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ABSTRACT 

Although well recognized for the regulation of peripheral metabolism, an 

emerging body of literature has begun to also establish a role for insulin in neural-

cardiovascular control.  In this regard, direct administration of insulin into the brain of 

experimental animals, or acute elevations in plasma insulin in healthy humans, results in 

robust increases in sympathetic nerve activity.  In addition to evoking increases in central 

sympathetic outflow, recent work in rats has reported a modulatory role for insulin in the 

regulation of arterial baroreflex control of sympathetic nerve activity.  The experiments 

within this dissertation were designed to further the understanding of insulin’s role in 

modulating central sympathetic outflow in humans.  The data presented demonstrate that 

an enhancement in insulin sensitivity increases insulin-mediated sympatho-excitation.  

Furthermore, we provide evidence for the first time that insulin increases the gain (i.e. 

sensitivity) of arterial baroreflex control of sympathetic nerve activity in healthy humans.  

Lastly, results are also presented in which we have begun to translate this area of research 

to a condition of chronic insulin resistance; type II diabetes mellitus.  Collectively, the 

findings further our understanding of insulin in neural-cardiovascular control by 

demonstrating a clear role for insulin in the regulation of central sympathetic outflow in 

humans. 
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Chapter 1.  Introduction 

 

The sympathetic nervous system, a subdivision of the autonomic nervous system, 

is involved in the unconscious control of almost every organ in the body.  Efferent 

sympathetic nerves, arising from the thoraco-lumbar section of the spinal cord innervate 

numerous tissues and exert effector action via the release of the neurotransmitter 

norepinephrine.  Although the sympathetic nervous system works in concert with the 

parasympathetic division of the autonomic nervous system, as well as local regulatory 

mechanisms, to determine the end organ response, the information presented within this 

dissertation will focus primarily on the sympathetic nervous system.  As stated by Walter 

B. Cannon in The Wisdom of the Body (1932) “It is the middle or thoraco-lumbar division 

[sympathetic] which acts promptly and directly to prevent serious changes of the internal 

environment. So important for homeostasis are the uses of this division that it deserves 

special and detailed consideration.”1 

In this regard, it is well established that the tonic rhythmic discharge of central 

sympathetic outflow is crucial for the control of vasomotor tone and arterial blood 

pressure2.  Indeed, stimulation of efferent sympathetic nerves leads to increases in arterial 

blood pressure, whereas denervation of theses nerves leads to falls in blood pressure2; 

illustrating the importance of the sympathetic nervous system in the maintenance of 

appropriate hemodynamic regulation.  However, in addition to the control of blood 

pressure, the sympathetic nervous system is also intimately involved in a wide array of 

physiological processes, ranging from renal to metabolic function3.   
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Central Sympathetic Overactivity 

The importance of the sympathetic nervous system is highlighted by a growing 

body of literature demonstrating that a number of disease states exhibit chronically 

elevated sympathetic nerve activity, such as hypertension4 and heart failure5.  

Importantly, an enhanced sympathetic outflow is not only restricted to diseases of the 

cardiovascular system and has been described in obesity6, metabolic syndrome7, renal 

disease8, obstructive sleep apnea9, pre-eclampsia10, depression11, ulcerative colitis12 and 

cirrhosis13.  The clinical significance of a chronically active sympathetic nervous system 

is further illustrated by findings demonstrating that sympathetic overactivity is associated 

with greater one-year cardiac mortality in heart failure patients14, is an independent 

predictor for the occurrence of cardiovascular events in end-stage renal disease patients15, 

16, and is associated with reduced functionality in elderly adults17.  In this regard, 

numerous detrimental physiological effects have been attributed to increased central 

sympathetic outflow. 

An important deleterious consequence of a chronically overactive sympathetic 

nervous system is an elevation in arterial blood pressure.  Indeed, it has been postulated 

that increases in sympathetic nerve activity play a significant role in both the initiation 

and development of hypertension18-21.  While a hypertensive state will contribute to 

structural and functional abnormalities of the vasculature (i.e. vascular remodeling)22, 23, 

elevated central sympathetic outflow, independent of a rise in arterial blood pressure, has 

been shown to elicit vascular smooth muscle cell hypertrophy and proliferation24, 25, 

impair endothelial cell function26, 27 and decrease arterial compliance28-30.  In addition to 



3 

 

unfavorable effects on the vasculature, exaggerated increases in sympathetic nerve 

activity have also been shown to induce detrimental effects on the cardiac (e.g. increased 

arrythmias)31, renal (e.g. glomerulosclerosis)32 and metabolic (e.g. dyslipidemia) 

systems33, 34.  The potential pathological consequences of elevated increases in central 

sympathetic outflow are highlighted in Table 1 and have been extensively described in a 

recent review from our laboratory3.  Although the mechanisms contributing to 

sympathetic overactivity in disease states remains an area on ongoing investigation, 

numerous findings have implicated alterations in the central control of sympathetic 

outflow. 

 

Central Control of Sympathetic Outflow 

The central regulation of sympathetic outflow is controlled by distinct nuclei 

within brainstem and hypothalamic regions which project directly to sympathetic 

preganglionic neurons located in the intermediolateral cell column of the spinal cord35, 36.  

Using retrograde transneuronal cell labeling, Strack et al37 identified that sympathetic 

preganglionic neurons receive inputs from five key areas of the brain; the paraventricular 

hypothalamic nucleus, A5 noradrenergic cell group, caudal raphe regions, rostral 

ventrolateral medulla and the ventromedial medulla.  Excitatory drive from these central 

sympathetic areas may be intrinsically generated or chemically mediated (e.g. 

glutamate)35, 36.  Nuclei involved in the control of sympathetic outflow may also be 

modulated by excitatory and inhibitory inputs from other regions within the central 

nervous system; such as the circumventricular organs which lack a blood brain barrier  
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Table 1.1  Potential pathological consequences of elevated central sympathetic nerve 

activity 

VSM, vascular smooth muscle; RAAS, Renin-angiotensin-aldosterone system 

 

    Incidence of arrhythmia

  
Vascular effects   Cardiac effects

     VSM cell hypertrophy and proliferation     Cardiac myocyte hypertrophy

     Medial thickening       Left ventricular hypertrophy

     Endothelial cell damage  ↑   

     Endothelial dysfunction     Tachycardia

     Arterial stiffness  

     ↑  
  

Blood pressure variability Renal effects

     ↑    Peripheral vascular resistance     Renal vasoconstriction   

     Hypertension       Sodium and fluid retention

     Atherosclerosis        Glomerulosclerosis  

    Microalbumineria   

Metabolic effects       RAAS activation    

     Insulin resistance  
          Dyslipidemia  
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and are therefore responsive to blood-borne factors35, 38.  In addition, numerous peripheral 

afferent inputs, including but not limited to the arterial and cardiopulmonary 

baroreceptors, chemosensitive receptors, and visceral and gastrointestinal inputs, 

contribute to reflexive alterations in sympathetic outflow, via brainstem pathways35, 39.  

As such, complex neuroanatomical interactions exist in which descending excitatory 

input from central neuronal regions, afferent reflex modulation and/or reciprocal 

interactions among brain regions, ultimately determines efferent sympathetic outflow. 

 

Arterial Baroreflex Control of Sympathetic Nerve Activity 

 Although a number of afferent reflex pathways are involved in the modulation of 

the autonomic nervous system, due to the importance of sympathetic nerve activity in 

blood pressure homeostasis, the arterial baroreflex has received a considerable amount of 

attention.  Arterial baroreceptors are comprised of free nerve endings located within the 

carotid sinus and aortic arch.  Afferent neural signals from the carotid and aortic 

baroreceptors are relayed via cranial nerves IX (glossopharyngeal) and X (vagus), 

respectively40-42.  Arterial baroreceptor afferents terminate at the nucleus tractus solitarius 

(NTS) in the medulla oblongata35, 40.  The NTS exerts a tonic sympathoinhibitory 

influence on the rostral ventrolateral medulla (one of the central sympathoexcitatory 

regions), by relay projections to the caudal ventrolateral medulla (Figure 1)35, 36, 40.  

Through this central pathway, when arterial blood pressure is increased, the carotid and 

aortic baroreceptors are deformed, causing an increase in afferent neuronal firing and a 

reflex mediated decrease in sympathetic nerve activity.  Conversely, when arterial blood 

pressure is lowered, afferent neuronal firing is reduced, resulting in an increase in 
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sympathetic nerve activity40-42.  In both scenarios, the neural mediated changes in 

sympathetic outflow will function in the appropriate fashion to return arterial blood 

pressure to its original level.   

 The necessity of the arterial baroreflex for appropriate regulation of beat-to-beat 

blood pressure is illustrated in studies examining humans with baroreflex failure.  

Patients with denervation of the carotid baroreflex, due to complications of carotid tumor 

resection43, neck irradiation44, 45 or carotid endartectomy46, demonstrate excessive rises 

and falls in blood pressure to physiological stressors, such as orthostasis, cold stress or 

mental tasks.  Moreover, baroreflex denervation in humans and animal leads to large 

increases in blood pressure variability47; further highlighting the importance of the 

arterial baroreflex in the short term control of arterial blood pressure.  Interestingly, early 

and more recent findings have demonstrated that chronic carotid baroreceptor stimulation 

in hypertensive dogs48-50 and humans51-53 leads to sustained and clinically relevant 

decreases in arterial blood pressure and sympathetic nerve activity.  As such, these 

findings lend support for the arterial baroreflex in the long term control of sympathetic 

nerve activity and blood pressure; although, to date, this concept is not universally 

accepted54. 

 

Insulin and the Insulin Receptor within the Brain 

 Since the first description in 1889 that removal of the pancreas in dogs resulted in 

high levels of sugar in the urine55, and the subsequent discovery that a pancreatic extract, 

insulin, was capable of lowering blood glucose56, a plethora of research has been 

dedicated to understanding the metabolic actions of insulin.  Indeed, it is well established 
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that insulin has profound metabolic effects, including stimulation of glucose uptake, 

glycogen storage control, and inhibition of lypolysis57.  However, an emerging body of 

literature has indicated that, in addition to a role in metabolic control, insulin is a 

pleiotropic hormone with widespread mechanisms of action, including functions within 

the central nervous system. 

 Insulin is synthesized within the beta (β) cells of the Islets of Langerhans in the 

pancreas.  The β cells produce insulin from a proinsulin precursor, via the action of 

several proteolytic enzymes, ultimately resulting in a 51 amino acid polypeptide.  The 

primary stimulus for insulin release from the β-cells is an increase in plasma glucose.  In 

addition, amino and fatty acids, as well as acetylcholine stimulation of β2 adrenergic 

receptors can induce insulin release, although to a lesser extent57, 58.  Insulin exerts it 

actions via binding to the insulin receptor, a tyrosine kinase transmembrane receptor58, 59.  

The insulin receptor is composed of two ligand binding α subunits, linked by disulfide 

bonds to two membrane-spanning β subunits.  Binding of insulin to the α subunits 

stimulates intrinsic tyrosine kinase activity within the β subunits, resulting in 

phosphorylation of downstream proteins and initiation of numerous signaling cascades, 

including the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase 

(MAPK) pathways58, 59.  

Insulin receptors are widely dispersed throughout the body, including numerous, 

yet discrete sites within the central nervous system59-63.  In vitro work from rats has 

indicated that brain insulin receptor density is highest in the choroid plexus, olfactory 

bulb and hypothalamus, with moderate to low levels in other regions such as the cerebral 

cortex, brainstem and circumventricular organs61, 62.  Although insulin is not produced in 
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significant amounts within the central nervous system, increases in circulating insulin 

(via pancreatic release) gain access to the brain via transport mediated uptake across the 

blood brain barrier61, 63.  In this context, insulin has been shown to be involved in many 

divergent functions in the central nervous system, including effects on appetite 

regulation, peripheral metabolism, cognition, and neurotrophic effects60, 61.  Moreover, 

the finding that the ligand and the receptor are present in central neuro-cardiovascular 

control areas, including hypothalamic regions, circumventricular organs and the 

brainstem, has led to the concept that insulin may be involved in the control of 

sympathetic outflow64.   

 

Influence of Insulin on Central Sympathetic Outflow  

A role for insulin in central sympathetic control is drawn from studies in 

experimental animals, whereby intracerebroventricular administration of insulin elicits 

robust increases in peripheral sympathetic nerve activity65, 66.  Interestingly, insulin-

stimulated increases in central sympathetic outflow appear to be dose specific, as 

increases in lumbar and brown adipose tissue nerve activity were noted with low dose 

intracerebroventricular insulin infusion, whereas adrenal and renal sympathetic nerve 

activity were activated at higher dosages66.  In line with these findings, acute euglycemic 

hyperinsulinemia67-71 or ingestion of a mixed meal72-74 or glucose load75-79 (to increase 

plasma insulin) have been shown to stimulate increases in muscle sympathetic nerve 

activity in humans.  Importantly, elevations in plasma insulin could increase sympathetic 

nerve activity via indirect mechanisms; nonetheless, several lines of evidence are 

consistent with the hypothesis that hyperinsulinemia induced increases in sympathetic 
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outflow are primarily due to a central effect.  First, insulin has vasodilatory actions and 

therefore a drop in arterial blood pressure during peripheral hyperinsulinemia could 

mediate a baroreflex-mediated increase in sympathetic nerve activity.  However, in 

humans, the increase in muscle sympathetic nerve activity is also present during low dose 

euglycemic hyperinsulinemia, in which peripheral vasodilation does not occur69; arguing 

against a baroreflex-mediated increase in sympathetic outflow.  In addition, Vollenweider 

et al71 infused insulin and fructose into normotensive humans to examine if insulin 

elevates sympathetic nerve activity through indirect actions of the hormone on 

carbohydrate metabolism and oxidation.  While insulin and fructose produced 

comparable increases in carbohydrate metabolism, only infusion of insulin was 

associated with elevated muscle sympathetic nerve activity.  Collectively, these studies, 

utilizing a variety of maneuvers to alter brain and plasma insulin concentrations, 

demonstrate a central sympatho-excitatory effect of insulin. 

 Although the precise central region(s) involved in mediating insulin-stimulated 

increases in sympathetic outflow remain unclear, several areas are worthy of 

consideration.  The anteroventral third ventricle (AV3V) region, an area containing 

several of the circumventricular organs (organum vasculosum lamina terminalis and 

subfornical organ) is well recognized as a neuronal region involved in the detection of 

blood-borne signals.  Interestingly, lesioning of the AV3V region prevents the increase in 

lumbar sympathetic nerve activity in response to euglycemic hyperinsulinemia80.  

Furthermore, studies demonstrating robust increases in lumbar sympathetic nerve activity 

in response to lateral ventricular infusion of insulin in rats81, suggests that a hypothalamic 

region, such as the paraventricular nucleus, may be involved.  In line with this, Rahmouni 
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et al66 have shown that global hypothalamic inhibition of PI3K blocked insulin-mediated 

increases in lumbar sympathetic nerve activity, whereas MAPK inhibition specifically 

blocked insulin-induced increases in sympathetic nerve activity to brown adipose tissue.  

Moreover, very recent findings suggest that an excitatory glutamatergic pathway to the 

brainstem may be involved in insulin stimulated sympatho-excitation82.  Indeed, 

microinjection of kynurenic acid, a glutamate receptor antagonist, into the rostral ventral 

lateral medulla significantly reduced lumbar sympathetic nerve activity during 

hyperinsulinemic euglycemic clamps in rats.  Of note, insulin microinjection directly into 

the rostral ventral lateral medulla did not alter lumber sympathetic nerve activity82.  

Taken together these findings lend insight into the potential neural pathways and 

signaling mechanisms involved in insulin mediated increases in central sympathetic 

outflow (Figure 1); however, future studies are clearly warranted to further delineate the 

precise neuronal pathways and mechanisms of insulin action in neural-cardiovascular 

control. 

 

Insulin and Arterial Baroreflex Control of Sympathetic Nerve Activity 

In addition to a sympatho-excitatory role of insulin, emerging evidence from 

studies in experimental animals has begun to illustrate a role for insulin in the central 

modulation of the arterial baroreflex.  Recently, Pricher et al81 demonstrated that 

increases in insulin within the brain, via lateral ventricular infusion, enhanced the gain 

(i.e. sensitivity) of arterial baroreflex control of lumbar sympathetic nerve activity in rats.  

Other studies have indicated that neurons in central baroreflex regulatory regions (i.e. 

nucleus tractus solitarius) are responsive to insulin83.  Collectively, these studies indicate  
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Figure 1.1 Schematic summarizing neural pathways that may play a role in insulin 

mediated control of sympathetic outflow.  Cardiovascular regulatory regions in the 

forebrain, hypothalamus and brainstem may all contribute. Circumventricular organs 

within the anteroventral third ventricle region (outlined with dashed lines) may sense 

increases in circulating insulin and project directly or indirectly to hypothalamic regions.  

In addition, the paraventricular hypothalamic nucleus (PVN) demonstrates a high binding 

density of insulin (dark grey) and may also directly influence sympathetic outflow via 

projections to the intermediolateral cell column of the spinal cord (IML) or indirectly 

through projections to brainstem regions.  Insulin could also modulate sympathetic 

outflow within brainstem regions such as the nucleus tractus solitarius (NTS), caudal 

ventral lateral medulla (CVLM) and rostral ventral lateral medulla (RVLM).  Arterial 

baroreflex afferents terminate within the NTS and as such insulin may modulate arterial 

baroreflex control of sympathetic nerve activity by directly acting within brainstem 

regions or via impinging neural inputs from other brain regions.   

OVLT, organum vasculosum lamina terminalis; SFO, subfornical organ. Sagital brain 

section adapted from Zimmerman & Davisson, Prog Biophys Mol Biol, 2004. 

NTS

RVLM
CVLM

PVN

SFO

OVLT
IML

Sympathetic 
Nerve Activity

Arterial Baroreflex & 
Other Afferent Inputs
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that insulin may directly influence arterial baroreflex function within central neural 

cardiovascular control pathways.  However, studies in this area are limited and, to date, 

no work has been performed in humans evaluating the potential influence of insulin on 

arterial baroreflex control of sympathetic nerve activity.   

 

Insulin Mediated Sympatho-excitation and Arterial Baroreflex Control in Insulin 

Resistant Conditions 

 Numerous physiological and pathophysiological conditions are characterized by a 

decreased sensitivity to the actions of insulin (i.e. insulin resistance), including type II 

diabetes mellitus, hypertension, obesity, metabolic syndrome and pregnancy.  

Interestingly, recent studies have suggested that insulin-mediated sympatho-excitation 

may be impaired in insulin resistant conditions76, 78, 79, 84.  Indeed, obese individuals84, 

insulin resistant elderly subjects76 and metabolic syndrome patients78, 79 all demonstrate 

attenuated increases in muscle sympathetic nerve activity in response to 

hyperinsulinemia.  As such, in addition to peripheral insulin resistance, insulin resistant 

conditions may also exhibit a central resistance to the actions of insulin.  In line with this 

concept, recent studies indicate that insulin resistant states are accompanied by reduced 

cerebrospinal fluid insulin concentrations63, 85-87.  This reduction in insulin likely 

emanates from an attenuated transport of insulin into the central nervous system, as 

pharmacologically and diet induced insulin resistance in animal models has been shown 

to reduce central nervous system insulin uptake85, 86, whereas brain endothelial cells of 

obese rats demonstrate impaired insulin binding88.   
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In addition to impaired insulin-mediated sympatho-excitation, insulin resistant 

conditions are commonly characterized by impairments in arterial baroreflex control of 

sympathetic nerve activity7, 89-92.  Although not causative, the concomitant occurrence of 

insulin resistance with reductions in arterial baroreflex function clearly suggests a link 

between the two.  Given that cerebral spinal fluid levels of insulin are reduced in insulin 

resistant conditions63, 85-87 and that insulin in the brain enhances arterial baroreflex control 

of sympathetic outflow81; Brooks and colleagues have advanced the hypothesis that a 

certain level of insulin within the brain is essential for normal arterial baroreflex 

function81, 93, 94.  However, while arterial baroreflex-sympathetic control has been shown 

to be reduced in hypertension89, 90, 92, 95, obesity91 and metabolic syndrome7, information 

on other insulin resistant conditions, such as type II diabetes mellitus, is currently 

lacking. 

 

Summary 

 Although once thought to only be crucial for the regulation of peripheral 

metabolism, an emerging body of literature has established a role for insulin in neural-

cardiovascular control.  In healthy humans, elevations in plasma insulin during 

physiological72-79 (i.e. meal intake) or experimental67-71 perturbations results in robust 

increases in muscle sympathetic nerve activity; a response that has been primarily 

attributed to a central effect of insulin.  Furthermore, direct administration of insulin into 

the brain of experimental animals also evokes increases in peripheral nerve activity65, 66, 

81, although the precise neural regions and/or mechanisms remain incompletely defined.  

In addition to evoking increases in sympathetic outflow, recent work in rats has reported 
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a role for insulin in the modulation of the arterial baroreflex81.  The following projects 

were designed to extend this growing area of research and to examine a role for insulin in 

the control of central sympathetic outflow in humans.  Specifically, the influence of 

insulin sensitivity on insulin-mediated sympatho-excitation, a role for insulin in the 

modulation of arterial baroreflex control of muscle sympathetic nerve activity, and 

translation of these findings to an insulin resistant disease state, type II diabetes mellitus, 

will be presented. 

 

Specific Aims 

Aim 1:  Previous studies have reported that insulin resistant conditions are associated 

with impaired insulin-mediated sympatho-excitation76, 78, 79, 84.  Importantly, in these 

previous investigations, the populations studied were all characterized by resting 

sympathetic overactivity.  Therefore, it is possible that the sympathetic responses to 

insulin may have been influenced by higher basal sympathetic activity (i.e. a ceiling 

effect).  Thus, the focus of Aim 1 was to determine if differences in insulin-stimulated 

sympatho-excitation occur without confounding factors such as elevated resting 

sympathetic activity, body mass, or age.  To examine this, we studied two healthy subject 

groups, with distinct differences in insulin sensitivity, to investigate how insulin 

sensitivity influences insulin-mediated changes in central sympathetic outflow. 

 

Aim 2:  Recent findings in rats have demonstrated that insulin in the brain enhances 

arterial baroreflex control of sympathetic nerve activity81; however, the extent to which 

these findings can be translated to humans remains unknown.  Therefore, Aim 2 was 
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designed to examine the influence of insulin on arterial baroreflex control of muscle 

sympathetic nerve activity in healthy humans. 

 

Aim 3:  Although numerous insulin resistant conditions are characterized by a reduction 

in arterial baroreflex control of sympathetic nerve activity, surprisingly an examination of 

the sympathetic arterial baroreflex has not been performed in type II diabetes mellitus.  

Thus, Aim 3 was designed to begin to investigate arterial baroreflex control of muscle 

sympathetic nerve activity in patients with type II diabetes. 
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ABSTRACT 

Nutrient intake is accompanied by increases in central sympathetic outflow; a response 

that has been mainly attributed to insulin. Insulin-mediated sympatho-excitation appears to be 

blunted in insulin resistant conditions suggesting that aside from peripheral insulin insensitivity, 

such conditions may also impair the central action of insulin in mediating sympathetic activation. 

What remains unclear is whether an insulin sensitive state, such as that induced by chronic 

endurance training, alters the central sympathetic effects of insulin during postprandial 

conditions. To examine this question plasma insulin and glucose, muscle sympathetic nerve 

activity (MSNA), heart rate, and arterial blood pressure were measured in 11 high fit (HF; VO2 

65.9±1.4 ml•kg-1•min-1) and 9 average fit (AF; VO2 43.6±1.3 ml•kg-1•min-1) male subjects before 

and for 120 minutes after ingestion of a mixed meal drink. As expected, the insulin response to 

meal ingestion was lower in HF than AF participants (insulin area under the curve0-120: 2314±171 

vs. 4028±460 uIU•ml-1•120-1, HF vs. AF, P<0.05), with similar plasma glucose responses 

between groups. Importantly, following consumption of the meal, the HF subjects demonstrated 

a greater rise in MSNA, when compared to the AF subjects (e.g. 120 minutes: Δ21±1 vs. 8±3 

bursts•100 heart beats-1, HF vs. AF, P<0.05).  Furthermore, when expressed relative to plasma 

insulin, HF subjects exhibited a greater change in MSNA for any given change in insulin. 

Arterial blood pressure responses following meal intake were similar between groups. 

Collectively, these data suggest that, in addition to improved peripheral insulin sensitivity, 

endurance training may enhance the central sympathetic effect of insulin to increase MSNA 

following consumption of a mixed meal. 
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INTRODUCTION 

 It is well recognized that acute nutrient intake is accompanied by robust increases in 

central sympathetic outflow1-3. Presumably, the physiological relevance of an increase in 

sympathetic neural activity is to facilitate blood flow redistribution and for the overall 

maintenance of arterial blood pressure1-4.  In addition, increases in sympathetic outflow will 

stimulate facultative thermogenesis (e.g. diet-induced thermogenesis)5-7 and may enhance 

glucose uptake in skeletal muscle and adipose tissue8-12. While a variety of factors may be 

implicated, numerous findings have indicated that the large rise in plasma insulin concentrations 

following meal intake is an important mediator of the postprandial increase in central 

sympathetic outflow3, 13. 

 A central sympatho-excitatory action of insulin is drawn from studies in experimental 

animals, whereby intracerebroventricular administration of insulin elicits robust increases in 

peripheral sympathetic nerve activity14, 15.  In line with these findings, a mixed meal13, 16, glucose 

load17-21 and acute euglycemic hyperinsulinemia4, 22-25 have been shown to stimulate increases in 

muscle sympathetic nerve activity (MSNA) in humans.  Importantly, the increase in MSNA is 

also present during low dose euglycemic hyperinsulinemia, in which peripheral vasodilation does 

not occur 24; consistent with the hypothesis that hyperinsulinemia induced increases in 

sympathetic outflow are primarily due to a central effect (i.e. non baroreflex-mediated).  Overall, 

these studies, utilizing a variety of maneuvers to alter plasma insulin concentrations, demonstrate 

that elevations in insulin stimulate increases in central sympathetic outflow. 

 Recent studies have suggested that insulin-mediated sympatho-excitation may be 

impaired in insulin resistant conditions.  Indeed, Vollenweider et al26 demonstrated that obese 

individuals exhibited attenuated MSNA responses to euglycemic hyperinsulinemia, despite 
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higher insulin concentrations, when compared to lean subjects.  Findings in insulin resistant 

elderly subjects18 and insulin resistant metabolic syndrome patients20, 21 have similarly reported a 

blunted sympathetic response to increases in plasma insulin following a glucose load.  As such, 

in addition to peripheral insulin resistance, insulin resistant conditions may also exhibit a central 

resistance to the actions of insulin.  In line with this concept, recent studies indicate that insulin 

resistant states are accompanied by reduced cerebrospinal fluid insulin concentrations, likely 

emanating from an attenuated transport of insulin into the central nervous system27-30.  However, 

while an insulin resistant condition appears to impair insulin-mediated sympatho-excitation, the 

influence of enhanced insulin sensitivity on insulin-induced increases in central sympathetic 

outflow remains unclear.  

 To begin to examine this question we recruited healthy endurance trained (high fit, HF) 

and normally active (average fit, AF) subjects.  It is well characterized that chronic endurance 

training results in enhanced peripheral insulin sensitivity31-35.  Therefore, our rationale was that 

inclusion of two healthy subject groups, with distinct differences in insulin sensitivity, would 

allow us to investigate how enhanced insulin sensitivity influences insulin-mediated changes in 

central sympathetic outflow. Direct measurements of central sympathetic outflow to skeletal 

muscle (i.e., MSNA) were recorded and a mixed meal was used as a physiological method to 

evoke robust and sustained increases in MSNA, which have been primarily attributed to insulin3, 

13.  We hypothesized that HF subjects would have a greater MSNA response, for a given plasma 

insulin concentration, following consumption of a mixed meal (i.e., greater central insulin 

sensitivity). 
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METHODS 

Twenty healthy men volunteered for participation in the study. Subjects were 

asymptomatic for cardiovascular, respiratory or metabolic disease and were not taking any 

medications.  The subject population consisted of eleven HF and nine AF men.  HF subjects 

were all competitive endurance athletes (i.e. marathon runners and triathletes) and had been 

competing in endurance events for 9 ± 1 years with weekly exercise regimens including 12 ± 2 

hours per week of training.  In contrast, AF subjects were only recreationally active, engaging in 

aerobic activities for less than 30 minutes, ≤3 days per week reporting physical activities 

amounting to 45 ± 23 minutes per week.  When recruiting HF subjects a peak oxygen uptake 

(VO2peak) of ≥ 60ml/kg/min was used as the cutoff for inclusion.  For the AF subjects we initially 

attempted to enroll subjects with a VO2peak ≤ 45 ml/kg/min, however, this proved difficult for 

young healthy lean subjects and therefore, we had two subjects with a VO2peak of 47 ml/kg/min in 

this group. A greater number of HF compared to AF subjects were recruited due to difficulty 

with MSNA measurements in this group (see MSNA section below).  All experimental 

procedures and protocols were approved by the University of Missouri Health Sciences 

Institutional Review Board. After receiving a detailed verbal and written explanation of the 

intended experimental protocol and measurements, each subject provided written informed 

consent prior to participation. 

 

Experimental Measurements 

General measurements:  Heart rate was continuously monitored using a lead II 

electrocardiogram (Quinton Q710, Bothell, WA, USA).  An automated sphygmomanometer 

(Welch Allyn, Skaneatles Falls, NY, USA) was used to measure arterial blood pressure by 
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auscultation of the brachial artery of the right arm.  Respiratory movements were monitored 

using a strain-gauge pneumograph placed in a stable position around the abdomen (Pneumotrace, 

UFI, Morro Bay, CA, USA).   

Plasma Insulin and Glucose:  Venous blood samples were drawn from an antecubital 

intravenous catheter for the measurements of plasma glucose and insulin.  Glucose was analyzed 

using the glucose oxidase method (Thermo, Waltham, MA, USA) and insulin was determined by 

chemiluminescent enzyme immunoassay (Immulite 1000 Analyzer, Diagnostic Products Corp., 

Los Angeles, CA, USA).  The areas under the glucose and insulin curves (AUC0-120) were 

calculated from values measured at baseline, using the trapezoidal method36.   

Muscle Sympathetic Nerve Activity (MSNA):  Multiunit recordings of postganglionic 

MSNA were obtained as described previously37-41.  Briefly, a unipolar tungsten microelectrode 

was inserted percutaneously through the intact, unanaesthetized skin and positioned into muscle 

nerve fascicles of the peroneal nerve near the fibular head of the left leg. Postganglionic 

sympathetic action potentials were amplified, filtered (bandwidth 700 – 2000 Hz), rectified, and 

integrated (time constant, 0.1 s) to obtain a mean voltage neurogram.  MSNA recordings were 

identified by their characteristic pulse-synchronous burst pattern and increased neural activity in 

response to an end-expiratory apnea or Valsalva maneuver, without any response to arousal 

stimuli or stroking of the skin37, 38, 41.  MSNA was not obtained in 4 HF subjects because an 

acceptable recording was not found in 2 subjects and recordings could not be maintained for the 

duration of the protocol in 2 others.   

MSNA was first identified by visual inspection, independently by 2 investigators, and 

was then analyzed using custom designed software (MatLab, The Math Works, Natick, MA, 

USA)42.  This program first detects peaks in the integrated neurogram based on a latency window 
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centered on each R wave from the electrocardiogram.  After the peaks are chosen, the the nearest 

minimum value on either side of the peak is detected, which is then denoted as the start and end 

of a sympathetic burst.  An algorithm is applied to validate each burst, which takes into account 

the slope of the rise and fall of the burst, as well as the magnitude.  The amplitude of the largest 

burst at baseline was assigned a value of 1000 (arbitrary units; AU) and all other bursts within a 

trial were normalized with respect to this value.  Sympathetic activity was quantified using 

standard measures, including burst frequency (bursts/min), burst incidence (bursts/100 heart 

beats), burst strength (burst area), and total activity (product of burst frequency and mean burst 

area).  However, because the absolute area of a burst is dependent on the location of the 

microelectrode in relation to the nerve fibers that are being recorded, which cannot be 

determined, direct comparisons of burst strength, and total activity between groups is typically 

not performed. Although various normalization procedures have previously been applied, these 

cannot completely account for the limitation associated with potential differences in electrode 

placement between individuals and, ultimately, subject groups43-45. For example, calculating a 

percentage change in total activity from baseline will be affected by differences in resting total 

activity (i.e. microelectrode placement) and not necessarily reflect a difference in sympathetic 

responsiveness between two groups. In this manuscript, multiple MSNA data are included in an 

effort to be complete; however we focused our results on measures of sympathetic bursts, which 

have been shown to be reproducible over time in the same subject and comparable between 

groups (50). Furthermore, because of group differences in heart rate and the inherent cardiac 

synchronicity of MSNA37, 38, 41, we used MSNA burst incidence for our main comparison 

between groups. In addition, the area under the MSNA burst incidence curve (AUC0-120) was 
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calculated for each subject using the trapezoidal method36 and related to the insulin AUC0-120 as 

described previously21. 

Femoral artery blood flow:  Femoral blood flow (FBF) was obtained in the right leg 

using a duplex Doppler ultrasound unit (Logiq 7, GE Medical Systems, Milwaukee, WI) 

equipped with a linear array transducer operating at a frequency of 10 MHz.  The common 

femoral artery was imaged 2-3 cm proximal to the bifurcation of the superficial and deep 

branches.  Femoral blood velocity was obtained using the same probe in pulsed-wave mode, 

operating at a linear frequency of 5 Hz and at an insonation angle of 60°.  Arterial diameter and 

mean blood velocity (Vmean) were calculated using commercially available software (Logiq 7, GE 

Medical Systems, Milwaukee, WI, USA).  Using femoral artery diameter and Vmean, FBF was 

calculated as: FBF = Vmean•π•(femoral artery diameter/2)2•60.  FBF was normalized to right leg 

lean mass for group comparisons.  Femoral vascular conductance (FVC) was calculated using the 

formula: FVC = FBF / mean arterial blood pressure. 

 

Experimental Protocols 

Visit 1:  Subjects were familiarized with the experimental protocols and procedures, after 

which a whole body dual-energy X-ray absorptometry scan (Hologic Delphi A, Waltham, MA) 

was performed to obtain right leg lean muscle mass, used to normalize blood flow measures 

between groups.  In addition, in order to ascertain VO2peak, all subjects underwent a graded 

treadmill exercise test (Bruce Protocol) to exhaustion and maximal effort was determined 

according to established criteria46. 

Visit 2:  Subjects reported to the laboratory on a separate occasion at least 5 days after 

completion of the first visit and were instructed to abstain from caffeinated beverages and food 
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for 12 hours, alcohol for 24 hours, and physical activity for 48 hours prior to the experimental 

session.  The latter instruction was used to minimize the influence of acute physical activity 

effects on insulin sensitivity47, 48. Subjects were placed in the supine position on a medical 

examination table and were instrumented for measures of heart rate, arterial blood pressure, 

MSNA, FBF and an intravenous catheter was placed in an antecubital vein.  Baseline variables 

were collected for a period of 20 minutes and a pre-meal blood draw was taken, after which 

subjects ingested a mixed meal drink (Ensure Plus, Abbott Laboratories, Columbus, Ohio, USA; 

57% CHO, 28% Fat, 15% Protein) corresponding to 20% of their estimated energy expenditure 

calculated from body weight49.  The calories consumed were similar between groups (521 ± 9 vs. 

533 ± 14 KCals, HF vs. AF, P>0.05).  All variables were measured for a 5 minute period, every 

15 minutes, for 120 minutes following consumption of the mixed meal.   Venous blood samples 

were also drawn every 15 minutes and the resulting plasma was stored at -80° C for later analysis 

of plasma glucose and insulin concentrations. 

 

Data Analysis 

 Heart rate and MSNA were sampled at 1000Hz and stored for off-line analysis (Chart 

v5.2 and Powerlab, ADInstruments, Bella Vista, NSW, Australia).  Baseline heart rate, arterial 

blood pressure, MSNA and FBF were calculated as mean values over a 6 minute period.  

Following consumption of the mixed meal, 3 minute averages were calculated from the 5 min 

data segments collected every 15 minutes.  The ratio of a change in MSNA burst incidence to a 

change in insulin was evaluated at each time point for individual subjects as an index of the 

sympathetic response for a given concentration of plasma insulin. 
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Statistical analysis 

Statistical comparisons of physiological variables were conducted using a 2-way analyses 

of variance (fitness•time) with repeated measures and a Tukey test was employed post hoc when 

significant main effects were found.  Statistical significance was set at P < 0.05 and analyses 

were conducted using SigmaStat (Jandel Scientific Software, SPSS Inc., Chicago, IL, USA) for 

Windows.  Statistical comparisons were performed using all time points following meal intake.  

However, for presentation purposes, only 30 minute time points are reported in some cases.  

Results are presented as means ± standard error (SE).  
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RESULTS 

 Subject characteristics:  Age, height, weight and body mass index did not differ between 

groups (Table 2.1).  Similarly, fasting plasma glucose and insulin were not different between 

groups (Table 2.1 and Figure 2.1).  As anticipated, the HF subjects had a higher VO2peak than the 

AF subjects, with a mean group difference greater than 20 ml/kg/min (Range: HF 60-73 

ml/kg/min, AF 36-47 ml/kg/min).  HF subjects exhibited a significantly lower heart rate at 

baseline, whereas resting systolic (SBP), diastolic (DBP) and mean arterial blood pressure 

(MBP) were similar between groups (Table 2.2). 

 Metabolic responses to a mixed meal:  Mixed meal intake induced a significant rise in 

plasma glucose, with similar responses between groups at each time point (Figure 2.1A) and 

when quantified as glucose AUC (Figure 2.1C).  In contrast, HF subjects demonstrated much 

less of an increase in plasma insulin, compared to the AF subjects (Figure 2.1B).  This enhanced 

insulin sensitivity in the HF subjects was illustrated by an approximately 45% lower insulin 

AUC0-120 (Figure 2.1D). 

 MSNA responses to a mixed meal:  At rest, MSNA burst incidence and burst frequency 

was comparable between groups (Figure 2.2, Figure 2.3, and Table 2.3).  Following ingestion of 

the mixed meal, the HF subjects demonstrated a greater rise in MSNA burst incidence, as well as 

burst frequency, compared to AF subjects.  Results obtained for MSNA total activity and burst 

strength are also provided in Table 2.3. 

MSNA : insulin relationships:  Figure 2.4 illustrates the ratios of a change in MSNA burst 

incidence to a change in plasma insulin, indicating that for a given change in insulin HF subjects 

had a greater change in MSNA burst incidence.  Similar results were found when relating the 

MSNA burst incidence AUC0-120 to the insulin AUC0-120 (Figure 2.4B). 
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FBF responses to a mixed meal:  Resting FBF was not different between groups.  In 

response to the mixed meal, FBF was increased above baseline values, with similar increases in 

the HF and AF subjects. Likewise, resting FVC was the same between groups and increased 

similarly in response to mixed meal ingestion (all Table 2.2).    

Cardiovascular responses to a mixed meal: Overall there were no differences in the 

arterial blood pressure responses to mixed meal intake between groups.  Following the mixed 

meal, SBP, DBP and MAP were slightly, but significantly increased in both groups.  Heart rate 

responses to the mixed meal were not different between groups and therefore heart rate was 

lower throughout the entire protocol in the HF compared to the AF subjects owing primarily to 

baseline differences (all Table 2.2). 
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DISCUSSION 

The major finding of the current study was that HF subjects demonstrated a greater 

increase in MSNA burst incidence compared to AF subjects following consumption of a mixed 

meal.  Importantly this greater sympathetic activation occurred despite lower plasma insulin 

concentrations, with comparable plasma glucose between groups.  Furthermore, when MSNA 

responses were expressed relative to plasma insulin, HF subjects exhibited a greater change in 

MSNA for any given change in insulin.  Collectively, these data suggest that, in addition to 

improved peripheral insulin sensitivity, endurance training may also enhance the central actions 

of insulin to increase MSNA following consumption of a mixed meal.  

Nutrient intake is accompanied by increases in central sympathetic outflow; a response 

that has been mainly attributed to insulin3, 13. In the current study we used chronic endurance 

training as a model to establish two distinct subject groups.  An enhancement in the peripheral 

sensitivity to the actions of insulin (i.e. glucose disposal) is well characterized with chronic 

endurance training31-35 and therefore, we rationalized that endurance trained individuals would 

exhibit a lower insulin response with similar glucose concentrations following the mixed meal.  

Furthermore, if enhanced central insulin sensitivity was present, we reasoned that the HF 

subjects would exhibit a similar or greater increase in MSNA despite the lower plasma insulin.  

Indeed, following consumption of the mixed meal, the HF subjects demonstrated a significantly 

larger increase in MSNA when compared to the AF subjects.   

From our direct sympathetic recordings, an increase in central sympathetic outflow to 

skeletal muscle can be characterized by either an increase in efferent sympathetic impulses (i.e. 

burst incidence) or an increase in the strength of the sympathetic bursts (i.e. burst area) or a 

combination of the two50.  Interestingly, the rise in MSNA following nutrient intake was evident 
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when examining both burst occurrence (i.e. burst incidence), as well as burst strength in both 

groups.  These data suggest that the increase in central sympathetic outflow to skeletal muscle 

following a mixed meal is due to an enhanced sympathetic firing rate as well as enhanced 

neuronal recruitment50.  The larger increase in MSNA burst incidence in the HF compared to AF 

subjects clearly demonstrates a greater postprandial central sympatho-excitation.  In addition, the 

greater increases in burst strength in the HF group suggests that this fitness effect on MSNA may 

include greater neuronal recruitment51; however, group comparisons of burst strength need to be 

interpreted cautiously because the area of a burst is dependent on the location of the recording 

microelectrode, which cannot be determined38, 52.  Therefore, we focused our results on measures 

of sympathetic bursts, which have been shown to be reproducible over time in the same subject 

and comparable between groups52.  Furthermore, the use of MSNA burst incidence is warranted 

because of group differences in heart rate and the inherent cardiac synchronicity of MSNA37, 38, 

41. 

Following food intake, coordinated cardiovascular, metabolic and neural responses occur 

in order to distribute, absorb and store nutrients.  Postprandial activation of the sympathetic 

nervous system is crucial for blood flow redistribution and overall maintenance of arterial blood 

pressure1-3, 7.  Although a number of factors have been suggested3, several lines of evidence 

indicate that the elevation in plasma insulin following a meal plays a prominent role in 

stimulating the increases in central sympathetic outflow3, 13.  First, a strong positive correlation 

has been reported between plasma insulin and the increases in MSNA after a glucose meal in 

healthy subjects17, 53. Second, a mixed meal and glucose load have been shown to elicit the 

greatest changes in MSNA when compared to fat or protein intake alone, in which insulin 

secretion is minimal13. In addition, euglycemic hyperinsulinemia within the postprandial range 
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increases MSNA in healthy humans to a similar extent as that following a mixed meal24.  Third, 

recent animal studies have provided clear evidence indicating a direct action of insulin to 

increase central sympathetic outflow14, 15. Lastly, alterations in the sympathetic response to a 

mixed meal and glucose load have been identified in insulin resistant conditions18, 20, 21, 26. 

Overall, although insulin independent mechanisms cannot be completely discounted, these data 

indicate that a mixed meal represents a physiological method to investigate insulin-mediated 

stimulation of central sympathetic outflow. 

In the current study, when the MSNA burst incidence responses to the mixed meal were 

expressed relative to insulin, a greater change in sympathetic outflow for a given change in 

plasma insulin concentrations was noted in the HF group.  This held true whether the values 

were expressed at each time point or as a ratio of the MSNA AUC0-120 to the insulin AUC0-120. 

These data suggest that an enhancement in insulin sensitivity, even in otherwise healthy 

individuals, improves insulin stimulated sympatho-excitation to skeletal muscle (i.e. enhanced 

central insulin sensitivity).  Of note, MSNA burst frequency data also suggests that HF subjects 

exhibit greater central insulin sensitivity.  Although the physiological consequence of a greater 

increase in central sympathetic outflow in the HF subjects is beyond the scope of the current 

project, it may be that an augmentation in sympathetic outflow following mixed meal intake 

allows for greater control over redistribution of blood flow and absorption of nutrients; thus 

contributing to the enhanced peripheral insulin sensitivity. 

Recent investigations have suggested that the central stimulatory actions of insulin may 

be blunted in insulin resistant conditions18, 20, 21, 26.  Indeed, the sympatho-excitation following a 

mixed meal, glucose load or euglycemic hyperinsulinemic clamp is blunted in elderly insulin 

resistant individuals18, insulin resistant metabolic syndrome patients20, 21 and obese subjects26, 
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respectively.  In addition, Straznicky et al21 recently demonstrated that diet and exercise induced 

weight loss in insulin resistant metabolic syndrome subjects improved the blunted sympathetic 

responsiveness to a glucose load, as measured by whole body norepinephrine kinetics.  

Moreover, a positive correlation between maximal oxygen uptake and the insulin-induced 

increases in whole body norepinephrine spillover has been noted in metabolic syndrome 

patients20.  Taken together these findings suggest that an insulin resistant state may blunt insulin-

mediated sympathetic neural responses and that potential improvements in insulin sensitivity 

may restore insulin’s ability to increase sympathetic outflow.  The current findings are in 

agreement and extend this work by directly assessing MSNA in two groups of young, lean 

healthy individuals, who display distinct differences in insulin sensitivity (i.e., different 

postprandial insulin responses to a meal).  Importantly, in these previous investigations, the 

populations studied were all characterized by resting sympathetic overactivity.  Therefore, it is 

possible that the sympathetic responses to insulin may be influenced by higher basal sympathetic 

activity (i.e. a ceiling effect)54.  The current findings allowed us to determine if differences in 

insulin stimulated sympatho-excitation occur without confounding factors such as elevated 

resting sympathetic activity, body mass index, or age. 

While the exact mechanism(s) contributing to alterations in insulin stimulated changes in 

central sympathetic outflow to skeletal muscle remain unknown, several possibilities are worthy 

of consideration.  First, it is possible that alterations in insulin transport across the blood brain 

barrier occur with changes in insulin sensitivity.  In support of this concept, a reduced 

cerebrospinal fluid to plasma insulin ratio has been reported in obese individuals, with the ratio 

being highly negatively related to the degree of insulin resistance29.  Moreover, 

pharmacologically induced insulin resistance in animal models has been shown to reduce central 
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nervous system insulin uptake27, 28, whereas brain endothelial cells of obese rats demonstrate 

impaired insulin binding30.  Thus, our findings demonstrating a more robust increase in MSNA, 

in the HF compared to the AF subjects, may be due to differences in insulin delivery and/or rate 

of transport into the brain.  In addition, it is possible that central insulin-mediated signaling 

cascade pathways may be altered with changes in central insulin sensitivity.  Findings from 

rodent models suggest that insulin stimulated increases in sympathetic outflow primarily occur 

within hypothalamic regions through both the phosphoinositide 3-kinase and mitogen-activated 

protein kinase pathways14, 15, 55.  Given that both of these pathways have been shown to be 

modified in the periphery in insulin resistant states48 and in response to endurance training56, it is 

plausible that alterations in either of these signaling pathways within the central nervous system 

occurs with changes in insulin sensitivity.  

A role for insulin in mediating peripheral vasodilation has been well documented57-59.  

Although not the main focus of our study, considering the known increases in peripheral insulin 

sensitivity with endurance training31-35, one may have anticipated a greater insulin-mediated 

increase in blood flow in the HF, compared to the AF subjects, following the mixed meal.  

However, we did not observe any group differences in absolute FBF or FVC responses following 

ingestion of the mixed meal. In line with our findings, the peripheral blood flow responses 

following a glucose load in insulin resistant and insulin sensitive metabolic syndrome subjects 

have also been shown to not differ between groups with differences in insulin sensitivity20, 21.  It 

may be that the majority of insulin stimulated vasodilation following meal intake occurs within 

the microvasculature.  As discussed by Renkin and colleagues60, 61, enhancing capillary surface 

area will greatly increase nutrient delivery in direct proportion to the surface area available for 

nutrient exchange (e.g. microvascular recruitment), whereas increasing total limb blood flow (i.e. 
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FBF) would minimally enhance nutrient exchange.  Therefore, although we did not see a 

difference between the HF and AF groups in large conduit vessel blood flow, we cannot rule out 

differences in postprandial microvascular blood flow responses between groups. 

In summary, we found that HF subjects demonstrated a greater increase in MSNA burst 

incidence following ingestion of a mixed meal in comparison to AF subjects.  Moreover, when 

the MSNA responses were expressed relative to changes in plasma insulin, the HF subjects had a 

greater increase in MSNA for any given change in insulin.  Collectively, these data suggest that, 

in addition to improved peripheral insulin sensitivity, endurance training may also enhance the 

central actions of insulin to increase MSNA following consumption of a mixed meal. 

 

ACKNOWLEDGMENTS 

The authors thank Charla Jay for her technical assistance and Dr. David Keller for his 

constructive comments regarding data analyses and interpretation. This research is the result of 

work supported with resources by National Heart, Lung, and Blood Institute Grant HL-093167. 



47 
 

REFERENCES 

1. Berne C, Fagius J. Metabolic regulation of sympathetic nervous system activity: lessons 

from intraneural nerve recordings. Int J Obes Relat Metab Disord. 1993;17 Suppl 3:S2-6; 

discussion S22. 

2. Fagius J. Sympathetic nerve activity in metabolic control--some basic concepts. Acta 

Physiol Scand. 2003;177(3):337-343. 

3. van Baak MA. Meal-induced activation of the sympathetic nervous system and its 

cardiovascular and thermogenic effects in man. Physiol Behav. 2008;94(2):178-186. 

4. Vollenweider P, Tappy L, Randin D, Schneiter P, Jequier E, Nicod P, Scherrer U. 

Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic 

nerve activity and muscle blood flow in humans. J Clin Invest. 1993;92(1):147-154. 

5. Acheson KJ. Influence of autonomic nervous system on nutrient-induced thermogenesis 

in humans. Nutrition. 1993;9(4):373-380. 

6. Schwartz RS, Jaeger LF, Veith RC. Effect of clonidine on the thermic effect of feeding in 

humans. Am J Physiol. 1988;254(1 Pt 2):R90-94. 

7. Welle S. Sympathetic nervous system response to intake. Am J Clin Nutr. 1995;62(5 

Suppl):1118S-1122S. 

8. Liu X, Perusse F, Bukowiecki LJ. Chronic norepinephrine infusion stimulates glucose 

uptake in white and brown adipose tissues. Am J Physiol. 1994;266(3 Pt 2):R914-920. 

9. Lupien JR, Hirshman MF, Horton ES. Effects of norepinephrine infusion on in vivo 

insulin sensitivity and responsiveness. Am J Physiol. 1990;259(2 Pt 1):E210-215. 



48 
 

10. Marette A, Bukowiecki LJ. Stimulation of glucose transport by insulin and 

norepinephrine in isolated rat brown adipocytes. Am J Physiol. 1989;257(4 Pt 1):C714-

721. 

11. Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. 

Diabetologia. 2000;43(5):533-549. 

12. Sudo M, Minokoshi Y, Shimazu T. Ventromedial hypothalamic stimulation enhances 

peripheral glucose uptake in anesthetized rats. Am J Physiol. 1991;261(3 Pt 1):E298-303. 

13. Fagius J, Berne C. Increase in muscle nerve sympathetic activity in humans after food 

intake. Clin Sci (Lond). 1994;86(2):159-167. 

14. Muntzel MS, Morgan DA, Mark AL, Johnson AK. Intracerebroventricular insulin 

produces nonuniform regional increases in sympathetic nerve activity. Am J Physiol. 

1994;267(5 Pt 2):R1350-1355. 

15. Rahmouni K, Morgan DA, Morgan GM, Liu X, Sigmund CD, Mark AL, Haynes WG. 

Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to 

insulin. J Clin Invest. 2004;114(5):652-658. 

16. Cox HS, Kaye DM, Thompson JM, Turner AG, Jennings GL, Itsiopoulos C, Esler MD. 

Regional sympathetic nervous activation after a large meal in humans. Clin Sci (Lond). 

1995;89(2):145-154. 

17. Berne C, Fagius J, Niklasson F. Sympathetic response to oral carbohydrate 

administration. Evidence from microelectrode nerve recordings. J Clin Invest. 

1989;84(5):1403-1409. 

18. Fagius J, Ellerfelt K, Lithell H, Berne C. Increase in muscle nerve sympathetic activity 

after glucose intake is blunted in the elderly. Clin Auton Res. 1996;6(4):195-203. 



49 
 

19. Spraul M, Anderson EA, Bogardus C, Ravussin E. Muscle sympathetic nerve activity in 

response to glucose ingestion. Impact of plasma insulin and body fat. Diabetes. 

1994;43(2):191-196. 

20. Straznicky NE, Lambert GW, Masuo K, Dawood T, Eikelis N, Nestel PJ, McGrane MT, 

Mariani JA, Socratous F, Chopra R, Esler MD, Schlaich MP, Lambert EA. Blunted 

sympathetic neural response to oral glucose in obese subjects with the insulin-resistant 

metabolic syndrome. Am J Clin Nutr. 2009;89(1):27-36. 

21. Straznicky NE, Lambert GW, McGrane MT, Masuo K, Dawood T, Nestel PJ, Eikelis N, 

Schlaich MP, Esler MD, Socratous F, Chopra R, Lambert EA. Weight loss may reverse 

blunted sympathetic neural responsiveness to glucose ingestion in obese subjects with 

metabolic syndrome. Diabetes. 2009;58(5):1126-1132. 

22. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia 

produces both sympathetic neural activation and vasodilation in normal humans. J Clin 

Invest. 1991;87(6):2246-2252. 

23. Berne C, Fagius J, Pollare T, Hjemdahl P. The sympathetic response to euglycaemic 

hyperinsulinaemia. Evidence from microelectrode nerve recordings in healthy subjects. 

Diabetologia. 1992;35(9):873-879. 

24. Hausberg M, Mark AL, Hoffman RP, Sinkey CA, Anderson EA. Dissociation of 

sympathoexcitatory and vasodilator actions of modestly elevated plasma insulin levels. J 

Hypertens. 1995;13(9):1015-1021. 

25. Van De Borne P, Hausberg M, Hoffman RP, Mark AL, Anderson EA. Hyperinsulinemia 

produces cardiac vagal withdrawal and nonuniform sympathetic activation in normal 

subjects. Am J Physiol. 1999;276(1 Pt 2):R178-183. 



50 
 

26. Vollenweider P, Randin D, Tappy L, Jequier E, Nicod P, Scherrer U. Impaired insulin-

induced sympathetic neural activation and vasodilation in skeletal muscle in obese 

humans. J Clin Invest. 1994;93(6):2365-2371. 

27. Israel PA, Park CR, Schwartz MW, Green PK, Sipols AJ, Woods SC, Porte D, Jr., 

Figlewicz DP. Effect of diet-induced obesity and experimental hyperinsulinemia on 

insulin uptake into CSF of the rat. Brain Res Bull. 1993;30(5-6):571-575. 

28. Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Schwartz MW. Obesity induced by a 

high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes. 

2000;49(9):1525-1533. 

29. Kern W, Benedict C, Schultes B, Plohr F, Moser A, Born J, Fehm HL, Hallschmid M. 

Low cerebrospinal fluid insulin levels in obese humans. Diabetologia. 2006;49(11):2790-

2792. 

30. Schwartz MW, Figlewicz DF, Kahn SE, Baskin DG, Greenwood MR, Porte D, Jr. Insulin 

binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats. 

Peptides. 1990;11(3):467-472. 

31. Berger M, Kemmer FW, Becker K, Herberg L, Schwenen M, Gjinavci A, Berchtold P. 

Effect of physical training on glucose tolerance and on glucose metabolism of skeletal 

muscle in anaesthetized normal rats. Diabetologia. 1979;16(3):179-184. 

32. Bjorntorp P, Fahlen M, Grimby G, Gustafson A, Holm J, Renstrom P, Schersten T. 

Carbohydrate and lipid metabolism in middle-aged, physically well-trained men. 

Metabolism. 1972;21(11):1037-1044. 



51 
 

33. LeBlanc J, Nadeau A, Boulay M, Rousseau-Migneron S. Effects of physical training and 

adiposity on glucose metabolism and 125I-insulin binding. J Appl Physiol. 

1979;46(2):235-239. 

34. Lohmann D, Liebold F, Heilmann W, Senger H, Pohl A. Diminished insulin response in 

highly trained athletes. Metabolism. 1978;27(5):521-524. 

35. Richard D, LeBlanc J. Effects of physical training and food restriction on insulin 

secretion and glucose tolerance in male and female rats. Am J Clin Nutr. 

1980;33(12):2588-2594. 

36. Purves RD. Optimum numerical integration methods for estimation of area-under-the-

curve (AUC) and area-under-the-moment-curve (AUMC). J Pharmacokinet Biopharm. 

1992;20(3):211-226. 

37. Delius W, Hagbarth KE, Hongell A, Wallin BG. Manoeuvres affecting sympathetic 

outflow in human muscle nerves. Acta Physiol Scand. 1972;84(1):82-94. 

38. Delius W, Hagbarth KE, Hongell A, Wallin BG. General characteristics of sympathetic 

activity in human muscle nerves. Acta Physiol Scand. 1972;84(1):65-81. 

39. Ogoh S, Fisher JP, Raven PB, Fadel PJ. Arterial baroreflex control of muscle sympathetic 

nerve activity in the transition from rest to steady-state dynamic exercise in humans. Am 

J Physiol Heart Circ Physiol. 2007;293(4):H2202-2209. 

40. Ogoh S, Fisher JP, Young CN, Raven PB, Fadel PJ. Transfer function characteristics of 

the neural and peripheral arterial baroreflex arcs at rest and during postexercise muscle 

ischemia in humans. Am J Physiol Heart Circ Physiol. 2009;296(5):H1416-1424. 

41. Vallbo AB, Hagbarth KE, Torebjork HE, Wallin BG. Somatosensory, proprioceptive, and 

sympathetic activity in human peripheral nerves. Physiol Rev. 1979;59(4):919-957. 



52 
 

42. Hamner JW, Taylor JA. Automated quantification of sympathetic beat-by-beat activity, 

independent of signal quality. J Appl Physiol. 2001;91(3):1199-1206. 

43. Kimmerly DS, O'Leary DD, Shoemaker JK. Test-retest repeatability of muscle 

sympathetic nerve activity: influence of data analysis and head-up tilt. Auton Neurosci. 

2004;114(1-2):61-71. 

44. Sundlof G, Wallin BG. Human muscle nerve sympathetic activity at rest. Relationship to 

blood pressure and age. J Physiol. 1978;274:621-637. 

45. Sundlof G, Wallin BG. Effect of lower body negative pressure on human muscle nerve 

sympathetic activity. J Physiol. 1978;278:525-532. 

46. ACSM's Guidelines for Exercise Testing and Prescription (6th ed.). 6th ed. Philadelphia, 

PA: Lippincott Williams & Williams; 2000. 

47. Heath GW, Gavin JR, 3rd, Hinderliter JM, Hagberg JM, Bloomfield SA, Holloszy JO. 

Effects of exercise and lack of exercise on glucose tolerance and insulin sensitivity. J 

Appl Physiol. 1983;55(2):512-517. 

48. Thyfault JP. Setting the stage: possible mechanisms by which acute contraction restores 

insulin sensitivity in muscle. Am J Physiol Regul Integr Comp Physiol. 

2008;294(4):R1103-1110. 

49. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive 

equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 

1990;51(2):241-247. 

50. Kienbaum P, Karlssonn T, Sverrisdottir YB, Elam M, Wallin BG. Two sites for 

modulation of human sympathetic activity by arterial baroreceptors? J Physiol. 

2001;531(Pt 3):861-869. 



53 
 

51. Macefield VG, Wallin BG. Firing properties of single vasoconstrictor neurones in human 

subjects with high levels of muscle sympathetic activity. J Physiol. 1999;516 ( Pt 1):293-

301. 

52. Sundlof G, Wallin BG. The variability of muscle nerve sympathetic activity in resting 

recumbent man. J Physiol. 1977;272(2):383-397. 

53. Scott EM, Greenwood JP, Vacca G, Stoker JB, Gilbey SG, Mary DA. Carbohydrate 

ingestion, with transient endogenous insulinaemia, produces both sympathetic activation 

and vasodilatation in normal humans. Clin Sci (Lond). 2002;102(5):523-529. 

54. Schobel HP, Oren RM, Mark AL, Ferguson DW. Influence of resting sympathetic 

activity on reflex sympathetic responses in normal man. Clin Auton Res. 1995;5(2):71-80. 

55. Muntzel M, Beltz T, Mark AL, Johnson AK. Anteroventral third ventricle lesions abolish 

lumbar sympathetic responses to insulin. Hypertension. 1994;23(6 Pt 2):1059-1062. 

56. Hambrecht R, Adams V, Erbs S, Linke A, Krankel N, Shu Y, Baither Y, Gielen S, Thiele 

H, Gummert JF, Mohr FW, Schuler G. Regular physical activity improves endothelial 

function in patients with coronary artery disease by increasing phosphorylation of 

endothelial nitric oxide synthase. Circulation. 2003;107(25):3152-3158. 

57. Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. 

Endocr Rev. 2007;28(5):463-491. 

58. Muniyappa R, Quon MJ. Insulin action and insulin resistance in vascular endothelium. 

Curr Opin Clin Nutr Metab Care. 2007;10(4):523-530. 

59. Vincent MA, Montagnani M, Quon MJ. Molecular and physiologic actions of insulin 

related to production of nitric oxide in vascular endothelium. Curr Diab Rep. 

2003;3(4):279-288. 



54 
 

60. Renkin E, Crone C. Microcirculation and capillary exhange. In: Greger R, Windhorst U, 

eds. Comprehensive Human Physiology (1st ed.). Berlin-Heidelberg: Springer Verlag; 

1996:1965-1979. 

61. Renkin EM. B. W. Zweifach Award lecture. Regulation of the microcirculation. 

Microvasc Res. 1985;30(3):251-263. 



55 
 

Table 2.1 Subject Characteristics 

 

 

 

 

 

 

 

 

 

 

 

VO2peak, peak oxygen uptake. Values are means ± SE. *P<0.05 vs. average fit. 

 

 

 

 

 

 

 

 

 

 

Average Fit High Fit

Age (yr) 26 ± 2 29 ± 2 

Height (cm) 179 ± 2 180 ± 1

Weight (kg) 75 ± 4 74 ± 2

Body Mass Index (kg•m2-1) 23 ± 1 23 ± 1

VO2peak (ml•kg-1•min-1) 43.6 ± 1.3 65.9 ± 1.4 *

VO2peak (L•min-1) 3.3 ± 0.2 4.9 ± 0.2 *

Glucose (mg•dl-1) 92.9 ± 3.7 96.7 ± 2.9

Insulin (uIU•ml-1) 3.6 ± 0.9 2.7 ± 0.3

Average Fit High Fit

Age (yr) 26 ± 2 29 ± 2 

Height (cm) 179 ± 2 180 ± 1

Weight (kg) 75 ± 4 74 ± 2

Body Mass Index (kg•m2-1) 23 ± 1 23 ± 1

VO2peak (ml•kg-1•min-1) 43.6 ± 1.3 65.9 ± 1.4 *

VO2peak (L•min-1) 3.3 ± 0.2 4.9 ± 0.2 *

Glucose (mg•dl-1) 92.9 ± 3.7 96.7 ± 2.9

Insulin (uIU•ml-1) 3.6 ± 0.9 2.7 ± 0.3
 



 

 

Table 2.2  Cardiovascular and hemodynamic responses to a mixed meal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial blood pressure; HR, heart rate. Values are means ± 
SE.   
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Table 2.3  Muscle sympathetic nerve activity (MSNA) responses to a mixed meal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AU, arbitrary units.  Values are means ± SE.  *P<0.05 vs. average fit. MSNA total activity and burst strength are only included for 
completeness (see text for details). 
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Figure 2.1  Mean plasma glucose (panel A) and insulin (panel B) at baseline (time 0) and for 

120 minutes following consumption of the mixed meal in the average fit and high fit groups, as 

well as the area under the curve for glucose (panel C) and insulin (panel D).  Values are mean ± 

SE.  *P < 0.05 vs. average fit. 
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Figure 2.2  Original records from an average fit (panel A) and high fit (panel B) subject illustrating muscle sympathetic nerve activity 

(MSNA) and respiratory tracings at baseline and 120 minutes following consumption of the mixed meal.  In response to the mixed 

meal, MSNA burst incidence increased 11 and 23 bursts/100 heart beats in the average fit and high fit subject, respectively. V, volts; 

AU, arbitrary units.
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Figure 2.3  Mean muscle sympathetic nerve activity (MSNA) burst incidence responses (panel 

A) at baseline (time 0) and for 120 minutes following consumption of the mixed meal in the 

average fit and high fit groups.  Panel B shows the changes in MSNA burst incidence from 

baseline in both groups. AU, arbitrary units; Hb, heart beats.  Values are mean ± SE.  *P < 0.05 

vs. average fit. 
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Figure 2.4  Group averages for the ratios relating changes from baseline in MSNA burst 

incidence (panel A) to changes in plasma insulin following mixed meal intake.  Panel B shows 

the ratio of MSNA burst incidence area under the curve (AUC0-120) to the insulin AUC0-120.  AU, 

arbitrary units; Hb, heart beats.  Values are mean ± SE.  *P < 0.05 vs. average fit. 
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ABSTRACT 

Recent animal studies indicate that insulin increases arterial baroreflex control of 

lumbar sympathetic nerve activity; however, the extent to which these findings can be 

extrapolated to humans is unknown. To begin to address this, muscle sympathetic nerve 

activity (MSNA) and arterial blood pressure (BP) were measured in 19 healthy subjects 

(27±1 yr) before and for 120 minutes following two common methodologies used to 

evoke sustained increases in plasma insulin, a mixed meal and a hyperinsulinemic 

euglycemic clamp.  Weighted linear regression analysis between MSNA and diastolic 

blood pressure was used to determine the gain (i.e. sensitivity) of arterial baroreflex 

control of MSNA. Plasma insulin was significantly elevated within 30 minutes following 

meal intake (Δ34±6 uIU/ml; P<0.05) and remained above baseline for up to 120 minutes.  

Similarly, after meal intake, arterial baroreflex MSNA gain for burst incidence and total 

MSNA was increased and remained elevated for the duration of the protocol (e.g. burst 

incidence gain: -3.29±0.54 baseline vs. -5.64±0.67 120 minutes bursts/100 heart 

beats/mmHg; P<0.05).  During the hyperinsulinemic euglycemic clamp, in which insulin 

was elevated to postprandial concentrations (Δ42±6 uIU/ml; P<0.05), while glucose was 

maintained constant, arterial baroreflex MSNA gain was similarly enhanced (e.g. burst 

incidence gain: -2.44±0.29 baseline vs. -4.74±0.71 120 minutes bursts/100 heart 

beats/mmHg; P<0.05).  Importantly, during time control experiments, with sustained 

fasting insulin concentrations, the arterial baroreflex-MSNA gain remained unchanged. 

These findings demonstrate, for the first time in healthy humans, that increases in plasma 

insulin enhance the gain of arterial baroreflex control of MSNA. 
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INTRODUCTION 

The arterial baroreflex modulates beat-to-beat oscillations in arterial blood 

pressure via the control of efferent sympathetic outflow to the vasculature.  Due to the 

importance of the arterial baroreflex in the regulation of blood pressure a large body of 

research has been dedicated to understanding alterations in baroreflex sensitivity (i.e. 

gain) in physiological (e.g. exercise) as well as pathophysiological conditions1-3. In 

regards to the latter, numerous studies have indicated that hypertensive conditions are 

typically associated with reductions in arterial baroreflex sensitivity4-7. Interestingly, 

another common risk factor shown to be present in hypertensive patients is insulin 

resistance8, 9.  In this regard, a number of recent studies have indicated that several 

conditions with known reductions in insulin sensitivity also demonstrate impairments in 

arterial baroreflex function and hypertension, including obesity10 and the metabolic 

syndrome11.  Although not causative, the concomitant occurrence of insulin resistance 

with reductions in arterial baroreflex function clearly suggests a link between the two that 

warrants investigation. 

Emerging evidence from studies in experimental animal models has begun to 

establish a role for insulin in the central control of the arterial baroreflex.  Recently, 

Pricher et al12 demonstrated that increases in insulin within the brain, via lateral 

ventricular infusion, enhanced the gain of arterial baroreflex control of lumbar 

sympathetic nerve activity in rats.  Other studies have indicated that neurons in central 

baroreflex regulatory regions (i.e. nucleus tractus solitarius) are responsive to insulin13.  

Collectively, these studies indicate that insulin can directly influence arterial baroreflex 

function within central neural cardiovascular control pathways.  However, to date, no 
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work has been performed in humans evaluating the potential influence of insulin on 

arterial baroreflex control of sympathetic nerve activity, and therefore the extent to which 

these findings in experimental animals can be translated to humans remains unknown. 

Therefore, the purpose of the current study was to examine a role for insulin in 

arterial baroreflex control of sympathetic nerve activity in humans.  Although, insulin is 

not produced in significant amounts within the brain, increases in circulating insulin gain 

access to the central nervous system via transport mediated uptake across the blood brain 

barrier14, 15.  Thus, we utilized two common methodologies to raise plasma insulin 

concentrations.  First, a mixed meal was used as a physiological method to evoke 

increases in plasma insulin.  In addition, to further isolate the influence of insulin on 

arterial baroreflex control we also performed hyperinsulinemic euglycemic clamps, in 

which insulin concentrations were elevated to a similar extent as postprandial conditions, 

without concomitant increases in plasma glucose.  We hypothesized that increases in 

plasma insulin would enhance the gain of arterial baroreflex control of muscle 

sympathetic nerve activity in healthy humans.
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METHODS 

General Procedures 

Nineteen healthy male subjects (age, 27 ± 1 yr; height, 180 ± 1 cm; weight, 80 ± 3 

kg) volunteered for participation in these studies.  No subject had a history or symptoms 

of cardiovascular, pulmonary, metabolic, or neurological disease and none were taking 

medications.  Subjects were instructed to abstain from caffeinated beverages and food for 

12 hours, alcohol for 24 hours, and physical activity for 48 hours prior to the 

experimental sessions.  After receiving a detailed verbal and written explanation of the 

intended experimental protocol and measurements, each subject provided written 

informed consent.  All experimental procedures and protocols conformed to the 

Declaration of Helsinki and were approved by the University of Missouri Health Sciences 

Institutional Review Board.   

 

Experimental Measurements 

Subjects were studied in the supine position at a constant ambient room 

temperature of 22-23 ºC.  Heart rate (HR) was continuously monitored using a lead II 

electrocardiogram.  Arterial blood pressure was measured on a beat-to-beat basis using 

servo-controlled finger photoplethysmography (Finometer, Finapres Medical Systems, 

Amsterdam, Netherlands).  In addition, arterial blood pressure was measured with an 

automated sphygmomanometer (Welch Allyn, Skaneatles Falls, NY, USA) to confirm the 

finometer measurements of absolute blood pressure.  Respiratory movements were 

monitored using a strain-gauge pneumograph placed in a stable position around the 

abdomen (Pneumotrace, UFI, Morro Bay, CA, USA).    
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 Multiunit recordings of postganglionic muscle sympathetic nerve activity 

(MSNA) were obtained by inserting unipolar tungsten microelectrodes percutaneously 

through the intact, unanaesthetized skin and positioned into muscle nerve fascicles of the 

peroneal nerve near the fibular head. The nerve signal was processed by a pre-amplifier 

and an amplifier (Dept. of Bioengineering, University of Iowa, Iowa City, IA), band pass 

filtered (bandwidth 700 – 2000 Hz), rectified, and integrated (time constant, 0.1s) to 

obtain a mean voltage neurogram.  MSNA recordings were identified by their 

characteristic pulse-synchronous burst pattern and increased neural activity in response to 

an end-expiratory apnea or Valsalva maneuver, without any response to arousal stimuli or 

stroking of the skin. MSNA was first identified by visual inspection and was then 

analyzed using custom designed software (MatLab, The Math Works, Natick, MA, 

USA), as previously described16, 17.  The amplitude of the largest burst at baseline was 

assigned a value of 1000 (arbitrary units; AU) and all other bursts within a trial were 

normalized with respect to this value.  All variables were sampled at 1000Hz and stored 

for off-line analysis (Chart v5.2 and Powerlab, ADInstruments, Bella Vista, NSW, 

Australia). 

 Plasma insulin and glucose were measured from venous blood samples drawn 

from an antecubital (Protocol 1) or a hand (Protocol 2 & 3) intravenous catheter.  Insulin 

was determined using chemiluminescent enzyme immunoassay (Immulite 1000 

Analyzer, Diagnostic Products Corp., Los Angeles, CA, USA) and glucose was 

determined using the glucose oxidase method (Thermo, Waltham, MA, USA or Beckman 

Instruments, Brea, CA, USA). 
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Experimental Protocols 

Protocol 1: Arterial Baroreflex Control of MSNA Following a Mixed Meal 

A mixed meal was utilized as a physiological method to evoke sustained increases 

in plasma insulin (n=12).  MSNA, arterial blood pressure, heart rate and respiration were 

measured before and for 120 minutes following ingestion of a liquid mixed meal (Ensure 

Plus, Abbott Laboratories, Columbus, Ohio, USA; 57% CHO, 28% Fat, 15% Protein), 

corresponding to 20% of the subject’s estimated energy expenditure calculated from body 

weight18.  All neuro-cardiovascular variables were measured at baseline for 20 minutes 

and for a 5 minute period, every 30 minutes, following consumption of the mixed meal.  

Venous blood samples were similarly collected from an antecubital intravenous catheter 

and the resulting plasma was stored at -80° C for later analysis of plasma insulin and 

glucose.  

 

Protocol 2: Arterial Baroreflex Control of MSNA During a Hyperinsulinemic 

Euglycemic Clamp 

 To further isolate the influence of insulin on arterial baroreflex control of MSNA, 

hyperinsulinemic euglycemic clamps were performed (n=8) in which insulin was 

elevated to postprandial concentrations while glucose was maintained constant19.  

Intravenous catheters were placed in a left antecubital vein and a right hand vein for the 

infusion of insulin/glucose and blood sampling, respectively.  The right hand was placed 

in a heated box (50° C) for determination of arterialized venous blood samples20.  Insulin 

(Humulin, Eli Lilly, Indianapolis, IN, USA) was diluted in 0.9% saline with 5 ml of the 

subject’s blood and a 10 minute priming insulin infusion was followed by a constant 
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infusion at 30mU/m2/minute, for a total of 120 minutes.  Glucose was maintained at 

euglycemic concentrations throughout via a variable 20% dextrose infusion.  Plasma 

glucose was determined every 5 minutes and plasma insulin was stored at -80° C for later 

analysis.  MSNA, arterial blood pressure, heart rate and respiration were collected for 20 

minutes at baseline and for a 5 minute period, every 30 minutes, during the 

hyperinsulinemic euglycemic clamp. 

 

 

Protocol 3: Arterial Baroreflex Control of MSNA During Time Control Experiments 

In a subset of subjects (n=4) time control experiments were also performed in 

which 0.9% saline was infused to match the volume administered during the 

hyperinsulinemic euglycemic clamp, while insulin was sustained at fasting 

concentrations. 

 

Data Analysis 

Baseline MSNA, arterial blood pressure and heart rate were calculated as mean 

values over a 6 minute period.  Following consumption of the mixed meal and during the 

hyperinsulinemic euglycemic clamp or time controls, 3 minute averages were calculated 

from the 5 min data segments collected every 30 minutes.  The same segments were used 

to evaluate arterial baroreflex control of MSNA by analyzing the relationship between 

spontaneously occurring fluctuations in diastolic blood pressure and MSNA, as 

previously described21-24.  Briefly, the diastolic blood pressure for each cardiac cycle 

within a data collection period was grouped into 3 mmHg pressure bins.  The burst 
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incidence within each pressure bin was calculated by determining the percentage of 

diastoles that were associated with a burst of MSNA and expressed as bursts/100 

heartbeats.  In addition, total MSNA was determined for each pressure bin by calculating 

the total area of all MSNA bursts, relative to the number of cardiac cycles, and expressed 

as arbitrary units (AU)/beat.  The slope of the relationship between MSNA variables and 

diastolic blood pressure was identified using linear regression analysis (SPSS v17.0, 

SPSS Inc, Chicago, IL, USA), with a minimum r value of 0.5 used as a criteria for 

accepting slopes.  The mean r value for all of the time points during each protocol was: 

Protocol 1 - 0.88 ± 0.01 (Range: 0.56-0.99), Protocol 2 - 0.90 ± 0.01 (Range: 0.78-0.99) 

and Protocol 3 - 0.86 ± 0.21 (Range: 0.74-0.98), indicating adequate fit of the linear 

regression analyses.  All data were weighted to account for the number of cardiac cycles 

within each pressure bin; thus removing bias due to bins containing a small number of 

cardiac cycles. The diastolic blood pressure range used for the linear regression analyses 

was approximately 20 mmHg under resting conditions (mixed meal: 21 ± 1, 

hyperinsulinemic euglycemic clamp: 21 ± 2, time control: 19 ± 1) and importantly the 

range was the same at all time points examined.  The slope of the relationship between 

spontaneous fluctuations in MSNA burst incidence and diastolic blood pressure was 

recently shown to be highly correlated with slopes derived using the more invasive 

modified Oxford approach for assessing arterial baroreflex-MSNA gain (i.e. bolus 

sodium nitroprusside and phenylephrine)25.  In addition, van Schelven et al26 have 

demonstrated that arterial baroreflex burst incidence gain was not altered from baseline 

during steady state nitroprusside infusions in which MSNA was robustly increased.  

Collectively, these data highlight the usefulness of the burst incidence-diastolic blood 
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pressure measures in assessing arterial baroreflex function; particularly in conditions in 

which multiple repeated measures are needed, such as in the current study following 

mixed meal intake and during a 2 hour hyperinsulinemic euglycemic clamp.   

 

Statistical Analysis  

 Univariate repeated measures ANOVA was used and significant main effects 

were evaluated with Bonferroni post-hoc analyses when appropriate.  Statistical 

significance was set at P < 0.05.  Results are presented as mean ± standard error (SE). 
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RESULTS 

Increased arterial baroreflex MSNA gain following a mixed meal 

 Mixed meal intake induced a significant rise in plasma insulin, as well as plasma 

glucose (Figure 3.1).  The arterial baroreflex gain of MSNA burst incidence (Figure 

3.2A) was significantly enhanced (i.e. more negative) within 30 minutes (Δ-1.91±0.53 

bursts/100 heart beats/mmHg) and remained elevated for the duration of the study (e.g. 

120 minutes: Δ-1.82±0.37 bursts/100 heart beats/mmHg).  Similarly, arterial baroreflex 

control of total MSNA (Figure 3.2B) was increased at 30 minutes, and thereafter 

remained above baseline up to 120 minutes. 

 

Increased arterial baroreflex MSNA gain during a hyperinsulinemic euglycemic 

clamp 

During the hyperinsulinemic euglycemic clamp, plasma insulin was increased 

similarly to after the mixed meal; however, euglycemia was maintained throughout at 

fasting concentrations (Figure 3.1).  Importantly, in line with the findings from the mixed 

meal, robust increases in the gain of arterial baroreflex control of MSNA burst incidence 

(e.g. 120 minutes: Δ-2.30±0.62 bursts/100 heart beats/mmHg) and total MSNA were 

observed with the concomitant increase in plasma insulin.  In contrast, during the time 

control experiments, in which plasma insulin and glucose were not changed (data not 

shown), the gain of the arterial baroreflex was not different from baseline at any time 

point (Figure 3.3).   
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MSNA and cardiovascular parameters  

As anticipated, following the mixed meal and during the hyperinsulinemic 

euglycemic clamp, MSNA burst frequency, burst incidence and total MSNA were 

increased within 30 minutes and remained above baseline for the remainder of the 

protocol.  Systolic and diastolic blood pressures, as well as heart rate, were slightly, but 

significantly increased following consumption of the mixed meal.  Arterial blood 

pressure and heart rate remained unchanged during the hyperinsulinemic euglycemic 

clamp and time control experiments (Table 3.1).   
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DISCUSSION 

The primary novel finding of this investigation is that increases in plasma insulin 

enhanced the gain of arterial baroreflex control of MSNA.  Indeed, physiological 

elevations in plasma insulin following the mixed meal were associated with an increased 

slope of the relationship between diastolic blood pressure and MSNA.  Furthermore, 

during the hyperinsulinemic euglycemic clamp, in which insulin was increased to 

postprandial concentrations, while glucose was maintained at euglycemia, arterial 

baroreflex control of MSNA burst incidence was also augmented.  Overall, these findings 

strongly support a role for insulin in the modulation of the sympathetic arterial baroreflex 

in healthy humans. 

In addition to the well described sympathoexcitatory effect(s) of insulin27, 28, 

recent findings obtained in animals illustrate a role for insulin in the central modulation 

of the arterial baroreflex12.  During lateral ventricular infusion of insulin in rats, robust 

increases in the gain of arterial baroreflex control of lumbar sympathetic nerve activity 

have been demonstrated; illustrating that acute increases in insulin within the brain 

modulate arterial baroreflex control of sympathetic outflow12.  The findings from the 

current study support and extend these findings by demonstrating for the first time in 

healthy humans that acute increases in insulin are associated with an enhanced arterial 

baroreflex MSNA gain.  Importantly, the enhanced sympathetic arterial baroreflex 

control was noted during modest increases in plasma insulin under both postprandial 

(mixed meal) and experimental (insulin clamp) conditions; supporting a role for insulin 

within a normal physiological range in the modulation of the arterial baroreflex. 
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Insulin is not produced in large quantities in the central nervous system; however 

plasma insulin gains access to the brain via saturable transport-mediated uptake across 

the blood brain barrier14, 15.  As such, circulating insulin can influence arterial baroreflex 

control via central neural pathways and indeed, insulin receptors are present in numerous, 

yet distinct cardiovascular regulatory regions, including hypothalamic and brainstem 

regions29, 30.  In this context, Schwartz et al31 have previously demonstrated in dogs that 

cerebrospinal fluid concentrations of insulin are increased within 30 minutes after 

systemic infusion of insulin; in line with our finding of an increase in arterial baroreflex 

MSNA gain within 30 minutes after the mixed meal or during the hyperinsulinemic 

euglycemic clamp.  Moreover, the half life of insulin within cerebrospinal fluid has been 

reported to be approximately 140 minutes32, which may explain the sustained 

enhancement in arterial baroreflex control of MSNA demonstrated in the current study. 

Interestingly, the increase in arterial baroreflex MSNA gain was noted for the 

relationships between diastolic blood pressure and both, MSNA burst incidence as well 

as total MSNA.  In this regard, previous investigations have suggested that the 

occurrence of a sympathetic burst (incidence) and the area of a burst may reflect distinct 

central sites involved in arterial baroreflex control of MSNA21, 22.  The current data 

demonstrate that during elevations in insulin, for a given change in diastolic blood 

pressure there is a greater change in MSNA burst incidence and total MSNA (area/beat), 

relative to fasting conditions.  As such, our findings suggest that insulin may influence 

central pathways involved in both the occurrence of a burst of MSNA as well as the size 

of a given burst.  Due to the peripheral vasodilatory effect of insulin, the physiological 

significance of an enhanced arterial baroreflex control over the occurrence and size of a 
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burst of MSNA may provide optimal protection of arterial blood pressure during acute 

elevations in plasma insulin.  Interestingly, it should be noted that arterial blood pressure 

was well maintained throughout the mixed meal and hyperinsulinemic euglycemic clamp 

in the present study.  Furthermore, autonomic failure patients demonstrate robust falls in 

arterial blood pressure after meal consumption33, illustrating the importance of the 

sympathetic nervous system in the maintenance of blood pressure during periods of 

increased circulating insulin. 

Of note, although we found an increase in arterial baroreflex gain for the control 

of MSNA burst occurrence and area (i.e. total MSNA), methodological considerations of 

the use of MSNA burst incidence, in comparison to total MSNA, to derive spontaneous 

baroreflex measures is warranted.  In this regard, previous findings have demonstrated 

that the gain of arterial baroreflex control of MSNA burst incidence was similar to 

baroreflex sensitivities obtained using pharmacological manipulations of arterial blood 

pressure25, 26; demonstrating the usefulness of these measurements.  In contrast, 

spontaneous arterial baroreflex gains calculated from measurements using MSNA burst 

area (e.g. total MSNA) have been suggested to be influenced more by non baroreflex 

inputs22, 25, which may limit the interpretation of such measures.  Indeed, several studies 

have reported weak relationships between burst area and diastolic blood pressure, 

whereas burst incidence consistently demonstrates strong relationships with diastolic 

blood pressure21-23, 25, 34.  Thus, although robust increases in arterial baroreflex control of 

total MSNA were observed following the mixed meal and during the hyperinsulinemic 

euglycemic clamp, we focused our interpretation on baroreflex measures of burst 

incidence. 
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 From these human studies, although we cannot determine the precise region(s) of 

insulin action on arterial baroreflex control of MSNA, several areas are worthy of 

consideration.  The aforementioned work in rats using lateral ventricular infusion of 

insulin suggests a hypothalamic region, such as the paraventricular nucleus, may play a 

major role12.  In addition, neurons from brainstem regions involved in arterial baroreflex 

afferent processing (e.g. nucleus tractus solitarius) are responsive to insulin13.  

Furthermore, neural projections from the circumventricular organs, which lack a blood 

brain barrier, could also impact arterial baroreflex function during elevations in plasma 

insulin15.  Indeed, the investigation of insulin effects on arterial baroreflex control of 

sympathetic outflow is in its infancy; however this area undoubtedly deserves further 

attention. 

 

Perspectives 

 A number of conditions are characterized by reductions in arterial baroreflex gain, 

including hypertension4-7, obesity10, metabolic syndrome11 and pregnancy35, 36.  In 

addition, emerging evidence indicates that insulin resistant states are accompanied by 

reduced cerebrospinal fluid insulin concentrations, likely emanating from an attenuated 

transport of insulin into the central nervous system35-40.  In line with this, Brooks and 

colleagues have advanced the hypothesis that a certain level of insulin within the brain is 

essential for normal arterial baroreflex function12.  The present study lends support to this 

growing body of literature by demonstrating for the first time that insulin can modulate 

the sympathetic arterial baroreflex in healthy humans.  However, whether chronic 

alterations in insulin transport and/or signaling in the central nervous system contribute to 
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a decreased sympathetic arterial baroreflex gain in insulin resistant conditions remains to 

be determined.  Given the importance of the arterial baroreflex in the regulation of 

arterial blood pressure, clearly future studies, from experimental animals to humans, are 

warranted to delineate the precise neural pathways and mechanism(s) of insulin action on 

neurocardiovascular control in health and disease.  

 In summary, for the first time, we found that physiological increases in plasma 

insulin following a mixed meal and during a hyperinsulinemic euglycemic clamp 

enhanced the gain of arterial baroreflex control of MSNA in humans.  Collectively, these 

findings extend recent studies in animals and strongly support a role for insulin in the 

modulation of the sympathetic arterial baroreflex. 
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Table 3.1  Sympathetic nerve activity and cardiovascular responses to a mixed meal, hyperinsulinemic euglycemic clamp and time 

control experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSNA, muscle sympathetic nerve activity; Hb, heart beats; AU, arbitrary units.  Values are means ± SE.  *P<0.05 vs. baseline.
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Figure 3.1  Mean plasma insulin (panel A) and glucose concentrations (panel B) at 

baseline (time 0) and for 120 minutes following consumption of the mixed meal and 

during the hyperinsulinemic euglycemic clamp. 
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Figure 3.2  Summary data illustrating the gain of arterial baroreflex control of muscle 

sympathetic nerve activity (MSNA) burst incidence (panel A) and total MSNA (panel B) 

at baseline (time 0) and for 120 minutes following consumption of the mixed meal.  Hb, 

heart beats; AU, arbitrary units.  *P<0.05 vs. baseline. †P<0.05 vs. 30 minutes. 
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Figure 3.3  Summary data illustrating the gain of arterial baroreflex control of muscle 

sympathetic nerve activity (MSNA) burst incidence (panel A) and total MSNA (panel B) 

at baseline (time 0) and for 120 minutes during the hyperinsulinemic euglycemic clamp 

and time control experiments.  Hb, heart beats; AU, arbitrary units.  *P<0.05 vs. baseline.  
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ABSTRACT 

Type II diabetes is associated with acute and chronic alterations in the regulation 

of arterial blood pressure.  However, whether impairments in arterial baroreflex control 

of sympathetic nerve activity contribute to alterations in blood pressure control in 

diabetic patients remains unclear. To begin to address this question, muscle sympathetic 

nerve activity (MSNA), and arterial blood pressure were continuously recorded in 8 type 

II diabetic patients and 6 healthy age, sex and body weight-matched control subjects 

during intravenous bolus injections of sodium nitroprusside followed 60s later by 

phenylephrine hydrochloride. The gain (i.e. sensitivity) of arterial baroreflex-MSNA 

control was identified from the linear relationships between total MSNA and diastolic 

blood pressure.  The overall arterial-MSNA gain, which encompasses the MSNA 

responses to both a fall and rise in arterial blood pressure, was similar between the two 

groups (-6.96±1.17 diabetics vs. -6.54±1.17 controls, AU/beat/mmHg; P=0.45).  

Similarly, when the responses were examined separately for falls (-8.87±1.37 diabetics 

vs. -8.58±1.74 controls, AU/beat/mmHg; P=0.22) and rises (-6.57±1.24 diabetics vs. -

6.49±1.13 controls, AU/beat/mmHg; P=0.44) in arterial blood pressure, no differences in 

arterial baroreflex control of MSNA were noted.  These preliminary data suggest that 

patients with type II diabetes exhibit preserved arterial baroreflex control of sympathetic 

nerve activity.
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INTRODUCTION 

Arterial baroreceptors originating in the carotid artery and the aorta play a pivotal 

role in the rapid reflex adjustments that accompany acute cardiovascular stressors1, 2.  

Indeed, the ability to withstand acute falls and rises in blood pressure is dependent on a 

properly functioning arterial baroreflex2.  In particular, arterial baroreflex control of 

sympathetic nerve activity to the peripheral vasculature is crucial for normal control of 

blood pressure3-5.  Although previous findings have indicated that patients with type II 

diabetes mellitus exhibit postural hypotension6-8, greater blood pressure reactivity to 

acute cardiovascular stressors9-11, and an increased risk for the development of 

hypertension12, the extent to which impairments in arterial baroreflex regulation 

contribute to these alterations in blood pressure control remains unclear. 

Recent findings from experimental animal models of type II diabetes have 

provided insight into arterial baroreflex regulation of sympathetic nerve activity.  In this 

regard, studies in the obese Zucker rat have demonstrated an impaired arterial baroreflex 

control of splanchnic sympathetic nerve activity13, 14.  While adult obese Zucker rats do 

exhibit characteristics of type II diabetes, such as hyperinsulinemia and hyperglycemia, 

they are often hypertensive15.  Therefore, the extent to which these findings in 

experimental animals can be translated to normotensive type II diabetic patients remains 

unknown.  Investigations reporting a diminished increase in plasma norepinephrine, in 

response to standing, in diabetic patients suggests an impairment in the sympathetic arc 

of the baroreflex16.  However, to date, no studies have directly examined arterial 

baroreflex control of sympathetic nerve activity in type II diabetes patients.   
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 A further consideration when examining the arterial baroreflex, is the inherent 

asymmetry in the baroreflex-mediated responses to falls and rises in arterial blood 

pressure (i.e. hysteresis).  In this context, differences in sympathetic baroreflex gain 

during increases versus decreases in blood pressure have been recently described in 

healthy adults17.  As such, it appears necessary to account for the direction of pressure 

change when examining the sympathetic baroreflex in type II diabetic patients.  Indeed, 

group differences in arterial baroreflex-mediated responses could potentially be masked 

by combining pressure falls and rises17, 18. 

 With this background in mind, the aim of the current study was to characterize 

sympathetic and cardiovagal arterial baroreflex control in patients with type II diabetes.  

Pharmacological induced decreases and increases in arterial blood pressure were used as 

a robust stimulus while the resultant changes in muscle sympathetic nerve activity 

(MSNA) and cardiac interval were assessed.  Furthermore, given that type II diabetic 

patients exhibit alterations in blood pressure control during both falls and rises in blood 

pressure, a secondary aim was to investigate baroreflex-mediated responses during 

directional changes in blood pressure separately.  We hypothesized that type II diabetic 

patients would exhibit a decreased sympathetic and cardiovagal arterial baroreflex gain to 

both increases and decreases in arterial blood pressure, when compared to healthy age, 

sex and body weight matched control subjects. 
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METHODS 

To date, 8 type II diabetic patients and 6 healthy age, sex and body weight 

matched control subjects have been studied.  Diabetic subjects were all normotensive and 

were not being treated for hypertension, were free of signs of neuropathy, and had no 

history of cardiovascular disease.  Patients were on a stable drug regimen for at least 3 

months prior to participating in the study which included biguanides (n=7), sulfonylureas 

(n=5), insulin (n=4), incretin mimetic (n=1), statins (n=7), angiotensin converting 

enzyme inhibitor (n=1) and hydrochlorothiazide (n=2).  All medications were withheld 

for a minimum of 12 hours prior to the experimental visit.  All experimental procedures 

and protocols were approved by the University of Missouri Health Sciences Institutional 

Review Board and each subject provided written informed consent prior to participation. 

 

Experimental Measurements 

Studies were performed at an ambient room temperature of 22-24 ºC with external 

stimuli minimized.  Heart rate was continuously monitored using a lead II 

electrocardiogram (Quinton Q710, Bothell, WA, USA).  Beat-to-beat arterial blood 

pressure was obtained using servo-controlled finger photoplethysmography (Finometer, 

Finapres Medical Systems, Amsterdam, Netherlands).  In addition, an automated 

sphygmomanometer (Welch Allyn, Skaneatles Falls, NY, USA) was used to measure 

arterial blood pressure by auscultation of the brachial artery and to confirm Finometer 

measurements.  Respiratory movements were monitored using a strain-gauge 

pneumograph placed in a stable position around the abdomen (Pneumotrace, UFI, Morro 

Bay, CA, USA).  Multiunit recordings of postganglionic MSNA were obtained as 
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described previously19-21.  Briefly, a unipolar tungsten microelectrode was inserted 

percutaneously through the intact, unanaesthetized skin and positioned into muscle nerve 

fascicles of the peroneal nerve near the fibular head of the left leg. Postganglionic 

sympathetic action potentials were amplified, filtered (bandwidth 700 – 2000 Hz), 

rectified, and integrated (time constant, 0.1 s) to obtain a mean voltage neurogram (Dept. 

of Bioengineering, University of Iowa, Iowa City, IA).  MSNA recordings were 

identified by their characteristic pulse-synchronous burst pattern and increased neural 

activity in response to an end-expiratory apnea or Valsalva maneuver, without any 

response to arousal stimuli or stroking of the skin22-24.  Heart rate, arterial blood pressure, 

respiration and MSNA were sampled at 1000Hz and stored for off-line analysis (Chart 

v5.2 and Powerlab, ADInstruments, Bella Vista, NSW, Australia). 

 

Experimental Protocol 

 Subjects were instructed to refrain from food and caffeinated beverages for 12 

hours and strenuous physical activity and alcohol for 24 hours prior to reporting to the 

laboratory.  Subjects were placed in the supine position on a medical examination table 

and an intravenous catheter was placed in an antecubital vein.  Fasting blood samples 

were drawn for the measurement of triglycerides, cholesterol, lipoproteins, glucose and 

insulin.  Following instrumentation for measures of heart rate, arterial blood pressure, 

respiration and MSNA, baseline variables were collected for a period of 20 minutes.  

Subsequently, sympathetic arterial baroreflex control was investigated using the modified 

Oxford technique25. MSNA, heart rate and blood pressure were continuously recorded 

while rapid pharmacologically-induced changes in blood pressure were elicited using 
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intravenous injections of sodium nitroprusside (100 µg) to lower blood pressure 

approximately 15 mmHg, followed 60 seconds later by phenylephrine hydrochloride 

(150-175 µg) to raise blood pressure above baseline levels.  Two to three trials were 

performed for each subject with a minimum of 15 minutes between trials to allow for re-

establishment of baseline cardiovascular and sympathetic variables. 

 

Data Analysis 

MSNA was first identified by visual inspection and was then analyzed using 

custom designed software (MatLab, The Math Works, Natick, MA, USA), as previously 

described21, 26.  The amplitude of the largest burst at baseline was assigned a value of 

1000 (arbitrary units; AU) and all other bursts within a trial were normalized with respect 

to this value.  A 10 minute segment was used for the calculation of baseline variables.   

 

Sympathetic Arterial Baroreflex Gain 

 Arterial baroreflex control of MSNA was determined by examining the 

relationship between MSNA and diastolic blood pressure (DBP) during the bolus drug 

infusions.  DBP was chosen, as it has been shown to relate most closely with MSNA.  

Each modified Oxford trial was analyzed in 3 segments17, 27: First, overall arterial 

baroreflex gain was determined from the point at which blood pressure decreased 

following infusion of sodium nitroprusside until the blood pressure peak following 

phenylephrine hydrochloride infusion; thus encompassing the MSNA response to both a 

decrease and an increase in arterial blood pressure.  The sympathetic responses to acute 

hypotension and hypertension were also separately examined using the segments from 
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the onset of the blood pressure drop after nitroprusside infusion until the nadir of the 

blood pressure change, and from the lowest blood pressure after phenylephrine 

administration until the blood pressure peak, respectively.  The DBP within each segment 

was grouped into 3 mmHg pressure bins and total MSNA was determined within each 

pressure bin by calculating the total area of all MSNA bursts, relative to the number of 

cardiac cycles, and expressed as arbitrary units (AU) / beat.  All data 3 mmHg above the 

greatest pressure associated with a burst of MSNA were excluded from analysis in order 

to ensure that the derived baroreflex sensitivity reflected primarily the linear portion of 

the arterial baroreflex curve.  The slope of the relationship between MSNA and DBP was 

identified using linear regression analysis (SPSS v17.0, SPSS Inc, Chicago, IL, USA) and 

used as a calculation of sympathetic arterial baroreflex gain.  A minimum r value of 0.5 

was used as a criterion for accepting slopes.  All data were weighted to account for the 

number of cardiac cycles within each pressure bin; thus removing bias due to bins 

containing a small number of cardiac cycles.  Each modified Oxford trial was analyzed 

separately for each individual and then the gains from each trial were averaged together 

to provide a mean for each subject.   

 

Statistical Analysis 

 Group comparisons for baseline variables, as well as sympathetic arterial 

baroreflex gains derived from the bolus drug infusions for the overall, falls and rises in 

blood pressure were compared using unpaired Student t-tests.  Statistical significance was 

set at P<0.05 and results are presented as means ± standard error (SE). 
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RESULTS 

 The type II diabetic patients were similar to the control subjects for age, height, 

weight and body mass index.  As anticipated, plasma glucose and hemoglobin A1c were 

higher in the diabetic patients.  In addition, fasting insulin tended to be higher in the 

patient group (P=0.12) whereas cholesterol, lipoproteins and triglycerides were not 

different between the type II diabetic patients and healthy controls (Table 4.1).   

Baseline heart rate, systolic, diastolic and mean arterial blood pressures were the 

same between groups.  In addition, MSNA burst frequency and burst incidence indicated 

similar resting sympathetic nerve activity between the type II diabetic patients and 

healthy age, sex and body weight matched control subjects (Table 4.2). 

 

Sympathetic Baroreflex Gain 

 Original relationships illustrating the derived arterial baroreflex-MSNA gains for 

one diabetic subject and a matched control subject are presented in Figure 4.1.  The 

overall baroreflex gain during the bolus drug infusions, which encompasses the MSNA 

responses to both a fall and rise in arterial blood pressure, indicated similar sympathetic 

arterial baroreflex sensitivity in the type II diabetic subjects when compared to the 

control group.  Furthermore, the sympathetic baroreflex gains during the acute decreases 

and increases in blood pressure were similar between groups (Figure 4.2). 
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DISCUSSION 

 The purpose of the present study was to examine arterial baroreflex control of 

sympathetic nerve activity in patients with type II diabetes.  Contrary to our hypothesis, a 

comparable overall sympathetic arterial baroreflex gain was found between diabetic 

patients and healthy control subjects.  These similarities in arterial baroreflex-MSNA 

gain were also evident when the responses were examined to falls and rises in arterial 

blood pressure separately.  These preliminary findings indicate that arterial baroreflex 

control of MSNA is well preserved in type II diabetic subjects. 

 Type II diabetes is associated with acute and chronic alterations in the regulation 

of arterial blood pressure6-12, although the underlying mechanisms remain incompletely 

defined.  Indeed, during acute postural challenges, robust falls in blood pressure have 

been documented in diabetic patients6-12.  In addition, type II diabetic patients exhibit an 

exaggerated blood pressure response to physiological stressors, such as exercise9-11, and 

are highly prone to develop hypertension12.  Given that the arterial baroreflex is crucial 

for beat-to-beat and potentially long term regulation of arterial blood pressure, we 

reasoned that arterial baroreflex control of MSNA would be impaired in the presence of 

type II diabetes.  Interestingly, we found, that when the system was stressed across a wide 

range of pressures, overall arterial baroreflex-MSNA gain appeared normal in otherwise 

healthy, normotensive type II diabetic patients. 

 To date, limited information exists on arterial baroreflex control of sympathetic 

outflow in type II diabetic conditions.  Findings in the obese Zucker rat, a commonly 

used model of type II diabetes, have indicated an impaired arterial baroreflex control of 

splanchnic sympathetic nerve activity13, 14.  In these previous studies, the greatest 
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decrement in arterial baroreflex function was noted in adult rats, when overt diabetes, 

obesity and hypertension are present.  Although, impairments in arterial baroreflex 

control were also noted in juvenile obese Zucker rats before the development of 

hypertension, comparisons of these animals were made to lean controls.  Therefore, 

whether the reported decrease in arterial baroreflex control of sympathetic nerve activity 

was due to obesity or metabolic disturbances is unclear.  To the best of our knowledge, 

this is the first study in type II diabetic humans utilizing direct recordings of efferent 

sympathetic outflow to examine the sympathetic arterial baroreflex.  Our two subject 

groups were well matched, except for the occurrence of type II diabetes; strengthening 

the conclusion that type II diabetes alone does not alter arterial baroreflex control of 

MSNA.  However, care should be taken when extending these findings to patients with a 

longer duration of diabetes, or conditions in which type II diabetes and other 

comorbidities (i.e. hypertension) concomitantly exist. 

 Although it was originally proposed that asymmetry did not exist in the 

sympathetic arm of the baroreflex28, a recent reexamination by Taylor and colleagues17 

has demonstrated hysteresis in arterial baroreflex-MSNA gain during the modified oxford 

technique.  Therefore, in the present study, we considered the baroreflex-mediated 

sympathetic responses to nitroprusside and phenylephrine separately.  In support of the 

findings for overall gain, we found no difference in arterial baroreflex control of MSNA 

during acute falls and rises in pressure between the type II diabetic patients and healthy 

controls.  This is an important consideration, given that differences in arterial baroreflex 

function could potentially be masked if the direction of pressure change is not taken into 

account17, 18.  Indeed, Studinger et al17 reported that age-related differences in arterial 
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baroreflex-MSNA gain were only revealed when the data were examined in response to 

hypo- and hypertension separately.  

 The measurement of the sympathetic baroreflex in the present study considers the 

entire arterial baroreflex arc; from the input into the system (arterial blood pressure) to 

the ensuing sympathetic response (MSNA).  Thus, the derived gains comprehensively 

reflect arterial baroreflex afferent input, to central processing, to the resultant efferent 

output.  Each of these points in the baroreflex arc work in concert to determine the 

integrated baroreflex response.  In this regard, although we did not see differences 

between type II diabetic patients and controls in the “whole loop” baroreflex gains, it is 

still plausible that a diabetic state may alter a specific portion of the reflex.  A reduction 

in baroreflex afferent signaling could be compensated for by an enhancement in the 

central neural processing, and vice versa, thus resulting in a preserved arterial baroreflex 

gain.  Although speculative, in support of this idea, complex interactions between the 

afferent and efferent arcs for the cardiac baroreflex have recently been described during 

pharmacologically induced changes in blood pressure in healthy subjects27. 

 Several previous findings have suggested that type II diabetes is associated with 

overactive sympathetic outflow to skeletal muscle29, 30.  Interestingly, we found no 

difference in resting MSNA, expressed as burst frequency or burst incidence, between the 

diabetic patients and healthy controls.  Although the reason for the discrepancy between 

the current findings and earlier work is unknown, it should be noted that in previous 

studies the type II diabetic patients were slightly older and had a higher resting arterial 

blood pressure (mean arterial pressure ~100mmHg) than the patient population in the 

present study.  However, in line with our findings, plasma norepinephrine levels have 
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been reported to be similar or lower in type II diabetic patients, when compared to 

healthy control subjects31, 32.  

 In summary, the results from the present study demonstrate that the overall gain 

for arterial baroreflex control of MSNA was similar between type II diabetic patients and 

healthy age, sex and body weight matched control subjects.  The similarities in arterial 

baroreflex gain were also evident when examining the responses to acute hypo- and 

hypertension separately.  These preliminary findings indicate a preserved arterial 

baroreflex control of MSNA in patients with type II diabetes. 
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Table 4.1  Subject Characteristics 

 

Values are means ± SE. *P<0.05 vs. controls. 
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Table 4.2  Resting Cardiovascular and Muscle Sympathetic Nerve Activity (MSNA) 

Hb, heart beats.  Values are means ± SE.  
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Figure 4.1  Examples of the derivation of arterial baroreflex control of muscle 

sympathetic nerve activity (MSNA) in one healthy control subject and one type II 

diabetic patient for overall baroreflex gain (Panel A), as well as the response to a fall 

(Panel B) and rise (Panel C) in arterial blood pressure. AU, arbitrary units; R2, coefficient 

of determination. 
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Figure 4.2  Group summary data for overall baroreflex gain (Panel A), as well as the 

response to a fall (Panel B) and rise (Panel C) in arterial blood pressure. AU, arbitrary 

units.  Values are means ± SE. 
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Chapter 5.  Discussion 

 

Summary of Results 

 Although well recognized for metabolic regulation, a growing body of evidence 

has clearly established a role for insulin in the central control of cardiovascular control.  

Direct administration of insulin into the brain of experimental animals1-3, or acute 

elevations in plasma insulin in healthy humans4-12, result in robust increases in peripheral 

sympathetic nerve activity.  In addition to evoking increases in sympathetic outflow, 

recent work in rats has reported a modulatory role for insulin in the regulation of arterial 

baroreflex control of sympathetic nerve activity2.  The projects presented within this 

report support and extend this emerging area of research by:  1) Demonstrating an 

influence of insulin sensitivity on insulin-mediated sympathoexcitation. 2) Illustrating a 

role for insulin in the modulation of arterial baroreflex control of sympathetic nerve 

activity in healthy humans. 3) Translation of this area of research to an insulin resistant 

disease setting of type II diabetes mellitus. 

 In Aim 1, we sought to examine if an insulin sensitive state, such as chronic 

endurance training, enhances insulin-stimulated increases in central sympathetic outflow.  

Following consumption of a mixed meal, as a physiological stimulus to increases plasma 

insulin, we found that high fit subjects demonstrated a greater increase in muscle 

sympathetic nerve activity (MSNA) burst incidence compared to average fit subjects.  

Interestingly, when MSNA responses were expressed relative to plasma insulin, high fit 

subjects exhibited a greater change in MSNA for any given change in insulin.  

Collectively, these data suggest that, in addition to improved peripheral insulin 
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sensitivity, an insulin sensitive state (i.e. endurance training) may also enhance the 

central actions of insulin to increase MSNA. 

 In the second set of experiments we demonstrate, for the first time, a role for 

insulin in the modulation of the arterial baroreflex in humans.  During increases in 

plasma insulin, under both physiological (mixed meal) and experimental (insulin clamp) 

conditions, an enhanced gain of arterial baroreflex control of MSNA was noted.  These 

findings are in line with recent literature obtained in rats2 and strongly support a role for 

insulin in the control of the sympathetic arterial baroreflex in healthy humans. 

 Given that cerebral spinal fluid levels of insulin are reduced in insulin resistant 

conditions13-17 and that insulin enhances arterial baroreflex control of sympathetic 

outflow (Aim 2), we began to translate our research to a clinically relevant setting of 

insulin resistance in Aim 3.  The gain of the sympathetic arterial baroreflex was 

investigated during pharmacologically induced changes in arterial blood pressure in type 

II diabetic patients and healthy age, sex and body weight matched control subjects.  

Interestingly, we found comparable overall sympathetic arterial baroreflex gains between 

the diabetic patients and healthy control subjects.  These similarities in arterial 

baroreflex-MSNA gain were also evident when the responses were examined to falls and 

rises in arterial blood pressure separately.  Overall, these findings suggest that arterial 

baroreflex control of sympathetic outflow is preserved in otherwise healthy, 

normotensive type II diabetic patients.   
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Future Directions 

 The investigation of insulin effects on neural-cardiovascular control is in its 

infancy and although the results from the present investigations support a role for insulin 

in the control of central sympathetic outflow in humans, this area of research undoubtedly 

deserves further attention.  Potential implications of the findings from each Aim, as well 

as areas for future research are presented below. 

The findings in Aim 1 clearly demonstrate that insulin sensitivity influences 

insulin-stimulated increases in central sympathetic outflow.  These findings are in line 

with previous investigations which have suggested that the central stimulatory actions of 

insulin may be blunted in insulin resistant conditions18-21.  To date, the exact 

mechanism(s) contributing to alterations in insulin stimulated changes in central 

sympathetic outflow to skeletal muscle remain unknown.  Work illustrating that diet and 

pharmacologically induced insulin resistance results in decreased uptake of insulin into 

the brain, suggests that insulin delivery and/or rate of transport into the brain may be 

involved13, 14.  However, the exact molecular mechanisms involved in the control of 

insulin transport into the central nervous system remain incompletely characterized.  

Indeed, the transporter and or receptor responsible remains unknown, although the insulin 

receptor itself has been suggested17, 22, 23.  In addition, it is possible that central insulin-

mediated signaling cascade pathways may be altered with changes in central insulin 

sensitivity.  Findings from rodent models suggest that insulin stimulated increases in 

sympathetic outflow to skeletal muscle primarily occur through the PI3K pathway3.  

Given that this pathway have been shown to be modified in the periphery in insulin 

resistant states24 and in response to endurance training25, it is plausible that alterations in 
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insulin signaling pathways within the central nervous system occur with changes in 

insulin sensitivity.  In line with this, the precise neural pathways and signaling 

mechanisms involved in insulin mediated increases in central sympathetic outflow 

deserve further attention.  Interestingly, work in neuronal cell lines suggests that 

downstream molecules in the insulin signaling cascade, such as protein kinase C, 

modulate glutamatergic N-methyl-D-aspartic acid trafficking and gating26.  Furthermore, 

a potential role for PI3K in the modulation of gamma amino butyric acid, the inhibitory 

neurotransmitter within the central nervous system, function has also been suggested27.  

These findings lend insight into insulin as a complex neuromodulator of excitatory and 

inhibitory neurotransmission; although future studies are clearly warranted. 

 Recent findings in rats have demonstrated a role for insulin in the modulation of 

arterial baroreflex control of sympathetic nerve activity2 and in Aim 2 we extended these 

findings by providing evidence for the first time that insulin increases arterial baroreflex-

MSNA gain in healthy humans.  However, due to the inherent limitations of human 

investigation, we cannot determine the precise site of insulin action on arterial baroreflex 

control.  The aforementioned work in rats clearly suggests that central brain regions are 

involved; although as mentioned above the precise cellular and molecular mechanism(s) 

of insulin action on central neural pathways remains to be elucidated.  In addition, the 

potential for insulin to modulate afferent baroreflex input cannot be discounted, although 

no data exists to date investigating this particular pathway.   

 In addition to examining a role for acute increases in insulin to modulate the 

arterial baroreflex, we began to translate this area of research to a condition of chronic 

insulin resistance.  Interestingly we found that arterial baroreflex control of sympathetic 
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nerve activity was preserved in patients with type II diabetes when compared to healthy 

control subjects.  Although preliminary, the lack of a group difference in Aim 3, raises 

important questions about acute versus chronic influences of insulin on arterial baroreflex 

function.  Furthermore, investigation of disease populations is complex and consideration 

for numerous other disease-related factors that may work in concert with and/or against 

insulin should be considered.  Given the increasing incidence of type II diabetes, as well 

as numerous other insulin resistant conditions, future mechanistic studies from 

experimental animals to humans examining the interaction of the metabolic and neural-

cardiovascular systems undoubtedly deserves further attention. 
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