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2,1-BENZOTHIAZINES 

PREPARATION AND REACTIVITY 

 
Nathan L. Calkins 

 
 

Dr. Michael Harmata, Dissertation Supervisor 
 
 

ABSTRACT 
 

 
 The synthesis of chiral ligands to tune the reactivity and stereoselectivity of many 

catalytic asymmetric reactions has been given considerable attention in synthetic organic 

chemistry over the past decade. This report will show the results of efforts toward the 

syntheses of several families of enantiomerically pure 2,1-benzothiazine ligands.    These 

ligands are unique in that they contain a chiral sulfoximine.  

Several 2,1-benzothiazine ligands were prepared in single one-pot syntheses and others 

in as many as five or more steps for larger heterocycles.  An optimized synthetic route will be 

shown for a very well known Buchwald Hartwig N-arylation of sulfoximines and haloarenes.  

The synthetic procedure for the N-arylation of sulfoximines synthetic procedure has virtually 

been unchanged since its introduction in 1998. The new synthesis herein has dramatically 

improved reaction time and scope for the N-arylation of aryl bromides and aryl chlorides.  

Until now, aryl chloride based N-arylations gave extremely poor conversions when attempted 

thermally.  Lastly, unsubstituted and 4-phenyl substituted 2,1-benzothiazine lithiation 

reactivity will be discussed for the sulfoximine stabilized lithium vinyl carbanions.  Mono- and 

di-substitutions are now synthetically possible.  New synthetic strategies for accessing the 

ortho-S-phenyl ring as a viable carbanion will also be shown.  

 xv



CHAPTER 1 

Introduction and Syntheses of Enantiopure Sulfoximine Ligands 

 When thinking of sulfoximines as ligands, two categories of compounds have 

been utilized.1  “Fixed” sulfoximine 1, an unsubstituted 2,1-benzothiazine, was the focus 

of the research performed.  “Free” sulfoximine 2, an N-substituted sulfoximine, is also 

described herein and its synthesis re-optimized in Chapter 3.  Generic structures for both 

types of sulfoximine-containing compounds are displayed in Figure 1.  The numbering 

system of 2,1-benzothiazine 1 carbon skeleton is also illustrated in Figure 1. 

 

Figure 1. “Fixed” and “Free” Sulfoximines 

1.1   Discovery and Preparation of Chiral S-Methyl-S-Phenylsulfoximine 

1.1.1   Introduction and Discovery of Sulfoximine 

 Discovered in 1949,2 sulfoximines are the key component and source of chirality 

for the ligands prepared and studied herein.  The synthesis of sulfoximines is well known 

and straightforward, and some are commercially available (Scheme 1). The synthesis of 

the “parent” sulfoximine 6 begins with commercially available methyl phenyl sulfide 3, 

which is first oxidized by hydrogen peroxide under acidic conditions, resulting in racemic 

methyl phenyl sulfoxide 4.  Racemic sulfoxide 5 undergoes subsequent imination with 

sodium azide, also under acidic conditions, to afford racemic methyl phenyl sulfoximine 

6. Enantiomerically pure sulfoximine 6 can be obtained by resolution with the 

appropriate chiral camphorsulfonic acid (CSA) in which (+)-CSA gives S-sulfoximine 6a 
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and (-)-CSA gives R-sulfoximine 6b after sodium hydroxide mediated hydrolysis of the 

diastereomerically pure crystals.3  All of the previously described reactions are possible 

on a multigram scale, making sulfoximine 6 readily accessible.  

 

Scheme 1.  Synthesis of Chiral S-Methyl-S-Phenylsulfoximine 

1.2   Preparation of “Fixed” Sulfoximines or 2,1-Benzothiazines 

1.2.1   Synthesis of “Fixed” Sulfoximines via Cycloadditions    

 The utilization of sulfoximine-containing compounds in the Harmata group 

began first with N-phenyl-(4-methylphenyl)-sulfonimidoyl chloride 7 and various 

symmetrical and unsymmetrical alkynes generically represented by 8a-c to give “fixed” 

sulfoximines 9a-c, called simply benzothiazines from this point on. A variety of Lewis 

acids promoted the cyclization in a range of yields. With AlCl3, the yields ranged from 

90% with electron rich phenyl acetylene 8a to 14% with acetylene (8c) itself (Scheme 

2).4  

 

Scheme 2. Early Synthesis of Benzothiazines 
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 The proposed mechanism is straightforward.  First the sulfonimidoyl chloride 7 

forms reactive intermediate 10 in the presence of the Lewis acid, AlCl3.  Alkyne 8 

cyclizes with the electron-deficient intermediate 10 to yield benzothiazine intermediate 

11. Loss of proton to regenerate aromaticity gives the final product, benzothiazine 9 

(Scheme 3). The problem with this synthesis is the inability to obtain enantiomerically 

pure products. 4

 

Scheme 3.  Mechanism of Lewis Acid-Catalyzed Benzothiazine Formation 

1.2.2.  Synthesis of Benzothiazines via N-Arylation of Aryl Bromides 

 Another way to make benzothiazines is in a one pot fashion discovered previously 

by Harmata and coworkers.  This one-pot synthesis utilizes a Buchwald-Hartwig type N-

arylation reaction between sulfoximines and an aryl halide followed by intramolecular 

condensation with 2-bromobenzaldehyde 12 or 2-bromoacetophenone 13 to give 

benzothiazines 1 and 14, respectively (Scheme 4).   The mechanism of the Buchwald 

Hartwig N-arylation reaction is shown in Figure 2.5

 

Scheme 4.  N-Arylation of 2-Bromobenzaldehyde 12 and 2-Bromoacetophenone 13 
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 The mechanism begins by Pd(II) acetate being reduced to Pd(0)-BINAP species 

16 via 15.  This reduction of Pd(II) to Pd(0) likely occurs from the oxidation of one of 

two phosphines of the bidentate BINAP ligand (Figure 2).  The structure of R-BINAP is 

shown in Figure 3. Complex 16, absolute structure unknown, can undergo oxidative 

addition to the C-Br bond of bromobenzene 17 to give the palladium species 18.  Ligand 

substitution of the bromide anion by sulfoximine 6 affords one mole of HBr that is 

consumed by cesium carbonate in the reaction mixture to give palladium species 19.  

This compound undergoes reductive elimination to regenerate Pd(0)-BINAP complex 16 

and N-phenyl substituted sulfoximine 2.   

 

Figure 2.  Mechanism of the Buchwald Hartwig N-Arylation 

PPh2

PPh2

 

Figure 3.  Structure of (R)-2,2'-Bis(diphenylphosphino)-1,1'-Binaphthyl, or R-BINAP 
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 It should be noted that under these mildly basic conditions, coupling of enolizable 

ketone 13 gave a very poor yield of the desired benzothiazine.  Refluxing toluene and 

weak base likely generates some enolate, albeit in small amounts.  This enolate must be 

an incompatible substrate for the N-arylation and subsequent condensation provided the 

low yield < 10%.  Efforts to address this significant flaw in the scope of this reaction 

have yet to be investigated. Some substrates N-arylated successfully but did not condense 

in the presence of the weak base, Cs2CO3. With methyl 2-bromobenzoate 20, only N-

arylation was observed under conditions used previously to give 21. So it is not 

surprising that the electrophilicity of the carbonyl determines the rate at which 

condensation occurs.  A second addition of a much stronger base, KH, was needed for the 

condensation of 21 to form 22, which tautomerized rapidly to the corresponding enol 

(Scheme 5).5 

 
Scheme 5.  Synthesis of Benzothiazine 22 

 Another similar example has been shown by Bolm with 2-bromobenzonitrile 

where again only N-arylation occurs to form 23.6  Harmata and coworkers demonstrated 

that with n-BuLi the condensation occurs in good yield to form 4-amino-2,1-

benzothiazine 24 (Scheme 6).  So it has been shown that very electrophilic carbonyl 

compounds will rapidly condense to form benzothiazines whereas less electrophilic 

carbonyl compounds such as nitriles and esters take much stronger bases but still 

condense in good yields and under general conditions.5
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Scheme 6.  Synthesis of 4-Amino-2,1-Benzothiazine 

  Utilizing the formation of 2,1-benzothiazines via N-arylation is the key reaction 

that will be discussed at length in this report. This method is the most efficient way to 

prepare functionalized benzothiazines.  One important note is that this reaction is 

applicable on a multigram scale, making this class of compounds viable synthetic targets 

as typical yields approach quantitative conversion for aryl bromides, but is lower for aryl 

chlorides.  Both electron-donating and electron-withdrawing were tolerated in good 

yields (Table 1).5 

Table 1.   Scope of N-Arylation of Aryl Bromides 

CHO

Br

5-10% Pd(OAc)2, 7.5-15% BINAP
1.8 eq Cs2CO3, 1.2 eq 6

PhMe, 110 oC, 40 h

N
S O

12 1a-d

R
R

 

Entry R Yield (%) Compound

1 H 78 1a 

2 OMe 81 1b 

3 OBn 75 1c 

4 NO2 73 1d 

 
 Strong electron donating groups para (Table 1, entries 2,3) to the site of oxidative 

addition allowed for similar yields to that of bromobenzene 17 (Table 1, entry 1).  
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Electron withdrawing groups show the same pattern, but more needs to be done to 

establish definitive trends.   Overall, the change in yield was not significantly affected by 

substituent changes in the para position with respect to the carbon that undergoes 

oxidative addition.5 

1.2.3.   Synthesis of Benzothiazines via N-Arylation of Aryl Chlorides 

 Less expensive and typically less reactive aryl chlorides required longer reaction 

times and gave lower yields than with the standard N-arylation conditions presented 

previously.  More recently, microwave irradiation has been shown to drastically increase 

yields of N-arylation of aryl chlorides and dramatically reduce reaction times from 44 

hours to 1.5 hours for many substrates.  Harmata and coworkers were able to greatly 

improve the yield of very sluggish aryl chlorides to moderate and excellent yields in this 

way.  In previous attempts, thermal N-arylation of aryl chlorides gave trace products with 

extended reaction times.  2-Chlorobenzaldehyde 25a was reacted in a microwave reactor 

and irradiated at 200W for 1.5 h to yield 55% of 1a (Scheme 7).7

 

Scheme 7.  Synthesis of Benzothiazines by Microwave Irradition 

 Again a variety of functional groups were tolerated under microwave irradiation.  

Overall, Harmata and coworkers observed excellent yields with aryl chlorides bearing 

electron withdrawing groups.  This observation expanded the types of benzothiazines that 

can be prepared and expanded the library of benzothiazines and N-arylated sulfoximines 

to date significantly.  A comparative selection of aryl chlorides subjected to irradiation 
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and yielding benzothiazines is summarized in Scheme 8.  It is worth mentioning that 

many examples gave N-arylated products and others gave benzothiazines depending on 

the substrate and the presence or absence of an electron withdrawing group ortho to the 

site of N-arylation.7 

 

Scheme 8.  Synthesis of Benzothiazines from a Variety of Aryl Chlorides 

 2-Chlorobenzophenone 25c shows that non-enolizable ketones undergo N-

arylation smoothly and condense much like 2-chlorobenzaldehyde 25a.  Benzothiazine 

14 was isolated in a meager 31%, much improved from the previous < 10% from the 

corresponding bromide.7  The improvement in conversion is likely due to the reduced 

reaction time possible with microwave irradiation, minimizing side reactions that occur 

via enolization. 

 This work demonstrates that both aryl chlorides and aryl bromides successfully N-

arylate under palladium catalysis.  Typically cheaper than aryl bromides, aryl chlorides 

readily undergo N-arylation with the assistance of microwave irradiation.  One important 

note is that this reaction and previous reactions reported are applicable on a multi-gram 

scale, making this class of compounds viable synthetic targets. 

1.2.4   Synthesis of N-arylated Sulfoximines from Aryl Iodides 

 Aryl iodides are also suitable candidates for sulfoximine coupling.  However, aryl 

iodides are not good candidates for palladium catalysis and aryl bromides are the 
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substrate of choice for palladium-catalyzed processes involving sulfoximine coupling 

partners.  Bolm and coworkers have established two additional metal-catalyzed processes 

in which aryl iodide coupling to sulfoximines proceeds in good to excellent yields.  

 Palladium-mediated Buchwald-Hartwig coupling of aryl iodides and sulfoximines 

was reported by Bolm and coworkers in 2000.  Typical reactions conditions seen 

previously were not successful in the N-arylation of aryl iodides with sulfoximine when 

identical aryl bromide substrates afforded respectable to excellent yields.  Additional 

additives on a substrate specific basis were employed for a few aryl iodides for which 

poor to moderate yields were observed.  The use of a specific additive was not general 

and in some examples no coupling was observed.  A summary of selected examples is 

shown in Table 2.8  

  Table 2.  N-Arylation of Aryl Iodides with Additives 

N
S
Me

O
PhI

5% Pd(OAc)2, 7.5% BINAP
1.4 eq Cs2CO3, 1.0 eq 6

PhMe, 110 oC, 48 h
27a R1 = H, R2 = CO2Me
27b R1 = H, R2 = OMe
27c R1 = NO2, R2 = H

R2R2R1 R1

28a R1 = H, R2 = CO2Me
28b R1 = H, R2 = OMe
28c R1 = NO2, R2 = H  

Entry Substrate Product Additive Yield (%) 

1 27a 28a LiBr 56 

2 27a 28a LiCl 22 

3 27a 28a AgOTf 7 

4 27b 28b LiBr < 2 

5 27b 28b LiCl < 2 

6 27b 28b AgOTf < 2 
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7 27c 28c LiBr 31a

8 27c 28c LiCl 17a

9 27c 28c AgOTf 79a

 a pTol-Me sulfoximine was used instead of Ph-Me sulfoximine 

 The inactivity of aryl iodides was deemed by Bolm and coworkers to be a change 

in the rate determining step of the catalytic cycle.  It is their belief that with aryl bromides 

and likely chlorides, the oxidative addition of the metal to the C-halide bond is the slow 

step.  With a much longer, weaker C—I bond, oxidative addition was deemed faster than 

the ligand exchange of the weakly nucleophilic sulfoximine to the palladium-BINAP 

complex 16.  Consequently, the rate of reductive elimination in the catalytic cycle is 

either halted or at least slowed extensively.8 

 Electron rich substrates did not successfully N-arylate, as seen with 2-iodoanisole 

27b (Table 2, entries 4-6).  Electron deficient systems worked best, as seen with 2-iodo-

1-nitrobenzene 27c (Table 2, entries 1-3) and methyl 2-iodobenzoate 27a (Table 2, 

entries 7, 8).  In an independent study, Bolm reported that aryl triflates act identically to 

iodo species and proposed that oxidative addition into C-I and C-OTf bonds give similar 

intermediates.8 

 More recently, the problems associated with palladium-based coupling were 

addressed with the use of copper salts, as also shown by Bolm and coworkers.  

Stoichiometric amounts of copper salts were used initially in 2004.9  In 2005, a catalytic 

amount of copper salt gave respectable yields of N-arylated products.  A summary is 

shown in Scheme 9 with substrates identical to those used with palladium.  Excellent 
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yields were observed in half the reaction time with this system even for the seemingly 

problematic anisole derivative 29b.10

 

Scheme 9.  Catalytic Copper N-Arylation of Aryl Iodides 

 Very recent was the use of iron (III) chloride in the N-arylation of aryl iodides by 

Bolm and coworkers.11 This is a simple, inexpensive, and environmentally friendly 

method for preparing N-substituted sulfoximines that complements the variety of metals 

that can N-arylate weakly nucleophilic sulfoximines readily with a variety of aryl halides.  

The pitfall for this synthesis is the inability to N-arylate aryl bromides or aryl chlorides, 

much like palladium’s problem in the N-arylation of aryl iodides.  Each synthesis is 

unique and the characteristics of each metal different.  Thus, preferences for specific 

substrates is by no means unreasonable.11 

 

Scheme 10. Catalytic Iron N-Arylation of Aryl Iodides 

 To date, no successful palladium-catalyzed benzothiazine formation of aryl 

iodides has been published.  The substrate of choice for palladium-catalyzed 

benzothiazine formations continues to be a one-pot N-arylation of aryl bromides 

thermally or with the assistance of microwave irradiation for aryl chlorides.  If aryl 

iodides were to be used, a two step approach of first N-arylation then successive 
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condensation with a stronger base might be needed for benzothiazine formation.  The 

inclusion of iron- and copper-catalyzed syntheses provides evidence that sulfoximines 

can be coupled with a variety of aryl iodides.  Tolerance of a variety of functional groups 

in a variety of similar catalytic cycles involving different transition metal catalysts has 

been shown. 

1.3   Preparation of “Free” Sulfoximines or N-Substituted Sulfoximines 

1.3.1   Synthesis of “Free” Sulfoximines via Buchwald Hartwig N-Arylation 

 As mentioned briefly, N-arylation of sulfoximines began in 1998 with the Bolm 

group.6 Shortly after, in 1999, the Harmata group expanded this reaction to prepare the 

first benzothiazine via N-arylation.5 It is important to lead into the syntheses of 

sulfoximine based ligands by also introducing the Bolm group’s methods to prepare N-

arylated sulfoximines in their research group’s path toward ligands for asymmetric 

catalysis.  The very first and the simplest N-arylation of bromobenzene 17 was optimized 

affording N-phenylsulfoximine 2 in good yield (Scheme 11).6   

 

Scheme 11.  Optimized N-Arylation Procedure for Aryl Bromides 

 In short, Pd(OAc)2 outperformed Pd2dba3 and PdCl2.  Of the ligands examined, p-

tol-BINAP slightly improved upon BINAP and significantly enhanced reaction 

conversion compared to both P(o-tol)3 and dppf, 1,1'-bis(diphenylphosphino)ferrocene.  

The structures of the ligands are provided in Figure 4.  Two bases were studied and of the 
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two, Cs2CO3 outperformed NaOtBu slightly.  This optimized procedure is still used 

widely today with little change.6 

 

Figure 4.  Structures of Ligands Used in the N-Arylation of Aryl Bromides 

 A temporary setback for the Bolm group involved the formation of bissulfoximine 

31. As mentioned before, coupling of mono-substituted aryl chlorides, bromides and 

iodides to some extent have been well established and the conditions have been 

optimized, albeit not extensively.  However, when dibromobenzene 29 was used with 

large excesses of sulfoximine, base, ligand, and metal, only single amination to 30 was 

observed.  This was thought to be due to deactivation of the second carbon-bromine bond 

toward oxidative addition by the newly introduced ortho-sulfoximine.   Steric hindrance 

of the sulfoximine group was likely not an issue; since 1,3-dibromobenzene also 

displayed similar problems where only single amination product was observed in 51% 

yield.   Therefore, the discerning issue of bisamination must be an electronic effect of the 

oxidative addition capability of the metal catalyst system.  Different ligands failed to 

change the outcome of the reaction.  One important observation is that dehalogenation 

was not seen; thus, palladium insertion likely does not occur under the applied reaction 

conditions to the remaining C—Br bond after the first N-arylation.8  
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Scheme 12.  Initial Attempts at the N-Arylation of Aryl Dibromides 

1.3.2    Synthesis of “Free” Bissulfoximines via Buchwald Hartwig N-Arylation 

 Further studies into this problem revealed that a different source of palladium and 

a change in the reaction conditions could effectively solve the problem.  The Bolm group 

led the way to another family of bissulfoximines via N-arylation a year later in 2001.8  

Keep in mind, the first bissulfoximine ligand to be prepared by the Bolm group was in 

1996 (Figure 5).12  

 However, bissulfoximine 31 was this first example of a double Buchwald Hartwig 

N-arylation of two sulfoximines from a dibromoarene to be reported.  A change in base 

from Cs2CO3 to NaOtBu was necessary and 8% Pd(0) (4% Pd2dba3), 8%  rac-BINAP, 

and a large 5 equivalent excess of sulfoximine was required.  A 75% yield of 31 was 

isolated (Scheme 13).8  This synthesis led way to a plethora of asymmetric ligands based 

on a single or double sulfoximine based moiety, all of which were synthesized via 

Buchwald-Hartwig N-arylations using haloarenes and S-methyl-S-phenylsulfoximine 6 as 

coupling partners.  A review of the ligands derived from this method will be presented in 

the next section.  The ligands presented will be shown in order of their discovery over the 

past decade. 
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Figure 5.  The First Bissulfoximine Ligand 

NS
O

N S
O

Br

4% Pd2dba3, 8% BINAP
5 eq NaOtBu, 4 eq S-6a

PhMe, 135 oC, 10 h
75%

29

Br

31  

Scheme 13.  The First Synthesis of Bissulfoximine 31 via N-Arylation 

1.4   Chiral Sulfoximine-Based Ligands in Asymmetric Reactions 

1.4.1   Preparation of an Oxazoline-Based Sulfoximine Ligand 

 Retention of configuration at the sulfur of sulfoximines makes the syntheses of 

many enantiomerically pure ligands very accessible.  It was found by Buchwald and 

coworkers that racemization of chiral amines was a problem due to β-H elimination in the 

formation of imines.  They found that the use of chelating ligands like BINAP, dppf, and 

DPEphos (Figure 6) minimized racemization.13   

 Under this methodology, Bolm and coworkers reasoned that since the 

sulfoximine’s chirality was centered at the chiral sulfur atom, it would proceed with 

retention of configuration.  Upon reaction with chiral oxazoline 32 and racemic 

sulfoximine 6, the Bolm group observed only one diastereomer signifying retention of 

configuration at sulfur.  This was the first example of a Buchwald Hartwig N-arylation of 

an aryl bromide and sulfoximine to produce a chiral ligand capable of being employed in 

asymmetric catalytic reactions.  A summary of this synthesis is shown in Table 3.8   
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Figure 6.   Structure of Bis(2-diphenylphosphinophenyl)ether, DPEphos 

Table 3.  Synthesis of a Chiral Sulfoximine-Oxazoline Ligand 33 

 

Entry Pd/Ligand 6:32 Yield (%) 

1 Pd(OAc)2/BINAP 1:2 54 

2 Pd(OAc)2/BINAP 2:1 61 

3 Pd(OAc)2/BINAP 1:1 82 

4 PdCl2(dppf)/dppf 1:1 75 

5 Pd(OAc)2/DPEphos 1:1 86 

 
   As shown in Table 3, an excess of 6 or 32 did not promote coupling.  Of the 

ligands tested, BINAP and DPEphos gave the highest yields with a 1:1 stoichiometric 

mixture of aryl bromide and sulfoximine (Table 3, entries 3, 5).  Dppf with PdCl2 was 

moderately successful as well (Table 3, entry 4).  Ligand 33 was not examined in any 

asymmetric reactions in this investigation.8 This N-arylation based upon a sulfoximine 

will be the key reaction in the syntheses of all ligands presented herein. 
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1.4.2   Use of Bissulfoximine 31 in Asymmetric Hetero-Diels Alder Reactions 

 As shown previously in Scheme 13, bissulfoximine 31 was isolated in 75% yield 

from a modified Buchwald Hartwig N-arylation employing Pd2dba3 instead of Pd(OAc)2, 

NaOtBu instead of Cs2CO3, and a large excess of sulfoximine 6.  In 2001, Bolm 

successfully tested bissulfoximine 31 in enantioselective hetero-Diels Alder reactions.  

The results of this study are summarized in Table 4 for the reaction of 1,3-

cyclohexadiene 34 and ethyl glyoxalate 35 affording 36.  One important feature shown in 

Table 4 is that even as little as 0.5 mol % of 31 (Table 4, entry 5) gave 96% yield and 

98% ee and an endo/exo selectivity of 99:1.14    

Table 4.  Ligand 31 in an Asymmetric Hetero-Diels Alder Reaction 

 

Entry S,S-31 
(mol %)

Temp.
(oC) 

Time
(h) 

Yield
(%) 

ee 
(%)

endo/exo 
ratio 

1 10 rt 6 62 99 99:1 

2 5 rt 6 61 98 99:1 

3 5 -5 10 61 99 99:1 

4 1 -5 10 98 98 99:1 

5 0.5 rt 6 96 98 99:1 

  

 Table 5 shows a summary of the hetero-Diels Alder reaction of 1,3-

cyclohexadiene 34 and diethylketomalonate 37 affording 38.  Typically, lower reaction 

temperatures corresponded to better enantioselectivities (Table 4, entries 3, 4; Table 5, 
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entries 2-4) without lowering yield, but extending reaction time significantly. Overall, 

excellent yields and enantioselectives were seen for the reaction in Table 5.14   

Table 5.  Ligand 31 in Another Asymmetric Hetero-Diels Alder Reaction 

 

Entry S,S-31 
(mol %)

Temp.
(oC) 

Time
(h) 

Yield
(%) 

ee 
(%) 

1 5 rt 8 95 92 

2 10 -5 12 98 94 

3 10 -20 18 93 96 

4 5 -40 30 92 98 

 
 This ligand is the first enantiopure sulfoximine based ligand derived from the N-

arylation of an aryl halide, in this case an aryl dibromide, which was successfully used in 

an asymmetric reaction.  The ligand system shows respectable turnover ability with low 

catalyst loadings.  Excellent enantioselectivities are accompanied by high yields.  This 

chemistry led way to many more similar ligand systems in different asymmetric 

reactions. 

1.4.3   Use of Bisbenzothiazine in an Asymmetric Allylic Alkylation 

With new accessibility to bissulfoximines, new sulfoximine-containing 

bisbenzothiazines became possible.  In 2001, Harmata and coworkers reported the 

efficient conversion of dibromodibenzaldehyde 39 to the corresponding S,S-

bisbenzothiazine 40 in 68% yield (Scheme 14).  Noteworthy is that Cs2CO3 could be used 

in this case.15  
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Scheme 14.   Synthesis of Bisbenzothiazine 40 

 This new bisbenzothiazine 40 is the first example of a cyclic “fixed” sulfoximine, 

or benzothiazine, used as a ligand in an asymmetric allylic alkylation reaction.  The 

reaction of racemic 1,3-diphenylallyl acetate 41 with dimethyl malonate 42 under 

palladium catalysis in the presence of 40 gave enantioenriched 43 in good yield and 

enantioselectivity (Table 6).  The best enantiomeric excess seen was 86% ee (Table 6, 

entry 4).15   

Table 6.   Bisbenzothiazine 40 in a Pd-Catalyzed Allylic Alkylation 

 

Entry Pd Source Solvent Time (h) Yield (%) ee (%) 

1 [Pd(allyl)Cl]2 THF 3.5 90 80 

2 [Pd(allyl)Cl]2 PhH 3 85 82 

3 [Pd(allyl)Cl]2 PhMe 3.5 70 78 

4 Pd2dba3 THF 3.5 69 86 

5 Pd(OAc)2 THF 7.5 67 73 

6 Pd(PPh3)4 THF 5 90 16 
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Interestingly, bissulfoximine 31 failed to give any enantioselectivity in the same 

reaction.  The reaction also was very sluggish and isolated yields were 30% and 31% for 

Pd2dba3 and [Pd(allyl)Cl]2, respectively (Table 7, entries 1,2).  Remarkably, 4-phenyl-

2,1-benzothiazine 28 gave a 15% yield and 28% ee of alkylated product 43 (Table 7, 

entry 3).15 

Table 7.  Bissulfoximine 31 and Benzothiazine 26 in an Allylic Alkylation 

 

Entry Pd Source Ligand Solvent Time (h) Yield (%) ee (%)

1 Pd2dba3 31 THF 4 30 0 

2 [Pd(allyl)Cl]2 31 THF 5 31 0 

3 [Pd(allyl)Cl]2 26 THF 6 15 28 

 

1.4.4   Preparation of Benzothiazine-like Compounds  

 In search of similar families of compounds, Bolm and coworkers explored other 

dibromoarene-type compounds in 2002.  Expanding upon the synthesis of 31, they sought 

to expand the reaction scope to that of the naphthalene and biphenyl type dibromide 

systems.  First was coupling of 1,8-dibromonaphthalene 44 with sulfoximine 6 in 90% 

yield over 20 hours to give 6-membered heterocycle 45 (Scheme 15).  This process 

required a five equivalent excess of sulfoximine 6a.  Noteworthy is that Pd(OAc)2 or 

Pd2bda3 could be used to afford product in respectable yields.   The use of Cs2CO3, as 

base, was not reported, and only NaOtBu was used in this study.  Isolation of the product 

showed that dual N-arylation did not occur but that instead a different cyclization had 
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occurred.  The absence of palladium resulted in absence of the cyclization and coupling. 

Bolm and coworkers expanded the scope to biphenyl and biphenyl ether type compounds 

to make both 7- and 8-membered heterocycles. The proposed base-induced aryne 

mechanism is shown in Figure 7 for 46.16  This mechanism mirrors that shown by 

Hartwig and coworkers for the palladium-catalyzed conversion of bromoanilides to 

oxindoles to make 5-membered heterocycles.17  

 2,2’-Dibromobiphenyl 46 gave 7-membered heterocycle 47 in 98% yield and 

2,2’-oxybis(bromobenzene) 48 gave 8-membered heterocycle 49 in 69% yield (Scheme 

16).16   The reduction in yield of the larger 8-membered heterocycle is likely due to larger 

entropic effects involved in the cyclization of the larger ring system as compared to the 

slightly smaller 7-membered heterocycle. 

4% Pd2dba3, 8% BINAP
5 eq NaOtBu, 4 eq S-6a

PhMe, 135 oC, 20 h
90%

44 45

Br Br
S

N

O

 

Scheme 15.  Synthesis of a Sulfoximine Based 6-Membered Heterocycle 45 

 

Figure 7.  Proposed Base Induced Benzyne Mechanism 
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Scheme 16.   Syntheses of 7- and 8-Membered Heterocycles  

 1.4.5   Use of Bissulfoximine 31 in Asymmetric Diels Alder Reactions 

 Bissulfoximine 31 was shown earlier to be successful in copper-catalyzed hetero-

Diels Alder reactions that proceeded in high yield and enantioselectivity. 14  Bolm and 

coworkers expanded the scope of the chemistry of bissulfoximine 31 and used it as a 

ligand in normal Diels Alder reactions in 2003.  Cyclopentadiene 50 and 3-

acryloyloxazolidin-2-one 51 afforded Diels Alder adduct 52 in 98% yield, 81% ee, and  a 

93:7 endo/exo ratio.  Only bissulfoximine 31, in this specific study, was prepared by N-

arylation and its use as a ligand is shown in Scheme 17.18   

 

Scheme 17.  Bissulfoximine 31 in an Enantioselective Diels Alder Reaction 

 Other ligands tested were those similar to the bissulfoximine ligand 37.  Of these 

ligands, bissulfoximine ligand 53, shown in Figure 8, slightly outperformed all others 
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including bissulfoximine 31 (Scheme 18).  After reaction optimization, the Bolm group 

deduced several things: Cu(ClO4)2 was the best copper(II) source; chloroform was the 

best solvent; and the ideal ligand contained both an electron rich arene bridge and ortho-

bound methoxy substituents about the sulfoximine aryl groups.18  However, 31 can be 

made in a single step, and it would likely be the ligand of choice as its performance was 

respectable. 

NS
O

N S
O

53

OO

 

Figure 8.  Bissulfoximine Ligand 53 

 

Scheme 18.  The Use of 53 in an Optimized Diels Alder Reaction 

1.4.6   Use of N-Quinolinesulfoximines in Asymmetric Hetero-Diels Alder Reactions 

 Later in 2003, another class of sulfoximine-based ligands was reported by Bolm 

and coworkers.  A variety of substrates were prepared and tested.  Overall, the best 

ligands for this reaction contain a sulfoximine bearing a small alkyl group and an aryl 

group with bulky ortho-substituents.  Syntheses of these quinoline-based ligands model 

those previously shown with the N-arylation of sulfoximine 6 and quinoline derivatives 

53 to yield a variety of N-quinolinesulfoximines 54 (Table 8). Reduced yields were 
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observed for bulky alkyl bearing sulfoximines, especially in the case of the t-butyl group, 

which gave a 55% isolated yield of product (Table 8, entry 11).  Larger arenes like 

acridine gave only 68% isolated yield (Table 8, entry 3).  Most yields were good to 

excellent, providing further evidence that the Buchwald Hartwig N-arylation works well 

with a variety of sulfoximines in the presence of quinoline-type substrates. 19

Table 8.  Syntheses of Quinolinesulfoximines by N-Arylation 

N
S

R2

O
R1Br

5% Pd(OAc)2, 10% BINAP
2 eq Cs2CO3, 1 eq 6
PhMe, 110 oC, 24 h

53 54

N
N R3S

NH

R2R1

O

6

+ R3

 

Entry Sulfoximine R1 R2 R3 Yield (%)

1 54a Me Ph H 90 

2 54b Me Ph n-Bu 75 

3 54c Me Ph -C4H4 68 

4 54d i-Pr Ph H 75 

5 54e t-Bu Ph H 72 

6 54f Me biphenyl H 84 

7 54g Me 3,5-di-t-Bu-Ph H 81 

8 54h Me 2-MeO-Ph H 87 

9 54i n-pentyl 2-MeO-Ph H 85 

10 54j phenethyl 2-MeO-Ph H 73 

11 54k t-Bu 2-MeO-Ph H 55 

12 54l Me 2-MeO-Naph H 81 
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 Many of these ligands were tested in the same hetero-Diels Alder reaction 

presented previously in Tables 4 and 5.  Results for these different sulfoximines are 

collected in Table 9.  Ligands with small alkyl and bulky ortho-aryl groups on the 

sulfoximine gave better enantioselectivities than those with larger alkyl and less bulky 

aryl groups.19 

Table 9.  N-Quinolinesulfoximines in an Asymmetric Hetero-Diels Alder Reaction 

 

Entry Sulfoximine Yield (%) ee (%) endo/exo ratio 

1 54a 97 75 97:3 

2 54b 93 63 99:1 

3 54c 95 56 99:1 

4 54d 22 38 96:4 

5 54e 18 0 88:12 

6 54f 92 73 98:2 

7 54g 81 73 97:3 

8 54h 98 91 98:2 

9 54i 92 90 98:2 

10 54j 93 86 97:3 

11 54k 41 0 92:8 

12 54l 88 91 98:2 
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 A few interesting features are displayed in Table 9.  First, yields suffered in many 

cases.  When the alkyl group on the sulfoximine was bulky or very bulky the reaction 

progress was extremely limited and the yields were quite low (Table 9, entries 4, 5, and 

11).  Enantioselectivity suffered in these cases as well. So it is logical to believe that 

larger alkyl groups are a strong contributing factor to how well defined the asymmetric 

cavity around the metal sphere is and that they therefore dictate to some extent yield and 

enantioselectivity of the hetero-Diels-Alder reaction.  In all other cases substituent 

changes about the aryl sulfoximine group and the quinoline group had little effect on 

yield or enantioselectivity.19

1.4.7   Use of Aminosulfoximines in Asymmetric Mukaiyama-Type Aldol Reactions  

 In 2004, the attention of the Bolm group was directed toward the synthesis of 

aminosulfoximines.  The synthesis began with 2-bromonitrobenzene 55 and sulfoximine 

S-6a as coupling partners in a Buchwald Hartwig N-arylation to give N-substituted 

sulfoximine 56 in 73-95% yield.  Compound 56 was reduced to the aniline N-substituted 

sulfoximine 57 in 74-87% yield.  Reductive amination of 57 gave aminosulfoximine 58 

in 81-85% yield (Scheme 19).20   

NO2

Br

Pd(OAc)2, BINAP
Cs2CO3, S-6a, PhMe

73-95%
N

NO2

S
O

Ph

Fe, AcOH
EtOH, H2O

74-87%
N

NH2

S
O

Ph

RCHO, NaBH3CN
MeOH, AcOH

81-85%N HNS
O

Ph
R

55 56 57

58  

Scheme 19.  Generic Synthesis of Aminosulfoximine 58 
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 Many N-substituents were tested and of those, the very bulky N-2,4,6-

triisopropylphenyl aminosulfoximine 58a (Figure 9) was found to outperform other 

substituents such as phenyl, naphthyl, 2-anisyl, and mesityl.  The test reaction was 

between silyl enol ether 59 and ketoester 60 to yield Mukaiyama aldol product 61.  The 

results are shown in Table 10.  In all examples, good yields and enantioselectivities were 

observed when aminosulfoximine 58a was employed as the ligand.20

NSPh

O
HN

58a
  

Figure 9.  Aminosulfoximine Ligand 58a  

Table 10.  Aminosulfoximine 58a as a Ligand in Mukaiyama-Type Aldol Reactions 

  

Entry R1 R2 Temp. (oC) Time (h) Yield (%) ee (%) 

1 Me Me -30 15 89 98 

2 Me Bn -50 47 86 98 

3 Me i-Pr -40 28 90 99 

4 Et Me rt 24 78 89 

5 CH2Bn Et -20 40 86 96 
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1.4.8   Use of Aminosulfoximines in Asymmetric Carbonyl-ene Reactions 

 Aminosulfoximines were again tested in various copper-catalyzed carbonyl-ene 

reactions in 2005.  Similar to those tested above in Mukaiyama-type aldol reactions, 

several aminosulfoximines prepared by N-arylation were tested and acceptable yields and 

good enantioselectivities were found.  Ligand 58a was also the best ligand for this 

reaction.  In this case, α-methylstyrene 62 was reacted under copper catalysis with methyl 

pyruvate 60 to give hydroxyl ester 63 in 53% yield and 91% ee (Scheme 20).  Notice the 

enantioselectivities were not quite as high as before, but it shows that sulfoximine type 

ligands are applicable to more than one reaction type.21

 

Scheme 20.  Aminosulfoximine 58a in an Asymmetric Carbonyl-Ene Reaction 

1.4.9   BINOL-Based N-Phosphino Sulfoximines in Asymmetric Reactions 

 Soon after in 2005, Bolm and coworkers reported a BINOL-based N-phosphino 

sulfoximine based ligand system.  This ligand was not prepared via Buchwald Hartwig N-

arylation but provides yet another very simple synthesis of a sulfoximine based-ligand.   

Chlorophosphite 64 was added to sulfoximine 6 in the presence of triethylamine in 

toluene.  The reaction was warmed from -78 oC to room temperature to afford N-

phosphino sulfoximine 65 in excellent yields (Scheme 21).  This ligand system was 

investigated in two asymmetric reactions.  First, it was tested in asymmetric rhodium-

catalyzed hydrogenations (Scheme 22) and palladium-catalyzed asymmetric allylic 

alkylations (Scheme 23).  In both cases high yields and high enantioselectivities were 

observed.22
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Scheme 21.  Preparation of BINOL-Based N-Phosphino Sulfoximines 

 In all examples, quantitative conversion was observed.  In all cases, good to 

excellent enantioselectivities were seen.  As little as 0.1% Rh-65 catalyst was used.  The 

extremely low catalyst loading displays how well the catalyst was able to turnover in a 

period of 20 hours to allow for the excellent conversions.  It was found that a matched 

ligand, R-BINOL/S-6 gave higher enantioselectivity than the mismatched case S-

BINOL/S-6 where as much as a 12% ee difference was observed.22 

  

Scheme 22.  BINOL N-Phosphino Sulfoximines in Asymmetric Hydrogenations 
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 Typically monodentate BINOL-based ligands are not used in Pd-catalyzed allylic 

substitution reactions as they provide poor enantioselectivities.  This was also the case, 

for ligands like 65.  The highest enantioselectivity observed was 66% ee where the 

methyl group was substituted with an t-butyl group to improve steric demand.  Increasing 

the amount of ligand to palladium available also reduced the enantioselectivity by a 

noticeable amount, in some cases as much as 50% ee.  However, yields slightly improved 

with more ligand present, albeit by only a few percent.22

 
Scheme 23.  BINOL N-phosphino Sulfoximines in Asymmetric Allylic Alkylations 

1.4.10   Optimization of Aminosulfoximines in Asymmetric Aldol Reactions 

 As shown in 2004, aminosulfoximines as ligands worked well in Mukaiyama-type 

aldol reactions.20  Bolm and coworkers expanded this methodology and optimized the 

reaction conditions to improve the yield, enantioselectivity, and substrate scope.  As 

previous results suggested and confirmed again here, ligand 58a provided the highest ee 

and the highest yield.  A bulky ortho-substituent remains the largest determining factor to 

attain high enantiomeric excess.   Both configurations of 61 could be prepared by 

switching to the opposite ligand chirality.  Here (R)-58a gave (S)-61 and (S)-58a gave 

(R)-61.  Modifying the substituents on the bridging arene had little to no effect on yield 

or enantioselectivity.23   

 Solvent effects were explored and typically THF outperformed all others in terms 

of enantioselectivity.  Ether, dioxane, and toluene gave similar enantioselectivity but 

much lower yields than THF.  The reaction did not proceed in propionitrile. Chloroform 
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and dichloromethane gave lower enantioselectivity as well.   Copper(II) salts were 

examined and the -OTf  salt outperformed PF6
-, BF4

-, and SbF6
-
 salts in both with regards 

to yield and enantioselectivity.  The perchlorate counterion, however, provided the best 

yield of all salts tested but suffered reduced enantioselectivity relative to that of the -OTf 

salt.  Catalyst loadings of less than 1% resulted in diminished enantioselectivity.  

Lowering temperatures of the reaction allowed for better enantioselectivity but 

significantly lengthened reaction times to as much as 10 days.  The best temperature was 

found to be -50 oC with the assistance of trifluoroethanol as an accelerant.  Temperatures 

near -78 oC or lower inhibited catalysis completely.  The overall optimized reaction is 

shown in Scheme 24.23 

 

Scheme 24.  Optimized Asymmetric Mukaiyama-Type Aldol Reaction 

1.4.11   Diphenylphosphanylsulfoximines in Asymmetric Imine Hydrogenations 

 A new ligand system was prepared and tested in asymmetric imine 

hydrogenations by the Bolm group in 2005.  This P,N-ligand was prepared by coupling of 

aryl bromide 74 with sulfoximine 6 via copper mediated N-arylation in moderate to good 

yields (55-83%).  The resulting N-substituted sulfoximine 75 was reductively 

deoxygenated with trichlorosilane to give the free phosphorous P,N-ligand 76 in yields of 

51-81% (Scheme 25).   
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Scheme 25.  Synthesis of P,N-Ligands Containing a Sulfoximine 

 

Scheme 26.  P,N-Sulfoximine Ligands in Imine Hydrogenation 

 A summary of selected imine reductions is shown in Scheme 26.  Ligand 76a 

(Figure 10) provided the best yield (99%) and ee (96%) for the hydrogenation of imine 

77 into chiral amine 78.  Ortho-substituents on the N-aryl group of the imine reduced the 

enantioselectivity drastically as shown in conversion of imine 79 to amine 80, which 

occurred in 99% yield but with only 58% ee.  An N-mesityl group shut down the reaction 

 32



completely. The tetralone derivative 83 gave an excellent yield (99%) of amine 84 in as 

little as 4 hours with an enantiomeric excess of 91%.24

 

Figure 10.  Optimized P,N-Ligand 76a 

1.4.12   Aminosulfoximines in Asymmetric Vinylogous Aldol Reactions 

 Expanding the scope of previous asymmetric Mukaiyama-type aldol reactions, 

Bolm and coworkers tested aminosulfoximines in vinylogous aldol reactions in 2006.  

The very bulky tri-iso-propyl based aminosulfoximine 58a again proved to outperform all 

other aminosulfoximines.  A representative reaction is shown in Scheme 27.25   

 

Scheme 27.  Aminosulfoximine 58a in an Asymmetric Vinylogous Aldol Reaction 

 Here methyl pyruvate 60 reacted with vinylogous TMS ester 85 in 12h to give 

aldol product 86 in 81% yield and 99% ee.  This is yet another example of where a single 

sulfoximine ligand family can be applied to a wide variety of reactions.25 

1.4.13   Naphthalene Based Sulfoximines in Asymmetric Quinoline Hydrogenations 

 In 2008, Bolm and coworkers devised another family of sulfoximine-containing 

compounds with the creation of naphthalene-based P,N-ligands for asymmetric catalysis. 

The synthesis began with halogen metal exchange of diiodo naphthalene 87 with n-BuLi 

followed by trapping with an aryl phosphine chloride.  Subsequent oxidation gave 
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compound 88.  Similar to 74, copper-mediated N-arylation of 88 with sulfoximine 6 gave 

N-arylated sulfoximine 89.  Reductive deoxygenation gave free phosphino P,N-ligand 90 

in a wide range of yields (Scheme 28).  A variety of quinolines were hydrogenated with 

precatalyst 91 which were prepared in situ with an Ir salt (Scheme 29).   This is the first 

example of a sulfoximine-based ligand system being trapped successfully and isolated as 

a metal-ligand bound catalyst. 26

 
Scheme 28.  Synthesis of Naphthalene-Based Sulfoximine P,N-Ligands 

 It was found that for the hydrogenation of quinolines, sulfoximine bulk reduced 

the enantioselectivity of the hydrogenation.  Substitution on the aryl phosphorous groups 

had little or no effect.  Several 1-, 5-, and 1,5-disubstituted quinolines were hydrogenated. 

The results are summarized in Table 11.  Here quinoline 92 was hydrogenated to cyclic 

amine 93.  Conversions were typically fair to good.  Longer reaction times gave better 

yields and poorer enantioselectivity (Table 11, entries 3, 5, and 7).  Shorter reaction times 

gave lower yields but better enantioselectivity (Table 11, entries 1, 2, 4, 6, 8, and 10).  

The lowest yield was observed with 2-fluoroquinoline 93i for which the reaction 

proceeded to the extent of only 43%, the ee of the product being 64% (Table 11, entry 9).   
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Overall enantioselectivity was moderate to good and conversions also moderate to 

good.26 

 

Scheme 29.  Preparation of Ir Precatalyst 91 

Table 11.  Summary of Quinoline Hydrogenation via Precatalyst 91 

 

Entry R1 R2 Compound Time (h) Conversion (%) ee (%)

1 H Me 93a 20 >95 87 

2 H Et 93b 24 62 77 

3 H Et 93c 48 69 70 

4 H i-Bu 93d 24 53 75 

5 H i-Bu 93e 48 71 55 

6 H Pr 93f 24 62 80 

7 H Pentyl 93g 48 90 65 

8 Me Me 93h 24 >95 75 

9 F Me 93i 24 43 64 

10 OMe Me 93j 24 >95 78 
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1.4.14   Oxazolinyl Sulfoximines in Asymmetric Mukaiyama-type Aldol Reactions 

 The last example to be discussed from the current literature involves the use of a 

oxazolinyl sulfoximine ligand.  This ligand mentioned previously as oxazoline 33 or any 

derivative thereof had not been investigated as a chiral ligand until late 2008 by the Bolm 

group.  A newer two step synthesis was reported to make this type of ligand in a more 

expedient manner (Scheme 30).   

 

Scheme 30.  Second Generation Synthesis of Oxazolinyl Sulfoximine Ligands 

 The synthesis began with 2-bromobenzonitrile 94 and zinc chloride to give 

oxazoline 95.  Copper mediated N-arylation afforded 33 from 95 and 6.  The ligand that 

gave the best enantioselectivity was 33a (Figure 11).  An example of 33a used in 

asymmetric Mukaiyama-type aldol reactions is shown in Scheme 31.27

N
S

O N

O

33a

Ph

Me

 

Figure 11.  Optimized Oxazolinyl Sulfoximine Ligand 33a 

 

Scheme 31.  Oxazolinyl Sulfoximine 33a in Asymmetric Mukaiyama Aldol Reaction 
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1.4.15   Summary of Sulfoximine Based Ligands Over the Past Decade 

An in depth review of sulfoximines ligands over the past 10 years has been 

presented.  Shown below in Figure 12 are a list of sulfoximine-based ligands and the 

years they were reported.  The scope of ligands, reactions, and substrates makes 

sulfoximine ligands attractive to the synthetic world.  High yields and enantioselectivities 

with low catalyst loading are common. Relatively short syntheses make sulfoximine 

ligands very accessible. These features are important to notice when thinking of a 

catalyst’s performance. Many of the ligands introduced previously have made a 

significant impact on asymmetric reactions by giving a high enantiomeric excess of 

products formed in a variety of reactions with a variety of metals. The ever expanding 

scope of sulfoximine-based chiral ligands provides justification for further development 

of related systems that may also have the potential for the development of reactions that 

proceed in high enantioselectivity. 
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Figure 12.  Chiral Sulfoximine Ligands over the Past Decade 
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CHAPTER 2 

Syntheses of Potential Hydroxy-Based Benzothiazine Ligands 

 The development of hydroxy-based benzothiazine ligands was undertaken in 

order to create enantiopure molecular scaffolds.  This scaffold would be the initial 

building block used to design more interesting and more complicated molecules.  The 

syntheses of many related compounds will be presented herein.  Many synthetic steps 

were optimized in order to provide respectable syntheses and those details are also 

presented herein.  The key step in all syntheses is the palladium-catalyzed N-arylation of 

haloarenes with sulfoximines that has been examined in depth in the previous chapter.   

2.1   Synthesis of a Hydroxy Benzothiazine 

2.1.1   First Generation Synthesis of a Hydroxy Benzothiazine 

 Aside from bisbenzothiazine 40 and very briefly 4-phenyl-2,1-benzothiazine 28, 

no other benzothiazines have been studied as ligands in asymmetric reactions to date.  

Little is known about their chemistry under different reaction conditions compared to the 

comprehensively studied various N-substituted sulfoximines presented previously.  The 

optimized synthesis of a hydroxy benzothiazine scaffold will be presented. The 

preparation of this “fixed” sulfoximine building block provided a direct comparison of 

the benzothiazine’s rigid structure to “free” sulfoximines with regards to reactivity.  The 

synthesis of the hydroxy benzothiazine was published in 2006.28  

  The first generation synthesis began with commercially available methyl 3-

hydroxybenzoate 96.  In the presence of 5 equiv. of dimethoxymethane and a catalytic 

amount of para-toluenesulfonic acid, the reaction mixture was refluxed in 

dichloromethane over 24 hours under Soxhlet extraction with freshly activated 4Å 
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molecular sieves to give MOM-protected phenol 97 (Scheme 32).  Yields without 

molecular sieves or with weakly active molecular sieves ranged anywhere from 39% to 

48%.  Workup with 10% NaOH allowed for a chromatography-free separation from the 

starting materials.   

 The second step was a lithium aluminum hydride reduction of an ester to an 

alcohol.  Less than one equivalent of the reagent could be used to obtain 100% reduction 

to primary benzyl alcohol 98 in near quantitative yield (Scheme 32).  To avoid 

difficulties in isolation due to the resultant aluminum hydroxides, the widely known 

Fieser workup was used and as shown the isolated yields approached 100% yield on a 

multigram scale. 

 
Scheme 32.  First Generation Synthesis:  MOM-Protection and LAH Reduction 

 The next step in the first generation synthesis was the selective ortho-bromination 

of benzyl alcohol 98 to give (2-bromo-3-(methoxymethoxy)phenyl)methanol 99.   The 

challenge that exists is getting single bromination and with complete regioselectivity 

(Figure 13).  The difficulty arises from having three sites of bromination based upon the 

ortho- para- directing abilities of the protected phenol.  The protected phenol, a strong 

electron pair donor, and the methanol substituent, as a weaker inductive electron donor, 

allow for multiple sites of reactivity about the aromatic ring.  The three possible locations 

of bromination are shown in Figure 13.   
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Figure 13.  Possible Sites of Bromination  

 Many attempts to optimize this synthetic step were investigated.  First, benzyl 

alcohol 98 was deprotonated with 2.5 equivalents of n-BuLi in various solvents, at 

various temperatures and for various reaction times.  The hope was to take advantage of 

the two possible ortho-directing groups to gain regioselectivity at the most hindered 

ortho-hydrogen.  A summary is shown in Table 12. 

 Initial reactions in toluene showed that at low temperatures the reaction progress 

was slow, giving clean conversion in very modest yields (Table 12, entries 1-2).   

Extended reaction times at lower temperatures seemed to have a negative effect on yield 

(Table 12, entry 3).  Warming to room temperature and changing solvents increased 

yields to a respectable 89% (Table 12, entries 4, 5, 8-10, and 14).  Both the THF and 

ether reactions had many baseline impurities that required silica chromatography to 

remove and attention was drawn to toluene as the solvent of choice (Table 12, entry 10). 

 Heating the reaction mixture in n-BuLi gave exclusive lithiation at the sterically 

more hindered position.  Here the lithium cation could be dually stabilized by both the 

alkoxide anion and the MOM-substituent (Figure 14).  Even if other sites were 

deprotonated, the resulting anion could act as a strong base such that only the desired 

dually stabilized anion remained over a period of several hours.  Under the previously 

described reaction conditions, the highest yields and cleanest reactions were observed 
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(Table 12, entries 11, 14-18).  The reaction was found to be reproducible up to ten or 

more gram scale.   

 Note that switching to stronger bases like s-BuLi and t-BuLi decomposed the 

starting materials and no product was observed (Table 12, entries 6, 7, and 13).  When 

tetramethylethylenediamine, TMEDA, was employed to enhance the reactivity of n-BuLi, 

only 54% of 107 was obtained along with no recovered starting material (Table 12, entry 

12). 

Table 12.  First Generation Synthesis:  Bromination  

 

Entry Solvent Temp.
(oC) 

Time
(h) 

Ratio 
(98 : 107)

Yield 
(%) 

1 PhMe -10 1.5 --- 64 

2 PhMe -10 1.5 --- 56 

3 PhMe -10 3.5 2.8 :  1 --- 

4 ether rt 2 --- 78 

5 ether rt 4 1 : 8.3 89 

6 THFa -78 1 0 : 0 --- 

7 ethera rt 3 0 : 0 --- 

8 ether rt 4 1 : 8.3 87 

9 THF rt 4 1 : 7.3 80 

10 PhMe rt 4 1 : 3.5 70 
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11 PhMe 80 5 1 : 12.5 87 

12 PhMeb rt 5 1 : 2.9 54 

13 PhMec rt 24 0 : 0 --- 

14 PhMe rt 24 1 : 5.2 84 

15 PhMe 70 19 1 : 8.9 89 

16 PhMe 70 6 1 : 15.7 96 

17 PhMe 70 6 1 : 13.3 95 

18 PhMe 70 8 1 : 11.1 95 
  a  t-BuLi used  
  b 2.5eq TMEDA used 
  c s-BuLi used  
 

 

Figure 14.  Possible Model for Lithium Cation Stabilization  

 A normal bromination attempt of the commercially available ester 97 was made 

(Scheme 33).  This procedure was based on one for a very different substrate.29 Here 

methyl ester 97 was transformed into bromides 100, 101, and 103 as an inseparable 

mixture.  Hydrolysis of the MOM-group was also observed due to the HBr formed in 

situ.  This bromination route was abandoned due to previous success of the ortho-

lithiation procedure. 

Scheme 33.  First Generation Phenol Synthesis:  Failed Bromination Attempt 1 
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 The de Koning group claimed in 2004 that only the desired regioisomer 104 was 

isolated from their optimized bromination procedure using aldehyde 103.  It seems that 

regioisomer 104 is in slight excess relative to the other two regioisomers 105 and 106.  

However, in the report by de Koning, they were able to filter off the desired regioisomer 

cleanly and in as much as 50% isolated yield. 30  This was not the case in any of our 

attempts and 104 could not be separated from 105 and 106 as shown in Table 13. 

Table 13.  First Generation Synthesis:  Failed Bromination Attempt 2 

 

Entry Solvent Temp. (oC) Time (h) Ratio 
103 : 104 : 105 : 106

1 CCl4 25 2 2.0 :  3.2 :   1   :  2.0 

2 CCl4 25 16 decompositiona

3 CCl4 25 72 5.3  :  2.6 : 1.5  :  1 

4 CCl4 : DCMb 25 4 1.4 : 1.7  :   1   :  0 

  a  No products were observed in the crude NMR 
  b 10:1 mixture 
 
 The next step to get to the bromoaldehyde precursor needed for the Buchwald 

Hartwig N-arylation step was the oxidation of benzyl alcohol 107 to benzaldehyde 108.  

The oxidation method selected was the Swern oxidation, which afforded 108 in 98% 

yield (Scheme 34).  A clean mixture of brominated alcohol and unbrominated alcohol 

could be oxidized and carried forward since the benzothiazine and unbrominated 

aldehyde have distinctly different polarities and could be separated by chromatography. 
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Scheme 34.  First Generation Phenol Synthesis: Swern Oxidation of 107 to 108 

 The key step, the Buchwald Hartwig N-arylation, was the next step in the 

synthesis.  Using standard conditions, the reaction proceeded smoothly in 96% yield 

(Scheme 35).  The reaction failed if the MOM-protecting group was not present even 

when excess base employed (Scheme 36).  

 

Scheme 35.  First Generation Phenol Synthesis:  N-Arylation of MOM-Protected Phenol 

 

Scheme 36.  First Generation Phenol Synthesis:  Failed N-Arylation of Phenol 

 Completion of the synthesis was achieved by deprotecting the MOM-acetal 

protecting group under very acidic conditions to give the free phenol benzothiazine 111 

in quantitative yield (Scheme 37).  This completed the first generation synthesis of 

desired enantiomerically pure 8-hydroxy-2-S-oxa-2-S-phenyl-2,1-benzothiazine 111.  A 

summary of the first generation synthesis is shown in Scheme 38. 
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Scheme 37.  First Generation Synthesis:  MOM-Group Deprotection 

Scheme 38.  First Generation Synthesis:  Summary 

2.1.2   Second Generation Synthesis of a Hydroxy Benzothiazine  

 Soon after the completion of the first synthesis, compound 103 was commercially 

synthesized.  Many grams of 103 were donated for research purposes to our group by 

Frontier Scientific.  With this commercially available intermediate, a second generation 

synthesis was undertaken, reducing the step count to 109 by three.  Since the free phenol 

would not take part in the N-arylation, it was important to protect the phenol without 

modifying the aldehyde and adding more synthetic steps.  Thus MOM-protection seemed 

logical.  A summary of results is provided in Table 14. 

 Only two bases were examined, NaH was tested first.  In DMF, the reaction was 

very poor (Table 14, entry 1). By switching to THF and adding NaI, the reaction 

improved greatly.  In 3 hours, 108 was isolated in 96% yield (Table 14, entry 2).  This 

reaction was very exothermic on a large scale.  Thus attention was drawn to TEA as base.  

Five equivalents of this weaker amine base were needed to obtain a near quantitative 

conversion in less than 3 hours with a twofold excess of MOMCl in THF (Table 14, 
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entries 3-5).  The best synthesis included 5% NaI in THF in addition to TEA, affording 

108 in 99% yield (Table 14, entry 6). 

Table 14.  Second Generation Synthesis:  MOM-Group Protection 

 

Entry MOMCl 
(equiv.) 

Base 
(equiv.) 

Solvent 
 

Additive
(equiv.) 

Time 
(h) 

Yield
(%) 

1 1.1 NaH; 1.2 DMF --- 1 38 

2 2 NaH; 2.5 THF NaI; 0.5 3 96 

3 2 TEA; 5.0 PhMe:THF NaI; 0.5 1 92 

4 2 TEA; 5.0 THF NaI; 0.5 1.5 94 

5 2 TEA; 5.0 THF NaI; 0.05 2 93 

6 2 TEA; 5.0 THF NaI; 0.05 3 99 

 
 With a new more expedient synthesis to the key bromide 108, the ease of 

preparing phenol 111 in a faster 3 step route makes it much more attractive as an 

attainable enantiopure ligand for asymmetric catalysis.  This improved synthesis is now 

more economical and very direct.  The second generation synthesis is summarized in 

Scheme 39. 

 

Scheme 39.  Second Generation Synthesis:  Summary 
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2.2   Preparation of Benzothiazine-Based Ligands 

2.2.1   Attempts to Synthesize a P,N-Benzothiazine Ligand 

 With the phenol functional group now unprotected, it could be utilized as a 

nucleophile in the presence of base.  The phenoxide could be trapped by various 

phosphine chlorides to produce P,N-benzothiazine based ligands (Table 15).  In short, all 

attempts to react the phenolic nucleophile with a phosphine chloride gave excellent and 

often quantitative conversion to crude product.  In all cases, the use of degassed solvents, 

oxygen-free silica gel, and oxygen-free alumina gave only recovered phenol 111 in 

excellent recoveries (Table 15, entries 1-6, 13-18).   

 Various phosphorus trapping reagents were used to determine if the structure of 

the phosphorus group could prevent product decomposition, but there was no observable 

difference (Structures of A and B are provided in Figure 15).  Bulkier substituents on 

phosphorus afforded poor conversions (Table 15 entries 17, 18).  To date there has been 

no successful attempt to isolate the free phosphino P,N-benzothiazine ligand from this 

series.  Attempts to trap the crude material with transition metal salts gave no isolable 

product (Table 15, entries 7-12, 15-18).   

Table 15.  Attempts Toward P,N-Benzothiazine Ligands 

1. Base, solvent, time
2. PR2Cl

N
S O

OH

111

N
S O

O

112

PR2

 

Entry Base (eq) Solvent Temp.
(oC) 

Time
(h) R Conv. 

(%) 
Isolated 

Yield (%)

1 TEA (2.1) THF 0 3 Ph (2.0) --- >95 rsm 

 48



2 TEA (2.2) PhMe 115 18 Ph (2.0) 34 >95 rsm 

3 pyr (1.1) ether 0 18 OPh (1.0) 28 >95 rsm 

4 pyr (1.1) DCM 25 72 OPh (1.0) 78 >95 rsm 

5 n-BuLi (1.1) THF -78 18 A (1.05) >95 >95 rsm 

6 n-BuLi (1.1) THF -78 18 Ph (1.05) >95 >95 rsm 

7 n-BuLi (1.1) THF -78 18 Ph, Pda (1.05) black ppt --- 

8 n-BuLi (1.1) THF -78 18 A, Pda (1.05) black ppt --- 

9 n-BuLi (1.1) THF -78 18 Ph, Pdb (1.05) black ppt --- 

10 n-BuLi (1.1) THF -78 18 Ph, Pdb (1.05) black ppt --- 

11 n-BuLi (1.1) THF -78 18 Ph, Irc (1.05) black ppt --- 

12 n-BuLi (1.1) THF -78 18 A, Irc (1.05) black ppt --- 

13 TEA (5.0) PhMe 80 48 t-Bu (1.0) --- >95 rsm 

14 TEA( 5.0) PhMe 80 48 i-Pr (1.0) --- 90 rsm 

15 n-BuLi (1.1) THF -78 18 t-Bu, Irc (1.0) --- 96 rsm 

16 n-BuLi (1.1) THF -78 18 i-Pr, Irc (1.0) --- 92 rsm 

17 n-BuLi (1.1) THF -78 18 Bd (1.0) --- 61 rsm 

18 pyr (5.0) PhMe 115 24 Bd (1.0) --- 94 rsm 
a Crude material trapped with Pd(OAc)2  
b Crude material trapped with [Pd(allyl)Cl]2  
c Crude material trapped with [Ir(cod)Cl]2  
d Crude material trapped with [Pd(allyl)Cl]2; [Ir(cod)Cl]2; NiCl2; CuCl2; ZnCl2 

 Hydrolysis was deemed responsible for the decomposition of products to very 

clean recovered starting material.  It seems the sulfoximine nitrogen may act as a weak 

base and provide a catalyst for hydrolysis during chromatography or workup.  A 

proposed mechanism of decomposition is provided in Figure 16. 
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Figure 15.  Phosphites Used In Attempts to Synthesize P,N-Benzothiazine Ligands 

 To test the validity of this hypothesis, it was necessary to do a model reaction to 

see if hydrolysis was partly due to imperfect techniques or if it was, indeed, a 

benzothiazine specific substrate problem.  Therefore, a somewhat bulky phenol was 

selected that lacked an adjacent nitrogen.  Phenol 113 was reacted with phosphite A to 

give 114 in excellent yield. This compound was subjected to the same workup and silica 

gel chromatography techniques as used in the previous study (Scheme 40).  Partial 

oxidation of the product prevented clean isolation; however, hydrolysis was not seen.  

This provides some evidence that the benzothiazine structure is likely the problem, not 

the chemistry being investigated.   

  

Figure 16.  Possible Mechanism of Hydrolysis  

  

Scheme 40.  Model Reaction to Test Phosphite Hydrolysis 
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 With the hope that P(V) compounds would be virtually inert towards both 

oxidation and hydrolysis, P(V) compound was prepared to see if this P(V) compound 

would be stable under the same conditions and methods as the previous P(III) 

compounds.  Rather than trapping with a phosphine chloride, diphenylphosphinic 

chloride was used as the electrophilic trap.  Thus, phenol 111 was treated with n-BuLi 

and the resultant phenoxide was trapped by a P(V) chloride (Scheme 41).  The product 

was isolated cleanly and in excellent yield using the same workup and chromatrographic 

techniques used previously on P(III) compounds.  No attempts to reduce the P(V) to 

P(III) were made; instead a synthesis of a benzyl alcohol analog was undertaken and this 

is presented in the next section. 

 

Scheme 41.  Synthesis of a P(V),N-Benzothiazine  

2.2.2   Synthesis of a Benzyl Alcohol Benzothiazine 

 One method that could slow the rate of hydrolysis of these phosphorous 

compounds would be to change the leaving group.  Rather than have a phenoxide leaving 

group (pKa of 8-10) a benzyl alcohol would allow for an alkoxide leaving group (pKa of 

16-18).  With a benzyl alkoxide as the possible leaving group, the rate of hydrolysis 

should in principle be slowed if not stopped altogether.   

 The synthesis began with commercially available dialdehyde 116. This was 

treated with triflic anhydride in the presence of pyridine to give an 83% yield of triflate 

117 (Scheme 42).  Triflate 117 was treated under normal Buchwald-Hartwig coupling 
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conditions to give benzothiazine 118 in only 46% yield (Scheme 43).  Aryl triflates act 

much like aryl iodides in that they are both relatively sluggish in palladium-catalyzed N-

arylations, as demonstrated by Bolm and coworkers.8  Keep in mind also that the 

condensation that takes place produces a molecule of water per molecule of 

benzothiazine formed.  Triflates are sensitive to hydrolysis and no attempts to remove 

water via molecular sieves or drying reagents were employed in this model study.   

Subsequent reduction of aldehyde 118 with DIBAL gave benzyl alcohol 119 in near 

quantitative yield (Scheme 44).  This completed the synthesis of 119. 

  

Scheme 42.  Synthesis of Triflate N-Arylation Partner 117 

 

Scheme 43.  Synthesis of Benzyl Alcohol Benzothiazine Precursor 118 

 

Scheme 44.  Synthesis of Benzyl Alcohol Benzothiazine 119 
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 This synthesis was not taken further, and the synthesis, namely, the coupling step 

was not optimized.  This will be a starting point for future investigations into the stability 

of phosphorous-based benzothiazine compounds of this nature.  All in all, this is a quick 

route to another potentially useful and unique benzothiazine scaffold. This benzothiazine 

parent could be highly functionalized before and after reduction of aldehyde 118.  This 

feature gives tunability to the ligand structure if needed to enhance enantioselectivity in 

asymmetric reactions. 

2.2.3   Synthesis of a Triflate-Substituted Benzothiazine Coupling Partner 

 In order to utilize the phenol functional group of benzothiazine 111, triflate 120 

was prepared.  Phenol 111 was reacted with triflic anhydride in the presence of excess 

pyridine to give triflate 120 in quantitative yield (Scheme 45).  This provides an 

expedient route to utilize the hydroxy benzothiazine scaffold as a coupling partner.  Due 

to the sluggish reactivity of triflates presented earlier, very few attempts to expand upon 

this coupling partner have been investigated to date.   As a result, a chloride analog was 

prepared and is the topic of the next section. 

 

Scheme 45.  Synthesis of Triflate 120 

2.2.4   Synthesis of a Chloro-Substituted Benzothiazine Coupling Partner 

 A one-step, one-pot procedure to prepare a similar coupling partner would be 

more efficient than the multistep synthesis of the previous triflate.  However, 

commercially available 2,3-dichlorobenzaldehyde 121 reacted sluggishly in the 
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palladium-catalyzed N-arylation (Scheme 46).  A very modest 40% yield of 121 was 

isolated alongside 38% of recovered starting material 120.  A small amount of 

dechlorinated product was observed (4% of 1).  

 

Scheme 46.  Synthesis of 8-chlorobenzothiazine 121 

 Attempts have also been made to obtain reasonable yields of 121 via microwave 

irradiation of dichlorides by the Harmata group in 2007.  Under these conditions, a 1:1 

mixture of 121 and 122 was observed (Scheme 47).  Expanding upon this methodology, 

Harmata and coworkers coupled chloride 121 with sulfoximine 6 under the conditions of 

microwave irradiation to afford benzothiazine 123 albeit in only 14% yield (Scheme 48).   

 

Scheme 47.  Microwave Irradiation of 2,3-Dichlorobenzaldehyde 

5% Pd(OAc)2, 7.5% BINAP
1.4 eq 6,1.6 eq Cs2CO3

PhMe, 200 W, 135 oC
14%

N
S O

N

123

N
S O

Cl

121

S
O

 

Scheme 48.  Microwave Irradiation of Chloride 121 
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 Benzothiazine 123 was prepared from chloride 120 as described later in Chapter 

3.  The problem, in this example, arises in the coupling of an additional sulfoximine once 

the benzothiazine scaffold is intact.31  This mirrors the problem that Bolm and coworkers 

experienced in the synthesis of bissulfoximine 31.14  Many improvements in the synthesis 

of 123 were the focus of the research presented next in Chapter 3. 

 An attempt to prepare 123 in a thermal process was not successful; 

dehalogenation was observed (45%) along with recovered starting material (24%) over a 

period of 6 days in refluxing toluene.  An attempt to couple 121 with diphenylphosphine 

in the presence of base also failed and P,N-ligand 124 was not observed.  Dehalogenation 

was seen and 1 and 121 were observed in a ratio of 3.5:1.  In both cases, the desired 

product was not seen even in trace amounts (Scheme 49). 

 
Scheme 49.  Attempts to Couple Benzothiazine 121 

2.2.5   Synthesis of Pyrido-Bridged Benzothiazine Heterocycles 

 Our attention was drawn toward making larger heterocycles containing one or 

more benzothiazines.  This would be a methodology toward potential N,N-benzothiazine-

based ligands or multidentate heterocyclic ligands.  This investigation was inspired by the 

interesting helical nonracemic structure of pentadentate bis(oxazoline) ligand 125 by the 

Reiser and coworkers (Figure 17).  A similar synthesis was then undertaken in order to 
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see if benzothiazine heterocycles of this type would give similar chiral helices in the 

crystal structure of the resultant metal complexes.32    

  

Figure 17.  Pentadentate Bis(oxazoline) Ligand by Reiser and Coworkers 

 The synthesis began with the preparation of the pyridine bridge starting with 

dicarboxylic acid 126.  First, Fischer esterification of diacid 126 to the corresponding 

dimethyl diester proceeded in 92% yield.33  Subsequent reduction of both ester functional 

groups with CaBH4 gave the corresponding diol in 82% yield.34  The diol was taken 

further to give the pyridyl dihydrochloride salt 127 in 93% yield using SOCl2 (Scheme 

50).35  With this fragment in hand, the pentadentate heterocycle bisbenzothiazine 128 

was prepared in 89% yield when NaH was used as base in DMF at room temperature 

(Scheme 51).  This ligand was tested against a variety of metals in order to observe its 

conformation in a crystal lattice structure (Table 16). 

N
Cl Cl

N
H

Cl1. EtOH, H+, 92%
2. CaBH4, 82%
3. SOCl2, 93%

COOHHOOC

126 127  

Scheme 50.  Synthesis of Pyridyl Dihyrochloride Salt 127 
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Scheme 51.  Synthesis of Pentadentate Bisbenzothiazine 128 

 Of all the metals tested, only a CdI2 X-ray quality crystal was isolated and 

analyzed by X-ray crystallography.  Although not entirely unexpected, the metal bound in 

a bidentate fashion.  The steric environment of both benzothiazines, bound to a metal 

requires nearly an overlap of the sulfoximine oxygen from each of both benzothiazines 

which may be the reason why the solids that were prepared did not readily form crystals.  

The entropy associated with the freely floating “arm” of the heterocycle did not allow for 

a tightly packed crystal lattice resulting in insoluble precipitates in nearly all cases.  The 

X-ray crystal structure of 129a is shown below in Figure 18. 

Table 16.  Metal Ligand Study of Pentadentate Bisbenzothiazine 128 

N

N
S

O

O

N
S
O

O

128

1 eq Metal salt
MeOH:DCM(1:1)
reflux, 2 h, then rt

N

N
S

O

O

N
S
O

O
M
L

L

129  

Metal Resulta

CdCl2 Brown solid 

CdI2 Yellow needles, 84%
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CuI Off-white solid 

ZnCl2 Light-yellow solid 

CuCl2 Yellow-green solid 

Cu(ClO4)2 Off-white solidc

ZnSO4 Transparent solid 

CuSO4 Transparent solid 

AlCl3 No reaction 

CuSO4 Blue-green solid 

Co(OAc)2 Pink solid 

FeCl3 No reaction 

PdCl2 Yellow-green solid 

Pd(OAc)2 Black solid 

ZnI2 White solid 

Ni(acac)2 White solid 

[Pd(allyl)Cl]2 No reaction 

Hg(OAc)2 Brown solid 

Pb(ClO4)2 Dark brown solidb

HgCl2 Brown solid 

CeCl3 Brown oil 

AuCl3 Black oil 
  a  Appearance when cooled to rt under N2.  
  b   Reaction was not heated. 
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Figure 18.  Crystal Structure of Tridentate Cd Complex 129a 

 As a result, our attention was directed to a similar version of the same ligand but 

now with a phenyl group in place of one of the two benzothiazine ether bound arms.  The 

synthesis of such a molecule required a new pyridyl fragment containing a phenyl 

substituent in the 6-position rather than the symmetrical 2,6-dimethylchloride 127.  This 

synthesis began with commercially available 2,6-dibromopyridine 130, which upon 

treatment of n-BuLi gave a monolithio species.  The resulting lithium species was trapped 

with dimethylformamide to give bromoaldehyde 131 upon acidic workup.  This reaction 

proceeded in only 7% yield (Scheme 52).36  The next three steps could be conducted with 

a single purification step at the end of the sequence that allowed isolation of 133 in 89% 

yield over 3 steps.  The second synthetic step, first step of this three step sequence, was 

the known Suzuki coupling.37  The resultant aldehyde was reduced by NaBH4 to give the 
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corresponding primary alcohol.  The final step was conversion of the primary alcohol into 

the chloromethylpyridine hydrochloride salt 132 (Scheme 53).38   

 

NBrNBr Br

1. 1.01 eq n-BuLi, THF, -78 oC
2. 1.5 eq DMF, 2 h, -70 oC to rt
2. MeOH

7%

CHO

130 131
 

Scheme 52.  Synthesis of Bromoaldehyde 131 

N
Cl

H

Cl

NBr CHO

1. 3% Pd(PPh3)4, 1.8 eq 2M Na2CO3

1.4 eq PhB(OH)2, PhMe:MeOH (3:2)
reflux, 10 h

2. 1.5 eq NaBH4, EtOH, 0 oC, 2 h
3. 1.2 eq SOCl2, ether, 0 oC, 18h

89% (3 steps)

131 132

 

Scheme 53.  Three-step Synthesis of Methylchloropyridine Hydrochloride 132 
 

 This synthesis of 133 was not extensively optimized. The best isolated yield on a 

relatively small scale was a modest 47% yield of 133 (Scheme 54).   Neither TEA nor 

KH promoted any reaction.  NaH at cold and room temperatures allowed for the best 

observed yields.  At 60 oC or at temperatures of >140 oC yields reduced dramatically.  No 

metal studies have been investigated with this ligand to date due. 

 
Scheme 54.  Synthesis of Bidentate N,N-benzothiazine Ligand 133 
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2.2.6   Summary of Benzothiazine Based Ligands Prepared 

 A variety of 2,1-benzothiazines have been prepared.  In many cases, the synthesis 

shown has been optimized to provide excellent yields of the desired ligand.  A summary 

of the benzothiazine-based ligands are shown below in Figure 19.  The N,O-

benzothiazine ligand 111 was prepared in 97% overall yield over three steps via its 

optimized second generation synthesis.  Previously, 111 was prepared in 6 steps in 87% 

overall yield in its first generation synthesis.  Derivatives of 111 of generic structure 112 

were prepared. These ligands would need to be used without purification, as they appear 

to be unstable.  P(V),N-benzothiazine ligand 115 can be made in 4 steps in 88% overall 

yield and stable.  N,O-benzothiazine ligand 119 can be made in 3 steps in 38% overall 

yield.  Optimization of the triflate coupling step (46%) would greatly improve the overall 

yield of 119.  N,N-benzothiazine ligand 123 can be produced in 2 steps in only 11% 

overall yield.  Lastly, multi-dentate heterocycles 128 and 133 were prepared in a 

convergent fashion in 86% and 46% overall yields, respectively.  With a quick route to 

these ligands available, a large stock of material can be prepared in an expedient manner.  

The ligands presented herein can be surveyed in many asymmetric reactions. 
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Figure 19.  Summary of Benzothiazine Ligand Syntheses
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CHAPTER 3 

Syntheses and Optimization of Sulfoximine-Containing Ligands 

 In order to further synthetic developments of sulfoximine N-arylation, a new 

optimization of the very well known palladium-catalyzed system was undertaken.  The 

goal of the following optimization was to improve the previously known method.  This 

procedure was found to tolerate air and be robust for a variety of substrates.  The 

optimized synthesis considerably improved the thermal synthesis of 123 from 2,3-

dichlorobenzaldehyde 120. 

3.1   Previous Palladium Catalyzed N-Arylation Developments 

3.1.1   Initial Optimization in 1998 by Bolm 

  As described previously, the first N-arylation of a sulfoximine with various aryl 

bromides was reported in 1998 by the Bolm Group.6  The use of chelating bisphosphines 

was deemed crucial in order to obtain products in acceptable yields.  The optimization 

began from methyl 2-bromobenzoate 20 and S-methyl-S-phenylsulfoximine 6 (Table 17). 

Four ligands were examined: P(o-tolyl)3, a bulky monodentate phosphine; BINAP and  

Tol-BINAP, chelating binapthyl based bisphosphines; and dppf, a ferrocenyl based 

chelating bisphosphine (structures provided previously in Chapter 1).  The ferrocenyl 

ligand dppf, with either Pd2dba3 or Pd(OAc)2, failed to produce more than trace amounts 

of product (Table 17, entries 1 and 2).  The use of PdCl2(dppf)/dppf gave 87% yield of 

the desired product in 48 hours (Table 17, entry 7).  The best results occurred with the 

use of BINAP and Tol-BINAP which gave 92% and 96% yield, respectively, over 48 

hours (Table 17, entries 5 and 6).  Only 2 bases were examined, cesium carbonate and 
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sodium tert-butoxide.  Of those bases, the weaker cesium base gave rise to slightly higher 

yields (Table 17, entries 3 and 4).6 

Table 17.  1998 Optimization of Pd-catalyzed N-Arylation 

N
S

Me
O

pTolBr

Pd/Ligand
1.4 eq Base, 1.2 eq 6

PhMe, 110 oC

16

CO2MeCO2Me

17  

Entry Pd/Ligand Pd 
(%)

Ligand
(%) 

Time
(h) Base Yield

(%) 

1 Pd(OAc)2/P(o-tol)3 4 6 36 Cs2CO3 < 4 

2 Pd2dba3/P(o-tol)3 4 6 36 Cs2CO3 < 4 

3 Pd(OAc)2/BINAP 4 6 36 Cs2CO3 82 

4 Pd(OAc)2/BINAP 4 6 36 NaOtBu 76 

5 Pd(OAc)2/BINAP 5 7.5 48 Cs2CO3 92 

6 Pd(OAc)2/Tol-BINAP 5 7.5 48 Cs2CO3 96 

7 PdCl2(dppf)/dppf 5 20 48 Cs2CO3 87 

 
 The reaction scope was expanded with BINAP and with Tol-BINAP (Scheme 55).  

R groups examined were: 2-CN, 4-CO2Me, 4-t-Bu, and H.   All yields were above 72% 

for all cases except when R = 4-tert-Bu and the yields fell considerably to 24% for Tol-

BINAP and 36% for BINAP.6

 

Scheme 55.  Generalized Summary of Aryl Bromides Investigated in 1998 
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3.1.2   1998 to Present N-arylation Overview 

 Since 1998, a few attempts to improve or modify this synthesis have been 

reported. Namely, the use of Pd2dba3 and NaOtBu in the synthesis of bissulfoximines 31 

by the Bolm group8 and microwave irradiation by the Harmata group, as discussed 

previously in Chapter 1, were reported.7,31  The optimization results shown above are by 

no means comprehensive.  However, newer syntheses have been reported using metals 

other than palladium including copper-based9,10 and iron-based11 N-arylations that have 

been described in some detail in Chapter 1.  A more comprehensive evaluation of the 

palladium catalyzed N-arylation will be described in the remainder of this chapter. 

3.2   Optimization of the Pd-based N-arylation of Sulfoximine and Bromobenzene 17 

3.2.1   Ligand Study 

 The optimization began with the purchase of Sigma-Aldrich biphenyl phosphine 

ligand kits alongside a variety of in house ligands.  The goal was to survey which ligand 

or ligand family would give the highest yield of N-arylated product in the course of 12 

hours.  Investigating many ligand types would either prove or disprove the idea that 

chelating bisphosphines were truly the only ligands able to achieve acceptable yields.  

We were curious if modern advances in ligand design over the past decade could reduce 

reaction time while increasing yield and catalyst turnover.  The expansion of substrate 

scope was also of concern.  Many ligand families were pursued:  various mono- and 

bisphosphines, various binapthyl mono- and bisphosphines, various biphenyl phosphines, 

carbenes, and a bulky pyridine ligand.  A summary of ligands examined with their 

structures and corresponding yields isolated are shown below in Scheme 56.   
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Br

5% Pd(OAc)2, 7.5% Ligand

1.6 eq Cs2CO3, 1.2 eq 6

12 h, PhMe, 115 oC, sealed tube

N
S

O

17 2  

 

 
Scheme 56.  Summary of Commercial Ligands Investigated 
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 For referencing purposes, the trademark name is also given when available.  The 

reaction was modeled initially on Bolm’s 1998 procedure6 except for a reduced time of 

12 hours; all reactions performed were done so in sealed tubes at 115 oC unless otherwise 

noted.  All the ligands were assumed to be of “commercial grade” and were not purified 

further nor checked for purity via NMR.  This ligand study was pursued to give the most 

robust ligand, qualitatively, that could be extremely tolerable of an oxygen or “air” type 

environment.  All reactants were weighed and added together in a one-pot fashion in an 

open sealed tube.  Freshly distilled, oxygen-free toluene was used and also added in an 

open air environment.  The reaction vessel was then capped, refluxed, and then stopped 

by a power outlet timer such that the same heating and cooling curves were used for all 

reactions. 

 All monodentate phosphines (PPh3, P(2-furyl)3, P(t-Bu)2BINAP, and P(t-Bu)2Me) 

failed to give any conversion of products according to crude NMR.  Interestingly, 

electron rich PCy3 did give some product, albeit only 11%.  Bulky 2,6-di-t-butyl-4-

methylpyridine and both N-heterocyclic carbene ligands failed to give any conversion of 

desired products.  Alkyl bisphosphines (dppb and dppe) gave no product, and ferrocenyl 

based dppf gave only a trace amount of product (4%).  Bulky biphenyl-based phosphine 

ligands did work, some better than others.  The order of their reactivity is summarized by 

the following listed from best to worst:  RuPhos > SPhos >> Cy-DavePhos > t-Bu-

JohnPhos > BINAP > Cy-XPhos >> Ph-DavePhos > Cy-JohnPhos > t-Bu-X-Phos.  A few 

assumptions can be made from the following study.  Biphenyl ligands gave a large range 

in yield some excellent, some very poor.  Thus, it appears that chelating bisphosphines 

may not be required in order to achieve excellent yields.    
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 The presence of a nearby chelating N or O did greatly improve yields 

dramatically as shown with RuPhos.  P,N bidentate ligands such as the DavePhos family 

also gave good yields up to 86% for Cy-DavePhos.  Interestingly, a biphenyl 

monodentate ligand Cy-Xphos performed similarly to that of BINAP for this specific 

reaction.    

 Alkyl phosphines, being more electron rich than aryl phosphines, seemed to give 

substantially better yields.   Once the phosphine becomes too electron rich, however, it 

can easily be oxidized by the oxygen in air and fail to catalyze the reaction.  This is likely 

the reason why many of the electron rich phosphines did not perform well in the presence 

of air inside the sealed tube environment.  All in all, this simplified approach gave way to 

a very robust and air friendly ligand metal system that performs very well for the N-

arylation of bromobenzene 17 and sulfoximine 6 to give N-substituted sulfoximine 2.  

Thus, a 100% yield of N-arylated product 2 was observed with RuPhos as the ligand in as 

little as 12 hours.  In the 1998 synthesis reported by Bolm, 48 hours was required to 

afford a 74% yield with BINAP.6   In all further optimization studies, RuPhos is typically 

used exclusively unless otherwise noted. 

3.2.2   PEPPSI Family Study 

 Also tested were some precatalysts that the current literature cites as particularly 

favorable for N-arylation.  The first example is the PEPPSI-carbene family.  This ligand 

family was introduced in 2007 by the Organ group.  Organ and coworkers found that 

metal complexes with PEPPSI ligands underwent facile oxidative addition due to the 

electron-rich nature of the ligand.  They claimed the steric bulk of the adjacent 

substituents allowed for fast reductive elimination.  Lastly, the very strong Pd-NHC bond 
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makes for an extremely stable species in a variety of conditions.  The model reaction 

above was carried out with two version of the PEPPSI family donated by the Organ 

Group.39  The reaction is summarized in Scheme 57. 

 

Br

5% PEPPSI

1.6 eq Cs2CO3, 1.2 eq. 6

12 h, PhMe, 115 oC, sealed tube

N
S

O

N N

Pd
N

Cl Cl

Cl

N N

Pd
N

Cl Cl

Cl

6% 28%

17 2

 

Scheme 57.  PEPPSI NHC Ligand Study 

 This ligand family displayed slow conversion to N-substituted sulfoximine 2.  The 

reaction never proceeded to completion as evidence by thin layer chromatography.  

Compared to biphenyl phosphine systems, the PEPPSI family provided a very poor yield 

of desired product 2 in the 12 hour reaction time length.  Both saturated and unsaturated 

NHC were used and the yield of the unsaturated NHC was nearly 4 times the yield of the 

saturated version.  No carbene ligands were pursued beyond this point. 

3.2.3   Bippyphos Ligand Study  

 Recent attention has also been drawn to a pyrazole family of ligand first 

developed by Pfizer Global Research and Development in 2006.  These ligands were 

known for the Pd-catalyzed coupling of primary and secondary amines to aromatic 

bromides.  The optimized ligand was named bippyphos.40  Later in 2009, the same ligand 
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was studied in the context of the substrate scope of Pd-catalyzed aminations using 

various ureas in the C-N amidation.41 Several ligands of this family are shown in order of 

their development below in Figure 20. 

 With a generous donation of bippyphos from Abbot Laboratories, the same model 

reaction was examined in a 6 hour period and compared to that of a similar reaction with 

the best ligand shown above, RuPhos.  This would allow a direct comparison of both 

ligand families for this particular reaction.   The Pd source of choice for bippyphos 

reactions was Pd2dba3.   A comparison of both ligands in the presence of Pd2dba3 in a 

period of 6 hours is shown in Scheme 58.  

 

Figure 20.  Nonproprietary Pyrrole, Pyrazole, and Bipyrazole Ligands 

 

Scheme 58.  Comparison of Bippyphos and RuPhos in an N-Arylation 

 As shown, the rate of N-arylation in 6 hours was much faster for RuPhos, a 

biphenyl phosphine ligand, compared to that of bippyphos, a bispyrazole phosphine, for 

C—N coupling of bromobenzene 17 and sulfoximine 6.  The isolated yield of 2 using 
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RuPhos was 92% with Pd2dba3 as the Pd source.  This compares well with the procedure 

in which RuPhos was used with Pd(OAc)2 to give 2 in 100% yield in twice the time as 

shown previously in Scheme 56.  The next step in the optimization of this Buchwald 

Hartwig N-arylation reaction was finding the best Pd-source.  Previously, a Pd(0) source 

improved the reaction rate to that of a Pd(II) source;  this observation was explored. 

3.2.4   Pd Source Study 

 Many palladium metal sources were tested in order to contrast their rate of 

reaction by comparison of their yields in a reduced time of 6 hours.  Originally, Bolm 

prepared precatalysts of the ligand and metal sources.  These precatalysts were prepared 

inside an anhydrous, oxygen free glove box.6   In all the cases presented herein, all 

materials were added in one-pot with air.  The hope was to find a robust oxygen tolerable 

system.  A summary of the Pd sources examined are illustrated below in Table 18. 

 A few trends were apparent.  Pd(0) sources tended to work better than Pd(II) 

sources.  With PdCl2, the cross coupling reaction went very smoothly in an acceptable 

yield of 71% (Table 18, entry 2).  However, when the Cl- anion was sequestered by 

precipitation of a scavenger such as AgSbF6 the reaction yield dropped by 15% (Table 

18, entry 3).  This provides some evidence that the free Cl- anion may be important in the 

reaction mechanism and or the palladium catalytic cycle; since the yield dropped 

noticeably when the Cl- was precipitated out of the toluene solution as AgCl(s).  No 

attempt to “spike” any reaction with a Cl- source has been attempted to date. 

Interestingly, tetrakis Pd(PPh3)4 gave 61% yield (Table 18, entry 4). This suggests that 

RuPhos likely participated in ligand substitution to some extent as the PPh3 ligand was 

shown earlier to not facilitate the formation of any product in 12 hours.   
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 Table 18.  Pd Source Summary 

 

Entry Pd Source Ligand Yield (%) 

1 Pd(OAc)2 RuPhos 55 

2 PdCl2 RuPhos 71 

3 PdCl2 RuPhos 56a

4 Pd(PPh3)4 RuPhos 61 

5 Pd2dba3 RuPhos 92b

6 Pd2dba3 BrettPhos 57b

 a 10% AgSbF6 added 
 

b 2.5% of Pd2dba3 added 
 

 BrettPhos (Figure 21) was shown by Buchwald and coworkers to outperform 

other biphenyl ligands such as RuPhos, SPhos, and XPhos as the most highly active 

amination cross coupling catalyst they have prepared to date for the Buchwald Hartwig 

N-arylation.42  In this instance, RuPhos nearly doubled the product yield (92%) relative 

to that of BrettPhos (56%) (Table 18, entries 5 and 6).   

 Overall, this optimization of palladium sources provides some insight into the 

catalytic cycle that warrants further investigation.  It appears that the presence of a 

chloride anion plays a role in the mechanism of N-arylation. This study reaffirms that 

Pd(0) does perform noticeably better than Pd(II) sources.  This optimization was by no 

means comprehensive.  In order to better understand the catalytic cycle, expanding the 

scope of palladium sources would be necessary.  At this point in time, however, RuPhos 
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remained the best ligand of those tested when Pd2dba3 was used as the Pd source.  A 

study of different bases was the next step in the N-arylation optimization. 

 

Figure 21.  Structure of BrettPhos 

3.2.5   Base Study 

 The use of some bases in this study was somewhat counter productive.  Most 

bases needed in amination reactions are anhydrous bases.  So allowing the reaction to be 

run in high humidity and in the presence of oxygen will ultimately disqualify air sensitive 

bases and ligands.   In order to be thorough, a variety of bases were examined and in a 

period of 6 hours, these bases were examined.  The purpose of this study was to evaluate 

bases other than Cs2CO3.  The results are summarized in Table 19. 

 Carbonate bases (pKa = ~10) were the first to be investigated.  Changing to a 

potassium or sodium cation resulted in drastically diminished yields (Table 19, entries 2 

and 3).  A similar trend was seen for anhydrous acetates (pKa = ~5).  The poor yield with 

CsOAc was likely due to its hygroscopic nature compared to less hygroscopic KOAc and 

NaOAc; in all cases the yields were poor (Table 19, entries 4-6).  In Chapter 1, the use of 

a stronger base, NaOtBu, circumvented reactivity issues.  Thus it was not surprising that a 

base with a higher pKa could help to afford a higher yield as in the case of 

bissulfoximines for the Bolm group.8  As a result, higher pKa bases are typically used in 

anhydrous conditions to minimize air and moisture sensitivity that can be detrimental to 
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their efficiency and lifetime in solution.  Because no attempts to avoid oxygen or 

moisture were made, except for distilled toluene, higher pKa bases would be expected to 

have diminishing results.  Thus, as predicted, yields of K3PO4 (pKa = ~12) and NaOtBu 

(pKa = ~20) were 47% and 79%, respectively (Table 19, entries 7 and 8).  

Table 19.  Optimization of Base Summary 

 

Entry Base Yield (%)

1 Cs2CO3 92 

2 K2CO3 11 

3 Na2CO3 7 

4 CsOAc 23 

5 KOAc 28 

6 NaOAc 2 

7 K3PO4 47 

8 NaOtBu 79 

 
 Overall, the mismatch in size of larger cations, Cs+ to smaller oxygen based 

anions seems to allow for more efficient deprotonation as the base is likely more “naked” 

than if it were in the presence of smaller cations such as K+ or Na+.  As shown earlier, the 

removal of the Cl- anion seemed to hinder amination rate, albeit in a small amount; thus, 

it is possible that the use of a larger cation that has weak interactions with smaller 

resultant anions provides a mechanistic pathway that enhances rate to a small degree.   In 
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the end, no improvements could be made with the bases studied and Cs2CO3 remains the 

base of choice having acceptable moisture and oxygen sensitivity that allows for 

excellent yields in the desired reaction. 

3.2.6   Catalyst Loading Study 

 To ensure that ligand/and or palladium were not being wasted, a brief catalyst 

loading study was pursued.  This would ensure that the same yields could be reached with 

lower catalyst loadings, thus saving money.  The model reaction was examined at various 

catalyst loadings over a 6 hour reaction time.  The results are summarized in Table 20. 

  Table 20.  Catalyst Loading Study 

 

Entry Pd2dba3 (%) RuPhos (%) Yield (%) 

1 2.5 7.5 92 

2 2.5 5.0 53 

3 1.25 2.5 22 

 

 The results show that ligand/Pd source loading could not be reduced.  By reducing 

the ligand concentration by 2.5%, the yield decreased by nearly half (Table 20, entry 2).   

A severe reduction in yield to 22% was also seen when the palladium and ligand 

concentration were halved (Table 20, entry 3).   The reactions were not examined at 

extended reaction times to see if completion could be achieved as this was not the goal of 

the study.  Simply put, a loading scheme of 2.5% Pd2dba3 (5% Pd) and 7.5% RuPhos 

 75



allows for excellent yields in as little as 6 hours for the model reaction in which 2 was 

prepared from bromobenzene 17. 

3.2.7   Chiral Ligand Study  

 The last study was carried out to see whether a racemic sulfoximine could be 

resolved if a chiral ligand were used in the reaction.  Only two chiral commercial ligands 

were examined.  No attempt to purchase any other ligands was made.  The results of the 

two ligands, R-BINAP and R-Josiphos-type ligand, are shown in Scheme 59.   In this 

reaction an excess of sulfoximine was used in order to make sure enough of the matched 

enantiomer was available to acquire acceptable conversion.  Since neither ligand was of 

the biphenyl family, the reaction length was extended to 24 hours to ensure that an 

observable amount of product could be isolated.  

 

Scheme 59.  Kinetic Resolution of a Racemic Sulfoximine with a Chiral Ligand 

 The chiral binapthyl system failed to produce enantioenriched product.  However, 

R-Josiphos did lead to enantioenrichment of the product, but the ee was low (20%).  This 

is the first example of a chiral ligand being used in an N-arylation of a racemic 

sulfoximine to afford a non-racemic product.  A better ligand might be similar to that of 

RuPhos as generically shown in Figure 22.  Here X would be a chiral auxiliary 
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substituent that could be easily modified to maximize or minimize steric influence as 

deemed necessary. 

 

Figure 22.  Possible Chiral Ligand Target for Racemic Sulfoximine Resolution 

3.2.8   Optimization Summary 

 The goal of this optimization was to provide an improved synthesis that allows for 

a robust, air tolerable, bench top, one-pot, palladium-catalyzed N-arylation.  The features 

deemed important were to provide desired the amination products in short reaction times 

with minimal catalyst loading under user friendly conditions.  Many ligands were 

studied; biphenyl phosphine ligands with chelating P, N, or O bidentate possibilities gave 

the best results.  RuPhos, a P,O-biphenyl ligand, was selected over all other ligands 

investigated.  Commercially popular ligands such as the PEPPSI family, bippyphos, and 

BrettPhos ligands were also tested and they did not outperform RuPhos for the formation 

of 2 from 17.  Pd sources were next optimized.  Pd(0) sources were in general better than 

Pd(II) sources and Pd2dba3 was found to outperform all others for the test reaction.  No 

bases that were examined outperformed the originally selected Cs2CO3.  Catalyst loading 

was briefly investigated at as well.  No improvements could be made to increase yields in 

a 6 hour reaction time length.  Kinetic resolution was examined with two chiral 

bisphosphine ligands with an excess of racemic sulfoximine.  Of the two tested, R-

Josiphos did allow for a meager 20% ee in the N-arylated product.  Overall, a very robust 

process was developed.  
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3.3   Applications of the Optimized N-Arylation Synthesis 

3.3.1   N-Substituted Sulfoximine Synthesis:  Comparison of C—Cl and C—Br  

 With a new robust synthetic procedure in hand, it was logical to try other aryl 

halides in the coupling process.  The purpose was to see if the scope and performance of 

this new ligand metal combination of Pd2dba3/RuPhos (versus the previous 

Pd(OAc)2/BINAP synthesis) was general.  Our second generation synthesis provides a 

different approach with a very electron rich “Pd” catalyst with a stronger sigma donating 

alkyl phosphine, in contrast to the previous “Pd” catalyst, consisting of a rather electron 

poor metal with an aryl bis-phosphine, a weaker sigma donor. 

 The first substrate examined was the thermal reaction of chlorobenzene 134.  It 

was compared directly to bromobenzene 12 both on a larger 250 mg scale (Scheme 60).  

Remarkably, the chloride outperformed the bromide in a period of 6 hours at 135 oC.  The 

temperature was increased slightly to help stir the larger batch reactions by making the 

toluene boil more vigorously in the sealed tube.  This modification kept the heterogenous 

mixture well mixed.  Bromide 17, on the larger scale, had a slightly reduced yield than 

seen on the smaller scale; however, leaving the reaction longer did allow for completion 

as monitored by TLC. 

 The increased reactivity could be due to the electron rich Pd/RuPhos catalyst 

enhancing the rate of oxidative addition of the very electropositive C—Cl bond.  This 

effect appears to be less pronounced when the same electron rich Pd/RuPhos catalyst is in 

the presence of a more polarizable but less electropositive C—Br bond.  This reaction 

was quite surprising; in previous attempts, microwave irradiation was needed to acquire 

products in respectable yields as shown by Harmata and coworkers.7,31  The thermal 
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reaction of 2,3-dichlorobenzaldehyde 120 shown previously took 7 days to produce a 

modest 40% yield of benzothiazine 123.  So the fact that any chloride could be converted 

in 100% yield in as little as 6 hours thermally was an impressive achievement.  

 

Scheme 60.  N-Arylation of Aryl Halides with Pd/RuPhos Catalyst 

3.3.2   Improved Synthesis of Benzothiazine Ligand 123  

 In order to probe aryl chloride reactivity, 2,3-dichlorobenzaldehyde 120 was 

subjected to the  Pd/RuPhos system on a similar 250 mg scale.  With two C—Cl bonds 

available for oxidative addition, only 2.3 equivalents of enantiopure sulfoximine was 

used.  The reaction was closely monitored by TLC.  Within a few hours, 8-

chlorobenzothiazine 121 appeared as a major long UV spot and starting material became 

absent after 24 hours.  During the first 24 hours a very polar baseline long UV spot 

appeared and continued to become more prominent.  Another addition of 2.5% Pd2dba3, 

2.5% RuPhos, and 1.6 equivalents of Cs2CO3 were required to diminish the long UV 8-

chloro-2,1-benzothiazine 121 spot and enhance the baseline UV spot representing 

benzothiazine 123. In 48 hours total reaction time, the reaction appeared to be complete 

(Scheme 61).   
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Scheme 61.  Breakthrough Synthesis of 123 

 The new conditions produced 91% of ligand 123 with 7% of benzothiazine 121 

remaining.  This reaction required as little as 2.3 equivalents of sulfoximine, (Bolm and 

coworkers needed 5 or more equivalents of sulfoximine to get bissulfoximines14). 

Overall, 5% of Pd2dba3, 10% RuPhos, and 3.2 equivalents of Cs2CO3 were required to 

achieve excellent yields of 123 thermally.  Remember yields previously for 123 yields 

seen previously were very poor (14%) via microwave irradiation over two separate 

irradiation steps.31  Thermal reactions previously with Pd/BINAP did not produce any 

doubly coupled product whatsoever; only 121 was isolated in 7 days in 40% yield. 

 This one-pot, one-step synthesis allowed a direct pathway to the desired missing 

link of the sulfoximine family.  Bolm and coworkers have demonstrated the utility of 

bissulfoximines in many asymmetric reactions.  Harmata and coworkers have shown the 

utility of a bisbenzothiazine in an asymmetric alkylation reaction.  The only ligand of this 

N,N-sulfoximine based family missing was benzothiazine 123.  Now with an efficient 

synthesis of 123 in hand, its utility in asymmetric reactions can be investigated.  This will 

be a topic of further investigations.  This also introduces a practical approach to the N-

arylation of sulfoximines and aryl chlorides that before now seemed unlikely to be 

successful thermally in a practical period of time. 
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3.3.3   Examination of Multi-bromoarenes 

 In an attempt to further expand the scope of this new generation synthesis, the 

reaction of dibromobenzene 29 to make bissulfoximine 31 was examined.  Previously, 

Bolm reported that using Pd2dba3/BINAP/NaOtBu gave 31 in 75% yield using an excess 

of five equivalents of sulfoximine.16 With our new system of Pd2dba3/RuPhos/Cs2CO3, 

the same reaction was attempted (Scheme 62). 

 
Scheme 62.  New Synthesis of Bissulfoximine 31 

 At best 87% of dibromide 29 underwent single N-arylation to yield N-substituted 

sulfoximine 30.  Of that 87%, only 37% converted to doubly coupled bissulfoximine 31.   

This was far inferior to the previous synthesis for this substrate.  As a result, this 

synthesis would not be the preferred synthesis of bissulfoximine 31.   

 In a similar fashion, dibromide 46 also failed to convert to benzothiazine 47 and 

only sulfoximine was isolated after chromatography (Scheme 63).  This reaction is 

another example of the poor compatibility of dibromides and the more electron rich 

ligand-metal system used.  Previous examples by Bolm shown earlier allow for nearly 

quantitative yields of benzothiazine 47 when BINAP was used as the ligand instead of 

RuPhos and NaOtBu was in place of Cs2CO3.16  

 Not surprising given the result of dibromobenzene 32, tribromobenzene 134 did 

not convert to trissulfoximine 135 nor did tetrabromobenzene 135 give any 
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tetrasulfoximine 136 (Scheme 64).  In both cases, only sulfoximines was recovered after 

chromatography.  Extended reaction lengths did not promote conversion nor did excess 

reagents (Pd2dba3, RuPhos, or Cs2CO3). 

 

Scheme 63.  Failed Reaction of Dibromobiphenyl 46 

 

Scheme 64.  Failed Attempts to Synthesize Multi-Substituted Sulfoximines 

 This investigation suggests that the electron rich catalyst combination Pd2dba3 and 

RuPhos has reactivity issues with di-, tri-, and tetrabromoarenes as little to no conversion 

of desired products was observed.  This also suggests that this chemistry has problems 

with the successive oxidative addition to the second C—Br bond, much like Bolm had 

noticed in his studies.18  It seems that bromides may not be the best substrates for the 

newly optimized synthesis.  This is likely due to electronic effect with the overall 

electron richness of our catalyst combination versus that of Bolm’s more electron poor 
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catalyst combination.  Base strength may also play a small role; however, switching bases 

from Cs2CO3 to NaOtBu had little to no effect in conversion for either process. 

3.3.4   Examination of a Dichlorobenzene 

 Before abandoning the synthesis of bissulfoximine 31, dichlorobenzene 138 was 

investigated.    To elaborate on the idea of this system preferring C—Cl to C—Br 

substrates, it is expected that dichlorobenzene 138 should provide better conversion to 

bissulfoximine 31 than dibromobenzene 29.  With a reaction time extended to 48 hours, 

the crude NMR ratio revealed no starting material remained and a ratio of 1.3 to 1 of 

bissulfoximine 31 to N-substituted sulfoximine 139 was observed (Scheme 65).  Notice 

as little as 2.3 equiv. of sulfoximine could be employed to get respectable conversions, 

allowing the use of less base.  This compensates somewhat for the extended reaction 

time.  It is worth mentioning that several attempts to reproduce the Bolm procedure failed 

for a variety of substrates.  The Bolm procedure was found to be sensitive to air and 

moisture such that many attempts resulted in no reaction whatsoever.  Our reaction was 

created such that it could tolerate air and moisture and still be reproducible. 

 
Scheme 65.  Synthesis of Bissulfoximine 31 via Dichlorobenzene 138 

 Interestingly, all previous investigations suggest that thermal reactions of aryl 

chlorides and sulfoximines are sluggish, if they occur at all.  It seems that we may have 

found an important way to circumvent old problems associated with the use of aryl 

chlorides in reactions of this type.  At present, our promising examples include the 
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syntheses of N-substituted sulfoximine 2, bissulfoximine 31, and benzothiazine 123 from 

aryl chlorides. 

3.3.5   Examination of a Bromosulfoximine 140 

 We were curious as to the behavior of a brominated analog of 6.  Therefore, 

bromobenzene was reacted with sulfoximine 140 to afford no product in a period of 6 

hours (Scheme 66).  It was unclear if oxidative addition occurred at all with nearly a 

quantitative amount of bromosulfoximine 140 recovered.  Remember in similar reactions 

presented earlier, yields greater than 81% were seen with sulfoximine 6 in the same 

reaction time length.  This suggests that the presence of ortho-brominated sulfoximine 

140 in the reaction mixture halts or severely slows N-arylation.    

 
Scheme 66.   Comparison of Bromosulfoximine 140 to Sulfoximine 6 

3.3.6   New Syntheses of Previously Prepared Benzothiazines 

 A final comparison was done for the three benzothiazines prepared initially by 

Harmata and coworkers in 19995 and 20047 using Pd(OAc)2/BINAP, Cs2CO3.  The 

previous synthesis of 1 was carried out in 78% yield under the standard conditions.  The 

new Pd-RuPhos system allowed for an 86% yield in as little as 12 hours in “air” friendly 

conditions (Scheme 66).  In both cases, the N-arylation of an enolizable acetophenone 
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was extremely poor.  With microwave irradiation, 74% of benzothiazine 26 was isolated 

in 1.5 hours in comparison to the thermal reaction with the new Pd-RuPhos system which 

gave a 77% yield of benzothiazine 26 in 12 hours from 2-chlorobenzophenone 25c 

(Scheme 67).  With 2-bromoaldehyde 12 and 2-chlorobenzophenone 26, the yields of 

benzothiazine products were improved with reduced reaction time and using less rigorous 

conditions.  

O

Ph

Cl
N

S O

25c R = Ph

Ph

O

R

Br
N

S O

R

12 R = H
13 R = Me

1999 Synthesis
1 R = H, 78%

14 R = Me, < 10%

2009 Synthesis
1 R = H, 86%

14 R = Me, trace

2004 (MW) Synthesis
26 R = Ph, 74%

2009 Synthesis
26 R = Ph, 77%

 

Scheme 67.  Comparison of Benzothiazine Syntheses 

3.3.7   Summary of 2009 Pd-RuPhos Synthetic Results  

 Several substrates were re-examined in order to justify the new optimization of a 

well established procedure.  The results suggest the new ligand metal system of 

Pd2dba3/RuPhos with Cs2CO3 is best suited with monobromo-, monochloro-, and 

dichloroarenes versus the previously established metal ligand system of 

Pd(OAc)2/BINAP with Cs2CO3, which tends to be limited to various bromoarenes.   For 

dibromoarenes, Pd2dba3/BINAP with NaOtBu remains the best reagent set to date.  The 
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most interesting of these reactions was the increased reactivity of the aryl chlorides and 

dichlorides.  Until now, successful C—Cl N-arylation required microwave irradiation.  

This is no longer the case.  A summary of the synthetic developments for the substrates 

of interest, past and present, are itemized below in Table 21.   

 In all but one case, product yields increased, reaction time decreased, air 

sensitivity was of little concern, and in several cases the cheaper chloro- versions of the 

substrates were successful thermally and without microwave irradiation (Table 21, entries 

1-4, and 7-12).  With 2-bromoacetophenone 13, no improvements could be made (Table 

21, entries 5 and 6).  Formation of bissulfoximine 31 was similar with dichlorobenzene 

138 as it was with dibromobenzene 29 (Table 21, entries 9 and 10).  Lastly, a significant 

improvement was made in the formation of benzothiazine 123 such that it could be made 

in one step in 91% yield as compared to the previous 2 step synthesis in 7.6% overall 

yield (Table 21, entries 11 and 12).    By changing Pd(OAc)2/BINAP to Pd2dba3/RuPhos, 

an overall more robust reaction was achieved. 

 This enhancement in Pd-RuPhos reactivity may be due to the electropositive 

carbon of the C—Cl bond being more attractive toward oxidative addition. This electron 

rich palladium bearing an alkyl phosphine ligand has quite different reactivity to the 

electron poor palladium bearing electron poor bisarylphosphines.  This ligand tuning of 

palladium has led to a reactivity that seems to be of the appropriate electronic character 

for thermal N-arylation of several aryl chlorides and dichlorides previously characterized 

as thermally “unreactive”.  This new combination seems to accelerate mono-bromide N-

arylation as well.  Dibromoarenes are also reactive but do not perform near as well, in a 

timely fashion, to the previously reported methods.  In the end, a more facile, robust 
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reaction was optimized that allows access to substrates previously thought “unreactive” 

without microwave irradiation.   

Table 21.  Synthetic Improvements in N-Arylation of Sulfoximines and Haloarenes 

 

Entry Year Group Starting 
Material Reaction Conditions Product Yield

(%) 

1 1998 
Bolm6 17 

5% Pd(OAc)2, 7.5% BINAP 
1.4 eq Cs2CO3, 1.2 eq 6 
PhMe, 110 oC, 48 h, N2

2 72 

2 2009 17  
2.5% Pd2dba3, 7.5% RuPhos 

1.4 eq Cs2CO3, 1.2 eq 6 
PhMe, 135 oC, 6 h, air 

2 81  

3 2009 134 
2.5% Pd2dba3, 7.5% RuPhos 

1.4 eq Cs2CO3, 1.2 eq 6 
PhMe, 135 oC, 6 h, air 

2 100 

4 1999 
Harmata5 12 

10% Pd(OAc)2, 15% BINAP 
1.8 eq Cs2CO3, 1.2 eq 6 
PhMe, 110 oC, 40 h, N2

1 78 

5 2009 12 
2.5% Pd2dba3, 7.5% RuPhos 

1.4 eq Cs2CO3, 1.2 eq 6 
PhMe, 135 oC, 12 h, air 

1 86 

6 1999 
Harmata5 13 

10% Pd(OAc)2, 15% BINAP 
1.8 eq Cs2CO3, 1.2 eq 6 
PhMe, 110 oC, 40 h, N2

14 <10 

 87



7 2009 13 
2.5% Pd2dba3, 7.5% RuPhos 

1.4 eq Cs2CO3, 1.2 eq 6 
PhMe, 135 oC, 12 h, air 

14 trace 

8 2004 
Harmata7 25c 

5% Pd(OAc)2, 7.5% BINAP 
1.4 eq Cs2CO3, 1.2 eq 6 

PhMe, 200W, 135 oC, 1.5 h, N2

26 74 

9 2009 25c 
2.5% Pd2dba3, 7.5% RuPhos 

1.4 eq Cs2CO3, 1.2 eq 6 
PhMe, 135 oC, 12 h, air 

26 77 

 
10 

2002 
Bolm16 29 

4% Pd2dba3, 8% BINAP 
5 eq NaOtBu, 4 eq S-6a 
PhMe, 135 oC, 10 h, N2

31 75 

11 
 

2009 
 

138 
2.5% Pd2dba3, 7.5% RuPhos 
1.6 eq NaOtBu, 2.3 eq S-6a 

PhMe, 135 oC, 48 h, air 
31:139 

 
1.3:1 

 

12 2007 
Harmata31 121 

5% Pd(OAc)2, 7.5% BINAP 
1.4 eq Cs2CO3, 1.2 eq 6 

PhMe, 200W, 135 oC, 1.5 h, N2

123 
 

14 
 

13 2009 120 
5% Pd2dba3, 10% RuPhos 
3.2 eq Cs2CO3, 2.3 eq S-6a 

PhMe, 135 oC, 48 h, air 
123 91 

 

 88



CHAPTER 4 

Lithiation Reactivity of 2,1-Benzothiazines 

 Discovering and controlling benzothiazine reactivity is just as useful as creating 

and optimizing new syntheses to make benzothiazines.  Understanding and investigating 

benzothiazine chemistry allows the discovery of new structures that could be useful in 

taking full advantage of the benzothiazine chirality.  Benzothiazines represent a class of 

molecules that can be highly functionalized.  Presented herein are several benzothiazines 

that were studied as part of a program directed toward the synthesis of new chiral ligands.  

These ligands can provide variable steric and electronic properties to tune reactivity and 

hopefully with high enantioselectivity in asymmetric reactions. 

4.1   Previous Studies of Sulfoximine and Benzothiazine Reactivity 

4.1.1   Benzothiazine Syntheses 

 The 4-position of benzothiazines can be functionalized using haloarenes that 

contain electrophilic groups ortho to the halogen on the aryl ring.  In previous chapters, 

the intramolecular condensation of sulfoximines with various electrophilic groups was 

described under basic conditions.  A variety of bases were used to cyclize N-substituted 

sulfoximines into substituted benzothiazines.  A brief summary of the types of electron 

withdrawing groups that have been shown to condense are shown in Figure 23.5 

 Ortho-haloaldehydes react in a one-pot fashion under N-arylation conditions 

with7,31 or without5 microwave irradiation to produce benzothiazine 1.  Non-enolizable 

ortho-haloketones also condense in a one pot fashion5 and thermally with microwave 

irradiation to give 4-phenyl-2,1-benzothiazines like 26.7,31  Ortho-bromobenzonitriles 

give 4-amino-2,1-benzothiazines in a two step process involving N-arylation followed by 
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n-BuLi-induced condensation.5,6  Lastly, ortho-halobenzoate esters react in a two step 

sequence of N-arylation followed by KH-induced condensation to produce ketones like 

20.5  

 

Figure 23.  Summary of Sulfoximine Anion Condensations 

4.1.2   Sulfoximine Anion Michael Additions to α,β-Unsaturated Esters 

 Another reaction of sulfoximine carbanions is the stereospecific intermolecular 

Michael addition to α,β-unsaturated esters.  Precursors are prepared by N-arylation of 

ortho-bromocinnamates followed in many cases by a separate intramolecular, 

stereoselective Michael addition of a sulfoximine carbanion to the β position of an α,β-

unsaturated ester.  This allows for the 4-position of a benzothiazine to be 

stereoselectively modified.43

 The first example of a stereoselective Michael addition of a chiral sulfoximine 

carbanion was reported by Harmata and coworkers in 2003.  The reaction involved α,β-

unsaturated methyl ester 142 with either lithium di-iso-propyl amide, LDA, or lithium 

hexamethyldisilazide, LHMDS, in THF to give 2,1-benzothiazine 143 (Scheme 68).  The 

types of substrates examined were aromatic: phenyl, thiophenyl, furyl, and pyridyl 
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heterocycles.  The reaction was also stereospecific.  E,R-142a gave the R,R-143a 

diastereomer exclusively and E,S-142b gave the S,S-143b diastereomer exclusively.  

Thus, trans-alkenes bearing a R-sulfoximino group give R,R-benzothiazines and cis-

alkenes bearing a R-sulfoximine group give the opposite diastereomer R,S-benzothiazines 

(Scheme 69).43 

 

Scheme 68.  Stereoselective 1,4-additions of Sulfoximine Carbanions 

 The scope of this reaction was very recently expanded by Harmata and coworkers 

in 2009 by the addition of a variety of electron withdrawing groups. Many substrates 

underwent intramolecular, stereoselective 1,4-addition in good to excellent yields.  

Various α,β-unsaturated functional groups were examined as well as the first example of 

a γ,δ-unsaturated system (Table 22).  Not all groups facilitated the addition reaction.  For 

example, –SPh, -Ph, and -PhpCN did not react (Table 22, entries 2,3 and 6).  Sulfones 

and phosphonates worked in excellent yields (Table 22, entries 1, 5, and 15).  Cyclic and 

acyclic amides gave products in excellent yields as well (Table 22, entries 4 and 8).  

Some ketones were examined and isolated yields ranged from 53 to 82% yield (Table 22, 

 91



entries 9 – 14).  Cyanide was another suitable withdrawing group giving desired 

benzothiazine in as much as 88% yield (Table 22, entry 16).  Lastly, γ,δ-unsaturated ester 

gave a modest 42% yield of cyclized product (Table 22, entry 7).44

 

Scheme 69.  Stereospecific, Stereoselective 1,4-Additions of Sulfoximine Carbanions 

Table 22.  Stereoselective 1,4-Additions with Different Electron Withdrawing Groups 

 

Entry R Product Yield (%) 

1 SO2Ph 145a 88 

2 Ph 145b no reaction 

3 SPh 145c no reaction 

4 CONMe2 145d 85 
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5 PO(OMe)2 145e 83 

6 PhpCN 145f no reaction 

7 (E)-CH=CHCO2Me 145g 42 

8 CON(CH2)5 145h 88 

9 COPhoOMe 145i 66 

10 COPhpMe 145j 63 

11 COPhpCl 145k 65 

12 COtBu 145l 82 

13 COPh 145m 81 

14 CO(2-furyl) 145n 53 

15 POPh2 145o 75 

16 CN 145p 88 

 
4.1.3   Stereoselective Sulfoximine Michael Additions in Natural Product Syntheses 

 The previous chemistry was exploited and used in recent natural product 

syntheses by the Harmata group.  The first example of using the stereoselective, 

intramolecular Michael addition reaction of sulfoximines was in the formal syntheses of 

(+)-curcumene and (+)-curcuphenol in 2003.45  The second synthesis was followed 

shortly after with the partial synthesis of psuedopteroxazole in 2004.46  The total 

synthesis of psuedopteroxazole was later completed in 200547 and its synthesis improved 

in 2009.48  In the same year, the formal synthesis of erogorgiaene was reported as well.49  

All total syntheses involving sulfoximines were investigated and completed by Harmata 

and coworkers.  This displays the ever expanding role of benzothiazines in synthesis, 
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primarily of marine natural products.  The structures of the natural products are shown 

below in Figure 24. 

N S
CH3

O

CO2Me

142

Me

Me

H

MeMe

Me

erogorgiaene

N
O

Me

Me

H
Me

MeMe

pseudopteroxazole

Me OH

Me Me

Me

Me

Me Me

Me

curcumene

curcuphenol

 

Figure 24.  Benzothiazines in Natural Product Syntheses 

4.1.4   Sulfoximine Stabilized Vinyl Carbanions 

 The first study of benzothiazine lithiation reactivity was carried out by Harmata in 

1988.  Harmata found that sulfoximine-stabilized vinyl carbanions can be trapped with 

various electrophiles at the 3-position of benzothiazine 146 in good to excellent yields.  

Benzothiazines were prepared for this study with the general regioselective cyclization 

reaction shown in early Chapter 1; at the time of this work, no metal-catalyzed N-

arylation processes were available.  Hence, the sulfoximine in 146 contains an S-pTol 

ring rather than the S-phenyl ring seen in more recent N-arylation applications.  A 

summary of the electrophiles investigated are provided in Table 23.50  
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Table 23.  Sulfoximine Carbanion Study of 4-Methyl-2,1-Benzothiazine 146 

 

Entry Electrophile E Product Yield (%)

1 TMSCl TMS 147a 89 

2 CH3I CH3 147b 79 

3 C2Br2Cl4 Br 147c 98 

4 ClCO2CH2CH=CH2 CO2CH2CH=CH2 147d 76 

5 Ph2CO Ph2C(OH) 147e 65 

6 (CH2)5CO (CH2)5C(OH) 147f 0 

7 Et2CO Et2C(OH) 147g 0 

8 EtCHO rac-EtCH(OH) 147h 83a

9 tBuCHO rac-tBuCH(OH) 147i 76b

10 PhCHO rac-PhCH(OH) 147j 84c

 a Isomeric ratio, 1.9:1 
 b Isomeric ratio, 2.4-2.8:1 
 c Isomeric ratio, 1.2:1 

 Respectable to excellent yields were seen with all electrophiles reported except 

enolizable ketones, which likely quenched the benzothiazine during enolate formation 

(Table 23, entries 6 and 7).  Trimethylsilyl chloride gave 89% of the TMS-benzothiazine 

147a (Table 23, entry 1); this product provides a removable protecting group to allow for 

further deprotonation of the S-pTol ring.  Larger excesses of n-BuLi allowed for minor 
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amounts of dilithiation, in only one example of trapping was dilithiation seen affording 

di-TMS product 148 in very minor amounts (Figure 25).   

 

Figure 25.  Evidence of Benzothiazine Dilithiation 

 Aldehydes and unsymmetrical ketones are prochiral; they have two enantiotopic 

faces that a sulfoximine stabilized vinyl carbanion can approach, providing a mixture of 

isomeric products.  No unsymmetrical ketones were studied.  Of the aldehydes studied, 

ratios ranged from 2.8 -1.2:1 for products in yields above 75% for 147h-j (Table 23, 

entries 8-10).  In the presence of a chloroformate, smooth transformation to 147d was 

seen (Table 23, entry 4).  Finally, benzophenone as an electrophile provided for the 

lowest isolated yield of 65% (Table 23, entry 65).  The low yield may have been due to 

steric hindrance in the approach of the nucleophile to the electrophile.  Side product 149 

was observed in trace amounts when benzophenone was used as an electrophile (Figure 

26).  These products demonstrate the unique reactivity of benzothiazine 146. 

  

Figure 26.  Benzophenone Side Product 
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 This chemistry inspired the lithiation work reported later in this chapter.  It is 

important to visualize the charge based reactivity pattern of 2,1-benzothiazines as shown 

below in Figure 27.  Notice that the predicted reactivity matches that seen for 2- and 4-

methyl- positions; however, the reactivity pattern of the S-pTol ring is opposite to the 

theoretical reactivity based on alternating charges. 

N
S O

Me

Me

N
S O

Me

Me

Theoretical Reactivity Observed Reactivity
 

Figure 27.  Reactivity Patterns of 2,1-Benzothiazine 146 

4.1.5   Sulfoximine Stabilized Vinyl Lithiocarbanions 

 Nine years later in 1997, a crystal structure was elucidated for a tetrameric rac-S-

ethyl-N-methyl-S-phenylsulfoximine cluster with N,N,N’,N’-tetramethylethylenediamine, 

TMEDA.    This cluster (Figure 28) was prepared by treating a racemic sulfoximine with 

2 equiv. of n-BuLi in TMEDA and in the presence of Li2O to theoretically create a 

lithiodicarbanion.  Within the entire cluster, a pair of S-sulfoximine monoanions and a 

pair of R-sulfoximine dianions are present with eight TMEDA molecules.  The cluster is 

centrosymmetric meaning an internal chiral resolution took place.  At the cluster center 

an octahedral Li6O O(22) is present.  Each side of the symmetrical cluster contains one 

mono- and one dianion pair.  The dianion consists of an ortho-C(36) anion interacting 

with Li(2) and Li(4) cations which chelate to the adjacent R-sulfoximine O(21) and N(21) 
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in five-membered chelates.  Interestingly, no Li—C bond was observed with the α-ethyl 

C(21) anion of the R-sulfoximine dianion.51   

 The S-sulfoximine α-ethyl C(1) monoanion interacts with the Li(2) cation 

bridging R-sulfoximine ortho-C(36) anion.  Keep in mind only the α-ethyl C(1) is 

deprotonated  suggesting that a significant amount of n-BuLi “lingers” in the reaction.  

This unique reactivity and structure appears to be partly driven by the presence of an 

organolithium contaminant, lithium oxide, which in turn suggests that the organolithium 

reactivity with sulfoximines could change from bottle to bottle.51   

 The oxygen and nitrogen heteroatoms of the sulfoximine help coordinate the 

lithium cations in an extremely complex network.  The sulfoximine oxygen, sulfoximine 

nitrogen, sulfoximine α-ethyl carbanion, and sulfoximine ortho-phenyl carbanion all 

participate in various chelating interactions to further increase the complexity of this 

highly compact cluster.  Therefore, with many sites available for stabilization and 

deprotonation, the multi-lithiation of our sulfoximine containing benzothiazines merits 

more investigation to understand the intricacies of their chemistry.51   

C(36)

S(21)

(21)
C

N
(21)

(21)O

Li
(4)

(2)Li
(22)O

(3)Li
Me

N(1)

(1)S
Me O

(1)

Ph

C(1)

Li(1)

Me Me

Simplified Model
 

Figure 28.  Tetrameric Structure of a Sulfoximine Dilithiocarbanion 
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4.1.6   Ortho-Lithiation of Sulfoximines  

 Levacher, Dupas and coworkers examined the reactivity of S-t-butyl-S-

phenylsulfoximines in 1999 and observed them to be an ortho-director for lithiation 

reactions.  The reaction was optimized and found to be general.  The bases tried for the 

ortho-lithiation of sulfoximines were LDA, n-BuLi, and s-BuLi.  Deprotonation of LDA 

took place exclusively at elevated temperatures.  In the end, both lithium alkyl bases were 

preferred because of higher yields over shorter periods of time at reduced temperatures.  

Yields did not increase with an increase in temperature.  Under the optimized conditions, 

deprotonation of the ortho-H about the S-phenyl ring of 150 took only 10 minutes at -78 

oC in THF to allow for 95% deuterium incorporation as shown in Scheme 70.52

 

Scheme 70.   Optimized Ortho-Lithiation Procedure of S-tert-Butyl Sulfoximine 

 With an optimized procedure for metalation in hand, the reaction was examined 

with several electrophiles to determine reaction scope.  The summary of electrophiles 

examined is shown in Table 24.  Only four electrophiles were tested.  The best 

electrophile was shown to be dimethyl disulfide, affording a 95% yield of product (Table 

24, entry 3).  Benzaldehyde was tested and the corresponding diastereomeric alcohols 

were isolated in 60% yield with only a 25% diastereomeric excess (Table 24, entry 4).  

With a change in base to s-BuLi/TMEDA in toluene, the diastereomeric excess increased 

to as much as 50%.52
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Table 24.  Ortho-Lithiation of S-tert-Butyl Sulfoximine and Various Electrophiles 

 

Entry Electrophile E Product Yield (%) 

1 C2Cl6 Cl 151a 76 

2 I2 I 151b 75 

3 MeSSMe SMe 151c 95 

4 PhCHO rac-PhCH(OH) 151d 60 

  

 An interesting side reaction was observed during further investigations of 

sulfoximine ortho-lithiations in 2005.  With different aldehydes, a de-tert-butylation was 

observed.  The reaction was general for three aldehydes and S-tert-butyl-S-phenyl 

sulfoximine 150.  First, acetaldehyde as an electrophile gave no desired product and only 

sulfinic ester before chromatography in quantitative yield and with 13% de.  Then 

benzaldehyde was used as the electrophile affording a quantitative yield of 151d with 

10% de in the crude NMR; however, when subjected to silica gel chromatography, all of 

sulfoximine 151d was converted to sulfinic ester 152 in 100% yield maintaining the 10% 

de (Scheme 71).  This suggests the mechanism of de-tert-butylation occurs with retention 

of configuration. Similarly, with pivaldehyde as the electrophile a sulfinic ester was also 

isolated in 50% yield as a 1:1 mixture of sulfoximine to sulfinic ester in 95% de.  The 

scope of this decomposition reaction is currently under investigation by Dupas and 

coworkers.53
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Scheme 71.  Benzaldehyde Side Product:  New Sulfinic Ester Formation 

4.1.7   Summary of Sulfoximine Lithiation  

 The reactivity of several sulfoximine stabilized vinyl, methyl, and ortho-phenyl 

lithiocarbanions and dilithiocarbanions has been reported.  Only 4-methyl-2-S-oxa-2-S-

phenyl-2,1-benzothiazine 146 has been examined in the benzothiazine family of 

compounds.    A summary of the selected lithiated sulfoximine containing compounds are 

summarized in Figure 29.   

 

Figure 29.  Summary of Lithiated Sulfoximine Containing Compounds 

 In other cases, metalation takes place with strong alkyl lithium bases at low 

temperature in THF solvent.  In one example, the solid state structure of a multi-lithiated 
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sulfoximine cluster was very complex.  Both the mono- and the dilithiation of 

sulfoximine-containing compounds have been reported.  Overall, the study of 

benzothiazine compounds to date has been somewhat limited.  Therefore, the goals of the 

research conducted in the sections that follow were to examine benzothiazine metalation 

and examine the reaction scope in order to advance our chiral benzothiazine-based ligand 

program. 

4.2   Lithiation of Benzothiazines 

4.2.1   α-Lithiation of Benzothiazine 1 

 Initial attention was drawn toward preparing a P,N-ligand using the previous 

methodology presented by Harmata in 1988.50  The goal was to first protect the most 

acidic 3-position of 1 with a removable silyl group.  Once protected, access to the less 

acidic ortho-S-phenyl site would allow trapping of a phosphine chloride to prepare a new 

family of P,N-ligands for use in asymmetric reactions.  The retrosynthesis is shown in 

Figure 30.   

 

Figure 30.  Retrosynthesis of 2,1-Benzothiazine P,N-Ligand 153 

 N-Arylation of 2-bromobenzaldehyde 12 is well known and highly reproducible 

in multigram scales and affording an 87% yield of 1 (Scheme 72).  The lithiation of 1 

should be similar to that of 146.  The final step, accessing the ortho-S-phenyl ring 

hydrogen via lithiation was observed only in minor amounts and was trapped by TMSCl 

 102



only.  Lithiation of the ortho-S-phenyl ring of the benzothiazine sulfoximine was the 

emphasis of the research conducted.  

 

Scheme 72.  Thermal N-Arylation of 2-Bromobenzaldehyde 12 

 A large selection of electrophiles were studied in order to probe reactivity and 

provide the best protecting group to complete the synthesis of P,N-ligand 153.  

Examining a large range of electrophiles provides detailed information on the 

nucleophilicity of the sulfoximine stabilized vinyl carbanion and provides a direct 

comparison to benzothiazine 146 in many examples (Table 25).   

 Silyl chlorides were chosen for their ease of removal once attached.  Several silyl 

chlorides of various bulk were used to trap the lithiocarbanion.  Yield slightly decreased 

as steric bulk of the silyl alkyl groups increased but all yields remained above 80% 

(Table 25, entries 1-4).  Very near stoichiometric amounts of TMSCl were needed to 

prevent formation of di-TMS product 154 (Figure 31) as seen previously with 4-methyl-

2,1-benzothiazine 146.  Bulkier silyl groups did not have issues with either hydrolysis or 

multiple trapping. 
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Table 25.  α-Lithiation Summary of Benzothiazine 1 

 

Entry Electrophile E Product Yield (%)

1 TMSCl TMS 154a 98 

2 TESCl TES 154b 94 

3 TIPSCl TIPS 154c 94 

4 TBSCl TBS 154d 85 

5 PhSSPh PhS 154e 38-92 

6 Ph2CO Ph2C(OH) 154f 91 

7 2-Br(C6H4)CHO rac-2-Br(C6H4)CH(OH) 154g 94a

8 C2Br2Cl4 Br 154h 81 

9 I2 I 154i 96 

10 (CH2)5CO (CH2)5C(OH) 154j 97 

11 ClCO2CH2CH(CH3)2 CO2CH2CH(CH3)2 154k 11-51 

12 DMF CHO 154l 92 

13 Et2CO Et2C(OH) 154m 85 

14 (CH2O)n CH2OH 154n 76 

15 (CH2)2O CH2CH2OH 154o 91 

16 BrCH2CO2C4H9 CH2CO2C4H9 154p 0 

17 Me2CO Me2C(OH) 154q 85 
 a Diastereomeric ratio of 1.4:1 observed. 
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Figure 31.  Lithiation Side Product 155 

 An aromatic aldehyde reacted very smoothly in 94% yield to give a 1.4:1 mixture 

of diastereomers (Table 25, entry 7).  Both cyclic and acyclic symmetrical ketones 

trapped smoothly to give yields greater than 85% for both examples (Table 25, entries 6, 

10, 13, and 19).  Propylene oxide reacted smoothly to give 154o in 91% yield (Table 25, 

entry 15).  Polymeric paraformaldehyde provided alcohol 154n in 76% yield from freshly 

cracked paraformaldehyde; the reaction was very exothermic and could not be 

reproduced on larger scales.  Other electrophiles such as C2Br2Cl4, I2, and DMF gave very 

clean reactions in respectable to excellent yields (Table 24, entries 8, 9, and 12). 

 Two electrophiles failed to provide any products.  First, t-butyl bromoacetate did 

not alkylate in a Sn2 fashion nor did it react at the ester functional group.  The second 

failed electrophile was diphenylphosphinic chloride, which provided no recovered 

starting material or product.  It appeared that many new very polar products were formed 

but none could be isolated and identified. 

 Two other electrophiles gave particularly large ranges in yield.  Both diphenyl 

disulfide and isobutyl chloroformate were problematic in achieving respectable yields 

consistently.  During the isolation of sulfide 154e, the baseline material was flushed off 

the column and collected in an additional vial; a single crystal grew out of the remaining 

brown residue.  The x-ray quality crystal was analyzed, and evidence for new 
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benzothiazine reactivity was seen.  Remarkably, the lithiocarbanion attacked product 

154e to generate a dimeric benzothiazine 156 (Figure 32).   

 

Figure 32.  Lithiation Side Product 156 

 To further investigate this unforeseen reactivity.  The sulfide 154e was simply 

treated with n-BuLi and allowed to warm to room temperature.  This gave butylated 

product 157 in 85% yield in a 3.8:1 diasteromeric ratio (Scheme 73).  This new Michael 

reaction of a 2,1-benzothiazine suggests that the sulfoximine and other polarizable or 

electron withdrawing groups will consume excess base and prevent further deprotonation.  

If n-BuLi acts as a nucleophile rather than a base, the protecting group scope becomes an 

issue. 

  

Scheme 73.  1,4-Addition of n-BuLi to 154e 

   This provides evidence for the reason that iso-butyl formate 154k had a range of 

yields.  It is possible that once the product began forming that the remaining 
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lithiocarbanion began attacking the product in a similar fashion to the sulfide 154e to give 

dimeric product 156.  In the end, a new synthetic method for creating chiral benzylic 

centers has been shown.  The ability to remove both the sulfide and sulfoximine via 

reductive desulfurization allows for highly functionalized benzothiazine precursors that 

could be applied to natural product syntheses.  Further explorations into this Michael 

addition need to be examined for generality. 

4.2.2   Ortho-S-phenyl Lithiation of α-Silyl Protected Benzothiazines  

 Initial studies began by using TBS-protected benzothiazine 154d.  This was 

deemed the most logical protecting group as it could be easily removed with TBAF later.  

Many attempts were made to ortho-lithiate the S-phenyl sulfoximino ring (Table 26).  

Shown previously to be general for sulfoximines, benzothiazine reactivity appeared quite 

different.  All efforts to ortho-lithiate failed except for deuterium trapping (Table 26, 

entries 13-15).   

 Various lithium bases were tried with or without TMEDA, of which none were 

successful with any electrophile other than MeOD used for deuterium exchange (Table 

26, entries 12-15).  A recent addition to the unique variety of commercial main group 

metal bases, i-PrMgCl-LiCl/TMPH developed by Knochel and coworkers was also 

employed that helped in the ortho-lithiation of 2-phenylpyridine systems;54 however, 

only recovered starting material was seen (Table 26, entries 8-10).  Deprotonation with n-

BuLi/THF/-78 oC/MeOD reactions gave 81-83% deuterium incorporation seen in 2-6 

hours respectively (Table 26, entries 13-15).  Other attempts were made with 

trimethylsilyl, TMS-benzothiazine 154a and the results are summarized in Table 27. 
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Table 26.  Ortho-Lithiation Study of α-TBS-Protected Benzothiazine 154d 

 

Entry Base Additive Solvent Temp. 
(oC) 

Time 
(h) E Yield 

(%) 

1 s-BuLi --- ether -78 1 Ph2C(OH) n.r. 

2 s-BuLi --- PhMe -78 0.5 Ph2C(OH) n.r. 

3 s-BuLi TMEDA PhMe -78 2 Ph2C(OH) dec. 

4 s-BuLi --- PhMe 0 2 Ph2C(OH) dec. 

5 s-BuLi --- PhMe 35 2 Ph2C(OH) dec. 

6 n-BuLi --- THF -78 3 Aa dec. 

7 n-BuLi TMEDA PhMe 115 3 Aa dec. 

8 i-PrMgCl-
LiCl TMPH THF -78 2 PCy2 n.r. 

9 i-PrMgCl-
LiCl TMPH THF 35 20 I n.r. 

10 i-PrMgCl-
LiCl TMPH THF 55 24 I n.r. 

11 n-BuLi --- THF -78 1 PPh2 n.r. 

12 t-BuLi --- THF -78 0.2 D 14 

13 n-BuLi --- THF -78 2 D 81 

14 n-BuLi --- THF -78 4 D 83 

15 n-BuLi --- THF -78 6 D 83 
a E = A (Figure 15, p. 50) 
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Table 27.  Ortho-Lithiation Study of α-TMS-Protected Benzothiazine 154a 

 

Entry Base Additive Solvent Temp (oC) Time (h) E Yield (%)

1 n-BuLi --- THF -78 1 TMS mixturea

2 n-BuLi TMEDA PhMe -78 2 TMS mixturea

3 s-BuLi --- PhMe 0 2 Br mixturea

 a >85% conversions by crude NMR but partial hydrolysis on silica gel gave inseparable mixtures 

 It appears from the Table 26 that in 2 hours n-BuLi deprotonates the ortho-S-

phenyl hydrogen to the extent of at least 80%.  The acidity of the silica gel gave partial 

cleavage of the α-TMS group as well as the ortho-TMS group yielding a mixture of 

numerous adducts that could not be individually separated.  This suggested at the time 

that the only compatible electrophile was MeOD for ortho-S-phenyl trapping of 154d.  

The next section describes another attempted path to metalate the ortho-S-phenyl ring. 

4.2.3   Ortho-S-phenyl Lithiation of a Hydroxy Substituted Benzothiazine  

 The iso-propanol appendage was investigated to determine if the lithium base 

could be directed.  The hope was that the lithium base aggregate would position itself in 

such a way to allow for a more reactive species.  Another equivalent of base was required 

to deprotonate the hydroxy group first; the second equivalent of base, would deprotonate 

the ortho-S-phenyl sulfoximine hydrogen.  A neighboring group participation effect 
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could allow the alkoxide to assist in deprotonation of the S-phenyl ring (Figure 33).  In 

the end, the few deprotonation sequences that were tried were unsuccessful (Table 28).    

N
S O

O
Me Me

Li

Li

 
Figure 33.  Possible Stabilization Model for S-phenyl Lithiation 

Table 28.  Ortho-Lithiation Study of Benzothiazine 154s 

1. 2.4 eq n-BuLi, THF

2. 1.4 eq ElectrophileN
S O

OH

Me Me

154s 160

N
S O

OH
Me Me

E

 

Entry Additive Solvent Temp.
 (oC) 

Time
 (h) E Yield  

(%) 

1 --- THF -78 3 Ph2C(OH) n.r. 

2 --- THF 35 3 Br n.r. 

3 TMEDA THF -78 4 Aa dec. 
  a E = A (Figure 15, p. 50) 

 This concludes the description of our studies on the protection-deprotonation 

sequence in order to achieve P,N-ligand 153.  Only two electrophiles were able to shed 

any light on dilithiation reactivity of 1.  Both TMSCl and MeOD are very small, reactive 

electrophiles for our metalated benzothiazine nucleophiles.  Increasing bulk at the 4-

position of the benzothiazine is likely required to avoid unwanted Michael additions.  

This is the topic for the following section. 
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4.2.4   α-Lithiation of Benzothiazine 26 

 Due to the difficulty in preparing benzothiazine 14 or 146 in enantiopure form via 

sulfoximine N-arylation of bromo- or chloroacetophenone, we directed our attention to 

the non-enolizable ketone 2-chlorobenzophenone.  Initially, the thermal reaction 

(Pd(OAc)2/BINAP, Cs2CO3, 6, PhMe, 7 days) afforded quantitative conversion, albeit in 

nearly a week.  The new procedure (Pd2dba3/RuPhos, Cs2CO3, 6, PhMe, 12 h) afforded 

an acceptable yield (77%) in as little as 12 hours.  Both reactions are shown below in 

Scheme 74. 

  
Scheme 74.  Thermal N-Arylation of 2-Chlorobenzophenone 25c 

 A similar monolithiation approach was investigated 26 as for the less bulky 

benzothiazine 1 shown previously.  The goal was to expand the scope of the metalation 

reaction of benzothiazines.  Several electrophiles were examined as shown below (Table 

29). 
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Table 29.  α-Lithiation Summary of Benzothiazine 26 

 

Entry Electrophile E Product Yield (%) 

1 TIPSCl TIPS 161a 0 

2 Me2CO Me2C(OH) 161b 0 

3 Ph2CO Ph2C(OH) 161c 0 

4 I2 I 161d 74 

5 C2Br2Cl4 Br 161e 95 

6 PhCHO rac-PhCH(OH) 161f 75a

7 MeSSMe SMe 161g 98b

8 PhSSPh SPh 161h 94b

9 EtSSEt Set 161i 88b

10 CySSCy SCy 161j 98b

11 tBuSStBu StBu 161k 19 

 a Diasteromeric ratio of 2.4:1 observed. 
 b Dilithiocarbanion was trapped in minor amounts. 
 
 The reactivity pattern of 26 was quite different from that of 1.  TIPSCl did not 

react with the sulfoximine stabilized vinyl carbanion of benzothiazine 26, most likely due 

to steric effects (Table 29, entry 1).  Both the enolizable acetone and non-enolizable 

benzophenone were unreactive with the organolithium derived from 26 although they 

appeared very reactive with 1 (Table 29, entries 2 and 3).  Remember, benzothiazine 146 
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was reported by Harmata to react with benzophenone as an electrophile in 65% yield50 

suggesting that steric hindrance plays at least a minor role in the metalation studies 

presented herein.  Note that benzaldehyde reacted smoothly in 75% yield to give 161f 

with slightly improved diastereoselectivity as compared to both 1.  This increase in 

diastereomeric ratio is likely due to steric crowding near the adjacent 4-phenyl 

substituent. 

 The reaction of disulfides gave a remarkable breakthrough in benzothiazine 

dilithiation chemistry.  Previously, benzothiazine 1 gave butylated product 157 when 

trapped with diphenyl disulfide.  Now with the 4-position crowded with the phenyl 

group, numerous disulfides reacted smoothly without butylation in yields ranging from 

98-88% yield (161g-j, Table 29, entries 7-10).  Only a 19% yield of 161k was obtained 

using di-t-butyl disulfide, the bulkiest disulfide electrophile tested (Table 29, entry 11).  

In the crude NMR, doubly substituted benzothiazines were observed in all cases except 

for very bulky di-t-butyl disulfide. 

 Based on the fact that benzothiazine 146 reacts with benzophenone in 65% yield 

to form 147e50 and benzothiazine 1 reacts with benzophenone in 91% yield, but that 

benzothiazine 26 did not react, an investigation probing lithiation was carried out to see if 

changes in reaction conditions would allow for an observable reaction of benzophenone 

with benzothiazine 26.  The results are shown in Table 30.  In the best examples, less 

than <5% conversion was observed with extremely dirty crude reactions.  Thus, it 

appears that benzophenone is too bulky to be trapped by the conjugate base of 26 in 

observable amounts.  Significant differences in reactivity are shown by both 
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unsubstituted benzothiazine 1, methyl-substituted benzothiazine 146, and phenyl-

substituted benzothiazine 26. 

Table 30.  α-Lithiation Summary of Benzothiazine 26 with Benzophenone 

1. X eq y-BuLi,solvent
time, temp

1. X eq Benzophenone
N

S O
N

S O

Ph Ph

161c26

OH

Ph
Ph

 

Entry X (eq) y-BuLi Additive Solvent Temp. (oC) Time (h) Ratio 
(26:161c) 

1 1.2 n --- THF -78 0.25 no reaction

2 2.2 t --- ether -78 0.20 trace 

3 2.2 t --- ether -78 1 trace 

4 2.2 t --- ether 0 2 trace 

5 2.2 t --- ether 0 0.20 trace 

6 2.2 t --- ether -78 2 trace 

7 2.1 t --- THF -78 0.20 no reaction

8 2.1 t --- THF -78 1 36 : 1 

9 2.1 s TMEDA THF -78 0.75 no reaction

10 2.1 s TMEDA THF -78 4 no reaction

11 2.1 s TMEDA THF -78 8 no reaction

12 2.1 s TMEDA THF 0 0.33 34:1 

13 2.1 s TMEDA THF 0 4 no reaction

14 2.1 n TMEDA THF 0 0.33 no reaction

15 2.1 n TMEDA THF 0 3 no reaction
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16 2.1 n TMEDA THF 0 0.33 no reaction

17 2.1 n TMEDA THF 0 3 no reaction

18 2.1 n TMEDA THF -78 1 no reaction

19 2.1 n TMEDA THF -78 4 30:1 

20 2.1 n TMEDA THF -78 22 37:1 

21 2.1 n TMEDA THF -78 0.25 no reaction

 
4.2.5   P-Ligand Syntheses 

 Up to this point, we experienced limited success trapping larger electrophiles with 

the lithiocarbanion of 4-phenyl substituted benzothiazine 26.  The steric bulk of the 4-

phenyl ring of 26 introduced a different challenge than seen before with benzothiazine 1, 

namely, trapping of bulkier electrophiles.  To our delight, monolithiation of both 

benzothiazine 26 and benzothiazine 1 and their subsequent trapping with phosphine 

chlorides was general (Table 31).   

 Overall, the difference in yield between benzothiazines 1 and 26 was minimal, 

except with di-t-phosphine chloride (Table 31, entries 4 and 8).  All of the phosphines 

prepared were sensitive to oxidation during their isolation and purification.  Thus, we 

oxidized the products with hydrogen peroxide in the hope that the corresponding 

phosphine oxides could be isolated.  However, baseline impurities prevented these 

extremely polar compounds from being isolated cleanly.  As a result, reaction conversion 

is shown instead of reaction yield because upon isolation, some minor impurities 

remained.  Therefore, if these potential ligands were to be used in asymmetric reaction, 

the crude products would be better utilized if trapped in situ by the appropriate metal and 

used as a metal-bound catalyst. 
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Table 31.  α-Lithiation Summary of Benzothiazines 1 and 26 with Phosphines 

  

Entry R1 R2 Product Conversion (%) 

1 Ph phenyl 162a 85 

2 Ph cyclohexyl 162b 84 

3 Ph piperidyl 162c 89 

4 Ph t-butyl 162d 0 

5 H phenyl 162e 88 

6 H cyclohexyl 162f 88 

7 H piperidyl 162g 90 

8 H t-butyl  162h 60 

9 H i-propyl 162i 59 

10 H Aa 162j 51  

 a E = A (Figure 15, p. 50)  
4.3   Dilithiation of Benzothiazines 

4.3.1   Multilithiation Deuterium Study 

 With some data for the α-lithiation of some benzothiazines we concluded that 

benzothiazine 26 appeared to have the most promise and would allow for the fewest side 

reactions. For that reason, 26 was studied for dimetalation reactivity as it appeared that 

dilithiation had occurred to a small extent in previous metalation studies.  For 
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comparison, benzothiazine 1 was also screened with MeOD to see if deuterium 

incorporation was general.  The results are shown in Table 32.  The reactions were run in 

THF at -78 oC with n-BuLi as base.  The base was allowed to stir for 30 minutes before it 

was quenched with 5 equiv. of MeOD and the ratio was determined by the disappearance 

of the respective protons from the crude 1H NMR spectra.   

Table 32.  Deuterium Study of 2,1-Benzothiazines 26 and 1 

N
S O

R
H

R = H, 1
R = Ph, 26

1. X eq n-BuLi
-78 oC, THF, 30 min.

2. 5 eq MeOD
N

S O

R

R = H, 163
R = Ph, 164

D1

D2

 

Entry R X (eq) D1 (%) D2 (%) 

1 1 3.0 95 109 

2 26 3.0 82 108 

3 1 2.5 93 62 

4 26 2.5 92 76 

5 1 2.0 70 19 

6 26 2.0 95 72 

7 1 1.5 99 38 

8 26 1.5 90 17 

9 1 1.0 96 16 

10 26 1.0 83 19 

11 1 3.0 98 100 
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12 26 3.0 100 107 

13 1 1.0/TMPH 81 40 

14 1 1.5/TMPH 77 25 

15 1 2.0/TMPH 92 52 

16 1 2.5/TMPH 94 46 

17 1 3.0/TMPH 95 50 

18 1 3.5/TMPH 95 81 

 
 One equivalent of base gave primarily monolithiation with an observable amount 

of dilithiation (Table 32, entries 9 and 10).  It was not until 3 equivalents of base were 

added that complete deprotonation of the ortho-S-hydrogen was seen along with a trace 

amount of trilithiation (Table 32, entries 1 and 2).  Since excess n-BuLi is an 

incompatible base for benzothiazine 1, TMPH was evaluated.  As a result, 80% D-

incorporation of the ortho-S-position was observed when 3.5 equiv. of LiTMP was 

added.  In general, deprotonation of both benzothiazines 1 and 26 were very similar.  This 

confirmed the hypothesis that differences in electrophile trapping were due to steric 

hindrance.  Sulfoximine-stabilized dilithiocarbanions were examined in the next section.   

4.3.2   Dilithiation of Benzothiazine 26 

 Using the previous methods, several electrophiles were employed to see if, 

indeed, double electrophilic trapping was a general process as shown earlier with the D 

incorporation.  Due to visibility of di-sulfido products in the crude NMR of previous 

monometallations, disulfides were the central focus (Table 33).  This reaction was carried 

out under similar conditions as reported above in Table 32 using excess n-BuLi and an 

even a slightly larger excess of electrophile.   
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  Table 33.   Dilithiation Study of Benzothiazine 26 

 

Entry Electrophile E Product Yield (%) 
(Double) 

Yield (%)
(Single) 

1 MeSSMe SMe 165a 98 trace 

2 PhSSPh SPh 165b 94 2 

3 EtSSEt SEt 165c 89 3 

4 CySSCy SCy 165d 98 0 

5 tBuSStBu StBu 165e 0 19 

6 Ph2CO Ph2C(OH) 165f 0 0 

7 TMSCl TMS 165g mixture mixture 

8 I2 I 165h 91 0 

9 Br2Cl4C2 Br 165i 95 0 

10 ClPCy2 PCy2 165j 0 70a

11 ClP(piperidyl)2 P(piperidyl)2 165k 0 54a

12 ClP(t-Bu)2 P(t-Bu)2 165l 0 0 

 a Conversion is reported as the product could not be isolated cleanly. 

 Most disulfides examined trapped extremely well (Table 33, entries 1-4).  Only 

di-t-butyl disulfide provided a monosubstituted adduct in poor yield (Table 33, entry 5).  

Halide trapping sources worked well giving di-iodo 165h and di-bromo 165i (Table 33, 

entries 8 and 9).  Phosphines that were investigated also gave only monosubstituted 

 119



products in either no yield or moderate conversions (Table 33, entries 10-12).  Thus, P,N-

ligands of this type seem unattainable at this time by metalation and, as a result, were not 

investigated further. 

 Overall, this provides evidence that dilithiation occurs and the resulting dianion 

can be trapped by several electrophilic classes.  Bulky substrates did not trap efficiently 

in a disubstituted fashion and only the α-3-position was trapped.  The remaining ortho-S-

phenyl lithiocarbanion must have a relatively long lifetime because deuterium studies 

reported earlier provided evidence that dimetalation was complete under this procedure.  

Thus the anion must have been quenched in the workup with ammonium chloride.  The 

investigation above is the first example of a successful dilithiation of a 2,1-benzothiazine.  

Many examples gave excellent yields with numerous electrophiles. 

4.3.3   Dilithiation of Benzothiazine 1 

 Due to the dilithiation success of benzothiazine 26, we examined dilithiation of 

benzothiazine 1 taking into consideration the limitations of the bare 4-postion when using 

an excess of alkyl lithium base.  It was shown previously that moderate amounts of 

deprotonation were observed with LiTMP amine base in the deuterium incorporation 

study.  Thus, we reacted 1 with LiTMP, stirred for 30 minutes, and quenched with excess 

disulfide.  To our surprise, we observed three products.  One product was identified by X-

ray crystallography as a trisubstituted benzothiazine found in trace amounts.  The 

following scheme shows identities of all three products (Scheme 75).   

 Since this provided an alternate route by which problematic electrophiles could be 

trapped via monometallation 1.3 equiv. of LiTMP were added and the resulting anion 

was trapped with dimethyl disulfide.  Previously butylation was observed with phenyl 
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sulfide products generated in situ, but, in this example, successful monometallation and 

trapping of dimethyl disulfide was seen with no side products (Scheme 76). 

 
Scheme 75.  Dilithiation of Benzothiazine 1 with Dimethyl Disulfide  

 
Scheme 76.  Monolithiation of Benzothiazine 1 with Dimethyl Disulfide 

4.3.4   Attempts Toward Electrophile “Dancing” 

 The deuterium study discussed earlier provided evidence that multiple anions 

exist of differing character.  We were interested in exploiting the pKa difference between 

the two metalation sites. We wanted to “dance” an electrophile from the α-position of our 

benzothiazine by an intermolecular electrophile exchange to the ortho-S-phenyl position. 

Theoretically, the ortho-S-phenyl position would have a much higher pKa than the 

sulfoximine stabilized vinyl carbanion site. To test this hypothesis, various 

monosubstituted products containing softer electrophiles were subjected to various basic 

conditions to see if, indeed, the ortho-S-phenyl lithiocarbanion would attack the 

electrophile and generate the more stable anion, which could be quenched by a proton in 

the workup.  A possible mechanism of this mode of “electrophile dancing” is shown 

generically below in Figure 34.  This is not a new concept as halogen dancing has been 

 121



studied in depth as shown in a review by Stanetty and coworkers.55  A summary of our 

investigation is shown in Table 34.  In short, we found no significant exchange from the 

α-position to the ortho-S-phenyl position of any of the substrates we investigated.  It 

appeared that –SMe was slightly more favorable and led to trace exchanges as observed 

in the crude NMR compared to the –SPh substrate.  Overall, there is not enough evidence 

in this study to suggest that significant “dancing” occurred. 

N
S O

Ph
I

H

NLi
R

R

N
S O

Ph
I

Li
N

S O

Ph
Li

I"dance"

 
Figure 34.  Mechanism of an Electrophile “Dance” 

Table 34.  Attempts Toward an Electrophile “Dance” 

Base, THF, Temp.
OvernightN

S O

Ph
R

154

N
S O

Ph

169

H
RH

 

Entry Base (eq) R Temp.a (oC) Result 

1 LiTMP (1.1) Br -78 no reaction 

2 LiTMP (1.1) I -78 no reaction 

3 n-BuLi (1.05) SMe -78 decomposition 

4 n-BuLi (1.05) SPh -78 decomposition 

5 LiTMP (1.05) Br 35 decomposition 

6 LiTMP (1.05) I 35 decomposition 

7 LiTMP (1.05) SMe -40 trace 
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8 LiTMP (1.05) SPh -40 trace 

9 LHMDS (1.05) SMe -78 no reaction 

10 LHMDS (1.05) SPh -78 no reaction 

11 s-BuLi (1.05) SMe -78 decomposition 

12 s-BuLi (1.05) SPh -78 decomposition 

13 PhLi (1.05) SMe -78 trace 

14 PhLi (1.05) SPh -78 no reaction 

15 LDA (1.05) SMe -78 trace 

16 LDA (1.05) SPh -78 no reaction 

17 LDEA (1.05) SMe -78 trace 

18 LDEA (1.05) SPh -78 no reaction 

19 PhLi (2.0) SMe -78 no reaction 

20 PhLi (3.0) SMe -78 no reaction 

21 PhLi (1.0) SMe 0 trace 

22 PhLi (2.0) SMe 0 decomposition 

23 LiTMP (1.25) SMe -78 no reaction 

24 LiTMP/LiBr (1.25) SMe -78 no reaction 

 a All reactions were warmed to room temperature overnight. 

4.3.5   Lithiation Summary  

 Numerous investigations of both benzothiazine 1 and benzothiazine 26 led to the 

same conclusion.  Lithiation of these benzothiazine were quite different than their less 

rigid N-substituted sulfoximine analogs.  The N-substituted sulfoximines presented in the 

beginning of this chapter had limited functionality outside the acidic α-methyl carbon and 
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the acidic ortho-S-phenyl hydrogen.  Our study began by extensively trapping 

benzothiazine 1 with a variety of electrophiles exclusively at the 3-position.  Butylation 

of benzothiazine 1 with n-BuLi gave 1,4 addition products in lieu of the desired 

dilithiation.  Several polarizing and electron withdrawing substituents at the 3-position 

provided for a wide range of isolated yields likely due to the similar 1,4-addition 

processes.  These side reactions were circumvented by switching to benzothiazine 26.   

 Benzothiazine 26 was trapped by a variety of electrophiles at the 4-position as 

well.  Several electrophiles provided poor yields due to steric interactions of the 4-phenyl 

group.  Once a more efficient procedure was devised several electrophiles were trapped at 

both the α-3-position and ortho-S-phenyl position of benzothiazine 26 in good yields.  

The electrophiles were limited, however, to disulfides and halogenating electrophiles.  

Larger less reactive electrophiles, such as benzophenone, failed to trap at either position.  

In the same manner, seemingly large phosphine chlorides did trap in good yield with 

benzothiazine 26.   

 The dilithiation of benzothiazine 26 was found to be general, and the dilithiation 

of benzothiazine 1 was found to not be general.  A deuterium study expressed no 

difference in the rate at which deprotonation occurred with n-BuLi.  Differences in 

reactivity were determined to be driven by electrophile reactivity and electrophile size 

compared to the metalated benzothiazine.  All routes to P,N-ligands via benzothiazine 1 

or 26 failed.  Several mono P-ligands were prepared from benzothiazine 26 but required 

oxidative trapping due to their inherent sensitivity to oxidation.  All of the research 

reported herein describes the novel but unique nature of benzothiazines.  The potential of 

benzothiazines was expanded and we increased the applications of benzothiazines in 
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synthetic organic chemistry.  A list of all lithiation reactions reported herein is illustrated 

below in Figure 35.   

 
Figure 35.  Lithiation Reactivity Summary
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CHAPTER 5 

Experimental Results 

5.1   General Information 

 All reactions performed were carried out under anhydrous conditions involving 

either nitrogen or argon gas, except the metal ligand reactions of Chapter 2.  The reaction 

design of Chapter 2 experiments involved “air”.  Glassware was oven dried (125 oC) and 

cooled by a continuous flow of dry nitrogen.  Solvents were distilled under anhydrous 

and oxygen free conditions.  Ether, toluene, and THF were dried over sodium metal and 

oxygen was removed by generation of a benzophenone ketyl.  Dichloromethane was 

dried over calcium hydride in a dry nitrogen atmosphere.  In most cases, reagents were 

distilled prior to use if liquid; solids reagents were crystallized or used directly from a 

newly purchased commercial container. 

 Handling of pyrophoric reagents, namely organometallic reagents, was done so 

with glass gas tight syringes, rubber septa, and argon balloons.  Air and moisture 

sensitive reagents were handled with a dry nitrogen filled plastic glove bag.  Molecular 

sieves used were freshly activated by heating to 200 oC under full vacuum (< 2 mm Hg) 

for several hours.  Reaction mixtures were concentrated using rotary evaporators with 

both water aspiration and pneumatic vacuum pump sources depending on the boiling 

point of the solvent being removed.  Residual solvent was removed by full vacuum when 

necessary.  Silica gel used in chromatographic separations was purchased from Silicycle 

(230 – 400 mesh).  Reactions were monitored by glass backed silica gel TLC plates 

purchased from Sigma Aldrich; all highly conjugated compounds were recognized by a 

UV irradiation lamp. 
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 Melting points taken of new compounds were done so by a Fisher-Johns melting 

point apparatus.  IR spectra were recorded via a liquid NaCl chamber on a Perkin Elmer 

1600 series FT-IR spectrometer.  1H NMR and 13C NMR were taken on one of three 

Bruker ARX-250, ARX-300, or ARX-500 Ultrashield spectrometers.  Chemical shifts 

reported were in ppm with an internal TMS standard (TMS; δ = 0.0).  Spectra were taken 

with CDCl3 solution containing TMS.  NMR data is reported as follows:  chemical shift, 

ppm; splitting pattern (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = 

doublet of doublets, ddd = doublet of doublet of doublets, etc.); coupling constant, Hz; 

and integration.  13C NMR spectra taken were 1H decoupled and contained a CDCl3 

(CDCl3; δ = 77.0) internal standard.  HRMS were analyzed by a Bruker 12 Tesla Apex-

Qe FTICR-MS with an Apollo II ion source. 

5.2   Experimental Methods 

5.2.1   Synthetic Procedures and Compound Characterization:  Chapter 2 

Methyl 3-(methoxymethoxy)benzoate (97): Commercially available, methyl 3-

hydroxybenzoate 96 (5.27 g, 34.6 mmol) was dissolved in dry 

dichloromethane (70 mL), dimethoxymethane (15.27 mL, 173 mmol) 

and p-TSA (0.1319 g, 0.694 mmol) were mixed together.  A Soxhlet 

extractor (filled with activated 4Å molecular sieves) with reflux condenser was flushed 

with dry nitrogen and attached.  The mixture was brought to reflux for 24 hours or until 

the completion was observed by TLC. (Rf = 0.75 in 50% EtOAc/hexanes; short UV dark 

spot). The reaction was taken up in 10% NaOH (30 mL).  Keep in mind hydrolysis of the 

methyl benzoate to the benzoic acid is possible and the workup stage should be carried 

out quickly.  The resultant organic layer is washed first by water (2 x 20mL) then brine 

OMe

O

O O
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(20mL), dried (MgSO4), and concentrated in vacuo. The residue was pure by TLC and 

NMR which yielded 6.619g 97 in 97% as a clear oily semi-solid with matching 1H and 

13C NMR spectra as reported in the literature.56 1H NMR: (250 MHz, CDCl3) δ 3.45 (s, 

3H), 3.88 (s, 3H), 5.18 (s, 2H), 7.19 (d, J = 8.2 Hz, 1H), 7.32 (t, J = 7.3 Hz, 1H), 7.66 (d, 

J = 8.3 Hz, 1H), 7.69 (s, 1H); 13C NMR (63 MHz, CDCl3) δ 51.8, 55.7, 94.1, 116.7, 

120.8, 122.8, 129.2, 131.3, 157.0, 166.4. 

 (3-(methoxymethoxy)phenyl)methanol (98): The MOM ester 97 (19.0 g, 96.9 mmol) 

in THF (17 mL) was added dropwise to a solution containing lithium 

aluminum hydride, LAH, (5.88 g, 193.8 mmol) in THF (100 mL) over 30 

minutes at 0 oC. The reaction was allowed to stir further at 0 oC until TLC 

showed completion (3.5 hours), (Rf = 0.23 in 50% EtOAc/hexanes; short UV dark spot).  

The reaction was taken up in water (5.88 mL) then 15% NaOH (5.88 mL), then water 

(17.64 mL) to form a gray granular precipitate which was filtered off and washed by 

ether (20 mL).  The organic layer was collected and the aqueous layer was extracted with 

ether (2 x 20 mL).  The collected organic layers were washed by brine, dried (MgSO4), 

and concentrated in vacuo. The crude residue was pure by TLC and NMR which yielded 

14.75g 98 in 92% as a clear oil with matching 1H and 13C NMR spectra as reported in the 

literature.57 1H NMR: (250 MHz, CDCl3) δ 2.32 (s, 1H, broad), 3.45 (s, 3H), 4.61 (s, 2H), 

5.15 (s, 2H), 6.96 (t, J = 7.1, 2H), 7.03 (s, 1H), 7.25 (t, J = 7.9, 1H); 13C NMR (63 MHz, 

CDCl3) δ 55.9, 64.9, 94.3, 114.6, 115.4, 120.3, 129.5, 142.6, 157.3. 

OH

O O
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(2-bromo-3-(methoxymethoxy)phenyl)methanol (107): A dry flask was flushed with 

argon and the MOM protected benzalcohol 98 (5.05 g, 30.3 mmol) was 

dissolved in toluene (60 mL).  At room temperature n-BuLi (72.9 mL, 

2.20M in hexane, freshly titrated by diphenylacetic acid) was added to 

give a white suspension.  This slurry was heated to 65 oC for 6 hours with vigorous 

stirring turning the heterogeneous mixture to a dark red-orange slurry.  Upon cooling to 

room temperature, 1,1,2,2-tetrachloro-1,2-dibromoethane (11.84 g, 36.3 mmol) was 

added in toluene (50 mL) dropwise and stirred further for 2 hours at room temperature. 

The reaction was quenched by saturated NH4Cl (20 mL).  The organic layer was 

collected; the aqueous layer was extracted by dichloromethane (2 x 15 mL); the 

combined extracts were dried (MgSO4) and concentrated in vacuo.  (Rf = 0.58 in 50% 

EtOAc/hexanes; short UV dark spot). Purification by flash chromatography (silica gel) 

with 15% EtOAc/hexanes to afford 7.18 g 107 in 96% as a yellow oil with matching 1H 

and 13C NMR spectra as reported in the literature.57 1H NMR: (250 MHz, CDCl3) δ 2.46 

(s, 1H, broad), 3.51 (s, 3H), 4.73 (s, 2H), 5.24 (s, 2H), 7.05 (d, J = 8.0, 1H), 7.12 (d, J = 

6.7, 1H), 7.25 (t, J = 7.8, 1H); 13C NMR (63 MHz, CDCl3) δ 56.3, 65.1, 95.1, 112.9, 

115.0, 121.8, 128.1, 141.5, 153.6. 

OH

O O
Br

2-bromo-3-(methoxymethoxy)benzaldehyde (108):  Procedure A:  A dry flask was 

flushed with nitrogen and oxalyl chloride (3.03 mL, 34.7 mmol) and 

dichloromethane (100mL) was cooled to –78 oC via a dry ice/acetone bath 

and was stirred for 10 minutes.  Then anhydrous DMSO (4.94 mL, 69.4 

mmol) was added dropwise over 10 minutes.  Next, the MOM protected bromo-

benzalcohol 107 (1.0 g, 4.97 mmol) was dissolved in dichloromethane (190 mL) and 

O O
Br

H

O
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added via cannula over 1 hour at –78 oC.  The reaction was stirred further for one hour 

and then triethylamine, TEA, (20.1 mL, 144.5 mmol) was added and warmed to room 

temperature over 1 hour, stirred further for one additional hour.  Water (50 mL) was then 

added; the organic layer was collected and washed again with 1N HCl until no longer 

basic.  The organic layer was again washed by water and brine, and then dried (MgSO4) 

and concentrated in vacuo. (Rf = 0.44 in 50% EtOAc/hexanes; short UV dark spot). 

Kugelrorh distillation at 2.0 mm Hg at 110 oC yielded 5.95 g 108 in 84% as a yellow-

orange semi-solid at room temperature with matching 1H and 13C NMR spectra as 

reported in the literature.29 1H NMR: (250 MHz, CDCl3) δ 3.54 (s, 3H), 5.29 (s, 2H), 

7.31-7.41 (m, 2H), 7.57 (dd, J = 6.7 Hz, J = 2.5 Hz, 1H), 10.43 (s, 1H); 13C NMR (63 

MHz, CDCl3) δ 56.5, 95.3, 118.0, 121.2, 122.8, 128.3, 134.9, 154.2, 192.1.  

2-bromo-3-(methoxymethoxy)benzaldehyde (108): Procedure B:  Commercially 

available, 2-bromo-3-hydroxybenzaldehyde 110 (1.0 g, 4.97 mmol) was 

dissolved in THF (10 mL)  along with triethylamine, TEA (3.4 mL, 24.8 

mmol), NaI (0.372 g, 2.48 mmol) and stirbar. The resulting dark orange 

solution was then flushed with dry N2 gas and MOMCl (0.751 mL, 9.94 mmol) was 

added drop-wise forming a white TEA•HCl salt.  The reaction was allowed to stir further 

until TLC showed completion (1 hour), (Rf = 0.72 in 50% EtOAc/hexanes; short UV dark 

spot).  The reaction was taken up in water (10 mL) and extracted with ethyl acetate (3 x 

10 mL).  Next the combined organic layers were washed by brine, dried (MgSO4), and 

concentrated in vacuo. Purification by flash chromatography (silica gel) with 25% 

EtOAc/hexanes yielded 1.13g 108 in 93% as a yellow-orange semi-solid with matching 

1H and 13C NMR spectra as reported in the literature.29  1H NMR: (250 MHz, CDCl3) δ 

O O
Br

H

O
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3.54 (s, 3H), 5.29 (s, 2H), 7.31-7.41 (m, 2H), 7.57 (dd, J = 6.7 Hz, J = 2.5 Hz, 1H), 10.43 

(s, 1H); 13C NMR (63 MHz, CDCl3) δ 56.5, 95.3, 118.0, 121.2, 122.8, 128.3, 134.9, 

154.2, 192.1. 

8-(methoxymethoxy)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (109): (N-Arylation 

Procedure A) The protected bromoaldehyde, 108 (1.00 g, 4.08 mmol), 

Pd(OAc)2 (45% Pd, 0.046 g, 0.204 mmol), rac-BINAP (0.191 g, 0.306 

mmol), methyl phenyl sulfoximine 6 ( 0.759 g, 4.89 mmol), Cs2CO3 

(2.12 g, 6.51 mmol) in toluene (80 mL) was flushed with dry N2 for several minutes.  A 

reflux condenser was added as well as a N2 balloon.  The mixture was stirred at reflux 

temperature (120 oC) for 48 hours.  The solution was then cooled to room temperature, 

diluted in dichloromethane (25 mL), and filtered through a plug of celite. After being 

concentrated in vacuo, the dark brown semi-solid was purified by flash chromatography 

(silica gel) with 40% EtOAc/hexanes (Rf = 0.60 in 50% EtOAc/hexanes; long UV yellow 

spot) to afford 1.17g 109 in 89% as a yellow-orange solid.28 Mp. 140 oC.  1H NMR: (300 

MHz, CDCl3) δ 3.53 (s, 3H), 5.33 (q, J = 5.6 Hz, 2H), 6.38 (d, J = 9.8 Hz, 1H), 6.96 (t, J 

= 7.8 Hz, 1H), 7.07 (dd, J = 7.8 Hz, J = 1.2 Hz, 1H); 7.34 (dd, J = 7.8 Hz, J = 1.2 Hz, 

1H); 7.50-7.62 (m, 3H); 7.63 (d, J = 9.8 Hz, 1H); 7.89 (d, J = 7.2 Hz, 2H); 13C NMR (75 

MHz, CDCl3) δ 56.1, 95.5, 110.4, 117.1, 118.4, 119.7, 123.4, 128.8, 129.1, 133.2, 136.4, 

138.5, 141.6, 149.6; IR (NaCl, cm-1) 3020, 1605, 1547, 1434, 1284, 1250, 1153, 1104, 

1044, 992, 669; HRMS calculated for C16H15NO3SNa [M+Na]+ 324.0664; Found 

324.0661. 

N
S O

OMOM
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8-hydroxy-2-S-oxa-2-S-phenyl-2,1-benzothiazine (111):  MOM-benzothiazine 109 

(2.43 g, 8.06 mmol) was added a solution of iso-propanol (32.1 mL, 

419 mmol), HCl (12.1N, 16.6 mL, 201 mmol), THF (17.05 mL, 209 

mmol), and stirbar.  The mixture was stirred at room temperature until 

completion was observed by TLC (3 hours). Diluted in water (20 mL), extracted by ether 

(3 x 20 mL), washed by 5% (w/w) NaHCO3, brine, dried (MgSO4), and concentrated in 

vacuo.  The remaining yellow-orange solid afforded 2.06 g of phenol 111 which was pure 

by NMR and TLC (Rf = 0.68 in 50% EtOAc/hexanes; brown/orange long UV spot) in 

>99% yield.28 The solid can be purified by flash chromatography (silica gel) with 50% 

EtOAc/hexanes. Mp. 147 oC. 1H NMR: (250 MHz, CDCl3) δ 6.37 (d, J = 9.7 Hz, 1H), 

6.7 (s, 1H), 6.95 (d, J = 4.7 Hz, 2H), 7.10 (p, J = 4.6 Hz, 1H), 7.54-7.67 (m, 3H), 7.67 (d, 

J = 9.7 Hz, 1H), 7.88 (d, J = 6.8 Hz, 2H); 13C NMR (63 MHz, CDCl3) δ 110.2, 114.9, 

115.7, 120.2, 120.4, 128.8, 129.1, 133.2, 133.6, 138.7, 141.3, 148.5; IR (NaCl, cm-1) 

3460, 3022, 1620, 1592, 1550, 1440, 1278, 1223, 1244, 1206, 1190, 1101, 992, 792, 729, 

588, 426; HRMS calculated for C14H11NO2SNa [M+Na]+ 280.0402; Found 280.0399. 

N
S O

OH

8-(P-oxa-P-diphenyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (115):  Benzothiazine 111 

(0.0587 g, 0.228 mmol) and stirbar were flushed by dry argon.  

THF (1.5 mL) was added to dissolve the solid resulting in a 

yellow solution.  This solution was cooled to –78 oC via a dry 

ice/acetone bath and argon balloon.  Then n-BuLi (2.20M in hexanes, 0.114 mL, 0.250 

mmol, freshly titrated by diphenylacetic acid) was added dropwise resulting in dark 

brown solution.  This solution was stirred further for 5 minutes at –78 oC and then 

diphenylphosphinic chloride (0.522 mL, 0.273 mmol) was added and warmed to room 

N
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Ph Ph
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temperature and further stirred overnight at room temperature resulting in a yellow-

orange solution.  MeOH (2 mL) was used to quench the reaction and the solvent was 

removed in vacuo to reveal a yellow oil which. Purification by flash chromatography 

(silica gel) with 50% EtOAc/hexanes and flushed with 100% EtOAc (Rf = 0.23 in 50% 

EtOAc/hexanes; yellow-green long UV spot) to afford 0.0953 g of 115 in 91% yield as a 

yellow semi-solid with matching 1H and 13C NMR spectra as reported in the literature.28 

1H NMR: (250 MHz, CDCl3) δ 6.37 (d, J = 9.8 Hz, 1H), 6.86 (t, J = 7.9 Hz, 1H), 7.08 (d, 

J = 7.8 Hz, 1H), 7.23-7.25 (m, 2H), 7.30-7.50 (m, 4H), 7.54-7.65 (m, 4H), 7.71 (d, J = 

7.9 Hz, 1H), 7.88 (d, J = 6.6 Hz, 2H), 8.02 (d, J = 7.5 Hz, 2H), 8.07 (d, J = 7.3 Hz, 2H); 

13C NMR (63 MHz, CDCl3) δ 110.6, 117.5, 119.5, 123.9, 123.9, 125.9, 128.0, 128.2, 

128.5, 128.7, 129.0, 129.8, 130.5, 131.9, 132.0, 132.1, 132.8, 133.3, 138.3, 138.3, 141.6, 

143.3; 31P NMR (101 MHz, CDCl3) δ 32.1. 

4-tert-butyl-2,6-diformylphenyl trifluoromethanesulfonate (117):  Commercially 

available phenol 116 (1.741 g, 8.44 mmol) and stirbar were treated 

with pyridine (1.229 mL, 15.1 mmol) at 0 oC in dichloromethane (50 

mL) under a dry N2 balloon.  Triflic anhydride (1.845 mL, 10.9 

mmol) was added by syringe pump (0.2 mL/min) dropwise over 10 minutes.  The 

reaction mixture was warmed to room temperature and was stirred for an additional 30 

minutes when reaction completion was observed by TLC. (Rf = 0.55 in 25% 

EtOAc/hexanes; dark short UV spot).  The reaction was cooled to 0 oC and quenched by 

1.5N HCl (5 mL) and extracted by dichloromethane (30 mL x 2).  The organic extracts 

were dried (MgSO4) and concentrated in vacuo.  The resulting organic layer was filtered 

by silica gel and washed by dichloromethane (100 mL).  Once concentrated by vacuum, 

CHO
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2.38 g crude triflate 117 was recovered in 83% yield as a bright yellow solid. Mp. 51 oC.  

1H NMR: (300 MHz, CDCl3) δ 1.41 (s, 9H), 8.27 (s, 2H), 10.30 (s, 2H), 13C NMR (75 

MHz, CDCl3) δ 30.9, 35.3, 129.4, 132.6, 147.2, 153.4, 185.7; 19F NMR: (235 MHz, 

CDCl3) δ -72.3; IR (NaCl, cm-1) 2970, 2878, 1700, 1595, 1479, 1464, 1436, 1410, 1368, 

1217, 1156, 1136, 1103, 1087, 864, 614, 407; HRMS calculated for C13H13F3O5SNa 

[M+Na]+ 361.0328; Found 361.0335. 

6-tert-butyl-8-formyl-2-S-oxa-2-S-phenyl-2,1-benzothiazine (118):  Dialdehyde 117 

(0.215 g, 0.636 mmol), Pd(OAc)2 (45% Pd, 0.0072 g, 0.0318 

mmol), rac-BINAP (0.0297 g, 0.0477 mmol), methyl phenyl 

sulfoximine 6 (0.118 g, 0.763 mmol), Cs2CO3 (0.332 g, 1.01 

mmol) in toluene (7 mL) was flushed with dry N2 for several minutes.  A reflux 

condenser was added as well as a N2 balloon.  The mixture was stirred at reflux 

temperature (120 oC) for 20 hours.  The solution was then cooled to room temperature, 

diluted in dichloromethane (10 mL), and filtered through a plug of celite. After being 

concentrated in vacuo, the dark residue was purified by flash chromatography (silica gel) 

with 25% EtOAc/hexanes (Rf = 0.16 in 25% EtOAc/hexanes; long UV light blue spot) to 

afford 0.095 g 118 in 46% as an orange solid.  Mp. 131 oC.   1H NMR: (300 MHz, 

CDCl3) δ 1.37 (s, 9H), 6.46 (d, J = 9.9 Hz, 1H), 7.59-7.68 (m, 4H), 7.69 (d, J = 8.1 Hz, 

1H), 7.88 (d, J = 6.96 Hz, 2H), 8.15 (d, J = 2.50 Hz, 1H), 10.87 (s, 1H); 13C NMR (75 

MHz, CDCl3) δ 31.2, 34.2, 111.0, 116.7, 127.6, 128.6, 128.7, 129.0, 129.1, 132.5, 133.6, 

138.6, 141.1, 142.7, 145.3, 191.5; IR (NaCl, cm-1) 2965, 2868, 1678, 1614, 1543, 1448, 

1310, 1299, 1280, 1242, 1221, 1120, 1097, 607, 573, 499; HRMS calculated for 

C19H19NO2SNa [M+Na]+ 348.1029; Found 348.1028. 

N
S O

CHO

 134



(6-tert-butyl-2-S-oxa-2-S-phenyl-2,1-benzothiazin-8-yl)methanol (119):  Aldehyde  

118 (0.210 g, 0.645 mmol) was dissolved in DCM (6.5 mL) with 

a magnetic stirbar and cooled to -40 oC.  Next, DIBALH (1.29 

mL, 1M solution, 1.29 mmol) was added dropwise to aldehyde 

118 over 30 minutes and then warmed to room temperature.  

Reaction completion was found by TLC. (Rf = 0.55 in 50% EtOAc/hexanes; orange long 

UV spot).  The reaction was quenched with water (5 mL) and extracted by 

dichloromethane (3 x 5 mL).  The organic extracts were again washed by water (5 mL), 

dried (MgSO4), and concentrated in vacuo.  The remaining crude oil was pure by 1H 

NMR affording 0.208 g of benzothiazine 119 in 99% yield as an orange oil. 1H NMR: 

(250 MHz, CDCl3) δ 1.35 (s, 9H), 3.83 (s, 1H, broad), 4.79 (d, J = 12.7 Hz, 1H), 4.99 (d, 

J = 12.7 Hz, 1H), 6.36 (d, J = 9.8 Hz, 1H), 7.29 (d, J = 2.3 Hz, 1H), 7.51–7.65 (m, 4H), 

7.68 (d, J = 9.8 Hz, 1 H), 7.87 (d, J = 6.7 Hz, 2 H); 13C NMR (63 MHz, CDCl3) δ 31.2, 

34.1, 64.0, 109.6, 115.2, 124.9, 128.5, 128.9, 129.1, 132.9, 133.3, 139.2, 141.4, 141.5, 

142.6; IR (NaCl, cm-1) 3445, 3070, 2966, 2246, 1616, 1588, 1551, 1448, 1296, 1269, 

1250, 1118, 1098, 1005, 989, 736, 577, 511; HRMS calculated for C19H21NO2SNa 

[M+Na]+ 35

N
S O

OH

0.1185; Found 350.1183. 

 (2-S-oxa-2-S-phenyl-2,1-benzothiazine-8-yl) trifluoromethylsulfonate (120):  Phenol 

111 (0.196 g, 0.763 mmol) and stirbar were treated with pyridine 

(0.309 mL, 3.81 mmol) at 0 oC in dichloromethane (50 mL) under a dry 

N2 balloon.  Triflic anhydride (0.270 mL, 1.60 mmol) was added by 

syringe pump (0.2 mL/min) dropwise over 10 minutes.  The reaction mixture was 

warmed to room temperature and was stirred for an additional 30 minutes when reaction 

N
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completion was observed by TLC. (Rf = 0.09 in 25% EtOAc/hexanes; blue green long 

UV spot).  The reaction was cooled to 0 oC and quenched by 1.5N HCl (5 mL) and 

extracted by dichloromethane (30 mL x 2).  The organic extracts were dried (MgSO4) and 

concentrated in vacuo.  The resulting organic layer was filtered by silica gel and washed 

by dichloromethane (100 mL).  Once concentrated by vacuum, a thick yellow-orange 

semi-solid afforded 0.297 g crude triflate 120 in 100% yield.  Mp. 48 oC.  1H NMR: (250 

MHz, CDCl3) δ 6.47 (d, J = 9.8 Hz, 1H), 6.99 (t, J = 7.9 Hz, 1H), 7.30–7.39 (m, 2H), 

7.51–7.64 (m, 3H), 7.64 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 6.7 Hz, 2H); 13C NMR (63 

MHz, CDCl3) δ 112.2, 116.2, 118.2, 119.1, 121.3, 124.0, 126.4, 128.6, 129.1, 129.4, 

133.6, 136.9, 137.3, 138.4, 140.5, 142.0, 148.8; 19F NMR: (235 MHz, CDCl3) δ -73.9; IR 

(NaCl, cm-1) 3069, 2928, 1617, 1540, 1436, 1423, 1294, 1249, 1216, 1159, 1141, 1102, 

1002, 992, 864, 803, 589, 499; HRMS calculated for C15H10F3NO4S2Na [M+Na]+ 

411.9896; Found 411.9898. 

8-chloro-2-S-oxa-2-S-phenyl-2,1-benzothiazine (121):  (N-Arylation Procedure A)  

This reaction required an extended reaction time of 6 days of 

refluxing toluene for observable amounts of product by TLC (Rf = 

0.73 in 50% EtOAc/hexanes; light green long UV spot) with matching 

1H and 13C NMR spectra as reported in the literature31 in 40% yield as a white solid. Mp. 

189 oC.  1H NMR: (250 MHz, CDCl3) δ 7.44 (d, J = 9.8 Hz, 1H), 7.0 (t, J = 7.8 Hz, 1H), 

7.30 (dd, J1 = 7.8 Hz, J2 = 1.4 Hz, 1H), 7.53–7.67 (m, 5H), 7.92 (d, J = 6.7 Hz, 2H); 13C 

NMR (63 MHz, CDCl3) δ 111.2, 117.4, 120.0, 127.5, 128.3, 128.9, 129.0, 132.2, 133.5, 

138.2, 141.1, 1

N
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42.0. 
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2,6-bis(chloromethyl)pyridinium chloride (127):  (Step 1 of 3) Commercially available 

dicarboxylic acid 126 (2.57 g, 15.4 mmol) was suspended in absolute 

ethanol (80 mL).  Six drops of concentrated sulfuric acid was then added 

and the mixture was brought to reflux (85 oC) for 20 hours.  The solvent was removed 

under full vacuum and the product was not purified further affording 3.17 g of diethyl 

pyridine-2,6-dicarboxylate in 92% yield as a white semi-solid with matching 1H and 13C 

NMR spectra as reported in the literature.33  (Rf = 0.15 in 50% EtOAc/hexanes; yellow-

orange long UV spot).  Mp. 29 oC.  1H NMR: (250 MHz, CDCl3) δ 1.46 (t, J = 7.3 Hz, 

6H), 4.49 (q, J1 = 7.2 Hz, 4H), 8.02 (t, J = 7.3 Hz, 1H), 8.29 (d, J = 6.3 Hz, 2H); 13C 

NMR (63 MHz, CDCl3) δ 14.1, 62.2, 126.6, 127.7, 128.6, 138.1, 148.6, 164.5.  (Step 2 of 

3)  Then diethyl pyridine-2,6-dicarboxylate (3.17 g, 14.1 mmol) was dissolved in 

absolute ethanol (75 mL).  NaBH4 (1.07 g, 17.0 mmol) was added in portions in air and 

then CaCl2 (2.15 g, 17.0 mmol) was added in portions evolving hydrogen gas at room 

temperature.  The reaction mixture was stirred further for 4 hours at which time no 

starting material remained by TLC and a dark baseline spot appears (Rf = 0.0 in 25% 

EtOAc/hexanes; dark short UV spot).  The solvent was evaporated under vacuum and 

saturated potassium carbonate solution was added (30 mL) and left overnight.   

Dichloromethane was then added (50 mL) which was extracted by EtOAc (3 x 25 mL) 

and dried (MgSO4) and the solvent was again removed resulting in an off white solid that 

was recrystallized in absolute ethanol to afford 1.63 g of pyridine-2,6-diyldimethanol in 

82% yield with matching 1H and 13C NMR spectra as reported in the literature.34  Mp. 

131 oC.  1H NMR: (300 MHz, CDCl3) δ 3.35 (s, 2H, broad), 4.78 (s, 4H), 7.19 (d, J = 7.5 

Hz, 2H), 7.69 (t, J = 7.8 Hz, 1H); 13C NMR (63 MHz, CDCl3) δ 63.9, 128.4, 129.6, 

N
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139.3.  (Step 3 of 3)  A portion of the pyridine-2,6-diyldimethanol (0.269 g, 1.93 mmol) 

was suspended in diethyl ether (10 mL) and cooled to 0 oC.  Then SOCl2 (0.170 mL, 2.32 

mmol) was added in diethyl ether (5 mL) over 15 minutes.  The reaction mixture was 

warmed to room temperature and stirred overnight.  The white hydrochloride salt was 

filtered to afford 0.382 g of 127 in 93% with matching 1H and 13C NMR spectra as 

reported in the literature.35 Mp. 117 oC.  1H NMR: (250 MHz, CDCl3) δ 2.17 (s, H), 5.22 

(s, 4H), 7.98 (d, J = 8.0 Hz, 2H), 8.38 (t, J = 8.0 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 

50.8, 123.4, 146.5, 150.9. 

R,R-2,6-bis(dimethyl-8-O-2-S-oxa-2-S-phenyl-2,1-benzothiazine)pyridine (128):  

Phenol 111 (0.106 g, 0.414 mmol) and stirbar were treated 

with NaH (60% in mineral oil, 0.026 g, 0.6587 mmol) at 0 

oC in DMF (10 mL) under a dry N2 balloon resulting in a 

dark red solution. After 5 minutes, the 2,6-

bis(chloromethyl)pyridinium chloride (0.040 g, 0.188 

mmol) was added as a solid, allowed to warm to room temperature and stirred until 

completion by TLC (20 hours) (Rf = 0.15 in 50% EtOAc/hexanes; yellow-orange long 

UV spot).  The reaction was quenched with water (5 mL) and extracted by 

dichloromethane (3 x 5 mL).  The organic extracts were again washed by water (5 mL), 

dried (MgSO4), and concentrated in vacuo.  The remaining crude oil was purified by flash 

chromatography (silica gel) with 50% EtOAc/hexanes and flushed by 80% 

EtOAc/hexanes to afford 0.073 g of heterocycle 128 in 89% as an off-white solid.  Mp. 

124 oC.   1H NMR: (250 MHz, CDCl3) δ 5.42 (s, 4H), 6.35 (d, J = 9.8 Hz, 2H), 6.6 (t, J = 

7.6 Hz, 2H), 6.95 (d, J = 7.6 Hz, 4H), 7.47-7.66 (m, 11H), 7.89 (d, J = 6.6 Hz, 4H); 13C 
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NMR (63 MHz, CDCl3) δ 71.6, 110.3, 115.3, 117.0, 119.6, 120.0, 122.3, 128.8, 129.05, 

133.2, 136.1, 137.6, 138.5, 141.7, 150.8, 157.0;  IR (NaCl, cm-1) 3015, 1605, 1546, 1464, 

1449, 1432, 1284, 1256, 1223, 1206, 1105, 1090, 993, 792, 729, 426; HRMS calculated 

for C35H27N3O4S2Na [M+Na]+ 640.1335; Found 680.1362. 

Cd-complex (129a): The heterocycle 128 (0.0244 g, 0.00394 mmol) was dissolved in 

dichloromethane (1 mL) and CdI2 (0.0217 g, 0.00592 

mmol) was added in methanol (1 mL) with a stirbar, 

then flushed with dry N2. The solution was heated to 

reflux (40 oC) for 3 hours and then cooled to room 

temperature.  The flask was capped and allowed to 

stand for 48 hours from which off-white spikes formed, 

the crystals were filtered to afford 0.0354 g of Cd-complex 129a in 84% as off-white 

needles.  Mp: 192 oC. The absolute structure was identified by x-ray crystal analysis.  

Due to the insolubility of this complex in many commercially available deuterated 

solvents, no NMR or IR data was taken. 
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6-bromopicolinaldehyde (131):  The commercially available dibromide 130 (10.0 g, 

42.3 mmol) dissolved in THF (35 mL) and was added to a diluted 

solution of n-BuLi (18.4 mL, 2.3M, 42.3 mmol) in THF (50 mL) at -

78 oC dropwise over 1.5 hours such that -75 oC was maintained throughout the duration.  

The reaction mixture was stirred an additional 30 minutes.  DMF (4.92 mL, 63.5 mmol) 

was added to the dark green solution and warmed to 0 oC and then room temperature.  

The solvent was quenched by saturated ammonium chloride solution (10 mL), extracted 

by DCM (3 x 25 mL), concentrated and purified by flash chromatography (silica gel) 

NBr CHO
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with 100% DCM (Rf = 0.28 in 100% DCM; dark short UV spot) to afford 1.11 g of 131 

in 7% isolated yield as a orange to brown solid with matching 1H and 13C NMR spectra 

as reported in the literature.36 Mp. 74 oC.  1H NMR: (300 MHz, CDCl3) δ 7.73–7.81 (m, 

1H), 7.94 (d, J = 6.9 Hz, 2H), 10.0 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 120.3, 132.6, 

139.3, 142.5, 153.3, 191.5. 

 2-(chloromethyl)-6-phenylpyridinium chloride (132):  (Step 1 of 3) Aldehyde 131 

(0.227 g, 1.22 mmol), Pd(PPh3)4 (0.0423g, 0.0366 mmol), Na2CO3 

(1.10 mL, 2.0M, 2.20 mmol), diphenyl boronic acid ( 0.208 g, 1.71 

mmol) and a stirbar were added to PhMe (10 mL).  The mixture 

was refluxed overnight and diluted with DCM (20 mL).  The aqueous layer was extracted 

by DCM (3 x 10 mL), dried (MgSO4) which corresponded to >95% conversion of crude 

6-phenylpicolinaldehyde as a white semi-solid with matching 1H NMR as reported in the 

literature.37  1H NMR: (250 MHz, CDCl3) δ 7.67–7.72 (m, 3H), 7.87–7.97 (m, 3H), 7.94 

(d, J = 5.8 Hz, 2H), 10.17 (s, 1H); (Step 2 of 3)  The crude residue of 6-

phenylpicolinaldehyde (0.224 g, 1.22 mmol) was dissolved in absolute ethanol (25 mL).  

NaBH4 (0.0693 g, 1.83 mmol) was added at 0o C.  The reaction mixture was stirred 

further for 2 hours at which time no starting material remained by TLC (Rf = 0.46 in 50% 

EtOAc/hexanes; light blue long UV spot).  The solvent was evaporated under vacuum.  

Then EtOAc (10 mL) was added with 1N HCl (1 mL) and further extracted by EtOAc (3 

x 5 mL) and dried (MgSO4) and the solvent was again removed and the remaining clear 

semi-solid gave quantitative crude conversion of (6-phenylpyridin-2-yl)methanol with the 

same 1H NMR spectra as reported in the literature.38   1H NMR: (300 MHz, CDCl3) δ 

4.20 (s, 1H, broad), 4.78 (s, 2H), 7.14 (d, J = 7.5 Hz, 1H), 7.36–7.46 (m, 4H), 7.57 (d, J 
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= 7.8 Hz, 1H), 7.67 (t, J = 7.8 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H);  (Step 3 of 3)  The 

residue of (6-phenylpyridin-2-yl)methanol (0.328 g, 1.77 mmol) was suspended in 

diethyl ether (10 mL) and cooled to 0 oC.  Then SOCl2 (0.155 mL, 2.13 mmol) was added 

in diethyl ether (5 mL) over 15 minutes.  The reaction mixture was warmed to room 

temperature and stirred overnight.  The tan hydrochloride salt was filtered to afford 0.417 

g of 132 in 98% yield over 3 steps with matching 1H and 13C NMR spectra as reported in 

the literature.38  Mp. 132 oC.  1H NMR: (250 MHz, CDCl3) δ 2.17 (s, 1H), 4.91 (s, 2H), 

7.38–7.53 (m, 4H), 7.63 (d, J = 7.8 Hz, 1H), 7.78 (t, J = 7.8 Hz, 1H), 8.00 (d, J = 6.9 Hz, 

2H).  13C NMR (63 MHz, CDCl3) δ 42.6, 127.3, 127.8, 130.2, 130.8, 132.0, 133.5, 149.3, 

153.1, 155.2. 

 R-2-(methyl-8-O-2-S-oxa-2-S-phenyl-2,1-benzothiazine)-6-phenylpyridine (133):  

Phenol 111 (0.0922 g, 0.358 mmol) and stirbar were 

treated with NaH (60% in mineral oil, 0.034 g, 0.854 

mmol) at 0 oC in DMF (7 mL) under a dry N2 balloon 

resulting in a dark red solution. After 5 minutes, 132 

(0.082 g, 0.341 mmol) was added as a solid, allowed to 

warm to room temperature and stirred until completion by TLC (20 hours) (Rf = 0.41 in 

50% EtOAc/hexanes; yellow long UV spot).  The reaction was quenched with water (5 

mL) and extracted by dichloromethane (3 x 5 mL).  The organic extracts were again 

washed by water (5 mL), dried (MgSO4), and concentrated in vacuo.  The remaining 

crude oil was purified by flash chromatography (silica gel) in 25% EtOAc/hexanes to 

afford 0.0684 g of heterocycle 133 in 47% as an orange semi-solid.  1H NMR: (250 MHz, 

CDCl3) δ 5.50 (s, 2H), 6.41 (d, J = 9.8 Hz, 1H), 6.87 (t, J = 7.9 Hz, 1H), 7.01 (t, J = 8.6 
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Hz, 2H), 7.37-7.70 (m, 10H), 7.94 (d, J = 6.8 Hz, 2H), 8.00 (d, J = 6.9 Hz, 2H); 13C 

NMR (63 MHz, CDCl3) δ 71.8, 110.3, 115.1, 116.9, 119.1, 119.5, 119.6, 122.2, 126.9, 

128.7, 128.9, 129.1, 133.2, 136.0, 137.4, 138.4, 139.3, 141.6, 150.7, 156.6, 157.7; IR 

(NaCl, cm-1) 3064, 2927, 2232, 1605, 1595, 1544, 1448, 1433, 1285, 1218, 1106, 992, 

763, 686, 590, 501, 459; HRMS calculated for C26H20N2O2SNa [M+Na]+ 447.1138; 

Found 447.1136. 

5.2.2   Synthetic Procedures and Compound Characterization:  Chapter 3 

N-phenyl-S-oxa-S-phenyl-S-methyl sulfoximine (2):  (N-Arylation Procedure B) 

Chloro benzene 134 (0.250 g, 2.22 mmol), sulfoximine 6 (0.413, 2.66 

mmol), Pd2dba3 (0.0508 g, 0.0555 mmol), Cs2CO3 (1.157 g, 3.55 mmol), 

and RuPhos (0.0776 g, 0.166 mmol) were added together in a sealed tube in air with 

toluene (22 mL).  The sealed tube was capped in air and refluxed to 135 oC.  The reaction 

was stopped after 6 hours by a power outlet timer.  Once at room temperature, the 

reaction was diluted in dichloromethane (10 mL) and filtered through a plug of celite. 

After being concentrated in vacuo, the brownish semi-solid was purified by flash 

chromatography (silica gel) with 25% EtOAc/hexanes (Rf = 0.23 in 25% EtOAc/hexanes; 

dark short UV spot) to afford 0.513 g 2 in 100% as a orange solid with matching 1H and 

13C NMR spectra as reported in the literature.6  Mp. 75 oC.   1H NMR: (300 MHz, CDCl3) 

δ 3.20 (s, 3H), 6.84 (t, J = 7.1 Hz, 1H), 7.01 (d, J = 7.1 Hz, 2H), 7.09 (t, J = 8.3 Hz, 2H), 

7.44-7.57 (m, 3H), 7.96 (d, J = 8.2 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 45.8, 121.5, 

123.1, 128.4, 128.8, 129.4, 133.1, 139.2, 144.8. 
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R,R-N-(2-S-oxa-2-S-phenyl-2,1-benzothiazine-8-yl)-S-oxa-S-phenyl-S-methyl 

sulfoximine (123):  (N-Arylation Procedure B)  Another addition of 

Pd2dba3, RuPhos, sulfoximine 6 and Cs2CO3 was added after 24 

hours and an additional 24 hours reaction time was added.  Orange 

oil in 91% yield.  (Rf = 0.17 in 50% EtOAc/hexanes; yellow long 

UV spot)  This compound had matching 1H and 13C NMR spectra as reported in the 

literature.31  1H NMR: (300 MHz, CDCl3) δ 3.18 (s, 3H), 6.32 (d, J = 9.7 Hz, 1H), 6.74 (t, 

J = 7.7 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 7.27-7.63 (m, 10H), 7.85 (d, J = 7.6 Hz, 2H); 

13C NMR (75 MHz, CDCl3) δ 45.0, 109.5, 116.8, 120.0, 124.1, 128.0, 128.5, 128.6, 

128.7, 128.9, 132.7, 133.1, 137.4, 139.3, 140.2, 141.2, 142.3. 
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S,S-1N,2N-bis(S-oxa-S-phenyl-S-methyl sulfoximine)benzene (31):  (N-Arylation 

Procedure B) Another addition of Pd2dba3, RuPhos, sulfoximine 6 

and Cs2CO3 was added after 24 hours and an additional 24 hours 

reaction time was added.  This compound could not be separated 

from sulfoximine 6 and was calculated in 8-37% conversions from 

an orange oily reaction mixture (Rf = 0.02 in 50% EtOAc/hexanes; dark short UV spot).  

For that reason 1H and 13C NMR spectra reported in the literature is listed herein for 

reference.  1H NMR: (400 MHz, CDCl3) δ 3.37 (s, 6H), 6.70 (d, J = 3.6 Hz, 2H), 7.04 (d, 

J = 3.6 Hz, 2H), 7.49-7.59 (m, 6H), 8.12-8.15 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 

45.8, 122.5, 124.1, 128.6, 129.2, 132.8, 129.2, 132.8, 138.3, 140.2.14
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N-(2-bromophenyl)-S-oxa-S-phenyl-S-methyl sulfoximine (30):  (N-Arylation 

Procedure B)  Orange oil in 37-45% yield.  This compound (Rf = 0.43 in 

25% EtOAc/hexanes; dark short UV spot) matched 1H and 13C NMR 

spectra reported in the literature.14  1H NMR: (250 MHz, CDCl3) δ 3.25 (s, 3H), 6.76 (t, J 

= 7.9 Hz, 1H), 7.03 (t, J = 7.9 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.48-7.60 (m, 4H), 8.08 

(d, J = 6.6 Hz, 2H); 13C NMR (63 MHz, CDCl3) δ 45.4, 119.3, 123.1, 123.6, 127.9, 

128.6, 129.5, 132.9, 133.4, 139.0, 143.4. 

N
S
Me

O
Ph

Br

2-S-oxa-2-S-phenyl-2,1-benzothiazine (1):  (N-Arylation Procedure B)  Yellow solid in 

86% yield.  This compound (Rf = 0.32 in 25% EtOAc/hexanes; yellow 

long UV spot) matched 1H and 13C NMR spectra reported in the 

literature.5,7  Mp. 163 oC.  1H NMR: (250 MHz, CDCl3) δ 6.38 (d, J = 9.8 Hz, 1H), 7.03 

(t, J = 8.0 Hz, 1H), 7.31 (t, J = 11.0 Hz, 2H), 7.46 (t, J = 6.8 Hz, 1H), 7.51-7.62 (m, 3H), 

7.66 (d, J = 9.8 Hz, 1H), 7.90 (d, J = 6.5 Hz, 2H); 13C NMR (63 MHz, CDCl3) δ 109.9, 

116.1, 120.2, 124.2, 128.7, 129.0, 129.6, 132.1, 133.2, 138.8, 141.6, 145.1. 

N
S O

Ph

4-phenyl-2-S-oxa-2-S-phenyl-2,1-benzothiazine (26):  (N-Arylation Procedure B)  

Yellow solid in 77% yield.  This compound (Rf = 0.58 in 25% 

EtOAc/hexanes; green long UV spot) matched 1H and 13C NMR spectra 

reported in the literature.5,7  Mp. 140 oC.  1H NMR: (250 MHz, CDCl3) δ 

6.32 (s, 1H), 7.03 (m, 1H), 7.35 (d, J = 8.6 Hz, 1H), 7.44-7.59 (m, 10H), 7.98 (d, J = 7.7 

Hz, 2H); 13C NMR (63 MHz, CDCl3) δ 108.4, 116.9, 119.9, 124.7, 128.0, 128.4, 128.8, 

128.9, 129.0, 131.8, 133.2, 137.2, 141.3, 145.8, 150.8.   

N
S O

Ph

Ph
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5.2.3   Synthetic Procedures and Compound Characterization:  Chapter 4 

3-(trimethylsilyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154a): Lithiation Procedure 

A: To an oven dried, N2 cooled flask with stirbar, benzothiazine 1 

(0.107 g, 0.443 mmol) was added and covered with a rubber septum.  

The flask was charged with argon, and freshly distilled THF (4 mL) 

was added via syringe.  The reaction was then cooled to –78 oC via a dry ice/acetone 

bath.  Then n-BuLi (0.256 mL, 2.08M, 0.532 mmol) was added drop-wise to the cooled 

solution resulting in a dark orange solution.  After 5 minutes, TMSCl (0.0793 mL, 0.621 

mmol) was added thru the rubber septum by syringe.  The reaction mixture was stirred 

further for up to 3 hours (or until completion was observed by TLC).  The mixture was 

quenched with saturated ammonium chloride (2 mL) and extracted with dichloromethane 

(3 x 5 mL), concentrated in by vacuum, and dried (MgSO4).  Purification (Rf = 0.40 in 

25% EtOAc/hexanes; yellow long UV spot) by flash chromatography (silica gel) with 

25% EtOAc/ hexane afforded 136.5 g 154a as a yellow solid in 98% yield.  Mp. 183 oC.  

1H NMR: (250 MHz, CDCl3) δ 0.05 (s, 9H), 6.99 (t, J = 8.0 Hz, 1H), 7.24 (d, J = 7.9 Hz, 

1H), 7.35 (d, J = 7.8 Hz, 1H), 7.43 (t, J = 6.9 Hz, 1H), 7.49–7.63 (m, 3H), 7.74 (s, 1H), 

7.87 (d, J = 7.0 Hz, 2H); 13C NMR (63 MHz, CDCl3) δ -0.7, 116.3, 119.7, 121.4, 123.7, 

128.7, 129.3, 129.7, 132.3, 133.2, 142.5, 145.6, 146.0; IR (NaCl, cm-1) 3015, 2964, 1605, 

1577, 1531, 1308, 1289, 1254, 1206, 990, 845, 729, 426; HRMS calculated for 

C17H19NOSSiNa [M+Na]+ 336.0849; Found 336.0851. 

N
S O

Ph

Si
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3-(triethylsilyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154b): (Lithiation Procedure 

A)  Yellow solid in 94% yield.  (Rf = 0.57 in 25% EtOAc/hexanes; 

yellow long UV spot) Mp. 60 oC.  1H NMR: (250 MHz, CDCl3) δ 

0.37 (sextet, J = 8.0 Hz, 3H), 0.63 (sextet, J = 8.2 Hz, 3H), 0.84 (t, J 

= 7.7 Hz, 9H), 6.98 (t, J = 6.8 Hz, 1H), 7.24 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 7.8 Hz, 1H), 

7.42 (t, J = 8.4 Hz, 1H), 7.47–7.62 (m, 3H), 7.71 (s, 1H), 7.87 (d, J = 6.9 Hz, 2H); 13C 

NMR (63 MHz, CDCl3) δ 3.1, 6.8, 116.1, 118.4, 119.5, 123.5, 128.4, 129.0, 129.6, 132.1, 

133.1, 142.7, 145.5, 147.0; IR (NaCl, cm-1) 2959, 2912, 2878, 1605, 1576, 1529, 1308, 

1289, 1308, 1224, 1127, 1004, 848, 787, 723, 667, 580, 438; HRMS calculated for 

C20H25NOSSiNa [M+Na]+ 378.1318; Found 378.1313. 

N
S O

Ph

Si

3-(tri-iso-propylsilyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154c): (Lithiation 

Procedure A)  Orange solid in 94% yield.  (Rf = 0.55 in 25% 

EtOAc/hexanes; yellow long UV spot)  Mp. 115 oC.  1H NMR: (250 

MHz, CDCl3) δ 0.75 (d, J = 6.6 Hz, 9H), 0.95-1.11 (m, 12H), 6.88 

(t, J = 7.5 Hz, 1H), 7.12 (d, J = 8.3 Hz, 1H), 7.25 (d, J = 7.7 Hz, 1H), 7.32 (t, J = 8.5 Hz, 

1H), 7.34–7.50 (m, 3H), 7.69 (s, 1H), 7.75 (d, J = 6.7 Hz, 2H); 13C NMR (63 MHz, 

CDCl3) δ 11.7, 17.6, 18.2, 18.5, 115.8, 117.2, 119.4, 123.3, 128.4, 128.8, 129.7, 132.3, 

133.0, 144.1, 145.4, 148.7; IR (NaCl, cm-1) 3013, 2949, 2869, 1605, 1527, 1467, 1448, 

1313, 1206, 1127, 1097, 988, 883, 844, 787, 727, 684, 643, 478; HRMS calculated for 

C23H31NOSSiNa [M+Na]+ 420.1788; Found 420.1791. 

N
S O

Ph

Si
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3-(dimethyl-tert-butylsilyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154d): (Lithiation 

Procedure A)  Yellow solid in 85% yield.  (Rf = 0.44 in 25% 

EtOAc/hexanes; yellow long UV spot)  Mp. 117 oC.  1H NMR: (300 

MHz, CDCl3) δ -0.20 (s, 3H), 0.17 (s, 3H), 0.87 (s, 9H), 6.97 (t, J = 

8.1 Hz, 1H), 7.21 (d, J = 8.3 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 7.41 (t, J = 8.3 Hz, 1H), 

7.48–7.60 (m, 3H), 7.80-7.84 (m, 3H); 13C NMR (75 MHz, CDCl3) δ -5.1, -4.8, 17.7, 

26.5, 115.8, 119.0, 119.6, 123.5, 128.5, 128.9, 129.7, 132.4, 132.9, 143.7, 145.4, 148.3; 

IR (NaCl, cm-1) 3067, 3015, 1605, 1579, 1531, 1286, 1224, 1206, 1097, 991, 728, 685, 

438; HRMS calculated for C20H25NOSSiNa [M+Na]+ 378.1318; Found 378.1315. 

N
S O

Ph

Si

3-(phenylsulfanyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154e): (Lithiation 

Procedure A)  Yellow solid in 38-92% yield.  (Rf = 0.41 in 25% 

EtOAc/hexanes; yellow long UV spot)  Mp. 104 oC.  1H NMR: (250 

MHz, CDCl3) δ 7.05 (t, J = 8.0 Hz, 1H), 7.11 (s, 5H), 7.32-7.54 (m, 

7H), 7.80 (d, J = 7.2 Hz, 1H), 7.98 (s, 1H); 13C NMR (63 MHz, CDCl3) δ 116.0, 118.5, 

120.4, 124.0, 127.2, 128.5, 128.9, 129.2, 129.7, 130.1, 132.8, 133.4, 134.6, 138.5, 145.4, 

147.9; IR (NaCl, cm-1) 3015, 2960, 2860, 1605, 1575, 1529, 1468, 1310, 1257, 1205, 

1097, 988, 844, 811, 728, 667; HRMS calculated for C20H15NOS2Na [M+Na]+ 372.0487; 

Found 372.0470. 

N
S O

Ph

S
Ph

3-(hydroxydiphenylmethyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154f): (Lithiation 

Procedure A)  Tan solid in 91 % yield.  (Rf = 0.26 in 25% 

EtOAc/hexanes; orange long UV spot)  Mp. 176 oC.  1H NMR: 

(250 MHz, CDCl3) δ 3.86 (s, 1H, broad), 6.97-7.10 (m, 6H), 

7.15-7.47 (m, 12H), 7.59 (d, J = 7.2 Hz, 2H); 13C NMR (63 N
S O

Ph

OH
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MHz, CDCl3) δ 81.6, 116.6, 120.3, 123.5, 126.6, 127.1, 127.6, 127.9, 128.0, 128.3, 

128.4, 130.0, 130.3, 131.9, 132.6, 138.3, 139.5, 141.3, 144.4, 145.8; IR (NaCl, cm-1) 

3579, 3064, 3018, 1608, 1447, 1292, 1223, 1206, 1188, 729, 702, 471, 445; HRMS 

calculated for C27H21NO2SNa [M+Na]+ 446.1185; Found 446.1185. 

3-(2-bromophenyl(hydroxy)methyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154g): 

(Lithiation Procedure A)  A racemic mixture of two diastereomers 

(1.4:1) was made  as off-white solids in 94% overall yield. (Rf = 

0.46 in 25% EtOAc/hexanes; yellow long UV spot)  Major 

diastereomer:  Mp. 204 oC.  1H NMR: (300 MHz, CDCl3) δ 3.49 (d, 

J = 2.3 Hz, 1H), 5.57 (d, J = 1.6 Hz, 1H), 6.94 (s, 1H), 6.98 (d, J = 8.0 Hz, 1H), 7.15-

7.21 (m, 2H), 7.32 (d, J = 8.1 Hz, 1H), 7.39-7.46 (m, 3H), 7.53-7.58 (m, 2H), 7.65 (t, J = 

7.3 Hz, 1H), 7.78 (d, J = 7.7 Hz, 1H), 8.00 (d, J = 7.3 Hz, 2H);  13C NMR (75 MHz, 

CDCl3) δ 70.4, 116.8, 120.5, 122.2, 123.4, 123.6, 127.7, 128.9, 129.0, 129.7, 130.1, 

130.3, 132.2, 132.7, 133.7, 137.0, 137.5, 138.0, 144.7; IR (NaCl, cm-1) 3540, 3068, 3015, 

1612, 1446, 1288, 1217, 1185, 1129, 1096, 1014, 991, 831, 771, 534; HRMS calculated 

for C21H16BrNO2SNa [M+Na]+ 447.9977; Found 447.9979.  Minor diastereomer:  Mp. 

193 oC.  1H NMR: (300 MHz, CDCl3) δ 2.62 (d, J = 5.7 Hz, 1H), 5.90 (d, J = 5.6 Hz, 

1H), 7.03 (t, J = 8.1 Hz, 1H), 7.08 (t, J = 7.7 Hz, 1H), 7.22-7.28 (m, 2H), 7.33 (m, 7H), 

7.65 (s, 1H), 7.70 (d, J = 7.3 Hz, 2H);  13C NMR (75 MHz, CDCl3) δ 72.3, 116.7, 120.3, 

121.8, 122.6, 123.4, 127.6, 128.7, 129.1, 129.1, 129.9, 130.0, 132.2, 132.2, 132.9, 133.2, 

138.6, 139.3, 140.5, 144.7; IR (NaCl, cm-1) 3592, 3067, 3014, 1612, 1545, 1446, 1343, 

1292, 1227, 1194, 1097, 991, 775, 765, 521; HRMS calculated for C21H16BrNO2SNa 

[M+Na]+ 447.9977; Found 448.0019. 

N
S O

Ph

OH

Br
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3-bromo-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154h): (Lithiation Procedure A)  

Yellow solid in 81% yield.  (Rf = 0.54 in 50% EtOAc/hexanes; yellow-

green long UV spot)  Mp. 105 oC.  1H NMR: (300 MHz, CDCl3) δ 7.06 

(t, J = 7.4 Hz, 1H), 7.32 (d, J = 8.3 Hz, 2H), 7.46 (t, J = 7.5 Hz, 1H), 7.56–7.70 (m, 3H), 

7.82 (s, 1H), 7.93 (d, J = 7.5 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 103.2, 118.6, 120.8, 

123.8, 128.8, 128.9, 130.1, 132.1, 133.9, 138.4, 141.3, 143.5; IR (NaCl, cm-1) 3069, 

3014, 2930, 1604, 1535, 1444, 1342, 1288, 1225, 1206, 1098, 995, 918, 786, 728, 569, 

534; HRMS calculated for C14H10BrNOSNa [M+Na]+ 341.9559; Found 341.9570. 

N
S O

Ph

Br

3-iodo-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154i): (Lithiation Procedure A)  Orange 

solid in 96% yield.  (Rf = 0.68 in 50% EtOAc/hexanes; dark short UV 

spot)  Mp. 103 oC.  1H NMR: (250 MHz, CDCl3) δ 7.04 (t, J = 7.3 Hz, 

1H), 7.26–7.35 (m, 2H), 7.46 (t, J = 7.2 Hz, 1H), 7.55–7.70 (m, 3H), 7.91 (d, J = 6.9 Hz, 

2H), 8.03 (s, 1H); 13C NMR (63 MHz, CDCl3) δ 74.2, 118.9, 120.5, 123.9, 128.7, 128.8, 

130.0, 132.3, 133.8, 139.5, 144.2, 148.6; IR (NaCl, cm-1) 3069, 3014, 1604, 1528, 1342, 

1288, 1207, 1097, 992, 787, 729, 434, 426; HRMS calculated for C14H10INOSNa 

[M+Na]+ 389.9420; Found 389.9421. 

N
S O

Ph

I

3-(1-hydroxycyclohexyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154j): (Lithiation 

Procedure A)  Yellow-tan solid in 97% yield.  (Rf = 0.71 in 50% 

EtOAc/hexanes; light green long UV spot)  Mp. 135 oC.  1H NMR: 

(300 MHz, CDCl3) δ 1.08-1.22 (m, 1H), 1.38-1.92 (m, 9H), 2.07 (s, 

1H), 7.01 (t, J = 8.0 Hz, 1H), 7.23 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 7.8 Hz, 1H), 7.40 (t, J 

= 7.2 Hz, 1H), 7.48-7.60 (m, 3H), 7.61 (s, 1H), 7.83 (d, J = 6.8 Hz, 2H); 13C NMR (75 

MHz, CDCl3) δ 21.5, 21.5, 25.0, 38.3, 40.5, 74.0, 116.4, 120.0, 123.1, 128.5, 128.9, 

N
S O

Ph

HO
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129.4, 130.1, 131.6, 132.8, 135.6, 143.8, 143.9; IR (NaCl, cm-1) 3574, 3016, 2939, 2861, 

1608, 1447, 1343, 1295, 1224, 1206, 1096, 993, 787, 728, 523, 467, 430; HRMS 

calculated for C20H21NO2SNa [M+Na]+ 362.1185; Found 362.1178. 

2-methylpropyl 2-S-oxa-2-S-phenyl-2,1-benzothiazine-3-carboxylate (154k):  

(Lithiation Procedure A)  Yellow solid in 11-51% yield.  (Rf = 

0.45 in 25% EtOAc/hexanes; yellow long UV spot)  Mp. 93 oC.  

1H NMR: (250 MHz, CDCl3) δ 0.74 (d, J = 6.7 Hz, 3H), 0.80 (d, 

J = 6.7 Hz, 3H), 1.75 (septet, J = 6.7 Hz, 1H), 1.38-1.92 (dd, J1 =6.7  Hz, J2 = 3.8 Hz, 

2H), 7.07 (t, J = 7.1 Hz, 1H), 7.31 (d, J = 8.2 Hz, 1H), 7.49-7.65 (m, 5H), 7.92 (d, J = 

6.7 Hz, 2H), 8.56 (s, 1H); 13C NMR (63 MHz, CDCl3) δ 18.9, 18.9, 27.5, 72.0, 111.8, 

116.3, 120.7, 124.0, 128.5, 129.3, 131.3, 133.2, 134.8, 141.5, 145.7, 147.3, 161.9; IR 

(NaCl, cm-1) 3027, 2963, 2875, 1712, 1609, 1533, 1448, 1287, 1206, 1152, 1098, 986, 

469; HRMS calculated for C19H19NO3SNa [M+Na]+ 364.0978; Found 364.0968. 

N
S O

Ph

O

O

2-S-oxa-2-S-phenyl-2,1-benzothiazine-3-carbaldehyde (154l):  (Lithiation Procedure 

A)  Yellow solid in 92% yield.  (Rf = 0.14 in 25% EtOAc/hexanes; 

orange long UV spot)  Mp. 119 oC.  1H NMR: (250 MHz, CDCl3) δ 

7.10 (t, J = 7.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.50-7.68 (m, 5H), 

7.96 (d, J = 7.2 Hz, 2H), 8.23 (s, 1H), 9.57 (s, 1H); 13C NMR (63 MHz, CDCl3) δ 116.4, 

119.1, 121.2, 124.6, 128.8, 129.9, 131.5, 133.8, 135.9, 139.5, 147.2, 148.6, 184.7; IR 

(NaCl, cm-1) 3022, 2928, 2855, 1688, 1609, 1586, 1531, 1291, 1223, 1206, 1153, 729, 

426; HRMS calculated for C15H11NO2SNa [M+Na]+ 292.0403; Found 292.0345. 
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3-(3-hydroxypentan-3yl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154m):  (Lithiation 

Procedure A)  Tan solid in 85% yield.  (Rf = 0.47 in 25% 

EtOAc/hexanes; purple long UV spot)  Mp. 156 oC.  1H NMR: (300 

MHz, CDCl3) δ 0.63 (t, J = 7.4 Hz, 3H), 0.90 (t, J = 7.4 Hz, 3H), 

1.38 (sextet, J = 6.9 Hz, 1H), 1.64 (sextet, J = 7.3 Hz, 1H), 1.77 (q, J = 7.4 Hz, 2H), 2.50 

(s, 1H), 7.02 (t, J = 7.0 Hz, 1H), 7.27 (d, J = 7.3 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 7.37 

(s, 1H), 7.42 (t, J = 8.4 Hz, 1H), 7.48-7.60 (m, 3H), 7.85 (d, J = 7.1 Hz, 2H); 13C NMR 

(75 MHz, CDCl3) δ 7.5, 7.9, 33.3, 34.9, 78.2, 116.4, 120.1, 123.2, 126.5, 128.4, 129.5, 

131.6, 133.0, 136.2 143.0, 144.1; IR (NaCl, cm-1) 3574, 3018, 2975, 1608, 1446, 1344, 

1296, 1224, 1206, 1094, 989, 792, 668, 528; HRMS calculated for C19H21NO2SNa 

[M+Na]+ 350.1185; Found 350.1179. 

N
S O

Ph

OH

3-(hydroxymethyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154n):  (Lithiation 

Procedure A)  Orange solid in 76% yield.  (Rf = 0.03 in 25% 

EtOAc/hexanes; green long UV spot)  Mp. 134 oC.  1H NMR: (300 

MHz, CDCl3) δ 2.05 (s, 1H, broad), 4.36 (s, 2H), 7.05 (t, J = 8.1 Hz, 1H), 7.31 (d, J = 

8.2 Hz, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.46 (t, J = 6.9 Hz, 1H), 7.54-7.70 (m, 4H), 7.90 

(d, J = 6.8 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 60.7, 116.9, 120.5, 121.6, 123.7, 

129.1, 129.4, 129.7, 132.0, 133.6, 137.4, 139.3, 144.7; IR (NaCl, cm-1) 3601, 3465, 3067, 

3014, 2874, 1616, 1447, 1340, 1287, 1224, 1205, 1097, 991, 728, 686, 666, 532; HRMS 

calculated for C15H13NO2SNa [M+Na]+ 294.0559; Found 294.0573. 

N
S O

Ph

OH

3-(2-hydroxyethyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154o):  (Lithiation 

Procedure A)  Yellow solid in 91% yield.  (Rf = 0.13 in 50% 

EtOAc/hexanes; light green long UV spot)  Mp. 74 oC.  1H NMR: N
S O

Ph

OH
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(250 MHz, CDCl3) δ 2.37-2.46 (m, 1H), 2.58-2.67 (m, 1H), 3.66-3.85 (m, 2H), 7.02 (t, J 

= 7.1 Hz, 1H), 7.27-7.35 (m, 2H), 7.42 (t, J = 8.1 Hz, 1H), 7.48 (s, 1H), 7.51-7.67 (m, 

4H), 7.89 (d, J = 6.7 Hz, 2H); 13C NMR (63 MHz, CDCl3) δ 34.1, 62.0, 117.3, 120.1, 

120.4, 123.5, 129.1, 129.1, 129.5, 131.4, 133.5, 138.1, 138.9, 143.8; IR (NaCl, cm-1) 

3620, 3487, 3067, 3016, 1613, 1447, 1289, 1223, 1206, 1099, 993, 729, 470, 426; HRMS 

calculated for C16H15NO2SNa [M+Na]+ 308.0716; Found 308.0726. 

3-(2-hydroxypropan-2-yl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154q):  (Lithiation 

Procedure A)  Green-tan solid in 85% yield.  (Rf = 0.12 in 25% 

EtOAc/hexanes; light green long UV spot)  Mp. 175 oC.  1H NMR: 

(250 MHz, CDCl3) δ 1.28 (s, 3H), 1.50 (s, 3H), 2.58 (s, 1H, broad), 

7.00 (t, J = 7.5 Hz, 1H), 7.24 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 5.9 Hz, 1H), 7.41 (t, J = 

8.5 Hz, 1H), 7.46-7.61 (m, 3H), 7.63 (s, 1H), 7.85 (d, J =6.7 Hz, 2H); 13C NMR (63 

MHz, CDCl3) δ 30.9, 32.6, 72.6, 116.5, 120.1, 123.0, 128.6, 129.3, 129.4, 129.5, 131.6, 

133.0, 135.4, 142.8, 143.8; IR (NaCl, cm-1) 3534, 2975, 2361, 1608, 1546, 1447, 1345, 

1322, 1296, 1202, 990, 910, 521, 507, 502, 408; HRMS calculated for C17H17NO2SNa 

[M+Na]+ 322.0872; Found 322.0869. 

N
S O

Ph

OH

R-(3S,4R)-4-butyl-2-phenyl-3-(phenylsulfanyl)-3,4-dihydro-2-S-oxa-2-S-phenyl-2,1-

benzothiazine (157):  (Lithiation Procedure A)  No electrophile was 

used and the reaction was stirred for 4 hours at -78 oC before it was 

stopped and quenched.  Orange semi-solid in 85% yield in a 3.8:1 

diastereomeric mixture.  (Rf = 0.57 in 25% EtOAc/hexanes; green long 

UV spot) Major diastereomer (all cis product shown):   1H NMR: (250 MHz, CDCl3) δ 

1.00 (t, J = 7.2 Hz, 3H), 1.48-1.61 (m, 4H), 2.06-2.21 (m, 1H), 2.35-2.45 (m, 1H), 3.91 

N
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(m, 1H), 4.56 (d, J = 3.1 Hz, 1H), 6.65 (d, J = 8.4 Hz, 2H), 6.14-6.95 (m, 4H), 7.19 (d, J 

= 7.3, 1H), 7.25-7.32 (m, 2H), 7.38-7.44 (m, 2H), 7.56 (t, J = 7.4 Hz, 1H), 8.04 (d, J = 

7.1 Hz, 2H); 13C NMR (63 MHz, CDCl3) δ 14.1, 22.7, 28.3, 29.3, 120.7, 123.0, 125.8, 

127.6, 128.5, 128.6, 130.0, 131.5, 131.6, 133.9 135.1; IR (NaCl, cm-1) 3478, 3012, 2959, 

2931, 2859, 2361, 1732, 1582, 1477, 1444, 1374, 1251, 1146, 1090, 1023, 787, 689, 471; 

HRMS calculated for C24H25NOS2Na [M+Na]+ 430.1270; Found 430.1275. 

3-iodo-2-S-oxa-2-S,4-diphenyl-2,1-benzothiazine (161d): Lithiation Procedure B: To 

an oven dried, N2 cooled flask with stirbar, benzothiazine 26 (0.052 g, 

0.164 mmol) was added and covered with a rubber septum.  The flask 

was charged with argon, and freshly distilled THF (2 mL) was added via 

syringe.  The reaction was then cooled to –78 oC via a dry ice/acetone bath.  Then n-BuLi 

(0.0936 mL, 2.10M, 0.196 mmol) was added drop-wise to the cooled solution resulting in 

a dark orange solution.  After 15 minutes, I2 (0.0582 g, 0.229 mmol) was added in THF 

(1 mL) thru the rubber septum by syringe.  The reaction mixture was stirred further for up 

to 3 hours (or until completion was observed by TLC).  The mixture was quenched with 

saturated ammonium chloride (2 mL) and extracted with dichloromethane (3 x 5 mL), 

concentrated in by vacuum, and dried (MgSO4).  Purification (Rf = 0.24 in 25% 

EtOAc/hexanes; green long UV spot) by flash chromatography (silica gel) with 25% 

EtOAc/ hexane afforded 0.537 g 161e in 74% yield as an orange solid.  Mp. 83 oC.  1H 

NMR: (250 MHz, CDCl3) δ 6.84 (t, J = 8.2 Hz, 1H), 6.94 (d, J = 8.2 Hz, 1H), 7.07–7.11 

(m, 1H), 7.24–7.68 (m, 9H), 7.99 (d, J = 7.0 Hz, 2H); 13C NMR (63 MHz, CDCl3) δ 

80.9, 119.2, 120.3, 124.0, 128.0, 128.6, 128.7, 129.0, 130.1, 131.9, 133.7, 140.1, 140.9, 

144.6, 156.3; IR (NaCl, cm-1) 3064, 2928, 2855, 2252, 1600, 1566, 1515, 1490, 1326, 
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1249, 1218, 1098, 996, 959, 699, 650, 589, 545, 508, 499, 473; HRMS calculated for 

C20H14INOSNa [M+Na]+ 465.9733; Found 465.9728. 

3-bromo-2-S-oxa-2-S,4-diphenyl-2,1-benzothiazine (161e): (Lithiation Procedure B) 

Yellow solid in 95% yield.  (Rf = 0.47 in 25% EtOAc/hexanes; green 

long UV spot)  Mp. 174 oC.  1H NMR: (250 MHz, CDCl3) δ 6.88–7.01 

(m, 2H), 7.16–7.18 (m, 1H), 7.39–7.71 (m, 9H), 8.05 (d, J = 7.1 Hz, 

2H); 13C NMR (63 MHz, CDCl3) δ 104.1, 119.7, 120.5, 124.1, 128.4, 128.5, 128.7, 

128.9, 130.1, 131.6, 131.9, 133.8, 136.9, 138.7, 143.8, 150.8; IR (NaCl, cm-1) 3065, 

2927, 2855, 1600, 1567, 1523, 1492, 1330, 1252, 1222, 1098, 970, 605, 589, 545, 495, 

476, 447, 408; HRMS calculated for C20H14BrNOSNa [M+Na]+ 417.9872; Found 

417.9866. 
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3-(phenyl(hydroxy)methyl)-2-S-oxa-2-S,4-diphenyl-2,1-benzothiazine (161f): 

(Lithiation Procedure B) A 2.4:1 diastereomeric mixture could not 

be separated by flash chromatography and was identified by its 

mixture as a tan solid in 75% yield.  (Rf = 0.20 in 25% 

EtOAc/hexanes; yellow long UV spot)  A 2.4:1 diastereomeric mixture:  Mp. 103 oC.  1H 

NMR: (250 MHz, CDCl3) δ Major diastereomer:  3.60 (d, J = 5.2 Hz, 1H), 5.78 (d, J = 

5.2 Hz, 1H), 2.59 (s, 1H), 7.64 (d, J = 7.4 Hz, 2H); Minor diastereomer:  2.59 (s, 0.4H), 

5.60 (s, 0.4H), 7.96 (d, J = 6.7 Hz, 0.8H); 6.68–7.42 (m, 27H); 13C NMR (63 MHz, 

CDCl3) δ 70.6, 70.9, 118.7, 102.1, 124.1, 124.8, 125.4, 126.3, 127.5, 127.6, 127.8, 128.1, 

128.3, 128.5, 128.6, 128.8, 129.2, 129.6, 130.4, 131.5, 132.9, 135.5, 139.8, 140.7, 144.6, 

148.6; IR (NaCl, cm-1) 3468, 3064, 2924, 2854, 1601, 1572, 1530, 1336, 1248, 1248, 

N
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1208, 1190, 1153, 1127, 1039, 541, 538; HRMS calculated for C27H21NO2SNa [M+Na]+ 

446.1185; Found 446.1183. 

3-(methylsulfanyl)-2-S-oxa-2-S,4-diphenyl-2,1-benzothiazine (161g): (Lithiation 

Procedure B)    Yellow solid in 98% yield.  (Rf = 0.47 in 25% 

EtOAc/hexanes; yellow long UV spot)  Mp. 137 oC.  1H NMR: (300 

MHz, CDCl3) δ 1.93 (s, 3H), 6.81-6.86 (m, 1H), 6.91 (d, J = 7.8 Hz, 

1H), 7.12-7.15 (m, 1H), 7.37–7.63 (m, 9H), 8.03 (d, J = 8.0 Hz, 2H); 13C NMR (75 MHz, 

CDCl3) δ 21.5, 116.1, 119.2, 119.8, 124.2, 128.2, 128.3, 128.6, 129.0, 130.0, 132.0, 

133.3, 136.4, 139.7, 145.2, 157.6; IR (NaCl, cm-1) 3065, 3045, 2925, 1601, 1562, 1515, 

1490, 1448, 1332, 1245, 1210, 1153, 1097, 996, 971, 821, 590, 550, 491, 463, 431, 428; 

HRMS calculated for C21H17NOS2Na [M+Na]+ 386.0644; Found 386.0640. 
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3-(phenylsulfanyl)-2-S-oxa-2-S,4-diphenyl-2,1-benzothiazine (161h): (Lithiation 

Procedure B)  Yellow solid in 94% yield.  (Rf = 0.46 in 25% 

EtOAc/hexanes; yellow long UV spot)  Mp. 120 oC.  1H NMR: (300 

MHz, CDCl3) δ 6.81-6.89 (m, 3H), 6.95-6.98 (m, 4H), 7.07-7.11 (m, 

1H), 7.21-7.48 (m, 9H), 7.93 (d, J = 7.8 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 113.7, 

119.6, 119.9, 124.3, 126.3, 127.9, 128.2, 128.3, 128.3, 128.4, 128.7, 128.8, 129.3, 129.7, 

130.3, 132.3, 133.2, 135.2, 135.8, 138.3, 145.7, 158.3; IR (NaCl, cm-1) 3065, 3042, 2926, 

1601, 1560, 1512, 1490, 1331, 1244, 1213, 1153, 1097, 995, 972, 819, 684, 590, 553, 

474, 444 441; HRMS calculated for C26H19NOS2Na [M+Na]+ 448.0800; Found 448.0797. 
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3-(ethylsulfanyl)-2-S-oxa-2-S,4-diphenyl-2,1-benzothiazine (161i): (Lithiation 

Procedure B)  Yellow solid in 88% yield.  (Rf = 0.41 in 25% 

EtOAc/hexanes; yellow long UV spot)  Mp. 164 oC.  1H NMR: (300 

MHz, CDCl3) δ 0.87 (t, J = 7.4 Hz, 3H), 2.33-2.43 (m, 2H), 6.81-6.87 

(m, 1H), 6.93 (d, J = 7.8 Hz, 1H), 7.10-7.13 (m, 1H), 7.35-7.44 (m, 5H), 7.45-7.64 (m, 

4H), 8.02 (d, J = 6.8 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 13.9, 32.2, 115.0, 119.2, 

119.7, 124.1, 128.0, 128.1, 128.1, 128.4, 128.6, 129.0, 129.1, 129.9, 131.8, 133.2, 136.4, 

139.5, 145.1, 157.0; IR (NaCl, cm-1) 3066, 3048, 2929, 1601, 1561, 1514, 1490, 1448, 

1331, 1245, 1210, 1154, 1097, 996, 971, 821, 685, 590, 550, 467, 403; HRMS calculated 

for C22H19NOS2Na [M+Na]+ 400.0800; Found 400.0797. 
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3-(cyclohexylsulfanyl)-2-S-oxa-2-S,4-diphenyl-2,1-benzothiazine (161j): (Lithiation 

Procedure B)  Yellow solid in 98% yield.  (Rf = 0.53 in 25% 

EtOAc/hexanes; yellow long UV spot)  Mp. 56 oC.  1H NMR: (300 

MHz, CDCl3) δ 0.71-0.82 (m, 1H), 0.91-0.98 (m, 4H), 1.39-1.58 (m, 

5H), 2.45-2.52 (m, 1H), 6.79-6.88 (m, 1H), 6.95 (d, J = 8.2 Hz, 1H), 

7.09-7.14 (m, 1H), 7.36-7.45 (m, 5H), 7.47-7.64 (m, 4H), 8.03 (d, J = 6.8 Hz, 2H); 13C 

NMR (75 MHz, CDCl3) δ 25.2, 25.6, 25.7, 32.5, 32.8, 49.8, 115.1, 119.2, 119.7, 124.1, 

127.9, 128.0, 128.4, 128.9, 129.0, 129.6, 130.1, 133.1, 136.3, 139.5, 145.1, 156.3; IR 

(NaCl, cm-1) 3023, 2932, 2854, 1600, 1560, 1512, 1490, 1449, 1331, 1245, 1213, 1153, 

1096, 970, 820, 618, 590, 479, 473, 403; HRMS calculated for C26H25NOS2Na [M+Na]+ 

454.1270; Found 454.1270. 
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3-(tert-butylsulfanyl)-2-S-oxa-2-S,4-diphenyl-2,1-benzothiazine (161k): (Lithiation 

Procedure B)  Orange semi-solid in 19% yield.  (Rf = 0.45 in 25% 

EtOAc/hexanes; yellow-orange long UV spot)  1H NMR: (250 MHz, 

CDCl3) δ 0.99 (s, 9H), 6.86 (t, J = 8.2 Hz, 1H), 7.04 (d, J = 8.4 Hz, 

1H), 7.13-7.62 (m, 20H), 7.97 (d, J = 6.7 Hz, 2H); 13C NMR (75 MHz, 

CDCl3) δ 31.4, 50.1, 119.3, 119.7, 124.3, 127.6, 127.9, 128.2, 128.4, 129.6, 129.9, 130.4, 

130.6, 132.1, 133.1, 136.8, 140.1, 145.7; IR (NaCl, cm-1) 3463, 3061, 2925, 1601, 1571, 

1529, 1448, 1321, 1247, 1193, 1154, 1097, 991, 699, 682, 603, 523, 504, 499, 439; 

HRMS calculated for C24H23NOS2Na [M+Na]+ 428.1113; Found 428.1115. 
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3-(methylsulfanyl)-2-S-oxa-2-S-[2-(methylsulfanyl)phenyl]-4-phenyl-2,1-

benzothiazine (165a): Lithiation Procedure C: To an oven dried, 

N2 cooled flask with stirbar, benzothiazine 26 (0.107 g, 0.338 

mmol) was added and covered with a rubber septum.  The flask 

was charged with argon, and freshly distilled THF (4 mL) was 

added via syringe.  The reaction was then cooled to –78 oC via a 

dry ice/acetone bath.  Then n-BuLi (0.467 mL, 2.17M, 1.02 mmol) was added drop-wise 

to the cooled solution resulting in a dark red solution.  After 30 minutes, dimethyl 

disulfide (0.122 mL, 1.35 mmol) was added thru the rubber septum by syringe.  The 

reaction mixture was stirred further overnight (or until completion was observed by 

TLC).  The mixture was quenched with saturated ammonium chloride (2 mL) and 

extracted with dichloromethane (3 x 5 mL), concentrated in by vacuum, and dried 

(MgSO4).  Purification (Rf = 0.45 in 25% EtOAc/hexanes; green long UV spot) by flash 

chromatography (silica gel) with 25% EtOAc/ hexane afforded 0.131 g 165a in 95% 
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yield as a yellow solid.  Mp. 193 oC.  1H NMR: (300 MHz, CDCl3) δ 2.05 (s, 3H), 2.36 

(s, 3H), 6.86-6.96 (m, 2H), 7.20-7.31-7.60 (m, 10H), 8.40 (d, J = 8.9 Hz, 1H); 13C NMR 

(75 MHz, CDCl3) δ 15.9, 21.1, 119.7, 119.9, 124.0, 124.4, 125.9, 127.9, 128.2, 128.3, 

128.9, 129.1, 131.1, 131.8, 133.6, 134.4, 137.0, 143.5, 145.4, 159.1; IR (NaCl, cm-1) 

3049, 2927, 2855, 1601, 1563, 1517, 1488, 1437, 1332, 1245, 1208, 1154, 701, 590, 556, 

500, 497, 444, 402; HRMS calculated for C22H19NOS3Na [M+Na]+ 432.0521; Found 

432.0517. 

3-(phenylsulfanyl)-2-S-oxa-2-S-[2-(phenylsulfanyl)phenyl]-4-phenyl-2,1-

benzothiazine (165b): (Lithiation Procedure C)  Yellow solid 

in 94% yield. (Rf = 0.56 in 25% EtOAc/hexanes; green long 

UV spot)  Mp. 136 oC.  1H NMR: (300 MHz, CDCl3) δ 6.82-

6.86 (m, 1H), 6.90-6.97 (m, 2H), 7.08-7.12 (m, 7H), 7.20-7.50 

(m, 12H), 8.24 (d, J = 7.4 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 111.1, 120.0, 120.2, 

124.4, 124.8, 126.8, 127.8, 127.9, 128.1, 128.5, 128.8, 129.0, 129.2, 129.6, 129.8, 129.9, 

131.0, 132.2, 133.5, 134.6, 134.8, 136.3, 143.7, 145.4, 160.6; IR (NaCl, cm-1) 3023, 

2927, 2855, 1601, 1581, 1561, 1514, 1490, 1441, 1332, 1213, 1153, 820, 590, 558, 499, 

469, 445; HRMS calculated for C32H23NOS3Na [M+Na]+ 556.0834; Found 556.0830. 
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 3-(ethylsulfanyl)-2-S-oxa-2-S-[2-(ethylsulfanyl)phenyl]-4-phenyl-2,1-benzothiazine 

(165c): (Lithiation Procedure C)  Yellow solid in 89% yield.  (Rf = 

0.63 in 25% EtOAc/hexanes; yellow long UV spot)  Mp. 184 oC.  1H 

NMR: (300 MHz, CDCl3) δ 0.97 (t, J = 7.4 Hz, 3H), 1.70 (t, J = 7.3 

Hz, 3H), 2.46-2.56 (m, 1H), 2.59-2.70 (m, 1H), 2.78-2.91 (m, 2H), 

6.83 (t, J = 6.7 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 7.16-7.20 (m, 1H), 7.27-7.56 (m, 9H), 
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8.38 (d, J = 7.8 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 13.5, 14.3, 27.0, 32.2, 112.6, 

119.6, 119.7, 124.2, 124.2, 127.6, 128.0, 128.2, 129.0, 130.9, 131.5, 133.4, 135.4, 137.1, 

142.1, 145.2, 158.4; IR (NaCl, cm-1) 2967, 2929, 2855, 1601, 1562, 1516, 1488, 1450, 

1332, 1245, 1206, 734, 701, 590, 555, 409, 402; HRMS calculated for C24H23NOS3Na 

[M+Na]+ 460.0834; Found 460.0837. 

 3-(cyclohexylsulfanyl)-2-S-oxa-2-S-[2-(cyclohexylsulfanyl)phenyl]-4-phenyl-2,1-

benzothiazine (165d): (Lithiation Procedure C)  Yellow solid 

in 98% yield.  (Rf = 0.53 in 25% EtOAc/hexanes; yellow long 

UV spot)  Mp. 117 oC.  1H NMR: (300 MHz, CDCl3) δ 0.85-

1.26 (m, 10H), 1.34-1.89 (m, 10H), 2.96-2.97 (m, 1H), 2.21-

2.23 (m, 1H), 6.80 (t, J = 8.2 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 7.23-7.59 (m, 9H), 8.38 

(d, J = 8.2 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 25.4, 25.5, 25.6, 25.6, 25.7, 25.9, 32.4, 

32.6, 33.0, 33.6, 45.5, 50.4, 113.1, 119.3, 119.8, 124.0, 124.9, 127.8, 128.0, 128.4, 129.0, 

129.3, 130.1, 130.7, 130.9, 131.3, 133.0, 137.1, 137.7, 140.5, 145.3, 157.9; IR (NaCl, cm-

1) 3032, 2934, 2855, 1600, 1562, 1514, 1489, 1449, 1332, 1244, 1211, 1154, 1050, 997, 

971, 820, 590, 556, 456, 452; HRMS calculated for C32H35NOS3Na [M+Na]+ 568.1773; 

Found 568.1771. 
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 3-iodo-2-S-oxa-2-S-(2-iodophenyl)-4-phenyl-2,1-benzothiazine (165h): (Lithiation 

Procedure C)  Brown solid in 91% yield.  (Rf = 0.64 in 25% 

EtOAc/hexanes; short dark UV spot)  Mp. 174 oC.  1H NMR: (250 

MHz, CDCl3) δ 6.86 (t, J = 8.2 Hz, 1H), 7.00 (d, J = 8.2 Hz, 1H), 

7.23–7.36 (m, 4H), 7.41–7.55 (m, 4H), 7.63 (t, J = 7.9 Hz, 1H), 

8.13 (d, J = 7.8 Hz, 1H), 8.60 (d, J = 8.0 Hz, 1H); 13C NMR (63 MHz, CDCl3) δ 98.0, 
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120.0, 120.4, 124.1, 127.6, 128.4, 128.7, 128.7, 128.8, 129.0, 131.9, 132.2, 134.4, 139.7, 

141.0, 142.9, 145.4, 159.1; IR (NaCl, cm-1) 3065, 3044, 2928, 1599, 1566, 1515, 1491, 

1342, 1328, 1248, 1218, 1154, 998, 959, 599, 587, 548, 489, 424; HRMS calculated for 

C20H13I2NOSNa [M+Na]+ 591.8699; Found 591.8696. 

 3-bromo-2-S-oxa-2-S-(2-bromophenyl)-4-phenyl-2,1-benzothiazine (165i): 

(Lithiation Procedure C)  Brown solid in 95% yield.  (Rf = 0.73 in 

25% EtOAc/hexanes; dark short UV spot)  Mp. 172 oC.  1H NMR: 

(250 MHz, CDCl3) δ 6.86–6.98 (m, 2H), 7.20–7.24 (m, 2H), 7.28 (t, 

J = 8.2 Hz, 2H), 7.36–7.63 (m, 5H), 7.79 (d, J = 7.8 Hz, 1H), 8.51 

(d, J = 7.9 Hz, 1H); 13C NMR (63 MHz, CDCl3) δ 100.9, 119.8, 120.5, 124.0, 124.8, 

127.7, 128.1, 128.2, 128.7, 128.7, 131.9, 132.2, 134.9, 135.8, 136.5, 137.0, 144.3, 153.9; 

IR (NaCl, cm-1) 3068, 3033, 2931, 1600,1567, 1523, 1443, 1343, 1333, 1250, 1224, 

1155, 1043, 971, 605, 587, 551, 483, 464, 412; HRMS calculated for C20H13Br2NOSNa 

[M+Na]+ 495.8977; Found 495.8975. 
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3-(methylsulfanyl)-2-S-oxa-2-S-[2-(methylsulfanyl)phenyl]-4-phenyl-2,1-

benzothiazine (166): Lithiation Procedure D: To an oven dried, N2 

cooled flask with stirbar, benzothiazine 1 (0.515 g, 2.13 mmol) was 

added and covered with a rubber septum.  The flask was charged with 

argon, and freshly distilled THF (21 mL) was added via syringe.  The reaction was then 

cooled to –78 oC via a dry ice/acetone bath.  Then LiTMP (4.55 mL, 0.68M in THF, 2.87 

mmol) was added drop-wise to the cooled solution resulting in a dark red solution.  After 

30 minutes, dimethyl disulfide (0.211 mL, 2.34 mmol) was added thru the rubber septum 

by syringe.  The reaction mixture was stirred further overnight (or until completion was 
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observed by TLC).  The mixture was quenched with saturated ammonium chloride (5 

mL) and extracted with dichloromethane (3 x 10 mL), concentrated in by vacuum, and 

dried (MgSO4).  Purification (Rf = 0.49 in 25% EtOAc/hexanes; yellow long UV spot) by 

flash chromatography (silica gel) with 25% EtOAc/ hexane afforded 0.565 g 166 in 92% 

yield as a very viscous orange oil.  1H NMR: (250 MHz, CDCl3) δ 2.21 (s, 3H), 6.94 (t, J 

= 6.9 Hz, 1H), 7.26-7.30 (m, 2H), 7.36 (t, J = 7.1 Hz, 1H), 7.43-7.57 (m, 3H), 7.76 (s, 

1H), 7.86 (d, J = 7.0 Hz, 2H); 13C NMR (63 MHz, CDCl3) δ 20.7, 117.7, 118.5, 119.9, 

123.0, 128.3, 128.9, 129.2, 131.7, 133.1, 138.7, 143.8, 144.1; IR (NaCl, cm-1) 3071, 

2927, 1604, 1579, 1534, 1286, 1210, 1127, 993, 909, 583, 495, 454, 439;                         

HRMS calculated for C15H13NOS2Na [M+Na]+ 310.0331; Found 310.0328. 
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 Selected 1H and 13C NMR and X-ray Structures for New Compounds 
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