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ALMOST EVERYWHERE CONVERGENCE FOR MODIFIED
BOCHNER RIESZ MEANS AT THE CRITICAL INDEX FOR p > 2
Marco Annoni

Dr. Loukas Grafakos, Dissertation Supervisor

ABSTRACT

For A\, > 0, let the function m, , : R™ — [0, 00) be defined by

(1—1€)%
(1 —log(1 —[¢[*))"

My (5) =

For R > 0, we define the modified Bochner-Riesz mean Bl/\{’7 by:

By = [ s (%) Fleenseae

We have the following theorem concerning it.

_ 2n
Theorem 1.1 For every A > 0 such that 1 +2X\ < n, let p\ = —5—. If

v > 1 _|_% (’U)h@'l"@ pL)\ =+ p% = 1) and f - Lp)\<Rl‘l)’ then we have:

P\

lim By (f)(z) = f(x),

R—o0

for almost every xr € R™.



Chapter 1

Introduction

A fundamental problem in harmonic analysis is whether for a given class of
functions on R (such as integrable functions to a given power), Fourier
inversion holds with respect to certain means. Examples of such means

provide the Bochner-Riesz operators Bp defined for A > 0 and R > 0 by

BY(f)(x) = [ f(E)mp(&)e*m &) de

RTL

where m7 : R" — [0, 00) denotes the Fourier multiplier
A — (1 — 2\ A
my(&) = (1-1¢1°) -

Here (-, -) denotes the inner product in R™ and g, denotes the positive
part of a function g. The study of Bochner-Riesz means originated in the

article of Bochner [2], who proved that they are bounded from LP(R"™) to

LP(R™) for every p, 1 < p < o0, if A > "T’l and thus Fourier inversion

holds in the sense that for a given f € LP(R"), Bx(f) converge to f in LP
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as R — oo for A > 2% Carbery [3] showed that the maximal operator

BXMf) = supgso |Ba(f)| is bounded on LP(R?) when A > 0 and 2 < p <

—1_42/\, obtaining the convergence Bx(f) — f almost everywhere for f €

LP(R?). Forn > 3,2<p< #, and \ > 28;11) the same result was
obtained by Christ [5]. Carbery, Rubio de Francia and Vega [4] obtained the

almost everywhere convergence of the Bochner-Riesz means in the range 2 <

p < n—QQK—l and A > 0. Tao obtained both boundedness and unboundedness

results for the maximal operator B2 on LP when 1 < p < 2. In [12], he

proved that B} does not map LP(R") to weak LP(R")if 1 <p <2, n > 2

2n

and 0 < A < 2;1

— 2. In [11], he obtained boundedness for B} on LP(R?)

whenever 1 < p < 2 for an open range of pairs (1/p, \) that lie below the

lineAz%(l—l)

p 2

Here is the precise formulation of the result contained in [4]:
Theorem A. (Carbery, Rubio de Francia, Vega) Let A > 0, and n > 2.

Then for all f € LP(R™) with 2 < p < # we have:

lim Bi(f)(x) = f(x)

R—o00

for almost all x € R".

In this paper, we consider the following modified Bochner-Riesz multipli-



ers introduced by A. Seeger in [9]:

(L —1E)%
(1 —log(1 —[¢]*))

My (§) = (1.1)

for v > 0, and the corresponding modified Bochner-Riesz means

BY (@) = [ () Floeeae 12)

Observe that m, , is just slightly smoother than m2; that is, it’s smoother

than m?, but less smooth than m}™¢, for any € > 0. Indeed, while we know
that m7 is an L? multiplier in R? if and only if ﬁ <p< ﬁ =: py, A.
Seeger ([9],[10]) proved that m, - is also a LP» multiplier in R? if and only if

v > pl,. In fact, we can use duality to rephrase his result as follows:
A

Theorem B. (A. Seeger) Suppose that 0 < A < % and py = ﬁ. Then my

is a Fourier multiplier of LP»(R?) if and only if v > pi,.
A

Likewise, one expects the modified means to behave better than the

Bochner-Riesz means, that is, to converge almost everywhere, i.e.,

lim By"(f)(z) = f(x)

R—o00

for almost every x € R" even on the critical line p = for some values

2n
n—2A—17
of v and all f in LP(R").

The goal of the present paper is to extend Theorem A for the modified

3



Bochner-Riesz means By (f) to the critical index p = py := The

2n
n—2X—1"

following theorem is the main result of this work:

Theorem 1.0.1. For every X > 0 such that 1 + 2\ < n, let p) = —n_g’i_l,

Then for every f € LP*(R™) and every y > pi& + 5 (where p% + pi& =1), we

have that

lim BY(f)(z) = f(x)

R—o00

for almost every x € R".

The proof of Theorem 1.0.1 follows closely the idea developed in [4], but
deviates from that in certain points, in view of technical issues arising, at
the critical index, from the need to work with weights that are not Riesz
potentials. The dilation property (that is, the homogeneity) of the Riesz
potentials has been used in [4] to justify few identities that significantly
simplify the computations through the whole proof.

In the following paragraphs of this introduction, we are going to explain
why we need to work with such weights, and which properties of them will
be proved and used in the proof of Theorem 1.0.1.

Inspired by the strategy used in [4], we will look for a weight w on R" (in

the paper, wy,) that decays fast enough at infinity to have

L C L* + L*(w) (1.3)
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but slowly enough to have also

1B27(F)llz2w) < Cllfllz2w) (1.4)

for some positive constant C' independent of f, where the maximal operator

B} is (naturally) defined by:

BM(f)(x) = sup |B" (f)(x)] = sup
R>0 R>0

o (5) Foemead . s

If we can find a weight w satisfying (1.4), then it’s enough to observe that

the proof in [4] can be recasted to obtain

1B (F)lz2(as) < CNl Il 22(an)s (1.6)

(where dz denotes the Lebesgue measure) in order to conclude that By (f)
converges almost everywhere to f for every f € L?*(w) and also for every
f € L2. If w satisfies the condition in (1.3) too, then this guarantees almost
everywhere convergence for every f € LP. Unfortunately, no weight of the
form w(x) = |z|~* satisfies both (1.3) and (1.4), in that we would need
a>n (1 — p%) in order for w to satisfy (1.3), and o < n (1 — p%) in order
for w to satisfy (1.4). So, we will have to work with a weight that doesn’t
dilate as nicely.

In order to prove that the Fourier transform is bounded between certain

weighted L? spaces, we need w to be comparable to another weight w’, with
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the property that w’ is smooth on R™\ {0} and |w/| is bounded above by
another suitable weight. After introducing the weights w and w’, we will show
that they have the required properties by making use of the formula for the
Fourier transform of radial functions, some accurate asymptotic estimates
of the Bessel functions (see [13]), some simple estimate from calculus (see
Lemma (3.1.9, page 47) and Lemma (3.1.10, page 50)), iterated integration
by parts, and an analytic continuation argument.

The next property we need on w is that there exists a function u : R™\

{0} — [0, 00) (in the paper, u, ,) such that the function defined by

p [ - 1N u(y)dy
RTL

is comparable to i for some positive even integer N. After defining u, we
will show that it has the desired properties by using an appropriate splitting
of R™ into slabs and by using comparability estimates on each of these.

Also, we need to prove that the following inequality holds for every t > 0:

- dx
/ FOPAE < Coryp irn(t)e / @) (L.7)
[|te|—1|<e

" w(z)
for every function f in the appropriate space, every ¢ € (0,2), w(z) = w(|z|)
(z € R"\ {0}) and for some positive constant Cy, » . It’s in the proof of this

inequality that the smooth weight w’ introduced above plays a role.



At last, we need to prove this other inequality:

~ 12 d¢ " )2 dx
| RO G55 < Conr w0 [ VPSS )

for all f in the appropriate space, all t > 0, every M > 2n and some constant

Cpapum that also depends on M. An attempt of using the results of [1] to
prove this last inequality fails to provide the crucial factor w(t) on the right
hand side. So, instead we will use (1.7) and an appropriate partition of R"

into annuli in order to prove (1.8).



Chapter 2

The maximal operator is well
defined

Let wy, be defined as in (3.6, page 29). In this section we will find an
upperbound for |m,,| and we will use it to prove that, for every R > 0,
0<A<2l 2y —1>pu>0and every f € L?(wy,), the function By"(f) :
R"™ — C is well defined everywhere (in fact, it’s continuous on R™).

Therefore, the evaluation B} (f) of the maximal operator B} (intro-
duced in (1.5, page 5)) at the function f : R" — C is well defined if
f € L*(wyy).

Additionally, for any z € R™ and any function f € L*(w),), the map
R — BY(f)(z) is continuous from R* to C.

We begin by introducing the Bessel functions and stating a lemma on
their asymptotics. This lemma (2.0.5, page 9) can be found in [13] and will

be used here and in section 3.2.



Definition 2.0.2. Let v € C satisfy Rev > —%. The Bessel function J, of

order v can be defined via its Poisson representation formula:

(%)V i its o ds
[(v+1/2)0(1/2) / =) A=

J(t) =
where t > 0.

Theorem 2.0.3. For v € Zt we have the following equalities:

1 [
Jl,(t) - eztsmﬂewﬁd‘g
21 J,
1 2T
= cos(tsinf — v0)do

27 Jo

_ (t/2)” °°(_1>]. I(j+1/2) t¥

r(1/2) I(j+v+1)(2))!

and J,(t) is equal to the last expression also in the range Rev > —%.

Theorem 2.0.4. Let f(z) = fo(|z]) be a radial function defined on R"™, where
fo is defined on [0,00). Then the Fourier transform of f, when defined, is

given by the formula

&)= s [ o) s orleiryhae 2.1)

The reader interested in the proofs of the theorems above, can find them,

for example, in appendix B of [7]. We're ready to state the following lemma.



Lemma 2.0.5. For every k > —3, there are real constants {eri}2o and cy,

such that, for every N € Z%, the following holds:

N
1 Ck .24 Ck.2j+1
Ji(z) = Rp.n ( 2N+g) + Z ( 2J+j, cos(x — ¢g) — 23{: sin(x — ck))

x “To \zTe xIT2

where Ry, n 15 controlled by:

1 C]“N
Ry.N et )| S e
N s N2

for every x > 2w and some constant Ci, n.

Theorem 2.0.6. Let m, , : R" — [0,00) be defined as in (1.1, page 3). For
every 0 < A < "T_l and v > 0 there exists a constant Cy, x4 > 0 such that the

following estimate holds for all x € R™ satisfying |x| > 1:

Cn,)w

my~(2)] < — )
T S B togela)

(2.2)

Proof. If v = 0, the conclusion follows from the explicit computation of

o Jn 21|z . .
myo(x) = my(z) = F(jrfl) ﬁ&l ) (see, for instance, page 429 of [7]). This

explicit computation also shows that the estimate in (2.2, page 10) is sharp
at least when v = 0. If v > 0, we decompose the multiplier m, . as an infinite
sum of smooth bumps supported in small concentric annuli in the interior of
the sphere |{| = 1. We pick a smooth function ¢ supported in [—3, 5] and a

2] and with values in [0, 1] that satisfies

() -

10
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for all ¢ € [0,1). We decompose the multiplier m, - as:

M (€) = M (€) - 1= ma 4 (€) (@(t) 3 ¢<12—:>) (23)

for all £ € R" and 0 <t < 1. In particular:

M (€) = M (€) <so<|5|> + Zw(l;‘f')>

= (€ pl1€l) + 3272 my (O ()
k=0

(2.4)

9—k
for all £ € R"™ such that [¢] < 1. If e; = (1,0,...,0) € R™ and we define

M y00 and my g by

mx,00(t) = mas(ter) p(t)

and
mrat) = 29 ma (e ) () (2.5)

for all t > 0, then, equation (2.4) can be rewritten as follows:

man(€) = maq00(€]) + D 27 ma ik (€)). (2.6)
k=0

Observe that each multiplier my , x is supported on the interval [1—52~(*+3) 1—
2-(k+3)] takes values in the interval [0, 1] and satisfies:

dﬁ

—mx,%k(t)’ < Crnt 7= (2.7)

sup dtf

0<t<1

11



for all ¢ € ZTU{0}. It’s convenient to introduce additional notation. Define

my 7 (€) i= 27" miy . x(|€]). Now we can rewrite (2.6, page 11) by:

mas(€) = mago0([€) + D mp7 (6):
k=0

Therefore:
i (@) = man o0l - (@) + Zm
and
i ()] < [y oo(] - 1)(@)] + Z 7 (@), (2.8)

—

It will be enough to find suitable estimates for each multiplier |m2’7|. Let’s

use equation (2.1, page 9):

e 2 o n
my " (x) = | 132 / 27“mA,%k(r)JnT—z(27r\x]r)r5dr
x|z Jo
o 1—2—(k+3) B (29)
= — / 27" s k(1) Juzz (27 |z|r)r 2 dr
lz| 72" Jims2-tts) ?

where the second equality follows from the support of my ;. It’s time to

use Lemma (2.0.5, page 9). By setting k = 252 and choosing N := N(\) =

f%} + 1 in the lemma, we can rewrite the last term in (2.9, page 12) as

kA [2521+1 [2521+1
2m 2™
W Ropqk(lz]) + Z LIk (12]) + Z Lnakg2 ()
(2.10)
where

18
2k 1 n
Ry k(|z]) = 5/ Mk (1) R"EQ,N(A)<(27T|$|T>2N(>\)+2> r2dr



and, for each j =0, ..., N(\), we define

L 1/s
2k Cn,2j n
Lixqkii(z]) :/ My~ k(1) ———— cos(2n|z|r — ¢,) r2dr
e s T a2t "’
1- 18 oo
Ina~kjo(|x :/ Mo~ (T — B sin(2n|x|r — ¢,) rEdr
woaalla) = [ maaule) R sin(orily - )

for different constants ¢, and ¢, ;’s than in Lemma (2.0.5, page 9). Let’s

estimate I, » k!

1-12 )
Ruroalla)l < [ (o) ridr
1

1
Ran-
227N(>\)<<2ﬂ_|xlr>2N()\)+g>

[T ) s
mx~k\T r r
1-248 ! (27| z|r)2NN+3

IN

1/8
“2F Chqp Ch,N(x n
/ Yy n, ( ) ,’,.2d/r
1

s R (2O

IN

an)‘7’y = 2k ﬂ72]\7(A)7 % d/r,
]{;’Y|l‘|2N(>‘)+§ 1_5/8

_ an)‘7’y >\ —k‘
= —————=C,,
kY ’:L’|2N(>‘)+§

/
nz)‘7’7 _k
5
kY ’:L’|2N(>‘)+§
/
n»)\fY 2—k

]4;7’1;|2+2|—A;2_|+%
/

n,A,7Y —k
kv’x‘zwkg%%
7lw\,v —k
k|2
7/1:/\77 27]6

k|2 (log ela]))7

IN

IA

IA

13



if || > C\,. In the computation above, C,,, C!

nAY? Cn)\a’Y’ CAKY,O are

suitable constants. In order to estimate the terms I,k 1 and I, k2
we will use integration by parts. Since the way to estimate I,, ) , x0,1 is very
similar to the way to estimate any other term I, x 5% 1 Or I~k j2, and the
worst term is I, x 4,01, and there are only 2V () +2 such terms, where N ()
depends on A only, we will perform the computation only in the case 7 = 0,

for the term I, » yx0,1. We have:

1/8

118 ,
Lnnqaoa(lz]) = M ,1(T) " cos(2m|x|r — ¢,) r2dr

o 2ol

" _Ls (2.11)
“n 2 n_1

- | |; / 5/ M~k (1) cos(2m|z|r —¢,) r22dr.
€Tl2 —
ok

Observe that the function my - (1) := m,\mk(r)r%_% satisfies the same es-

timates as in (2.7, page 11), with the constants C) ., replaced by other

constants Cy, » 5¢. Then, for any ¢ € Z* we have:

_us

! i
Lipskoa(lz]) = |IT% / e Tak(r) cos(2mlzlr — ¢,)dr
=5
_1/8 —
— (_1)66_;;/ 2 d_e,r’ﬁ)\ k(r) %(COS)(2W|ZE|T - Cn) dr
L T )
o]z /1ogge drt (27 |])f
(2.12)
where we wrote jT—:ee(COS)(27T|x|r — ¢,) to denote the fth antiderivative of

cosine evaluated at the point 27|z|r — ¢,. So, we have:

Cn,e 1_12% df ~
nxqko1(z])] < L Wm,\,%k(r).
ok

14



: ﬂ(cos)(27r\:c|r — )

i dr
. Cmg 7127/’“8 dz ~ d
N |;B|§+e/1_52/ks g ark(r) | dr
an 1712% 2]{6
S g O
_ G 27k 2"
- m%% mATE Ty
o C;L,)\,'y,f _k2_M
o |x|%+£ kY

k| x|z lz| )

The estimate above was proved under the assumption that /¢ is a non negative
integer. The fact that it holds in fact for every £ € [0, c0) is just a consequence
of the fact that, if « < 8 < «, then we have y”* > min{y®, 3"} for every y > 0
(apply this to y := %, a:= L], B:=4L, v :=[l]). Summarizing, we proved

that

Cl 2]{: YA
[Ty k01 (]2])] < ZnAml ok ( )

= k) ||
for all ¢ € RT. A similar computation would show that there exist also
positive constants C'n, \,v,¢,j,1 and C'n, \,7,¢,7,1, j = 0,..., N()\), such

that:

C - ok \
Lonson ()] < Crdostin o ( )

L AN

15



and

¢
Corntiz op (2
| gy (|2])] < —22mdz o=k —

kY |ZL’| 2+2] |ZL’|
which shows in which sense the term 1,  , 10,1 is the worst one. Now recall

the estimate we got for R, xx:

!/

o
Ropoi(|2]) < A% 27k,
o k|22 (log e z]) )

Also recall the fact that m,7(x) can be rewritten as in (2.10, page 12):

o 9~k [2521+1 [2321+1

|m|an2 Roxq(|z]) + Z Ly (J2]) + Z Iy (]7])

and the inequality (2.8, page 12):

3 ()] < Imxoo(] - ()] + Z m”

With this in mind, we can write:

(@) < Imasoo(] - )(@)]

2 [2r 2 kA
+ 3 | == Ruaye(la])
k=0 |5E| 2
00 [ﬁH‘l
o 2—kA T2
DD ==l S APOPERY(E1)
o | |l =0
00 [2-2741
o 2—kA T2
S D ==l S APOPEPI(E1)
oo | |l =0

16



IA

IN

22 X Ry (]|

\x| 7
or X [2521+1
kA

= 27 T Laskga(lz)]

R =0
0 [2521+1

I LD DT

e A kd2(7])]
|| k=0 §=0

+ iR kA C’:LA’Y K
n—2
e B k7 |z[M 3 (log(el]))
log(e|x|) [ﬁ-|+1
2 Z 9~k 22: Canﬂ <2 )
n—2 T
2 —— = k7|g;|2+23 ||
log(e|x|) [2=27141
2m Z 9=k QZ Cn/\ng <2_>
[ o =0 k7|$|2+2] ]
(ﬁ]ﬂ
2 e 2 , 2k
+ — Z 27](/‘)\ Z nA%Z ]1 <_>
‘I’ 2 k=log(e|z|)+1 7=0 k:7|x|2+23 | |
% ’—ﬁ]-l-l
2m Y \ n)\'yf’ 2 2k
LY ey w2
|:E| : k=log(e|z|)+1 j=0 k'7|l’| +2] ‘ ’
[maq00(] - ) ()]
+ On,)\,'y
ntl
|| "2 A (log(elx]))
log(e|x|) [%H& )
2m C, , k
2 Y e 3 Gt (2)
o =0 k|2 ||
log(e|x|) [2=2141
2m o Conegz o (29)
=l S S S sl
o =0 k|2 |z

17



Z/
— Z —k\ Z Cn,A,7,£’£j71 iy <ﬁ>
2 k=log(e|z|)+1 = kaf2 |z]
o ")\EQ‘I_’_l v
27 _ C AL G2 o 2k
n—2 Z " Z 277 ; ‘ m
‘l” k=log(e|z|)+1 j=0 |‘T|2
< maqo(l - [) ()]
Cn,)\,'y
|5+ (log (el ) )1
9 log(elx|) C' ok \ ¢
I ™ Z Q_k)‘ n,)\,%lé 2_k (_)
n—2
R k|2 ||
log(elxl) ¢
P23 o Gt (2
n—2 3
R k|2 ||
oo v
oy e Ga ()
n—2 1
e B o W k|| |z
0 v
2 i G i (2
e
T2 j=tog(elel) +1 T
< mago(] - [) ()]
Cn,)\,'y
] "5+ (log(ela]))
log(elx|) ¢
271'72 Z 27k)\ ;z,,/\,w,lﬁ 27]@ (ﬁ)
R k|2 ||
oo v
2y oG (2
n—2 1
|2 k=log(e|z|)+1 k|| |z
< mago(l - [) ()]

On,)\,q/
ntl
2|2 (log(elz]))

18



Crormt log(elz)) o _k(r+1-0)
|5 = Kl

_|_

0 —k(A+1-¢
+Cn7)\’77£/ 2 ( * )
n;l § k,y|x|é/

k=log(e|z|)+1
o[- ()]
+ Cn,)\;y
Ll
|:U| 2 +/\(10g(6|$|))7
C;L,)\,%[ 2_10g(3|$‘)()\+1_g)
|z (log(e|z|))|2[*
C’/{L)\,fyjl 2_log(e|x‘)(>\+1_é/)
‘x|anl (log(€|x|)>7|x’g/
masonl- D)
i Coan
il
|x| 2 +>\(10g(e|m|))7
Crry

o] 5"+ (log ela]))7

IN

IN

for any choice of ¢/ < A+ 1 and £ > A+ 1. In the last step, we used the fact

that my.00(| - |) is the Schwartz class. The theorem is proved. O

Theorem 2.0.7. Let wy, be defined as in (3.5, page 29), and let Bl’\%’7 :
L*(R", wy,) — C(R™) be defined as in (1.2, page 3). If 0 < A < "T_l, n>2,
2y —1>pu >0 and R > 0, then BJ’L\B’V is well defined from L*(R™,wy,) to

C(R™). In particular, under these hypotheses, Bg’w(f) 15 defined everywhere.
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Proof. First observe that for n, A, v, f, R as in the hypothesis, we have:

BN = (Foma (%)) @) = R (£ 6% (ma)") ()

= R (f%3"(mx;)) (@) = (67 (f) xmxy) (Ra)  (2.13)

where we set d°(f)(x) = f(ax), whenever a« € R, v € R" and f is a
function defined on R™. We used the fact that m,, is radial, in order to
write my_ = my,. Since 57 (f) € LA(R",wy,) whenever f € L*(R", wy,)
and R # 0, we see from (2.13, page 20) that the continuity of By”(f) for

R > 0 reduces to the case R = 1. So, we will prove that the function
Moy * f

is continuous if f, A, v, n satisfy the hypotheses of the theorem. The conti-
nuity of m, ., * f at a point zy € R™ can be verified by using the dominated
convergence theorem. It’s enough to show that there exists e = £(xg, n, A, 7)

such that:

L sup | (y)in (@ — )] dy < o (2.14)

" € B(z0,¢)

where B(zg,e) C R™ denotes the ball of center xy and radius €. In fact, we

can choose ¢ = 1. In view of Theorem (2.0.6, page 10) we have:

L swp ()i (@ — y)| dy

n € B(zp,1)
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_ /| sup | f(y)imny (x — y)| dy

y—x0|<2 x€B(x0,1)

4 /| sup 1 f () (@ — ) dy

y—x0|>2 x€B(x0,1)

< il / £l dy
ly—zo|<2
an
+ / ) __ Cndy dy
ly—ao|>2 (lzo — y| — 1) log(e(|zo — y| — 1))
— T4+1I
where
I = [l / F()] dy
ly—x0]|<2
and
CVn/\
n-[ i _nas dy.
ly—o|>2 (lwo — y| — 1)"% X (log(e(|zo — y| — 1))

Let’s estimate /.

I = |~ / F()] dy
ly—z0|<2

= sl / \/
! ly—z0|<2 V/ w)sll
< il | Sy / 1) P ()
ly—ol<2 Wxu(Y ly—z0|<2
< ||mm||m\/ |x|+2 )P ()dy

B 9
S it < oo

= [yl
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Now, let’s estimate I1.

Cors
I = A
[ (170 — 4 — )"F " (log(e(l20 — 9l — 1)))"
_ / Cn,%7|f<y>|\/ wm(y)
iz Vo8] (70— ¥l — 15 P (log(e(Jo — 3] — 1))7

dy

dy

< Cnm\/ [Py
ly—x0|>2
1
_ / Wru(y) dy
\ Jiycaapsz (0 — o = D72 (log(elfg — y] — 1))
< Cn,)\,’y“fHLQ(wA’H) :
/ U))\,;L(y) dy
y-aufz2 (170 — y] — D72 (log el — ] — 1))
Cn,AWHfHLQ(ww) VI
where

1

W (Y)
III:/ ol dy.
y—zoz2 (|70 — y| — 1) 22 (log(e(|zo — y| — 1)))*

Then we use a splitting to estimate 11 as follows:

(2.15)

1
W (y)

I = d
/ =2 (7o =y — D (log(e(fwo — y[ — 1))P

lyl < 2(|zol + 2)
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1
w/\,u(y)

d
+/ w22 (Jmo — g — D)2 (log(e([zo — y| — 1)))27

lyl =2 2(lzol +2)

< / nn2(|70[+2)) dy
— ~ _ n+1+2A _ 27
Sl =2 (2-1) (log(e(2 —1)))
1

W p (v)

+/ dy
wi>2(wol+2) (1Z0 =yl — 1) 22 (log(e(|zo — y| — 1)))*

1
S o C(wo 2))\3(0,2(\%! +2))]

1

O (®)
+/ n+1+2>\w : 2 dy,
[yI>2(jwol+2) (%\) <1Og (%))

where the last step is justified by the fact that, for |y| > 2(|zo| +2), we have
ly|—2(|xo|+2) > 0, that is ‘y| —(|xo|+2) > 0, therefore |g—|—(|:170|—|—2) > %,
that is |y| — (Jzo|] +2) > ‘i, which implies |zg —y| — 1 > |y| — |xo| = 1 >

ly| = (Jwo| +2) > ‘% s ly| > 2(|xo| + 2), we also have:

g (1) = 2B 2 oy

log(2
= log(ely|) (1 >
log(ely|)

log(2)
> ] 1—
= logle 'y'( logc 2|xo|+4)))

2n+1+2)\
_ log(2)
(1- ey

the estimate in (2.15, page 22) we get:

Set Cpx~yzo = 7. Then, by using the computation above and

1
11 < w)\,#(2(|xo|+2))‘B(072(‘x0|+2>>|

1

w%,,u(y) dy

+/ n+14+2A 2y
[yl>2(|z0|+2) (Ig_\> <1og (@))
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1
wru(2(Jzol +2))

w . (Y)
+Cn,)\, T / = dy
T yz20wol+2) WA (log(elyl)) >
1

[y (log (e|y|))"

+On,)\, T /
T s 2me2) WP (log(elyl))>

1
= o 1 2y PO Aol +2)

IN

[ B(0, 2(|zo| + 2))]

1
+Cn,)\, T / dy?
T g2ty 101 (log(ely]) 2=+

which is finite in view of the assumption 2y —1 > p (that is, 2y —pu > 1). So,
Il < oo, which implies that /] < oo, which shows that (2.14, page 20) is
satisfied. this proves that B,’;’V( f) is continuous at zo and, by the arbitrariety

of zg € R™, we proved our claim. O

The theorem above implies that the maximal operator B} introduced
in (1.5, page 5) is well defined on L*(R™ wy,,), because By"(f) is defined
everywhere instead of just almost everywhere. Furhter evidence of the well-
posedness of the definition of B} on L?(R™, wy,,) is provided by the following
theorem, which implies that taking the supremum over R > 0 in (1.5, page

5) is equivalent to taking the supremum over R > 0, R € Q.
Theorem 2.0.8. Let wy,, be defined as in (3.6, page 29), let
By : L*(R", wy,) — C(R™) be defined as in (1.2, page 3), let f € L*(R", wy,,)
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and let z € R"™. Then the map R — By (f)(z) defined from (0, +oc) to C

18 continuous.

Proof. As in the proof of Theorem (2.0.7, page 19), we use the identity:

BY'(f)(x) = R (f * 6" (mx,)) (2).

Again, in order to prove that the map R — By"(f)(z) is continuous at a
point Ry € R™, we can use the Lebesgue dominated convergence theorem.
The condition to verify in this situation looks similar to the condition in
(2.14, page 20): given Ry € R, we need to find € = ¢(Rg,n, A,7y) > 0 such

that the following holds:

/ sip | f)i (R — )| dy < oo. (2.16)
R" Re(Ro—¢,Ro+¢)

The conclusion follows in a way that is very similar to the proof of Theorem

(2.0.7, page 19), and is therefore left to the reader. ]

Remark 2.0.9. The condition on vy we required in theorem (2.0.7, page 19),
links with condition (3.9, page 31) needed to have (3.7, page 30). So, we
need:

220 +1
2y —=1>p >

which implies v > pi,, that is the necessary and sufficient condition on vy for
A

my~ to be a py multiplier (see [10]).
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Chapter 3

Weighted L? estimates

3.1 Idea of the proof.

Let us recall the definition of the multiplier introduced in [10, p.544]:

(1—1€*)r
(1 —log(1 —[¢]*))”

then define the operators B;\Z’W by:

My (5) =

BY ) = [ () Fenerae

and define the maximal operator B by:

/n W (%) f/\(é)€27rl§xd§‘ )

For every A,y > 0, the multiplier m, . is smoother than the Bochner-Riesz

BX(f)(x) = sup | B (f)(x)| = sup
R>0 R>0
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multiplier with exponent \. Therefore the maximal operator B} behaves
better than the maximal Bochner-Riesz operator B2, and the proof in [4] can

be used to show that the equality

lim By (f)(x) = f(x)

R—o0

holds for almost every x € R", if A > 0,7y > 0 and f € LP(R") with

The main result of this work is the following:

Theorem 3.1.1. For every X > 0 such that 1 + 2\ < n, let p) = #

Then for every f € LP»(R") and every v > pi, + 3, we have that
A

lim By"(f)(z) = f(x)

R—o0
for almost every x € R™.

The proof of this result uses the following proposition.

Proposition 3.1.2 (A). Let 0 < p < 00, 0 < ¢ < 00, {T:}es0 a family of
linear operators defined on LP(X, 1) and valued on the space of the measur-

able functions on (Y,1vy), for two mesurable spaces (X,v1) and (Y,1s). Let
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T, be defined by:
T.(f)(x) = sup [T.(f)(z)].

e>0

Suppose that for some B > 0 and all f € LP(X,v1) we have:

T (f)llzace < B[ f| Lo,

and for all f in a dense subspace D of LP(X,v1) we have:

T(f)(z) := lm Te(f)(x) (3.1)

e—0

exists and is finite for vy—almost all x € (X,11). That is, assume that
equation (3.1) defines a linear operator T on D. Then for all functions f
in LP(X,v1) the limit (3.1) exists and is finite vy —a.e., and defines a linear

operator T on LP(X,vy) (uniquely extending T defined on D) that satisfies:

IT(f)lzace < Bl flzr- (3.2)

For the proof of the proposition, see page 86 of [7].

Since the almost everywhere convergence is obvious for functions in the
Schwartz class, in order to be able to use Proposition (3.1.2) to derive almost

everywhere convergence for general LP functions, it suffices to know a weak
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type (p, p) estimate for B}. However, instead of proving a weak type (p,p)

estimate, we prove an L? and a weighted L? estimate for B)7. Precisely, we

prove the following result.

Proposition 3.1.3. Let A > 0 be such that 1 + 2\ < n and let v > pl, + %
A

Then we have that 2’\n—+1 < 2y — 2, and for every p that satisfies —2’\71“ <p <

min{2y — 2,1} there is a constant C' = C(n, A, 7, i) such that

| mrn@ea<c [ i@k

R’I’L

for all functions f € L*(R",dx), and

[ B (D)) de <€ [ (5@ Pura) da

where the weight wy,, is defined by:

T if 0<t<l,
Wm(t)z{ AT if t>1.

T (log el))F

and

Wy (7) = wyp(|z])-

(3.3)

(3.4)

(3.5)

We will only need to show the second part of the proposition, as the reader

can find the proof of the first assertion in ([8]).
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Remark 3.1.4. When we apply Proposition (3.1.2, page 27), we have to
choose weights v1 and v5. The choice vy = wy, in the right hand side of
(3.4, page 29) is given by the inclusion in (3.7, page 30), which we will see
soon. The choice vy 1= wy, is not random either. It follows from (3.1,
page 28) and (3.2, page 28), as we apply Proposition (3.1.2, page 27) with

T% = BI)%’“’ and, consequently, T' equal to the identity operator.

Assuming the result of Proposition 3.1.3, given A and ~ such that 0 <
1

1+2\ <nand~y > o T %, the maximal operator B> is bounded on L?
A

and also on L?(wy,(|z|)dz) for some p satisfying 24 < ;i < 2y — 2. Hence
the almost everywhere convergence of the family { Bx(f)}x holds on L? and

also on L*(wy,(|x])dz). Then we use that
L C L? + L (wap(l2])de) (3.7)

and thus B”(f) converges almost everywhere for functions f € L”(R"). To
see this, let’s write f = fi+ fo+ f3 where f1 = f-X{z1<1}s fo = [ X{lel>1,5121}
and f3 = f - X{z/>1,/f|<1}- The fact that f € LP» implies that f; € LP» Vi =
1,2,3. Because of this and since py > 2, we have that fi, f» € L?, because
f1 is supported on a set of finite measure and fo(z) ¢ (0,1) for any x € R".

On the other hand, Holder’s inequality (with exponents ¢ = p,/2 and ¢’ =
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/20) implies that fs € L?(wy,(|z])do):

/ | fsl) Paor (|2 )

R’I’L

_ / | f () Pwru (2] dz
R™\B(0,1)

S||f32||LPA/2(Rn\B(0,1),dx)||w>w|| py/2
LPA/2=1(R\B(0,1), dz)

2/px Py /2 p;f/gl
([ a@prra) ([ i)
R"™\B(0,1) R™\B(0,1)
oo /2 p)\/2/;1
B [N e Px
il mesonanS™ ([ )T ar)
1
P)\/Q/gl
. o r"ldr ”
15" fallncmersom,on | [ s
1 (7“”‘“(10g(67’))“) Pr/2—1
p>\/2/*1
. e dr P/
=|S" HfBHiPA(R”\B(O,l),dz) / — <0
1 r(log(er))2+
(3.8)
where the very last inequality is true provided that:
22+ 1
n>2t0 (3.9)
n

To prove Proposition 3.1.3, we decompose the multiplier m, ., as in the proof

of Theorem (2.0.6, page 10) so that, for all ¢ > 0, we have:

man(€) = maq00(€]) + D 27 ma i (€)).
k=0

Now, fort >0, k € Z*, f € S(R™) and = € R", define:

(Sam)e(F)(@) = (FE)mani(tE)Y (x) (3.10)
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and

() () (@) = sup [(Sx50)e () ()] (3.11)

t>0

Similarly we define:

~

(Sx3,00)+(f) () = sup [(f(§)mrq,00(t8))" ().

t>0

With the notation just introduced we can write:
BX(f) < (Sxq00)«(f) + D 27" (Sanm)« (). (3.12)
k=0
Clearly this implies:

1B ()22 )~ L2 (s,

<ISA 70004l 22 (wn )= L2(0,) (3.13)

+ Z 2_k)\ H (S)\,'y,k)* ||L2(w)\,u)—>L2(w>w)-
k=0

Therefore, Proposition (3.1.3, page 29) can be proved by showing that:

D 2 M[(Sam) sl 2w, L2 () < O©- (3.14)
k=0

Now we shall prove that wy, is an A, weight, that is, we need to check that:

i (i) ([, ) <

where the supremum is taken over the balls B € R"™. For the purpose of
proving this, we will say that a ball B(xg, R) is of type I if R < i|x0|, and
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that B(zo, R) is of type II otherwise. We're going to show that the supre-
mum taken over all the ball of type I is finite. Let’s assume that B(zg, R)
is of type I, and consider any two points y,z € B(zg, R). We can assume
without loss of generality that |y| < |z|. Tt follows that 1 < % < 2. Aswyy,

is a decreasing function (because it’s continuous, it’s piecewise differentiable

and the derivative is negative when defined), we have:

orall) < onull) < e (311

that is

o) _ wrn(Zl2)
P2 o2 = o)

In order to estimate the latter, we study three cases:

Case 1: |z| < 1.

Then
W&u(%|z|> < sup W&u(gt)
waa([2]) 7 o<zt wap(t)
= 1
AT

$22+1 5 22+1
- wEm6)

Case 2: 2[z| <1< |z].
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Then

o) o3
wau(]2]) 1<t<3 wau(t)

1
S+H)2A+1
€D
= Sup ——————
1<t<2 23 FI(log(et))”

t22*+ 1 (log(et))H
= sup
1<t<? (56)>+1

_ (g) sup (log(et))"

5

) (=(9)

Case 3: 1 < 2[z].

Then

o) _ e

w&uﬂz‘) 5t W%u(t)
1

— (Zp2r+ (iog(e%t))u

i<t PF(log(et))

t”“ (log(et))




~ |~—

~
T N
N——
=

N
>
T
=
—~

lo
14 sup s

S<t log (6

2241 5
1+1 =
(10 (3))
2241 5\ O\
1 - )
) ()
As those three cases cover any possible situation, eventually we have:
3 22+1 22+1 n
S =66 (=(3))
wip(l2]) 3 3 3
5 2241 | 5 m
s —_— 0 f—
3 *\3)) >
which leads to the inequality:
2241 m
1 S w&ﬂ(|y|) S ? log €§ ’
wiu((2]) 3 3

for any y, z € B(xo, R). This implies that there exist positive constants C1 y,,,

|
SN~—

ol |wlot

=

2
+
—
wlon A wlon
e
A
VR
—_
+
s}
—
e | ©
—| 03
o [
o |wlat

Conp (namely, Cy )y, = (%)2/\+1 log (eg) and C , = ﬁ), independent of
A

the choice of the ball (as long as it is of type I) such that:

1
Cixywiu(lzo)) < —/ wy,(lz dx)SC’ wy,(|z
w0 < (e [ onlieie) < Conuonian)
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and

C 1 < ( 1 / 1 d ) < C. 1
J— N x —_— N
M (o) = \IB (o, B)| Jae.r) @nn(lz]) M (o)

for any ball B(xzg, R) of type 1.

Therefore:

sup ( ! w (|x|)dx> </ de )
som) \B@o, R)F Jon) Bteo.5) Oxa([2])
1

wap(|o)

< Coppwrul|zol) Conp

- 0227>»u <

where the supremum is taken over all the ball of type I (i.e., such that
R < %|x0|).
If B(zo, R) is of type II (that is, not of type I), then we have that B(xq, R) C

B(0,5R). Therefore:

1
(|B<xo,R>| B@O,R)”*“('x')d‘”’”)
]B(O 5R)‘
S(’B(-’foa RIB0; 1, m)”*“('x')dm)

(o /Bw (il

C 5R
"R

(3.15)

ww(r)r”’ldr,

for a purely dimensional constant C),. Similarly:

(—1 / —1 dav) < ﬁ/SR —1 r"tdr
|B(@o; B)| Jwe.my wrulz]) /) 7 R Jo  wru(r) '
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Therefore:

dx
w2 B L) ([ o)
<sup G </ wyu(r)r’™ 1dr> (/ ;rnld’r) (3.16)
r>0 12"\ Jo g o wWiu(r)

1 5R . 5R 1 )
o

F, x, is clearly a positive valued, differentiable function of variable R > 0.

For 0 < R < % we have:

1 5R 1 5R
Fo u(R) = T (/ 742“17’”_1d7") (/ rQ’\+1T”_1dT>
0 0
1 5R 5R
— R2n (/ rn—1—2/\—ldr) (/ Tn+2/\d7")
0 0

1 <5R)n—1—2)\ (5R)n+2)\+1
B2 (n—1-2\) (n+2\+1)

—2n+n—1-2A+n+2 +1 __
- C)\,nR - C)\,nv

. _ 257
with Cxn = Gy oy

For R > % we have:

1 C 5R rn—2>\—2 d
Furu(R) = —(Can (log(er))*
anl(R) R?n( > ’1+/1 (log(er))» r)

5R
. (C)\mg —i—/ (log(er))“r””’\dr) )
1
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In view of Lemma (3.1.10, page 50), there exist constants Cy x 1, Crpu2

and Cj, » 3 such that:

1 Rn72)\71
) < g (Cuns+ G

. (C’A,n,z + Cn,,\,u,g(log(er))“R"”)‘Hdr)

for all R > Cy 5,3 As we're assuming that 2A +1 < n (cf. Proposition

3.1.3, page 29), this implies that:

sup Fpau(R) < oco.
R>max{1/5,Cp .3}

If Coaps > %, we still need to show that SUP1 /5< R<Chp s

Fou(R) < o0.
But this is obvious because F,, ), is continuous on [1/5,00) and the interval
[1/5,Cpa 3] s compact.

This concludes the proof that wy, € A,.

Since (Sx~,00)« and any sum of finitely many operators of the family
{(Sxq.k)x )52 is pointwise controlled by the Hardy-Littlewood maximal op-
erator, which is bounded on L?(w),) (because we just proved that wy, is an
A,y weight), we focus attention on (S) )« for k big enough.

Recall that the multipliers m, , satisfy the inequalities in (2.7, page 11).

We define related functions

_ . d
My k(t) =2 ktamm,k(t) :
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which obviously satisfies estimates (2.7) with other constants C, in place of
Cy.
Next we introduce the multiplier operator (§ M.k )¢ Which is the analogous of

(Sxq.k)e:

-~

(Srie(F)@) = (FE)Mra(tE) (@)

and the L*(wy,)-bounded maximal multiplier operator

(Srmi)(f) (@) = sup |(Sxr )i (f) ()],

t>0

as well as the continuous square functions

VI

st = ([ 150000072

and
Crn(f)(@) = </OOO |(§M,€)t(f)<x)|2%>é

The operators (S)~x); and (g,\,%k)t are related. For f € L*(wy,) and
t > 0 we have

d L%

7 (S0 (N(@) =~ (Srue(F) (@),

Indeed, this operator identity is obvious for Schwartz functions f by the
Lebesgue dominated convergence theorem, and thus it holds for f € L*(wy,)

by density.
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The quadratic operators G, and é,\mk, as well as m) ; and (g,\mk)t,
make their appearance in the application of the fundamental theorem of

calculus in the following context:

(Sn(D@F = 2Re [ B0 g0 (Sson)u(F)a) du

:_imzwmmmwﬁwmmm@,

2k U

which is valid for all functions f in L*(wy,) and almost all z € R™. This

identity uses the fact that for almost all x € R"™ we have

1S 1)e(f)(2) = 0 (3.17)

when f € L*(wy,). To see this, we observe that for Schwartz functions,
(3.17) is trivial by the Lebesgue dominated convergence theorem, while for
general f in L*(wy,) it is a consequence of Proposition (3.1.2, page 27),

since (Sxq.x)«(f) < Cp M(f), where M is the Hardy-Littlewood maximal

operator. Consequently,

(S0 NP <21 [ (500N Gl 0] 2 s)

< MG k() (@)] |G () (@)]

for all ¢ > 0, for f € L*(wy,) and for almost all z € R™. It follows that

H(SA’%k)*(f)Hi%w)w) < 2k+1 HGA,%k(f>HL2(w>W) HG)"%k(f)HLQ(wML) ) (319)
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and the asserted boundedness of (S, ). reduces to that of the continu-
ous square functions G, and G A,k on weighted L? spaces with suitable
constants depending on k. The proof of the boundedness of G Aq,k Can be
obtained by replacing m -, with m,,x in the proof of the boundedness of
Gk

The boundedness of G, on L*(wy,) is a consequence of the following

lemma.

Lemma 3.1.5. For k > 4 we have:

L[ 1S00u)@PF ondlalie

Jh(aA-1) (3.20)

< Consoam | 1@ wrullalide

for all a > 0 and for all functions f in L*(wy,).

Assuming the statement of the lemma, we conclude the proof of Proposi-
tion 3.1.3 as follows. We take a Schwartz function ¢ such that 12 is supported
in an annulus of radii § and 4, with 12(5) = 1 whenever 1/2 < [¢| < 2 and
we let 1y (z) = 27)(27'2). We make the observation that if 1 —527% <
tle] <1 —27F and 271 < ¢ < 2! then 1/2 < 2'|¢] < 2, since 27% < 1/10.
This implies that 12(215) = 1 on the support of the function £ — my - (¢|¢]).
Hence

(Sark)e(f) = (Sxqk)e (o x f)
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whenever 2/7! < ¢t < 2'. The previous lemma, together with last observation,

will allow us to control the operators G . (hence, the maximal operators

(Sxk)s):

I1GA vk (P2, = / |G () (@) Pwn () da

- // (Snae)e(f) (@) @ww( \do

N /"z Z/2 |(Sxq)e(f)(2)] @ww( )dz
e

) /"lez

- Z/Rn ) (S )16 (f % o) (2) 2 —wm( )dz.

l€Z

/ (S )i (f % ) (@) w( 2)dx

lEZ

/ (Sl (7 %) (@) o ()

Because of Lemma 3.1.5 at page 41, with a := 2!=! and f * 1)y playing the

role of f, we now have:

2k(2)\ 1)
(Grsl Dy < 3Oy [, 1 et ona)is
€Z
2k(2)\ 1)
Corny =z e / Z|f*%z )Pwip(@)dx
leZ
2k(2)\ 1) 2
o k2= H (Zlf*%l ) ‘L%Rn,wf

A randomization argument relates the weighted L? norm of the square func-

tion to the L? norm of a linear expression involving the Rademacher functions
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as in

dt |

L2(wy,)

H(szwﬂ

where r; denotes a renumbering of the Rademacher functions indexed by the

- [ e

L2
(@x) keZ

entire set of integers. For each t € [0, 1] the operator

Zm (Yo * f)

keZ

is associated with a multiplier m = m; that satisfies Mihlin’s condition uni-
formly in t. At this point, we should recall the Mihlin-Hormander multiplier

theorem.

Theorem 3.1.6. Let m be a complex-valued bounded function on R™\ {0}
that satisfies Mihlin’s condition, i.e., there exists a constant A > 0 such that,

for all miltiindices a = (an, ..., ) with | < [5] 4 1, we have:
|97 m(€)] < Alg|™ (3.21)

Then, for all 1 < p < oo, m lies in M,(R™) and the following estimate is
valid:

[mlla, < Cmax(p, (p— 1)) (A + [[ml|z=)

A proof of this theorem can be found at page 367 of [7]. It’s a nice exercise

to show that M; is given by convolution with a standard kernel and, in view
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of theorem (3.1.6, page 43), it’s also a Calderén-Zygmund operator (that is,
it’s in CZ0O(4, A, B)) with constants §, A, B independent of t. Moreover, in

view of the following theorem:

Theorem 3.1.7. Let T be a Calderon-Zygmund operator with constants
0,A,B. Then for all 1 < p < oo and for every weight w € A, there is a

constant C, = Cp(n, [w]a..,d, A+ B) such that

1T ey < Coll Fll o)

for all smooth functions with compact support.

(applied to p := 2,w := wy, and T := M,;) M,’s are also bounded on L*(wy,,)
with a constant independent of ¢ (a proof of the theorem above can be found
at page 320 of [8]). We deduce that

~ 2k(2)\—1) %
HGAmk(f)Hw(ww) + HGka(f)HLz(wM) S ;lvM (W) ”f”m(w) '

We now recall estimate (3.19, page 40) to obtain:

92kA 1/2
[(Srri ) (D] 2oy, < €0 07) (kh#) 1o - (3.22)
that is:
92k 1/2
|| (SA,’Y,k)*(f) HLQ(UJ&M)HLz(wXM) < C’(n, )\7 ")/) (W) . (323)
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The estimate above shows that inequality (3.14, page 32) holds if v — £ > 1,
that is, if:

<2y —2. (3.24)

That is the second condition on u required in Proposition (3.1.3, page 29).
In turn, inequality (3.14) implies Proposition (3.1.3, page 29). Observe that
the condition v — § > 1 is written in the form p < 2y — 2 in Proposition

(3.1.3, page 29). Proposition 3.1.3 is now proved modulo the proof of Lemma

(3.1.5, page 41) and the fact that the following means:

me(€) = > rilt) (2% (3.25)

keZ

satisfy condition (3.21), page 43, uniformly in ¢, a fact that we prove in the

next lemma.

Lemma 3.1.8. Let m; be defined as in 3.25. Then there exists a constant

A= A(n,v¥) > 0 such that
[0°m, (6)] < Alg|
forallt >0

Proof. Let us observe that, due to the support condition on {D\, if @Z(Z’“{ )#0
then we have:

<2M¢ <4

| =
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that is equivalent to

1/4
€

that is, for any fixed £, only 4 terms (at most) in the sum (3.25) are non-zero.

2~ logy([¢]) = log ( ) <k < log, (%') — 2~ logy ([€])

Indeed we have:
[2—log, (€])]

m€ =, n®)vEe (3.26)
[k=—2—log,(|¢])]
where [a] denotes the smallest integer greater than or equal to a real number

a, and |a| denotes the greatest integer less than or equal to a real number a.
Then, for a multiindex o« € ZT x ... x ZT (n times), we can write the a-

derivative with respect to & of m; as follows:

[2-logs(€))] ~
(@ m)©) = > () d(@)(2r¢) 2k (3.27)

[k=—2—log, (I¢])]

Therefore:
|2-log, (I¢))} R
@m©l < Y @l [or@)|_ 2t
[k=—2—log,(I¢])]
|2—log, (I€])] ~ A\
< > 1 ‘30“(@/))“00 (E)

[k=—2—log,(I¢])]
[2—log, (1)

:Wlm >

[k=—2—log, |€))]
i
S 4)
€1

The last equality holds for almost every £. Since (0%m;) is smooth, the

-~

or@)| 4

HOO

o (@) _4)

inequality holds for every £ € R™ So, we checked (3.21), page 43, for
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all multiindexes o with A = SUD|o|<[2]41 (4 Haa({ﬁ\)H 4\04). Clearly, A =

A(n, 1) doesn’t depend on £ nor on t. ]

Now we can apply Theorem (3.1.6, page 43) with p = 2 to prove that
is a Calderén-Zygmund operator with constant B = B(n, ) independent of
t. Then we apply Theorem (3.1.7, page 44) with T defined via the multiplier
iy (that is, T = M,).

This concludes the proof of Proposition (3.1.3, page 29), modulo Lemma
(3.1.5, page 41).

In the next sections we will need asympthotic estimates for functions of

the form:

toé
10 = |, g™

where the domain of integration D, is a certain subset of R. We are going
to state and prove such estimates in the following two lemmas. In the first

one we will study the case D, = [z, 0).

Lemma 3.1.9. Let x > e,y > 0, < —1. Then there are constants Co, > 0

and C, > 0 (namely, Cy, = 5 and Cq = m) such that:

1
(v=(a+1)

onrl e’} ta xa+1
Corliog @) / Gog 0" = “Tlog @)

for all x > e.

Furthermore, if v < 0, then there exists constants Cy,, Cyy and C,_ (namely,
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CY,., = max{l, ea%}) such that:

C xa—l—l /oo « d C xoz—f—l
/— < o t < //—
“(log(z))” = J. (log(®)" — *(log(z))’
forallx > C7, ..

Proof. As v # 0, the fundamental theorem of calculus gives:

$a+1 ta+1 t—o0

(log(z))r — (log(t))7 ==
_ / * (a+ 1)t (log(t)) — t*y(log(t)"*
= (log())*

— (a:l)/xwﬁdt—y/mwmdt
-/ @W(““‘m&w)d’i

Then

rotl B o0 to v N
o ). TEEr (1og<t> “”) . ()

In both cases (7 < 0 or 7 > 0) we can assume x > 1. Then we study the two
cases:
Case 1: v > 0.

Then:

0<—(a+1)< <®—(a+1)) < (L—(aﬂ)).
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Therefore,

e e} ta a+1
(a+1) / dt <~
x

tCM

As we also assume = > e we have

(2 - @+1) < (2 - @+ D) == @+ 1),

log (@) log(e)
Therefore:
© e xott
) [ T = G .
< -1 [ gyt
So:

1 xott < /OO te gt < 1 xott
(v = (a+1)) (log(x))r = J, (log(?))”  ~ (=(a+1)) (log(x))”

that is:

a+1 o) ta l.CH—l
7 Tlog(@))7 S/m (o 0) " = ©° log@)

Case 2: v < 0.

As we're also assuming x > 1, we have (for ¢ > x, as in equation (3.28)):

gl

7y
= log(x)

! log(t)

—(a+1) < —(a+1) < —(a+1).
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2
As we additionally assume z > max{1, eTwzl} =: C,, ,, then we have:

a+1 v

fy
<
2 log(x)

0<
log(t)

—(a+1) < —(a+1) < —(a+1)

and, as a consequence (in view of equation (3.28)):

B (a+1) [ e rotl
2 é Qe @) = Tog@y

o0 ta
< ‘“””/x Tog ()™

Equivalently:

_<ail) (1:;()) < [ war® +
2 2ot
‘(a+1) (og(@)"

that is, we got the statement of the lemma with C! =

IN

for all x > "

a,y?
— (&7) and O = — (5). O

Now we study the case D, = [e, z].

Lemma 3.1.10. Let o > —1 and v € R. Then there exist constants C’él,%,

C&?’ and C’S’% such that

X

o _ Tt o
Cor fog @) S/e (og 0" = a7 Tog (@)

for all x > C’S’%
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Proof. Using the fundamental theorem of calculus as before, for every x > 1
we have:

a+1 taJrl

(log ()] = Qo))
Y L S ST
-/ <1og<t>>”( “ log<t>)d” (3.29)

As the case v = 0 is obvious, let’s treat the two cases v > 0 and v < 0.

t=x

t=e

Case 1: v > 0.

Observe that, for e < t, we have that a+1— @7(7) >a+1— Fg'b =a+1—7.
Let’s treat two subcases of case 1.

Case la: a+1—~v>0and v > 0.

Then

x toz xoz-i—l w1 N x ta
st | g7 < Tograyy ¢ = i fog ()"

SO
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Of course:

(a+ )/ (t —————dt + e**!

( a+1 >
= dt a+1) z
e 1Og e log(t (log (1)) e A
a+1
dt ( (a+1) ¢ )
e log et Ty dt
e (og(t))”
provided that z > 2e. On the other hand, we obviously have

(@+1-7) /jﬁdwe“*lz(aﬂ—v) /:ﬁdt

The last three (chains of) inequalities imply

(a+1—'y)/x<Ldt

log (t))"

< (log (z)) (3.30)
€a+1 x ta

: (“y POt e dt) | o

for every x > 2e, that is the conclusion of the lemma for the case “la” with

constants

o) = !

’ 1 ea«l»al

((Of _I_ ) + f:e (logt(t))’ydt)
1

2 — A

T (at1l-9)

3)  _
Céz,)y = 2e.
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Case 1b: a+1—~v <0.

In this case, a—l—l > 1, therefore e < ea+1 and we can split the integral

| oy (““ - lo;@)) “

2y

+ v Gy (“ - lo;<t>) “

_. o 11— 2 \a
Cray+ /H (log (t))” (a * log(t)>

for all z > ea% > ¢2. The constant (1,04 defined in the last equality may be

negative. But, if ¢ > ea%, we have (a +1-— @) > <a +1 - —1- ) =
log(ea+T)

QTH > 0. Then

x ta ’Y x ta o + 1)
L, ——— (a4+1— dt > | | dt .
/% (log (1))’ ( log(t)) et (log (t)) ( 2

As we're assuming « > —1, the right hand side is a positive function of x

increasing to infinity. Therefore there exists a constant Cs, ., > e=+1 such

Cror o a+1
dt > |Chanl
/- (o () ( 2 ) [Cra]

that:

It follows that
Cs2. o o
SO,y t ﬂy
0 —_— 1— —— )dt =: C54.
= / (log (1)) (“ i log<t>> baa
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2y, .
So, for every o > Cy o, > €21, it makes sense to write

X ta ,y
:C,a,+/ —(a+1——)dt.
e Je,. (log (1) log (1)

Comparing with the first equation of the proof (equation 3.29, page 51), we

(3.32)

get:

anrl

v a1 ot _ T
(log(x))” ¢ ‘C‘””W/@W log @) \“ 1 1ogey )

2
for constants Cy ., > eat1 > €2, Oy, > 0 and for every > Cy .. Then

X

a+1 C /x o ( . 7y ) y
= Clan + ——a+1- t
(log (z))” 77" Jo,.., (og (1) log(t)

2y
for constants Cy 4 > €aF1, Cygy = U344 + et > 0 and for every z >

z to a+1
ot [ (1)
bt Je,. (log (1)) 2

U0, It follows:

xa+1 (3 33)
<—— .
={log (2))

T ta
gca,+/ — _dt(a+1).
ot Jo,.., Togy Y

The conclusion is similar to that of case la.
Case 2: v < 0.

Observe that in this case, for e < t, we have:

7 <a+1 "

log(t) ~ log(e)

o4

O<a+l<a+1- =a+1—7.



Therefore:

@ [ = [ oy (7 )

and

/jﬁ(a%—l—@)dtﬁ(a—l—l—v)/jwdt.

Since equation (3.29, page 51):

x ta Ia+l ot N B x toz
o) | (o) " = Gogyy ~ ¢ =(@t! i (og () ™

Since a@ > —1 we have that lim,_, f: @dt = 00, therefore there exists

CS”% such that:

a:a—i-l T to
(log ()" N“”/e log ()"

0n{x€R:x>C§2}. O
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3.2 An upper bound for |w),|

Let ¢ € C*(R) satisfy 0 < ¢ < 1, supp(¢) C [%7%]’ 6 =1 on [%,%]_
Now define:
wan(t) = wru(D)(L = B(0)) + 6(2). (3.34)
where wy,, was defined in (3.5, page 29). Define also:
wi (@) = wi(l2)) (3.35)

for all z € R™\ {0}. It’s straightforward to verify that w

(17) R Wiy, that is,

A

wg\lz(x) and wy,(z) are comparable (with respect to =) with comparability

constants depending on A and pu, but independent of n. In addition, wg\li

is smooth on R"™ \ {0}. The goal of this section is to prove the following

theorem:

Theorem 3.2.1. Let wy, and w&li be defined as in (3.6, page 29) and (3.35,

page 56) respectively. Then for every A satisfying "T_l <A< "T_l and every

W satisfying QAH—H < < 27y — 2 there exists a constant Cy, »,, such that

1 .
{C"M gy U ksL

@3, (E)] < Qau(€) = .
: g Cn,)\,u Wﬁ Zf |€| Z 1

(3.36)
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and, for all X satisfying 0 < X < "T_l, there exists a constant Cr,w\,u such that

—_

i) (€)] < Ch s D) (3.37)
for all £ € R™\ {0}.

Let’s prove (3.36, page 56).
As wy,, is radial, its Fourier transform is given by (cf. for example [7, pp.

428, 429]):
27
€=

where Ji(z) denotes the evaluations of the kth Bessel function Jj, at the point

Wxu(§)

| i) Juga gl
0

z. We will use the following asymptotic estimates:
| Ji(r)| < Cr",

useful when r < 27 and

| J(r)] < Cpre,

useful when r > 27. In order to use the estimates above in our integral we

will need to rewrite the domain of integration: (0,00) = (O, %) U [%, oo).

As the function wy, is defined piecewise as well, we will need to study two
cases separately:

Case 1: 17 <1 (that is, |¢[ > 1). Then:

1

- 27 Tel . n
w%u(ﬁ) = ’6‘%2 (/0 WAM(T)J"%@W‘QT)T d?‘)
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1
€]

/ wu(r) Janz(27r|§|r) ngr>

_+
n [\
N

/OO wxp(r) Janz(27r|§|7’) ng?“) ;
1

therefore

— Cn 1 n=2 n
|w>yli(£)| < |€|n52 (A m (27T|€|T) 2 r2dr>

VAN
N
Q —
O\J
e
<
L
d
¥
JL
+
|3
oY
<
~_

_|_

1
nnil / r*2’\*1’%+%dr
‘5]7 1

€l
C oor—2)\—1—%+%
s ([ ).
ez \Ji (log(er))~

In order for the last integral to converge, we need to assume that —2\ —1 —

=1
|@(£)| S Cn)\ (7,—2)\—1+n OI)
r=

G [ onien
g\
2

oo . —22—1-3+2
.53 / L ——dr],
€72 e (log(r))~

where the constant can change between any two inequalities, but all the

1 n : n—1 .
3+ 5 < —1, that is, A > 2=, Then:
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constants are positive. If A < "T_l the first term is defined and the chain of

inequalities continues:

- 1
|w>w(§)| < Cn,/\ |§’n72)\71

/)\ 1
+— -] -1
[{en ((m%%*z) )
!

On,)\
n—1
€12

1
= Cna |£|—2A1

1 Cn A
+On,)\ - n’,
|£|n72/\71 |€|Tl
Cn,)\

n—1"

N

+

+

The first assumption on A we introduced during the computation ()\ > "T_l)
is in fact equivalent to ”T_l >n—2X\—1. As we are treating the case |£| > 1,
this implies that we can control the absolute value of the last two terms

with positive constant multiples of the first one. So the chain of inequalities

continues as follows:

- 1
|w>y/i(€)| < Cn»/\ |€|n72)\71

with a new constant Cj, ».

Case 2: I?l\ > 1 (that is, [{] < 1). Then
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(/Olwm('r’) J@(zwygmrgdr)

Wau(r) Juzz (2m€]r) d)

o) =g
2 %\
n—2 (\/1

+ L=
€]
2 *° n
+—= (/1 w)w(r)(]%z(27r|§]r)r2dr>
€] &
Therefore:
_ C, | n
[ ()] < e oot (2mlélr) =z rzdr
C Gl .
- 2 2 ra2d
+‘§|HT_2 (/ r2+(log(er))” (2mlelr) " r)
C o0 1 n
n 2 ~3 r2d
e </| PV logler))r CTeIr)E T T)
1
= C, </ 7’11227“37"_2)‘_1(17“)
0
% 1 n=2 n _ox—1
" 2 r2 d
e (/ Qogler)y’ "' )
© ]_ 1 n
+ C:ln_l / rerer A gy
= Uy Toglenyr
= C, </1 7‘n22+g_2)‘_1dr>
0
% 1 n—2,n
T+§—2)\—1d
o (/ (log(er))*" )
7’_5+g_2)‘_1d7’> )

The first term doesn’t depend on &. The second term can be estimated by
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applying Lemma (3.1.10, page 50), with z = %, o= ”7_2 +5 =2 -1, v=p

and t = r. The estimate will only hold for I?l\ > Oy \, and some constant
Cpapu- The third term can be controlled by applying Lemma (3.1.9, page
47), with z = %, a=—-1+2-2\—1and vy =1 (and ¢ = r). So, we can

continue our chain of inequalities as follows:

< L no24mo9)
[u ()] < Cun+ Copp 7

(tox (1))

—l—On,/\,u ! (i)_%Jrg_Q)\
7\ (e () ) 1
1
= Cour+Cupp |€’"T*2+%*2A <log (%))H
+Cn,>\,u !
7 el (s (1))
1
- ot s
+Cn,>\7ﬂ 1 '
== (108 (7))
< G :

n,A,
“leim (los (1))

in the last step, as we're assuming |¢] < =+

Cn,)\,u

for some constant C’ for

nAp
some other constant C,, , big enough (according with Lemma 3.1.9, page
47).

Summarizing, so far we proved that (3.36, page 56) holds for A > ”T_l and
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A<t

The same holds with wy, replaced by wf\li and the proof is almost iden-
tical. In order to prove that (3.37, page 57) holds as well in the bigger range
0 <A< ”T’l, we will use an analytic continuation argument (and that’s
where the smoothness of wg\ll will play a role). At this point we need to say
two more words about the way this is done. First recall that the Fourier
transform @ (in the sense of the tempered distributions) of a locally inte-

grable function w that is controlled by a polynomial in a neighborhood of

infinity, is itself identified with a function u if and only if the following holds:

| Bwulads = [ p(uee (3.33)
for all ¢ in the Schwartz class S(R™). When this happens, we write (with a
slight abuse of notation) w instead of w. In view of this fact, we can prove
(3.37, page 57) by showing a function uE\IL defined on R™\ {0} (in particular,

almost everywhere in R") such that:

| el = [ eeuleas (3.39)

and
[, (O] < Cry 2a(©) (3.40)
for all ¢ € S(R™), A € (0,251), ¢ € R™\ {0} and every y that satisfies
the hypothesis in Proposition (3.1.3, page 29) (€2, was introduced in (3.36,
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page 56)). Indeed (3.39, page 62) and (3.38, page 62) imply that ug\li = wSL,

therefore (3.40, page 62) and (3.37, page 57) are equivalent.

(1)

The analytic continuation argument has to be used once u,,

is introduced,

(1)
A

in order to show that (3.39, page 62) holds for every A. Since w 18 radial,

we have indeed that (3.39, page 62) holds with

2 <,
ui) (€) / r3w\ (1) Juz (2mr(¢)dr (3.41)
0

whenever the right hand side of (3.41, page 63) is defined, that is for A €
("T’l, ”T’l) Then we regard the left hand side and the right hand side of
(3.39, page 62) as functions of variable A and we show that both of them are
defined and analytic on an open complex neighborhood of the real interval
(0, ”T_l) Since they coincide on ("T_l, ”T_l), we conclude from basic complex

analysis that they coincide as well on (O, "T’l)

Let’s show the details of the proof. Working with wy, is very similar to

)

working with wf\l i

and we can carry the proof with either one as long as we

don’t need to use the smoothness of wgli So, to begin with, we consider the
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following version of the right hand side of (3.39):

/ o) 2" / PE (1) Jus (27| )drde (3.42)
R" €172 Jo :

where w/(\li is replaced by wy,. We can rewrite (3.42) as the sum of 5 terms:

o [
/ o )Iflﬂ / rEwn(r)Juz (27 |€])drde = I + I + 1P + 11" + 117,
(3.43)

where:

' = /E |£| /lrgw,\,#(r)Jn;(Qﬁﬂﬂ)drdf
I’ = /1 |§| /glrgww(r)(]%z(27rr|§|)drd§

GE

3 > % n—2
P - />1 ’5‘ /rw(r)JQ(zmg\)drdg

3 €]
1

I /E |£| /gl r%ww(r)Janz(27rr|§|)drd§

H

s 2 > n |
I _/ o) i /frww(r)JnQ(%rr]ﬁDdrdf.

Each term turns out to have the analitycity and boundedness properties we
need. We show that I' is analytic by showing that it’s holomorphic, and we
do this via Lebesgue dominated convergence theorem. In order to apply the
theorem to prove that I' is holomorphic at a given complex number \ = g,

it’s enough to show that there exists ¢ = ¢,,(¢, n) > 0 such that the following
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holds:

/ =1 /0 neB(/\o €

where B(\g, ) C C denotes the complex ball of center A\ and radius . The

drd§ < oo,

A=n

2m
5( (&) —g 2wy ,(r )Jnf(?”r’f@

€%

(3.44)

following chain of inequalities shows that this is true if Re (A\g) < ”T_I:

/1 s dA( o) iz wM(T)Jan(%WISI)) s
! o
N WEZ“E)E) ) iz (Crrlel) gy (onalr)| e
1€l = A=n
[ sw e St el (o )| arde
H>1J0 neB(hose) €2 et -
/ / sup (&) 27 T2 2 Jn 2(27TT|§|) (_2’\7’_1) drdé
? 0 meB(Xoye) |§| e
=n
/ / sup (&) 2327"2 L 2(27‘(’7"5’)i( ’2’\) drd§
L>1Jo neB(ose) 1€ 7 d\ N
2
/ / sup | (&) —agr? s (2] -
5>1J0 neB(ho.e) |§| 2
-2A< 2log(r))| _ drdg
=7
/ sup | (€)1 e (2]
L>1J0 neBo.e) €] "2 2
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: ( sup |r_2”|> drd¢
nEB(Xo,e)
< 4nC, / / <|§| ‘(27?7“|§|)

| sup  rCRRO) ) drag
n€EB(Xo,e)
/ / ( 2 log (l)) PR Ga14) gy g
”
_ C;L/ |/ n—2+(—2)(Re (Xo)+e¢) 10g< ) d’f’dg
1>

€]

1
=C, / rm2H=2)Ee Go)te) log( )dr / o (€)]dE.
0 >l

€]

This last term is finite if and only if n — 2 + (—=2)(Re (o) +€) > —1, that
is, if n — 1 —2Re (A\g) > 2¢ > 0.

Clearly, all we need for such an ¢ to exist is that n — 1 — 2Re (A\g) > 0, that
is Re (\o) < 25+

We just proved that I' is defined and holomorphic (hence analytic) with

respect to A on the set

{)\EC:Re()\)<n;1},

which is open in C and clearly contains the real interval (O, ”7_2)

Similarly, I? is holomorphic on the set of \¢’s such that there exists ¢ =
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€3 (0, m) > 0 satisfying the following condition similar to (3.44):

/. / d>\< A0 i 2w<r>Jn2—z<2m§r>>

[€1=
Following the same steps we made after (3.44), and recalling that wy,(r)

drdé < oo

A=n

is defined piecewise, we get:

L
€l
sup
1 ﬁEB )\08
T
/ / n— 2712
=11 \! ?

: <ne%?£5 (R > drd¢
N / >1/5 <‘90 " ((li;%éri) )) (T(J)(RE(AO)%)) drat

ler=

= f el " ¥ e e OOy (3.45)
1

L2 log(er))"

drdé¢

A=n

(go@)';%r%w(rwn;<2m~|§|>>

|2
(o)

H(2rrle) T

If, in addition, p < 1, then it will be convenient to control the latter by:

, e log(r)
C P 2—2Re (Ag)+2e__ o\ /) drd
IACT (log(r))-

l€1=

- af el 280042l 1))\ de

\5\ e 2—2Re (Ao)+2¢ (1 ( ))1Md d
o) | \g)) o
— / o E n—2—2Re (A\g)+2¢
- / e (ox (i) ) [ et

n—1—2Re(\)+2

IN
:Q
w\

v
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1\\'™
/ ’@(SN (lOg (_)) (,r,n—l—2Re()\0)+25
151 I3

€] o
n—1—2Re(\) + 2

/. wéﬂog(ﬁ??) ~[p(©)| (1og (é)) de.

€]

Otherwise, if 4 > 1, we control (3.45, page 67) by:

T log ()
Cr/L/ / 2 2Re (Ag)+2¢ drd
PO, (log(er)) "

el
< C;L /1 |90(§)|/ T,n—2—2Re()\0)+2€drd€
=>1 1

€]

_ Cn (€]
T W —1—2Re()\g) +2¢ /521 g1 2Re O |p(&)]dE-

In any case (either 4 < 1 or p > 1) the last integral if finite independently
of ¢ if and only if n — 1 — 2Re (\g) + 2e < n, that is, if 26 < 1 4 2Re (o).
Clearly, such a positive ¢ exists if and only if 0 < 1 + 2Re (), if and only
if —3 < Re(\g). Provided this is true, it’s also clear that € can be chosen
small enough to have n — 1 — 2Re (\g) + 2¢ # 0.

We just proved that I? is holomorphic (hence analytic) on the following open

subset of C:
1
{)\EC:Re()\) > —5}
In order to rewrite I? in a form that is defined on an open subset of C that

contains the real interval (0, ”T_l), we will need to use Lemma 2.0.5 (for some
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N to be determined soon). We write:

27 ® 1
i :/ 0(&)—= / 72wy, (1) Rn=2 —— = | drd¢
N+1 F ( )|§|T N M( ) 2N (27T7“|§\)2N+5

21 R Cn=2 9;
= / § —n/ r2wa(r)——— -
4.1 1y 90( )|§’ 22 . /\,u( )(27T7’|§D23+%

1€1= 1€l

-cos((2mr|€]) — chfz)drdé

and also

2 R Cn=2 9j41
By = [ O [t s
|

b (2mrfe]) 3

for all j = 0,..., N. The idea now is to choose N big enough for I3, to
be well defined for all A € (0, (n — 1)/2), and to iterate integration by parts
on each other term I?, and I?,. Due to the estimate for Ry y in Lemma

2.0.5, we can see that I3, is well defined for all X € (0, (n — 1)/2) if and

only if § —2XA —1—2N — g < —1 for every A in such range, if and only

if 2-1—-2N —2 < —1, if and only if N > 222 So, we can just set

N = N, := [22] (where [a] represents the smallest integer greater than
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or equal to a real number a). We may also check, as we did before, that
1 ]?(,n 41 1s analytic in a complex neighborhood of the real interval (O, ”T_l)
Furthermore, in view of (3.1.9, page 47) we have:

27 /°° n 1
— 72wy, (1) Rn-2 —— | dr
s welr) 22’N”<<2m£|>m+3> '

1
€]

C ) Tg—Q,\—1—2N,L—g

= n=2 9N, +2 [ e ) \* dr

IShe 2Jdg (log (E))
_ Cn’)\ ( 1 ) %—2)\—2Nn—§ 1
S el IO

€] 2 \[¢] <10g <‘§—|>>
B Chx 1
- n—2 5. n_oy_oN _b 0

€] 2 H2Nn 545 —20-2Nn 3 (log <®>>

Ch 1

[ (log (%))W

that is, I3 ., = [1 o, ¢(§)u(§)dE with the function u satisfying the inequality
HE

claimed in (3.40, page 62):

Chp
u(€)| < A

= o <log (E)y

(3.46)

To prove the same properties of analiticity and “boundedness” for the terms

I3, I35, j =0,..., Ny, it will be useful to use the following lemma.

Lemma 3.2.2. Let —o0o < a < b < oo, f € C([a,b]), g € C((a,b)) and

d!

19 admits a continuous extension on [a,b] for anyl € Z© and

assume that
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forl=0. Then, if we denote a kM antiderivative of f by %f, the following

iterated integration by parts formula holds for every N € Z™ :

[ #wgar = 0¥ [ Grw e

N-1

#3200 ot

We can in fact just study the terms I3 21, as the study of I 3’2 is almost

b

t=a

identical. First, let’s relabel and redefine the constants Cn=2 5; in order to

rewrite [; ?) in a form easier to read:

= / o(€)— /wr?m<>—1cos<<2ms|>—cn>drds
G

an T (rleh>
=c 90(5) r3—22-1-2—3 (2 lel) — e v
- / 1 €] = +2i+3 /5 (log(er))* ((2mr|€]) — cn)drd€

Now, we want to apply Lemma 3.2.2 with a = %, b= o0, f(t) = cos((2mt|£])—

c,) and g(t) = % With this notation we can write:

() ’
I} = ey, /é>1 |€|n7_2—+2]+% </a f(T)g(T)dT) d§

Since the definition of f, for k € Z* or k = 0 we also have:

d*t s (cos) (2wt €]) — ca)
where jt_z - (cos)((2nt|€]) — ¢) denotes the (k + 1)th antiderivative of cos

(that is, either cos, — cos, sin, or — sin) evaluated at (27t|¢|) — ¢,,. In partic-
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ular we have:

C
Wf(t>‘ < |§V:11

for all t € R.
Since the definition of g and for & € Z*, instead, we have:

-1
Bl +5—22—1-2j—3—k

1
590 = g (i) 49

for some polynomials pg x ;-

We finally apply Lemma 3.2.2, with N = N] = [§ — %W, which is

n

the smallest integer N indepent of j and A that will make the integral

[Pt )25 g(t)dt to converge, to write:

a dt—N

007,5—2)\ 1— 2]—7
/ T es((2nrle]) — e)dr

1 (log(er)”

= ([ rwatear)

b N N
= ()Y [ Gt gt

N-1

M (=TT

N/, > iizvg (cos)((2mt[¢]) — cn) '
- rlED™:

b

t=a

L
€]

n_9x-1-2j—1-N/
L LI
(log(et)yr N7 log(et)

S (o) (@rtle) — )
+Z( N R |
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t%72)\7172j7l7k

(log(et)): PhAn.g (@)) )

1
=1g

If we first assume that A > 222 (or even that A > “+) then we get:

% pE—22-1-2j—3
/1 W cos((2mr(¢]) — cn)dr

€l

d_
[ co)((2tle]) — )
— (=1)V» dt— ] .
= / 2rlE) ™
tf—z,\ 1-2j-1-N},

(oglet)yr P¥idma (@) v

N} —1 d-k-1
=T (cos) (2T — ¢p)
+ Z ( kHd (27| [ )+ '

1

(on (&))" " Nl (i)

e [ os)((2ntie) — )
v | R

(ﬁ)i—”\—l—%—%—k

1
]

$5 221 2j—s—N] 1
. fami | ——= | dt
(log(etyyr VA (log(et))

Ry Ckon J (log(a )
+> ’
(

n_oy_o; 1
|22 (log

—. ‘5’ +2]+2u( )Mm(g)'

As we now have

(fabf<r>9< ) e (©),
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then we can write:

=
IJ}l -

[, ([ somar) o
[, e, e
f

C
= C .
Tl no24 05+

= C?’L]

)
|
. P(E)ug) 5 (€)dE.

In view of Lemma (3.1.9, page 47), we see that there exist constants C,, ) ;
and C), 5, ; such that

Chnj
|uf7/171\7/'47j(£)| < |£|n_2)\_1 (12; (é))lm

whenever |{| < C), 5 ,.; (therefore, by continuity and compactness, whenever

(3.49)

€] < 1).
Furthermore, as the derlvatlves (p N A J) (x) still happen to be polynomi-
als with respect to the variable x, we can prove (by repeating the analogous

steps made for I' and I?) that the function:

N o / P ©ull) (€)= I,

1€l =

is defined and analytic on the set:

{/\GC:Re()\)>max{—%,(n;1) . [”ﬂ}}

that obviously contains the real interval (O, "T’l) and is open in C. Estimate

(3.49) holds on such set.
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The proof of analyticity and “boundedness” of IT doesn’t show any com-
plication. In fact I1! is already defined and analytic with respect to A on

the set:

and the fact that

for a function uffz\ satisfying

Ch
W (6)] < |§|— (3.50)

for some constant C), » is straightforward.
To deal with the term 712, on the other hand, is different. As the integral
involved only converges for A € (”T_l, ”T_l), we need to use an analytic con-

tinuation argument, as we did to treat the term /. Unfortunatly, as = < 1

€]
in I7?, the piecewise-defined function wy, is not of class C*> on <%, oo).
This does have a consequence. As we integrate by parts as we did to treat
I3, we can still prove that 77? has an analytic continuation with respect to

A on a complex open set that contains the real interval (0, ”T_l), but with a

different bound. Precisely, we can still prove that:



but then, if A < ”T_l, we can only prove that:

Cn
O <

for all || > 1.
This is why we introduced the new weights wf\lz and wf\li at the beginning of

this section (page 55).

Recall that:

WD (8) = wru(D)(1 = () + 6(2), (3.51)
and observe that wg\li coincides with wy,, in (O7 1%} U H—é, oo) and coincides

: - [19 21
with 1 in [20, 20}.
. 1) . .
Since wg; is comparable to w) ,, we can use our first computations to show

that:
- 1 if |:17| <1
) |7 =221 log (1) -
wy ! (z)| < C, a] 3.52
| )\,u( )| < A { le’l*% if |z > 1. ( )

forall”T_l<)\<”T_1.

(1)

Then we can rewrite equation (3.43, page 64) with wy

instead of wy, and
redefine the terms I', 1%, I3, IT', II? accordingly. The new terms, from
I' to IT', can be treated the same way as the old ones and have the same
properties we proved for the old ones. Plus, due to the differentiability of

(1)

Wy We can treat the term 177 as well.

76



Let’s compare the new term /7% with the old term I3:

P = / () 2 /100rngfL(r)Jv(mm)drdg, (3.53)

n_2
< €172 el

2 oo
1'3:/%2190(5) ™ / riww(r)JnT_z(%rr\ﬂ)drdf.

n—2
&= Jg

Due to the similarity of these terms, we will need to apply the asymptotic

estimate in Lemma 2.0.5 with k = %22, N = N,, = [22], and z = 27(¢]r,

that is exactly as we already did to rewrite the old term I3.

So, the estimate in Lemma 2.0.5 will take the form:

1
Juz(2r)élr) = Rusy [———
ster) = o, (ot

N, Cot o,
+ —2 7 cos(2n|é|r — cn2 3.54
2. <<2w|5|r>23+% el —eap) (554

Jj=0

Cn=2 o
_ W sin(27w|E|r — 07122)) .
TE|T 2

By using equation (3.54) in (3.53), we can rewrite:

Np, Ny
1% = (Z Hj'{l> - (Z 1@2) +IT3 L, (3.55)
j=0 j=0
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and

27 * w Cn=2 95
2, = / ()22 / rEw® ()t
’ L P e Sy T ey

|
-cos((2mr[¢|) — ch—z)drdﬁ

2m o Cn=2 9j+1
2, = / 3 / riw) () —221
: ga Ul M (2mr )t

-sin((27r|€]) — cn—2 )drdf

,_.

for all 7 =0,..., N,. Again, we won’t need to study the terms II 1, because
they are so similar to the terms /1 32,1 and can be treated in the same way.
As usual, we can prove that [ Ijzvn 41 is holomorphic at a complex number Ag
(via the Lebesgue dominated convergence theorem) if we can show that there

exists € = £(Ag,n) > 0 such that

Tel UEB)\()E

2
( oo ﬂf 3w (r) -

1

is finite. From now on, we will just write R, instead of Ranz N, For given

(3.56)

drd§
A=

Mo € C and € > 0 we have:

sup
/F<1 /§| nEB(Xo,e) )\

Ry| —————=
((QWT!£|)QN”+2>




drd§

A=n
G
(2r|€[)2Nnts

) drd€.

o [

€] €]

- sup
'r]GB )\0 €)

M\S

§

e o),

Now:
2 (@A00)) = o)1= 60)) + 60)
= L a1 6()) + s (6(r))
_ %Wuna—w»
= 2log(r)ene(r)(1 — 6(r)
So:

/1 /§| 7]6B>\06

d WO ) -

( (2mr|€])2Nnta >>

< o (\mg( >r>',
~ L L—Z 2N, +32
Ll L |§| 2 [
sup |wn#()|drd§
nEB(AoE
) / / o <|1og<r>|>'_
= —7 5
<t/ |I€]e g
sup  (wre (),u(r)) drdg
n€EB(Xo,€)

79



——2Nn—g

-af, ./l

+ |§|7
sup (wRe ()) drd€

neB(Xo,e)

] )

szvnfg

<rlog<r>|)‘_
€[>
<|1og<r>|>‘,

g2
sup (wRe u(r )) drdé

neB(Xo,e)
r3—2Na—3 | log(r)] )
€[N ts

B /§<1/ ‘
(|1og<r>1>‘ |
g2

~(WRe (o) e (7 )) drdg

+C! / /
<l1J1

[€]
“(WRe (r)—e (1)) drd§

szvnfg

= FIRST + SECOND

where:

prst — o / \_
L €]

: (WRe (>\0)+€,M( )) drd§

n_9Np,—3

(\bg(r)r)' ,
€[>

1
2_2Np—3—2Re(Ag)—2e—1 |

—

— C// 80(5) r2
e g7z NS Gl
| log(r)|drd¢
S C/ nf(g) ! 7—2Nn———2Re()\0 —2e—1 d d§
" Sy |

13

< ¢ /
%l<1

.

1)

’£|Mn)\05

|€| n/\OE
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which converges independently of the exponents M,, », . and Mq’1 o, AS We'Te

<rlog<fr>| )‘ ,
jg[2Nn+3

o0
/ T%72Nn7372Re (Xo)+2e—1
1

assuming that ¢ is in the Schwartz class. Also:

SECOND = C;L/ /
L<1J1

3]

+ (WRe (rg)—eu(7)) drdg

_ /1<1 (€)

e [ T

|log(r)|drd§.

7"%_2]\]"_%

(€
€=

All we need for this integral to converge is that

5
g—2Nn—§—2Re()\o)+25—1<—1.

Equivalently:

5
% < —g + 2N, + 5 + 2Re (ho).

Obviously, such a positive € exists if and only if 0 < —5 +2N,, + g +2Re (\g),
if and only if 222 — [22] < Re(Xo). This shows that the new [T} ,, is

holomorphic (hence analytic) on:

{AEC:Re(/\)>n;5— {”;ﬂ}

Observe that this is an open subset of C that contains the real interval

(0, ”T’l) We can now write:

M= [ eloueas

1€l
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with

2 o % (1) 1
0= g [, " ”A’““)R”<<2w|5|>2Nn+3>d"°

What we still need to show is that |u(§)| < W We have:

Cn/\ = n_9N,—3-2x-1
Mé)!é—/ r 2T dr

2 5
|€’" +2Nn+ L

B 07/1)\ ( 1 >’;—2Nn—3—2)\
- n=2_ 9N 45 Tel
€12 - €] (3.57)
o n,\
- |§|"T*2+2Nn+%+g—2Nn—g—2>\
/
A
- E|n2r1

Let us now take care of the terms 11 J21 To simplify the notation, we will

write ¢, ; instead of c¢a2 ,; and ¢, instead of cn-2. So, we can now express
i 2 2

term IT7, as:

2 o n (1) Cn,j )
[, PO </ T e

TeT <

-cos((2mr|é|) — cn)d

el
)d
= C;z,j/ ‘an 2+21+ </5 cos((2mr[¢]) _Cn)riizj Qw)\ ()dr>df

Ter <

= / 1a |§|”*2+2J+ (/ )dg’
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where we set:

a —_— i
[3
b = o0

f(r) = cos((2mr(g]) — cn)

g(r) = rE %50 (). (3.58)
Hence
IIJ?J o /I§<1 |f|7+2]+1 (/ fr ) . (3:59)
Let’s observe that, for r < 10, we have:
g(r) = R () = T Ry, (1) = AL

Therefore, for 0 < r < % we have:

d* 1
%9() Copg 12 AE TR (3.60)

for all k € Z* or k = 0, where the constants ¢, jx are polynomials with
respect to A. On the other hand, if r > % we have:

-1
ra-2—3-22-1

2w>\,y(r> =r2- Jﬁ?wxu(r) = W, (361)

for all k € Z* or k = 0. Therefore, for r > equation (3.48) holds for the

10’

new function g as well. The function f is the same we defined to use Lemma
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3.2.2 in order to treat the old terms [/ ]31 Therefore equation (3.47) still holds
for the new f. We are now ready to use Lemma 3.2.2 consistently with the

notation just introduced, and with constant N to choose later:

[ st = 1Y [ Lo et

N-1

k—1 k
# X (0 0 o)

b

t=a

v [ (e (2rie]) — en) ¥
_ 2 Ng(t)dt
/lz (2 [E]) i
N-1 p 2= (cos) ((2mt[€]) — c,)
—|—k:0 <(—1) (2r[€)F+ .
d* -

[N e

. (2nleN™ v
N-1 d—k-1 1
g (cos)((2mg &) — ¢n)
k+1 di 4 .
3 ( 2rle)

ig(é\))

Because of equation (3.61), we can see that the integral in (3.62, page 84)

converges for all A > 0 and all ;7 > 0 if and only if N > ”T’l So, we set

N = N, = [”—_1

5 -‘ + 1. Furthermore, in view of equation (3.60), the last

term (that is, the summatory) can be simplified if - g < 16+ In such case we
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have:

(3.63)
b e o (cos)((2mt[E]) — ca) dV
. _1\N dt
/a fg®)dt = (-1) /,; (2r|e)N a0
N-1
i ((—1)’6—’—10%)\7]’,1@'
k=0
. 4L (cos)(2m — ¢)
(2rlgl)rijgls 212 ik
o 7 (cos)((2mt]€]) — ea) dY
= =D /;d PR a0
N1 1\ k1 %(COS)(CZ)
o 4 (cos)((2nt[€]) — ca) dY
= (=) /;d (2rleD™ a1
N_1 ! .
. SPUPR. . B
k=0 (C " kIEIfQHJ_Q)
oo 4 (cos)((2mt|¢]) — ¢) AN
= (= /;d (2rleD™ a0
ZkV;()l (Cnrsik C/ﬁ,k)
+ €322
4= (cos)((2t|¢]) — ca) dV
= (=) /;d @rle)™ a1
C;;,)\,j

Rl
for all £ € R™\ {0} such that |¢] > 2. Observe that the constant ¢ , ; is a

9 PW]

polynomial with respect to A, as the constants ¢, ) j, are polynomials with

85



respect to A. Equations (3.63) and (3.59) show that we can write:

I8, = / o(€)u ()¢

1
e <1

with

u®(€) = mg_ﬁ (/ab f(t)9<t)dt>

Therefore, u¥) is a function defined on R™ \ {0} that, in view of equation

(3.63), satisfies the inequality:

Crnni
|U(4)(§)| < W% (3.64)

for all [¢] > %. Since u® is also continuous, the estimate above also holds

for all [§] > 1, at least after replacing C, 5 ,.,; With a bigger constant C, , , ..

We still need to prove that [ []271 is analytic with respect to A on an open
subset of C that contains the real interval (0, "T’l) To do so, we look back

at equation (3.62) at page 84 and equation (3.59) at page 83 to rewrite:

2]

I, = Y I, (3.65)
k=0

where

2 _ 30(5) " dk 1
Hiaw = ng /1<1 |§|"T’2+2j+%+k+10””“ (%9 E s, (3.66)

€]
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for all k=0, ..., WT_W and

(&)
I[j2,1,N;L =Ch,; /1

;oo L (cos) (2t |€]) — ca) Ve
Ny, t—Vn
() A

(3.67)

g(t)dt | d¢,
|

where we set N = (”T_l] + 1 to simplify the notation (recall that we already
set N, = [232] at page 85). We will now show that each term IT7, , is
analytic with respect to A. We begin with ”]2,1,1« k=0,.., ("T’W Because

of equations (3.58, page 83) and (3.34, page 56), we have:

g(r) = 737273 (W, (1) (1 — (1)) + ¢(1) = ga(r) + ga(r)

where
Ga(r) = 137550, (1) (1 - 6(r)), (3.68)

and

Therefore we can rewrite the term in (3.66, page 86) as follows:

(1 dE 1y, d (1
ar?\Jg) ~ ax? \Jg)  ar " \ g
In view of this last equation and of (3.66, page 86), we have:

2.1 2,2
11]2,1,]6 = ]Ij,l,khAyll + ]_[j,17k7)\7u + '[Ij?,l,k,l’ (369)
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where:

d* 1
[[2,1 — C/ / @(5) c//
PR M e (gt 2t nk \ kI 1€] a

]

— e(§) dF 1
B /m—(w @) G
[>10

2,2 _ ©(€) dF 1
IL A, = Cn,j,k/g< m(ﬁgm E ¢, (3.71)

2 _ 90(€> /1 dk 1
IT5 1 gy = Cnj /lg<1 \5!"7’2+2j+%+k+16"’k ( ! €] .

Observe that 117, , | doesn’t depend on A and it’s defined for all k = 0, ..., [ %5+ ]

and

and j =0,...,N, = (”7_5] So, it’s entire with respect to A for all such j’s and
k’s. Now, to show that ]I 1% 1s analytic, it’s enough to show that ]Ijllk A
and [ [flgk A, are analytic. We will need more decomposition. Because of the

definition of gy, (3.68, page 87), for ¢ < 1 we can write:

Bl = (00 -o0)
k
= (- o)
= (- sop)
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where b;; denotes the binomials coefficients corresponding to the indexes k

and [ (that is, (a + ¢)F = Zfzo by, a' cF71). The equalities continue:

dtkgw Zbkl CZ}C SR e) ) (0P, (372)

for some polynomials p;. If, in addition, we assume ¢ < -, then we have:

10
d i A i1 A1
—=wu(t) = br —— (T IT2T ) p(A)
% il
dt 2 g
k
n - 1
= D G () 7
=0

— ZCn kJ’]ti—Q]—f—l kp (/\) 75_—2)\7

for some constants C,, i ;. In this case (that is, if ¢ < %) we also have:

d d* n_gi_1_ d _
aﬁgm(t) = chk,l,j ¢z %ma1m de (X))

_= E CTL k,l,j t§_2j 2 —1-k .

( )2 4 py(N) t* log (%2))

k
2 : n_gj-l_ 1k
= an,l,g t27472

=0

(0 4 mO 0 () ) £,

where p; just denotes the derivative of p; (with respect to A).
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Therefore:

d dt &
/ n_9j—L 1k
’5%9&1@) . < (; Chgay t27772 ‘
1 _
(WOv+ oo () ) 16724)
A=
k
n -1
— ZCrluk,l,j (3= 2—5-1-k
1=0
1 —2Re
(Wil + oo () ) e
where C’Ak’l’j = |Ckij|- Then, if Ay € C and € > 0, we have:
d dF
sup ——ult 3.73
nEB()\O,a) <‘d)\ dtk AHU( ) /\:n> ( )
k
<  sup (Z ey 5231k,
1=0

neB(Xo,e)

(il + ol 1og () ) 20

k
< D Chuy ER
=0
1 _
A COROE EY B
nEB(Xo.e)
<

k

’ n_9j—l 1
> Chpy t27272 ‘
1=0

s (1)l + o () ) s (r2e00),

neB(Xo,e neB(Xo,e)

As we are assuming t < 1% < 1, we have:

sup (t72Re (r])) — thRe (Ao)—2¢e
neB(Xo,e)
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So, (3.73) becomes:

. d d @
wenne \ [dX dtE P

)\:7])
k
7—2g—7—1 k.
<Y gy t?
1=0

1 CoRe (A2
- sup (!pﬁ(ﬁ)! + [pi(n)] log (ﬁ))t 2Re (Xo)—2
WGBO\(),a)

k
525~ 1 2 1 _9Re (ha)—
:Z kvl’3t2 N o (Cl(,)\)o,s + Cl()\)o,e : log <1§ t 2Re (Mo) 257
=0

(3.74)

where 0 < Cl hoe < oo fori =12 All of these computations are useful
because we're going to prove that [ Ij’ll,mu is analytic with respect to A in
the same way we proved analitycity for the other terms. That is, we will
prove that [ [j2,711,k, A, is holomorphic at a point Ay € C by showing that (cf.

equation 3.70, page 88):
|£(6)]

Lo |£’ 2 42j+1+k

3.75
o () ) e ()
. S —_— X
venone \ [ ax P \Jel ) ||,

Observe that I 1]2’11’,: , really doesn’t depend on p,

2,1 . m
TT5 5 =Cnjk

/1

where ¢, = |c n3k|

£, which is less than . As (3.74)

d d* :
because -r<7gy, is only evaluated at €] 5

holds for 0 < ¢t < ==, we can use it in the equation above to write:

10’
2,1,* 2,1,%
],17k>\ — E :]I,lJc/\l?
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where

2,1,% o " |90(£)| /
kg = gk [ [E[g o ies Cnkt

|
2_2j—3—k—2Re (Ao)—2¢

1
‘ <E> 01(72)\)0,6 log (|£|2) 3
" |90(f)‘ ,

n -3
1 5—2j—5—k—2Re(Ao)—2¢ W
’ (E) Cl,)\o,ed&-

o |90(£)| / (2) 2
= Cnjk /1 o |€[r1-2Re ()2 k1. Clino.e 108 (16]7) dg
1€1>10

ARCn / 1 [P ()] Ol O Ld€ < o0,

11— — RN
m<1% |£|n 1—2Re (Ao)—2e ~ TR

for any A\g € C, any £ > 0, any j = 0,...,N,, = [272], any k = 0, ..., [ %]
and any [ = 0,...,k, because ¢ € S. This shows that each term [[ill,’l:«\ is
finite. We just proved that each [ ]]27’117]?,)\7!1 is entire with respect to .

To prove that the terms [ ]J212 k. are analytic, we will argue in the same

way. If 1% <t < 1, we can only use that equation (3.72, page 89) holds for

0 <t <1 to write:

k
) = D hngra() (A £,
=0
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for functions hy, jx; € C*°((0,00)). Then:

d d* k d o
aﬁw(t‘) = Zhn,j,k,l(t)a(pl()\)t )
=0
k
= 2 Pnanilt) <p’(A)t_2A+Pz<A>t * log (t_ﬁ))
=0
- 1
= S b al(t) £ (p;<A>+pl(A> log <t_2))
=0
Then:
d dk - —2n / 1
DO S 2 s ()] + o) s (
= =0

k
< D hngra 2@
1=0

180 + ()] Tog (})) |

Therefore, if \g € C and € > 0:

)
(- (2)

k
= Y T ()OO 0 (3.76)
=0

VR

| g (B[ E72R G022 0y

]~

d d*
sup aﬁg)\(t)

nEB(Xo,e)

Il
=)

because we're assuming 0 < ¢t < 1. In the equality above we set:

n€B(Ao,e) n€B(Nose)

Cz,xo,szmaX{ sup  ([pe(n)]), sup (Ipi(n)D}
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and

- 1
P jea(t) = [P ()] (1 + log <t_2>> :

Again, we have that I1 32 ’12,1:,)\,,1 is holomorphic at A = Ay € C if there exists

e > 0 such that (cf. equation 3.71, page 88):
(3]

[]2,2,* —m .
ALk Tk [
%S%<1 |§'|2+2J+2+k2

o ([avawon (¢)
eBOwe) \ | AN dtEM €

/!
n7j7k

(3.77)

) d§ < o0
A=1

|. Now we use equation (3.76, page 93) to

/1

where we set again ¢, = |[c

write:
k
2,2%x 2,2,%
[IJ}UW\ o Z [[j,l,k,A,l
=0

where:

~ 1
Wi = o6l ; (_) |
3 LE AL .3 s<ta ’5‘5’+23+%+k mik I g]

0=

1\ ~2Re(0)-2¢
( ) Cixo,cd€

€]
= " / lp(§)] 7 N (i) '
= ___1#&, s
T AN
Cirg,ed§ < 00.

The inequality holds because all the functions are continuous on the closure
of the domain of integration, that is compact, for any \g € C, € > 0 and any

of the indexes j, k and [. So, ]Ij%ﬁ’,;)\ < oo and ]I]?’f’k’A is an entire function
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with respect to the variable .
This concludes the proof that I/ ]21k; is an entire function with respect to A
for every k =0, ..., VT_W and j =0,..., N, = f"T_ﬂ (cf. equation 3.69, page
87).

We still need to prove that 17 le N (cf. equation 3.67, page 87) is analytic
with respect to A on some open subset of C that contains our real interval.
We use again the decomposition g = gy, + ¢1 (cf. equation 3.68, page 87) to

decompose ]IjQ,LNA as we did in equation (3.69, page 87):

2,1 2,2
I]jQ,I,N;L = ]Ij,l,N;L,)\,y + ]Ij,l,N;l,A,,LL + I]?,I,N;L,b (3'78)
where
o e(€) )
3717Nn7)‘7ﬂ Cnv-j %<% |£|n;2+2j+%
o0 d_N;L N/
(—1)M v (cos)((2mt[€]) — cn) N it | e
1 2rleN™s v

€]

(3.79)

2,2 . 90(5)
IIJ}LNM\,M ~Cnj /190< ‘SI”T*QHJ’J%'

1
St <t

| oo L (cos)((2HE]) — cn) a
N, dt—Nn

(3.80)
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and

¢(§)
]]]2,1,1\1;“1 :C;'L,j /
+<1

(3.81)

so 47 (cog)((2r —c,) 4N
o [ BRI %

. @)™ ari

Again, IT7, nz 1 doesn’t depend on A and is therefore entire with respect to

A. This term is defined for all j = 0,..., N,, = [%52]. To sce that [[]2,711,N’ A

is analytic, we further decompose it:

2.1 211 21,2 21,3 21,4
I oo = 1508 o Y L N 3 F LN 3 LN (3.82)
where
IR, = / _e (3.83)
J:lan)‘v.LL n,J %<% |§|TQ+2J+%
_N;L ,
/190 S (cos)((2mt[€]) — ) @™ o0yt | de
/ YN
. QrE™ AR
112’1’2, _ CZ, . n%f(&) )
SLNL A ] 1es |£|T2+23+%
_N;L ,
/1 it o @t —e) % N
2 (2n[€[)N dtN: 7
I[?,l,?’/ — C,/r; / nsf(&) .
G LNf A J 1os |£|T2+23+§
,N;L ,
/ i (con)(2rtle]) — ) ¥ ot de
. (2m]€]) N dtVe M
3 L,ND A J 1os |£|T2+2]+§
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0o 4N (o) (2t [€]) — en) N
dt—Nn n
/., ) AL

10

2,1,1
To treat ]IJIN,

we have:
n 1 n
Dult) = £33 A R
Therefore:
dNn dN' gis d
5—=2j—5 7 1—2X
AN g*“ Z dtNL— lt 2 dtlt
NL
1=0
N,
= Doty
1=0

for constants ¢

d all s d
o) = Dt )
N,
N =
=0
(e 1o (3 ) + )
N,
— Zc;’j’lﬁ—Qﬂ—a—Nﬁ
=0
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., and polynomials (with respect to A) pi(A). Then:

de.

recall (cf. equation 3.68, page 87) that, for 0 < t < 10,



Then:

d dNn . n_9i 3 Ny 1 _9Re
D ar )| o= D chgti ¥ N log (tg) [pa() | £~21
= =0
N}, ,
D gt ()] 7R,
=0

where ¢}, ;; = |c;, ;,|. Now, for \g € C and € > 0 we have:

d dNn

sup ﬁdt_f\%g’\“(t)

n€B(Xo.e)

A=n

1 —2Re (A\g)—2¢
o (72) Cig £ (3.84)

N,
i >—2j—5—N,
+ ) gt
1=0

X Cl Mo thRe (/\0)7257
for constants 0 < Cj,, < oo (as p; and p| are polynomials, such constants
are finite whenever 0 < € < 00). Now, let’s define (cf. equations 3.83, page

96):

9
T gy L
. / — — y

JLNJ Aose Lo |§|n72+2]+% o [3RE8

|
d dMn
adt_f\’fmgw(t)

(3.85)

dtd§.
A=n

sup
n€B(Ao,e)

In view of inequality (3.84, page 98), we can write:

N,
2,1,1,% 2,1,1,%,0,1 2,1,1,%,0,2
TI5 Ny e < <”j,1,N,a,Ao,a + ”g;LN;le,a)
=0
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where

9
10 1 n -3 /
11—271717*7l71 — / ‘90(5)’ / C// ) t§—2]—§—Nn .
J, 1N} Aoe n=2_9,41 N7 “nggil
€177 e S [
1 —2Re (Ag)—2¢
-log f;_2 017,\07575 dtd§

n.jbAoe [ |§|g+2j—%+N;L

m<10

9
0 n_ g5 8 _pNr_ e —2e 1
. /1 t2 2j—5—Np—2Re(Ao)—2 log (t_2> dt df,

-
©

o

and

9
2,1,1,%,0,2 ()] o1 n_gi 3_pNv
i Nowe = /1 €522t ) ’§|N,’chvj7lt2 AT Cye

€1 <10 Tel
‘t—QRe (Ao)—2edtd§

) lp(§)]

n:j7l7>‘0a€ 49 71+N/ ’
sty I

Sle

. / t%—2j—%—N{1—2Re (Ao)—25dtd§

1
[

foralll=0,..,N, = [%52] +1. As ¢ € S(R™), it’s immediate to check that

™|

2,1,1,%,1,1
IIjzl’N;u)‘Ovs <0

and

21,1,%,0,2
IIj71’N1{L7)‘07€ <00

for all [ = 0,..., N/ and for any \g € C and 0 < ¢ < oo. Therefore,
1 Iii’]\,l’;/\w < oo for the same )\ and e, which implies that 177 is

]717N7IL7>\7M

entire with respect to A.
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To treat I] N, A Tecall (cf. equation 3.68, page 87) that, for 5 <St<1,

we have:

that is:

Sle

<t<1l:

dN;L dN’—l d! oy
a ) = Zb ¢ g gt

where by;; is the binomial coefficient with indexes N; and [, hy;(t) =

N/

b ;N, “h(t) forall [ =0,...,N! and & < ¢ <1, and p;()) is a polynomial

with respect to A for all I’s. Then:

N/

d dNn n ) . .
o am o) = D> hna() (pg(k) TP pi(N) -7 - log (t_2>>
1=0
and
d dVn N,
‘adtf\% g)\#(t) S Z |hn,l<t)|
A=n =0

—2Re —2Re 1
(IOl 20+ a5 10g ().
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and, for \g € C and 0 < € < oc:

d v NZ
sup | =+ au(t) < [P g ()] Crxg e -
nEB(Xo,e) d\ dtN 7 A=n 1=0 i

. (t—2Re(>\o)—2€ 4+ ¢~ 2Re(Ro)—2¢ log (%))

N/

- Z |Png(£)] Crng.e (t’me (AO)*%)
1=0

Ny,
+ > ()] Crxge -
=0

- e —z€ 1
(oo (1)),

As before (cf. equation 3.85, page 98), we define:

[ 22 :/ () /1 1
5 LN! Xo.e 1os |€‘"T*2+2j+é 2 |€|Vn

1
H] 0

d d™
i S (t) dtdg
n€B(Xose) ton A=
which we can control by:
Ni
2,1,2,% 2,1,2,%,1,1 2,1,2,%,1,2
TI5 Ny < (”j,l,N,g,ona + Ha‘,l,Nmo,a)
1=0
where
[[2,1,2,*,171 o |Q0(§)| ! ’h l(t” . Cl N thRe (Ao)72sdtd€
1 / - n— : ) ) »
BLNpdoe [,y |§|TQ+21+%+N£ o " °
]S 10 10
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and

r2l2ale p(£)] )
3,1, N7sh0,8 1o E,’%%zﬁ%m

1 1

: / P (8)] Ciong e 2R R0 =2 Jog (?) dtde.
9
10

As |hy,| are continuous on R and therefore bounded on [,1], and

2,1,2,%,0,1 2,1,2,5,1,2 :
¢ € S(R"), we have that both 177y _ and Iy, are finite for any

[, Ao and €. This shows that I ];117’]%,’57/\0’8 is finite for every )y € C and every

0 < € < 0o, which implies that IJ%’I{’J%%, A 18 entire with respect to A.

To treat Ifi’llf’,, . tecall (cf. equation 3.68, page 87) that, for 1 <t < %,

we have:

1 5235 o
H(1-9(8)- 22T (log(et))r — (log(et))r otn)

N

Ixu (t) =t2 %"

It follows that this term can be treated exactly as the term 17 J2 ’11’]2V/ Ay and

2,1,3 . . .
we can show that [17y, , , is entire with respect to A.
sy d Vs

To treat Isz,il,}%/g,,\,u recall (cf. equation 3.68, page 87) that, for }—(1) <t, we

have:

n_95-3
. 2 2
~2j=3 . ! _ !

MO = T oy sty

|3
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Then:

Mo 523Nyt

for polynomials p,, j;, and ¢;. Then:

!
d dVn N m_gi 3 Ny

aar o = S e
D s Pw(t) > ey

NEA e BN A
R t) = b o - . -
dtN: g&u( ) - N\l ANl (IOg(et))u _dtl ( )

) g0 ~ (log(en) Pty 10g<€t)) Cqu(A) T

b ! ! —2X
i <log(et)> ql( )

*—Qj—ﬁ_N’;L 1
P Pnjlp (m> .

N/, . :
+ZZ(; (log(et))

A o),

Then:
d dNh Ni nooi3on
< - <
‘ d)\ dtN/ g)»,u A=n o =0 (log(et))p,

1
ey o ()|

ar(m)] #7250 log(12).
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So, for \y € C and 0 < € < oc:

’ N/ n -3 1
d d» N2 1
sp [L9 ol eSS (—)‘
o a0l = 2 g P foggen

'Cl e t—QRe (Ao)+2e
sN0 >

N, n_9j_3_N!/

2 oglen)y

1
Prnjlpw\ 7—777 )|
— o (10g(6t)> '

'Cl7)\075 thRe ()\0)“1’26 10g<t2) .

As usual we define:

J2 1A _ / lp(§)]

]717N’;l7>\0787)u/ |§|nT_2+2]+% )

€1 <10
S| d dNn
: - sup | o= Gau(t) dtdg
/}(1) |€|N” nEB(No,e) dA dtNn A=n
and we use the last estimate obtained to control:
N,
2,1,4,% 2,1,4,%,1,1 2,1,4,%,1,2
I[jvlvN';u)‘OvaM S Z (IIj,l,N;L,)\(),S,/,L + I[jvlvNﬁavAO7E7M>
1=0
where
o0 4n_25 3 _N/ _2Re e
SRl / e (©)| / (a2 m2Re Boyae
31N Xoses ST ’ﬂ%Jijf%JrN;L u (log(et))
1
AP C dtd
DPn gl (1og(et)>‘ 1,0, §
and
00 4295 _3_N’/'_9Re
Sl / 0(©)] / (7T N AR G
j,1,N/ , Xo,e, - n -1 /
Al 0,651t 1oo €[5 2 s+, u (log(et))H
1
Npniin | ——= | Ci, = log(t?)dtd
p ,],l,/j, (log(et))‘ l,)\O, g( ) 5
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for all [. All we need for theese integrals to converge is that:

3
g—2j—§—Nr’L—2Re(Ao)+2s<—1

that is

1
0<25<—g+2j+§+N;+2Re(AO).

Clearly, such an ¢ exists if and only if:

n

1
2+2j+—+N7;+2Re(A0)

0<—
2

that is, if and only if:

n o1

As we need this condition to be satisfied for all j = 0,..., N,, = [2%2] (cf.

equation 3.55, page 77), we need:
— N7/1 < 2Re ()\0)

Since N; = [2%] + 1, we have that 2 — 2 — N} < 0. Therefore, the set:

where all the functions I ];’11’;\1,, A are analytic with respect to A, contains the

real interval (0, ”T_l) This concludes the proof of the fact that I Ii’f’ NI

((cf. equation 3.82, page 96)) is analytic with respect to A on the set:



In order to prove that I I 1 N A is analytic, we split it as follows:

2,2 2,21 2,2,2 2,2,3
IIj,l,N’,)\, ]I],l,N/ A+‘[I J1,NL X +II 3,1L,N! A
where
]_[2’2’1/ = C/n / —ngp(é) .
.7»17an)‘ 5] lig? |§|72+2‘7+,

L (cos) (2mH€]) — cn) dN
—1)Na [ dtn - t)dt |d
( ) /1 (27‘(‘|§|)er1 dtN;lg)‘”u( ) 5

J222 _ e(§) .
BLNLA cn’] 19 < |§|L2+2]+,

L
E

(t)dt |de

1 A2 (con)((2tle]) = ) @
N, d
O S K

and

172238 _ C;/ n‘P(f) .
JLNp AR T s | g5t

1 <
H]

Y d:;ﬁ cos)((27t —¢,) gVh
. (_1>Nn[ dt n( )(( |£|) ) d

t)dt |dE.
1 (27‘(‘|€|)er1 dtN;lgA’“( ) f

10
It follows that 1_7212]%,,  and ]_71212]3,, A, are entire with respect to A (just
[[]2’11}%,, 2 and [Ijz’ll’]%,, W ) and that 11]2’127’]‘3, . 1s analytic with respect to

A on the set:



just as [ ]f’ll’;\l,, - The proofs are very similar to those showed for the terms

2,1,2 2,1,3 2,14 : : :
T Ny ageo L0 N 2y and Ty, o respectively, and will be therefore omit-

A Ao

ted. This implies that [ Ijzf NI is analytic on such set. We just proved
(cf. equation 3.78, page 95) that IIjQ,LN,Q is analytic with respect to A on the
set described above. In turn (cf. equation 3.65, page 86), this was all we
still needed to prove in order to show that I 132,1 is analytic. In turn again,
this was all we still needed to prove in order to show that 172 is analytic (cf.
equation 3.55, page 77). In turn again, this was all we still needed to prove
in order to show that I* + I? 4+ I® + [T' + II? is analytic (cf. equation 3.43,
page 64). At this point, we proved that the right hand side in equation (3.39,
page 62) admits an analytic extension with respect to A on an open subset
of C that contains the real interval (0, "7_1) Of course, the left hand side
of the same equation is naturally defined and analytic on a complex neigh-
borhood of the same interval as well. As both sides of (3.39) are defined for
all A € (%, 251) and (3.39) holds for each of such X’s, by analyticity (3.39,
page 62) holds for all A € (0, ”T_l), when we replace the right hand side of
it with its analytic extension. Through the proof we also took care to show
that (cf. (3.46, page 70), (3.49, page 74), (3.50, page 75), (3.57, page 82) and

(3.64, page 86)) such analytic extension can still be written as in the right
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(1)

hand side of (3.39, page 62) for a function u) , satisfying:
C, L if ¢ <1,
gy < & M A ee(i))” N (3.86)
’ Crap T if ¢ >1,

—_

Therefore we have wg\ll)t = ug\li and wg\li satisfies the inequality claimed in

(3.37, page 57).

3.3 A useful weight comparable to wL

Ap

In this section we consider the weight wy,(z) = wy,(|z|), where

(3.87)

- if 0<t<l1
sy ={ T, o<z

1 .
t2)‘+1(10g(6t))/" lf t > 17

and we show that 1/w is comparable to another weight which can be written

in a more useful way for our purposes. More precisely, let’s define a function

Uy, by:

—n—2A-1 e oo
ur(y) =4 ! <1°g<\yl)> iyl <1, (3.88)
|y it |y > 1.

Let’s define a new weight wyy , by:

Bron(z) = / @ 1Y L (y)dy, (3.89)

where (x,y) denotes the inner product between x and y and N is a large

enough integer.
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The goal of this section is to prove that then there exist constants

Cinapn and Cop 5, N such that:

for all z € R™\ {0}. Let’s also define:

W (x) = / |6i<m’y> - 1‘N ux,.(y)dy
YI<1
and
WNAp2(x) = /| . |€i<m’y> — 1|Nu,\7u(y)dy
Y >m

so that:

WNAp = WNAp1 T WNA w2

Observe that |y| < ﬁ implies that | (z,y) | < |z| |y| < 1 which implies

C fa] Jyl < [ — 1] < Ja] |y]

for a constant 0 < C < 1 that we don’t compute for simplicity.

Now, we will prove that Wy, ~ 1/wy,. Let us estimate Wy x 1.

Case 1: & <1 (ie., |z| > 1).

||
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Then, since |¢* — 1| < |a| for all @ € R, we have:

m
Fvap(x) — / i) |V [y (1og (—)) ay
YI< |
e 12
[ el s (e (1))
lyl< - |yl
)M

fo]
N |gn—1 T N —n—2\—1 € n—1

= log ( - d

|z S /0 ror < og <7“> " dr
_ N |an-1 T N—2x-2 N\
= |z|™ |S" /0 r (log (r)) dr

2l 71\ N-2A-2 1

= |z/V |S"7 / (;) (log (et))" <_t_2) dt

= |z |57 t2A=N " (log (et))" dt

||

N . %0 g\ 2A—N L ds
— n _ 1 _
157 [ ()7 s

R i T aN p
= || s (log (s))" ds. (3.95)

223+1—-N
et 2]

IN

In order for this integral to converge, we need 2\ — N < —1. As we're
assuming \ € (O, ”T_l) to be given and N € Z™ still to choose, we solve this

inequality for N to get N > 2\ + 1. So far we may just set:
N=N,:=[2\+1]+1 (3.96)

In fact, later we will need N to be even. So, we rather set:
N=N,:=2[2X\+1]. (3.97)

Observe that we may choose N independent of A € (O, ”T’l) by setting N :=

2n. We're working under the hypothesis of case 1, that is we're assuming
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|z| > 1. Therefore, e|x| > e and we can use the result in Lemma (3.1.9, page
A7) with t :== s, a := 2\ — N, 7 := —p and z := e|z| (the left hand sides
are consistent with the notation in (3.1.9), while the right hand sides are
consistent with the current notation). This, together with inequality (3.95,

page 110), implies that there exist constants C y and C) , x such that:

" Sn—l 00 B
Tvan@) < B B [T (og () s

z|

S -
2] G [P (log(efa]))"

e2A+1-N

= Cg,A,N |575|2A+1 (log(€|$|))u
= n,\N L/wyu() (3.98)

for all z € R" satisfying |z| > C) ,n, where the last inequality follows

. . ~ c .
from the assumption of this case. We proved that wpy ) ,1(z) < w:’*(’;v)
n

|z| > max{1,C) , n}. Similarly:

Tt (5) = / i) |V [y (1og( ))
ly|< ’
2V [y [y (1og( ))

\%
Q
=2
G\
T

n—1 o)
= Y WVM/ sV (log (s))" ds (3.99)

DFI-N
€ elx|
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Now we apply another of the estimates in Lemma (3.1.9, page 47) with the

same setting written after equation (3.97, page 110), this time to deduce:

v

" Sn—l ] -
WN A1 (T) Cfv\x]Nu / s2 N(log (s))"ds

22+1-N
(& |

S

e2A+1-N

v

Y |af™ O (el )~V (log el]))"
= Coon oV 277 (log el )"

= G o[ (log(e]a]))"

= Cpan 1/wru(2) (3.100)

for all x € R” satisfying |x| > C) , n. This estimate, together with inequality

(3.98, page 111), shows that

WN A1 RN L/wy, (3.101)

on the set:
{r e R" : |z| > max{1,Cy n}} (3.102)

Case 2: = >1 (ie, 2| < 1).

||

Ifle’A“u’l(.T) =1 + II (3103)
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where

I = / \ei<x’y> — 1]Nu,\7u(y)dy
lyl<1

i N 2A—1 € g
= / [ | (log (—>> dy
yl<1 Y|
N | N 22—1 € g
Ron N / 2| Jy[™ |y (log (—)) dy
i<t Y|

%n7AHu/7N |x‘N

and

II = / |ei<”’y> — 1]Nu,\,u(y)dy
1
_ / |6i<x,y> . HN ‘y’—n—Q)\—ldy
1<[y|<
Rn AN / |V y[V |y Ay
1<lyl<py
ol
— |l’|N |Sn—1| / ,',,N T—n—2>\—1 r”_ldr
1

1
T=]
— |ZL’|N |Sn—1| / T—2>\—2+Ndr
1

- N |5 (r=2A=1+N) Bl
(C2A—1+N) 1
_ N 1S D1-N _ q
|S" 1 22 +1 N
T (L2 —14N) (o = o)
~ |Sn71| |JZ|2)‘+1
P22 1T+ N)
%n,)\,N |x|2)\+17
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where the notation f(z) =, n ¢(x) means that f is comparable to g and
that the constants of comparability depend on n, A and N at most. The 1st
and 3rd “x” relations follow from the inequalities in (3.94, page 109). The
2nd one follows from the fact that the integral above it is finite, provided
that we choose N, as in (3.97, page 110). The 4th one follows again from
the choice of Ny and from the hypothesis of case 2, that is |z| < 1.

Finally, equation (3.103, page 112) implies:
1
Wi ()

on {z € R":|z| < 1}. If Cy,n <1, then (cf. equation (3.102, page 112))

WN i1 (2) Ry 12N 4 [T o |2 = (3.104)

relations (3.101, page 112) and (3.104, page 114) imply that Wy x .1 ~pa N

1
w,

on R". Otherwise, in order to achieve the same conclusion, just observe
1

1

oy, are positive and continuous on the com-

that both functions wy 1 and

n

pact annulus 1 < |z| < Oy, n. In view of (3.91, page 109), (3.92, page 109)

and (3.93, page 109), it’s enough to show that Wy x 2 RnauN ﬁ in order
w

to prove that Wy, Rn N ﬁ Let us define:
m

W2 () = /| . ur . (y)dy (3.105)
YI>TaT

Then:

Brrna(z) — / ) 1N gy )y < 2V / wrn(y)dy
ly1> 1

ly|> 1o

= 2V ,0(2). (3.106)
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We will prove that the inverse inequality also holds (with a constant different

from 2%), so that we have Wy,o AN run Wnap2, and that Wy,o ~yaun

1/wy,. This obviously means that Wy 2 &N un 1/wy,. Now, let’s prove

that Wy N apun 1/Wrp-

Case 1: - > 1. Then:

||

Wap2(®) =

/ wr(9)dy

1>

[
1> 1

|Sn—1| > ,r,—n—Q)\—l Tn_ldT
1

[z]
00

’STL71| T72)\72dr
T

S~

oa—1 (FZHME
’Sn_1’ 0 i —22—1
—2XA—1 ||

’Sn_l‘ |l’|2>\+1
2N+ 1

|x|2>\+1

1
Wiy (z)

where the 2nd and the last equalities follow from the assumption of case 1

(& > 1).

||
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Case 2: - < 1. Then:

||

o () = /1 » luA,u(y)der / Uy (y)dy
Y>>

|Snfl| e|z|
62)\-1—1

= Cpa+ t** (log (t))" dt .

Since the assumption of this case (i.e., |z| > 1) we have that e|z| > e. Also,
we are assuming A > 0. So, we can apply the Lemma (3.1.10, page 50) by

setting:
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ele] = =
2V = «

-1 = 7

where the right hand sides are consistent with the notation in Lemma (3.1.10,

page 50). This implies that there exists a constant C , (Cg)’% in the section)

such that:

e|z|
| gy dt w10 (og(elal) ¢

A [l (log(elx)))”

on the set {x € R" : |z| > C) ,}. So, for |z| > max{1, C\}, we have:

~ |5n71| e|z|

{DA’M,Q ('I) - Cn,)\ + W tz)\ 10g (t) dt

My o+ [S"7H 2 log(e|z])

R un I+ |‘,E|2>\+1 ' 10g(€|$|)

|21 - log(e|x])

1

w&u(x) '
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If Oy, > 1, we still have to prove that {ﬁ%g Ran w%“ on {r e R": 1<
|z| < C),}. But this is obvious as both ﬁ and 175*#,2 are comparable to 1
“w

on such annulus.

This concludes the proof that:

~ 1
W\ 11,2 z)\,u,n wh (3107)
I

on R"\ {0}. In view of (3.106, page 114), now we need to prove that there

exists a constant Cy ), such that the inequality:

57@,2 < Cnpopn - WNAp2
holds on R™\ {0}, in order to prove that 111%%2 RN Aun WN 2 and therefore
WNAp2 RNaun 1/wy,. First, observe that 57)%2 is obviously radial and
Wy a2 is Tadial as well. In fact, if A : R” — R" is a linear orthonormal

transformation, we have:

Wy p2(Ar) = / ‘€i<Ax’y> - 1|N “ux . (y)dy
191> 1y
= [ e A )y
ly|> 1o
i@, AL
= [ Y )y
ly1> 5
= |det(A)] / '@ Ny (A2)dz
|z|>

Ta]
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- e 1Ny (A2)dz
ly1> 14

— |ei(a:,z) . 1|N

cuy,(2)dz
lyl> 15

= lfDN)\’“’Q(ZL‘).

The 2nd, 3rd and 5th equalities follow from the hypothesis on A and the 6th
one follows from the fact that u, , is radial. Let us call ey, ..., e, the vectors
of the canonical basis of R" (e.g., e; = (1,0, ...,0)). Since wy 2 and QTEMQ
are radial, it will be enough to prove that the functions t +— Wy ,2(te1)
and ¢ — {Nﬁwg(tel) are comparable on Rt := {x € R: x > 0}. Recall the

definition of wy 2 and observe that:
leiltery) — 1| > /2

if and only if

Foleny) € <(4/€—;—1)7T’ (4/{;—53)%)

for some k € Z. If t > 0 and k € Z, let’s define:

4k + D)7 (4k + 3)7r> } |

b= R™:
k {ye <€17y> S |: 9 ) 2

Ift>0and k€ Z\ {0} we define

dk— ) (4k + 1)7r> }

t o n . (
R, = {yER : (e, y) € [ 5 57
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and
. - -7 T 1
R = {y eR": (ey,y) € [_225 ’_225) and |y| > t}'

Clearly we have:

un,(y) =y e — 1|Nuy L (y)

on

G' = U G

keZ

In particular, there exists a constant Cy such that:

/ unu(y)dy < O - / et — 1Ny () dy.

at at

As fRZ uy . (y)dy < fGLl ur,(y)dy for all k € Zt :={k € Z : k > 1}, and

St wan(W)dy < [ urp(y)dy for all k € Z7 = {k € Z : k < 1}, we also
k k

have:

Uy (y)dy < / uru(y)dy < Cn - [ e — 11Ny, (y)dy.
Gt Gt

/

Therefore:

ez {0} Bi
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/ wnuy)dy = / wnn(y)dy + / wau(y)dy
[{e1,y)|> 25 Ukez\ (o} R}, Gt

< 205 - [ et —1Nuy L (y)dy
Gt

< 20y - / leitters) —1Nuy L (y)dy.
ly|>+

Since uy,, is radial, it follows that:

/ uy . (y)dy < 2Cy - / lettery) — 1Nuy L (y)dy
Kes > &

1
lyl>+

for all j = 1,...,n. Let’s denote the oco-norm of a vector y € R" by:

Yoo == sup |(e;, ) |-

1<j<n

Then we have:

n . m . n . ™
fperipl>2h= U {per:l@nl> 5}
1<j<n
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and therefore:

/ wa)dy <> / u,(y)dy — (3.108)
{yeRnily‘oo>%} 1<j<n {yER":\(ej,y)|>%}
< 3 aCw [ - 1)y
1<j<n ly[>+
= Z 20y - / ettty — 1[Nuy ,(y)dy
1<j<n lyl>%

— 2-CN.n./ ety — 1Ny L (y)dy.
ly[>1

As we will see later, if we can prove that there exists a constant Cy )y ,,.» such

that:

u,\#(y)dy < CN,A,u,n / ‘ez’(tem;) _ 1|NU)\’#(y)dy

1
ly[>7

/ :
{veR™|y|>%, |yloo<5;}

then we are done. To see this, let’s use the following lemma.

Lemma 3.3.1. Let uy, be as in definition (3.88, page 108). Then, for all
n € Zt A€ R and C > 1 there exists constant D = D(n, \,C) € R such

that:
U,y (%) <D -uy,uly)

for ally € R™\ {0}. Forn>2 and \ > 0, the inequality:

Uy, (Cy) < uxpu(y)

is obvious since the definition of uy .
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Proof. All we need to show is that:

u y
sup L ANeP) (C) = sup —UA’”(y) < 0.

yeR™\{0} UA,M(Z/) yeR™\{0} UA,H(CZ/)
There are three cases.

Case 1: |y| > 1, |Cy| > 1 (that is, |y| > 1). Then:

u}\’u(y) _ |y|7’n72)\71
uu(Cy) |Cy|=n=22 1
’y|—n—2>\—1
= |y| 221 . 0221
2+
therefore:
sup U)\#(y) :Cn+2>\+1- (3109)

ly|>1 ux . (Cy)

Case 2: |y| <1< |Cy| (that is, & < |y| < 1). Then:

) (los ()

U,)\VM(Cy) |Oy|—n—2)\—1
— (log (£>)M O
|y
therefore:
sup M — Ont2ML (log(eC))". (3.110)

&<lyl<1 ura(CY)
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Case 3: |y| < |Cy| <1 (that is, |y| < &). Then:

wly) WP g (i)
(

uxu(Cy) |Cy| =221 . log

e 14
— C«n+2)\+l . ( log (m )
log (m)

_ omn log(e) — log(ly|) )“

log(e log ly|) — log(C)

log(e log lyl) — log(0)+10g(0))“
log(e) — log(|y]) — log(C)

_ Cn+2)\+1

log(C) )”
log(e log(ly!) log(C)

] log
log(27) )

“unu(y) _ L (1 + ll(:)gg((f)))“

Cvn+2)\+1 . (1 + 10g<c))ﬂ

_ Cn+2)\+1

+

(e

(9
= CnrAL. (1+

(

therefore:

sup
0<lyl<d uxu(Cy)
O™ (log(e) + log(C)*) (3.111)

CmT2ATL L (log(eC))™.

Equations (3.109, page 123), (3.110, page 123) and (3.111, page 124) finally
imply:
uu(y) n+2A+1 mt2A+1 "
sup ———— = max{C ,C - (log(eC))*} (3.112)
yeR™\{0} Ux N(C’y)
O (log(eC))* =: D < o0
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as claimed, with D = C""2**1 . (log(eC'))*. O
Since
1 T 1 T
R™: - o X — 7 C R": - < —
lveripi>1 s ple{ver <=7

we have

§ up,(y)dy < / uy . (y)dy
/ es )" {vernid <<z}
2x
Uxp (—> dx
ny/a T/n

2 2z
B (my/n)" /“5{5<|x|<<ﬂ4\/f)2 U <7T\/ﬁ) dx
< (mv/n/2)P ! (log(emy/n/2))" -

. uy u(x)de,
T n T n 2 ’
/2{<|ws( e

S

o[

t S mwy/n

where the 4th step follows from Lemma (3.3.1, page 122), with C' = 7y/n/2

and therefore:

D = ™4 (log(eC)) = (m/n /2P (log(em/n /2))"
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So, after setting C,, . := (my/n/2)** ™! (log(ery/n/2))*, we have:

/ wu(y)dy < Coap /f " uy u(x)de
{yeR™|y|>1, |yloo<ZE} IV < Y2

IN

Cn,)\,u /\'ﬁ u)\,u(y)dy

e <l

IN

Cop / uA,H(y)dy (3.113)
[Yloo> 5

IN

Cn,)\w 2 ON n-
I A
Yy|I>1

The 4th step follows from (3.108, page 122). Finally, (3.108, page 122) and

(3.113, page 126) together imply:

/ U, (Y)dy < Cppn - / leltery) — 1Ny L (y)dy  (3.114)
{veR™[y|> 1}

1
lyl> %

that is (cf. (3.92, page 109) and (3.105, page 114)):

1717&“72(1561) S Cn,/\,,u,N . ’[EN,,\%Q(tel) (3115)

Inequalities (3.106, page 114) and (3.115, page 126) say that:

WN A2 Fnapu,N Wap,2 (3.116)

on R™\ {0}. The relations (3.107, page 118) and (3.116, page 126) obviously

imply that:
1

WNAp2 AN —— (3.117)
Wxp
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on R"™\ {0}. The relations (3.93, page 109), (3.101, page 112) and (3.117,
page 126) conclude the proof of (3.90, page 109), that is the claim of this

section.
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Chapter 4

Proofs of lemmas

4.1 Proof of Lemma 3.1.5, page 41

Let’s recall equation (3.20, page 41):

/"/1 ’(S)"%k)“t(f)(x)’z%qu(|$|)da:

(4.1)
< CTQL,A%%;C /R |f(x)|2ww(|x\)dx

for all f € S(R™). This is equivalent to saying that the operator (Sx..)a() :

L2R", wau(l - ) = L*(R" x [1, 2], Fwau(| - ) is bounded, that is:

1S3k )at (D)@ 2ty oty < Cnrmorl Fll2200n, ()

Since the operators (Sy ,.x)at are defined via real and radial multipliers, they

are self-adjoint.
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In order to use this fact, we rewrite the condition (4.1, page 128) by duality:

(g(t,z), (Snqr)ae(f)(@) >L2(%w>w(|x\)dx)
(4.2)

Scn,)\,,u,’y,kug(t? x)HLQ(%wXH(\dex)HfHL2(“-’A,u(‘x|)d5U)'
Now we use the self-adjointness of (S x)q to rewrite the first line of (4.2,

page 129):

(9(t, ), (Sxqk)at(f)(2) >L2(%ww(\x|)dx) (4.3)

f(.l?) (S)\,'y,k)at(g(tv ')w)\u(’ : |))(£If) —dx

= [ ([ Srantatatt onal - 1) T )
= (@) ([ Sroatatt, nall - D)) %) )

Since, in the last line, the operator (S).x)s.: applies to the function

)
3

g(t, - )wru(| - |), we want to rewrite the factor ||g(t,$)||L2(%ww(|x|)dx) in the

second line of (4.2, page 129) as a norm of the function g(¢, - Jwy, (| - |):

2
dt
2 - 2
Hg(t>x)”m(%wwqxnd@ = /R"/1 lg(t, )] twku(’x‘)d*x

- /R/1 9t Do) 2L —2 (4.4

t wau(]z])
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B 2
= ||g(t,J})W)W(LTD||L2(%%Z“az‘))’

We can summarize the last steps by setting h(t,x) := g(t, z)wy,(|z]) for all
t €[1,2] and x € R™\ {0}, and by using (4.3, page 129) and (4.4, page 129)

n (4.2, page 129) to rewrite this last condition as follows:

(1. ([ St n@ 5 ) . -

SCrppuye|M(E )| p2gae el 220n (oo

(\ I)

for all functions h, f such that the previous expressions make sense. As we're
trying to use (4.5, page 130) to obtain an alternative formulation of the
boundedness of the operators (S).x)aq, We should view f as a test function
and (4.5, page 130) as a version (by duality) of such boundedness. We can

achieve this by rewriting two terms in the following way:

(1o ([Sonuoe 0 F))  an
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and

1 anptipan = [ @) Fnlel)da

i

:Hi
Ju

2
2
w(x) wy,(|x|)dx 4.7
where g is a function satisfying:

Y

2
L2 (p(z) 2wy pu (2] de)

p(x) = p(x)*wr,(|z)),

that is, u(r) = —2— for all z € R"\ {0}. So, we can rewrite (4.5, page

D)

<% (/j(SA,%k)at(h(t, () %) >L<W>

130) as:

f (4.8)
<Cunpalt )y s |2
e LQ(%Z?M))
for all functions f, h, that is:
2 dt
p(z), (Sxkar(h(t, ) () — ,
' qevi) (4.9)

< Conpast Mgy Wl

ERSWED) @ (l])
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for all functions ¢, h in the appropriate spaces. By duality, this means that:

2 dt
(Snak)ar((t, ) (@) 7
1 L2< dx >
(e
SCn,A,u,v,th(t’flf)HLQ((ﬁ e ) (4.10)
P (ED)

92k(22-1)
= Cn,A,u,vah(fw)HLz(dt s5r)

EREWED

for all functions h(¢, ) in the appropriate spaces.

So far, we have reduced (3.20, page 41) to (4.10, page 132). (We haven’t

ok(23—1)

proved, yet, that Cpx vk = Cuapnygz=-) Now we will use (3.90, page

109), that is:

CLnau,N

Wy ()

Con N

< wnpu(T) <
! Wy ()

where uy ,, Wny,, and N were defined in (3.88, page 108), (3.89, page 108)

and (3.97, page 110) respectively as follows:

) = { o7 log (7)) i vl <1,

ly[ At if |yl >1,
W p(T) = |€i<gc’y> - ”NU/\,;L(y)dZ/;
R’ﬂ

N =Ny:=2[2A+1],
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and C1 . un,, Cinapun, are constants that depend only on n, A and p.

Therefore, for every f € L? (R”, L), we have:

WX

HfH;( ) (4.11)

PYWALEN

dx

g 1
- Rn’f<x)’ w&u(aj)

S 10 ( e uNXuA,,xy)dy) da

_ / wn(v) [ @) 1 dady

R”

. Ny |2
= [l [ Jr@lee — 1% [ vy
R’n n
NA 2
= / U (y) / flz) (—1yeen(F 1) dzdy
R" n ‘=
Ny 2
2 \/2—7
= [wnato) [ |1 | Sy e ) oy
R” n =0 2
Ny 2
2 A/2—J
= [oanato) [ || S s D 1y, | dody
R" "\ = 2
Ny N2
- wi{(z Na/2=3
= [oanato) [ || 2 s @) Cay ) dedy
R n j=0 2
Ny 2
o Ny/2—3
= Jome [ 76 (P52 ) v | aca
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= [ st || o7 (6= (o)) 17ty || o
e 2

where bn, ; denotes the binomial coefficients with indexes % and 7. We
2 2
want to apply equation (4.11, page 133) to the function f defined by:

dt

Fa) = [ (Ssqadalhlts ) T (1.12)

Observe that, in view of the definition of the operators (Sx.x): (equation

3.10, page 31), we have:

-~

fie) = [ htmutatie (1.13)

where the Fourier transform % of h is computed with respect to the second
variable.

Therefore (after evaluating at (f — (M>y> instead of at ¢):

e (4272

) 7 iy (4.14)
(e (B o) et (52
Then:

Ny, 2
: f(&— (%) y) (1) by | (4.15)
=0

- R Ny/2 =

- [ B ()




2

()
(e (50)
() )

In view of definition in equation (2.5, page 11) and the fact that 1 is sup-

' m,\mk<at

2

. m,\mk(at

ported in [%, g}, we have:

5 1
supp(ma k) C [1 g 1-— Y Qk] : (4.16)

Therefore, the integrand in (4.15, page 134) is non-zero at a point ¢ € [1, 2]

only if there exists j € {0,1, ..., Ny/2} such that:

Ny/2 —j 1
1— < (R <1 - 4.1
8-2’f_at‘§ < o )y‘— 8. 2k (4.17)
that is, only if:
Nx/2 _ 5 1 L
t € [1,2In B 52
j=o | @ 5—( *5{”)3/ a|§— *5{’)3/‘
e 1— 5 1— 2
= U Ni'/?H , Nf'fH N[L,2] | (4.18)
= \Lafe= (B2)o] ale= (252
Ny/2
. ENy.k,a
- U
j=0
where the sets Aﬁ”\’y’k’“ are defined by:
” 1- 5% 1- g
Ak — 5.2 5.2 N2l | . (419)

ol (M)l ale- ()]
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Now, for every &, y, A, k, a, let’s define the set of indeces J&M ke = JoAvkaln
JEAYFRa2 where

1— L
82" >1 (4.20)

JEAvkel = 5 e 7 T 2
= ()]

a
and
1— -2
J{,A,y,k‘,d,Q — j c Z : 8-2% < 2 (421)
- ey

With this notation, we can prove that the di-measure (hence, the %-measure)

of the support of the integrand in (4.15, page 134) is at most:

\y,k \y.k
U A§7 »Y,R,a U U A§7 yY,R,a (4.22)
J J
0<j< P 0<j<
jEJEN kL jg e uka
€7A7y7k7a €7A7y7k?a’
< E | A5 | + | A
o<j< o<j<
jeJEN v ka jgJENuka
_ &Ny ka
= ) | A3 |
0<j<
je SN ka
5 1
< E : 1 8-2F 1 8-2F

a

)

=

1

. Ny
OﬁjﬁT

jegsruka

- X
al€— NA/Z J y
0<j< R
jeJE v ka
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(1)

IA
P M

5
= > o=

o<i<
]e‘]&,%,y,k,a
5 [ Ny 5(n +1)

This observation is useful when we apply the Cauchy-Schwarz inequality to

the integral in (4.15, page 134):

2
Ny/2

2. (e (P5)v) v,
< ,%2 12 + 2] /12 Nfﬁ(t,g _ (%)y) _ (4.23)

'm/\,v,k:(at £— (%ﬂ_j)y‘) (=1) by,

Before using (4.23), let’s observe that, by (4.11, page 133) with f as in (4.12,

2dt

page 134), we get the following comparability estimate for the left hand side

of (4.10, page 132):

‘ /lz(SA,'y,k)at(h(ta >)(x)% iz(“%za(gz)) (4.24)
o fonl(E 3 (220))
e DR
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Therefore not only (3.20, page 41) is equivalent to (4.10, page 132), but it’s

also equivalent to:

[l (e (e (B20)))

2

Ny/2—3 dt ;
] (22 ) o 9
2]4(2)\71) )
SCn,A, , —_“h(t,l‘)” )
T 2y—p L2<%w>\,j%‘l“))

for all functions % in the appropriate spaces (the constant C,  , may not
be the same as in (4.10, page 132), due to the fact that (4.24, page 137) is
not an equation).

After recalling that f was set in (4.12, page 134), we can use (4.23, page 137)

to see that (4.25, page 138) is a consequence of:

2k+2 [2X + 2] // iy /QNEA/:Q,«N (NA/Q—J)y).

-m>\77,k(at £ — (%W_‘?)y’) (—1) bTA’

2k(2)\71) )
< Cn,)\,u,'y—_Hh(ta JI)” .
k2v—n LQ(?%ZT\ \))

“di (4.26)
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which we can rewrite (with a different constant C, » ,..):

oo [0 (4572)s)

'mA,w,k<at §— (%W_j)y') (=1) by,

2k(2)\—1) ok+1

2 dt

D , 4.27
< Chnpn k21 Hh(t’x)”L%‘?%d@l)) -
22k)\ 9
=y | |h(t, )|
Y 2y L"’(%%jﬁ \))

22k A dr dt
—Clis M/ / IA(t, ,
n wku( ) N

which in turn follows from the fact (which we still have to prove) that the

following inequality holds for every ¢ € [1,2] and for every a > 0:

Ny/2

Jodumato (e (P57 )

ot (B2}

dydg
22k>\ N dr
;,A,u,fym/nlh(t>w)| ww(:c)'

for every h in the appropriate space. At this point we can simplify the

) .

2

(4.28)

notation, as (4.28, page 139) is in fact equivalent to:

INEE LG ey

'mm,k(t §— <%)y ) (=1) b,

22k)\ d[L‘
! 2
e )

wy, (T

NA /2

<

~—
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if it holds for every h € L? <R”, wjﬁx)) and every ¢t > 0 (observe in fact that
the ¢ variable of h no longer played a role in (4.28, page 139), therefore we
replaced h (¢, - ) with h and the product “at” with just t).

Because of (4.11, page 133) applied to the function f defined by:

F(6) = h(&)ma,x(tl€]) (4.30)

that is, by:

F@) = (A massltl - D) (@) = (Snaph)@),  (431)

we have the following comparability relation for the left hand side of (4.29,

page 139):

Ny /2

Jodumat] (e~ (P )

. 2
ol (2=,

dyde
Nnap |I(Sx,w,k)t(h)(x)|li2( 0 )

EWA(EN)

(4.32)

that is, (4.29, page 139) is equivalent to:

22k A dx
S h) ()| < Cp —/ h(z)|”
H( A,y,k)t( )( )HL2<W> ,A,u,vkzw—u Rn| ( )’ ww(x)

22kA
Cn,A,u,yW“hHiQ( e > (433)

@2
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for another constant C,, 5 .-, for every t > 0 and h € L? (R”, %) By
n

duality, (4.33, page 140) is equivalent to:

22k>\
(30 ) P,y < Corr g 1Mo (4.34)

for all h € L*(wy,(x)dz), t > 0.
So, it’s enough to prove the latter in order to prove that (3.20, page 41) holds

for every f in the appropriate space and every a > 0.

We denote by (Ky.x)i(z) the kernel of the operator (S, x):, i.e., the in-
verse Fourier transform of the multiplier my . x(¢| - |). Certainly (K. x); is

a radial kernel on R", and it is convenient to decompose it radially as
(Kxmk)t = K)wyk +Z K)\'yk ;

where (K01 () = (Kxya)i(@)o (2~ /) and (Ky.0)f (2)
= (Kyyn)e(z) (02703 g /t) — ¢(27*F289) /1)), for some radial smooth
function ¢ supported in the ball B(0,2) and equal to one on B(0, 1).

Therefore we have
supp(K,\mk)gj) C B(0, 27T+ (4.35)

Observe also that, with this definition, we have:
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Kyl (@) = (Kaqp)e(@) (927053 2 /1) — (27 F+2+0) /1))

= —(Kana)i(@/t) (6(270H4+9) 2 1)

_¢(2—(k+2+j) a:/t))

which can be stated as follows:

—_—

(Kni)(€) = ()P (£6)

To prove estimate (4.34) we make use of the subsequent lemmas.

(4.36)

Lemma 4.1.1. For all M > 2n there is a constant Cy pm = Cx 01 (, @)

such that for all 7 =0,1,2,... we have:

S0 2~
sup [(Kaqe)i” (6)] < Chanr =5
¢eRn

and also

- 9—(+)M

[(Era) ()] < Crgar =

whenever |t|€] — 1] > 2!7F=3 and | > 4. Also

— 9—(j+k+3)M

[(Kran) ()] < Cranr =

whenever [t&] < 1/8 or |t&] > 15/8.
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(4.39)



Proof.

The proof for ¢ = 1 follows the lines of the proof of Lemma 10.5.5 in [8,
p. 413] (even if the proof itself is only at page 416 of the same book). Just
observe that estimate (10.5.9) at page 409 of [8] is now replaced by (2.7, page
11), because of which the factor k% appears.

The general case (any ¢ > 0) is straightforward in view of (4.36, page 142).

]

Lemma 4.1.2. There is a constant Cy, »,, such that for all Schwartz functions

f,allt >0 and all 0 < € < 2, we have:

- dx
[ IR©OPdE < o orte [ 1500 (4.40)
[[tE|—1|<e R wu(7)
and also for M > 2n there is a constant C,, x . am such that:
/ F (&) ;df < Copgorr wru(t) | |f(2)? d (4.41)
n (L+[eghM == 77 R wu()
Proof.
Postponed until section 4.2.
O

Assuming Lemmas 4.1.1 and 4.1.2 we prove estimate (4.34) as follows.
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Using Plancherel’s theorem we write

[ ? s n@Pae = [ 10 ©FIFOR de

< I+I1I+1I1,

where
- / (o )P ©PIFE)2 de
[tE|<g,ltg>22
[logy %2’“]—}—1 — R
m= Y ()i ()P de

—a 2l=k=3<] |t g|—1|<2l k2

—

1 = / (K i) (€)1 F(E)]2 de
[[tg]—1]<2-k+1

Using (4.39) and (4.41) we obtain that:

~

2—2(j+k;+3)M |f(f)|2
I < C? / d
Ay, M L2v R <1+t‘€’)2M £

9—2(j+k+3)M

2 Consa om0 [ 107
R”

o 2 ) [ @) -2
n 52k M 120 Y v
Ay, M 22kM kQ'Y A R" w)\,ﬂ('r)

dx

Wy ()

2
- CA,%M

In view of (4.38) and (4.40) we have:
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[logy %Qk]+1 I

I = K gj) 2 2
; /wgg,tg,_&Ml( ra)i (P FE)I g

02 [logy %2’“}—1—1
< 9-2iM Ay, M 9—21M 7 24
- k2 Z 2R3 < el -1 FLQI7de
=4 < ol—=k-2

2
9=2j M C/\,%M .
k2

[logy £2¥]+1

3 (zﬂMcn,A,ﬂ o252 [ 7)) =2 )

IN

- R wku@)
Oy dx
_ 2—2]M M t 2 '
o 2 ww( ) Rn‘f(-l")‘ ww(ﬂv)
[logy Z2F]4+1
Z (2[(172M) )
=4
9-2j M dx
/ 2
< Clypmar S wiu(t) Rn|f(iv)’ wrn(2)

Finally, (4.37) and (4.40) yield:

—

[ - / ()P ORI de
[|t&]—1|<2—Fk+1
9—2j M

CR g / f(&)d
A?’Y?M kz’y Ht&‘_l‘§27k+l ‘f(g)‘ f

. —2j M , dx
< C, Sz Wil '
— ,)\”LL,’Y,M 2]{: kQ’y W)\“u,( ) Rnlf(x)‘ w>‘7l’“ (x)

Summing the estimates for I, I1, and [1] we deduce:

[ 0 D

<Corprst o i) [ 1@ =2
n ok 12y ¥ v

(4.42)
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for some other constant C, x .~

By duality, this estimate can be written as:

/ (K )9 # £)(@)]? wr(2)de
2—2jM ) (443)
S Cn,/\,u,%M W w&u@) Rn|f<x)| dx.

Given a Schwartz function f, we write fy = fXQ(()n,k,j,t), where Q(()n’k’j’t)
is a cube centered at the origin of side length C, 27***4¢ (cf. the support
of (K mk)?) (4.35, page 141)) for a purely dimensional constant C,, (for
example, C,, = 10n is large enough for our purpose). Then for = € Q((]n’k’j )

we have |z| < \/nC, 297741 hence (4.43, page 146) implies:

| 100 )@ ws(a)ds (444
2—2jM )
Conmadt Gy @an(t) /Q s S0 dz
0
272 M Wi (t) 2
DR Wy (/1 Cy 20 ) Lgn,k,j,n'f‘)(x)' Wru(w)de

IA

< Cn,/\%%M

because the function ﬁ is increasing. A computation similar to the one
n

started at page 33, with % replaced by a > 0, shows that:

wyu(at) 1
sup t T 20 +1
>0 wa(t) a

if @ > 1 and that:
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sup wip(at) _ (log(e/a))*

150 Wi(t) a2 1

if a < 1. Therefore, for all j and k such that j+k > C/ for a suitable purely

dimensional constant C,:

w w nC,, 27 tk+4
o) o /(2

150 Wau(v/nCy 20T ) g wip(t)
= (v/nC, 2j+k+4)2)‘+1 (log (ey/nC,, 2j+k+4))ﬂ

=C,\ 2(j+k)(2A+1) (log (e\/ﬁC’n 2j+k+4))#

< ), 20D (4 e (4.45)

where we used the hypothesis on j and £ in the last equality. Now observe

that, if 0 < u < 1, we have:

R R
4k 4k
< (1)~ Giw)
= \y+k itk

GH ot

RN RN EN O
B G+ kH
R

that is:

(J+ k) < gt + k"
On the other hand, for y > 1, the function x — z* is convex, which implies:
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(j+k>“<j”+k“

that is:

( + k)" <207 4 k).
We conclude that for every p > 0 there exists a constant C), such that:
(J+E)M < Cu(g" + k). (4.46)

(In fact, the same tricks can be used to show that (j + k)" ~, (j* + k"), for
all j,k,pu > 0.) The last inequality allows us to go a step further in (4.45,

page 147) and get:

wiu(t) ' (G+E)(2A+1)
. < 2V kR, 4.47
Tob W (y/1Cy 2R gy = G+ (4.47)

Then we can use (4.47) and (4.44, page 146) to obtain the following estimate:

[ 100 )@ ws(a)ds (4.4
2 25 M
< Cpa, O:mu 9(i+k)(2A+1) (" + k") -

/(nk t)|f0( )| wy, () dx
Q s

) 22kA
= Cpapur 2O o (1 1) | fol(@)? wu(x)dz,
k2 thkjw
provided that
j+k>C. (4.49)
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Now write R™ \ Q(()n’k’j’t) as a mesh of cubes an’k’j’t), indexed by i € Z \ {0},
of side lengths C, 27+%+4¢ (the same side length of Q") and centers
cg;- Since (K ,\,%k)gj ) is supported in a ball centered at the origin, of radius
2itk+4¢ if f; is supported in Q;, then f; * (KA’%k)Ej) is supported in the cube
2y/nQ;. As the constant C,, is large enough (recall that we set C,, =10n)

then for any x € an’k’j’t) and ' € 2¢/n an’k’j’t) we have

2] ~n [equ| ~n 2],

which says that the moduli of z and z’ are comparable in the following

inequality:

/ s ()« L) wru (o)
2+/n i ELav R

)2 2 (4.50)
<Corsit i [ HO P w00
Thus (4.50) (with a different constant C ) is a consequence of
Lo i ) s ) d
2y/m QMR
R (4.51)

9-2jM

< (C? i (2)]2
- O}\,[,L,’Y,M k2’y /Q\('n,k,j,t) |fl<x)| d:'v 9
which is certainly satisfied, as seen by applying Plancherel’s theorem and

using (4.37, page 142). Since for j > 1,k > 1 we have 22F (j# 4+ k#) > 1, it
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follows from (4.50, page 149) that

| 100 )P o)

o 2 (4.52)
T R [ @R e

<Chpra 27—

whenever f; is supported in ank] " Given a general f in the Schwartz class,

write

f= Z fi, where fi= fXQ(_n,k,j,t) )
i€Z '
Then, in view of (4.48, page 148) and (4.52, page 150):
”(KMk * fHLQ(wX )

<2H K/\Wf *f0HL2 (wx ) +2||Z K*Wf *f’||L2

= (w )
Al 1l 200 s
. 22k - 2
< O pusynr /A0 T2y (" + K) |:HfOHL2 +#ZOHJCZ'HL2(MM)]

—C 2j(2)\+172M) 22k>\ ( + k,u HfH
A\, 1y, M k’2’7 J L2(w )
(4.53)

where we used the bounded overlap of the family {K * f;};zo in the second

displayed inequality. Then we take square roots in (4.53, page 150) to get:

[[(F0)z ) *fHLZ(w& )

<l PO 2 ﬁ SN/ HfHLQ(W (4.54)
) 2k/\
SCZ,)\,M%M QJ()\Jr%iM) F HfHL2 (wrp)
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where the last inequality follows by another application of (4.46, page 148).
Observe that condition (4.49, page 148) is satisfied if we assume k > C7,
which we can as the convergence of (3.13, page 32) only depends on the
estimates we have for k big enough. So, for k > C!, by using (4.54, page

150) and summing over j = 0,1,2,..., we deduce (4.34, page 141):

[ENSARET. (455)

= A w)e* Al 2wy )

:‘KEJKMM9>*h
j=0

LQ(“’%M)
" 2k>\ > j()\-i-l—M) B n
< oy L2 GE 4D s,
j=0
= " ﬁ h” in()\JF;M)
mA M =B I () j=0
QkA 00 Ol b
" & il u
0 kv ”hHLQ(ww) ;2 i J?
< " 2kA

n,A,u,vm—_% ||h||L2(w>w)

as claimed, if we just choose M > % before the last two equalities (re-
call that n > 2\ 4+ 1). This proves (4.34, page 141), that is equivalent to
(4.33, page 140), that is equivalent to (4.29, page 139), that is equivalent to
(4.28, page 139), which implies (4.27, page 139), that is equivalent to (4.26,

page 138), which implies (4.25, page 138), which is equivalent to (3.20, page
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41). Therefore, this completes the proof of Lemma (3.1.5, page 41), modulo

Lemma (4.1.2, page 143).
4.2 Proof of Lemma 4.1.2, page 143

We reduce estimate (4.40, page 143) by duality to

| O 0 < Coryniz [ lg@P s (450)

|[tz|—1]<e

for functions ¢ supported in the annulus ||tx| — 1] < e. In section (3.2,

page 56) we proved that wy, ~», w&i, that w!"

A 18 represented by a locally

integrable and polynomially increasing function, and that the function \wf\lm
is bounded by a scalar multiple of €2, (cf. (3.37, page 57)) in the whole
range \ € (0,”7_1). Therefore, we can start to prove (4.56, page 152) as

follows:

(4.57)



where g(x) = g(—z) and

B(n, A\, p,€,t)

‘ lg(z)[[g(y)] -
|

=C
”’A’“//ty <e
<e

[t x|

o
Uz —y)dedy

< CrnuB(n, A2, 1) |9

sup / Dy —2)dy
{z:] [tz|=1|<e} J | [ty|-1|<e

/ Oy — 2/t) dy
[lty|—1|<e
1

n
" J)yl-1)<e

sup
{@:] |z|-1|<e}

sup
{z:| x| —1]<e}

1
o sup / QL (y— ) dy
(] e =11} J [ Jyl—1]<e

Quly/t —x/t) dy

where QY () := Q) ,(z/t). The last inequality of (4.57, page 152) is proved

by interpolating between the norm

L'{zeR":||to| -1 <e}) = L'{x e R": ||ta| — 1| < e})

and the norm

L¥{xeR": ||tz — 1| <e}) = L®{x e R" : ||tz| — 1| < ¢e})

of the linear operator

Lpie(9)(x)

| sty =a)dy
/||t e 9(y) Dy — x) dy
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(recall the hypothesis on the support of the function g), and by using the

Cauchy-Schwarz inequality. It remains to establish that
B(n, A\, pr,e,t) < Cpap wau(t) €.

Applying a rotation and a change of variables, matters reduce to proving

that:

1

o [ 00— ) dy < Gy 2 onll),
[z|=1|<e S| |y—|z|e1|-1|<e

where e; = (1,0,...,0). This, in turn, is a consequence of

1
— DL (y) dy < Gy e wap(t), (4.58)

& Sl ly—er|-1]<2e
since ||y —ei|z|| — 1| < e and ||z] — 1| < e imply ||y —e1| — 1] < 2e. In
proving (4.58), it suffices to assume that ¢ < ﬁ; otherwise, the left-hand
side of (4.58) is bounded from above by a constant, and the right-hand side of
(4.58) is bounded from below by another constant. The region of integration

in (4.58) is a ring centered at e; and width 4e. We estimate the integral in

(4.58) by the sum of the integrals of the function #qu over the sets:

So={yeR": |yl <e, |ly—e|—1]<2¢},
Se={yeR": lte<|y| < (l+1)e, ||ly—ei]—1]<2e}, (4.59)

Seo={yeR": |y >1, |ly—e|—1] <2},

where ¢ =1,...,[L] + 1. The volume of each S; is comparable to

e[((C+1)e)* " = (Le)" ] mp, ™72 (4.60)
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Now we estimate the integral in (4.58, page 154) a piece at a time:

/ O, (y)dy = / (/1) dy
So SO
n—1

€
n—(2\ r
S O;.,»\t (2 +1)/0 m d?“,

_ C;M tn—(2)\+1)/€ P2 dr.
0
1
(2A+1)

1
_ C’ gn—(2A+1) 2A+1
(2A+1)

I n—(22+1) 22+1 ‘6
=C )\t ( 0

_ C//)\ tn—(2)\+1 22+1
n, .

ke

(4.61)

The estimate above holds for all ¢ > 0. In addition, for ¢ > max{2, C, .}

(where C), 5 ,, is a suitable constant that comes from using Lemma 3.1.9, page

47) we have that t > ¢ (because 0 < € < 2) and that log(et) > 0. Therefore:

N,Wdy = Dy /t)dy
S() SO
< (22 +1) : !
R T e
_ m—(23+1).
- nku

(1/s)

/s (151 s

o (1/s)n= (D) <log< ))” 52
—enny [ § 2

= Gt f (log (et )"

@l /OO (r/t)=2 dr

- A
W t (log (er))"

155

dr

(4.62)



) ') T72)\72
— " —  d
A / (log (er))” "

. . (t/g)—sw\—l
T (log (et/e))”

tr 22+1
22+ (log (et/<))"

tn
< C 22+1
= YR (log () ©

= Cut"wy,(t) et

The second, ninth and tenth steps follow from the assumption that ¢ > 2,

the third and the fifth follow from a change of variable while the seventh

follows from Lemma 3.1.9, page 47. The inequalities (4.61, page 155) and

(4.62, page 155) imply that:

/s DY)y < Crnut" wr(t) 24
0

Let’s now estimate the second piece of the integral in (4.58, page 154). Be-

cause of (4.60, page 154) we have:

[z]+1 2/e
Z / Qt)\,,u(y)dy S Cn,)\”u Z 5712”72937“(6 g 61)
(=1 75 =1

2/e

" t
~ nm—2
n\u E ey gngnw’\’“ (E) .
(=1

The second relation in (4.63, page 156) follows from the identity:
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1 1
Dy ult e1) = Cn7>"“t_n Wip (%) (4.64)

(cf. definitions (3.5, page 29) and (3.36, page 56)). We can assume without
loss of generality that t > 2, because the other case is an immediate conse-
quence of Lemma 10.5.6 at page 414 of [8]. Therefore £ > 2 and the index ¢
in (4.63, page 156) satisfies £ < ﬁ, that is, i > 1. Because of the piecewise

definition of wy, we can continue (4.63, page 156) as follows:

[2)+1 2/e tn 1
Q5L (y)dy ~ ), e n n
; /sg . “zz_; £ren ()™ (log ()" (4.65)
2A+1n—2X 1% At
—¢ TN TR
= (log (52))"

Now, observe that we can estimate the summation in (4.65, page 157) with

an integral. In fact we have:

€2)\71

(log (52))"

g?)\fl

. (og ()"

12A71
. Te(D)
(2/2)"

et #
(108 (@52))

1

(log ()"

22A—1

T g ()"
1—2A}

+

max{1,¢e
(log (5))"

1
< Oy —57——3
= P g (e )

C
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where the last term will turn out to be equal (up to constant only depending
on A and ) to the integral corresponding to the summation in (4.65, page

157). Also, the function f(z) = (bng—L—tl))u corresponding to the argument

T e

g(¢) of the summation (that is, g(¢) = (k)f{—e;;)yt) is positive and monotone

le

on [1,2/¢]. This proves that we can estimate the sum with the integral.

Therefore we continue the steps in (4.65, page 157) as follows:

(4.66)
[+ 2/ A
Qt (y)dy %m , 82)\—1—1 tn—Q)\—l
2, o s 2 (iog (2))°

S 52>\+1tn—2>\—1/2/6 —$2/\_1 dx
" 1 (log (££))"

_ 2w tn—2)\—1/1 ro dr
o2 (log (<£))"

t
€
cs\ —22—1
_ 2A+1 jn—22—1 /t/E (T) €
= € t - 7
e (*£2))
t/e 372)\71
= " e / —___ds
12 (log(es))”

~ n—1 (2) 1
o 7 (A gy

o L

Can (t/e)? (log(e t/€))“>
n—1 1

Crut™ e (t2A (log(et/ 2))“>

n—1 1
S
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= Cy, t" 1
- e S (loglet))”

= C,\,# t"gww(t).

In the second step we used the consideration we just made, the third and
fourth are changes of variable, the 6th and the 8th hold provided that t > C ,
for a suitable constant (that comes from Lemma 3.1.10, page 50) and the last
one holds since we're also assuming that ¢ > 2. Finally, the volume of S, is
about € (cf. (4.59, page 154)); in addition, if y € S, then 1 < |y| <1+ 2e.

Because of these considerations, and in view of (4.64, page 157), we have:
|t = [ iy

tn
R / wau(t/|Y) = dy (4.67)
Soo |yl

< Cn,)\,,u’Soo| W)\”u(t> t" < Cn 80&))\’#(75) t".

Combining estimates (4.62, page 155), (4.66, page 158) and (4.67, page 159),
we obtain (4.58, page 154). This concludes the proof of (4.56, page 152),

that is equivalent to (4.40, page 143) by duality.

Let’s move to the proof of (4.41, page 143):

dx
Wxp () .

[ RO g 4 < Conar wnalt) | 11@)F
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for all f in the appropriate spaces. This estimate is already known for ¢t <1
(see for instance equation 10.5.22 in [8]). Indeed, if 0 <t < 1 then wy,(t) =
tm%, and (4.41, page 143) follows by dilation from the case ¢ = 1, that is

shown in [8]. For ¢ > 1 define:

1
Al = {fERnilf\Sg}
L1 2+t
AL = {feR”:Z—:\/E ]f\Sw}
2+t

A = {5€R"z%<|§|},

therefore:
. 1
¢ =T+II+1I1+1V

where:

— )2 1
NG e

— F€)|2 1
= O g

— FE)]2 1
= P g

~ 1
v = /A| OF e 4
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We're going to show that

dx
Wiy ()

NGk 4 < Conporr na®) | [F@)F (4.69

1
(1 + [t €)™
for all j € {1,2,3,4}. In order to show that (4.68, page 161) holds for j = 1,
first observe that W ~y 1 on Al and then argue as in the proof of (4.40,

page 143) at the beginning of this section. By duality, we reduce (4.68, page

161) with j = 1 to:

| IF@F 006 < Consena®) [ 1@ da (469)

for all functions f supported in the ball A%. By proceeding as in (4.57, page

152), we can prove that

~ 2
| 1R Pure)de < Bn ) 1]
for every f supported in A%, where B'(n, A, u, t), now, is defined by:

Bl(”u )\7/1’7 t) = { sup }/ L Q)\,/J«(y - I’) dy
:t:‘\gc|<l lyl<%

sup / Q/\u(
T {z:]2|<1}

1
— sup / Q) # dy
Rz wle|<1} Jy+al<t

and all we still need to show is that:

) dy (4.70)

B/(n7)‘7:u7t) S CTM,H w%#(t)' (471)
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Since |z| < 1 and |z + y| < 1 we have |y| < 2. So, (4.71, page 161) is a

consequence of:

1 y
n Qo <¥> dy < Coapwiu(t). (4.72)

" <2
which can be proved by following the same steps performed in (4.62, page
155).

Next, we are going to show that (4.68, page 161) holds for j = 2, that is:

n 1 dx
/1 241/E FE)F W d€ < Crppnr wau(t) Rn|f($)|2

<Jel< 2 W)
(4.73)
To prove this, we split further
. 1
fP €
/1<|§|<2+tﬁ )] (L+[tgh™
</ TG —
T iy (1+ [tEHM
i
—[21/ |2 1 M dg
1+e<|£|<2+e (1 —|—t|§|) (4.74)
[Vt 1
< 2 S |

[\ﬂ

)2
=2 Grov L /M F)P de.

Next, we apply estimate (4.40, page 143), which we already proved at the

beginning of this section, on each of the latter integrals. Rewrite (4.40, page

162



143) as follows:
dx

Wi

/ R < Cor D[ 1f@)P (4.75)
[1tg]—1|<é R

3

The inequality |[££] — 1] < € is equivalent to =5 < [¢] < £, Since we want

8

to use (4.75, page 163) for each of the latter integrals in (4.74, page 162),

now we set:
1—5_1+€
ot
and
1—|—£_2+€
ot
It follows that
_ 1
= ——
3+ 20
and
- 2t
=
3+ 20

with this setting, (4.75, page 163) becomes:

e 2 2t 1 , dx
/z”<|g|sa+f |f()Fd§ < Cppp ww<3+%) G120 Rn|f(a:)| L
(4.76)
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As the proof of (4.41, page 143) for 0 < ¢ < 1 follows from (10.5.22) in [8],
and since wy,,(t) =), 1 on any compact subinterval of (0, 00), we can in fact

assume ¢ > 3. In this case, as £ € {0,1,..., [v/t]}, we have that

o) - ()7 <1log ()"

3+4-2¢ 3+2¢

22+1

t2)‘+1 (1og (342rt24>)u
(34 20)!
M (log (e 1))

In view of (4.76, page 163) and (4.77, page 164), we can continue (4.74, page

162) as follows:

1
- d 4.78
/1<|5<zw'f e © e
vl N
< — td
< > g /%awmfﬂ ¢
[Vt
< I 2
S G ram ‘”*“(3+2€) 5+20 " 0@
[Vt
/ 1 <3+2£)2)\+1 1 9 dx
<
S G G aw Priogey 3120 Sl T
[Vt
< 1 2
> n,A,u; (2_|_£)M—2/\ $22+1 (log (et))“ Rn|f($)| UJAM(ZE)
[Vt
§ 1 dx
— OTL)\HZ (2+€)M 2 W)yll / |f wxl,‘(x)

du [Vi] 1
= n)\#w)\,u / |f ) Z (2 +€)M—2/\
=0

164




dx > 1
< " t 2
> nA wiu(t) Rn|f<37)’ Wrn(2) s (2+ 0)M-—2

dx

Wy () 7

Cn)\,p,,M (U)w‘(t) R |f(l‘)|2

provided M > 2\ + 1. We proved that (4.68, page 161) holds for j = 2.
If j = 3, then (4.68, page 161) becomes:

dx
Wiy (z) .
(4.79)

- 1
/2+/5<|§g2‘jt &) (1T +[egh™

4 < Conyorr ) | @)

First observe that (1+|t1§|)M < (3+\1/£)M if 20 < |¢|, and in particular if

Vi - "
% < €] < %, as in (4.79, page 165). Then apply (4.75, page 163) with:

1—& 2441

it
and

1+& 24t

ot
that is:

P 2

A VE+t
and

165



stV
A+ i+t

Observe that, as long as t > 1, we have that ¢ is bounded above and below
by absolute constants, so wy, () ~, 1. In addition, for ¢ in the same range,

we have ¢ < 1.

These considerations together imply that:

/%ﬂwf PP e 46 (4.50)
: m /ﬁ%w\ﬂf)?df
= TV g TOT
= m@mu e | f(m)|2%
< Clu i [ IOF 55
< dx

cr Wi (t 7)[? :
A, M )mu() R"|f( )| wm(x)

where the last inequality holds for a suitable constant Cy , , ;, provided that
M >4\ + 2.

It only remains to prove (4.68, page 161) with j = 4, that is:

£ 1 dx
/Zit<|£l | F(O)? L dé < Conpnt W) [ |f(2)]? e (4.81)

R
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We have:

S B
/‘A’jt<|g| &) (L+[tgh™ :

~ 1
S/Z)tm<|§||f(€)| Wdf (4.82)

[e.9]

_ 7V 2 1
=2 /lng.ay O G peaym

t=[t]+1

Next, we want to apply (4.75, page 163) to each integral in the last term of

(4.82, page 167) by setting:

(LN
Il

342/
and
2t

=2

3420

as in the case j = 2. Now we can continue (4.82, page 167) as follows:

/%|£| FOF g s
< ﬁ /%Igw FOF g
<> /%ISW FOP e
= Lij: ar %)”“ T T O
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[e.o]

1 1 dx
< [ @
AL £:§+1 (2 + g)Mf2)\ #2241 R w&u(x)
- [ st > Gy
= nAut2)\+1 w&u ) S (2+g)M—2)\
o0 1
< —  d
> n/\ut2>\+1/ |f (@ wm )/LtJ (2 4+ s)M—2A °
o0 1
2
< nAthA-i-l/ |f(x W (@ )/t—l (2+S)M—2Ad5
dx 1
= Cm/\,u,MW/ |f ()] Wi () (14 ¢)M-221
dx
< 2
<

d
Clingort a0 /R I S

where the last inequality holds for a suitable constant C’;’A’H’ > brovided

that M > 2\ + 1. By choosing any M > 4\ + 2 (as required after (4.80,

page 166)), we conclude the proof of (4.41, page 143), and of the claimed

statement.
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