the spatial behavior of wildlife species and to model habitat changes in response 

to wetland restoration projects.   The approach was applied to simulate the movement of 

bird populations with respect to a specific geographic area, temporal duration and 

environmental conditions.  These techniques made it possible and efficient to 

simultaneously analyze the impacts of multiple environmental factors on the bird 

distribution.  No details about the results of the modeling with birds were published in the 

paper.   

Akcakaya (1994) created a model that links GIS to models for viability analysis 

and risk assessment applied to endangered species, including the spotted owl in the 

northwest U.S. and the red-cockaded woodpecker in Louisiana. The model integrates 

landscape data on habitat requirements (elevation, slope and vegetation) with species data 

to analyze risks of extinction.  The model analyzes habitat data exported from a GIS, and 

identifies the patches of habitat that can support a population. The structure of the patches 

includes their locations, sizes and distances from each other, which define the spatial 

structure of the population. The spatial structure is combined with species data and other 

information on the ecology of the species (such as age, density dependence for each 

population, spatial correlation and dispersal among populations) to complete a population 

model. The model performs a risk analysis, and runs multiple simulations, automatically 

changing parameters to analyze the sensitivity of risks to input data.  The first goal was 
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application of the model on the spotted owl focusing on factors affecting the viability of 

the species through its range in the U.S.  The second goal was to incorporate two sources 

of variability in determining the threats the species face.  The first source of variability in 

the study included natural variations (resulting from temporal fluctuations in 

environmental factors) in the form of randomly distributed survival and fecundities.  The 

second source of the variability was the demographic stochasticity and it was modeled to 

describe chance variations in reproduction, survival and dispersal.  These types of natural 

variations (environmental and demographic) were used to express the model results in 

probabilistic terms, such as the viability of the species, in terms of the chance of survival 

or the risk of extinction.  Habitat maps provided by the U. S. Forest Service were used in 

the model and the program found 18 habitat patches. The size distribution of the patches 

was very skewed, with the four largest patches making up about 95% of the total area of 

all patches, and the seven largest making up about 97%. Because of the large differences 

in sizes of neighboring populations, the model results were not very sensitive to the rate 

of inter-patch dispersal of juvenile spotted owls. The model predicted a large difference 

between lower and upper bounds on the viability of the northern spotted owl, based on 

the best-case and worst-case scenarios which were parameter combinations (not 

specified) that resulted in the best and the worst chances for survival. Sensitivity analyses 

demonstrated that the viability of the species was most sensitive to the set of dependence 

of fecundities and survival rates on habitat.   

The goal of the application of the model for the red-cockaded woodpecker in 

Louisiana was to evaluate the impact of timber forest management practices on the 
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viability of the specie.  The habitat of the red-cockaded woodpecker was characterized 

based on the stand type (i.e., dominant tree species), stand condition and basal area of 

pine species.  These variables were input into the program in the form of GIS maps.  The 

model was run with different management options (not specified) to compare their 

impacts in terms of the predicted risk of extinction, or rate of recovery of the species.  

The predictions of the risks were not published in this paper.  

Ji and Jeske (2000) developed a spatial modeling approach to study 

environmental and land use impacts on the geographic distribution of wintering northern 

pintails in the Lower Mississippi River region.  The environmental layers included data 

for landscape features, wildlife refuges, surface waters, forest and land use patterns.  The 

land use data displayed forest types, such as pine and hardwood forest, croplands for rice, 

soybeans, and cotton, and pastures and coastal marshes.  The modeling technique made it 

possible to test visual analysis-based research hypotheses, verify spatial associations and 

simulate movement trajectories of populations under spatial and temporal considerations.  

The study demonstrated that water availability, land use patterns, human disturbance and 

weather conditions are major factors that might affect the seasonal distribution of the 

populations. 

Roise et al. (2004) stated that the requirements to regulate wetlands (minimize 

impacts and implement compensatory mitigation) can be quantified and that wetland 

management can be made more efficient through a combination of mathematical 

programming techniques utilizing a wetlands functional evaluation methodology and 

information contained within a GIS model of a landscape.  The purpose of their work was 
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to find a way to improve the transportation planning process by including wetlands 

functions in a spatial analysis tool.  This assessment method, entitled the North Carolina 

Coastal Region Evaluation of Wetland Significance (NC-CREWS) is a procedure based 

on spatial data layers contained in a GIS.  NC-CREWS parameters (Tables 2.5 through 

2.7) were linked to existing GIS databases developed by the North Carolina Department 

of Environmental Health and Natural Resources’ Division of Coastal Management 

(DCM).  This tool allows transportation planners to quickly analyze alternative road 

corridors, the accompanying impacts to wetlands and possible sites to mitigate these 

impacts.   

The wildlife habitat parameters and the ratings assigned to them are shown in 

Table 2.4 (taken from the NC-CREWS manual by Sutter and Wuenscher, 1997). The 

parameters considered are interior size, percent of the surrounding habitat that is natural 

vegetation, and the length of wildlife corridors that link to other natural vegetation.   

 

Table 2.4. Ratings assigned to wildlife habitat parameters (Sutter and Wuenscher, 1997). 

Parameter High Rating Medium Rating Low Rating 
Interior Size > 74 acres 0–74 acres None 

Surrounding Habitat >50% wetlands <50% wetlands 
Isolated from other 

wetlands 
 
Wildlife Corridor 
 

>600 feet <600 feet Isolated from 
natural habitat 

 

 The three parameters of the nonpoint source pollution rating system (taken from 

the NC-CREWS manual by Sutter and Wuenscher, 1997) are (1) proximity to agriculture, 

developed land, pine plantation, and natural vegetation using the percent of surrounding 



 

39 
 

habitat as the criteria, and (2) distance to a water source and (3) wetland position.  Table 

2.5 summarizes the rating values.   

The position of the wetland in the landscape, the duration of the flooding and the 

width of the wetland perpendicular to the nearest stream are the parameters considered 

for rating the storage capacity of a wetland.  Table 2. 6 summarizes the floodwater 

storage rating values.   

 
Table 2.5. Ratings assigned to wildlife pollution parameters (Sutter and Wuenscher, 

1997). 
 

Parameter High Rating Medium Rating Low Rating 

Proximity to sources 
> 50% perimeter 

abuts agriculture + 
developed 

> 50% perimeter 
agriculture + 

developed + pine 
plantation 

>50% perimeter 
natural vegetation 

Distance to water 
sources 

Within 300 ft of a 
permanent source 

Within 300 ft of an 
intermittent stream 

> 300 ft from a 
permanent or 

intermittent source 

Wetland position 
Intermittent or 1st 

order stream 
2nd or 3rd order 

stream 
Higher than 3rd 

order stream 
 
Table 2. 6. Ratings assigned to floodwater storage parameters (Sutter and Wuenscher,   

1997). 
 

Parameter High Rating Medium Rating Low Rating 

Position in 
landscape duration 
of flooding 

>25%  stream 
bordered by 

developed land 
 

5-25% of stream 
bordered by 

developed land 
 

<5% of stream 
bordered by 

developed land 
 

Duration of flooding Long very long Brief Very Brief 
Width of wetland 
perpendicular to 
stream 
 

> 100 feet 50–100 feet 
 

< 50 feet 
 

 

Values of 1, 2 and 3 were assigned to the rankings of high, medium and low 

respectively.  Linear programming is used to maximize the equation: 
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AiX(FHab x RHab + FNPS x RNPS + FFS x RFS - c) - CRoad - (FHab)(HLoss) - 
(FNPS)(NPSLoss) - (FFS)(FSLoss) 

subject to:  

1. RHabAiX ≥ HLoss 

2. RNPSAiX  ≥ NPSLoss 

3. RFSAiX  ≥ FSLoss 

4. CRoad + cAiX  ≤ CMax 

where: 

Ai = acreage of land unit i for i = 1...n with n land units in study area, 

Xi = [0,1] decision variable to convert land unit i to wetland (1 site is to be mitigated, 0 

otherwise) 

FHab = scalar conversion factor of a habitat functional unit to dollars, 

FNPS = scalar conversion factor of a nonpoint source functional unit to dollars, 

FFS = scalar conversion factor of a floodwater storage functional unit to dollars, 

RHab = sum of ratings for habitat parameters, integer in the range [3...9], 

RNPS = sum of ratings for nonpoint source parameters, integer in the range [3...9], 

RFS = sum of ratings for floodwater storage parameters, integer in the range [3...9], 

c = cost per acre of converting land to wetland, 

CRoad = cost of constructing a road corridor, 

HLoss = habitat functional units lost to road corridor, 

NPSLoss = nonpoint source functional units lost to road corridor, 

FSLoss = floodwater storage functional units lost to road corridor, and 

CMax = maximum dollar value available for road and mitigation project 
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In order for the NC-CREWS model to be workable in a GIS environment, the 

researchers made some assumptions:  (1) that all of the parameters and functions are 

weighted equally; (2) that there is no requirement that specific parameter units removed 

from a corridor must be replaced by the same parameters in the mitigation sites and (3) 

that within the GIS layers, only entire sites may be considered for mitigation; no portion 

of a site can be used.  The model, due to its simplicity, can be modified to meet needs in 

regions other than the coastal plain of North Carolina.   

2.9. Wetland habitat/values quantification  

The Guidance for Rating the Values of Wetlands in North Carolina (1995) 

incorporated the results of an EPA wetland program (not specified) to develop biological 

criteria for freshwater wetlands. The system rated the value of wetlands based on 

“ability” and “opportunity.”  Ability is based on characteristics of the wetland such as 

plant structure, hydrologic regime and topographic position.  Opportunity is based on 

characteristics in the surrounding area and watershed and determines whether a wetland 

fulfills a given value (i.e., the opportunity of a wetland to remove pollutants depends on 

the amount and type of pollutants the wetlands receives from the watershed).  The North 

Carolina Guidance method involves the use of flowcharts, which use observable 

indicators for each wetland function, such as: percent coverage by broadleaved 

vegetation, percent of area of wetland with standing water and distance within 3000 feet 

of permanent surface water, and wetlands that have pockets of standing water for most of 

the year.  Moving through the flowchart, numerical scores are assigned to each function 

based on the criteria provided in the flowchart.  The numerical scores are multiplied by a 
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weighting factor to obtain the weighting rating.  The system rates six values of wetlands 

and combines them into a weighed equation: water storage (weight=4), bank stabilization 

(weight=4), pollutant removal (weight=5), low flow augmentation (weight=2), wildlife 

habitat (weight=4), aquatic life (weight=1).  The rating system was intended to be used 

with freshwater wetlands.  This method only evaluated wetlands functions that have 

positive effects for people and society.   

The Wetlands Biological Indicators for New Jersey (Hatfield et al. 2006) focused 

on various wetland assessment projects, conducted by the State of New Jersey, to aid in 

development of a rapid wetland assessment tool to serve as a useful tool in permitting and 

mitigation efforts and to establish legal baseline standards for wetland quality.  One 

specific goal was to identify biological indicators that reflect the ecological health and 

condition of riverine wetlands.  Wetland function refers to the services that the wetland 

performs for the environment, such as flood water retention, erosion reduction and 

sedimentation, and improved water quality.  Ecological health is reflected in the type, 

conditions and number of organisms present in the wetland and/or the status of nutrients 

and contaminants within the wetland.  It was stated that ecological health is generally 

considered a more direct measure of wetland quality or wetland condition.  Biological 

assessments were performed to determine the ecological health of a wetland by directly 

measuring the status of taxonomic groups (protocols for test sampling were developed 

and implemented) closely aligned with the water body.   
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2.10. Roads and wetlands 

Roads have a huge impact on the environment, with high amphibian mortality 

caused by traffic being reported in the literature and representing the most important 

source of variation in species richness (Ashley and Robinson 1996; Lodé 2000; Smith 

and Dodd 2003).   

Findlay et al. (2000) found that road construction and the associated increase in 

human presence represents one of the major ways humans transform landscapes.  The 

researchers documented lags in wetland biodiversity loss in response to road construction 

by fitting regression models that express species richness of different taxa (birds, 

mammals, plants, and herptiles) as a function of both current and historical road densities 

on adjacent lands. They found that the proportion of variation in herptile and bird 

richness explained by road densities increased significantly when past densities were 

substituted for more current densities in multiple regression models. They concluded that 

their results provide evidence that the full effects of road construction on wetland 

biodiversity may be undetectable in some taxa for decades. Such lags in response to 

changes in anthropogenic stress have important implications for land-use planning and 

environmental impact assessment. 

Forman and Deblinger (2000) showed that the significant ecological effects of 

roads on plants and animals, including amphibians, average up to a distance of 600 m 

outward from a road.  These studies in Massachusetts evaluated several ecological effects 

of roads, including traffic noise effects.  The researchers estimated that about one-fifth of 
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the U.S. land area is directly affected ecologically by the system of public roads (Forman 

and Deblinger, 2000). 

2.11. Landscape analysis/statistical analysis 
 

A better understanding of the habitat and landscape characteristics associated with 

populations is beneficial to develop conservation strategies (Burne et al. 2005).  

Relatively few landscape-level studies of amphibian density and movement have been 

conducted (Houlahan et al., 2000; McGarigal and Cushman, 2002).  The majority of the 

studies have focused on relationships between forest cover and species occurrence, 

showing a positive relationship between amphibian population and area of forest in the 

surrounding landscape (Dupois and Stevenson 1999; Trenham and Shaffer 2005).  

Knowledge is still quite rudimentary about the population-level implication of habitat 

area, edge, isolation and road mortality relationships.  The effective conservation of 

amphibian populations is limited by the lack of specific ecological knowledge and lack of 

landscape level studies of the effect of habitat loss and fragmentation on movement, 

survival rates and population dynamics (Cushman 2006).   

Burne et al. (2005) investigated the relationship between amphibian species 

richness and characteristics of breeding pools and their surroundings in 85 pools in 

eastern Massachusetts in 1996 and 1997.   A total of 11 species were detected in the 

study, among them were wood frogs, spotted salamanders, spring peepers and tree frogs.  

The researchers defined amphibian species richness as the presence of breeding evidence 

of any species.  They used within-pool characteristics, as well as landscape characteristics 

surrounding the breeding pools.  Some of the within-pool characteristics used were: 
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coverage of pool by tree canopy, pool hydroperiod classification (ephemeral or 

permanent), coverage of pool by shrubs, coverage of pool by emergent vegetation, 

coverage of pool by submergent vegetation and coverage by floating-leafed plants.  Some 

of the landscape characteristics used were coverage by developed land, occurrence of 

another breeding habitat within 1 km, coverage by wetland forest and coverage by upland 

woods.  The researchers used data on landscape-scale parameters, which include 

estimates of landscape characteristics at three spatial scales, 0-30 m, 30-100 m, and 100-

300 m from the pool edge.   The test of the null hypothesis (variable is not significant) 

versus the alternative hypothesis (variable is significant) was conducted using the t-test 

for a single variable.  The independent variable that produces the largest (absolute) t 

value is declared the “best” variable predictor of the dependent variable provided that the 

independent variable produces a p-value for the t-test that is below a specified alpha 

level, such as 0.15 or 0.10).   

Based on a linear regression analysis, species richness was positively associated 

with three within-pool variables: tree-canopy cover (t = -3.0, p = 0.004), pool surface 

area (t = 1.83, p = 0.071), hydroperiod (t = 2.23, p = 0.029), amount of emergent 

vegetation (t = 1.76, p = 0.082), and the presence of another breeding pool within 1 km  

(t = 2.87, p = 0.005).   These combined variables explained a significant amount of the 

variation observed in total amphibian species richness (R2=0.548) among the study pools.   

 Houlahan et al. (2003) examined the effects of adjacent land use and water quality 

on wetland amphibian species richness and abundance in 74 Ontario, Canada wetlands.    

The species richness was based on 17 amphibian species found in eastern Ontario, 



 

46 
 

including 10 anurans (tailless, jumping amphibians with a broad body and developed 

hind legs, frogs, and toads).  Wetlands characteristics used in the research were area, 

latitude, longitude, streams, presence of permanent ponds, and percentage of wetland that 

was marsh, swamps, bog or fen.  Adjacent land use, such as road density, forest cover, 

building density, proportion of lakes or rivers, proportion of wetlands and distance to 

nearest wetlands were extracted using Arcview 3.2 and digital 1:10,000 Ontario base 

maps.  One of the goals was to estimate the distance at which adjacent land uses affect 

wetland amphibian communities.  For this purpose, small to large scales of land use data 

were sampled.  The largest scale of 4000 m was chosen because other research suggests 

that land use to 2000 m and beyond can affect amphibian species richness (Findlay and 

Houlahan 1997).  Values for each variable were estimated for a series of overlapping 

contours spanning distances of 0-100 m, 0-200 m, 0-250 m, 0-300 m, 0-400 m, 0-500 m, 

0-750 m, 0-1000 m, 0-1250 m, 0-1500 m, 0-1750 m, 0-2000 m, 0-2250 m, 0-2500 m, 0-

3000 m, and 0-4000 m from the wetland edge.     

 Simple linear regression was used to examine the bivariate relationship of 

amphibian species richness with a number of land use variables.  The strongest positive 

bivariate relationships were with wetland area, proportion of wetlands, and forest cover, 

while the strongest negative relationships were with total centerline roads.  The 

magnitude of the correlations of these variables generally attained a maximum between 

2000 and 3000 m.  Multiple regression analysis indicates that the land uses most strongly 

correlated with amphibian species richness are forest cover, proportion of wetlands and 

road density.  Amphibian species richness showed statistically significant bivariate 
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relationships with a number of land-use variables (the strongest positive bivariate 

relationships were with wetland area, proportion of wetland, and forest cover, while the 

strongest negative relationships were with total centerline roads).   

A multiple regression model including percent forest cover within 1750 m, 

distance to nearest wetland >20 ha, and total centerline roads within 200 m explained 

24% of the variation in amphibian abundance with p = 0.0001, 0.020 and 0.080 

respectively.  Maximum total Kjeldahl nitrogen was the only retained nutrient variable 

(negative relationship) in a multiple regression analysis with wetland area, proportion of 

wetland at 2250 m and forest cover at 3000 m.  The resulting model explained 42.3% of 

the variation in amphibian species richness.  The researchers concluded that the effects of 

adjacent land use and water nitrogen levels on amphibian communities can extend over 

comparatively large distances.   

 Hecnar et al. (1998) surveyed 118 ponds in southwestern Ontario, Canada in order 

to investigate the amphibian species in the region.  Thirteen pond-dwelling amphibians 

were found in the ponds.  All of these species require ponds for breeding and larval 

development.  The species richness was defined as any life stage (egg, tadpole, adult) 

present at the time of the visit.  Regional features such as distances to other water bodies 

or roads, density of ponds, and amount of woodlands surrounding the ponds were 

measured from topographic maps or aerial photographs.  The researchers used analysis of 

variance (ANOVA) to determine if species richness differed among regions, sub-regions 

or over time.  For regional analyses, they used wetland regions which were based on 
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physiographic, vegetation, and ecology.  For sub-regional analyses they used groups of 

ponds at the watershed scale.   

In the ANOVA, species richness was the dependent variable, region and sub-

region were grouping factors, and year was the repeated measure.  In their ANOVA 

design, the researchers nested sub-regions within regions, allowing them to use a single 

analysis rather than separate ANOVAs for region and sub-region, each by individual 

years.  To determine if species richness was related to local habitat or regional landscape 

variables, the Pearson product moment was used to rank correlation.  Multiple regression 

was used to determine which variables best explained the variance in species richness.  

Thirty-eight variables (27 local habitat variables and 11 regional landscape variables) 

were used in the statistical analysis, including: pond age, pond area, perimeter, emergent 

vegetation, shrub cover, tree cover, distance to road, human population, and soil type.   

The results showed that species richness did not change significantly over time.  Species 

richness was correlated with 12 of the 27 local habitat variables and seven of the 11 

regional landscape variables.  The highest correlation with local variables were negative 

for factors related to water depth and fish predators, and positive for those related to 

vegetative cover.  For regional variables, the strongest correlations were with variables 

related to forest cover.  Multiple regression analysis revealed that a combination of seven 

variables produced the best model (R2 = 0.54) to account for variance in species richness 

in southwestern Ontario.  Correlation of species richness with local factors indicated a 

strong negative relationship with increasing water depth (t = -0.29 p < 0.001), presence of 

predatory fish (t = -0.31, p < 0.001) and a positive relationship with variables related to 
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vegetation cover ( t= 0.42, p < 0.001).  The correlation analysis also revealed that a 

positive relationship between species richness and the amount of regional forest cover  

(t = 0.59, p < 0.001) with a negative relationship with increasing distance to nearest 

woodlands (t = -0.46, p < 0.001).  In conclusion, the data indicated that differences exist 

among regions in the pattern of species incidences and species richness.  Species richness 

was associated with a combination of local variables suggesting the importance of fish 

predation, and regional variables related to woodlands.   

2.12. Summary 

The above literature described some of the methods and techniques used to survey 

wetlands habitat and to relate them with amphibian species richness and abundance.   

Some studies used GIS analysis to quantify landscape characteristics and related 

them to species richness in different regions of the U.S.  Some researchers suggest 

methodologies, implementing GIS with a habitat model, to obtain results for a possible 

change in landscape characteristics or scenario.   

In some studies, different landscape variables were used in statistical regression 

analyses to obtain the possible effects on the wetlands habitat.   The statistical analyses 

include the linear relationship with individual variables related to wetland habitat, in 

order to determine which landscape variables are better predictors of the amphibian 

community.  Also, multiple regression analysis was applied in some cases to obtain an 

overall effect of multiple variables on wetlands habitat.  However, no studies 

implemented the distance of the wetland edge to the landscape further away and the 

distances from the wetland edge was not applied to the variables used to predict 
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amphibian abundance.  These studies showed how to sum or integrate the different 

variables units of the regression equation (model) to obtain the amphibian abundance.   

It is important to develop and implement new methodologies which address 

broader landscape areas surrounding the wetlands and to analyze the habitat interaction 

within it.  Also, it is important to consider how multiple factors interact across different 

wetland buffer zones that could affect amphibian population.  For example, to include the 

distances from the wetland edge into the landscape characteristics or quantification of 

variables and to develop  a method to integrate different variables with  different units 

(i.e., area, length, age) into a single model.   
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Chapter 3 
 

 

3. Methodology 

 Amphibian data from 49 constructed wetlands in northern Missouri were used to 

develop regression equations that describe wetland health in terms of the surrounding 

landscape characteristics. Amphibian data (number of each species in the various 

lifecycle stages) has been collected and analyzed from the biological perspective to create 

a habitat quality rating for each wetland (Shulse 2008).  This rating provides the 

dependent variable, Y, for the development of the regression equation relating landscape 

parameters to amphibian health.  Based upon the literature review, the landscape 

characteristics considered for the independent variables are: roads, streams, forest, crops, 

grass, herbaceous area, elevation (from wetland centroid to nearest downstream) and 

length of flowpath from wetland centroid.  This model is expected to provide information 

that can increase the effectiveness of constructed wetlands (i.e., allow for placement in 

appropriate areas) and can decrease the probability of negative effects on the habitat of 

the wetland due to road construction (i.e., avoiding especially valuable habitat areas).   

3.1. Study Area 

 The study area consisted of selected Missouri Department of Transportation 

(MoDOT) compensatory wetlands and other constructed wetlands of the Missouri 

Department of Conservation (MDC).  In total, 49 constructed wetlands in northern 

Missouri were used in the study (Figure 3.1).  Twenty-nine are “wildlife” ponds in MDC 

wildlife areas and 20 are MoDOT compensatory mitigation wetlands.  



 

52 
 

The locations of the wetlands in Figure 3.1 were identified using a global 

positioning system (GPS) instrument during site visits (Shulse 2008).  More information 

about the wetlands used in the study is shown in Table 3.1(i.e., wetland name, 

responsible agency, county and size of wetlands).  

 

Figure 3.1. Locations of constructed wetlands analyzed in the study. 
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Table 3.1. Attribute table of wetlands assessed. 
 

Site Name* Agency County Area (m2) 
Redman Unit 1 MDC Macon 1841.616 
Rose Pond 4-5 year old unit MDC Clark 1031.356 
Clark County 136 MoDOT Clark 22607.218 
Putnam County 136 MoDOT Putnam 2069.803 
Redman Unit 3 MDC Macon 964.139 
Mineral Hills Geranium Trail Pond MDC Putnam 307.604 
Mineral Hills Open Pond MDC Putnam 682.101 
Poosey MDC Livingston 973.771 
Gallatin MDC Davies 192.028 
Elam Bend Small Forested MDC Gentry 246.765 
Elam Bend Large Forested MDC Gentry 631.622 
King Lake Ditch MDC DeKalb 706.981 
King Lake Pond MDC DeKalb 333.549 
Dunn Ford Small Forest Edge Pond MDC Marion 113.024 
Henry Sever MDC Knox 386.897 
Diggs Koi Pond MDC Audrain 152.319 
Whetstone Creek Pond MDC Callaway 357.212 
Whetstone Creek Wetland MDC Callaway 7436.871 
White Open Pond MDC Audrain 1041.004 
White Forested Pond MDC Audrain 817.611 
Rudolph Bennitt MDC Randolph 337.246 
Blind Pony Field Pond MDC Saline 751.534 
Blind Pony Forested Pond MDC Saline 590.137 
Prairie Home MDC Cooper 162.259 
Atlanta MDC Macon 654.223 
Daniel Boone Fish Pond MDC Warren 941.176 
Daniel Boone South Side Pond MDC Warren 484.743 
Danville Ag Pond MDC Montgomery 879.432 
Danville Roadside Forested Pond MDC Montgomery 163.996 
Little Dixie Herp Pond MDC Callaway 279.358 
Center Ralls County Wetland MoDOT Ralls 15935.771 
Shelby County T MoDOT Shelby 244.938 
Audrain County 15 MoDOT Audrain 6188.866 
Macon T MoDOT Macon 784.187 
Macon 36 MoDOT Macon 73931.388 
Linn 36 MoDOT Linn 53792.127 
Livingston 36 MoDOT Livingston 4620.178 
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Table 3.1.  Attribute table of wetlands assessed (cont.). 
 
Livingston Beetsma Small Corner 
Pond MoDOT Livingston 1099.203 
Livingston Beetsma NE Corner 
Ditch MoDOT Livingston 1435.340 
Howard/Cooper 5 MoDOT Howard 3026.394 
Osage MariOsa Scrub Shrub MoDOT Osage 2386.552 
Osage MariOsa Large Pond MoDOT Osage 20719.905 
Carroll County 139 MoDOT Carroll 185869.986 
Callaway 94 MoDOT Callaway 3696.938 
Clay County Smithville Lake South MoDOT/USACE Clay 21632.651 
Clinton County Smithville Lake 
North MoDOT/USACE Clinton 37571.130 
Jackson County 40 Blue Springs MoDOT Jackson 16296.253 
Saline County 65/70 MoDOT Saline 19078.720 
Deer Ridge MDC Lewis 499.911 

*Numbers are roads, highways and interstates close to the wetland. 

3.2. Biological Amphibian Assessment/ Dependent Variable 

Biological data from 49 wetlands were collected by Shulse (2009) within 26 

northern Missouri counties for assessment of the amphibian community.  Amphibian 

surveys were conducted at each wetland during three time periods in 2006 (March/April, 

May/June, July/August).  Data from the three periods were pooled.  Sampling was 

conducted only when wetlands contained water.  Area-constrained dip-netting and 

commercial minnow traps were used to capture amphibians.  The amphibians were 

counted and recorded, and then released.   

Data were analyzed from the biological perspective to create a habitat quality 

rating.  The dependent variable used for the regression equations is the Amphibian 

Coefficient Index (ACI).  This index is a measure of the combination of the sensitivity of 

the amphibian species to disturbance, the rarity of the species within Missouri and the 

range of the species within Missouri (Shulse 2009).   
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Each amphibian species observed was assigned a numerical conservation 

coefficient (CC) (Table 3.2).  To obtain these coefficients, amphibian biologists at the 

University of Missouri and MoDOT discussed the ecology of each species and assigned a 

score of between 1 and 10 for three ecological criteria–sensitivity to disturbance, aquatic 

habitat sensitivity and rarity of the species within Missouri.  Higher scores indicate higher 

conservation priorities.  An amphibian species that is very sensitive to disturbance may 

need extra protection to ensure survival, so such a species would be assigned a high 

score.  Likewise, rare species were also assigned a high score, as were species with a 

limited range in Missouri. 

Table 3.2. Conservation coefficients for amphibian species sampled during the 
study in Missouri (Shulse, 2009). 

 

Species 
Core Zone 

Disturbance 
Sensitivity 

Aquatic 
Habitat 

Sensitivity 
Rarity CC 

Bullfrog 1 1 1 1 
Green frog 2 1 2 2 
Leopard frog complex 2 2 1 2 
Crayfish frog 8 6 8 7 
Cricket frog 3 2 1 2 
Western Chorus frog 2 4 4 3 
Spring Peeper 6 5 6 6 
Gray Treefrog 7 6 4 6 
Woodfrog 9 9 9 9 
American Toad 1 3 1 2 
Tiger salamander 7 6 10 8 
Smallmouth salamander 6 7 6 6 
Spotted salamander 8 6 9 8 
Marbled salamander 9 9 9 9 
Newt 9 6 8 8 
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The three scores for each category were averaged to obtain the CC. The CCs were 

used to calculate the amphibian conservation index score (ACI) for each wetland.  The 

calculation of ACI involves multiplying the number of individuals of each species 

sampled by their respective CC value. The result is a subtotal for each species. Subtotals 

were summed over all species and the total was divided by the number of all individuals 

sampled.  This provided the ACI score (ranging from 0 – 10) for each wetland (see 

example in Table 3.3) (Shulse 2009).  Table 3.4 shows the ACI values for the non-pair 

wetlands (discussed subsequently).  Table 3.5 shows the ACI values for the pair wetlands 

(discussed subsequently).  The average ACI for non-pair wetlands is 2.29, while the 

average is 3.20 for pair wetlands.   

Table 3.3. Amphibian conservation index calculation for the Redman Unit CA 
Pond 1 (Shulse, 2009). 

 
Species Number of Individuals CC Subtotals 

Cricket frog 4 2 8 
Smallmouth 40 6 240 
Tiger salamander 0 8 0 
American toad 0 2 0 
Grey Treefrog 0 6 0 
Newt 0 8 0 
Spring Peeper 0 6 0 
Chorus frog 0 3 0 
Bullfrog 7 1 7 
Green frog 10 2 20 
Leopard frog 0 2 0 
Totals 61  275 

ACI= 275/61= 4.51 
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Table 3.4. ACI values for non-pair wetlands. 
 

ID Site name ACI 
1 Rose Pond 4-5 year old unit 3.77 
2 Clark County 136 0.00 
3 Putnam County 136 2.95 
4 Poosey 1.24 
5 Gallatin 2.46 
6 Dunn Ford Small Forest Edge Pond 4.07 
7 Henry Sever 2.00 
8 Diggs Koi Pond 1.00 
9 Rudolph Bennitt 1.33 

10 Prairie Home 2.75 
11 Atlanta 1.09 
12 Little Dixie Herp Pond 6.00 
13 Center Ralls County Wetland 2.27 
14 Shelby County T 3.00 
15 Audrain County 15 1.90 
16 Macon T 2.7 
17 Macon 36 2.48 
18 Linn 36 2.04 
19 Livingston 36 0.00 
20 Howard/Cooper 5 1.97 
21 Carroll County 139 2.00 
22 Callaway 94 0.00 
23 Clay County Smithville Lake South 2.31 
24 Clinton County Smithville Lake North 1.99 
25 Jackson County 40 Blue Springs 1.99 
26 Saline County 65/70 2.48 
27 Deer Ridge 5.91 

*Numbers are roads, highways and interstates close to the wetland. 
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Table 3.5. ACI values for pair wetlands. 
 

ID Site name ACI 
1 Redman Unit 1 4.51 
2 Redman Unit 3 2.00 
3 Mineral Hills Geranium Trail Pond 3.60 
4 Mineral Hills Open Pond 1.44 
5 Elam Bend Small Forested 4.98 
6 Elam Bend Large Forested 3.53 
7 King Lake Ditch 3.06 
8 King Lake Pond 1.67 
9 Whetstone Creek Pond 3.22 
10 Whetstone Creek Wetland 2.00 
11 White Open Pond 1.98 
12 White Forested Pond 1.93 
13 Blind Pony Field Pond 1.03 
14 Blind Pony Forested Pond 5.89 
15 Daniel Boone Fish Pond 2.48 
16 Daniel Boone South Side Pond 4.88 
17 Danville Ag Pond 6.20 
18 Danville Roadside Forested Pond 7.45 
19 Livingston Beetsma Small Corner Pond 2.37 
20 Livingston Beetsma NE Corner Ditch 2.00 
21 Osage MariOsa Scrub Shrub 2.41 
22 Osage MariOsa Large Pond 1.68 

*Numbers are roads, highways and interstates close to the wetland. 

3.3. Parameters/Independent Variables 

Multiple parameters were analyzed within the methodology.    

• Road length.  Several studies have demonstrated that there is an inverse 

relationship between habitat health and roads in the vicinity of a wetland.  One of 

the potential factors in the decline of amphibians is mortality on roads.  In 

addition, they hinder amphibian movement and increase the fragmentation of the 

wetlands and may have impacts on populations and colonizing new wetlands. 
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• Land use/ land cover.  Forest, crops, grass and herbaceous areas are the land 

covers used in the analysis.  Based on the work of Semlitsch (2003), the landscape 

surrounding the wetland has been shown to impact amphibian survival.  Forest 

areas are expected to have a positive relation with amphibian populations because 

they provided undisturbed habitat.  Crop areas, although planted, are expected to 

have a negative relationship with amphibian abundance due to the disturbance 

(physical and chemical) associated with the agricultural processes.  Grassland and 

herbaceous areas are expected to impact amphibian habitat positively.   

• Streams.  The hydrological linkage of a wetland to a stream is important because 

of the need for water in a wetland.  Two types of streams are under consideration:  

perennial streams and intermittent streams.  Perennial streams carry water almost 

all year long in a channel because of subsurface inflow.  An intermittent stream 

flows only during the wet season (a few months per year), based on direct 

precipitation and surface runoff.  Perennial streams are used as a surrogate for the 

potential presence of fish (possible flood case scenario) and may be expected to 

have a negative correlation with amphibian health (Hecnar et al.1998).  

Intermittent streams are used as a surrogate for amphibian habitat without fish and 

may be expected to have a positive impact on amphibian health. 

• Landscape position.  A wetland located in an upland position in the landscape will 

have less water storage, but a smaller probability of predatory fish, which would 

increase the probability of amphibian survival.  A wetland located in a downward 

position in the landscape will have a greater water contribution from runoff, but 
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also a greater probability of predatory fish (potentially introduced during flooding 

events), which could cause a decrease in the amphibian population.   

3.4. Data Acquisition/Resources 

ArcGIS 9.2, commercial GIS software, was used to spatially analyze the 49 the wetlands 

(ESRI 2009).  

o The GIS wetland location data layer was collected as a part of the overall project 

(Shulse 2008) and contains location information for all of the constructed 

wetlands involved in the research (Figure 3.1). 

o GIS data layers used in the analysis (i.e., land use/land cover, streams, roads and 

topography) are readily accessible through the Center for Applied Research and 

Environmental Systems (CARES) and the Missouri Spatial Data Information 

Service (MSDIS) websites.   

o Land use/land cover (LULC) 

 Raster format at a scale of 1:24,000 from MSDIS (2005).  

 The categories in the land use/land cover are found in Table 3. 6. 

 The LULC raster layer used in the analysis is presented in Figure 

3.2.   Figure 3.3 shows wetland Linn 36 with associated LULC 

layers.  
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Table 3. 6. Land use/land cover descriptions (MSDIS 2005). 
 

Class Name Description 

1 Impervious  
Non-vegetated, impervious surfaces.  Areas 
dominated by streets, parking lots, buildings. 
Little, if any, vegetation. 

3 High Intensity Urban  Vegetated urban environments with a high 
density of buildings. 

3 Low Intensity Urban  Vegetated urban environments with a low 
density of buildings. 

4 Barren or Sparsely Vegetated  
Minimally vegetated areas including bluffs, 
quarries, and natural expanses of rock, mud, or 
sand. Areas in transition. 

5 Cropland  Predominantly cropland including row, close-
grown, and forage crops. 

6 Grassland  Grasslands dominated by native warm season 
or non-native cool season grasses. 

7 Deciduous Forest  Forest with greater than 60% cover of 
deciduous trees. 

8 Evergreen Forest  Forest with greater than 60% cover of 
evergreen trees. 

9 Mixed Forest  Forest with greater than 60% cover of a 
mixture of deciduous and evergreen trees. 

10 Deciduous Woody/Herbaceous  Open Woodland including young woodland 
with less than 60% cover of deciduous trees. 

11 Evergreen Woody/Herbaceous  Open Woodland including young woodland) 
with less than 60% cover of evergreen trees. 

13 Woody-Dominated Wetland  
Forest with greater than 60% cover of trees 
with semi-permanent or permanent flood 
waters. 

14 Herbaceous-Dominated Wetland  
Woody shrubland with less than 60% cover of 
trees with semi-permanent or permanent flood 
waters. 

15 Open Water  Rivers, lakes, ponds, and other open water 
areas. 

 



 

62 
 

 
Figure 3.2. Land use/land cover raster layer for Missouri (MSDIS 2005). 
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Figure 3.3. Linn 36 wetland with land use/land cover data layer (MSDIS 2005). 

  



 

64 
 

o Streams 

 The vector layer includes rivers and streams at a scale of 1:24,000 

(CARES 2004). 

 Layer includes information about type of stream (perennial or 

intermittent) and artificial paths (an artificial transport path to an 

open water body that provides connectivity for stream 

networking).   

 Attribute data associated with the layer includes the name and 

length of each stream segment. 

 The stream layer used in the analysis is presented in Figure 3.4.  

Streams are represented as blue lines on the map.  Figure 3.5 

depicts Linn 36 wetland and the streams data.  

o Roads 

 Digital version includes the Missouri numbered routes, U.S. 

highways, interstate highways and MO numbered routes.  Attribute 

data associated with the layer includes the name and length of each 

road segment (CARES 2007). 

 Roads used in the analysis (Missouri numbered routes, U.S. 

highways, interstate highways and MO numbered routes) are 

presented in Figure 3.6. Figure 3.5 show the wetland Linn 36 and 

associated roads. 
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Figure 3.4. Missouri streams (CARES 2004). 
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Figure 3.5. Linn 36 wetland with different distance ranges, streams and roads. 
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Figure 3.6. Vector road GIS data layer for Missouri (CARES 2007). 

 



 

68 
 

o Topography 

 A 30 meter digital elevation model (DEM) was used in the analysis 

(CARES 2005).   

 The topography layer used in the analysis is shown in Figure 3.7.  

Figure 3.8 shows the Linn 36 wetland and associated topography.  

 

Figure 3.7. Missouri 30 m DEM (CARES 2005). 
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Figure 3.8. DEM for Linn 36 wetland (CARES 2005). 
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3.5. Prediction of amphibian health 

The Amphibian Coefficient Index (ACI) is used as a surrogate for wetland health 

and is correlated with landscape parameters that can be identified and quantified with the 

use of a GIS.  The quantification of parameters is necessary for the development of a 

regression equation to predict wetland health.  Once developed, this equation can be used 

to predict or estimate amphibian health under different landscape/rights-of way-(ROW) 

scenarios for decision making.   

3.6. Proximity Analysis 

The quantification of features around each wetland were determined using 

ArcGIS 9.2.  The landscape analyses consist of five circular buffers encompassing areas 

of up to 2.1 kilometers surrounding a given wetland.  Polygons representing distance 

ranges of 300, 600, 900, 1500 and 2100 meters from the edge of each wetland are 

analyzed because is hypothesized that distance from the landscape feature to the wetlands 

could be an important factor for the prediction of the health of the wetlands.  For 

example, greater proximity to a highway may be expected to cause a more negative 

impact to the wetland health than a road that is far away from the wetland.  Specifically, 

the 300 m ring includes the area between the edge of the wetland and a line 300 m from 

the wetland edge.  The 600 m ring includes the area between the 300 m line and 600 m 

from the wetland edge.  The tests were performed ignoring the distance component in 

order to compare the results with the results obtained with the distance component 

applied to the features.   
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The quantities of the previously identified parameters (e.g., area of forest, length 

of streams, length of roads) measured in a given ring were divided by the distance of the 

edge of the wetland to the midpoint of that ring.  Dividing by the distance value will 

reduce the magnitude of a landscape feature score the further it is from the wetland.  This 

treatment of the data will allow for testing of the hypothesis that the greater the distance 

from the wetland edge, the lesser the impact of that quantity on amphibian abundance.  

The midpoint distances used for each buffer ring are:   

• 1st ring: 300 m /2 = 150 m, 

• 2nd ring: 300 m+ [(600 m-300 m)/2] = 450 m, 

• 3rd ring: 600 m+ [(900 m-600 m)/2] = 750 m, 

• 4rd ring: 900 m+ [(1500 m-900 m)/2] = 1200 m, and 

• 5th ring: 1500 m+ [(2100 m-1500 m)/2] = 1800 m. 

3.7. Data standardization 

Data standardization allows for the transformation of parameters with various 

dimensions into dimensionless parameters with values between 0 and 1 utilizing equation 

3.1:   

S= (Xi-Xmin) / (Xmax-Xmin)              (Equation 3.1) 

 where S is the standardized value, Xi is the original value in a ring, Xmin is the lowest 

value of all the values in that ring and areas closer in,  and Xmax is the highest value of all 

the values in that ring and areas closer in.  “Closer in” means that the Xmin  and Xmax 

values are determined based on all of the values (of the feature) in that ring and all the 

values in the previous closer in rings.  For example, in analyzing the forest area for the 
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900 m buffer, the Xmin and Xmax values will be based on the forest areas in the 900, 600 

and 300 m buffer rings.   

3.8. Summary of Landscape Features  

The features of roads, streams, land use/ land cover, and topography within each 

ring area were evaluated to determine the contribution of each feature to wetland health.       

a. Roads.  The length of the roads in each ring was measured.  The length 

was divided by the distance from the wetland edge to the mid-point of the 

ring.  The independent variable unit is a normalized value (explained in 

Section 3.7) of [(length of roads)/(distance of wetland edge to mid-point of 

the ring)]. 

b. Streams.  The length of the streams in each ring was measured separately 

for perennial, intermittent streams and artificial paths. The length of 

stream was divided by the distance from the wetland edge to the mid-point 

of the ring.  The independent variable unit is a normalized value of 

[(length of streams)/(distance of wetland edge to mid-point of the ring)].    

c. Forest.  Forest areas were extracted from the land use/land cover data 

layer. The forest area was determined for each ring for each wetland. The 

independent variable unit is a normalized value of [(area of 

forest)/(distance of wetland edge to mid-point of the ring)]. 

d. Crops.  Crop areas were extracted from the land use/land cover data layer. 

The crop area was determined for each ring for each wetland.  The 
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independent variable unit is a normalized value of [(area of 

crops)/(distance of wetland edge to mid-point of the ring)]. 

e. Grass.  Grass areas were extracted from the land use/land cover data layer. 

The grass area was determined for each ring for each wetland.  The 

independent variable unit is a normalized value of [(area of 

grass)/(distance of wetland edge to mid-point of the ring)]. 

f. Herbaceous.  Herbaceous areas were extracted from the land use/land 

cover data layer. The herbaceous area was determined for each ring for 

each wetland.  The independent variable unit is a normalized value of 

[(area of herbaceous)/(distance of wetland edge to mid-point of the ring)]. 

g. Landscape position.  The DEM layer and the digitized wetlands layer were 

used to determine the landscape position of each wetland.  A wetland 

located in an upland position in the landscape would be expected to have 

less contributing water to support the wetland, but a smaller probability of 

predatory fish.  A wetland located in a downslope position in the 

landscape would be expected to have a greater water contribution from 

runoff, but a greater probability of predatory fish (from flooding), which 

can cause a decrease in the amphibian population. ArcHydro was used to 

delineate the downstream flow path from each wetland centroid.  The 

change in elevation between the wetland centroid and the nearest 

downslope stream elevation was used in the analysis as was the length of 

flow path of each wetland.  The normalized value of the change in 
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elevation and the normalized value of the length of the flow path was 

calculated and used in the analysis as two independent landscape 

variables.  

3.9. Statistical Analysis 

The statistical package Minitab 15 (Minitab 2009) was used to perform the statistical 

analysis of the data.  Minitab 15 was used to perform the linear regression analysis, the 

goodness of fit test and to check the significance of the individual variables for the 

different buffer zones.  The procedure used to perform the regression analysis is found in 

Appendix A.  A Pearson correlation analysis was also performed (procedure shown in 

Appendix B) to identify landscape independent variables that show high correlation.   

  



 

75 
 

Chapter 4 
 

 

 

4. Results 
 

4.1. Wetland non-pairs and pairs 

Previous statistical analyses including the 49 wetlands resulted in regression coefficient 

values of 8-10%.  However, after separating the data into two groups, the goodness-of-fit 

statistical parameter increased approximately 10% for each group. The data were divided 

between wetlands that were not near any other wetland and those wetlands that had a 

wetland close by.  Two types of wetland arrangements were found: a non-pair group and 

a pair group.  The non-pair group (Table 4.1) is defined as those wetlands for which the 

buffers (600-2100 m) do not overlap.  The pairs group (Table 4.2) is defined as those 

wetlands close enough to each other such that the 600 buffers overlap (Figure 4.1).  There 

are 27 non-pair wetlands and 22 wetlands that occur as pairs. 

 
Table 4.1.  List of non-pair wetlands. 
 

ID Site Name Agency County 
1 Rose Pond 4-5 year old unit MDC Clark 
2 Clark County 136 MoDOT Clark 
3 Putnam County 136 MoDOT Putnam 
4 Poosey MDC Livingston 
5 Gallatin MDC Davies 
6 Dunn Ford Small Forest Edge Pond MDC Marion 
7 Henry Sever MDC Knox 
8 Diggs Koi Pond MDC Audrain 
9 Rudolph Bennitt MDC Randolph 
10 Prairie Home MDC Cooper 
11 Atlanta MDC Macon 
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Table 4.1. List of non-pair wetlands (cont.). 
 

12 Little Dixie Herp Pond MDC Callaway 
13 Center Ralls County Wetland MoDOT Ralls 
14 Shelby County T MoDOT Shelby 
15 Audrain County 15 MoDOT Audrain 
16 Macon T MoDOT Macon 
17 Macon 36 MoDOT Macon 
18 Linn 36 MoDOT Linn 
19 Livingston 36 MoDOT Livingston 
20 Howard/Cooper 5 MoDOT Howard 
21 Carroll County 139 MoDOT Carroll 
22 Callaway 94 MoDOT Callaway 
23 Clay County Smithville Lake South MoDOT/USACE Clay 
24 Clinton County Smithville Lake North MoDOT/USACE Clinton 
25 Jackson County 40 Blue Springs MoDOT Jackson 
26 Saline County 65/70 MoDOT Saline 
27 Deer Ridge MDC Lewis 

 
Table 4.2.  List of wetland pairs. 

 
ID Site Name Agency County Pairs 
1 Redman Unit 1 MDC Macon 1 
2 Redman Unit 3 MDC Macon 1 
3 Mineral Hills Geranium Trail Pond MDC Putnam 2 
4 Mineral Hills Open Pond MDC Putnam 2 
5 Elam Bend Small Forested MDC Gentry 3 
6 Elam Bend Large Forested MDC Gentry 3 
7 King Lake Ditch MDC DeKalb 4 
8 King Lake Pond MDC DeKalb 4 
9 Whetstone Creek Pond MDC Callaway 5 
10 Whetstone Creek Wetland MDC Callaway 5 
11 White Open Pond MDC Audrain 6 
12 White Forested Pond MDC Audrain 6 
13 Blind Pony Field Pond MDC Saline 7 
14 Blind Pony Forested Pond MDC Saline 7 
15 Daniel Boone Fish Pond MDC Warren 8 
16 Daniel Boone South Side Pond MDC Warren 8 
17 Danville Ag Pond MDC Montgomery 9 
18 Danville Roadside Forested Pond MDC Montgomery 9 
19 Livingston Beetsma Small Corner Pond MoDOT Livingston 10 
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Table 4.2. List of wetland pairs (cont.). 
 

20 Livingston Beetsma NE Corner Ditch MoDOT Livingston 10 
21 Osage MariOsa Scrub Shrub MoDOT Osage 11 
22 Osage MariOsa Large Pond MoDOT Osage 11 

 

 
 

Figure 4.1. Elam Bend Small Forested and Elam Bend Large Forested 
              wetlands shown overlapping within 600 m. 
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4.2. Normalization 
 
 Normalization of the variables was performed for all of the spatial scales of 

analysis (300, 600, 900, 1500, and 2100 meters) for all the wetlands.   Normalization of 

was necessary for the addition of variables with different units.  The normalization for 

both groups (each group separately) was calculated using the different variables, 

identified earlier for each ring zone.  A ring zone is defined as an area from the wetland 

edge to the specific distance of the ring.  For example, the 900 m ring zone includes all of 

the areas from the wetland edge up through 900 m.  Normalized values for crops, forest, 

streams, roads, grass and herbaceous land covers, change in elevation between wetland 

centroid and elevation of nearest stream, and length of flowpath were calculated using 

Equation 3.1.  Data standardization allows the transformation from variables of various 

dimensions to variables with dimensionless parameters with values between 0 and 1.  For 

each ring zone there is a set of Xmin and Xmax for each variable. For example, the 

normalization of the crop variable values at 600 m (Table 4.3 and Table 4.4 for non-pair 

wetlands with distance andignoring distance component ) includes everything up to 600 

m.  The last column shows the normalized values of Scrops between 0 and 1.   

 
4.3. Variables 

Kleinbaum et al. (1998) recommends a ratio of n ≥ 5k for the number of 

observations (n) to predictor variables (k) to reduce effects of collinearity.  In a regression 

analysis, a collinearity of two variables means that a strong correlation exists between 

them, making it difficult or impossible to estimate their individual regression coefficients 

reliably.  
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In this project there are 27 wetlands data points for the non-pairs.  Calculating the 

number of variables for the 27 nonpairs wetlands, k is equal to 5.4, which means, up to 

five variables can be used in the regression analysis.   Calculating the number of variables 

for the 22 pairs of wetlands k is equal to 4.4, which means up to 4 variables can be used 

in the regression analysis.  

Eight variables considered as affecting the health of wetlands (ACI, Section 3.2) 

were quantified.  As described in Section 3.7, all of the wetlands data points are 

normalized quantities: 

 Scrops = normalized crop land cover variable, 

 Sforest = normalized forest land cover variable, 

 Sstreams = normalized stream length variable, 

 Sroad = normalized road length variable, 

 Sgrass = normalized grass land cover variable, 

 Sherb = normalized herbaceous land cover variable, 

 Slength = normalized length of flow path variable, and 

 Selevation = normalized change in elevation variable. 

Two types of streams were identified to affect wetland health, as explained in 

Section 3.3.   The streams in all the buffer zones are perennial streams.  No other analysis 

was necessary to distinguish between the perennial and the intermittent streams.  

4.4 Analysis 

 Two types of data analyses were performed.  The first involved the use of the 

distance from the edge of the wetland to the mid-point of each particular ring (more detail 



 

80 
 

in Section 4.4.1).  The second did not involve the use of a distance component for the 

quantities of the variables.   

4.4.1. Proximity Analysis 

The analysis at each of the spatial scales used in the analysis (300, 600, 900, 1500 

and 2100 m) for the non-pairs and for the pairs was performed using each variable for 

each different buffer ring incorporating distance from the edge of the wetland.  The 

independent variable at each buffer ring was divided according to the following ring 

distances, described in more detail in Section 3.6.  As mentioned earlier, this analysis was 

undertaken to analyze the impacts of the landscape features closer to or farther away from 

the wetland edge.  For example, for the calculation of independent variables for the crops 

within the 600 m ring (Table 4.3), the crop area within the 300 m ring is divided by 150 

m, which is the mid-point distance from the wetlands edge to the mid-point of the ring.  

To calculate the independent variable at 600 m, the crop area within 600 m is divided by 

450 which is the distance from the wetland edge to the midpoint of the 600 m ring.  The 

two independent variable values (i.e., from the 300 and the 600 m ring) are summed.  The 

maximum and the minimum value of the sum are used to calculate the normalized 

variable value for crops. Again, the normalized values are between zero and one.  Table 

4.3 shows the normalized value of crops at a spatial scale of 600 m for the non-pair 

wetlands.  Appendix C shows the full set of normalization variables with the distance 

component applied for the 600 m ring zone non-pair wetlands. 
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Table 4.3. Example for the calculation of independent variables for the crops at 600 m 
for non-pair wetlands for the proximity analysis. 

 

ID 
 

Crop area 
300m ring 

(m2) 

Crops area 
600 m ring 

(m2) 

ind var 
300 m 
ring 

(m2/m) 

ind var 
600 m 
ring 

(m2/m) 

Sum ind 
variables 

(m2/m) 
Scrops 

 
1 154357.00 518133.27 1029.05 1151.41 2180.45 0.5688 
2 153206.50 535470.29 1021.38 1189.93 2211.31 0.5772 
3 130960.24 293395.39 873.07 651.99 1525.06 0.3904 
4 153978.60 299104.78 1026.52 664.68 1691.20 0.4356 
5 711.70 72233.46 4.74 160.52 165.26 0.0203 
6 722.91 239825.31 4.82 532.95 537.76 0.1217 
7 86885.63 331609.66 579.24 736.91 1316.15 0.3335 
8 110899.99 210784.87 739.33 468.41 1207.74 0.3040 
9 9316.94 12806.68 62.11 28.46 90.57 0.0000 
10 69728.18 398658.90 464.85 885.91 1350.76 0.3430 
11 3660.21 49502.90 24.40 110.01 134.41 0.0119 
12 5530.15 29757.88 36.87 66.13 103.00 0.0034 
13 275848.31 591107.31 1838.99 1313.57 3152.56 0.8333 
14 108902.17 275619.72 726.01 612.49 1338.50 0.3396 
15 82768.35 233955.49 551.79 519.90 1071.69 0.2670 
16 121170.57 115936.84 807.80 257.64 1065.44 0.2653 
17 303341.79 400737.77 2022.28 890.53 2912.81 0.7681 
18 327585.22 711481.39 2183.90 1581.07 3764.97 1.0000 
19 233034.75 601614.85 1553.57 1336.92 2890.49 0.7620 
20 126178.30 273421.67 841.19 607.60 1448.79 0.3696 
21 277266.05 529957.74 1848.44 1177.68 3026.12 0.7989 
22 275592.35 511306.38 1837.28 1136.24 2973.52 0.7846 
23 104224.54 278563.10 694.83 619.03 1313.86 0.3329 
24 102871.81 85428.91 685.81 189.84 875.65 0.2137 
25 19530.25 19674.49 130.20 43.72 173.92 0.0227 
26 212377.30 382081.69 1415.85 849.07 2264.92 0.5918 
27 18343.00 19891.09 122.29 44.20 166.49 0.0207 
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4.4.2. Analysis ignoring distance component  

 The proximity analysis was necessary to quantify the closer landscape features 

and well as the farther away features and their impact in the ACI.  Landscape features 

near a wetland may be expected to affect the wetland habitat to a greater extent than a 

feature that is farther away.  

To calculate the normalization of the variables ignoring distance component, the 

area or length of the variable within each individual buffer ring was summed.   As an 

example, for the 600 m buffer calculation, the crop area within the 300 m ring and the 

crop area within the 600 m ring were summed.  The normalization values were calculated 

using the maximum value (1,039,066.61 m2) and the minimum value (22,123.62 m2) of 

all of the crop areas using the formula for normalization (Equation 3.1).  Table 4.4 shows 

the calculation of the normalization values (Scrops) for the non-pairs wetlands at a scale 

of 600 m.  The complete set of normalization variables ignoring the distance component 

is provided in Appendix D.   

4.5. Pearson correlation 

Pearson correlation analysis was used to identify independent landscape variables 

that show a high correlation, r ≥ 0.55 (Lehtinen et al., 1999).  This analysis was 

performed in four different data sets, the non-pair wetlands and the pair wetlands, with 

distance component applied and ignoring distance component. 
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Table 4.4. Example of the calculation of the normalization values for the non-pairs 
wetlands at a scale of 600 m ignoring distance component. 

 

Wetland 
Crop area,  
300 m ring  

(m2) 
Crop area,  

600 m ring (m2) 
Sum crops areas 

300+600 (m2) 
Scrops 

 

1 154357.00 518133.27 672490.27 0.639531 
2 153206.50 535470.29 688676.79 0.655448 
3 130960.24 293395.39 424355.63 0.395531 
4 153978.60 299104.78 453083.38 0.42378 
5 711.70 72233.46 72945.16 0.049975 
6 722.91 239825.31 240548.22 0.214785 
7 86885.63 331609.66 418495.29 0.389768 
8 110899.99 210784.87 321684.86 0.29457 
9 9316.94 12806.68 22123.62 0 
10 69728.18 398658.90 468387.08 0.438828 
11 3660.21 49502.90 53163.11 0.030522 
12 5530.15 29757.88 35288.03 0.012945 
13 275848.31 591107.31 866955.62 0.830757 
14 108902.17 275619.72 384521.89 0.35636 
15 82768.35 233955.49 316723.84 0.289692 
16 121170.57 115936.84 237107.41 0.211402 
17 303341.79 400737.77 704079.56 0.670594 
18 327585.22 711481.39 1039066.61 1 
19 233034.75 601614.85 834649.60 0.798989 
20 126178.30 273421.67 399599.97 0.371187 
21 277266.05 529957.74 807223.79 0.77202 
22 275592.35 511306.38 786898.73 0.752033 
23 104224.54 278563.10 382787.64 0.354655 
24 102871.81 85428.91 188300.72 0.163408 
25 19530.25 19674.49 39204.74 0.016797 
26 212377.30 382081.69 594458.99 0.5628 
27 18343.00 19891.09 38234.09 0.015842 
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A correlation is a number between -1 and +1 that measures the degree of 

association between two variables.  A positive value implies a positive association 

(increasing values in one variable correspond to increasing values in the other variable), 

while a negative value implies a negative association (increasing values is one variable 

corresponds to decreasing values in the other variable).   

The Pearson correlation coefficient between two variables, given a set of 

observations (X1, Y1), (X2,Y2),...(Xn,Yn),  is calculated as: 

 

                                    𝒓𝒓 = ∑ (𝑿𝑿𝒊𝒊−𝑿𝑿�𝒏𝒏
𝒊𝒊=𝟏𝟏 )(𝒀𝒀𝒊𝒊−𝒀𝒀�)

(𝒏𝒏−𝟏𝟏)𝑺𝑺𝒙𝒙𝑺𝑺𝒚𝒚
                                           Equation 4.1 

 

where r is the correlation coefficient, Xi is the ith X variable value, 𝑋𝑋� is the average value 

of the X variable, Yi is the ith Y variable value, 𝑌𝑌� is the average of the Y variable value, Sx 

is the standard deviation of the X variable and Sy is the standard deviation of the Y 

variable. 

Tables 4.5 through 4.24 show all of the Pearson correlation results for all the data 

sets.  The bolded numbers indicate a high correlation between two variables.  One of the 

two variables must be removed from the analysis in order to prevent multicollinearity, 

which means that highly correlated independent variables are explaining the same part of 

the variation in the dependent variable.  Pearson correlations coefficients with r ≥ 0.55 

were used to identify independent landscape variables that show a high correlation.  The 

P-value indicates the significance of the correlation and it is used to determine if the 

correlation coefficient is significantly different from zero, and, hence, that there is 
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evidence of an association between two variables. P-values are useful in determining the 

probability that the correlation is a real one and not a chance occurrence.  As a rule of 

thumb, P-values less than 0.05 (for Pearson correlation) show statistical significance. 

In each case for each ring zone, the non-pair wetlands and pair wetlands with 

distance and ignoring distance were considered and the removal of variables that were 

highly correlated was performed in a way such that a minimum number of variables were 

deleted from the analysis.  For example, if Scrops is highly correlated with two other 

variables, 

only Scrops was removed from the analysis.  In this way the least number of variables, 

that are correlated with others variables, were removed from the final analysis, allowing 

the testing of the significance of the majority of the variables. 

Table 4.5 shows the correlation of the variables for the non-pair wetlands at a 

scale of 300 m.  Scrops was removed from the regression analysis due to the strong 

positive correlation with Sroad (r = 0.577, P = 0.002).  Scrops was removed instead of 

Sroad, due to the expected negative impact of the roads close to wetlands edge, and also 

due to the ease of availability of measurements for road lengths (if the parameter is used 

in regression equation).  Slength was removed due to the high positive correlation with 

Selev (r = 0.656, P = 0.0), and the fact that elevation information may be available from a 

DEM.  A P-value equal to zero means that the correlation coefficient is very highly 

significantly different from zero. 
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Table 4.5. Pearson correlation coefficients and P-values for all variables for non-pair 
wetlands with a distance component applied at 300 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 

Sforest -0.436       
 0.023       
        

Sstreams 0.46 -0.201      
 0.016 0.314      
        

Sroad 0.577 -0.268 0.346     
 0.002 0.176 0.077     
        

Sgrass 0.005 -0.138 -0.02 -0.155    
 0.979 0.491 0.923 0.439    
        

Sherb 0.043 0.223 0.357 -0.012 0.335   
 0.83 0.265 0.068 0.953 0.088   
        

Selev -0.379 0.289 -0.453 -0.394 -0.03 0.117  
 0.051 0.144 0.018 0.042 0.883 0.562  
        

S length -0.153 0.056 -0.484 -0.256 0.283 0.148 0.656 
 0.446 0.781 0.01 0.198 0.153 0.46 0 

Cell content: Correlation, P-value 

Table 4.6 shows the correlation of the variables for the non-pair wetlands at a 

scale of 600 m.  Scrops was removed from the regression analysis due to the high 

negative correlation with Sforest (r = -0.554, P = 0.003) and positive strong correlation 

with Sroad (r = 0.600, P = 0.001).  In this case, the least number of variables correlated 

were removed by deleting Scrops.   Slength was removed due to the high positive 

correlation with Selev (r = 0.656, P = 0.0) and the potential availability of elevation data 

in subsequential studies.   
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Table 4.6. Pearson correlation coefficients and P-values for all variables for non-pair 
wetlands with a distance component applied at 600 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 
Sforest -0.554       

 0.003       
        

Sstreams 0.39 -0.257      
 0.044 0.195      
        

Sroad 0.600 -0.363 0.392     
 0.001 0.063 0.043     
        

Sgrass -0.16 -0.017 -0.121 -0.33    
 0.426 0.934 0.547 0.093    
        

Sherb -0.069 0.171 0.219 -0.225 0.539   
 0.733 0.394 0.272 0.259 0.004   
        

Selev -0.334 0.366 -0.479 -0.428 0.062 0.117  
 0.088 0.06 0.011 0.026 0.759 0.562  
        

Slength -0.12 0.069 -0.538 -0.299 0.311 0.177 0.656 
 0.551 0.732 0.004 0.13 0.115 0.378 0 
Cell content: Correlation, P-value 

 
Table 4.7 shows the correlation of the variables for the non-pair wetlands at a 

scale of 900 m. Scrops was removed from the regression analysis due to the high negative 

correlation with Sforest (r = -0.639, P = 0.0) and Sroad (r = 0.564, P = 0.002).  The least 

number of variables that are correlated were removed from the analysis by deleting 

Scrops.  Slength was removed due to the high negative correlation with Sstream  

(r = 0.569, P = 0.002) and positive high correlation with Selev (r = 0.656, P = 0.0), with 

the least number of variables that are correlated being removed from the final analysis.   
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Table 4.7. Pearson correlation coefficients and P-values for all variables for non-pair 
wetlands with a distance component applied at 900 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 
Sforest -0.639       

 0       
        

Sstreams 0.38 -0.244      
 0.05 0.22      
        

Sroad 0.564 -0.398 0.392     
 0.002 0.04 0.043     
        

Sgrass -0.175 -0.043 -0.106 -0.311    
 0.381 0.832 0.597 0.114    
        

Sherb -0.09 0.147 0.268 -0.26 0.528   
 0.654 0.464 0.176 0.19 0.005   
        

Selev -0.31 0.376 -0.489 -0.45 0.084 0.081  
 0.116 0.053 0.01 0.018 0.679 0.689  
        

Slength -0.124 0.048 -0.569 -0.304 0.323 0.113 0.656 
 0.539 0.814 0.002 0.123 0.1 0.575 0 

Cell content: Correlation, P-value 

Table 4.8 shows the correlation of the variables for the non-pair wetlands at a 

scale of 1500 m. Sforest was removed from the regression analysis due to the high 

positive correlation with Scrops (r = -0.669, P = 0.0) and because the northern Missouri 

amphibians being studied are prairie rather than forest species.  Slength was removed due 

to the high negative correlation with Sstream (r = -0.602, P = 0.001) and high positive 

correlation with Selev (r = 0.656, P = 0.0). 
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Table 4.8. Pearson correlation coefficients and P-values for all variables for non-pair 
wetlands with a distance component applied at 1500 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 

Sforest -0.669       
 0       
        

Sstreams 0.297 -0.161      
 0.133 0.422      
        

Sroad 0.441 -0.375 0.365     
 0.021 0.054 0.061     
        

Sgrass -0.277 -0.007 -0.07 -0.319    
 0.161 0.974 0.729 0.105    
        

Sherb -0.133 0.163 0.259 -0.304 0.513   
 0.509 0.418 0.192 0.123 0.006   
        

Selev -0.225 0.346 -0.548 -0.445 0.082 0.03  
 0.258 0.077 0.003 0.02 0.683 0.882  
        

Slength -0.014 -0.022 -0.602 -0.291 0.205 0.022 0.656 
 0.945 0.913 0.001 0.141 0.306 0.915 0 

Cell content: Correlation, P-value 

Table 4.9 shows the correlation of the variables for the non-pair wetlands at a 

scale of 2100 m. Sforest was removed from the regression analysis due to the high 

negative correlation with Scrops (r = -0.58, P = 0.002) and again because Missouri 

amphibians being studied are not forest-oriented species.  Selev was removed due to the 

high negative correlation with Sstream (r = -0.575, P = 0.002).  Sstream was not removed 

because it is being used as a surrogate for the presence of predatory fish.  Slength was 

removed due to the high negative correlation with Sstream (r = -0.616, P = 0.001) and 
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high positive correlation with Selev (r = 0.656, P = 0.0).  Sstream was not removed for 

the reason mentioned above. 

Table 4.9. Pearson correlation coefficients and P-values for all variables for non-pair 
wetlands with a distance component applied at 2100 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 

Sforest -0.58       
 0.002       
        

Sstreams 0.23 -0.105      
 0.249 0.603      
        

Sroad 0.423 -0.353 0.348     
 0.028 0.071 0.075     
        

Sgrass -0.219 -0.067 -0.113 -0.287    
 0.271 0.738 0.575 0.146    
        

Sherb -0.095 0.147 0.247 -0.288 0.419   
 0.637 0.463 0.215 0.146 0.03   
        

Selev -0.142 0.299 -0.575 -0.429 0.132 0.029  
 0.48 0.13 0.002 0.025 0.512 0.887  
        

Slength 0.011 -0.08 -0.616 -0.27 0.197 0.022 0.656 
 0.956 0.691  0.001 0.173 0.324 0.914 0 

Cell content: Correlation, P-value 

Table 4.10 shows the correlation of the variables for the non-pair wetlands at a 

scale of 300 m. Scrops was removed from the regression analysis due to the strong 

positive correlation with Sroad (r = 0.577, P = 0.002).  Sroad was not removed due to the 

expected negative impact on the wetland habitat and, also due to the ease of availability 

of road length data.  Slength was removed due to the high positive correlation with Selev 

(r = 0.656, P = 0.0).   
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Table 4.10. Pearson correlation coefficients and P-values for all variables for non-pair 
wetlands ignoring distance component at 300 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 

Sforest -0.436       
 0.023       
        

Sstreams 0.46 -0.201      
 0.016 0.314      
        

Sroad 0.577 -0.268 0.346     
 0.002 0.176 0.077     
        

Sgrass 0.005 -0.138 -0.02 -0.155    
 0.979 0.491 0.923 0.439    
        

Sherb 0.043 0.223 0.357 -0.012 0.335   
 0.83 0.265 0.068 0.953 0.088   
        

Selev -0.379 0.289 -0.453 -0.394 -0.03 0.117  
 0.051 0.144 0.018 0.042 0.883 0.562  
        

Slength -0.153 0.056 -0.484 -0.256 0.283 0.148 0.656 
 0.446 0.781 0.01 0.198 0.153 0.46 0 

Cell content: Correlation, P-value 

Table 4.11 shows the correlation of the variables for the non-pair wetlands at a 

scale of 600 m. Scrops was removed from the regression analysis due to the high negative 

correlation with Sforest (r = -0.588, P = 0.001) and high positive correlation with Sroad 

(r = 0.583, P = 0.001).  Sroad was not removed due to the expected negative impact on 

the wetland habitat, and because of road length data being a quantity that state 

departments of transportation may keep.  Sherbs was removed due to the high positive 

correlation with Sgrass (r = 0.644, P = 0.0).  Sgrass was not removed because the 

northern Missouri amphibians being studied are prairie species and Sgrass maybe 
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expected to contribute positively to the ACI.  Slength was removed due to the negative 

strong correlation with Sstream (r = -0.56, P = 0.002) and high positive correlation with 

Selev (r = 0.656, P = 0.0), so the least number of variables were removed from the 

analysis. 

Table 4.11. Pearson correlation coefficients and P-values for all variables for non-pair 
wetlands ignoring distance component at 600 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 

Sforest -0.588       
 0.001       
        

Sstreams 0.328 -0.255      
 0.094 0.199      
        

Sroad 0.583 -0.416 0.411     
 0.001 0.031 0.033     
        

Sgrass -0.297 0.075 -0.2 -0.411    
 0.133 0.709 0.318 0.033    
        

Sherb -0.157 0.132 0.111 -0.385 0.644   
 0.433 0.512 0.583 0.047 0   
        

Selev -0.294 0.395 -0.48 -0.456 0.125 0.11  
 0.136 0.041 0.011 0.017 0.535 0.585  
        

Slength -0.094 0.073 -0.56 -0.341 0.299 0.187 0.656 
 0.641 0.716 0.002 0.082 0.13 0.351 0 

Cell content: Correlation, P-value 

Table 4.12 shows the correlation of the variables for the non-pair wetlands at a 

scale of 900 m. Sforest was removed from the regression analysis due to the high 

negative correlation with Scrops (r = -0.685, P = 0.0) and because the amphibians of 

interest are not forest-oriented species.  Slength was removed due to the negative strong 
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correlation with Sstreams (r = -0.595, P = 0.001) and strong positive correlation with 

Selev (r = 0.656, P = 0.0), so the least number of variables were removed from the 

analysis. 

Table 4.12. Pearson correlation coefficients and P-values for all variables for non-pair 
wetlands ignoring distance component at 900 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 

Sforest -0.685       
 0       
        

Sstreams 0.308 -0.197      
 0.117 0.324      
        

Sroad 0.45 -0.432 0.392     
 0.018 0.025 0.043     
        

Sgrass -0.278 -0.012 -0.157 -0.303    
 0.16 0.954 0.433 0.125    
        

Sherb -0.169 0.123 0.275 -0.346 0.533   
 0.4 0.541 0.165 0.077 0.004   
        

Selev -0.252 0.385 -0.479 -0.505 0.129 0.034  
 0.205 0.047 0.012 0.007 0.523 0.866  
        

Slength -0.108 0.033 -0.595 -0.341 0.314 0.045 0.656 
 0.593 0.871 0.001 0.082 0.111 0.824 0 

Cell content: Correlation, P-value 

 
Table 4.13 shows the correlation of the variables for the non-pair wetlands at a 

scale of 1500 m. Sforest was removed from the regression analysis due to the high 

negative correlation with Scrops (r = -0.673, P = 0.0) and the amphibian reason given 

earlier.  Selev was removed due to the strong negative correlation with Sstream 
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(r = - 0.606, P = 0.001).  Sstream was not removed due to the potential importance of 

stream as a surrogate for predatory fish.  Slength was removed due to the negative strong 

correlation with Sstreams (r = -0.639, P = 0.0) and strong positive correlation with Selev 

(r = 0.656, P = 0.0).   

Table 4.13. Pearson correlation coefficients and P-values for all variables for non-pair 
wetlands ignoring distance component at 1500 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 
Sforest -0.673       

 0       
        

Sstreams 0.161 -0.073      
 0.423 0.719      
        

Sroad 0.162 -0.296 0.316     
 0.419 0.134 0.108     
        

Sgrass -0.384 0.034 -0.146 -0.264    
 0.048 0.866 0.468 0.183    
        

Sherb -0.208 0.158 0.182 -0.353 0.477   
 0.299 0.431 0.363 0.071 0.012   
        

Selev -0.124 0.315 -0.606 -0.426 0.094 -0.043  
 0.537 0.109 0.001 0.027 0.639 0.832  
        

Slength 0.079 -0.073 -0.639 -0.262 0.117 -0.1 0.656 
 0.695 0.717 0 0.187 0.563 0.618 0 

Cell content: Correlation, P-value 

Table 4.14 shows the correlation of the variables for the non-pair wetlands at a 

scale of 2100 m.  Selev was removed due to the strong negative correlation with Sstream 

(r = -0.629 P = 0.001). Sstream was not removed due to the potential impact it can have 

on the wetland habitat, as a surrogate for predatory fish.  Slength was removed due to the 
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negative strong correlation with Sstreams (r = -0.625, P = 0.0) and strong positive 

correlation with Selev (r = 0.656, P = 0.0).  In this last case the least number of variables 

were removed from the analysis.  

Table 4.14. Pearson correlation coefficients and P-values for all variables for non-pair 
wetlands ignoring distance component at 2100 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 

Sforest -0.453       
 0.018       
        

Sstreams -0.006 0.005      
 0.976 0.982      
        

Sroad 0.137 -0.263 0.295     
 0.494 0.185 0.135     
        

Sgrass -0.317 -0.068 -0.211 -0.302    
 0.107 0.736 0.29 0.125    
        

Sherb -0.227 0.193 0.13 -0.406 0.508   
 0.254 0.335 0.519 0.036 0.007   
        

Selev 0.014 0.24 -0.629 -0.369 0.052 -0.082  
 0.943 0.227 0 0.058 0.797 0.684  
        

Slength 0.089 -0.147 -0.625 -0.202 0.045 -0.156 0.656 
 0.657 0.464 0 0.312 0.823 0.436 0 

Cell content: Correlation, P-value 

Table 4.15 shows the correlation of the variables for the non-pair wetlands at a 

scale of 300 m.  Sforest was removed from the regression analysis due to the high 

negative correlation with Scrops (r = -0.635, P = 0.001) and because amphibians in 

Northern Missouri are not forest species.  Selev was removed due to the strong negative 

correlation with Scrops (r = -0.697, P=0.0) and strong positive correlation with Sforest  



 

96 
 

(r = 0.66, P = 0.0).  Scrops was not removed due to the expected negative impact on the 

ACI. 

Table 4.15. Pearson correlation coefficients and P-values for all variables for pair 
wetlands with a distance component applied at 300 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 
Sforest -0.635       

 0.001       
        

Sstreams 0.338 -0.123      
 0.124 0.584      
        

Sroad 0.324 -0.093 0.129     
 0.142 0.681 0.566     
        

Sgrass 0.026 -0.537 -0.263 -0.097    
 0.909 0.01 0.237 0.668    
        

Sherb -0.338 0.055 -0.134 -0.357 -0.196   
 0.124 0.807 0.553 0.103 0.381   
        

Selev -0.697 0.66 -0.366 -0.091 -0.073 -0.002  
 0 0.001 0.094 0.686 0.746 0.993  
        

Slength -0.377 0.096 -0.333 -0.429 0.01 0.267 0.373 
 0.084 0.672 0.13 0.046 0.965 0.23 0.087 

Cell content: Correlation, P-value 

Table 4.16 shows the correlation of the variables for the non-pair wetlands at a 

scale of 600 m. Sforest was removed from the regression analysis due to the high 

negative correlation with Scrops (r = -0.765, P = 0.0) and because amphibian in northern 

Missouri are not forest species.  Selev was removed due to the strong negative correlation 

with Scrops (r = -0.752, P = 0.0) and strong positive correlation with Sforest (r = 0.721, 

P = 0.0).  Scrops was not removed due to the expected negative impact on the ACI. 
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Table 4.16. Pearson correlation coefficients and P-values for all variables for pair 
wetlands with a distance component applied at 600 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 

Sforest -0.765       
 0       
        

Sstreams 0.221 -0.091      
 0.323 0.687      
        

Sroad 0.443 -0.369 0.11     
 0.039 0.091 0.626     
        

Sgrass 0.055 -0.501 -0.347 -0.157    
 0.809 0.018 0.113 0.486    
        

Sherb -0.243 -0.006 -0.028 -0.234 -0.045   
 0.275 0.978 0.901 0.295 0.841   
        

Selev -0.752 0.721 -0.407 -0.52 -0.03 -0.029  
 0 0 0.06 0.013 0.894 0.897  
        

Slength -0.419 0.096 -0.375 -0.424 0.192 0.359 0.373 
 0.052 0.672 0.086 0.049 0.392 0.101 0.087 

Cell content: Correlation, P-value 

 
Table 4.17 shows the correlation of the variables for the non-pair wetlands at a 

scale of 900 m. Sforest was removed from the regression analysis due to the high 

negative correlation with Scrops (r = -0.783, P = 0.0) and because amphibians in northern 

Missouri are not forest species.  Selev was removed due to the strong negative correlation 

with Scrops (r = -0.792, P = 0.0) and strong positive correlation with Sforest (r = 0.767, 

P = 0.0).  Scrops was not removed from the analysis due to the expected negative impact 

on the ACI. 
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Table 4.17. Pearson correlation coefficients and P-values for all variables for pair 
wetlands with a distance component applied at 900 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 
Sforest -0.783       

 0       
        

Sstreams 0.199 -0.118      
 0.375 0.602      
        

Sroad 0.43 -0.393 0.238     
 0.046 0.071 0.285     
        

Sgrass 0.022 -0.477 -0.309 -0.22    
 0.923 0.025 0.161 0.325    
        

Sherb -0.195 -0.037 -0.039 -0.291 0.044   
 0.385 0.872 0.861 0.189 0.846   
        

Selev -0.792 0.767 -0.487 -0.533 -0.011 -0.03  
 0 0 0.022 0.011 0.961 0.893  
        

Slength -0.468 0.098 -0.455 -0.436 0.349 0.402 0.373 
 0.028 0.666 0.033 0.042 0.111 0.063 0.087 

Cell content: Correlation, P-value 

 
Table 4.18 shows the correlation of the variables for the non-pair wetlands at a 

scale of 1500 m. Sforest was removed from the regression analysis due to the high 

negative correlation with Scrops (r = -0.816, P = 0.0) and because amphibians in northern 

Missouri are not forest species. Selev was removed due to the strong negative correlation 

with Scrops (r=-0.794, P=0.0) and strong positive correlation with Sforest (r = 0.801,  

P = 0.0).  Scrops was not removed from the analysis due to the expected negative impact 

on the ACI. 
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Table 4.18. Pearson correlation coefficients and P-values for all variables for pair 
wetlands with a distance component applied at 1500 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 
Sforest -0.816       

 0       
        

Sstreams 0.17 -0.11      
 0.448 0.625      
        

Sroad 0.376 -0.361 0.253     
 0.084 0.099 0.257     
        

Sgrass -0.009 -0.438 -0.278 -0.245    
 0.967 0.042 0.21 0.272    
        

Sherb -0.117 -0.113 -0.021 -0.352 0.152   
 0.603 0.616 0.925 0.109 0.498   
        

Selev -0.794 0.801 -0.513 -0.52 -0.03 -0.056  
 0 0 0.015 0.013 0.894 0.805  
        

Slength -0.436 0.037 -0.483 -0.422 0.507 0.411 0.373 
 0.043 0.868 0.023 0.05 0.016 0.058 0.087 

Cell content: Correlation, P-value 

 

Table 4.19 shows the correlation of the variables for the non-pair wetlands at a 

scale of 2100 m. Sforest was removed from the regression analysis due to the high 

negative correlation with Scrops (r = -0.829, P = 0.0) and because amphibians in northern 

Missouri are not forest species.  Selev was removed due to the strong negative correlation 

with Scrops (r = -0.776, P = 0.0), strong positive correlation with Sforest (r = 0.813,  

P = 0.0) and strong negative correlation with Sstream (r = -0.586, P = 0.004).  Slength 

was removed due to the strong positive correlation with Sgrass (r = 0.602, P = 0.003).  



 

100 
 

Scrops was not removed from the analysis due to the expected negative impact on the 

ACI. 

Table 4.19. Pearson correlation coefficients and P-values for all variables for pair 
wetlands with a distance component applied at 2100 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 
Sforest -0.829       

 0       
        

Sstreams 0.196 -0.139      
 0.382 0.538      
        

Sroad 0.36 -0.36 0.306     
 0.1 0.1 0.167     
        

Sgrass -0.006 -0.441 -0.254 -0.261    
 0.977 0.04 0.254 0.24    
        

Sherb -0.129 -0.164 -0.046 -0.347 0.301   
 0.568 0.466 0.839 0.113 0.173   
        

Selev -0.776 0.813 -0.586 -0.531 -0.087 -0.059  
 0 0 0.004 0.011 0.7 0.793  
        

Slength -0.384 -0.009 -0.549 -0.431 0.602 0.459 0.373 
 0.077 0.968 0.008 0.045 0.003 0.031 0.087 

Cell content: Correlation, P-value 

 

Table 4.20 shows the correlation of the variables for the non-pair wetlands at a 

scale of 300 m. Sforest was removed from the regression analysis due to the high 

negative correlation with Scrops (r = -0.635, P = 0.001) and because amphibians in 

northern Missouri are not forested species.  Selev was removed due to the strong negative 

correlation with Scrops (r = -0.697, P = 0.0) and strong positive correlation with Sforest 
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(r = 0.66, P = 0.001).  Scrops was not removed from the analysis due to the expected 

negative impact on the ACI. 

Table 4.20. Pearson correlation coefficients and P-values for all variables for pair 
wetlands ignoring distance component at 300 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 
Sforest -0.635       

 0.001       
        

Sstreams 0.338 -0.123      
 0.124 0.584      
        

Sroad 0.324 -0.093 0.129     
 0.142 0.681 0.566     
        

Sgrass 0.026 -0.537 -0.263 -0.097    
 0.909 0.01 0.237 0.668    
        

Sherb -0.338 0.055 -0.134 -0.357 -0.196   
 0.124 0.807 0.553 0.103 0.381   
        

Selev -0.697 0.66 -0.366 -0.091 -0.073 -0.002  
 0 0.001 0.094 0.686 0.746 0.993  
        

Slength -0.377 0.096 -0.333 -0.429 0.01 0.267 0.373 
 0.084 0.672 0.13 0.046 0.965 0.23 0.087 

Cell content: Correlation, P-value 

 

Table 4.21 shows the correlation of the variables for the non-pair wetlands at a 

scale of 600 m.  Sforest was removed from the regression analysis due to the high 

negative correlation with Scrops (r = -0.784, P = 0.0) and because amphibians in northern 

Missouri are not forest species.  Selev was removed due to the strong negative correlation 

with Scrops (r = -0.734, P = 0.0) and strong positive correlation with Sforest (r = 0.744,  
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P = 0.0).  Scrops was not removed from the analysis due to the expected negative impact 

on the ACI.  

Table 4.21. Pearson correlation coefficients and P-values for all variables for pair 
wetlands ignoring distance component at 600 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 

Scrops        
        
        

Sforest -0.784       
 0       
        

Sstreams 0.178 -0.071      
 0.427 0.753      
        

Sroad 0.371 -0.403 0.168     
 0.089 0.063 0.454     
        

Sgrass 0.021 -0.467 -0.398 -0.157    
 0.925 0.029 0.067 0.485    
        

Sherb -0.175 -0.048 0.024 -0.289 0.08   
 0.436 0.832 0.917 0.192 0.722   
        

Selev -0.743 0.744 -0.425 -0.541 0.003 -0.047  
 0 0 0.049 0.009 0.989 0.837  
        

Slength -0.419 0.094 -0.393 -0.451 0.319 0.408 0.373 
 0.052 0.676 0.07 0.035 0.148 0.059 0.087 

Cell content: Correlation, P-value 

Table 4.22 shows the correlation of the variables for the non-pair wetlands at a 

scale of 900 m. Sforest was removed from the regression analysis due to the high 

negative correlation with Scrops (r = -0.712, P = 0.0) and because amphibians in northern 

Missouri are not forest species.  Selev was removed due to the strong negative 

correlations with Scrops (r = -0.726, P = 0.0) and Sroad (r = -0.555, P = 0.007) and strong 
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positive correlation with Sforest (r = 0.80, P = 0.0), so the least number of variables were 

removed from the analysis. 

Table 4.22. Pearson correlation coefficients and P-values for all variables for pair 
wetlands ignoring distance component at 900 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 

Scrops        
        
        

Sforest -0.712       
 0       
        

Sstreams 0.129 -0.145      
 0.568 0.519      
        

Sroad 0.288 -0.413 0.364     
 0.193 0.056 0.095     
        

Sgrass -0.078 -0.427 -0.291 -0.235    
 0.729 0.047 0.189 0.293    
        

Sherb -0.165 -0.093 -0.016 -0.372 0.227   
 0.463 0.681 0.944 0.088 0.309   
        

Selev -0.726 0.8 -0.517 -0.555 0.024 -0.041  
 0 0 0.014 0.007 0.917 0.855  
        

Slength -0.458 0.097 -0.489 -0.463 0.522 0.472 0.373 
 0.032 0.668 0.021 0.03 0.013 0.027 0.087 

Cell content: Correlation, P-value 

Table 4.23 shows the correlation of the variables for the non-pair wetlands at a 

scale of 1500 m.  Sforest was removed from the regression analysis due to the high 

negative correlation with Scrops (r = -0.808, P = 0.0) and because amphibians in northern 

Missouri are not forest species.  Selev was removed due to the strong negative correlation 

with Scrops (r = -0.774, P = 0.0) and strong positive correlation with Sforest (r = 0.816,  
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P = 0.0).  Scrops was not removed from the analysis due to the expected highly negative 

impact on the ACI.  Slength was removed for the analysis due to the strong positive 

correlation with Sgrass and Sherb (r = 0.66, P = 0.001 and r = 0.597, P = 0.003, 

respectively).  Sgrass and Sherb were not removed from the analysis due to the expected 

positive impact on the ACI, and also because it allows for the least number of variables to 

be removed. 

Table 4.23. Pearson correlation coefficients and P-values for all variables for pair 
wetlands ignoring distance component at 1500 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 

Scrops        
        
        

Sforest -0.808       
 0       
        

Sstreams 0.125 -0.1      
 0.58 0.658      
        

Sroad 0.309 -0.34 0.283     
 0.161 0.122 0.201     
        

Sgrass -0.098 -0.406 -0.232 -0.242    
 0.663 0.061 0.298 0.278    
        

Sherb -0.188 -0.202 -0.07 -0.3 0.461   
 0.401 0.368 0.755 0.175 0.031   
        

Selev -0.774 0.816 -0.521 -0.517 -0.027 -0.028  
 0 0 0.013 0.014 0.904 0.901  
        

Slength -0.413 -0.003 -0.497 -0.42 0.66 0.597 0.373 
 0.056 0.991 0.019 0.052 0.001 0.003 0.087 

Cell content: Correlation, P-value 
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Table 4.24 shows the correlation of the variables for the non-pair wetlands at a 

scale of 2100 m. Sforest was removed from the regression analysis due to the high 

negative correlation with Scrops (r = -0.648, P = 0.001). Scrops was not removed from 

the analysis due to the expected highly negative impact on ACI.  Sherb was removed due 

to the strong positive correlation with Sgrass (r = 0.576, P = 0.005) and because 

amphibians northern Missouri are prairie species, so Sgrass is expected to impact the ACI 

positevely.  Selev was removed due to the strong negative correlation with Scrops  

(r = -0.635, P = 0.001), the strong positive correlation with Sforest (r = 0.7436, P = 0.0) 

and the high negative correlation with Sstream (r = -0.656, P = 0.001), so the least 

number of variables were removed from the analysis.  Slength was removed due to the 

high negative correlation with Sstream (r = -0.616, P = 0.002), high positive correlation 

with Sgrass (r = 0.699, P = 0.0) and the high positive correlation with Sherb (r = 0.586,  

P = 0.004), so the least number of variables were removed from the analysis. 
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Table 4.24. Pearson correlation coefficients and P-values for all variables for pair 
wetlands ignoring distance component at 2100 m. 

 
 Scrops Sforest Sstreams Sroad Sgrass Sherb Selev 

Sforest -0.648       
 0.001       
        

Sstreams 0.175 -0.127      
 0.436 0.572      
        

Sroad 0.242 -0.363 0.376     
 0.278 0.097 0.085     
        

Sgrass -0.057 -0.437 -0.216 -0.25    
 0.801 0.042 0.334 0.261    
        

Sherb -0.191 -0.308 -0.113 -0.3 0.576   
 0.396 0.163 0.616 0.174 0.005   
        

Selev -0.635 0.743 -0.656 -0.541 -0.123 -0.045  
 0.001 0 0.001 0.009 0.586 0.841  
        

Slength -0.349 -0.107 -0.616 -0.44 0.699 0.586 0.373 
 0.112 0.636 0.002 0.041 0 0.004 0.087 

Cell content: Correlation, P-value 

 

4.6 Non- pair wetland equations 

 4.6.1 Linear regression--distance component applied  

The variables used in the regression analysis are the set of variables that are not 

highly correlated with each other.  Variables that were highly correlated were removed in 

Section 4.5.  Linear regression was used in the analysis because it is the standard method 

used in the literature to determine the significant independent variables and the 
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relationship with the dependent variable (Houlahan and Findley (2003), Lethinen et al. 

(1999), Herrmann et al. (2005), Hecnar (1997) and Knutson et al. (1999)).   

For the different buffer zones, the multiple linear regression models that could 

describe the relationship between the ACI and the independent variables are shown in 

Tables 4.25 through 4.29.  These tables show the multiple regression analyses for the 

non-pair wetlands at different spatial scales from which one can identify the significant 

variables for each buffer zone.  The estimate is the average value of the coefficient for 

each variable in the regression equation.  The standard error is the standard deviation 

from the average value or the estimate.  As explained in Chapter 2, the test of the null 

hypothesis (variable is not significant) versus the alternative hypothesis (variable is 

significant) is conducted using the t-test for a single variable.  The independent variable 

that produces the largest (absolute) t value is declared the “best” variable predictor of the 

dependent variable provided that the independent variable produces a p-value for the t-

test that is below a specified alpha level.  In this research, P-values ≤ 0.20 were checked 

to determine the significant variables in each ring zone.  In a few cases, when the P-value 

was slightly larger than 0.20, but less than 0.22, the variable was considered significant. 

The most significant variable for the 300 m ring zone (Table 4.25) is Sroad with a 

t-test value of -1.75 and a P-value of 0.096.  For the 600 m ring (Table 4.26), the 

significant variable is Sroad with a t-test value of -1.57 and a P-value of 0.131.  The 

significant variable for the 900 m ring zone (Table 4.27) is Sroad with a t-test value of -

1.3 and a P-value of 0.207.  The significant variable for the 1500 m ring zone (Table 

4.28) is Scrops with a t-test value of -1.27 and a P-value of 0.219.  For the 2100 m ring 
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zone (Table 4.29), the significant variable is Scrops with a t-test value of -1.28 and a P-

value of 0.214.   

 
Table 4.25.  Relationship between the ACI and landscape characteristics based on 

a linear multiple regression analysis for non-pair wetlands with a 
distance component applied to the 300 m ring. 

Predictor Estimate Standard 
Error t Statistic P-value 

Constant 3.0967 0.9598 3.23 0.004 
Sforest -0.715 1.329 -0.54 0.597 
Sstreams -0.56 1.203 -0.47 0.647 
Sroad -1.7178 0.9831 -1.75 0.096 
Sgrass -0.728 1.361 -0.53 0.599 
Sherb 0.461 1.323 0.35 0.731 
S elev 0.316 1.337 0.24 0.816 
 
 

Table 4.26.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for non-pair wetlands with a 
distance component applied to the 600 m ring. 

 

Predictor Estimate Standard 
Error t Statistic P-value 

Constant 2.8135 0.9754 2.88 0.009 
Sforest -0.217 1.457 -0.15 0.883 
Sstreams -0.097 1.242 -0.08 0.938 
Sroad -1.7 1.081 -1.57 0.131 
Sgrass 0.017 1.426 0.01 0.991 
Sherb -0.393 1.256 -0.31 0.757 
Selev 0.515 1.346 0.38 0.706 
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Table 4.27.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for non-pair wetlands with a 
distance component applied to the 900 m ring 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 2.473 1.051 2.35 0.029 
Sforest 0.095 1.499 0.06 0.950 
Sstreams 0.038 1.235 0.03 0.976 
Sroad -1.443 1.106 -1.3 0.207 
Sgrass 0.665 1.418 0.47 0.644 
Sherb -0.673 1.285 -0.52 0.606 
Selev 0.536 1.357 0.39 0.697 

 
 

Table 4.28.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for non-pair wetlands with a 
distance component applied to the 1500 m ring. 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 2.83 1.039 2.72 0.013 
Scrops -1.441 1.136 -1.27 0.219 
Sstreams 0.006 1.234 0 0.996 
Sroad -1.014 1.31 -0.77 0.448 
Sgrass 0.981 1.273 0.77 0.450 
Sherb -0.861 1.175 -0.73 0.472 
Selev 0.502 1.306 0.38 0.705 

 
 

Table 4.29.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for non-pair wetlands with a 
distance component applied to the 2100 m ring. 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 3.0288 0.8831 3.43 0.003 
Scrops -1.425 1.112 -1.28 0.214 
Sstreams -0.215 1.07 -0.2 0.843 
Sroad -1.145 1.239 -0.92 0.366 
Sgrass 0.932 1.24 0.75 0.461 
Sherb -0.804 1.142 -0.7 0.489 
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4.6.2. Linear regression--ignoring distance component  

Tables 4.30 through 4.34 describe the relationship between the ACI and the 

landscape characteristics based on linear regression analysis for the non-pairs wetlands at 

different spatial scales from which one can identify the significant variables for each 

buffer zone.  The variables used in the regression analysis are the set of variables that are 

not highly correlated with each other.  Variables that were highly correlated were 

removed in Section 4.5.  As is the case when the distance component is applied, the most 

significant variable for the 300 m buffer zone (Table 4.30) is the Sroad with a t-test value 

of -1.75 and a P-value of 0.096.  At a scale of 600 m (Table 4.31), the significant variable 

is Sroad with a t-test value of -1.33 and a P-value of 0.198.  The significant variable at 

the 900 m ring zone (Table 4.32) is Scrops with a t-test value of -1.4 and a P-value of 

0.176.  At the 1500 m scale (Table 4.33)the significant variable is also Scrops with a t-

test value of -1.48 and a P-value of 0.154.  At the 2100 m scale (Table 4.34), the 

significant variable is Sgrass with a t-test value of 2.03 and a P-value of 0.056.   

 
Table 4.30.  Relationship between the ACI and landscape characteristics based on 

a linear multiple regression analysis for non-pair wetlands ignoring 
distance component at the 300 m ring. 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 3.0967 0.9598 3.23 0.004 
Sforest -0.715 1.329 -0.54 0.597 
Sstreams -0.56 1.203 -0.47 0.647 
Sroad -1.7178 0.9831 -1.75 0.096 
Sgrass -0.728 1.361 -0.53 0.599 
Sherb 0.461 1.323 0.35 0.731 
S elev 0.316 1.337 0.24 0.816 

 
 



 

111 
 

Table 4.31.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for non-pair wetlands ignoring 
distance component at the 600 m ring. 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 2.641 1.042 2.54 0.019 
Sforest -0.12 1.434 -0.08 0.934 
Sstreams -0.209 1.071 -0.19 0.847 
Sroad -1.459 1.097 -1.33 0.198 
Sgrass 0.038 1.141 0.03 0.973 
Selev 0.426 1.315 0.32 0.749 

 
 

Table 4.32.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for non-pair wetlands ignoring 
distance component at the 900 m ring. 

 
 
 

 
 
 
 
 
 
 
 

Table 4.33.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for non-pair wetlands ignoring 
distance component at the 1500 m ring. 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 3.0907 0.9991 3.09 0.006 
Scrops -1.713 1.157 -1.48 0.154 
Sstreams -0.5213 0.9551 -0.55 0.591 
Sroad -1.268 1.452 -0.87 0.392 
Sgrass 1.337 1.384 0.97 0.345 
Sherb -1.073 1.212 -0.89 0.386 

 
 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 2.773 1.037 2.67 0.015 
Scrops -1.562 1.115 -1.4 0.176 
Sstreams 0.433 1.087 0.4 0.694 
Sroad -0.833 1.318 -0.63 0.535 
Sgrass 1.314 1.481 0.89 0.386 
Sherb -1.113 1.395 -0.8 0.434 
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Table 4.34.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for non-pair wetlands ignoring 
distance component at the 2100 m ring. 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 0.914 1.344 0.68 0.504 
Scrops 1.511 1.428 1.06 0.303 
Sforest 1.644 1.454 1.13 0.272 
Sstreams -0.3435 0.925 -0.37 0.714 
Sroad -1.086 1.592 -0.68 0.503 
Sgrass 2.855 1.41 2.03 0.056 
Sherb -1.527 1.353 -1.13 0.272 

 
4.7. Pair wetland equations 

4.7.1. Linear regression--distance component applied 

The variables used in the regression analysis are the set of variables that are not 

highly correlated with each other.  Variables that were highly correlated were removed in 

Section 4.5.  When the previously described analyses (Section 4.6) are applied to pair 

wetlands, the most significant variable for the 300 m ring zone (Table 4.35) is the Scrops 

with a t-test value of -1.95 and a P-value of 0.070.  At a scale of 600 m (Table 4.36), the 

significant variables are Sroad with a t-test value of -1.62 and a P-value of 0.127 and 

Slength with a t-test value of -1.64 and a P-value of 0.121.  The significant variables for 

the 900 m zone (Table 4.37) are Sroad with a t-test value of -1.43 and a P-value of 0.173, 

Slength with a t-test value of -1.70 and a P-value of 0.109.  The significant variables for 

the 1500 m zone (Table 4.38) are Scrops with a t-test value of -1.38 and a P-value of 

0.188 and Slength with a t-test value of -1.42 and a P-value of 0.177.  For the 2100 m 

zone (Table 4.39) the significant variable are Scrops with a t-test value of -1.36 and a P-

value of 0.194 and Sgrass with a t-test value of -1.37 and a P-value of 0.191. 
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Table 4.35.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for pair wetlands with a distance 
component applied to the 300 m ring. 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 5.384 1.31 4.11 0.001 
Scrops -2.781 1.424 -1.95 0.070 
Sstreams -0.627 1.721 -0.36 0.721 
Sroad 0.458 1.324 0.35 0.734 
Sgrass -1.315 1.236 -1.06 0.304 
Sherb -0.46 1.467 -0.31 0.758 
Slength -1.97 1.55 -1.27 0.223 
 

Table 4.36.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for pair wetlands with a distance 
component applied to the 600 m ring. 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 5.731 1.118 5.12 0 
Scrops -1.316 1.457 -0.9 0.381 
Sstreams -1.111 1.554 -0.72 0.485 
Sroad -2.664 1.649 -1.62 0.127 
Sgrass -1.503 1.315 -1.14 0.271 
Sherb -0.199 1.409 -0.14 0.89 
Slength -2.678 1.631 -1.64 0.121 

 

Table 4.37.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for pair wetlands with a distance 
component applied to the 900 m ring. 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 5.633 1.148 4.91 0 
Scrops -1.709 1.401 -1.22 0.242 
Sstreams -0.934 1.412 -0.66 0.518 
Sroad -2.295 1.605 -1.43 0.173 
Sgrass -0.679 1.308 -0.52 0.611 
Sherb 0.21 1.507 0.14 0.891 
Slength -3.16 1.854 -1.7 0.109 
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Table 4.38.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for pair wetlands with a distance 
component applied to the 1500 m ring. 

 

Predictor Estimate Standard 
Error T Statistics P-value 

Constant 5.59 1.174 4.76 0 
Scrops -1.677 1.43 -1.17 0.259 
Sstreams -0.921 1.388 -0.66 0.517 
Sroad -2.382 1.725 -1.38 0.188 
Sgrass -0.533 1.473 -0.36 0.722 
Sherb 0.041 1.55 0.03 0.979 
S length -2.976 2.101 -1.42 0.177 

 
 

Table 4.39.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for pair wetlands with a distance 
component applied to the 2100 m ring. 

 

Predictor Estimate Standard 
Error T Statistics P-value 

Constant 5.149 1.116 4.61 0 
Scrops -0.654 1.28 -0.51 0.616 
Sstreams -0.18 1.27 -0.14 0.889 
Sroad -2.274 1.677 -1.36 0.194 
Sgrass -2.086 1.528 -1.37 0.191 
Sherb -0.596 1.454 -0.41 0.687 

 

4.7.2. Linear regression-- ignoring distance component  

 The variables used in the regression analysis are the set of variables that are not 

highly correlated with each other.  Variables that were highly correlated were removed in 

Section 4.5.  Tables 4.40 through 4.44 describe the relationship between the ACI and the 

landscape characteristics based on linear regression analysis for the pairs wetlands with 

no distance component applied.  As in the previous case, the most significant variable for 

the 300 ring zone (Table 4.40) is the Scrops with a t-test value of -1.95 and a P-value of 
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0.070.  For the 600 m ring (Table 4.41), the significant variables are Sroad with a t-test 

value of -1.73 and a P-value of 0.103 and Slength with a t-test value of -1.43 and a P-

value of 0.172.  The significant variables for the 900 m ring (Table 4.42) are Scrops with 

a t-test value of -1.68 and a P-value of 0.114, Sroad with a t-test value of -1.57 and P-

value of 0.137, and Slength with a t-test value of -1.97 and P-value of 0.068.  The 

significant variables for the 1500 m ring zone (Table 4.43) are Scrops with a t-test value 

of -1.34 and a P-value of 0.178, Sroad with t-test value of -1.56 and a P-value of 0.138, 

and Slength with a t-test value of -2.06 and a P-value of 0.056.  At 2100 m (Table 4.40) 

the significant variables are Sroad with a t-test value of -1.41 and a P-value of 0.177 and 

Sgrass with a t-test value of -1.58 and a P-value of 0.133.   

 

Table 4.40. Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for pair wetlands ignoring 
distance component at the 300 m ring. 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 5.384 1.31 4.11 0.001 
Scrops -2.781 1.424 -1.95 0.070 
Sstreams -0.627 1.721 -0.36 0.721 
Sroad 0.458 1.324 0.35 0.734 
Sgrass -1.315 1.236 -1.06 0.304 
Sherb -0.46 1.467 -0.31 0.758 
Slength -1.97 1.55 -1.27 0.223 
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Table 4.41.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for pair wetlands ignoring 
distance component at the 600 m ring. 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 5.505 1.121 4.91 0 
Scrops -1.272 1.484 -0.86 0.405 
Sstreams -0.662 1.485 -0.45 0.662 
Sroad -2.501 1.442 -1.73 0.103 
Sgrass -1.144 1.376 -0.83 0.419 
Sherb -0.181 1.463 -0.12 0.903 
Slength -2.565 1.788 -1.43 0.172 

 
 

Table 4.42.  Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for pair wetlands ignoring 
distance component at the 900 m ring. 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 5.545 1.106 5.01 0 
Scrops -2.661 1.586 -1.68 0.114 
Sstreams -0.909 1.448 -0.63 0.539 
Sroad -2.127 1.353 -1.57 0.137 
Sgrass 0.329 1.428 0.23 0.821 
Sherb 0.515 1.616 0.32 0.755 
Slength -4.187 2.13 -1.97 0.068 

 
Table 4.43  Relationship between the ACI and landscape characteristics based on 

a linear multiple regression analysis for pair wetlands ignoring 
distance component at the 1500 m ring. 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 5.455 1.038 5.25 0 
Scrops -1.762 1.255 -1.4 0.178 
Sstreams -0.973 1.252 -0.78 0.448 
Sroad -2.431 1.562 -1.56 0.138 
Slength -3.309 1.61 -2.06 0.056 
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Table 4.44. Relationship between the ACI and landscape characteristics based on 
a linear multiple regression analysis for pair wetlands ignoring 
distance component at the 2100 ring. 

 

Predictor Estimate Standard 
Error t Statistics P-value 

Constant 4.805 1.017 4.72 0 
Scrops -0.277 1.636 -0.17 0.868 
Sstreams -0.288 1.179 -0.24 0.81 
Sroad -2.069 1.468 -1.41 0.177 
Sgrass -2.468 1.563 -1.58 0.133 

 

4.8. Relationship between ACI and wetlands variables 

Tables 4.45 through 4.48 show the relationships between the ACI and landscape 

variables for each ring zone for the non-pairs wetlands and the pair wetlands.  Only the 

significant variables (P ≤ 0.20) in the multiple regression analysis (Tables 4.25 through 

4.44) were considered for the regression equations.  Table 4.45shows the regression 

equations for the non-pairs wetlands with a distance component applied.  At scales of 300 

m through 900 m, the variability of the ACI is dominated by the constant and the Sroad 

variable.  At the scales of 1500 m and 2100 m, the variability of the ACI is dominated by 

the constant and the Scrops variable.  Table 4.46 shows the regression equations for the 

non-pair wetlands ignoring the distance component.  At scales of 300 m and 600 m, the 

variability of the ACI is dominated by the constant and the Sroad variable.  At scales of 

900 m and 1500 m, the variability of ACI is dominated by the constant and the Scrops 

variable, while at 2100 m, the ACI variability is dominated by the constant and Sgrass.  

The confidence level chosen to test the significance of the regression equations is 0.20.  

All the regressions in all cases show P-values less than 0.20, which mean that the 

regressions are significant at an alpha level of 0.20 and the models significantly fit the 
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data.  P-values less than 0.20 mean that there is a statistically significant association 

between the ACI and the independent variables.  

 
Table 4.45. Relationship between the ACI and landscape characteristics based on a linear 

multiple regression analysis for non-pair wetlands with a distance component 
applied 

 
Ring zone (m) Equation R2 (%) P 

300 ACI = 2.71 - 1.78 Sroad 17.5 0.030 
600 ACI = 2.74 - 1.78 Sroad 17.2 0.032 
900 ACI = 2.73 - 1.65 Sroad 15.1 0.046 
1500 ACI = 3.15 - 2.12 Scrops 17.2 0.032 
2100 ACI = 2.78 - 1.25 Scrops 4.8 0.272 

 

Table 4.46. Relationship between the ACI and landscape characteristics based on a 
linear multiple regression analysis for non-pair wetlands ignoring distance 
component 

 
Ring zone (m) Equation R2 (%) P 

300 ACI = 2.71 - 1.78 Sroad 17.5 0.030 
600 ACI = 2.74 - 1.67 Sroad 15.8 0.040 
900 ACI = 3.17 - 2.05 Scrops 17.0 0.032 
1500 ACI = 3.11 - 2.23 Scrops 15.4 0.043 
2100 ACI = 1.44 + 1.88 Sgrass 12.1 0.075 

 

Table 4.47 shows the regression equations for the pair wetlands with a distance 

component applied.  At the scale of 300 m, the variability in the ACI is dominated by the 

constant and the Scrops variable.  At the scales of 600 m through 1500 m, the ACI 

variability is dominated by the constant, and the Sroad, and the Slength.  At a scale of 

2100 m, the variability of the ACI is dominated by the constant, and the Sroad variable 

and the Sgrass variable.   

Table 4.48 shows the regression equations for the pair wetlands ignoring distance 

component.  At a scale of 300 m, the variability of the ACI is dominated by the constant 
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and the Scrops variable.  At the scale of 600 m the ACI variability is dominated by the 

constant, Sroad, and Slength.  At the scales of 900 and 1500 m the ACI variability is 

dominated by the constant, Scrops, Sroad, and Slength  At a scale of 2100 m, the 

variability of the ACI is dominated by the constant, the Sroad variable, and the Sgrass 

variable.   

Table 4.47. Relationship between the ACI and landscape characteristics based on a 
linear multiple regression analysis for pair wetlands with distance 
component applied 

 
Ring zone (m) Equation R2 (%) P 

300 ACI = 3.83 - 1.98 Scrops 12.3 0.109 

600 ACI = 4.24 - 2.90 Sroad - 2.18 S 
length 19.2 0.131 

900 ACI = 4.27 - 2.87 Sroad - 2.24 S 
length 19.8 0.123 

1500 ACI = 4.22 - 2.92 Sroad - 2.15 S 
length 18.7 0.140 

2100 ACI = 4.74 - 2.45 Sroad - 2.26 
Sgrass 20.2 0.117 

 
 

Table 4.48. Relationship between the ACI and landscape characteristics based on a 
linear multiple regression analysis for pair wetlands ignoring distance 
component 

 
Ring zone (m) Equation R2 (%) P 

300 ACI = 3.83 - 1.98 Scrops 12.3 0.109 

600 ACI = 4.33 - 2.73 Sroad - 2.33 S 
length 21.1 0.106 

900 ACI = 5.39 - 2.39 Scrops - 2.39 
Sroad - 3.31 S length 32.2 0.067 

1500 ACI = 5.09 - 1.65 Scrops - 2.57 
Sroad - 2.75 S length 25.6 0.141 

2100 ACI = 4.66 - 2.25 Sroad - 2.42 
Sgrass 19.5 0.127 
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The ACI values for non-pair wetlands and pair wetlands have different values.  

The non-pair wetland ACI values are lower than the ACI values of the pair wetlands.  

Table 3.4 shows the ACI values for the non-pair wetlands.  Table 3.5 shows the ACI 

values for the pair wetlands.  According to Table 4.47 and 4.48, the constants of the 

regression equations are higher in the equations of the pair wetlands.  Table 4.49 shows 

the maximum and minimum values of the normalized values used in the regression 

equations (Table 4.45 and Table 4.46) for the non-pair wetlands at the different ring 

zones.  Table 4.50 shows the range of values of the normalized variables used in the 

regression equations (Table 4.47 and Table 4.48) for the pair wetlands.   

4.9. Summary 

 The Pearson correlation coefficient was used to identify which pairs of variables 

show a high correlation.  When possible, the variables were removed in a way that 

maximized the number of variables used in the regression analysis.  In other cases, 

Sstream, Sroad, Sgrass were included in the analysis and the other variable with which 

they were correlated was removed.  These variables are important because the stream 

variable was used as a surrogate for fish predation, road data is easily accessible and the 

amphibians in the study are prairie species.   

 Multiple regression analyses was used to identify the significant variables in each 

buffer zone for both types of wetlands, with distance component and ignoring distance 

component.  The significant variables show P-values less than 0.20.  However, in some 

cases, if the P-value was slightly larger than 0.20 but less than 0.22, the variable was 

considered significant.  The most significant variable in the closest buffer zone, 300 m, 
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for the non-pair wetland is Sroad, while the significant variable at 300 m for the pair 

wetland is Scrops.   

Table 4.49.  Range of variables used in the normalized values for non-pair wetlands. 
 

Ring zone (m) Variable Range Variable 
300 road 0-1.12 miles 
600 road 0-1.86 miles 

900 road 
crops 

0-3 miles 
12-490 acres 

1500 crops 43-1433 acres 

2100 crops 
grass 

159-2649 acres 
361-2135 acres 

 
Table 4.50.  Range of variables used in the normalized values for the pair wetlands. 

 
Ring zone (m) Variable Range Variable 

300 crops 0-48 acres 

600 road 
length 

0-1.4 miles 
0.11-22 miles 

900 
crops 
road 

length 

0.84-538 acres 
0-1.96 miles 
0.11-22 miles 

1500 
crops 
road 

length 

1.6-1148 acres 
0-6 miles 

0.11-22 miles 

2100 road 
grass 

0-8 miles 
68-1930 acres 
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Chapter 5 
 

 

 

5.1. Conclusions  

This project develops and demonstrates a new methodology to describe the 

relationships between landscape features and wetland health.  Different landscape 

variables, which are expected to positively or negatively affect wetland health, were used 

in the analysis. 

Analysis of spatial data from 49 wetlands reveals two different types of wetlands: 

non-pairs and pairs.  Non-pair wetlands are defined as those wetlands in which the 600 m 

buffer zone and beyond do not overlap with the buffer zones of other wetlands.  A pair 

wetland is defined as one in which the concentric rings of the buffer zones overlap with 

the concentric rings of another wetland.  There are 27 non-pair wetlands and 22 pair 

wetlands in this study. 

This methodology incorporates a distance factor in the variable values of the 

landscape characteristics (e.g., grass area, road length, stream length).  Distance is 

important because it was hypothesized that distance from the landscape feature to the 

wetlands could be a factor for the prediction of the health of the wetlands.  The values of 

the variables are divided by the distance of the edge of the wetland to the midpoint of that 

ring.  Dividing by the distance value reduces the magnitude of a landscape feature score 

the further it is from the wetland.   
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The normalization of the values of the landscape variables allows the use of 

variables with different units in the same equation.  The normalization of variables has 

the limitation that for any given variable, wetlands with the lowest values are set to zero 

or near zero even if they have some of the characteristics that supports or are detrimental 

to amphibians.  Tables 4.49 and 4.50 show that the minimum values are zero or a small 

fraction of the maximum value, so the normalization does not skew the results.  The 

regressions are thus accurate for the prediction of ACI.  This methodology is good for 

comparison between alternative wetlands that maybe impacted by transportation 

activities. 

Multiple linear regression was used to test for significant relationships between 

landscape variables and the ACI.  The significant variable for the non-pair wetlands, with 

the distance component applied at 300 m, 600 m and 900 m is Sroads, while at 1500 m 

and 2100 m it is Scrops.  The significant variable for the non-pair wetlands, ignoring the 

distance component at 300 m and 600 m is Sroads, at 900 m and 1500 m it is Scrops, and 

at 2100 m it is Sgrass.  The significant variable for the pair wetlands, with the distance 

component applied is Scrops at 300 m, Sroad and Slength at 600 m through 1500 m, 

while at 2100 m the variables are Sroad and Sgrass.  The significant variable for the pair 

wetlands, ignoring the distance component, at 300 m is Scrops, at 600 m through 1500 m 

is both Sroad and Slength, while at 2100 m is both Sroad and Sgrass.  The regression 

coefficient of the equations show a higher value for the equations developed ignoring 

distance component for the pair wetlands (except at 2100 m).  However, for the non-pair 

group the regression coefficients show very similar results with distance and ignoring 
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distance.  The regression equations for the analyses ignoring the distance component are 

still important because the further out rings still show a distance impact because they may 

cause a change in the significant variable. 

The regression equations to predict ACI values in the non-pair wetlands with the 

distance component applied and ignoring the distance component (Tables 4.45 and 4.46) 

show regression coefficients ranging from 4.8 % to 17.5 %.  The regression coefficients 

are very similar for both groups (except at a scale of 2100 m).  This means that the results 

applying the distance component are not affecting the results of the regression equations.  

Also, both set of equations are significant, the P-values of the equations show values less 

than 0.20 (except at 2100 m with distance applied).  This means that the regressions are 

significant at an alpha level of 0.20 and that the models significantly fit the data.  

Dividing the landscape variables by distance does not make a difference in the results, so 

it is recommended to use the variable values ignoring the distance component. 

In the case of pair wetlands (Tables 4.47 and 4.48) the regression coefficients 

show different regression coefficient results with the distance component applied and 

ignoring the distance component.  The regression coefficients for the results ignoring the 

distance component are larger than the results applying the distance component.  This 

means that dividing by distance is attenuating the impact of the variables in the ACI.  It is 

recommended not to divide the landscape variables values by the distance.  Also, both 

sets of equations are significant, their P-values are less than 0.20.  This means that the 

regressions are significant at an alpha level of 0.20 and that the models significantly fit 

the data.    
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It should be noted that the procedure to remove highly correlated variables might 

influence the final result of the significant variables used in the regression equation for 

each buffer zone.  For example, for the non-pair wetlands at 300 m, Sroad is highly 

correlated with Scrops.  Scrops was removed and after performing the regression analysis 

it was found that the significant variable is Sroad, but it is likely that it could also be 

Scrop.   

Tables 4.45 through 4.48 show the regression coefficients (R-squared) of all the 

regressions to predict the ACI.  Values in this range are consistent with the values found 

in the literature.  Houlahan and Findley (2003) found that multiple regression models 

using landscape characteristics (forest cover, length of road and wetland density) to 

predict amphibian species richness have regression coefficients in the range of 36-42%.  

Lethinen et al. (1999) found that the multiple regression coefficients of the multiple 

regression models, to predict the number of amphibian species, ranged from 37-41% 

using landscape characteristics, such as the density of roads.  Herrmann et al. (2005) 

found that regression equations to predict larval amphibian assemblages (species richness 

and species densities) explained only 6.3-6.8% of the variability using landscape 

variables.  Other researchers have documented that landscape variables alone account for 

a small percentage of the variability (< 35%) in their data set (Hecnar 1997, Knutson et 

al. 1999).  It should be note that the above researchers used wetlands characteristics itself, 

such as area, perimeter, maximum depth and shore slope, besides landscape 

characteristics.  This research focused only on landscape characteristics as a way to 

analyze the impacts of these characteristics from 300 meters up to 2100 meters.  It is 
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possible that if wetland characteristics were added to the regression model, the regression 

coefficients could improve significantly.   

The equations in Tables 4.46 through 4.48 at different distances from the wetland 

edge (depending on the type of wetland) can be used by a state department of 

transportation to evaluate the impact of alternative ROW locations on amphibian habitat.  

These equations can be used as a tool for initial assessment to locate roads minimizing 

impacts to wetland health.  This is important because some amphibian species are 

declining which makes it a priority to conserve intact the surrounding land of the 

wetland. 

The ACI values for pair wetlands are generally larger (mean of 3.20) than the ACI 

values of non-pair wetlands (mean of 2.29).  This means that pair wetlands have a greater 

capacity to support rare or sensitive species (i.e., sensitive to disturbance).  However, 

high ACI values can be the result of a larger number of less sensitive species or a smaller 

number of sensitive species.  This should be taken into consideration if a pair wetland 

will be impacted versus a non-pair wetland.  While all wetlands are important, pair 

wetlands may provide a greater contribution to a healthy habitat than the non-pair 

wetlands.   

5.2. Future work 

Future research should be address: 

• Analysis should include other landscape parameters, such as developed areas 

(urbanized areas). 
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• Non-landscape parameters should be incorporated in the regression equations 

such as: pH, dissolved oxygen and total nitrogen as well as other landscape 

parameter such as slope, which could increase the variability of ACI. 

• The regression equations to predict ACI need to be calibrated.  This will require 

additional biological data and spatial data. 

• The combination of normalized landscape variables at different scales (e.g., 

analyzing the significance of a combination of variables at 300 m and 600 m) 

could help to predict the variability of ACI more accurately.   
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APPENDIX A. MINITAB 15 PROCEDURE FOR LINEAR 
REGRESSIONS 
 

 

 

1. Start Minitab. 

2. Go to file>Open> Worksheet (Figure A.1) 

3. Choose the file of interest and Figure A.1 will appear.   

 
 

Figure A.1. Minitab 15 spreadsheet. 
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4. Go to Stat>Regression (Figure A.2). 
 

 

 
Figure A.2. Regression options. 

 
5. The regression dialog box will appear (Figure A.3).  The “Response” box is for 

the dependent variable and the “Predictors” box is for the independent variables.   

6. Press “OK” and the software give the results for the linear equation (Figure 4 and 

Figure 5). 
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Figure A.3. Regression dialog box. 
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Figure A.4. Results for linear regression equation. 
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Figure A. 5.Readable view of results for linear regression equation. 

Regression Analysis 
 
 
The regression equation is 
ACI = 2.83 - 1.44 Scrops + 0.01 Sstreams - 1.01 Sroad + 0.98 Sgrass 
           - 0.86 Sherb + 0.50 S elev 
 
Predictor        Coef       StDev          T        P 
Constant        2.830       1.039       2.72    0.013 
Scrops         -1.441       1.136      -1.27    0.219 
Sstreams        0.006       1.234       0.00    0.996 
Sroad          -1.014       1.310      -0.77    0.448 
Sgrass          0.981       1.273       0.77    0.450 
Sherb          -0.861       1.175      -0.73    0.472 
S elev          0.502       1.306       0.38    0.705 
 
S = 1.436       R-Sq = 25.3%     R-Sq(adj) = 2.9% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         6      13.955       2.326      1.13    0.382 
Residual Error    20      41.219       2.061 
Total             26      55.174 
 
Source       DF      Seq SS 
Scrops        1       9.463 
Sstreams      1       1.256 
Sroad         1       1.511 
Sgrass        1       0.440 
Sherb         1       0.980 
S elev        1       0.305 
 
Unusual Observations 
Obs     Scrops        ACI         Fit   StDev Fit    Residual    St Resid 
 27       0.00      5.910       2.922       0.733       2.988        
2.42R  
 
R denotes an observation with a large standardized residual 
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APPENDIX B. MINITAB 15 PROCEDURE PEARSON 
CORRELATION 
 

 

 

1. Start Minitab. 

2. Go to file>Open> Worksheet  

3. Choose the file of interest and Figure 1 will appear.   

4. Go to Stat>Basic Statistics>Correlation (Figure B.1). 

 
Figure B.1. Basic statistic options. 
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5. Specify the variables and press OK (Figure B.2). 

 

 
Figure B. 2. Correlation dialog box. 
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6. Correlation results (Figure B.3). 

 
Figure B. 3. Correlation results. 

 
 



 

 

APPENDIX C.  NORMALIZATION WITH DISTANCE EXAMPLE. 
Table C.1. Complete set of normalization with distance component applied for non-pairs wetlands at a scale of 600 m. 

 

ID SITE_NAME AGENCY COUNTY AREA 
(m2) ACI 

Crop area 
300 m ring (m2) 

1 Rose Pond 4-5 year old unit MDC Clark 1031.356 3.77 154357.0000 
2 Clark County 136 MoDOT Clark 22607.218 0 153206.5000 
3 Putnam County 136 MoDOT Putnam 2069.803 2.95 130960.2400 
4 Poosey MDC Livingston 973.771 1.24 153978.6000 
5 Gallatin MDC Davies 192.028 2.46 711.7000 
6 Dunn Ford Small Forest Edge Pond MDC Marion 113.024 4.07 722.9100 
7 Henry Sever MDC Knox 386.897 2 86885.6300 
9 Rudolph Bennitt MDC Randolph 337.246 1.33 9316.9400 

10 Prairie Home MDC Cooper 162.259 2.75 69728.1800 
11 Atlanta MDC Macon 654.223 1.09 3660.2100 
12 Little Dixie Herp Pond MDC Callaway 279.358 6 5530.1500 
13 Center Ralls County Wetland MoDOT Ralls 15935.771 2.27 275848.3100 
14 Shelby County T MoDOT Shelby 244.938 3 108902.1700 
15 Audrain County 15 MoDOT Audrain 6188.866 1.9 82768.3500 
16 Macon T MoDOT Macon 784.187 2.7 121170.5700 
17 Macon 36 MoDOT Macon 73931.388 2.48 303341.7900 
18 Linn 36 MoDOT Linn 53792.127 2.04 327585.2200 
19 Livingston 36 MoDOT Livingston 4620.178 0 233034.7500 
20 Howard/Cooper 5 MoDOT Howard 3026.394 1.97 126178.3000 
21 Carroll County 139 MoDOT Carroll 185869.99 2 277266.0500 
22 Callaway 94 MoDOT Callaway 3696.938 0 275592.3500 
23 Clay County Smithville Lake South MoDOT/USACE Clay 21632.651 2.31 104224.5400 
24 Clinton County Smithville Lake North MoDOT/USACE Clinton 37571.13 1.99 102871.8100 
25 Jackson County 40 Blue Springs MoDOT Jackson 16296.253 1.99 19530.2500 
26 Saline County 65/70 MoDOT Saline 19078.72 2.48 212377.3000 
27 Deer Ridge MDC Lewis 499.911 5.91 18343.0000 
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Table C.1. Complete set of normalization with distance component applied for non-pairs wetlands at a scale of 600 m (cont.). 

ID Crop area independent 
variable 

300 m ring/150 m (m2/m) 

Crop area  
600 m ring(m2) 

Crop area independent 
variable 

600 m ring/450 m (m2/m) 

Sum independent 
variable (m2/m) Scrops 

Forest area  
300 m ring 

(m2)   

1 1029.0467 518133.2665 1151.4073 2180.4539 0.5688 0.0000 
2 1021.3767 535470.2902 1189.9340 2211.3106 0.5772 46189.5920 
3 873.0683 293395.3935 651.9898 1525.0580 0.3904 18164.5452 
4 1026.5240 299104.7841 664.6773 1691.2013 0.4356 487.4855 
5 4.7447 72233.4581 160.5188 165.2635 0.0203 111299.4900 
6 4.8194 239825.3051 532.9451 537.7645 0.1217 0.0000 
7 579.2375 331609.6600 736.9104 1316.1479 0.3335 45284.6794 
8 739.3333 210784.8691 468.4108 1207.7441 0.3040 36140.0526 
9 62.1129 12806.6769 28.4593 90.5722 0.0000 240451.3147 

10 464.8545 398658.8973 885.9087 1350.7632 0.3430 78884.5408 
11 24.4014 49502.9034 110.0065 134.4079 0.0119 198915.4905 
12 36.8677 29757.8790 66.1286 102.9963 0.0034 83406.8970 
13 1838.9887 591107.3091 1313.5718 3152.5605 0.8333 762.0208 
14 726.0145 275619.7200 612.4883 1338.5027 0.3396 6432.1734 
15 551.7890 233955.4933 519.9011 1071.6901 0.2670 93892.9546 
16 807.8038 115936.8396 257.6374 1065.4412 0.2653 48141.1337 
17 2022.2786 400737.7700 890.5284 2912.8070 0.7681 72262.5663 
18 2183.9015 711481.3868 1581.0697 3764.9712 1.0000 19565.2754 
19 1553.5650 601614.8513 1336.9219 2890.4869 0.7620 0.0000 
20 841.1887 273421.6737 607.6037 1448.7924 0.3696 0.0000 
21 1848.4403 529957.7400 1177.6839 3026.1242 0.7989 77635.3370 
22 1837.2823 511306.3772 1136.2364 2973.5187 0.7846 15753.2900 
23 694.8303 278563.1027 619.0291 1313.8594 0.3329 62657.6600 
24 685.8121 85428.9071 189.8420 875.6541 0.2137 0.0000 
25 130.2017 19674.4880 43.7211 173.9228 0.0227 26433.7310 
26 1415.8487 382081.6928 849.0704 2264.9191 0.5918 76930.2100 
27 122.2867 19891.0883 44.2024 166.4891 0.0207 125343.8100 
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Table C.1. Complete set of normalization with distance component applied for non-pairs wetlands at a scale of 600 m (cont.). 

ID Forest area independent 
variable 

300 m ring/150 m (m2/m) 
Forest area  

600 m ring(m2) 
Forest area independent variable 

600 m ring/450 m (m2/m) 
Sum independent 
variable (m2/m) 

Sforest 
  

Stream length 
300 m ring (m2)   

1 0.0000 23506.6000 52.2369 52.2369 0.0165 0.0000 
2 307.9306 72622.0000 161.3822 469.3128 0.1480 1167.8981 
3 121.0970 31114.0000 69.1422 190.2392 0.0600 623.6087 
4 3.2499 17411.7000 38.6927 41.9426 0.0132 0.0000 
5 741.9966 205792.6000 457.3169 1199.3135 0.3781 0.0000 
6 0.0000 248007.8000 551.1284 551.1284 0.1738 111.4591 
7 301.8979 38079.6600 84.6215 386.5193 0.1219 0.0000 
8 240.9337 311858.7000 693.0193 933.9530 0.2944 0.0000 
9 1603.0088 706001.0000 1568.8911 3171.8999 1.0000 0.0000 

10 525.8969 236645.9000 525.8798 1051.7767 0.3316 0.0000 
11 1326.1033 330457.2000 734.3493 2060.4526 0.6496 0.0000 
12 556.0460 150814.3500 335.1430 891.1890 0.2810 0.0000 
13 5.0801 4702.3000 10.4496 15.5297 0.0049 0.0000 
14 42.8812 69764.3000 155.0318 197.9129 0.0624 0.0000 
15 625.9530 261154.4600 580.3432 1206.2963 0.3803 0.0000 
16 320.9409 159487.2400 354.4161 675.3570 0.2129 685.6806 
17 481.7504 208102.7366 462.4505 944.2010 0.2977 841.3324 
18 130.4352 26789.0000 59.5311 189.9663 0.0599 973.6717 
19 0.0000 5400.0000 12.0000 12.0000 0.0038 633.8523 
20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
21 517.5689 54053.3473 120.1185 637.6875 0.2010 0.0000 
22 105.0219 15753.2992 35.0073 140.0293 0.0441 0.0000 
23 417.7177 62657.6699 139.2393 556.9570 0.1756 0.0000 
24 0.0000 137560.1251 305.6892 305.6892 0.0964 723.5559 
25 176.2249 26433.7486 58.7417 234.9665 0.0741 0.0000 
26 512.8681 76930.2306 170.9561 683.8241 0.2156 757.9044 
27 835.6254 486102.0000 1080.2267 1915.8521 0.6040 0.0000 
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Table C.1. Complete set of normalization with distance component for non-pairs wetlands at a scale of 600 m (cont.). 

ID Stream length independent 
variable 

300 m ring/150 m (m2/m) 
Stream length 
600 m ring(m2) 

Stream length independent 
variable 

600 m ring/450 m (m/m) 

Sum Stream length 
independent  

variable (m/m) 
Sstream 

    
1 0.0000 0.0000 0.0000 0.0000 0.0000 
2 7.7860 1530.6328 3.4014 11.1874 1.0000 
3 4.1574 724.0820 1.6091 5.7665 0.5154 
4 0.0000 0.0000 0.0000 0.0000 0.0000 
5 0.0000 0.0000 0.0000 0.0000 0.0000 
6 0.7431 1511.2976 3.3584 4.1015 0.3666 
7 0.0000 0.0000 0.0000 0.0000 0.0000 
8 0.0000 0.0000 0.0000 0.0000 0.0000 
9 0.0000 0.0000 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0000 0.0000 
11 0.0000 123.7769 0.2751 0.2751 0.0246 
12 0.0000 0.0000 0.0000 0.0000 0.0000 
13 0.0000 0.0000 0.0000 0.0000 0.0000 
14 0.0000 0.0000 0.0000 0.0000 0.0000 
15 0.0000 0.0000 0.0000 0.0000 0.0000 
16 4.5712 846.2333 1.8805 6.4517 0.5767 
17 5.6089 670.4062 1.4898 7.0987 0.6345 
18 6.4911 647.2078 1.4382 7.9294 0.7088 
19 4.2257 1461.8427 3.2485 7.4742 0.6681 
20 0.0000 1063.8630 2.3641 2.3641 0.2113 
21 0.0000 0.0000 0.0000 0.0000 0.0000 
22 0.0000 0.0000 0.0000 0.0000 0.0000 
23 0.0000 0.0000 0.0000 0.0000 0.0000 
24 4.8237 971.6800 2.1593 6.9830 0.6242 
25 0.0000 0.0000 0.0000 0.0000 0.0000 
26 5.0527 824.0700 1.8313 6.8840 0.6153 
27 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table C.1.  Complete set of normalization with distance component for non-pairs wetlands at a scale of 600 m (cont.). 

ID 
Road length 

300 m ring (m2) 

Road length independent 
variable 

300 m ring/150 m (m2/m) 
Road length 

600 m ring(m2) 

Road length independent 
variable 

600 m ring/450 m (m/m) 

Sum road length 
independent variable 

variable (m/m) 
 1 0.0000 0.0000 0.0000 0.0000 0.0000 

2 1014.4300 6.7629 596.0016 1.3244 8.0873 
3 0.0000 0.0000 815.3942 1.8120 1.8120 
4 0.0000 0.0000 0.0000 0.0000 0.0000 
5 0.0000 0.0000 0.0000 0.0000 0.0000 
6 0.0000 0.0000 0.0000 0.0000 0.0000 
7 0.0000 0.0000 0.0000 0.0000 0.0000 
8 0.0000 0.0000 0.0000 0.0000 0.0000 
9 0.0000 0.0000 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0000 0.0000 
11 0.0000 0.0000 0.0000 0.0000 0.0000 
12 0.0000 0.0000 0.0000 0.0000 0.0000 
13 769.1385 5.1276 617.6358 1.3725 6.5001 
14 0.0000 0.0000 0.0000 0.0000 0.0000 
15 736.4148 4.9094 630.9265 1.4021 6.3115 
16 0.0000 0.0000 0.0000 0.0000 0.0000 
17 1069.3690 7.1291 595.7179 1.3238 8.4529 
18 1710.5993 11.4040 1221.5160 2.7145 14.1185 
19 1798.2589 11.9884 1199.1176 2.6647 14.6531 
20 920.6292 6.1375 926.2257 2.0583 8.1958 
21 1177.1570 7.8477 604.0200 1.3423 9.1900 
22 738.7890 4.9253 614.1670 1.3648 6.2901 
23 0.0000 0.0000 0.0000 0.0000 0.0000 
24 0.0000 0.0000 0.0000 0.0000 0.0000 
25 1561.9920 10.4133 1256.4323 2.7921 13.2054 
26 0.0000 0.0000 1560.0700 3.4668 3.4668 
27 0.0000 0.0000 0.0000 0.0000 0.0000 

 



 

 

Table C.1. Complete set of normalization with distance  component for non-pairs wetlands at a scale of 600 m (cont.). 

 
Sstream 

  
elevation wetland 

centroid (m) 

elevation 
stream 

stream (m) 
length of  

flowpath (m) 

change  
elevation 

(m) 
S change  
elevation 

S length 
of 

flowpath 
Slandscape 

  ID 
1 0.0000 497.0000 480.0000 11229.9066 17.0000 0.0591 0.5146 0.2868 
2 0.5519 521.0000 518.0000 1331.5739 3.0000 0.0039 0.0591 0.0315 
3 0.1237 903.0000 886.0000 359.1227 17.0000 0.0591 0.0143 0.0367 
4 0.0000 820.0000 790.0000 834.5974 30.0000 0.1102 0.0362 0.0732 
5 0.0000 872.0000 708.0000 18053.3009 164.0000 0.6378 0.8286 0.7332 
6 0.0000 621.0000 579.0000 306.3140 42.0000 0.1575 0.0119 0.0847 
7 0.0000 721.0000 629.0000 4620.4259 92.0000 0.3543 0.2104 0.2824 
8 0.0000 787.0000 583.0000 21777.5333 204.0000 0.7953 1.0000 0.8976 
9 0.0000 820.0000 730.0000 1779.1727 90.0000 0.3465 0.0797 0.2131 

10 0.0000 870.0000 614.0000 9592.6273 256.0000 1.0000 0.4392 0.7196 
11 0.0000 856.0000 793.0000 1893.9662 63.0000 0.2402 0.0849 0.1626 
12 0.0000 837.0000 718.0000 7148.3412 119.0000 0.4606 0.3268 0.3937 
13 0.4436 711.0000 559.0000 8942.5201 152.0000 0.5906 0.4093 0.4999 
14 0.0000 658.0000 630.0000 8116.3962 28.0000 0.1024 0.3713 0.2368 
15 0.4307 722.0000 720.0000 1730.5447 2.0000 0.0000 0.0774 0.0387 
16 0.0000 726.0000 720.0000 48.0796 6.0000 0.0157 0.0000 0.0079 
17 0.5769 748.0000 741.0000 1264.9600 7.0000 0.0197 0.0560 0.0378 
18 0.9635 723.0000 720.0000 431.9036 3.0000 0.0039 0.0177 0.0108 
19 1.0000 697.0000 669.0000 360.5449 28.0000 0.1024 0.0144 0.0584 
20 0.5593 586.0000 575.0000 824.7586 11.0000 0.0354 0.0357 0.0356 
21 0.6272 651.0000 630.0000 11425.6056 21.0000 0.0748 0.5236 0.2992 
22 0.4293 521.0000 515.0000 1192.6197 6.0000 0.0157 0.0527 0.0342 
23 0.0000 867.0000 810.0000 11001.0564 57.0000 0.2165 0.5041 0.3603 
24 0.0000 885.0000 859.0000 542.2882 26.0000 0.0945 0.0227 0.0586 
25 0.9012 768.0000 750.0000 3657.6166 18.0000 0.0630 0.1661 0.1146 
26 0.2366 619.0000 608.0000 208.1734 11.0000 0.0354 0.0074 0.0214 
27 0.0000 726.0000 579.0000 4698.0311 147.0000 0.5709 0.2140 0.3924 
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APPENDIX D.  NORMALIZATION IGNORING DISTANCE EXAMPLE. 
Table D.1. Complete set of normalization ignoring distance component applied for non-pairs wetlands at a scale of 600 m. 

ID SITE_NAME AGENCY COUNTY AREA 
(m2) ACI Crops area  

300 m ring (m2) 
Crops area  

600 m ring(m2) 
1 Rose Pond 4-5 year old unit MDC Clark 1031.3560 3.77 154357.0000 518133.2665 
2 Clark County 136 MoDOT Clark 22607.2180 0.00 153206.5000 535470.2902 
3 Putnam County 136 MoDOT Putnam 2069.8030 2.95 130960.2400 293395.3935 
4 Poosey MDC Livingston 973.7710 1.24 153978.6000 299104.7841 
5 Gallatin MDC Davies 192.0280 2.46 711.7000 72233.4581 
6 Dunn Ford Small Forest Edge Pond MDC Marion 113.0240 4.07 722.9100 239825.3051 
7 Henry Sever MDC Knox 386.8970 2.00 86885.6300 331609.6600 
8 Diggs Koi Pond MDC Audrain 152.3190 1.00 110899.9900 210784.8691 
9 Rudolph Bennitt MDC Randolph 337.2460 1.33 9316.9400 12806.6769 

10 Prairie Home MDC Cooper 162.2590 2.75 69728.1800 398658.8973 
11 Atlanta MDC Macon 654.2230 1.09 3660.2100 49502.9034 
12 Little Dixie Herp Pond MDC Callaway 279.3580 6.00 5530.1500 29757.8790 
13 Center Ralls County Wetland MoDOT Ralls 15935.7710 2.27 275848.3100 591107.3091 
14 Shelby County T MoDOT Shelby 244.9380 3.00 108902.1700 275619.7200 
15 Audrain County 15 MoDOT Audrain 6188.8660 1.90 82768.3500 233955.4933 
16 Macon T MoDOT Macon 784.1870 2.70 121170.5700 115936.8396 
17 Macon 36 MoDOT Macon 73931.3880 2.48 303341.7900 400737.7700 
18 Linn 36 MoDOT Linn 53792.1270 2.04 327585.2200 711481.3868 
19 Livingston 36 MoDOT Livingston 4620.1780 0.00 233034.7500 601614.8513 
20 Howard/Cooper 5 MoDOT Howard 3026.3940 1.97 126178.3000 273421.6737 
21 Carroll County 139 MoDOT Carroll 185869.9860 2.00 277266.0500 529957.7400 
22 Callaway 94 MoDOT Callaway 3696.9380 0.00 275592.3500 511306.3772 
23 Clay County Smithville Lake South MoDOT/USACE Clay 21632.6510 2.31 104224.5400 278563.1027 
24 Clinton County Smithville Lake North MoDOT/USACE Clinton 37571.1300 1.99 102871.8100 85428.9071 
25 Jackson County 40 Blue Springs MoDOT Jackson 16296.2530 1.99 19530.2500 19674.4880 
26 Saline County 65/70 MoDOT Saline 19078.7200 2.48 212377.3000 382081.6928 
27 Deer Ridge MDC Lewis 499.9110 5.91 18343.0000 19891.0883 
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Appendix D.1. Complete set of normalization ignoring distance component for non-pairs wetlands at a scale of 600 m (cont.). 
 

ID 
  

Sstreams 
  

Roads  
300m  

 ring (m) 

Roads  
600m  

 ring (m) 

Sum Road  
300 m+ 

600 m rings(m) 
Sroad 

  

elevation 
wetland 

centroid (m) 

elevation 
stream 

stream (m) 
length of  

flowpath (m) 

change  
elevation 

(m) 
1 0.0000 0.0000 0.0000 0.0000 0.0000 497.0000 480.0000 11229.9066 17.0000 
2 1.0000 1014.4300 596.0016 1610.4316 0.5373 521.0000 518.0000 1331.5739 3.0000 
3 0.4994 0.0000 815.3942 815.3942 0.2720 903.0000 886.0000 359.1227 17.0000 
4 0.0000 0.0000 0.0000 0.0000 0.0000 820.0000 790.0000 834.5974 30.0000 
5 0.0000 0.0000 0.0000 0.0000 0.0000 872.0000 708.0000 18053.3009 164.0000 
6 0.6013 0.0000 0.0000 0.0000 0.0000 621.0000 579.0000 306.3140 42.0000 
7 0.0000 0.0000 0.0000 0.0000 0.0000 721.0000 629.0000 4620.4259 92.0000 
8 0.0000 0.0000 0.0000 0.0000 0.0000 787.0000 583.0000 21777.5333 204.0000 
9 0.0000 0.0000 0.0000 0.0000 0.0000 820.0000 730.0000 1779.1727 90.0000 

10 0.0000 0.0000 0.0000 0.0000 0.0000 870.0000 614.0000 9592.6273 256.0000 
11 0.0459 0.0000 0.0000 0.0000 0.0000 856.0000 793.0000 1893.9662 63.0000 
12 0.0000 0.0000 0.0000 0.0000 0.0000 837.0000 718.0000 7148.3412 119.0000 
13 0.0000 769.1385 617.6358 1386.7743 0.4627 711.0000 559.0000 8942.5201 152.0000 
14 0.0000 0.0000 0.0000 0.0000 0.0000 658.0000 630.0000 8116.3962 28.0000 
15 0.0000 736.4148 630.9265 1367.3413 0.4562 722.0000 720.0000 1730.5447 2.0000 
16 0.5677 0.0000 0.0000 0.0000 0.0000 726.0000 720.0000 48.0796 6.0000 
17 0.5602 1069.3690 595.7179 1665.0869 0.5555 748.0000 741.0000 1264.9600 7.0000 
18 0.6007 1710.5993 1221.5160 2932.1153 0.9782 723.0000 720.0000 431.9036 3.0000 
19 0.7766 1798.2589 1199.1176 2997.3765 1.0000 697.0000 669.0000 360.5449 28.0000 
20 0.3942 920.6292 926.2257 1846.8549 0.6162 586.0000 575.0000 824.7586 11.0000 
21 0.0000 1177.1570 604.0200 1781.1770 0.5942 651.0000 630.0000 11425.6056 21.0000 
22 0.0000 738.7890 614.1670 1352.9560 0.4514 521.0000 515.0000 1192.6197 6.0000 
23 0.0000 0.0000 0.0000 0.0000 0.0000 867.0000 810.0000 11001.0564 57.0000 
24 0.6282 0.0000 0.0000 0.0000 0.0000 885.0000 859.0000 542.2882 26.0000 
25 0.0000 1561.9920 1256.4323 2818.4243 0.9403 768.0000 750.0000 3657.6166 18.0000 
26 0.5862 0.0000 1560.0700 1560.0700 0.5205 619.0000 608.0000 208.1734 11.0000 
27 0.0000 0.0000 0.0000 0.0000 0.0000 726.0000 579.0000 4698.0311 147.0000 
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Appendix D.1. Complete set of normalization ignoring distance component for non-pairs wetlands at a scale of 600 m (cont.) 
ID 

S change  
elevation 

S length 
Slandscape 

    
of 

flowpath 
1 0.0591 0.5146 0.2868 
2 0.0039 0.0591 0.0315 
3 0.0591 0.0143 0.0367 
4 0.1102 0.0362 0.0732 
5 0.6378 0.8286 0.7332 
6 0.1575 0.0119 0.0847 
7 0.3543 0.2104 0.2824 
8 0.7953 1.0000 0.8976 
9 0.3465 0.0797 0.2131 

10 1.0000 0.4392 0.7196 
11 0.2402 0.0849 0.1626 
12 0.4606 0.3268 0.3937 
13 0.5906 0.4093 0.4999 
14 0.1024 0.3713 0.2368 
15 0.0000 0.0774 0.0387 
16 0.0157 0.0000 0.0079 
17 0.0197 0.0560 0.0378 
18 0.0039 0.0177 0.0108 
19 0.1024 0.0144 0.0584 
20 0.0354 0.0357 0.0356 
21 0.0748 0.5236 0.2992 
22 0.0157 0.0527 0.0342 
23 0.2165 0.5041 0.3603 
24 0.0945 0.0227 0.0586 
25 0.0630 0.1661 0.1146 
26 0.0354 0.0074 0.0214 
27 0.5709 0.2140 0.3924 
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