We study a variety of combinatorial distance and dot product related problems in vector spaces over finite fields. First, we focus on the generation of the Special Linear Group whose elements belong to a finite field with \(q \) elements. Given \(A \subset \mathbb{F}_q \), we use Fourier analytic methods to determine how large \(A \) needs to be to ensure that a certain product set contains a positive proportion of all the elements of \(SL_2(\mathbb{F}_q) \).

We also study a variety of distance and dot product sets related to the Erdős-Falconer distance problem. In general, the Erdős-Falconer distance problem asks for the number of distances determined by a set of points. The classical Erdős distance problem asks for the minimal number of distinct distances determined by a finite point set in \(\mathbb{R}^d \), where \(d \geq 2 \). The Falconer distance problem, which is the continuous analog of the Erdős distance problem, asks to find \(s_0 > 0 \) such that if the Hausdorff dimension of \(E \) is greater than \(s_0 \), then the Lebesgue measure of \(\Delta(E) \) is positive.

A generalization of the Erdős-Falconer distance problem in vector spaces over finite fields is to determine the minimal \(\alpha > 0 \) such that \(E \) contains a congruent copy of every \(k \) dimensional simplex whenever \(|E| \gtrsim q^\alpha\). We improve on known results (for \(k > 3 \)) using Fourier analytic methods, showing that \(\alpha \) may be taken to be \(\frac{d+k}{2} \). If \(E \) is a subset of a sphere, then we get a stronger result which shows that \(\alpha \) may be taken to be \(\frac{d+k-1}{2} \).