ALMOST EVERYWHERE CONVERGENCE FOR MODIFIED

BOCHNER RIESZ MEANS AT THE CRITICAL INDEX FOR $p\geq 2$

Marco Annoni

Dr. Loukas Grafakos, Dissertation Supervisor

ABSTRACT

For $\lambda, \gamma > 0$, let the function $m_{\lambda,\gamma} : \mathbf{R}^{\mathbf{n}} \to [0,\infty)$ be defined by

$$m_{\lambda,\gamma}(\xi) = \frac{(1-|\xi|^2)_+^{\lambda}}{(1-\log(1-|\xi|^2))^{\gamma}}.$$

For R > 0, let the mean $B_R^{\lambda,\gamma}$ be defined by:

$$B_R^{\lambda,\gamma}(f)(x) = \int_{\mathbf{R}^n} m_{\lambda,\gamma}\left(\frac{\xi}{R}\right) \widehat{f}(\xi) e^{2\pi i \xi \cdot x} d\xi.$$

We have the following theorem:

Theorem 1.1 For every $\lambda > 0$ such that $1 + 2\lambda < n$, let $p_{\lambda} = \frac{2n}{n-2\lambda-1}$. If

 $\gamma > \frac{1}{p'_{\lambda}} + \frac{1}{2}$ (where $\frac{1}{p_{\lambda}} + \frac{1}{p'_{\lambda}} = 1$) and $f \in L^{p_{\lambda}}(\mathbf{R}^{n})$, then we have:

$$\lim_{R \to \infty} B_R^{\lambda,\gamma}(f)(x) = f(x),$$

for almost every $x \in \mathbf{R}^{\mathbf{n}}$.