2,1-BENZOTHIAZINES

PREPARATION AND REACTIVITY

A Dissertation presented to the Faculty of the Graduate School University of Missouri-Columbia

In Partial Fulfillment
Of the Requirements for the Degree

Doctor of Philosophy

by
 NATHAN L. CALKINS

Dr. Michael Harmata, Dissertation Supervisor

MAY 2010

The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled:

2,1-BENZOTHIAZINES

PREPARATION AND REACTIVITY

Presented by Nathan L. Calkins

A candidate for the degree of Doctor of Philosophy

And hereby certify that in their opinion it is worthy of acceptance.
\qquad
Professor Kent S. Gates

Professor Timothy E. Glass

Professor Paul R. Sharp

Professor Michael Lewis

For Nora, Lainey, Evonelle, and Maggie.

ACKNOWLEDGEMENTS

I would like to extend my gratitude to Professor Michael Harmata for his mentoring, his friendship, and his direction in my research and dissertation. Special thanks for his insight, encouragement, knowledge, and understanding of life's complications to make my graduate experience rewarding. I would like to thank those that have had me as a student and served on my committee: Professor Kent S. Gates, Professor Paul R. Sharp, Professor Timothy E. Glass, and Professor Michael Lewis for their advice, patience, and support.

I would like to extend my thanks to Dr. Charles Barnes and Dr. Wei Wycoff for their help in elucidating x-ray crystal structures and NMR support, respectively, during my time at MU as a graduate student. Special thanks to Bill Vellema for technical support and Jerry Brightwell for all the administrative help he has given since my first days as a Summer Fellow in the Steven Summer Program. Also, special thanks to my fellow Harmata group members, past and present, and the MU Chemistry department.

I would like to extend a special thanks to the many teachers, instructors, and professors that have molded my foundation in chemistry. Two in particular I am very thankful for having been a student of are: Professor Anne E. Moody, Truman State University, Organic Chemistry 1 and 2; and Ty Abel, Owensville High School, Chemistry 1 and 2; for their enthusiasm toward organic chemistry and guidance to pursue chemistry.

Lastly and most importantly, I thank God for the gifts, talents, and abilities I enjoy on a daily basis. Special thanks to my wife Nora and my children, Lainey, Evonelle, and Maggie for their love, support, and past, present, and future memories. Thanks to my parents and family for their love and financial support. Special thanks to my best friend Peter Kelsey. And lastly I thank all those that believed in me and those that didn't, for those are people who made me try even harder.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
LIST OF FIGURES vii
LIST OF SCHEMES ix
LIST OF TABLES xiii
ABSTRACT xv
CHAPTER 1: Introduction and Syntheses of Enantiopure Sulfoximine Ligands 1
1.1 Discovery and Preparation of Chiral S-Methyl-S-Phenylsulfoximine 1
1.1.1 Introduction and Discovery of Sulfoximine 1
1.2 Preparation of "Fixed" Sulfoximines or 2,1-Benzothiazines 2
1.2.1 Synthesis of "Fixed" Sulfoximines via Cycloadditions 2
1.2.2 Synthesis of Benzothiazines via N-Arylation of Aryl Bromides 3
1.2.3 Synthesis of Benzothiazines via N-Arylation of Aryl Chlorides 7
1.2.4 Synthesis of N-Arylated Sulfoximines from Aryl Iodides 8
1.3 Preparation of "Free" Sulfoximines or N-Substituted Sulfoximines 12
1.3.1 Synthesis of "Free" Sulfoximines via Buchwald Hartwig N-Arylation 12
1.3.2 Synthesis of "Free" Bissulfoximines via Buchwald Hartwig N-Arylation 14
1.4 Chiral Sulfoximine-Based Ligands in Asymmetric Reactions 15
1.4.1 Preparation of an Oxazoline-Based Sulfoximine Ligand 15
1.4.2 Use of Bissulfoximine 31 in Asymmetric Hetero-Diels Alder Reactions 17
1.4.3 Use of Bisbenzothiazine in an Asymmetric Allylic Alkylation 18
1.4.4 Preparation of Benzothiazine-Like Compounds 20
1.4.5 Use of Bissulfoximine 31 in Asymmetric Diels Alder Reactions 22
1.4.6 Use of N -Quinolinesulfoximines in Asymmetric Hetero-Diels Alder Reactions 23
1.4.7 Use of Aminosulfoximines in Asymmetric Mukaiyama-Type Aldol Reactions 26
1.4.8 Use of Aminosulfoximines in Asymmetric Carbonyl-Ene Reactions 28
1.4.9 BINOL-Based N-Phosphino Sulfoximines in Asymmetric Reactions 28
1.4.10 Optimization of Aminosulfoximines in Asymmetric Aldol Reactions 30
1.4.11 Diphenylphosphanylsulfoximines in Asymmetric Imine Hydrogenations 31
1.4.12 Aminosulfoximines in Asymmetric Vinylogous Aldol Reactions 33
1.4.13 Naphthalene-Based Sulfoximines in Asymmetric Quinoline Hydrogenations 33
1.4.14 Oxazolinyl Sulfoximines in Asymmetric Mukaiyama-Type Aldol Reactions 36
1.4.15 Summary of Sulfoximine-Based Ligands Over the Past Decade 37
CHAPTER 2: Syntheses of Potential Hydroxy-Based Benzothiazine Ligands 39
2.1 Synthesis of a Hydroxy Benzothiazine 39
2.1.1 First Generation Synthesis of a Hydroxy Benzothiazine 39
2.1.2 Second Generation Synthesis of a Hydroxy Benzothiazine 46
2.2 Preparation of Benzothiazine-Based Ligands 48
2.2.1 Attempts to Synthesize a P, N-Benzothiazine Ligand 48
2.2.2 Synthesis of a Benzyl Alcohol Benzothiazine 51
2.2.3 Synthesis of a Triflate-Substituted Benzothiazine Coupling Partner 53
2.2.4 Synthesis of a Chloro-Substituted Benzothiazine Coupling Partner 53
2.2.5 Synthesis of Pyrido-Bridged Benzothiazine Heterocycles 55
2.2.6 Summary of Benzothiazine Based Ligands Prepared 61
CHAPTER 3: Syntheses and Optimization of Sulfoximine Containing Ligands 63
3.1 Previous Palladium-Catalyzed N-Arylation Developments 63
3.1.1 Initial Optimization in 1998 63
3.1.2 1998 to Present N-Arylation Overview 65
3.2 Optimization of the Pd-Based N -Arylation of Sulfoximine and Bromobenzene 17 65
3.2.1 Ligand Study 65
3.2.2 PEPPSI Family Study 68
3.2.3 Bippyphos Ligand Study 69
3.2.4 Pd Source Study 71
3.2.5 Base Study 73
3.2.6 Catalyst Loading Study 75
3.2.7 Chiral Ligand Study 76
3.2.8 Optimization Summary 77
3.3 Applications of the Optimized N-Arylation Synthesis 78
3.3.1 N-Substituted Sulfoximine Synthesis: Comparison of $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{Br}$ 78
3.3.2 Improved Synthesis of Benzothiazine Ligand 123 79
3.3.3 Examination of Multi-Bromoarenes 81
3.3.4 Examination of a Dichlorobenzene 83
3.3.5 Examination of a Bromosulfoximine 140 84
3.3.6 New Syntheses of Previously Prepared Benzothiazines 84
3.3.7 Summary of 2009 Pd-RuPhos Synthetic Results 85
CHAPTER 4: Lithiation Reactivity of 2,1-Benzothiazines 89
4.1 Previous Studies of Sulfoximine and Benzothiazine Reactivity 89
4.1.1 Benzothiazine Syntheses 89
4.1.2 Sulfoximine Anion Michael Additions to α, β-Unsaturated Esters 90
4.1.3 Stereoselective Sulfoximine Michael Additions in Natural Products Syntheses 93
4.1.4 Sulfoximine Stabilized Vinyl Carbanions 94
4.1.5 Sulfoximine Stabilized Vinyl Lithiocarbanions 97
4.1.6 Ortho-Lithiation of Sulfoximines 99
4.1.7 Summary of Sulfoximine Lithiation 101
4.2 Lithiation of Benzothiazines 102
4.2.1 α-Lithiation of Benzothiazine $\mathbf{1}$ 102
4.2.2 Ortho-S-phenyl Lithiation of α-Silyl Protected Benzothiazines 107
4.2.3 Ortho-S-phenyl Lithiation of a Hydroxy Substituted Benzothiazine 109
4.2.4 α-Lithiation Benzothiazine 26 111
4.2.5 $\quad P$-Ligand Syntheses 115
4.3 Dilithiation of Benzothiazines 116
4.3.1 Multilithiation Deuterium Study 116
4.3.2 Dilithiation of Benzothiazine 26 118
4.3.3 Dilithiation of Benzothiazine 1 120
4.3.4 Attempts Toward Electrophile "Dancing" 121
4.3.5 Lithiation Summary 124
CHAPTER 5: Experimental Results 126
5.1 General Information 126
5.2 Experimental Methods 127
5.2.1 Synthetic Procedures and Compound Characterization: Chapter 2 127
5.2.2 Synthetic Procedures and Compound Characterization: Chapter 3 142
5.2.3 Synthetic Procedures and Compound Characterization: Chapter 4 145
CHAPTER 6: Appendix 162
REFERENCES 267
VITA 273

LIST OF FIGURES

Figure Page
Figure 1. "Fixed" and "Free" Sulfoximines 1
Figure 2. Mechanism of the Buchwald Hartwig N-Arylation 4
Figure 3. Structure of (R)-2,2'-Bis(diphenylphosphino)-1,1'-Binaphthyl, or R-BINAP 4
Figure 4. Structures of Ligands Used in the N -Arylation of Aryl Bromides 13
Figure 5. The First Bissulfoximine Ligand 14
Figure 6. Structure of Bis(2-diphenylphosphinophenyl)ether, DPEphos 16
Figure 7. Proposed Base Induced Benzyne Mechanism 21
Figure 8. Bissulfoximine Ligand 23
Figure 9. Aminosulfoximine Ligand 58a 27
Figure 10. Optimized P, N-Ligand 76a 33
Figure 11. Optimized Oxazolinyl Sulfoximine Ligand 33a 36
Figure 12. Chiral Sulfoximine Ligands over the Past Decade 38
Figure 13. Possible Sites of Bromination 41
Figure 14. Possible Model for Lithium Cation Stabilization 43
Figure 15. Phosphites Used In Attempts to Synthesize P, N-Benzothiazine Ligands 50
Figure 16. Possible Mechanism of Hydrolysis 50
Figure 17. Pentadentate Bis(oxazoline) Ligand by Reiser and Coworkers 55
Figure 18. Crystal Structure of Tridentate Cd Complex 129a 59
Figure 19. Summary of Benzothiazine Ligand Syntheses 62
Figure 20. Nonproprietary Pyrrole, Pyrazole, and Bipyrazole Ligands 70
Figure 21. Structure of BrettPhos 73
Figure 22. Possible Chiral Ligand Target for Racemic Sulfoximine Resolution 77
Figure 23. Summary of Sulfoximine Anion Condensations 90
Figure 24. Benzothiazines in Natural Product Syntheses 94
Figure 25. Evidence of Benzothiazine Dilithiation 96
Figure 26. Benzophenone Side Product 96
Figure 27. Reactivity Patterns of 2,1-Benzothiazine 146 97
Figure 28. Tetrameric Structure of a Sulfoximine Dilithiocarbanion 98
Figure 29. Summary of Lithiated Sulfoximine Containing Compounds 101
Figure 30. Retrosynthesis of 2,1-Benzothiazine P, N-Ligands 102
Figure 31. Lithiation Side Product 155 105
Figure 32. Lithiation of Side Product 156 106
Figure 33. Possible Stabilization Model for S-Phenyl Lithiation 110
Figure 34. Mechanism of an Electrophile "Dance" 122
Figure 35. Lithiation Reactivity Summary 125

LIST OF SCHEMES

Scheme Page
Scheme 1. Synthesis of Chiral S-Methyl-S-Phenylsulfoximine 2
Scheme 2. Early Synthesis of Benzothiazines 2
Scheme 3. Mechanism of Lewis Acid Catalyzed Benzothiazine Formation 3
Scheme 4. N -Arylation of 2-Bromobenzaldehyde 12 and 2-Bromoacetophenone 13 3
Scheme 5. Synthesis of Benzothiazine 22 5
Scheme 6. Synthesis of 4-Amino-2,1-Benzothiazine 6
Scheme 7. Synthesis of Benzothiazines by Microwave Irradiation 7
Scheme 8. Synthesis of Benzothiazines from a Variety of Aryl Chlorides 8
Scheme 9. Catalytic Copper N-Arylation of Aryl Iodides 11
Scheme 10. Catalytic Iron N-Arylation of Aryl Iodides 11
Scheme 11. Optimized N-arylation Procedure for Aryl Bromides 12
Scheme 12. Initial Attempts at the N-arylation of Aryl Dibromides 14
Scheme 13. The First Synthesis of Bissulfoximine 31 via N-arylation 15
Scheme 14. Synthesis of Bisbenzothiazine 40 19
Scheme 15. Synthesis of a Sulfoximine Based 6-Membered Heterocycle 45 21
Scheme 16. Syntheses of 7- and 8-Membered Heterocycles 22
Scheme 17. Bissulfoximine 31 in an Enantioselective Diels Alder Reaction 22
Scheme 18. The Use of 53 in an Optimized Diels Alder Reaction 23
Scheme 19. Generic Synthesis of Aminosulfoximine 58 26
Scheme 20. Aminosulfoximine 58a in an Asymmetric Carbonyl-Ene Reaction 28
Scheme 21. Preparation of BINOL-Based N-Phosphino Sulfoximines 29
Scheme 22. BINOL N-Phosphino Sulfoximines in Asymmetric Hydrogenations 29
Scheme 23. BINOL N-Phosphino Sulfoximines in Asymmetric Allylic Alkylations 30
Scheme 24. Optimized Asymmetric Mukaiyama-Type Aldol Reaction 31
Scheme 25. Synthesis of P, N-Ligands Containing a Sulfoximine 32
Scheme 26. P, N-Sulfoximine Ligands in Imine Hydrogenation 32
Scheme 27. Aminosulfoximine 58a in an Asymmetric Vinylogous Aldol Reaction 33
Scheme 28. Synthesis of Naphthalene Based Sulfoximine P, N-Ligands 34
Scheme 29. Preparation of Ir Precatalyst 91 35
Scheme 30. Second Generation Synthesis of Oxazolinyl Sulfoximine Ligands 36
Scheme 31. Oxazolinyl Sulfoximine 33a in Asymmetric Mukaiyama Aldol Reaction 36
Scheme 32. First Generation Synthesis: MOM-Protection and LAH Reduction 40
Scheme 33. First Generation Synthesis: Failed Bromination Attempt 1 43
Scheme 34. First Generation Synthesis: Swern Oxidation of 107 to 108 45
Scheme 35. First Generation Synthesis: N-Arylation of MOM-Protected Phenol 45
Scheme 36. First Generation Synthesis: Failed N-Arylation of Phenol 45
Scheme 37. First Generation Synthesis: MOM-Group Deprotection 46
Scheme 38. First Generation Synthesis: Summary 46
Scheme 39. Second Generation Synthesis: Summary 47
Scheme 40. Model Reaction to Test Phosphite Hydrolysis 50
Scheme 41. Synthesis of a $P(\mathrm{~V}), N$-Benzothiazine 51
Scheme 42. Synthesis of Triflate N-Arylation Partner 117 52
Scheme 43. Synthesis of Benzyl Alcohol Benzothiazine Precursor 118 52
Scheme 44. Synthesis of Benzyl Alcohol Benzothiazine 119 52
Scheme 45. Synthesis of Triflate 120 53
Scheme 46. Synthesis of 8-Chlorobenzothiazine 121 53
Scheme 47. Microwave Irradiation of 2,3-Dichlorobenzaldehyde 54
Scheme 48. Microwave Irradiation of Benzothiazine Chloride 121 54
Scheme 49. Attempts to Couple Benzothiazine 121 55
Scheme 50. Synthesis of Pyridyl Dihydrochloride Salt 127 56
Scheme 51. Synthesis of Pentadentate Bisbenzothiazine 128 57
Scheme 52. Synthesis of Bromoaldehyde 131 60
Scheme 53. Three-step Synthesis of Methylchloropyridine Hydrochloride 132 60
Scheme 54. Synthesis of Bidentate N, N-Benzothiazine Ligand 133 60
Scheme 55. Generalized Summary of Aryl Bromides Investigated in 1998 64
Scheme 56. Summary of Commercial Ligands Investigated 66
Scheme 57. PEPPSI NHC Ligand Study 69
Scheme 58. Comparison of Bippyphos and RuPhos in an N-Arylation 70
Scheme 59. Kinetic Resolution of a Racemic Sulfoximine with a Chiral Ligand 76
Scheme 60. N-Arylation of Aryl Halides with Pd/RuPhos Catalyst 79
Scheme 61. Breakthrough Synthesis of 123 80
Scheme 62. New Synthesis of Bissulfoximine 31 81
Scheme 63. Failed Reaction of Dibromobiphenyl 46 82
Scheme 64. Failed Attempts to Synthesize Multi-Substituted Sulfoximines 82
Scheme 65. Synthesis of Bissulfoximine 31 via Dichlorobenzene 138 83
Scheme 66. Comparison of Bromosulfoximine 140 to Sulfoximine 6 82
Scheme 67. Comparison of Benzothiazine Syntheses 85
Scheme 68. Stereoselective 1,4-Additions of Sulfoximine Carbanions 91
Scheme 69. Stereospecific, Stereoselective 1,4-Additions of Sulfoximine Carbanions 92
Scheme 70. Optimized Ortho-Lithiation Procedure of S-tert-Butyl Sulfoximine 99
Scheme 71. Benzaldehyde Side Product: New Sulfinic Ester Formation 101
Scheme 72. Thermal N-Arylation of 2-Bromobenzaldehyde 12 103
Scheme 73. 1,4-Addition of n-BuLi to 154e 107
Scheme 74. Thermal N-Arylation of 2-Chlorobenzophenone 25c 111
Scheme 75. Dilithiation of Benzothiazine 1 with Dimethyl Disulfide 121
Scheme 76. Monolithiation of Benzothiazine 1 with Dimethyl Disulfide 121

LIST OF TABLES

Table Page
Table 1. Scope of N-Arylation of Aryl Bromides 6
Table 2. N-Arylation of Aryl Iodides with Additives 9
Table 3. Synthesis of a Chiral Sulfoximine-Oxazoline Ligand 33 16
Table 4. Ligand 31 in an Asymmetric Hetero-Diels Alder Reaction 17
Table 5. Ligand 31 in Another Asymmetric Hetero-Diels Alder Reaction 18
Table 6. Bisbenzothiazine 40 in a Pd-Catalyzed Allylic Alkylation 19
Table 7. Bissulfoximine 31 and Benzothiazine 26 in an Allylic Alkylation 20
Table 8. Syntheses of Quinolinesulfoximines by N-Arylation 24
Table 9. N-Quinolinesulfoximines in an Asymmetric Hetero-Diels Alder Reaction 25
Table 10. Aminosulfoximine 58a as a Ligand in Mukaiyama-Type Aldol Reactions 27
Table 11. Summary of Quinoline Hydrogenation via Precatalyst 91 35
Table 12. First Generation Synthesis: Bromination 42
Table 13. First Generation Synthesis: Failed Bromination Attempt 2 44
Table 14. Second Generation Synthesis: MOM-Group Protection 47
Table 15. Attempts Toward P, N-Benzothiazine Ligands 48
Table 16. Metal Ligand Study of Pentadentate Bisbenzothiazine 128 57
Table 17. 1998 Optimization of Pd-catalyzed N-Arylation 64
Table 18. Pd Source Summary 70
Table 19. Optimization of Base Summary 74
Table 20. Catalyst Loading Study 75
Table 21. Synthetic Improvements in N-Arylation of Sulfoximines and Haloarenes 87
Table 22. Stereoselective 1,4-Additions with Different Electron Withdrawing Groups 92
Table 23. Sulfoximine Carbanion Study of 4-Methyl-2,1-Benzothiazine 14 95
Table 24. Ortho-Lithiation of S-tert-Butyl Sulfoximine and Various Electrophiles 100
Table 25. α-Lithiation Summary of Benzothiazine 1 103
Table 26. Ortho-Lithiation Study of α-TBS-Protected Benzothiazine 154d 108
Table 27. Ortho-Lithiation Study of α-TMS-Protected Benzothiazine 154a 109
Table 28. Ortho-Lithiation Study of Benzothiazine 154s 110
Table 29. α-Lithiation Summary of Benzothiazine 26 112
Table 30. α-Lithiation Summary of Benzothiazine 26 with Benzophenone 114
Table 31. α-Lithiation Summary of Benzothiazine 1 and 26 with Phosphines 116
Table 32. Deuterium Study of 2,1-Benzothiazines 26 and 1 117
Table 33. Dilithiation Study of Benzothiazine 26 119
Table 34. Attempts Toward an Electrophile "Dance" 122

2,1-BENZOTHIAZINES

PREPARATION AND REACTIVITY

Nathan L. Calkins
Dr. Michael Harmata, Dissertation Supervisor

Abstract

The synthesis of chiral ligands to tune the reactivity and stereoselectivity of many catalytic asymmetric reactions has been given considerable attention in synthetic organic chemistry over the past decade. This report will show the results of efforts toward the syntheses of several families of enantiomerically pure 2,1-benzothiazine ligands. These ligands are unique in that they contain a chiral sulfoximine.

Several 2,1-benzothiazine ligands were prepared in single one-pot syntheses and others in as many as five or more steps for larger heterocycles. An optimized synthetic route will be shown for a very well known Buchwald Hartwig N-arylation of sulfoximines and haloarenes. The synthetic procedure for the N -arylation of sulfoximines synthetic procedure has virtually been unchanged since its introduction in 1998. The new synthesis herein has dramatically improved reaction time and scope for the N -arylation of aryl bromides and aryl chlorides. Until now, aryl chloride based N -arylations gave extremely poor conversions when attempted thermally. Lastly, unsubstituted and 4-phenyl substituted 2,1-benzothiazine lithiation reactivity will be discussed for the sulfoximine stabilized lithium vinyl carbanions. Mono- and di-substitutions are now synthetically possible. New synthetic strategies for accessing the ortho-S-phenyl ring as a viable carbanion will also be shown.

CHAPTER 1

Introduction and Syntheses of Enantiopure Sulfoximine Ligands

When thinking of sulfoximines as ligands, two categories of compounds have been utilized. "Fixed" sulfoximine 1, an unsubstituted 2,1-benzothiazine, was the focus of the research performed. "Free" sulfoximine 2, an N-substituted sulfoximine, is also described herein and its synthesis re-optimized in Chapter 3. Generic structures for both types of sulfoximine-containing compounds are displayed in Figure 1. The numbering system of 2,1-benzothiazine $\mathbf{1}$ carbon skeleton is also illustrated in Figure 1.

1: "Fixed" sulfoximine

2: "Free" sulfoximine

Figure 1. "Fixed" and "Free" Sulfoximines

1.1 Discovery and Preparation of Chiral \boldsymbol{S}-Methyl- S-Phenylsulfoximine

1.1.1 Introduction and Discovery of Sulfoximine

Discovered in $1949,{ }^{2}$ sulfoximines are the key component and source of chirality for the ligands prepared and studied herein. The synthesis of sulfoximines is well known and straightforward, and some are commercially available (Scheme 1). The synthesis of the "parent" sulfoximine $\mathbf{6}$ begins with commercially available methyl phenyl sulfide $\mathbf{3}$, which is first oxidized by hydrogen peroxide under acidic conditions, resulting in racemic methyl phenyl sulfoxide 4. Racemic sulfoxide 5 undergoes subsequent imination with sodium azide, also under acidic conditions, to afford racemic methyl phenyl sulfoximine 6. Enantiomerically pure sulfoximine 6 can be obtained by resolution with the appropriate chiral camphorsulfonic acid (CSA) in which (+)-CSA gives S-sulfoximine $\mathbf{6 a}$
and (-)-CSA gives R-sulfoximine $\mathbf{6 b}$ after sodium hydroxide mediated hydrolysis of the diastereomerically pure crystals. ${ }^{3}$ All of the previously described reactions are possible on a multigram scale, making sulfoximine 6 readily accessible.

Scheme 1. Synthesis of Chiral S-Methyl-S-Phenylsulfoximine

1.2 Preparation of "Fixed" Sulfoximines or 2,1-Benzothiazines

1.2.1 Synthesis of "Fixed" Sulfoximines via Cycloadditions

The utilization of sulfoximine-containing compounds in the Harmata group began first with N-phenyl-(4-methylphenyl)-sulfonimidoyl chloride 7 and various symmetrical and unsymmetrical alkynes generically represented by 8a-c to give "fixed" sulfoximines $9 \mathbf{9 - c}$, called simply benzothiazines from this point on. A variety of Lewis acids promoted the cyclization in a range of yields. With AlCl_{3}, the yields ranged from 90% with electron rich phenyl acetylene 8a to 14% with acetylene (8c) itself (Scheme 2). ${ }^{4}$

Scheme 2. Early Synthesis of Benzothiazines

The proposed mechanism is straightforward. First the sulfonimidoyl chloride 7 forms reactive intermediate $\mathbf{1 0}$ in the presence of the Lewis acid, AlCl_{3}. Alkyne $\mathbf{8}$ cyclizes with the electron-deficient intermediate $\mathbf{1 0}$ to yield benzothiazine intermediate 11. Loss of proton to regenerate aromaticity gives the final product, benzothiazine 9 (Scheme 3). The problem with this synthesis is the inability to obtain enantiomerically pure products. ${ }^{4}$

Scheme 3. Mechanism of Lewis Acid-Catalyzed Benzothiazine Formation

1.2.2. Synthesis of Benzothiazines via \boldsymbol{N}-Arylation of Aryl Bromides

Another way to make benzothiazines is in a one pot fashion discovered previously by Harmata and coworkers. This one-pot synthesis utilizes a Buchwald-Hartwig type N arylation reaction between sulfoximines and an aryl halide followed by intramolecular condensation with 2-bromobenzaldehyde $\mathbf{1 2}$ or 2-bromoacetophenone $\mathbf{1 3}$ to give benzothiazines 1 and 14, respectively (Scheme 4). The mechanism of the Buchwald Hartwig N-arylation reaction is shown in Figure 2. ${ }^{5}$

Scheme 4. N -Arylation of 2-Bromobenzaldehyde 12 and 2-Bromoacetophenone 13

The mechanism begins by $\mathrm{Pd}(\mathrm{II})$ acetate being reduced to $\operatorname{Pd}(0)$-BINAP species 16 via 15. This reduction of $\operatorname{Pd}(\mathrm{II})$ to $\operatorname{Pd}(0)$ likely occurs from the oxidation of one of two phosphines of the bidentate BINAP ligand (Figure 2). The structure of R-BINAP is shown in Figure 3. Complex 16, absolute structure unknown, can undergo oxidative addition to the $\mathrm{C}-\mathrm{Br}$ bond of bromobenzene $\mathbf{1 7}$ to give the palladium species $\mathbf{1 8}$. Ligand substitution of the bromide anion by sulfoximine $\mathbf{6}$ affords one mole of HBr that is consumed by cesium carbonate in the reaction mixture to give palladium species 19 . This compound undergoes reductive elimination to regenerate $\operatorname{Pd}(0)$-BINAP complex 16 and N -phenyl substituted sulfoximine $\mathbf{2}$.

Figure 2. Mechanism of the Buchwald Hartwig N-Arylation

Figure 3. Structure of $(R)-2,2^{\prime}$ - $\operatorname{Bis}\left(\right.$ diphenylphosphino)- $1,1^{\prime}$-Binaphthyl, or R-BINAP

It should be noted that under these mildly basic conditions, coupling of enolizable ketone $\mathbf{1 3}$ gave a very poor yield of the desired benzothiazine. Refluxing toluene and weak base likely generates some enolate, albeit in small amounts. This enolate must be an incompatible substrate for the N -arylation and subsequent condensation provided the low yield $<10 \%$. Efforts to address this significant flaw in the scope of this reaction have yet to be investigated. Some substrates N-arylated successfully but did not condense in the presence of the weak base, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$. With methyl 2-bromobenzoate 20, only N arylation was observed under conditions used previously to give 21. So it is not surprising that the electrophilicity of the carbonyl determines the rate at which condensation occurs. A second addition of a much stronger base, KH , was needed for the condensation of 21 to form 22, which tautomerized rapidly to the corresponding enol (Scheme 5). ${ }^{5}$

Scheme 5. Synthesis of Benzothiazine 22
Another similar example has been shown by Bolm with 2-bromobenzonitrile where again only N-arylation occurs to form 23. ${ }^{6}$ Harmata and coworkers demonstrated that with n - BuLi the condensation occurs in good yield to form 4-amino-2,1benzothiazine 24 (Scheme 6). So it has been shown that very electrophilic carbonyl compounds will rapidly condense to form benzothiazines whereas less electrophilic carbonyl compounds such as nitriles and esters take much stronger bases but still condense in good yields and under general conditions. ${ }^{5}$

Scheme 6. Synthesis of 4-Amino-2,1-Benzothiazine
Utilizing the formation of 2,1-benzothiazines via N-arylation is the key reaction that will be discussed at length in this report. This method is the most efficient way to prepare functionalized benzothiazines. One important note is that this reaction is applicable on a multigram scale, making this class of compounds viable synthetic targets as typical yields approach quantitative conversion for aryl bromides, but is lower for aryl chlorides. Both electron-donating and electron-withdrawing were tolerated in good yields (Table 1). ${ }^{5}$

Table 1. Scope of N-Arylation of Aryl Bromides

Entry	\mathbf{R}	Yield (\%)	Compound
1	H	78	$\mathbf{1 a}$
2	OMe	81	$\mathbf{1 b}$
3	OBn	75	$\mathbf{1 c}$
4	NO_{2}	73	$\mathbf{1 d}$

Strong electron donating groups para (Table 1, entries 2,3) to the site of oxidative addition allowed for similar yields to that of bromobenzene $\mathbf{1 7}$ (Table 1, entry 1).

Electron withdrawing groups show the same pattern, but more needs to be done to establish definitive trends. Overall, the change in yield was not significantly affected by substituent changes in the para position with respect to the carbon that undergoes oxidative addition. ${ }^{5}$

1.2.3. Synthesis of Benzothiazines via N-Arylation of Aryl Chlorides

Less expensive and typically less reactive aryl chlorides required longer reaction times and gave lower yields than with the standard N-arylation conditions presented previously. More recently, microwave irradiation has been shown to drastically increase yields of N-arylation of aryl chlorides and dramatically reduce reaction times from 44 hours to 1.5 hours for many substrates. Harmata and coworkers were able to greatly improve the yield of very sluggish aryl chlorides to moderate and excellent yields in this way. In previous attempts, thermal N-arylation of aryl chlorides gave trace products with extended reaction times. 2-Chlorobenzaldehyde 25a was reacted in a microwave reactor and irradiated at 200W for 1.5 h to yield 55% of $\mathbf{1 a}$ (Scheme 7). ${ }^{7}$

Scheme 7. Synthesis of Benzothiazines by Microwave Irradition
Again a variety of functional groups were tolerated under microwave irradiation. Overall, Harmata and coworkers observed excellent yields with aryl chlorides bearing electron withdrawing groups. This observation expanded the types of benzothiazines that can be prepared and expanded the library of benzothiazines and N -arylated sulfoximines to date significantly. A comparative selection of aryl chlorides subjected to irradiation
and yielding benzothiazines is summarized in Scheme 8. It is worth mentioning that many examples gave N-arylated products and others gave benzothiazines depending on the substrate and the presence or absence of an electron withdrawing group ortho to the site of N -arylation. ${ }^{7}$

Scheme 8. Synthesis of Benzothiazines from a Variety of Aryl Chlorides
2-Chlorobenzophenone 25c shows that non-enolizable ketones undergo N arylation smoothly and condense much like 2-chlorobenzaldehyde 25a. Benzothiazine 14 was isolated in a meager 31%, much improved from the previous $<10 \%$ from the corresponding bromide. ${ }^{7}$ The improvement in conversion is likely due to the reduced reaction time possible with microwave irradiation, minimizing side reactions that occur via enolization.

This work demonstrates that both aryl chlorides and aryl bromides successfully N arylate under palladium catalysis. Typically cheaper than aryl bromides, aryl chlorides readily undergo N -arylation with the assistance of microwave irradiation. One important note is that this reaction and previous reactions reported are applicable on a multi-gram scale, making this class of compounds viable synthetic targets.

1.2.4 Synthesis of \boldsymbol{N}-arylated Sulfoximines from Aryl Iodides

Aryl iodides are also suitable candidates for sulfoximine coupling. However, aryl iodides are not good candidates for palladium catalysis and aryl bromides are the
substrate of choice for palladium-catalyzed processes involving sulfoximine coupling partners. Bolm and coworkers have established two additional metal-catalyzed processes in which aryl iodide coupling to sulfoximines proceeds in good to excellent yields.

Palladium-mediated Buchwald-Hartwig coupling of aryl iodides and sulfoximines was reported by Bolm and coworkers in 2000. Typical reactions conditions seen previously were not successful in the N-arylation of aryl iodides with sulfoximine when identical aryl bromide substrates afforded respectable to excellent yields. Additional additives on a substrate specific basis were employed for a few aryl iodides for which poor to moderate yields were observed. The use of a specific additive was not general and in some examples no coupling was observed. A summary of selected examples is shown in Table 2. ${ }^{8}$

Table 2. N-Arylation of Aryl Iodides with Additives

Entry	Substrate	Product	Additive	Yield (\%)
1	$\mathbf{2 7 a}$	$\mathbf{2 8 a}$	LiBr	56
2	$\mathbf{2 7 a}$	$\mathbf{2 8 a}$	LiCl	22
3	$\mathbf{2 7 a}$	$\mathbf{2 8 a}$	AgOTf	7
4	$\mathbf{2 7 b}$	$\mathbf{2 8 b}$	LiBr	<2
5	$\mathbf{2 7 b}$	$\mathbf{2 8 b}$	LiCl	<2
6	$\mathbf{2 7 b}$	$\mathbf{2 8 b}$	AgOTf	<2

7	$\mathbf{2 7 c}$	$\mathbf{2 8 c}$	LiBr	31^{a}
8	$\mathbf{2 7 c}$	$\mathbf{2 8 c}$	LiCl	17^{a}
9	$\mathbf{2 7 c}$	$\mathbf{2 8 c}$	AgOTf	79^{a}

${ }^{\text {a }} p$ Tol-Me sulfoximine was used instead of Ph-Me sulfoximine
The inactivity of aryl iodides was deemed by Bolm and coworkers to be a change in the rate determining step of the catalytic cycle. It is their belief that with aryl bromides and likely chlorides, the oxidative addition of the metal to the C -halide bond is the slow step. With a much longer, weaker C-I bond, oxidative addition was deemed faster than the ligand exchange of the weakly nucleophilic sulfoximine to the palladium-BINAP complex 16. Consequently, the rate of reductive elimination in the catalytic cycle is either halted or at least slowed extensively. ${ }^{8}$

Electron rich substrates did not successfully N-arylate, as seen with 2-iodoanisole 27b (Table 2, entries 4-6). Electron deficient systems worked best, as seen with 2-iodo-1-nitrobenzene 27c (Table 2, entries 1-3) and methyl 2-iodobenzoate 27a (Table 2, entries 7, 8). In an independent study, Bolm reported that aryl triflates act identically to iodo species and proposed that oxidative addition into C-I and C-OTf bonds give similar intermediates. ${ }^{8}$

More recently, the problems associated with palladium-based coupling were addressed with the use of copper salts, as also shown by Bolm and coworkers. Stoichiometric amounts of copper salts were used initially in 2004. ${ }^{9}$ In 2005, a catalytic amount of copper salt gave respectable yields of N-arylated products. A summary is shown in Scheme 9 with substrates identical to those used with palladium. Excellent
yields were observed in half the reaction time with this system even for the seemingly problematic anisole derivative 29b. ${ }^{10}$

$$
\begin{array}{ll}
\text { 27b } R_{1}=H, R_{2}=O M e & \text { 28b } R_{1}=H, R_{2}=O M e ; 99 \% \\
\text { 27c } R_{1}=\mathrm{NO}_{2}, R_{2}=H & \text { 28c } R_{1}=\mathrm{NO}_{2}, R_{2}=H ; 92 \%
\end{array}
$$

Scheme 9. Catalytic Copper N-Arylation of Aryl Iodides
Very recent was the use of iron (III) chloride in the N-arylation of aryl iodides by Bolm and coworkers. ${ }^{11}$ This is a simple, inexpensive, and environmentally friendly method for preparing N-substituted sulfoximines that complements the variety of metals that can N -arylate weakly nucleophilic sulfoximines readily with a variety of aryl halides. The pitfall for this synthesis is the inability to N -arylate aryl bromides or aryl chlorides, much like palladium's problem in the N-arylation of aryl iodides. Each synthesis is unique and the characteristics of each metal different. Thus, preferences for specific substrates is by no means unreasonable. ${ }^{11}$

27b $R_{1}=H, R_{2}=O M e$
27c $R_{1}=\mathrm{NO}_{2}, R_{2}=H$
28b $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OMe}$; 73\%
28c $\mathrm{R}_{1}=\mathrm{NO}_{2}, \mathrm{R}_{2}=\mathrm{H} ; 78 \%$

Scheme 10. Catalytic Iron N-Arylation of Aryl Iodides

To date, no successful palladium-catalyzed benzothiazine formation of aryl iodides has been published. The substrate of choice for palladium-catalyzed benzothiazine formations continues to be a one-pot N-arylation of aryl bromides thermally or with the assistance of microwave irradiation for aryl chlorides. If aryl iodides were to be used, a two step approach of first N -arylation then successive
condensation with a stronger base might be needed for benzothiazine formation. The inclusion of iron- and copper-catalyzed syntheses provides evidence that sulfoximines can be coupled with a variety of aryl iodides. Tolerance of a variety of functional groups in a variety of similar catalytic cycles involving different transition metal catalysts has been shown.

1.3 Preparation of "Free" Sulfoximines or N-Substituted Sulfoximines

1.3.1 Synthesis of "Free" Sulfoximines via Buchwald Hartwig N-Arylation

As mentioned briefly, N-arylation of sulfoximines began in 1998 with the Bolm group. ${ }^{6}$ Shortly after, in 1999 , the Harmata group expanded this reaction to prepare the first benzothiazine via N-arylation. ${ }^{5}$ It is important to lead into the syntheses of sulfoximine based ligands by also introducing the Bolm group's methods to prepare N arylated sulfoximines in their research group's path toward ligands for asymmetric catalysis. The very first and the simplest N-arylation of bromobenzene $\mathbf{1 7}$ was optimized affording N-phenylsulfoximine $\mathbf{2}$ in good yield (Scheme 11). ${ }^{6}$

Scheme 11. Optimized N-Arylation Procedure for Aryl Bromides
In short, $\mathrm{Pd}(\mathrm{OAc})_{2}$ outperformed $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ and PdCl_{2}. Of the ligands examined, p -tol-BINAP slightly improved upon BINAP and significantly enhanced reaction conversion compared to both $\mathrm{P}(o-t o l)_{3}$ and dppf, 1,1'-bis(diphenylphosphino)ferrocene. The structures of the ligands are provided in Figure 4. Two bases were studied and of the
two, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ outperformed $\mathrm{NaO}^{t} \mathrm{Bu}$ slightly. This optimized procedure is still used widely today with little change. ${ }^{6}$

$\mathrm{R}=\mathrm{Ph}$; BINAP
R = Tol; Tol-BINAP

dppf

$\mathrm{P}(\mathrm{o} \text {-tol })_{3}$

Figure 4. Structures of Ligands Used in the N-Arylation of Aryl Bromides A temporary setback for the Bolm group involved the formation of bissulfoximine 31. As mentioned before, coupling of mono-substituted aryl chlorides, bromides and iodides to some extent have been well established and the conditions have been optimized, albeit not extensively. However, when dibromobenzene 29 was used with large excesses of sulfoximine, base, ligand, and metal, only single amination to $\mathbf{3 0}$ was observed. This was thought to be due to deactivation of the second carbon-bromine bond toward oxidative addition by the newly introduced ortho-sulfoximine. Steric hindrance of the sulfoximine group was likely not an issue; since 1,3-dibromobenzene also displayed similar problems where only single amination product was observed in 51% yield. Therefore, the discerning issue of bisamination must be an electronic effect of the oxidative addition capability of the metal catalyst system. Different ligands failed to change the outcome of the reaction. One important observation is that dehalogenation was not seen; thus, palladium insertion likely does not occur under the applied reaction conditions to the remaining $\mathrm{C}-\mathrm{Br}$ bond after the first N -arylation. ${ }^{8}$

Scheme 12. Initial Attempts at the N-Arylation of Aryl Dibromides

1.3.2 Synthesis of "Free" Bissulfoximines via Buchwald Hartwig N-Arylation

Further studies into this problem revealed that a different source of palladium and a change in the reaction conditions could effectively solve the problem. The Bolm group led the way to another family of bissulfoximines via N-arylation a year later in $2001 .{ }^{8}$ Keep in mind, the first bissulfoximine ligand to be prepared by the Bolm group was in 1996 (Figure 5). ${ }^{12}$

However, bissulfoximine $\mathbf{3 1}$ was this first example of a double Buchwald Hartwig N -arylation of two sulfoximines from a dibromoarene to be reported. A change in base from $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ to $\mathrm{NaO}^{t} \mathrm{Bu}$ was necessary and $8 \% \mathrm{Pd}(0)\left(4 \% \mathrm{Pd}_{2} \mathrm{dba}_{3}\right), 8 \%$ rac-BINAP, and a large 5 equivalent excess of sulfoximine was required. A 75% yield of $\mathbf{3 1}$ was isolated (Scheme 13). ${ }^{8}$ This synthesis led way to a plethora of asymmetric ligands based on a single or double sulfoximine based moiety, all of which were synthesized via Buchwald-Hartwig N-arylations using haloarenes and S-methyl- S-phenylsulfoximine $\mathbf{6}$ as coupling partners. A review of the ligands derived from this method will be presented in the next section. The ligands presented will be shown in order of their discovery over the past decade.

Figure 5. The First Bissulfoximine Ligand

Scheme 13. The First Synthesis of Bissulfoximine 31 via N-Arylation

1.4 Chiral Sulfoximine-Based Ligands in Asymmetric Reactions

1.4.1 Preparation of an Oxazoline-Based Sulfoximine Ligand

Retention of configuration at the sulfur of sulfoximines makes the syntheses of many enantiomerically pure ligands very accessible. It was found by Buchwald and coworkers that racemization of chiral amines was a problem due to β-H elimination in the formation of imines. They found that the use of chelating ligands like BINAP, dppf, and DPEphos (Figure 6) minimized racemization. ${ }^{13}$

Under this methodology, Bolm and coworkers reasoned that since the sulfoximine's chirality was centered at the chiral sulfur atom, it would proceed with retention of configuration. Upon reaction with chiral oxazoline 32 and racemic sulfoximine 6, the Bolm group observed only one diastereomer signifying retention of configuration at sulfur. This was the first example of a Buchwald Hartwig N-arylation of an aryl bromide and sulfoximine to produce a chiral ligand capable of being employed in asymmetric catalytic reactions. A summary of this synthesis is shown in Table $3 .{ }^{8}$

DPEphos
Figure 6. Structure of Bis(2-diphenylphosphinophenyl)ether, DPEphos
Table 3. Synthesis of a Chiral Sulfoximine-Oxazoline Ligand 33

As shown in Table 3, an excess of $\mathbf{6}$ or $\mathbf{3 2}$ did not promote coupling. Of the ligands tested, BINAP and DPEphos gave the highest yields with a $1: 1$ stoichiometric mixture of aryl bromide and sulfoximine (Table 3, entries 3, 5). Dppf with PdCl_{2} was moderately successful as well (Table 3, entry 4). Ligand 33 was not examined in any asymmetric reactions in this investigation. ${ }^{8}$ This N-arylation based upon a sulfoximine will be the key reaction in the syntheses of all ligands presented herein.

1.4.2 Use of Bissulfoximine 31 in Asymmetric Hetero-Diels Alder Reactions

As shown previously in Scheme 13, bissulfoximine 31 was isolated in 75% yield from a modified Buchwald Hartwig N-arylation employing $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ instead of $\mathrm{Pd}(\mathrm{OAc})_{2}$, $\mathrm{NaO}^{t} \mathrm{Bu}$ instead of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, and a large excess of sulfoximine 6. In 2001, Bolm successfully tested bissulfoximine $\mathbf{3 1}$ in enantioselective hetero-Diels Alder reactions. The results of this study are summarized in Table 4 for the reaction of 1,3cyclohexadiene $\mathbf{3 4}$ and ethyl glyoxalate $\mathbf{3 5}$ affording 36. One important feature shown in Table 4 is that even as little as $0.5 \mathrm{~mol} \%$ of $\mathbf{3 1}$ (Table 4, entry 5) gave 96% yield and 98\% ee and an endo/exo selectivity of 99:1. ${ }^{14}$

Table 4. Ligand $\mathbf{3 1}$ in an Asymmetric Hetero-Diels Alder Reaction

Table 5 shows a summary of the hetero-Diels Alder reaction of 1,3cyclohexadiene $\mathbf{3 4}$ and diethylketomalonate $\mathbf{3 7}$ affording 38. Typically, lower reaction temperatures corresponded to better enantioselectivities (Table 4, entries 3, 4; Table 5,
entries 2-4) without lowering yield, but extending reaction time significantly. Overall, excellent yields and enantioselectives were seen for the reaction in Table 5. ${ }^{14}$

Table 5. Ligand 31 in Another Asymmetric Hetero-Diels Alder Reaction

Entry	$\boldsymbol{S}, \boldsymbol{S}-31$ $(\mathbf{m o l} \%)$	Temp. $\left({ }^{\circ} \mathbf{C}\right)$	Time $\mathbf{(h)}$	Yield $\mathbf{(\%)})$	$\boldsymbol{e} \boldsymbol{e}$ $\mathbf{(\%)}$
1	5	rt	8	95	92
2	10	-5	12	98	94
3	10	-20	18	93	96
4	5	-40	30	92	98

This ligand is the first enantiopure sulfoximine based ligand derived from the N arylation of an aryl halide, in this case an aryl dibromide, which was successfully used in an asymmetric reaction. The ligand system shows respectable turnover ability with low catalyst loadings. Excellent enantioselectivities are accompanied by high yields. This chemistry led way to many more similar ligand systems in different asymmetric reactions.

1.4.3 Use of Bisbenzothiazine in an Asymmetric Allylic Alkylation

With new accessibility to bissulfoximines, new sulfoximine-containing bisbenzothiazines became possible. In 2001, Harmata and coworkers reported the efficient conversion of dibromodibenzaldehyde 39 to the corresponding S, S bisbenzothiazine 40 in 68% yield (Scheme 14). Noteworthy is that $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ could be used in this case. ${ }^{15}$

Scheme 14. Synthesis of Bisbenzothiazine 40
This new bisbenzothiazine 40 is the first example of a cyclic "fixed" sulfoximine, or benzothiazine, used as a ligand in an asymmetric allylic alkylation reaction. The reaction of racemic 1,3-diphenylallyl acetate 41 with dimethyl malonate 42 under palladium catalysis in the presence of $\mathbf{4 0}$ gave enantioenriched $\mathbf{4 3}$ in good yield and enantioselectivity (Table 6). The best enantiomeric excess seen was 86% ee (Table 6, entry 4$).{ }^{15}$

Table 6. Bisbenzothiazine $\mathbf{4 0}$ in a Pd-Catalyzed Allylic Alkylation

Entry	Pd Source	Solvent	Time (h)	Yield (\%)	ee (\%)
1	$[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}$	THF	3.5	90	80
2	$[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}$	PhH	3	85	82
3	$[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}$	PhMe	3.5	70	78
4	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	THF	3.5	69	86
5	${\mathrm{Pd}\left(\mathrm{OAc}_{2}\right.}^{2}$	THF	7.5	67	73
6	${\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}}^{7}$	THF	5	90	16

Interestingly, bissulfoximine $\mathbf{3 1}$ failed to give any enantioselectivity in the same reaction. The reaction also was very sluggish and isolated yields were 30% and 31% for $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ and $[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}$, respectively (Table 7, entries 1,2). Remarkably, 4-phenyl-2,1-benzothiazine 28 gave a 15% yield and 28% ee of alkylated product 43 (Table 7, entry 3). ${ }^{15}$

Table 7. Bissulfoximine $\mathbf{3 1}$ and Benzothiazine $\mathbf{2 6}$ in an Allylic Alkylation

1.4.4 Preparation of Benzothiazine-like Compounds

In search of similar families of compounds, Bolm and coworkers explored other dibromoarene-type compounds in 2002. Expanding upon the synthesis of 31, they sought to expand the reaction scope to that of the naphthalene and biphenyl type dibromide systems. First was coupling of 1,8-dibromonaphthalene 44 with sulfoximine $\mathbf{6}$ in 90% yield over 20 hours to give 6 -membered heterocycle 45 (Scheme 15). This process required a five equivalent excess of sulfoximine 6a. Noteworthy is that $\operatorname{Pd}(\mathrm{OAc})_{2}$ or Pd_{2} bda $_{3}$ could be used to afford product in respectable yields. The use of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, as base, was not reported, and only $\mathrm{NaO}^{t} \mathrm{Bu}$ was used in this study. Isolation of the product showed that dual N -arylation did not occur but that instead a different cyclization had
occurred. The absence of palladium resulted in absence of the cyclization and coupling. Bolm and coworkers expanded the scope to biphenyl and biphenyl ether type compounds to make both 7- and 8-membered heterocycles. The proposed base-induced aryne mechanism is shown in Figure 7 for 46. ${ }^{16}$ This mechanism mirrors that shown by Hartwig and coworkers for the palladium-catalyzed conversion of bromoanilides to oxindoles to make 5-membered heterocycles. ${ }^{17}$

2,2'-Dibromobiphenyl 46 gave 7-membered heterocycle 47 in 98% yield and 2,2'-oxybis(bromobenzene) 48 gave 8 -membered heterocycle 49 in 69% yield (Scheme 16). ${ }^{16}$ The reduction in yield of the larger 8 -membered heterocycle is likely due to larger entropic effects involved in the cyclization of the larger ring system as compared to the slightly smaller 7-membered heterocycle.

Scheme 15. Synthesis of a Sulfoximine Based 6-Membered Heterocycle 45

Figure 7. Proposed Base Induced Benzyne Mechanism

48
49

Scheme 16. Syntheses of 7- and 8-Membered Heterocycles

1.4.5 Use of Bissulfoximine 31 in Asymmetric Diels Alder Reactions

Bissulfoximine 31 was shown earlier to be successful in copper-catalyzed heteroDiels Alder reactions that proceeded in high yield and enantioselectivity. ${ }^{14}$ Bolm and coworkers expanded the scope of the chemistry of bissulfoximine $\mathbf{3 1}$ and used it as a ligand in normal Diels Alder reactions in 2003. Cyclopentadiene 50 and 3-acryloyloxazolidin-2-one 51 afforded Diels Alder adduct 52 in 98% yield, $81 \% \mathrm{ee}$, and a 93:7 endo/exo ratio. Only bissulfoximine 31, in this specific study, was prepared by N arylation and its use as a ligand is shown in Scheme 17. ${ }^{18}$

Scheme 17. Bissulfoximine 31 in an Enantioselective Diels Alder Reaction
Other ligands tested were those similar to the bissulfoximine ligand 37. Of these ligands, bissulfoximine ligand 53, shown in Figure 8, slightly outperformed all others
including bissulfoximine $\mathbf{3 1}$ (Scheme 18). After reaction optimization, the Bolm group deduced several things: $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$ was the best copper(II) source; chloroform was the best solvent; and the ideal ligand contained both an electron rich arene bridge and orthobound methoxy substituents about the sulfoximine aryl groups. ${ }^{18}$ However, $\mathbf{3 1}$ can be made in a single step, and it would likely be the ligand of choice as its performance was respectable.

53
Figure 8. Bissulfoximine Ligand 53

Scheme 18. The Use of $\mathbf{5 3}$ in an Optimized Diels Alder Reaction

1.4.6 Use of \mathbf{N}-Quinolinesulfoximines in Asymmetric Hetero-Diels Alder Reactions

Later in 2003, another class of sulfoximine-based ligands was reported by Bolm and coworkers. A variety of substrates were prepared and tested. Overall, the best ligands for this reaction contain a sulfoximine bearing a small alkyl group and an aryl group with bulky ortho-substituents. Syntheses of these quinoline-based ligands model those previously shown with the N-arylation of sulfoximine $\mathbf{6}$ and quinoline derivatives 53 to yield a variety of N -quinolinesulfoximines 54 (Table 8). Reduced yields were
observed for bulky alkyl bearing sulfoximines, especially in the case of the t-butyl group, which gave a 55% isolated yield of product (Table 8, entry 11). Larger arenes like acridine gave only 68% isolated yield (Table 8, entry 3). Most yields were good to excellent, providing further evidence that the Buchwald Hartwig N-arylation works well with a variety of sulfoximines in the presence of quinoline-type substrates. ${ }^{19}$

Table 8. Syntheses of Quinolinesulfoximines by N-Arylation

	 53	$\frac{5 \% \mathrm{Pd}(\mathrm{C}}{2 \mathrm{eq}}$	Ac) $)_{2}, 10 \%$ BINAP $\mathrm{Cs}_{2} \mathrm{CO}_{3}, 1$ eq 6 , $110^{\circ} \mathrm{C}, 24 \mathrm{~h}$		
Entry	Sulfoximine	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}	Yield (\%)
1	54a	Me	Ph	H	90
2	54b	Me	Ph	$n-\mathrm{Bu}$	75
3	54c	Me	Ph	$-\mathrm{C}_{4} \mathrm{H}_{4}$	68
4	54d	$i-\mathrm{Pr}$	Ph	H	75
5	54e	$t-\mathrm{Bu}$	Ph	H	72
6	54f	Me	biphenyl	H	84
7	54g	Me	3,5-di-t-Bu-Ph	H	81
8	54h	Me	2-MeO-Ph	H	87
9	54i	n-pentyl	2-MeO-Ph	H	85
10	54j	phenethyl	2-MeO-Ph	H	73
11	54k	t-Bu	2-MeO-Ph	H	55
12	541	Me	2-MeO-Naph	H	81

Many of these ligands were tested in the same hetero-Diels Alder reaction presented previously in Tables 4 and 5. Results for these different sulfoximines are collected in Table 9. Ligands with small alkyl and bulky ortho-aryl groups on the sulfoximine gave better enantioselectivities than those with larger alkyl and less bulky aryl groups. ${ }^{19}$

Table 9. N-Quinolinesulfoximines in an Asymmetric Hetero-Diels Alder Reaction

 34	 35 Sulfoximine	$\frac{10 \% \mathrm{Cu}(\mathrm{OTf})_{2}, 10 \% 54}{\mathrm{DCM}, \mathrm{rt}, 24 \mathrm{~h}}$		
Entry		Yield (\%)	$e e(\%)$	endo/exo ratio
1	54a	97	75	97:3
2	54b	93	63	99:1
3	54c	95	56	99:1
4	54d	22	38	96:4
5	54e	18	0	88:12
6	54f	92	73	98:2
7	54g	81	73	97:3
8	54h	98	91	98:2
9	54i	92	90	98:2
10	54j	93	86	97:3
11	54k	41	0	92:8
12	541	88	91	98:2

A few interesting features are displayed in Table 9. First, yields suffered in many cases. When the alkyl group on the sulfoximine was bulky or very bulky the reaction progress was extremely limited and the yields were quite low (Table 9, entries 4, 5, and 11). Enantioselectivity suffered in these cases as well. So it is logical to believe that larger alkyl groups are a strong contributing factor to how well defined the asymmetric cavity around the metal sphere is and that they therefore dictate to some extent yield and enantioselectivity of the hetero-Diels-Alder reaction. In all other cases substituent changes about the aryl sulfoximine group and the quinoline group had little effect on yield or enantioselectivity. ${ }^{19}$

1.4.7 Use of Aminosulfoximines in Asymmetric Mukaiyama-Type Aldol Reactions

In 2004, the attention of the Bolm group was directed toward the synthesis of aminosulfoximines. The synthesis began with 2-bromonitrobenzene $\mathbf{5 5}$ and sulfoximine S-6a as coupling partners in a Buchwald Hartwig N-arylation to give N-substituted sulfoximine 56 in $73-95 \%$ yield. Compound $\mathbf{5 6}$ was reduced to the aniline N-substituted sulfoximine $\mathbf{5 7}$ in $\mathbf{7 4 - 8 7 \%}$ yield. Reductive amination of $\mathbf{5 7}$ gave aminosulfoximine $\mathbf{5 8}$ in $81-85 \%$ yield (Scheme 19). ${ }^{20}$

Scheme 19. Generic Synthesis of Aminosulfoximine 58

Many N-substituents were tested and of those, the very bulky $N-2,4,6$ triisopropylphenyl aminosulfoximine 58a (Figure 9) was found to outperform other substituents such as phenyl, naphthyl, 2-anisyl, and mesityl. The test reaction was between silyl enol ether $\mathbf{5 9}$ and ketoester $\mathbf{6 0}$ to yield Mukaiyama aldol product $\mathbf{6 1}$. The results are shown in Table 10. In all examples, good yields and enantioselectivities were observed when aminosulfoximine 58a was employed as the ligand. ${ }^{20}$

Figure 9. Aminosulfoximine Ligand 58a
Table 10. Aminosulfoximine 58a as a Ligand in Mukaiyama-Type Aldol Reactions

 59			$\xrightarrow[5 \% \text { 58a, } \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}]{5 \% \mathrm{Cu}(\mathrm{OTf})_{2}}$		C-	
Entry	R_{1}	\mathbf{R}_{2}	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Yield (\%)	$e e(\%)$
1	Me	Me	-30	15	89	98
2	Me	Bn	-50	47	86	98
3	Me	$i-\operatorname{Pr}$	-40	28	90	99
4	Et	Me	rt	24	78	89
5	$\mathrm{CH}_{2} \mathrm{Bn}$	Et	-20	40	86	96

1.4.8 Use of Aminosulfoximines in Asymmetric Carbonyl-ene Reactions

Aminosulfoximines were again tested in various copper-catalyzed carbonyl-ene reactions in 2005. Similar to those tested above in Mukaiyama-type aldol reactions, several aminosulfoximines prepared by N-arylation were tested and acceptable yields and good enantioselectivities were found. Ligand 58a was also the best ligand for this reaction. In this case, α-methylstyrene $\mathbf{6 2}$ was reacted under copper catalysis with methyl pyruvate $\mathbf{6 0}$ to give hydroxyl ester 63 in 53% yield and 91% ee (Scheme 20). Notice the enantioselectivities were not quite as high as before, but it shows that sulfoximine type ligands are applicable to more than one reaction type. ${ }^{21}$

Scheme 20. Aminosulfoximine 58a in an Asymmetric Carbonyl-Ene Reaction

1.4.9 BINOL-Based \boldsymbol{N}-Phosphino Sulfoximines in Asymmetric Reactions

Soon after in 2005, Bolm and coworkers reported a BINOL-based N-phosphino sulfoximine based ligand system. This ligand was not prepared via Buchwald Hartwig N arylation but provides yet another very simple synthesis of a sulfoximine based-ligand. Chlorophosphite 64 was added to sulfoximine $\mathbf{6}$ in the presence of triethylamine in toluene. The reaction was warmed from $-78{ }^{\circ} \mathrm{C}$ to room temperature to afford N phosphino sulfoximine $\mathbf{6 5}$ in excellent yields (Scheme 21). This ligand system was investigated in two asymmetric reactions. First, it was tested in asymmetric rhodiumcatalyzed hydrogenations (Scheme 22) and palladium-catalyzed asymmetric allylic alkylations (Scheme 23). In both cases high yields and high enantioselectivities were observed. ${ }^{22}$

Scheme 21. Preparation of BINOL-Based N-Phosphino Sulfoximines
In all examples, quantitative conversion was observed. In all cases, good to excellent enantioselectivities were seen. As little as $0.1 \% \mathrm{Rh}-\mathbf{6 5}$ catalyst was used. The extremely low catalyst loading displays how well the catalyst was able to turnover in a period of 20 hours to allow for the excellent conversions. It was found that a matched ligand, R-BINOL/S-6 gave higher enantioselectivity than the mismatched case S -BINOL/S-6 where as much as a 12% ee difference was observed. ${ }^{22}$

Scheme 22. BINOL N-Phosphino Sulfoximines in Asymmetric Hydrogenations

Typically monodentate BINOL-based ligands are not used in Pd-catalyzed allylic substitution reactions as they provide poor enantioselectivities. This was also the case, for ligands like 65. The highest enantioselectivity observed was 66% ee where the methyl group was substituted with an t-butyl group to improve steric demand. Increasing the amount of ligand to palladium available also reduced the enantioselectivity by a noticeable amount, in some cases as much as 50% ee. However, yields slightly improved with more ligand present, albeit by only a few percent. ${ }^{22}$

Scheme 23. BINOL N-phosphino Sulfoximines in Asymmetric Allylic Alkylations

1.4.10 Optimization of Aminosulfoximines in Asymmetric Aldol Reactions

As shown in 2004, aminosulfoximines as ligands worked well in Mukaiyama-type aldol reactions. ${ }^{20}$ Bolm and coworkers expanded this methodology and optimized the reaction conditions to improve the yield, enantioselectivity, and substrate scope. As previous results suggested and confirmed again here, ligand 58a provided the highest ee and the highest yield. A bulky ortho-substituent remains the largest determining factor to attain high enantiomeric excess. Both configurations of 61 could be prepared by switching to the opposite ligand chirality. Here (R)-58a gave (S)-61 and (S)-58a gave (R)-61. Modifying the substituents on the bridging arene had little to no effect on yield or enantioselectivity. ${ }^{23}$

Solvent effects were explored and typically THF outperformed all others in terms of enantioselectivity. Ether, dioxane, and toluene gave similar enantioselectivity but much lower yields than THF. The reaction did not proceed in propionitrile. Chloroform
and dichloromethane gave lower enantioselectivity as well. Copper(II) salts were examined and the ${ }^{-} \mathrm{OTf}$ salt outperformed $\mathrm{PF}_{6}{ }^{-}, \mathrm{BF}_{4}{ }^{-}$, and $\mathrm{SbF}_{6}{ }^{-}$salts in both with regards to yield and enantioselectivity. The perchlorate counterion, however, provided the best yield of all salts tested but suffered reduced enantioselectivity relative to that of the ${ }^{-}$OTf salt. Catalyst loadings of less than 1% resulted in diminished enantioselectivity. Lowering temperatures of the reaction allowed for better enantioselectivity but significantly lengthened reaction times to as much as 10 days. The best temperature was found to be $-50{ }^{\circ} \mathrm{C}$ with the assistance of trifluoroethanol as an accelerant. Temperatures near $-78{ }^{\circ} \mathrm{C}$ or lower inhibited catalysis completely. The overall optimized reaction is shown in Scheme $24 .{ }^{23}$

Scheme 24. Optimized Asymmetric Mukaiyama-Type Aldol Reaction

1.4.11 Diphenylphosphanylsulfoximines in Asymmetric Imine Hydrogenations

A new ligand system was prepared and tested in asymmetric imine hydrogenations by the Bolm group in 2005. This P, N-ligand was prepared by coupling of aryl bromide 74 with sulfoximine $\mathbf{6}$ via copper mediated N -arylation in moderate to good yields (55-83\%). The resulting N-substituted sulfoximine 75 was reductively deoxygenated with trichlorosilane to give the free phosphorous P, N-ligand 76 in yields of 51-81\% (Scheme 25).

Scheme 25. Synthesis of P, N-Ligands Containing a Sulfoximine

Scheme 26. P, N-Sulfoximine Ligands in Imine Hydrogenation
A summary of selected imine reductions is shown in Scheme 26. Ligand 76a (Figure 10) provided the best yield (99\%) and ee (96\%) for the hydrogenation of imine 77 into chiral amine 78. Ortho-substituents on the N-aryl group of the imine reduced the enantioselectivity drastically as shown in conversion of imine 79 to amine $\mathbf{8 0}$, which occurred in 99% yield but with only 58% ee. An N-mesityl group shut down the reaction
completely. The tetralone derivative $\mathbf{8 3}$ gave an excellent yield (99%) of amine $\mathbf{8 4}$ in as little as 4 hours with an enantiomeric excess of 91%. ${ }^{24}$

Figure 10. Optimized P, N-Ligand 76a

1.4.12 Aminosulfoximines in Asymmetric Vinylogous Aldol Reactions

Expanding the scope of previous asymmetric Mukaiyama-type aldol reactions, Bolm and coworkers tested aminosulfoximines in vinylogous aldol reactions in 2006. The very bulky tri-iso-propyl based aminosulfoximine 58a again proved to outperform all other aminosulfoximines. A representative reaction is shown in Scheme 27. ${ }^{25}$

Scheme 27. Aminosulfoximine 58a in an Asymmetric Vinylogous Aldol Reaction
Here methyl pyruvate $\mathbf{6 0}$ reacted with vinylogous TMS ester $\mathbf{8 5}$ in 12h to give aldol product $\mathbf{8 6}$ in 81% yield and 99% ee. This is yet another example of where a single sulfoximine ligand family can be applied to a wide variety of reactions. ${ }^{25}$

1.4.13 Naphthalene Based Sulfoximines in Asymmetric Quinoline Hydrogenations

In 2008, Bolm and coworkers devised another family of sulfoximine-containing compounds with the creation of naphthalene-based P, N-ligands for asymmetric catalysis. The synthesis began with halogen metal exchange of diiodo naphthalene 87 with $n-\mathrm{BuLi}$ followed by trapping with an aryl phosphine chloride. Subsequent oxidation gave
compound 88 . Similar to $\mathbf{7 4}$, copper-mediated N-arylation of $\mathbf{8 8}$ with sulfoximine $\mathbf{6}$ gave N-arylated sulfoximine 89. Reductive deoxygenation gave free phosphino P, N-ligand 90 in a wide range of yields (Scheme 28). A variety of quinolines were hydrogenated with precatalyst 91 which were prepared in situ with an Ir salt (Scheme 29). This is the first example of a sulfoximine-based ligand system being trapped successfully and isolated as a metal-ligand bound catalyst. ${ }^{26}$

Scheme 28. Synthesis of Naphthalene-Based Sulfoximine P, N-Ligands
It was found that for the hydrogenation of quinolines, sulfoximine bulk reduced the enantioselectivity of the hydrogenation. Substitution on the aryl phosphorous groups had little or no effect. Several 1-, 5-, and 1,5-disubstituted quinolines were hydrogenated. The results are summarized in Table 11. Here quinoline $\mathbf{9 2}$ was hydrogenated to cyclic amine 93. Conversions were typically fair to good. Longer reaction times gave better yields and poorer enantioselectivity (Table 11, entries 3, 5, and 7). Shorter reaction times gave lower yields but better enantioselectivity (Table 11, entries 1, 2, 4, 6, 8, and 10). The lowest yield was observed with 2-fluoroquinoline $\mathbf{9 3 i}$ for which the reaction proceeded to the extent of only 43%, the $e e$ of the product being 64% (Table 11 , entry 9).

Overall enantioselectivity was moderate to good and conversions also moderate to good. ${ }^{26}$

Scheme 29. Preparation of Ir Precatalyst 91
Table 11. Summary of Quinoline Hydrogenation via Precatalyst 91

			$2 \xrightarrow[\text { PhMe, } 60^{\circ} \mathrm{C}]{\stackrel{1 \% 91, \mathrm{H}_{2}}{\longrightarrow}}$		 93	
Entry	R^{1}	\mathbf{R}^{2}	Compound	Time (h)	Conversion (\%)	$e e(\%)$
1	H	Me	93a	20	>95	87
2	H	Et	93b	24	62	77
3	H	Et	93c	48	69	70
4	H	$i-\mathrm{Bu}$	93d	24	53	75
5	H	$i-\mathrm{Bu}$	93e	48	71	55
6	H	Pr	93 f	24	62	80
7	H	Pentyl	93g	48	90	65
8	Me	Me	93h	24	>95	75
9	F	Me	93 i	24	43	64
10	OMe	Me	93j	24	>95	78

1.4.14 Oxazolinyl Sulfoximines in Asymmetric Mukaiyama-type Aldol Reactions

The last example to be discussed from the current literature involves the use of a oxazolinyl sulfoximine ligand. This ligand mentioned previously as oxazoline $\mathbf{3 3}$ or any derivative thereof had not been investigated as a chiral ligand until late 2008 by the Bolm group. A newer two step synthesis was reported to make this type of ligand in a more expedient manner (Scheme 30).

Scheme 30. Second Generation Synthesis of Oxazolinyl Sulfoximine Ligands
The synthesis began with 2-bromobenzonitrile 94 and zinc chloride to give oxazoline 95. Copper mediated N-arylation afforded 33 from 95 and 6 . The ligand that gave the best enantioselectivity was 33a (Figure 11). An example of 33a used in asymmetric Mukaiyama-type aldol reactions is shown in Scheme $31 .{ }^{27}$

Figure 11. Optimized Oxazolinyl Sulfoximine Ligand 33a

Scheme 31. Oxazolinyl Sulfoximine 33a in Asymmetric Mukaiyama Aldol Reaction

1.4.15 Summary of Sulfoximine Based Ligands Over the Past Decade

An in depth review of sulfoximines ligands over the past 10 years has been presented. Shown below in Figure 12 are a list of sulfoximine-based ligands and the years they were reported. The scope of ligands, reactions, and substrates makes sulfoximine ligands attractive to the synthetic world. High yields and enantioselectivities with low catalyst loading are common. Relatively short syntheses make sulfoximine ligands very accessible. These features are important to notice when thinking of a catalyst's performance. Many of the ligands introduced previously have made a significant impact on asymmetric reactions by giving a high enantiomeric excess of products formed in a variety of reactions with a variety of metals. The ever expanding scope of sulfoximine-based chiral ligands provides justification for further development of related systems that may also have the potential for the development of reactions that proceed in high enantioselectivity.

40, 2001

53, 2003

65, 2005
76a, 2005

90, 2008

33a, 2008

Figure 12. Chiral Sulfoximine Ligands over the Past Decade

CHAPTER 2

Syntheses of Potential Hydroxy-Based Benzothiazine Ligands

The development of hydroxy-based benzothiazine ligands was undertaken in order to create enantiopure molecular scaffolds. This scaffold would be the initial building block used to design more interesting and more complicated molecules. The syntheses of many related compounds will be presented herein. Many synthetic steps were optimized in order to provide respectable syntheses and those details are also presented herein. The key step in all syntheses is the palladium-catalyzed N-arylation of haloarenes with sulfoximines that has been examined in depth in the previous chapter.

2.1 Synthesis of a Hydroxy Benzothiazine

2.1.1 First Generation Synthesis of a Hydroxy Benzothiazine

Aside from bisbenzothiazine 40 and very briefly 4-phenyl-2,1-benzothiazine 28, no other benzothiazines have been studied as ligands in asymmetric reactions to date. Little is known about their chemistry under different reaction conditions compared to the comprehensively studied various N-substituted sulfoximines presented previously. The optimized synthesis of a hydroxy benzothiazine scaffold will be presented. The preparation of this "fixed" sulfoximine building block provided a direct comparison of the benzothiazine's rigid structure to "free" sulfoximines with regards to reactivity. The synthesis of the hydroxy benzothiazine was published in 2006. ${ }^{28}$

The first generation synthesis began with commercially available methyl 3hydroxybenzoate 96. In the presence of 5 equiv. of dimethoxymethane and a catalytic amount of para-toluenesulfonic acid, the reaction mixture was refluxed in dichloromethane over 24 hours under Soxhlet extraction with freshly activated $4 \AA$
molecular sieves to give MOM-protected phenol 97 (Scheme 32). Yields without molecular sieves or with weakly active molecular sieves ranged anywhere from 39% to 48%. Workup with $10 \% \mathrm{NaOH}$ allowed for a chromatography-free separation from the starting materials.

The second step was a lithium aluminum hydride reduction of an ester to an alcohol. Less than one equivalent of the reagent could be used to obtain 100% reduction to primary benzyl alcohol 98 in near quantitative yield (Scheme 32). To avoid difficulties in isolation due to the resultant aluminum hydroxides, the widely known Fieser workup was used and as shown the isolated yields approached 100% yield on a multigram scale.

Scheme 32. First Generation Synthesis: MOM-Protection and LAH Reduction
The next step in the first generation synthesis was the selective ortho-bromination of benzyl alcohol 98 to give (2-bromo-3-(methoxymethoxy)phenyl)methanol 99. The challenge that exists is getting single bromination and with complete regioselectivity (Figure 13). The difficulty arises from having three sites of bromination based upon the ortho- para-directing abilities of the protected phenol. The protected phenol, a strong electron pair donor, and the methanol substituent, as a weaker inductive electron donor, allow for multiple sites of reactivity about the aromatic ring. The three possible locations of bromination are shown in Figure 13.

Figure 13. Possible Sites of Bromination
Many attempts to optimize this synthetic step were investigated. First, benzyl alcohol 98 was deprotonated with 2.5 equivalents of n - BuLi in various solvents, at various temperatures and for various reaction times. The hope was to take advantage of the two possible ortho-directing groups to gain regioselectivity at the most hindered ortho-hydrogen. A summary is shown in Table 12.

Initial reactions in toluene showed that at low temperatures the reaction progress was slow, giving clean conversion in very modest yields (Table 12, entries 1-2). Extended reaction times at lower temperatures seemed to have a negative effect on yield (Table 12, entry 3). Warming to room temperature and changing solvents increased yields to a respectable 89% (Table 12 , entries $4,5,8-10$, and 14). Both the THF and ether reactions had many baseline impurities that required silica chromatography to remove and attention was drawn to toluene as the solvent of choice (Table 12, entry 10).

Heating the reaction mixture in $n-\mathrm{BuLi}$ gave exclusive lithiation at the sterically more hindered position. Here the lithium cation could be dually stabilized by both the alkoxide anion and the MOM-substituent (Figure 14). Even if other sites were deprotonated, the resulting anion could act as a strong base such that only the desired dually stabilized anion remained over a period of several hours. Under the previously described reaction conditions, the highest yields and cleanest reactions were observed
(Table 12, entries 11, 14-18). The reaction was found to be reproducible up to ten or more gram scale.

Note that switching to stronger bases like s-BuLi and t-BuLi decomposed the starting materials and no product was observed (Table 12, entries 6, 7, and 13). When tetramethylethylenediamine, TMEDA, was employed to enhance the reactivity of n - BuLi , only 54% of 107 was obtained along with no recovered starting material (Table 12, entry 12).

Table 12. First Generation Synthesis: Bromination

	 1	1. $2.4 \mathrm{eq} n$ solvent, tempera 2. 1.5 eq B	-BuLi time ature $3 \mathrm{r}_{2} \mathrm{Cl}_{4} \mathrm{C}_{2}$		OH
Entry	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	$\begin{gathered} \text { Ratio } \\ (98: 107) \\ \hline \end{gathered}$	Yield (\%)
1	PhMe	-10	1.5	---	64
2	PhMe	-10	1.5	---	56
3	PhMe	-10	3.5	$2.8: 1$	---
4	ether	rt	2	---	78
5	ether	rt	4	1:8.3	89
6	THF ${ }^{\text {a }}$	-78	1	0:0	---
7	ether ${ }^{\text {a }}$	rt	3	0:0	---
8	ether	rt	4	1:8.3	87
9	THF	rt	4	1:7.3	80
10	PhMe	rt	4	1:3.5	70

11	PhMe	80	5	1:12.5	87
12	PhMe ${ }^{\text {b }}$	rt	5	$1: 2.9$	54
13	PhMe ${ }^{\text {c }}$	rt	24	0: 0	---
14	PhMe	rt	24	$1: 5.2$	84
15	PhMe	70	19	1:8.9	89
16	PhMe	70	6	1:15.7	96
17	PhMe	70	6	1:13.3	95
18	PhMe	70	8	1:11.1	95
$\begin{aligned} & \hline \text { a } t \text {-BuLi used } \\ & { }^{\mathrm{b}} 2.5 \mathrm{eq} \text { TMEDA used } \\ & { }^{\mathrm{c}} s \text {-BuLi used } \end{aligned}$					

Figure 14. Possible Model for Lithium Cation Stabilization
A normal bromination attempt of the commercially available ester $\mathbf{9 7}$ was made (Scheme 33). This procedure was based on one for a very different substrate. ${ }^{29}$ Here methyl ester 97 was transformed into bromides 100, 101, and 103 as an inseparable mixture. Hydrolysis of the MOM-group was also observed due to the HBr formed in situ. This bromination route was abandoned due to previous success of the ortholithiation procedure.

Scheme 33. First Generation Phenol Synthesis: Failed Bromination Attempt 1

The de Koning group claimed in 2004 that only the desired regioisomer 104 was isolated from their optimized bromination procedure using aldehyde 103. It seems that regioisomer $\mathbf{1 0 4}$ is in slight excess relative to the other two regioisomers 105 and $\mathbf{1 0 6}$. However, in the report by de Koning, they were able to filter off the desired regioisomer cleanly and in as much as 50% isolated yield. ${ }^{30}$ This was not the case in any of our attempts and $\mathbf{1 0 4}$ could not be separated from $\mathbf{1 0 5}$ and $\mathbf{1 0 6}$ as shown in Table 13.

Table 13. First Generation Synthesis: Failed Bromination Attempt 2

Entry	Solvent	Temp. $\left({ }^{\circ} \mathbf{C}\right)$	Time (h)	$\mathbf{1 0 3 : 1 0 4 : 1 0 5 : 1 0 6}$
1	CCl_{4}	25	2	$2.0: 3.2: 1: 2.0$
2	CCl_{4}	25	16	decomposition $^{\mathrm{a}}$
3	CCl_{4}	25	72	$5.3: 2.6: 1.5: 1$
4	$\mathrm{CCl}_{4}: \mathrm{DCM}^{\mathrm{b}}$	25	4	$1.4: 1.7: 1: 0$

${ }^{\text {a }}$ No products were observed in the crude NMR
${ }^{\mathrm{b}}$ 10:1 mixture

The next step to get to the bromoaldehyde precursor needed for the Buchwald Hartwig N-arylation step was the oxidation of benzyl alcohol 107 to benzaldehyde 108 . The oxidation method selected was the Swern oxidation, which afforded 108 in 98% yield (Scheme 34). A clean mixture of brominated alcohol and unbrominated alcohol could be oxidized and carried forward since the benzothiazine and unbrominated aldehyde have distinctly different polarities and could be separated by chromatography.

Scheme 34. First Generation Phenol Synthesis: Swern Oxidation of $\mathbf{1 0 7}$ to $\mathbf{1 0 8}$
The key step, the Buchwald Hartwig N-arylation, was the next step in the synthesis. Using standard conditions, the reaction proceeded smoothly in 96% yield (Scheme 35). The reaction failed if the MOM-protecting group was not present even when excess base employed (Scheme 36).

Scheme 35. First Generation Phenol Synthesis: N-Arylation of MOM-Protected Phenol

Scheme 36. First Generation Phenol Synthesis: Failed N-Arylation of Phenol
Completion of the synthesis was achieved by deprotecting the MOM-acetal protecting group under very acidic conditions to give the free phenol benzothiazine 111 in quantitative yield (Scheme 37). This completed the first generation synthesis of desired enantiomerically pure 8 -hydroxy-2-S-oxa-2-S-phenyl-2,1-benzothiazine 111. A summary of the first generation synthesis is shown in Scheme 38.

Scheme 37. First Generation Synthesis: MOM-Group Deprotection

Scheme 38. First Generation Synthesis: Summary

2.1.2 Second Generation Synthesis of a Hydroxy Benzothiazine

Soon after the completion of the first synthesis, compound $\mathbf{1 0 3}$ was commercially synthesized. Many grams of $\mathbf{1 0 3}$ were donated for research purposes to our group by Frontier Scientific. With this commercially available intermediate, a second generation synthesis was undertaken, reducing the step count to $\mathbf{1 0 9}$ by three. Since the free phenol would not take part in the N-arylation, it was important to protect the phenol without modifying the aldehyde and adding more synthetic steps. Thus MOM-protection seemed logical. A summary of results is provided in Table 14.

Only two bases were examined, NaH was tested first. In DMF, the reaction was very poor (Table 14 , entry 1). By switching to THF and adding NaI, the reaction improved greatly. In 3 hours, 108 was isolated in 96% yield (Table 14, entry 2). This reaction was very exothermic on a large scale. Thus attention was drawn to TEA as base. Five equivalents of this weaker amine base were needed to obtain a near quantitative conversion in less than 3 hours with a twofold excess of MOMCl in THF (Table 14,
entries 3-5). The best synthesis included $5 \% \mathrm{NaI}$ in THF in addition to TEA, affording 108 in 99% yield (Table 14, entry 6).

Table 14. Second Generation Synthesis: MOM-Group Protection

	 110	MOMCI, Base,Time, Additive, rt		 108		
Entry	$\begin{gathered} \text { MOMCI } \\ \text { (equiv.) } \end{gathered}$	$\begin{gathered} \text { Base } \\ \text { (equiv.) } \end{gathered}$	Solvent	Additive (equiv.)	Time (h)	Yield (\%)
1	1.1	$\mathrm{NaH} ; 1.2$	DMF	---	1	38
2	2	NaH; 2.5	THF	NaI; 0.5	3	96
3	2	TEA; 5.0	PhMe:THF	NaI; 0.5	1	92
4	2	TEA; 5.0	THF	NaI; 0.5	1.5	94
5	2	TEA; 5.0	THF	NaI; 0.05	2	93
6	2	TEA; 5.0	THF	NaI; 0.05	3	99

With a new more expedient synthesis to the key bromide 108, the ease of preparing phenol 111 in a faster 3 step route makes it much more attractive as an attainable enantiopure ligand for asymmetric catalysis. This improved synthesis is now more economical and very direct. The second generation synthesis is summarized in Scheme 39.

Scheme 39. Second Generation Synthesis: Summary

2.2 Preparation of Benzothiazine-Based Ligands

2.2.1 Attempts to Synthesize a $\boldsymbol{P}, \boldsymbol{N}$-Benzothiazine Ligand

With the phenol functional group now unprotected, it could be utilized as a nucleophile in the presence of base. The phenoxide could be trapped by various phosphine chlorides to produce P, N-benzothiazine based ligands (Table 15). In short, all attempts to react the phenolic nucleophile with a phosphine chloride gave excellent and often quantitative conversion to crude product. In all cases, the use of degassed solvents, oxygen-free silica gel, and oxygen-free alumina gave only recovered phenol $\mathbf{1 1 1}$ in excellent recoveries (Table 15, entries 1-6, 13-18).

Various phosphorus trapping reagents were used to determine if the structure of the phosphorus group could prevent product decomposition, but there was no observable difference (Structures of A and B are provided in Figure 15). Bulkier substituents on phosphorus afforded poor conversions (Table 15 entries 17, 18). To date there has been no successful attempt to isolate the free phosphino P, N-benzothiazine ligand from this series. Attempts to trap the crude material with transition metal salts gave no isolable product (Table 15, entries 7-12, 15-18).

Table 15. Attempts Toward P, N-Benzothiazine Ligands

111
112

Entry	Base (eq)	Solvent	Temp. $\mathbf{(}^{\mathbf{0} \mathbf{C})}$	Time (h)	\mathbf{R}	Conv. $(\%)$	Isolated Yield (\%)
1	TEA (2.1)	THF	0	3	$\mathrm{Ph}(2.0)$	---	$>95 \mathrm{rsm}$

2	TEA (2.2)	PhMe	115	18	Ph (2.0)	34	>95 rsm
3	pyr (1.1)	ether	0	18	OPh (1.0)	28	>95 rsm
4	pyr (1.1)	DCM	25	72	OPh (1.0)	78	>95 rsm
5	$n-\mathrm{BuLi}(1.1)$	THF	-78	18	A (1.05)	>95	>95 rsm
6	$n-\mathrm{BuLi}(1.1)$	THF	-78	18	Ph (1.05)	>95	>95 rsm
7	$n-B u L i ~(1.1) ~$	THF	-78	18	$\mathrm{Ph}, \mathrm{Pd}^{\mathrm{a}}$ (1.05)	black ppt	---
8	$n-B u L i ~(1.1) ~$	THF	-78	18	A, Pd^{a} (1.05)	black ppt	---
9	$n-B u L i ~(1.1) ~$	THF	-78	18	$\mathrm{Ph}, \mathrm{Pd}^{\mathrm{b}}$ (1.05)	black ppt	---
10	$n-B u L i ~(1.1) ~$	THF	-78	18	$\mathrm{Ph}, \mathrm{Pd}^{\mathrm{b}}$ (1.05)	black ppt	---
11	$n-B u L i(1.1)$	THF	-78	18	$\mathrm{Ph}, \mathrm{Ir}^{\mathrm{c}}$ (1.05)	black ppt	---
12	$n-B u L i ~(1.1) ~$	THF	-78	18	A, $\operatorname{Ir}^{\mathrm{c}}$ (1.05)	black ppt	---
13	TEA (5.0)	PhMe	80	48	$t-\mathrm{Bu}(1.0)$	---	>95 rsm
14	TEA(5.0)	PhMe	80	48	$i-\operatorname{Pr}(1.0)$	---	90 rsm
15	$n-\mathrm{BuLi}(1.1)$	THF	-78	18	t - $\mathrm{Bu}, \mathrm{Ir}^{\mathrm{c}}(1.0)$	---	96 rsm
16	$n-B u L i ~(1.1) ~$	THF	-78	18	$i-\mathrm{Pr}, \mathrm{Ir}^{\mathrm{c}}$ (1.0)	---	92 rsm
17	$n-B u L i ~(1.1) ~$	THF	-78	18	$B^{\text {d }}$ (1.0)	---	61 rsm
18	pyr (5.0)	PhMe	115	24	$B^{\text {d }}$ (1.0)	---	94 rsm

${ }^{\text {a }}$ Crude material trapped with $\mathrm{Pd}(\mathrm{OAc})_{2}$
${ }^{\mathrm{b}}$ Crude material trapped with $[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}$
${ }^{\text {c }}$ Crude material trapped with $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}$
${ }^{\text {d }}$ Crude material trapped with $[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2} ;[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2} ; \mathrm{NiCl}_{2} ; \mathrm{CuCl}_{2} ; \mathrm{ZnCl}_{2}$
Hydrolysis was deemed responsible for the decomposition of products to very clean recovered starting material. It seems the sulfoximine nitrogen may act as a weak base and provide a catalyst for hydrolysis during chromatography or workup. A proposed mechanism of decomposition is provided in Figure 16.

A

Figure 15. Phosphites Used In Attempts to Synthesize P, N-Benzothiazine Ligands
To test the validity of this hypothesis, it was necessary to do a model reaction to see if hydrolysis was partly due to imperfect techniques or if it was, indeed, a benzothiazine specific substrate problem. Therefore, a somewhat bulky phenol was selected that lacked an adjacent nitrogen. Phenol 113 was reacted with phosphite A to give 114 in excellent yield. This compound was subjected to the same workup and silica gel chromatography techniques as used in the previous study (Scheme 40). Partial oxidation of the product prevented clean isolation; however, hydrolysis was not seen. This provides some evidence that the benzothiazine structure is likely the problem, not the chemistry being investigated.

Figure 16. Possible Mechanism of Hydrolysis

Scheme 40. Model Reaction to Test Phosphite Hydrolysis

With the hope that $\mathrm{P}(\mathrm{V})$ compounds would be virtually inert towards both oxidation and hydrolysis, $\mathrm{P}(\mathrm{V})$ compound was prepared to see if this $\mathrm{P}(\mathrm{V})$ compound would be stable under the same conditions and methods as the previous $\mathrm{P}(\mathrm{III})$ compounds. Rather than trapping with a phosphine chloride, diphenylphosphinic chloride was used as the electrophilic trap. Thus, phenol 111 was treated with n - BuLi and the resultant phenoxide was trapped by a $\mathrm{P}(\mathrm{V})$ chloride (Scheme 41). The product was isolated cleanly and in excellent yield using the same workup and chromatrographic techniques used previously on $\mathrm{P}(\mathrm{III})$ compounds. No attempts to reduce the $\mathrm{P}(\mathrm{V})$ to P(III) were made; instead a synthesis of a benzyl alcohol analog was undertaken and this is presented in the next section.

Scheme 41. Synthesis of a $P(\mathrm{~V}), N$-Benzothiazine

2.2.2 Synthesis of a Benzyl Alcohol Benzothiazine

One method that could slow the rate of hydrolysis of these phosphorous compounds would be to change the leaving group. Rather than have a phenoxide leaving group (pK_{a} of 8-10) a benzyl alcohol would allow for an alkoxide leaving group (pK_{a} of 16-18). With a benzyl alkoxide as the possible leaving group, the rate of hydrolysis should in principle be slowed if not stopped altogether.

The synthesis began with commercially available dialdehyde 116. This was treated with triflic anhydride in the presence of pyridine to give an 83% yield of triflate 117 (Scheme 42). Triflate 117 was treated under normal Buchwald-Hartwig coupling
conditions to give benzothiazine 118 in only 46% yield (Scheme 43). Aryl triflates act much like aryl iodides in that they are both relatively sluggish in palladium-catalyzed N arylations, as demonstrated by Bolm and coworkers. ${ }^{8}$ Keep in mind also that the condensation that takes place produces a molecule of water per molecule of benzothiazine formed. Triflates are sensitive to hydrolysis and no attempts to remove water via molecular sieves or drying reagents were employed in this model study. Subsequent reduction of aldehyde 118 with DIBAL gave benzyl alcohol 119 in near quantitative yield (Scheme 44). This completed the synthesis of $\mathbf{1 1 9}$.

Scheme 42. Synthesis of Triflate N-Arylation Partner 117

Scheme 43. Synthesis of Benzyl Alcohol Benzothiazine Precursor 118

Scheme 44. Synthesis of Benzyl Alcohol Benzothiazine 119

This synthesis was not taken further, and the synthesis, namely, the coupling step was not optimized. This will be a starting point for future investigations into the stability of phosphorous-based benzothiazine compounds of this nature. All in all, this is a quick route to another potentially useful and unique benzothiazine scaffold. This benzothiazine parent could be highly functionalized before and after reduction of aldehyde 118. This feature gives tunability to the ligand structure if needed to enhance enantioselectivity in asymmetric reactions.

2.2.3 Synthesis of a Triflate-Substituted Benzothiazine Coupling Partner

In order to utilize the phenol functional group of benzothiazine 111, triflate $\mathbf{1 2 0}$ was prepared. Phenol 111 was reacted with triflic anhydride in the presence of excess pyridine to give triflate $\mathbf{1 2 0}$ in quantitative yield (Scheme 45). This provides an expedient route to utilize the hydroxy benzothiazine scaffold as a coupling partner. Due to the sluggish reactivity of triflates presented earlier, very few attempts to expand upon this coupling partner have been investigated to date. As a result, a chloride analog was prepared and is the topic of the next section.

Scheme 45. Synthesis of Triflate 120

2.2.4 Synthesis of a Chloro-Substituted Benzothiazine Coupling Partner

A one-step, one-pot procedure to prepare a similar coupling partner would be more efficient than the multistep synthesis of the previous triflate. However, commercially available 2,3-dichlorobenzaldehyde $\mathbf{1 2 1}$ reacted sluggishly in the
palladium-catalyzed N -arylation (Scheme 46). A very modest 40% yield of $\mathbf{1 2 1}$ was isolated alongside 38% of recovered starting material 120. A small amount of dechlorinated product was observed (4% of $\mathbf{1}$).

Scheme 46. Synthesis of 8-chlorobenzothiazine 121
Attempts have also been made to obtain reasonable yields of $\mathbf{1 2 1}$ via microwave irradiation of dichlorides by the Harmata group in 2007. Under these conditions, a 1:1 mixture of $\mathbf{1 2 1}$ and $\mathbf{1 2 2}$ was observed (Scheme 47). Expanding upon this methodology, Harmata and coworkers coupled chloride $\mathbf{1 2 1}$ with sulfoximine $\mathbf{6}$ under the conditions of microwave irradiation to afford benzothiazine $\mathbf{1 2 3}$ albeit in only 14% yield (Scheme 48).

Scheme 47. Microwave Irradiation of 2,3-Dichlorobenzaldehyde

Scheme 48. Microwave Irradiation of Chloride 121

Benzothiazine $\mathbf{1 2 3}$ was prepared from chloride $\mathbf{1 2 0}$ as described later in Chapter 3. The problem, in this example, arises in the coupling of an additional sulfoximine once the benzothiazine scaffold is intact. ${ }^{31}$ This mirrors the problem that Bolm and coworkers experienced in the synthesis of bissulfoximine 31. ${ }^{14}$ Many improvements in the synthesis of $\mathbf{1 2 3}$ were the focus of the research presented next in Chapter 3.

An attempt to prepare $\mathbf{1 2 3}$ in a thermal process was not successful; dehalogenation was observed (45\%) along with recovered starting material (24\%) over a period of 6 days in refluxing toluene. An attempt to couple $\mathbf{1 2 1}$ with diphenylphosphine in the presence of base also failed and P, N-ligand 124 was not observed. Dehalogenation was seen and $\mathbf{1}$ and 121 were observed in a ratio of 3.5:1. In both cases, the desired product was not seen even in trace amounts (Scheme 49).

121

PhMe , reflux, 6 days 24\% 121; 45\% 1

3.5:1 (1:121)

123

124

1

1

Scheme 49. Attempts to Couple Benzothiazine 121

2.2.5 Synthesis of Pyrido-Bridged Benzothiazine Heterocycles

Our attention was drawn toward making larger heterocycles containing one or more benzothiazines. This would be a methodology toward potential N, N-benzothiazinebased ligands or multidentate heterocyclic ligands. This investigation was inspired by the interesting helical nonracemic structure of pentadentate bis(oxazoline) ligand $\mathbf{1 2 5}$ by the Reiser and coworkers (Figure 17). A similar synthesis was then undertaken in order to
see if benzothiazine heterocycles of this type would give similar chiral helices in the crystal structure of the resultant metal complexes. ${ }^{32}$

125

Figure 17. Pentadentate Bis(oxazoline) Ligand by Reiser and Coworkers
The synthesis began with the preparation of the pyridine bridge starting with dicarboxylic acid 126. First, Fischer esterification of diacid $\mathbf{1 2 6}$ to the corresponding dimethyl diester proceeded in 92% yield. ${ }^{33}$ Subsequent reduction of both ester functional groups with CaBH_{4} gave the corresponding diol in 82% yield. ${ }^{34}$ The diol was taken further to give the pyridyl dihydrochloride salt 127 in 93% yield using SOCl_{2} (Scheme 50). ${ }^{35}$ With this fragment in hand, the pentadentate heterocycle bisbenzothiazine $\mathbf{1 2 8}$ was prepared in 89% yield when NaH was used as base in DMF at room temperature (Scheme 51). This ligand was tested against a variety of metals in order to observe its conformation in a crystal lattice structure (Table 16).

Scheme 50. Synthesis of Pyridyl Dihyrochloride Salt 127

128

Scheme 51. Synthesis of Pentadentate Bisbenzothiazine 128
Of all the metals tested, only a $\mathrm{CdI}_{2} \mathrm{X}$-ray quality crystal was isolated and analyzed by X-ray crystallography. Although not entirely unexpected, the metal bound in a bidentate fashion. The steric environment of both benzothiazines, bound to a metal requires nearly an overlap of the sulfoximine oxygen from each of both benzothiazines which may be the reason why the solids that were prepared did not readily form crystals. The entropy associated with the freely floating "arm" of the heterocycle did not allow for a tightly packed crystal lattice resulting in insoluble precipitates in nearly all cases. The X-ray crystal structure of 129a is shown below in Figure 18.

Table 16. Metal Ligand Study of Pentadentate Bisbenzothiazine 128

Metal	Result $^{\mathrm{a}}$
CdCl_{2}	Brown solid
CdI_{2}	Yellow needles, 84%

CuI	Off-white solid
ZnCl_{2}	Light-yellow solid
CuCl_{2}	Yellow-green solid
$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$	Off-white solid
ZnSO_{4}	Transparent solid
CuSO_{4}	Transparent solid
AlCl_{3}	No reaction
CuSO_{4}	Blue-green solid
$\mathrm{Co}\left(\mathrm{OAc}_{2}\right.$	Pink solid
FeCl_{3}	No reaction
PdCl_{2}	Yellow-green solid
$\mathrm{Pd}(\mathrm{OAc})_{2}$	Black solid
ZnI_{2}	White solid
$\mathrm{Ni}\left(\mathrm{acac}_{2}\right.$	White solid
$\left[\mathrm{Pd}(\mathrm{allyl})_{2} \mathrm{Cl}_{2}\right.$	No reaction
$\mathrm{Hg}(\mathrm{OAc})_{2}$	Brown solid
$\mathrm{Pb}\left(\mathrm{ClO}_{4}\right)_{2}$	Dark brown solid
HgCl_{2}	Brown solid
CeCl	3

[^0]

Figure 18. Crystal Structure of Tridentate Cd Complex 129a
As a result, our attention was directed to a similar version of the same ligand but now with a phenyl group in place of one of the two benzothiazine ether bound arms. The synthesis of such a molecule required a new pyridyl fragment containing a phenyl substituent in the 6-position rather than the symmetrical 2,6-dimethylchloride 127. This synthesis began with commercially available 2,6-dibromopyridine 130, which upon treatment of n-BuLi gave a monolithio species. The resulting lithium species was trapped with dimethylformamide to give bromoaldehyde 131 upon acidic workup. This reaction proceeded in only 7\% yield (Scheme 52). ${ }^{36}$ The next three steps could be conducted with a single purification step at the end of the sequence that allowed isolation of $\mathbf{1 3 3}$ in 89% yield over 3 steps. The second synthetic step, first step of this three step sequence, was the known Suzuki coupling. ${ }^{37}$ The resultant aldehyde was reduced by NaBH_{4} to give the
corresponding primary alcohol. The final step was conversion of the primary alcohol into the chloromethylpyridine hydrochloride salt $\mathbf{1 3 2}$ (Scheme 53). ${ }^{38}$

Scheme 52. Synthesis of Bromoaldehyde 131

Scheme 53. Three-step Synthesis of Methylchloropyridine Hydrochloride 132
This synthesis of $\mathbf{1 3 3}$ was not extensively optimized. The best isolated yield on a relatively small scale was a modest 47% yield of $\mathbf{1 3 3}$ (Scheme 54). Neither TEA nor KH promoted any reaction. NaH at cold and room temperatures allowed for the best observed yields. At $60{ }^{\circ} \mathrm{C}$ or at temperatures of $>140^{\circ} \mathrm{C}$ yields reduced dramatically. No metal studies have been investigated with this ligand to date due.

Scheme 54. Synthesis of Bidentate N, N-benzothiazine Ligand 133

2.2.6 Summary of Benzothiazine Based Ligands Prepared

A variety of 2,1-benzothiazines have been prepared. In many cases, the synthesis shown has been optimized to provide excellent yields of the desired ligand. A summary of the benzothiazine-based ligands are shown below in Figure 19. The N, O benzothiazine ligand $\mathbf{1 1 1}$ was prepared in 97% overall yield over three steps via its optimized second generation synthesis. Previously, 111 was prepared in 6 steps in 87% overall yield in its first generation synthesis. Derivatives of $\mathbf{1 1 1}$ of generic structure $\mathbf{1 1 2}$ were prepared. These ligands would need to be used without purification, as they appear to be unstable. $P(V), N$-benzothiazine ligand $\mathbf{1 1 5}$ can be made in 4 steps in 88% overall yield and stable. N, O-benzothiazine ligand 119 can be made in 3 steps in 38% overall yield. Optimization of the triflate coupling step (46%) would greatly improve the overall yield of 119. N, N-benzothiazine ligand 123 can be produced in 2 steps in only 11% overall yield. Lastly, multi-dentate heterocycles $\mathbf{1 2 8}$ and $\mathbf{1 3 3}$ were prepared in a convergent fashion in 86% and 46% overall yields, respectively. With a quick route to these ligands available, a large stock of material can be prepared in an expedient manner. The ligands presented herein can be surveyed in many asymmetric reactions.

Linear Synthesis
111, 3 steps, 97% overall

Linear Synthesis 112, 4 steps, 92% crude

Linear Synthesis 115, 4 steps, 88% overall

Linear Synthesis
119, 3 steps, 38% overall

Convergent Synthesis
128, 4 steps, 86\% overall (pyr bridge 127, 3 steps, 70% overall)

Linear Synthesis
123, 2 steps, 11\% overall

Convergent Synthesis
133, 4 steps, 46\% overall (pyr bridge 132, 4 steps, 65% overall)

Figure 19. Summary of Benzothiazine Ligand Syntheses

CHAPTER 3

Syntheses and Optimization of Sulfoximine-Containing Ligands

In order to further synthetic developments of sulfoximine N-arylation, a new optimization of the very well known palladium-catalyzed system was undertaken. The goal of the following optimization was to improve the previously known method. This procedure was found to tolerate air and be robust for a variety of substrates. The optimized synthesis considerably improved the thermal synthesis of $\mathbf{1 2 3}$ from 2,3dichlorobenzaldehyde 120.

3.1 Previous Palladium Catalyzed N-Arylation Developments

3.1.1 Initial Optimization in 1998 by Bolm

As described previously, the first N-arylation of a sulfoximine with various aryl bromides was reported in 1998 by the Bolm Group. ${ }^{6}$ The use of chelating bisphosphines was deemed crucial in order to obtain products in acceptable yields. The optimization began from methyl 2-bromobenzoate $\mathbf{2 0}$ and S-methyl- S-phenylsulfoximine 6 (Table 17). Four ligands were examined: $\mathrm{P}(o \text {-tolyl })_{3}$, a bulky monodentate phosphine; BINAP and Tol-BINAP, chelating binapthyl based bisphosphines; and dppf, a ferrocenyl based chelating bisphosphine (structures provided previously in Chapter 1). The ferrocenyl ligand dppf, with either $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ or $\mathrm{Pd}(\mathrm{OAc})_{2}$, failed to produce more than trace amounts of product (Table 17, entries 1 and 2). The use of $\mathrm{PdCl}_{2}(\mathrm{dppf}) / \mathrm{dppf}$ gave 87% yield of the desired product in 48 hours (Table 17, entry 7). The best results occurred with the use of BINAP and Tol-BINAP which gave 92% and 96% yield, respectively, over 48 hours (Table 17, entries 5 and 6). Only 2 bases were examined, cesium carbonate and
sodium tert-butoxide. Of those bases, the weaker cesium base gave rise to slightly higher yields (Table 17, entries 3 and 4). ${ }^{6}$

Table 17. 1998 Optimization of Pd-catalyzed N-Arylation

 16		$\begin{aligned} & \text { digand } \\ & \text { lige, } 1.2 \text { eq } 6 \\ & \text { le, } 110^{\circ} \mathrm{C} \end{aligned}$			 17	
Entry	Pd/Ligand	$\begin{gathered} \text { Pd } \\ (\%) \\ \hline \end{gathered}$	Ligand (\%)	Time (h)	Base	Yield (\%)
1	$\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{P}(\mathrm{o}-\mathrm{tol})_{3}$	4	6	36	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	<4
2	$\mathrm{Pd}_{2} \mathrm{dba}_{3} / \mathrm{P}(o-\text { tol })_{3}$	4	6	36	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	<4
3	$\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{BINAP}$	4	6	36	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	82
4	$\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{BINAP}$	4	6	36	$\mathrm{NaO}^{\text {t }} \mathrm{Bu}$	76
5	$\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{BINAP}$	5	7.5	48	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	92
6	$\mathrm{Pd}(\mathrm{OAc})_{2} /$ Tol-BINAP	5	7.5	48	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	96
7	$\mathrm{PdCl}_{2}(\mathrm{dppf}) / \mathrm{dppf}$	5	20	48	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	87

The reaction scope was expanded with BINAP and with Tol-BINAP (Scheme 55).
R groups examined were: $2-\mathrm{CN}, 4-\mathrm{CO}_{2} \mathrm{Me}, 4-t-\mathrm{Bu}$, and H . All yields were above 72% for all cases except when $\mathrm{R}=4$-tert- Bu and the yields fell considerably to 24% for TolBINAP and 36% for BINAP. ${ }^{6}$

Scheme 55. Generalized Summary of Aryl Bromides Investigated in 1998

3.1.2 1998 to Present N-arylation Overview

Since 1998, a few attempts to improve or modify this synthesis have been reported. Namely, the use of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ and $\mathrm{NaO}^{t} \mathrm{Bu}$ in the synthesis of bissulfoximines 31 by the Bolm group ${ }^{8}$ and microwave irradiation by the Harmata group, as discussed previously in Chapter 1, were reported. ${ }^{7,31}$ The optimization results shown above are by no means comprehensive. However, newer syntheses have been reported using metals other than palladium including copper-based ${ }^{9,10}$ and iron-based ${ }^{11} N$-arylations that have been described in some detail in Chapter 1. A more comprehensive evaluation of the palladium catalyzed N-arylation will be described in the remainder of this chapter.

3.2 Optimization of the Pd-based N -arylation of Sulfoximine and Bromobenzene 17

3.2.1 Ligand Study

The optimization began with the purchase of Sigma-Aldrich biphenyl phosphine ligand kits alongside a variety of in house ligands. The goal was to survey which ligand or ligand family would give the highest yield of N -arylated product in the course of 12 hours. Investigating many ligand types would either prove or disprove the idea that chelating bisphosphines were truly the only ligands able to achieve acceptable yields. We were curious if modern advances in ligand design over the past decade could reduce reaction time while increasing yield and catalyst turnover. The expansion of substrate scope was also of concern. Many ligand families were pursued: various mono- and bisphosphines, various binapthyl mono- and bisphosphines, various biphenyl phosphines, carbenes, and a bulky pyridine ligand. A summary of ligands examined with their structures and corresponding yields isolated are shown below in Scheme 56.

BINAP, 53\%

Cy-JohnPhos, 8\%

t-Bu-JohnPhos, 64\%

$\mathrm{P}(t-\mathrm{Bu})_{2} \mathrm{Me}, 0 \%$

t-Bu-XPhos, 6\%

$\mathrm{PPh}_{3}, 0 \%$

SPhos, 99\%

0\%

dppf, 4\%

Ph-DavePhos, 19\%

RuPhos, 100\%

dppe, 0\%

0\%

$\mathrm{P}(t-\mathrm{Bu})_{2} \mathrm{BINAP}, 3 \%$

$\mathrm{PCy}_{3}, 11 \%$

$\mathrm{P}(2 \text {-furyl) })_{3}, 0 \%$

Cy-DavePhos, 86\%

0\%

Cy-XPhos, 42\%

Scheme 56. Summary of Commercial Ligands Investigated

For referencing purposes, the trademark name is also given when available. The reaction was modeled initially on Bolm's 1998 procedure ${ }^{6}$ except for a reduced time of 12 hours; all reactions performed were done so in sealed tubes at $115^{\circ} \mathrm{C}$ unless otherwise noted. All the ligands were assumed to be of "commercial grade" and were not purified further nor checked for purity via NMR. This ligand study was pursued to give the most robust ligand, qualitatively, that could be extremely tolerable of an oxygen or "air" type environment. All reactants were weighed and added together in a one-pot fashion in an open sealed tube. Freshly distilled, oxygen-free toluene was used and also added in an open air environment. The reaction vessel was then capped, refluxed, and then stopped by a power outlet timer such that the same heating and cooling curves were used for all reactions.

All monodentate phosphines $\left(\mathrm{PPh}_{3}, \mathrm{P}(2 \text {-furyl })_{3}, \mathrm{P}(t-\mathrm{Bu})_{2} \mathrm{BINAP}\right.$, and $\left.\mathrm{P}(t-\mathrm{Bu})_{2} \mathrm{Me}\right)$ failed to give any conversion of products according to crude NMR. Interestingly, electron rich PCy_{3} did give some product, albeit only 11%. Bulky 2,6-di-t-butyl-4methylpyridine and both N-heterocyclic carbene ligands failed to give any conversion of desired products. Alkyl bisphosphines (dppb and dppe) gave no product, and ferrocenyl based dppf gave only a trace amount of product (4\%). Bulky biphenyl-based phosphine ligands did work, some better than others. The order of their reactivity is summarized by the following listed from best to worst: RuPhos $>$ SPhos \gg Cy-DavePhos $>t$-BuJohnPhos $>$ BINAP $>$ Cy-XPhos \gg Ph-DavePhos $>$ Cy-JohnPhos $>t$-Bu-X-Phos. A few assumptions can be made from the following study. Biphenyl ligands gave a large range in yield some excellent, some very poor. Thus, it appears that chelating bisphosphines may not be required in order to achieve excellent yields.

The presence of a nearby chelating N or O did greatly improve yields dramatically as shown with RuPhos. P, N bidentate ligands such as the DavePhos family also gave good yields up to 86% for Cy-DavePhos. Interestingly, a biphenyl monodentate ligand Cy -Xphos performed similarly to that of BINAP for this specific reaction.

Alkyl phosphines, being more electron rich than aryl phosphines, seemed to give substantially better yields. Once the phosphine becomes too electron rich, however, it can easily be oxidized by the oxygen in air and fail to catalyze the reaction. This is likely the reason why many of the electron rich phosphines did not perform well in the presence of air inside the sealed tube environment. All in all, this simplified approach gave way to a very robust and air friendly ligand metal system that performs very well for the N arylation of bromobenzene $\mathbf{1 7}$ and sulfoximine $\mathbf{6}$ to give N -substituted sulfoximine $\mathbf{2}$. Thus, a 100% yield of N -arylated product $\mathbf{2}$ was observed with RuPhos as the ligand in as little as 12 hours. In the 1998 synthesis reported by Bolm, 48 hours was required to afford a 74% yield with BINAP. ${ }^{6}$ In all further optimization studies, RuPhos is typically used exclusively unless otherwise noted.

3.2.2 PEPPSI Family Study

Also tested were some precatalysts that the current literature cites as particularly favorable for N -arylation. The first example is the PEPPSI-carbene family. This ligand family was introduced in 2007 by the Organ group. Organ and coworkers found that metal complexes with PEPPSI ligands underwent facile oxidative addition due to the electron-rich nature of the ligand. They claimed the steric bulk of the adjacent substituents allowed for fast reductive elimination. Lastly, the very strong Pd-NHC bond
makes for an extremely stable species in a variety of conditions. The model reaction above was carried out with two version of the PEPPSI family donated by the Organ Group. ${ }^{39}$ The reaction is summarized in Scheme 57.

17

28\%

Scheme 57. PEPPSI NHC Ligand Study
This ligand family displayed slow conversion to N-substituted sulfoximine 2. The reaction never proceeded to completion as evidence by thin layer chromatography. Compared to biphenyl phosphine systems, the PEPPSI family provided a very poor yield of desired product $\mathbf{2}$ in the 12 hour reaction time length. Both saturated and unsaturated NHC were used and the yield of the unsaturated NHC was nearly 4 times the yield of the saturated version. No carbene ligands were pursued beyond this point.

3.2.3 Bippyphos Ligand Study

Recent attention has also been drawn to a pyrazole family of ligand first developed by Pfizer Global Research and Development in 2006. These ligands were known for the Pd-catalyzed coupling of primary and secondary amines to aromatic bromides. The optimized ligand was named bippyphos. ${ }^{40}$ Later in 2009, the same ligand
was studied in the context of the substrate scope of Pd-catalyzed aminations using various ureas in the C-N amidation. ${ }^{41}$ Several ligands of this family are shown in order of their development below in Figure 20.

With a generous donation of bippyphos from Abbot Laboratories, the same model reaction was examined in a 6 hour period and compared to that of a similar reaction with the best ligand shown above, RuPhos. This would allow a direct comparison of both ligand families for this particular reaction. The Pd source of choice for bippyphos reactions was $\mathrm{Pd}_{2} \mathrm{dba}_{3}$. A comparison of both ligands in the presence of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ in a period of 6 hours is shown in Scheme 58.

bippyphos
Figure 20. Nonproprietary Pyrrole, Pyrazole, and Bipyrazole Ligands

bippyphos, 8\%

RuPhos, 92\%

Scheme 58. Comparison of Bippyphos and RuPhos in an N-Arylation
As shown, the rate of N-arylation in 6 hours was much faster for RuPhos, a biphenyl phosphine ligand, compared to that of bippyphos, a bispyrazole phosphine, for $\mathrm{C}-\mathrm{N}$ coupling of bromobenzene $\mathbf{1 7}$ and sulfoximine $\mathbf{6}$. The isolated yield of $\mathbf{2}$ using

RuPhos was 92% with $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ as the Pd source. This compares well with the procedure in which RuPhos was used with $\operatorname{Pd}(\mathrm{OAc})_{2}$ to give $\mathbf{2}$ in 100% yield in twice the time as shown previously in Scheme 56. The next step in the optimization of this Buchwald Hartwig N-arylation reaction was finding the best Pd-source. Previously, a $\operatorname{Pd}(0)$ source improved the reaction rate to that of a $\mathrm{Pd}(\mathrm{II})$ source; this observation was explored.

3.2.4 Pd Source Study

Many palladium metal sources were tested in order to contrast their rate of reaction by comparison of their yields in a reduced time of 6 hours. Originally, Bolm prepared precatalysts of the ligand and metal sources. These precatalysts were prepared inside an anhydrous, oxygen free glove box. ${ }^{6}$ In all the cases presented herein, all materials were added in one-pot with air. The hope was to find a robust oxygen tolerable system. A summary of the Pd sources examined are illustrated below in Table 18.

A few trends were apparent. $\operatorname{Pd}(0)$ sources tended to work better than $\operatorname{Pd}(I I)$ sources. With PdCl_{2}, the cross coupling reaction went very smoothly in an acceptable yield of 71% (Table 18, entry 2). However, when the Cl^{-}anion was sequestered by precipitation of a scavenger such as AgSbF_{6} the reaction yield dropped by 15% (Table 18 , entry 3). This provides some evidence that the free Cl^{-}anion may be important in the reaction mechanism and or the palladium catalytic cycle; since the yield dropped noticeably when the Cl^{-}was precipitated out of the toluene solution as $\mathrm{AgCl}(s)$. No attempt to "spike" any reaction with a Cl^{-}source has been attempted to date. Interestingly, tetrakis $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ gave 61\% yield (Table 18, entry 4). This suggests that RuPhos likely participated in ligand substitution to some extent as the PPh_{3} ligand was shown earlier to not facilitate the formation of any product in 12 hours.

Table 18. Pd Source Summary

Entry	Pd Source	Ligand	Yield (\%)
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	RuPhos	55
2	PdCl_{2}	RuPhos	71
3	PdCl_{2}	RuPhos	56^{a}
4	${\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}}$	RuPhos	61
5	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	RuPhos	92^{b}
6	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	BrettPhos	57^{b}
a $10 \% \mathrm{AgSbF}_{6} \mathrm{added}^{\mathrm{b}}$ 2.5% of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ added			

BrettPhos (Figure 21) was shown by Buchwald and coworkers to outperform other biphenyl ligands such as RuPhos, SPhos, and XPhos as the most highly active amination cross coupling catalyst they have prepared to date for the Buchwald Hartwig N-arylation. ${ }^{42}$ In this instance, RuPhos nearly doubled the product yield (92\%) relative to that of BrettPhos (56\%) (Table 18, entries 5 and 6).

Overall, this optimization of palladium sources provides some insight into the catalytic cycle that warrants further investigation. It appears that the presence of a chloride anion plays a role in the mechanism of N-arylation. This study reaffirms that $\operatorname{Pd}(0)$ does perform noticeably better than $\operatorname{Pd}(I I)$ sources. This optimization was by no means comprehensive. In order to better understand the catalytic cycle, expanding the scope of palladium sources would be necessary. At this point in time, however, RuPhos
remained the best ligand of those tested when $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ was used as the Pd source. A study of different bases was the next step in the N-arylation optimization.

Figure 21. Structure of BrettPhos

3.2.5 Base Study

The use of some bases in this study was somewhat counter productive. Most bases needed in amination reactions are anhydrous bases. So allowing the reaction to be run in high humidity and in the presence of oxygen will ultimately disqualify air sensitive bases and ligands. In order to be thorough, a variety of bases were examined and in a period of 6 hours, these bases were examined. The purpose of this study was to evaluate bases other than $\mathrm{Cs}_{2} \mathrm{CO}_{3}$. The results are summarized in Table 19.

Carbonate bases $\left(\mathrm{pK}_{\mathrm{a}}=\sim 10\right)$ were the first to be investigated. Changing to a potassium or sodium cation resulted in drastically diminished yields (Table 19, entries 2 and 3). A similar trend was seen for anhydrous acetates $\left(\mathrm{pK}_{\mathrm{a}}=\sim 5\right)$. The poor yield with CsOAc was likely due to its hygroscopic nature compared to less hygroscopic KOAc and NaOAc ; in all cases the yields were poor (Table 19, entries 4-6). In Chapter 1, the use of a stronger base, $\mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}$, circumvented reactivity issues. Thus it was not surprising that a base with a higher pK_{a} could help to afford a higher yield as in the case of bissulfoximines for the Bolm group. ${ }^{8}$ As a result, higher pK_{a} bases are typically used in anhydrous conditions to minimize air and moisture sensitivity that can be detrimental to
their efficiency and lifetime in solution. Because no attempts to avoid oxygen or moisture were made, except for distilled toluene, higher pK_{a} bases would be expected to have diminishing results. Thus, as predicted, yields of $\mathrm{K}_{3} \mathrm{PO}_{4}\left(\mathrm{pK}_{\mathrm{a}}=\sim 12\right)$ and $\mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}$ $\left(\mathrm{pK}_{\mathrm{a}}=\sim 20\right)$ were 47% and 79%, respectively (Table 19, entries 7 and 8).

Table 19. Optimization of Base Summary

Entry	Base	Yield (\%)
1	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	92
2	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	11
3	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	7
4	CsOAc^{2}	23
5	KOAc^{2}	28
6	NaOAc^{2}	2
7	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	47
8	$\mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}$	79

Overall, the mismatch in size of larger cations, Cs^{+}to smaller oxygen based anions seems to allow for more efficient deprotonation as the base is likely more "naked" than if it were in the presence of smaller cations such as K^{+}or Na^{+}. As shown earlier, the removal of the Cl^{-}anion seemed to hinder amination rate, albeit in a small amount; thus, it is possible that the use of a larger cation that has weak interactions with smaller resultant anions provides a mechanistic pathway that enhances rate to a small degree. In
the end, no improvements could be made with the bases studied and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ remains the base of choice having acceptable moisture and oxygen sensitivity that allows for excellent yields in the desired reaction.

3.2.6 Catalyst Loading Study

To ensure that ligand/and or palladium were not being wasted, a brief catalyst loading study was pursued. This would ensure that the same yields could be reached with lower catalyst loadings, thus saving money. The model reaction was examined at various catalyst loadings over a 6 hour reaction time. The results are summarized in Table 20.

Table 20. Catalyst Loading Study

Entry	Pd $_{\mathbf{2}} \mathbf{d b a}_{3} \mathbf{(\%)}$	RuPhos (\%)	Yield (\%)
1	2.5	7.5	92
2	2.5	5.0	53
3	1.25	2.5	22

The results show that ligand $/ \mathrm{Pd}$ source loading could not be reduced. By reducing the ligand concentration by 2.5%, the yield decreased by nearly half (Table 20, entry 2). A severe reduction in yield to 22% was also seen when the palladium and ligand concentration were halved (Table 20, entry 3). The reactions were not examined at extended reaction times to see if completion could be achieved as this was not the goal of the study. Simply put, a loading scheme of $2.5 \% \mathrm{Pd}_{2} \mathrm{dba}_{3}(5 \% \mathrm{Pd})$ and $7.5 \% \mathrm{RuPhos}$
allows for excellent yields in as little as 6 hours for the model reaction in which 2 was prepared from bromobenzene 17.

3.2.7 Chiral Ligand Study

The last study was carried out to see whether a racemic sulfoximine could be resolved if a chiral ligand were used in the reaction. Only two chiral commercial ligands were examined. No attempt to purchase any other ligands was made. The results of the two ligands, R-BINAP and R-Josiphos-type ligand, are shown in Scheme 59. In this reaction an excess of sulfoximine was used in order to make sure enough of the matched enantiomer was available to acquire acceptable conversion. Since neither ligand was of the biphenyl family, the reaction length was extended to 24 hours to ensure that an observable amount of product could be isolated.

Scheme 59. Kinetic Resolution of a Racemic Sulfoximine with a Chiral Ligand
The chiral binapthyl system failed to produce enantioenriched product. However, R-Josiphos did lead to enantioenrichment of the product, but the $e e$ was low (20\%). This is the first example of a chiral ligand being used in an N -arylation of a racemic sulfoximine to afford a non-racemic product. A better ligand might be similar to that of RuPhos as generically shown in Figure 22. Here X would be a chiral auxiliary
substituent that could be easily modified to maximize or minimize steric influence as deemed necessary.

Figure 22. Possible Chiral Ligand Target for Racemic Sulfoximine Resolution

3.2.8 Optimization Summary

The goal of this optimization was to provide an improved synthesis that allows for a robust, air tolerable, bench top, one-pot, palladium-catalyzed N -arylation. The features deemed important were to provide desired the amination products in short reaction times with minimal catalyst loading under user friendly conditions. Many ligands were studied; biphenyl phosphine ligands with chelating P, N, or O bidentate possibilities gave the best results. RuPhos, a P, O-biphenyl ligand, was selected over all other ligands investigated. Commercially popular ligands such as the PEPPSI family, bippyphos, and BrettPhos ligands were also tested and they did not outperform RuPhos for the formation of 2 from 17. Pd sources were next optimized. $\mathrm{Pd}(0)$ sources were in general better than $\mathrm{Pd}(\mathrm{II})$ sources and $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ was found to outperform all others for the test reaction. No bases that were examined outperformed the originally selected $\mathrm{Cs}_{2} \mathrm{CO}_{3}$. Catalyst loading was briefly investigated at as well. No improvements could be made to increase yields in a 6 hour reaction time length. Kinetic resolution was examined with two chiral bisphosphine ligands with an excess of racemic sulfoximine. Of the two tested, R Josiphos did allow for a meager 20% ee in the N-arylated product. Overall, a very robust process was developed.

3.3 Applications of the Optimized \boldsymbol{N}-Arylation Synthesis

3.3.1 N -Substituted Sulfoximine Synthesis: Comparison of $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{Br}$

With a new robust synthetic procedure in hand, it was logical to try other aryl halides in the coupling process. The purpose was to see if the scope and performance of this new ligand metal combination of $\mathrm{Pd}_{2} \mathrm{dba}_{3} / \mathrm{RuPhos}$ (versus the previous $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{BINAP}$ synthesis) was general. Our second generation synthesis provides a different approach with a very electron rich "Pd" catalyst with a stronger sigma donating alkyl phosphine, in contrast to the previous "Pd" catalyst, consisting of a rather electron poor metal with an aryl bis-phosphine, a weaker sigma donor.

The first substrate examined was the thermal reaction of chlorobenzene 134. It was compared directly to bromobenzene $\mathbf{1 2}$ both on a larger 250 mg scale (Scheme 60). Remarkably, the chloride outperformed the bromide in a period of 6 hours at $135^{\circ} \mathrm{C}$. The temperature was increased slightly to help stir the larger batch reactions by making the toluene boil more vigorously in the sealed tube. This modification kept the heterogenous mixture well mixed. Bromide 17, on the larger scale, had a slightly reduced yield than seen on the smaller scale; however, leaving the reaction longer did allow for completion as monitored by TLC.

The increased reactivity could be due to the electron rich $\mathrm{Pd} / \mathrm{RuPhos}$ catalyst enhancing the rate of oxidative addition of the very electropositive $\mathrm{C}-\mathrm{Cl}$ bond. This effect appears to be less pronounced when the same electron rich $\mathrm{Pd} /$ RuPhos catalyst is in the presence of a more polarizable but less electropositive $\mathrm{C}-\mathrm{Br}$ bond. This reaction was quite surprising; in previous attempts, microwave irradiation was needed to acquire products in respectable yields as shown by Harmata and coworkers. ${ }^{7,31}$ The thermal
reaction of 2,3-dichlorobenzaldehyde $\mathbf{1 2 0}$ shown previously took 7 days to produce a modest 40% yield of benzothiazine $\mathbf{1 2 3}$. So the fact that any chloride could be converted in 100% yield in as little as 6 hours thermally was an impressive achievement.

Scheme 60. N-Arylation of Aryl Halides with $\mathrm{Pd} /$ RuPhos Catalyst

3.3.2 Improved Synthesis of Benzothiazine Ligand 123

In order to probe aryl chloride reactivity, 2,3-dichlorobenzaldehyde $\mathbf{1 2 0}$ was subjected to the $\mathrm{Pd} / \mathrm{RuPhos}$ system on a similar 250 mg scale. With two $\mathrm{C}-\mathrm{Cl}$ bonds available for oxidative addition, only 2.3 equivalents of enantiopure sulfoximine was used. The reaction was closely monitored by TLC. Within a few hours, 8chlorobenzothiazine 121 appeared as a major long UV spot and starting material became absent after 24 hours. During the first 24 hours a very polar baseline long UV spot appeared and continued to become more prominent. Another addition of $2.5 \% \mathrm{Pd}_{2} \mathrm{dba}_{3}$, 2.5% RuPhos, and 1.6 equivalents of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ were required to diminish the long UV 8-chloro-2,1-benzothiazine $\mathbf{1 2 1}$ spot and enhance the baseline UV spot representing benzothiazine 123. In 48 hours total reaction time, the reaction appeared to be complete (Scheme 61).

Scheme 61. Breakthrough Synthesis of 123
The new conditions produced 91% of ligand $\mathbf{1 2 3}$ with 7\% of benzothiazine $\mathbf{1 2 1}$ remaining. This reaction required as little as 2.3 equivalents of sulfoximine, (Bolm and coworkers needed 5 or more equivalents of sulfoximine to get bissulfoximines ${ }^{14}$). Overall, 5% of $\mathrm{Pd}_{2} \mathrm{dba}_{3}, 10 \%$ RuPhos, and 3.2 equivalents of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ were required to achieve excellent yields of $\mathbf{1 2 3}$ thermally. Remember yields previously for $\mathbf{1 2 3}$ yields seen previously were very poor (14\%) via microwave irradiation over two separate irradiation steps. ${ }^{31}$ Thermal reactions previously with $\mathrm{Pd} / \mathrm{BINAP}$ did not produce any doubly coupled product whatsoever; only $\mathbf{1 2 1}$ was isolated in 7 days in 40% yield.

This one-pot, one-step synthesis allowed a direct pathway to the desired missing link of the sulfoximine family. Bolm and coworkers have demonstrated the utility of bissulfoximines in many asymmetric reactions. Harmata and coworkers have shown the utility of a bisbenzothiazine in an asymmetric alkylation reaction. The only ligand of this N, N-sulfoximine based family missing was benzothiazine 123. Now with an efficient synthesis of $\mathbf{1 2 3}$ in hand, its utility in asymmetric reactions can be investigated. This will be a topic of further investigations. This also introduces a practical approach to the N arylation of sulfoximines and aryl chlorides that before now seemed unlikely to be successful thermally in a practical period of time.

3.3.3 Examination of Multi-bromoarenes

In an attempt to further expand the scope of this new generation synthesis, the reaction of dibromobenzene 29 to make bissulfoximine 31 was examined. Previously, Bolm reported that using $\mathrm{Pd}_{2} \mathrm{dba}_{3} / \mathrm{BINAP} / \mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}$ gave 31 in 75% yield using an excess of five equivalents of sulfoximine. ${ }^{16}$ With our new system of $\mathrm{Pd}_{2} \mathrm{dba}_{3} / \mathrm{RuPhos} / \mathrm{Cs}_{2} \mathrm{CO}_{3}$, the same reaction was attempted (Scheme 62).

PhMe, $135{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}$

31, 8-37\% conversion

30, 37-45\% yield

Scheme 62. New Synthesis of Bissulfoximine 31
At best 87% of dibromide 29 underwent single N-arylation to yield N-substituted sulfoximine $\mathbf{3 0}$. Of that 87%, only 37% converted to doubly coupled bissulfoximine $\mathbf{3 1}$. This was far inferior to the previous synthesis for this substrate. As a result, this synthesis would not be the preferred synthesis of bissulfoximine $\mathbf{3 1}$.

In a similar fashion, dibromide 46 also failed to convert to benzothiazine 47 and only sulfoximine was isolated after chromatography (Scheme 63). This reaction is another example of the poor compatibility of dibromides and the more electron rich ligand-metal system used. Previous examples by Bolm shown earlier allow for nearly quantitative yields of benzothiazine 47 when BINAP was used as the ligand instead of RuPhos and $\mathrm{NaO}^{t} \mathrm{Bu}$ was in place of $\mathrm{Cs}_{2} \mathrm{CO}_{3} .{ }^{16}$

Not surprising given the result of dibromobenzene 32, tribromobenzene 134 did not convert to trissulfoximine $\mathbf{1 3 5}$ nor did tetrabromobenzene $\mathbf{1 3 5}$ give any
tetrasulfoximine 136 (Scheme 64). In both cases, only sulfoximines was recovered after chromatography. Extended reaction lengths did not promote conversion nor did excess reagents $\left(\mathrm{Pd}_{2} \mathrm{dba}_{3}\right.$, RuPhos, or $\left.\mathrm{Cs}_{2} \mathrm{CO}_{3}\right)$.

Scheme 63. Failed Reaction of Dibromobiphenyl 46

Scheme 64. Failed Attempts to Synthesize Multi-Substituted Sulfoximines
This investigation suggests that the electron rich catalyst combination $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ and RuPhos has reactivity issues with di-, tri-, and tetrabromoarenes as little to no conversion of desired products was observed. This also suggests that this chemistry has problems with the successive oxidative addition to the second $\mathrm{C}-\mathrm{Br}$ bond, much like Bolm had noticed in his studies. ${ }^{18}$ It seems that bromides may not be the best substrates for the newly optimized synthesis. This is likely due to electronic effect with the overall electron richness of our catalyst combination versus that of Bolm's more electron poor
catalyst combination. Base strength may also play a small role; however, switching bases from $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ to $\mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}$ had little to no effect in conversion for either process.

3.3.4 Examination of a Dichlorobenzene

Before abandoning the synthesis of bissulfoximine 31, dichlorobenzene $\mathbf{1 3 8}$ was investigated. To elaborate on the idea of this system preferring $\mathrm{C}-\mathrm{Cl}$ to $\mathrm{C}-\mathrm{Br}$ substrates, it is expected that dichlorobenzene $\mathbf{1 3 8}$ should provide better conversion to bissulfoximine 31 than dibromobenzene 29. With a reaction time extended to 48 hours, the crude NMR ratio revealed no starting material remained and a ratio of 1.3 to 1 of bissulfoximine 31 to N-substituted sulfoximine 139 was observed (Scheme 65). Notice as little as 2.3 equiv. of sulfoximine could be employed to get respectable conversions, allowing the use of less base. This compensates somewhat for the extended reaction time. It is worth mentioning that several attempts to reproduce the Bolm procedure failed for a variety of substrates. The Bolm procedure was found to be sensitive to air and moisture such that many attempts resulted in no reaction whatsoever. Our reaction was created such that it could tolerate air and moisture and still be reproducible.

Scheme 65. Synthesis of Bissulfoximine 31 via Dichlorobenzene 138
Interestingly, all previous investigations suggest that thermal reactions of aryl chlorides and sulfoximines are sluggish, if they occur at all. It seems that we may have found an important way to circumvent old problems associated with the use of aryl chlorides in reactions of this type. At present, our promising examples include the
syntheses of N-substituted sulfoximine 2, bissulfoximine 31, and benzothiazine 123 from aryl chlorides.

3.3.5 Examination of a Bromosulfoximine 140

We were curious as to the behavior of a brominated analog of $\mathbf{6}$. Therefore, bromobenzene was reacted with sulfoximine $\mathbf{1 4 0}$ to afford no product in a period of 6 hours (Scheme 66). It was unclear if oxidative addition occurred at all with nearly a quantitative amount of bromosulfoximine 140 recovered. Remember in similar reactions presented earlier, yields greater than 81% were seen with sulfoximine 6 in the same reaction time length. This suggests that the presence of ortho-brominated sulfoximine 140 in the reaction mixture halts or severely slows N-arylation.

Scheme 66. Comparison of Bromosulfoximine 140 to Sulfoximine 6

3.3.6 New Syntheses of Previously Prepared Benzothiazines

A final comparison was done for the three benzothiazines prepared initially by Harmata and coworkers in 1999^{5} and 2004^{7} using $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{BINAP}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$. The previous synthesis of $\mathbf{1}$ was carried out in 78% yield under the standard conditions. The new Pd-RuPhos system allowed for an 86% yield in as little as 12 hours in "air" friendly conditions (Scheme 66). In both cases, the N -arylation of an enolizable acetophenone
was extremely poor. With microwave irradiation, 74% of benzothiazine 26 was isolated in 1.5 hours in comparison to the thermal reaction with the new Pd-RuPhos system which gave a 77\% yield of benzothiazine 26 in 12 hours from 2-chlorobenzophenone 25c (Scheme 67). With 2-bromoaldehyde 12 and 2-chlorobenzophenone 26, the yields of benzothiazine products were improved with reduced reaction time and using less rigorous conditions.

Scheme 67. Comparison of Benzothiazine Syntheses

3.3.7 Summary of $\mathbf{2 0 0 9}$ Pd-RuPhos Synthetic Results

Several substrates were re-examined in order to justify the new optimization of a well established procedure. The results suggest the new ligand metal system of $\mathrm{Pd}_{2} \mathrm{dba}_{3} /$ RuPhos with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ is best suited with monobromo-, monochloro-, and dichloroarenes versus the previously established metal ligand system of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{BINAP}$ with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, which tends to be limited to various bromoarenes. For dibromoarenes, $\mathrm{Pd}_{2} \mathrm{dba}_{3} / \mathrm{BINAP}$ with $\mathrm{NaO}^{t} \mathrm{Bu}$ remains the best reagent set to date. The
most interesting of these reactions was the increased reactivity of the aryl chlorides and dichlorides. Until now, successful $\mathrm{C}-\mathrm{Cl} \mathrm{N}$-arylation required microwave irradiation. This is no longer the case. A summary of the synthetic developments for the substrates of interest, past and present, are itemized below in Table 21.

In all but one case, product yields increased, reaction time decreased, air sensitivity was of little concern, and in several cases the cheaper chloro- versions of the substrates were successful thermally and without microwave irradiation (Table 21, entries 1-4, and 7-12). With 2-bromoacetophenone 13, no improvements could be made (Table 21, entries 5 and 6). Formation of bissulfoximine 31 was similar with dichlorobenzene 138 as it was with dibromobenzene 29 (Table 21, entries 9 and 10). Lastly, a significant improvement was made in the formation of benzothiazine $\mathbf{1 2 3}$ such that it could be made in one step in 91% yield as compared to the previous 2 step synthesis in 7.6% overall yield (Table 21, entries 11 and 12). By changing $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{BINAP}$ to $\mathrm{Pd}_{2} \mathrm{dba}_{3} / \mathrm{RuPhos}$, an overall more robust reaction was achieved.

This enhancement in Pd -RuPhos reactivity may be due to the electropositive carbon of the $\mathrm{C}-\mathrm{Cl}$ bond being more attractive toward oxidative addition. This electron rich palladium bearing an alkyl phosphine ligand has quite different reactivity to the electron poor palladium bearing electron poor bisarylphosphines. This ligand tuning of palladium has led to a reactivity that seems to be of the appropriate electronic character for thermal N -arylation of several aryl chlorides and dichlorides previously characterized as thermally "unreactive". This new combination seems to accelerate mono-bromide N arylation as well. Dibromoarenes are also reactive but do not perform near as well, in a timely fashion, to the previously reported methods. In the end, a more facile, robust
reaction was optimized that allows access to substrates previously thought "unreactive" without microwave irradiation.

Table 21. Synthetic Improvements in N-Arylation of Sulfoximines and Haloarenes

Entry	Year Group	Starting Material	Reaction Conditions	Product	Yield (\%)

$1 \begin{gathered}1998 \\ \text { Bolm }^{6}\end{gathered}$

2

3
$4 \begin{gathered}1999 \\ \text { Harmata }^{5}\end{gathered}$

5
$6 \quad \begin{gathered}1999 \\ \text { Harmata }^{5}\end{gathered}$
$5 \% \mathrm{Pd}(\mathrm{OAc})_{2}, 7.5 \%$ BINAP
$17 \quad 1.4$ eq Cs $_{2} \mathrm{CO}_{3}, 1.2$ eq 6 PhMe, $110{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}, N_{2}$
$2.5 \% \mathrm{Pd}_{2} \mathrm{dba}_{3}, 7.5 \%$ RuPhos
1.4 eq Cs ${ }_{2} \mathrm{CO}_{3}, 1.2$ eq 6

2
81 PhMe, $135^{\circ} \mathrm{C}, 6 \mathrm{~h}$, air
$2.5 \% \mathrm{Pd}_{2} \mathrm{dba}_{3}, 7.5 \%$ RuPhos
1.4 eq Cs $\mathrm{CO}_{3}, 1.2$ eq 6 PhMe, $135^{\circ} \mathrm{C}, 6 \mathrm{~h}$, air
$\begin{array}{cccc}10 \% \mathrm{Pd}(\mathrm{OAc})_{2}, 15 \% \text { BINAP } & & \\ 1.8 \mathrm{eq} \mathrm{Cs}_{2} \mathrm{CO}_{3}, 1.2 \text { eq } \mathbf{6} & \mathbf{1} & 78 \\ \text { PhMe, } 110{ }^{\circ} \mathrm{C}, 40 \mathrm{~h}, N_{2} & & \end{array}$
2.5\% $\mathrm{Pd}_{2} \mathrm{dba}_{3}, 7.5 \%$ RuPhos
$1.4 \mathrm{eq} \mathrm{Cs}_{2} \mathrm{CO}_{3}, 1.2$ eq 6 PhMe, $135{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$, air
$10 \% \mathrm{Pd}(\mathrm{OAc})_{2}, 15 \%$ BINAP
13
1.8 eq $\mathrm{Cs}_{2} \mathrm{CO}_{3}, 1.2$ eq 6
$14<10$ PhMe, $110^{\circ} \mathrm{C}, 40 \mathrm{~h}, N_{2}$

7	2009	13	$2.5 \% \mathrm{Pd}_{2} \mathrm{dba}_{3}, 7.5 \%$ RuPhos 1.4 eq Cs ${ }_{2} \mathrm{CO}_{3}$, 1.2 eq 6 PhMe, $135{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$, air	14	trace
8	$\begin{gathered} 2004 \\ \text { Harmata }^{7} \end{gathered}$	25c	$5 \% \mathrm{Pd}(\mathrm{OAc})_{2}, 7.5 \%$ BINAP 1.4 eq Cs ${ }_{2} \mathrm{CO}_{3}$, 1.2 eq 6 PhMe, 200W, $135^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, N_{2}$	26	74
9	2009	25c	$2.5 \% \mathrm{Pd}_{2} \mathrm{dba}_{3}, 7.5 \%$ RuPhos 1.4 eq Cs ${ }_{2} \mathrm{CO}_{3}$, 1.2 eq 6 PhMe, $135{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$, air	26	77
10	$\begin{gathered} 2002 \\ \text { Bolm }^{16} \end{gathered}$	29	$4 \% \mathrm{Pd}_{2} \mathrm{dba}_{3}, 8 \%$ BINAP 5 eq $\mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}, 4$ eq $S-6 \mathbf{a}^{2}$ PhMe, $135{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}, N_{2}$	31	75
11	2009	138	2.5\% $\mathrm{Pd}_{2} \mathrm{dba}_{3}, 7.5 \%$ RuPhos 1.6 eq NaO ${ }^{\text {t }} \mathrm{Bu}$, 2.3 eq $S-6 \mathbf{a}$ PhMe, $135{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$, air	31:139	1.3:1
12	$\begin{gathered} 2007 \\ \text { Harmata }^{31} \end{gathered}$	121	$\begin{gathered} 5 \% \mathrm{Pd}(\mathrm{OAc})_{2}, 7.5 \% \text { BINAP } \\ 1.4 \mathrm{eq} \mathrm{Cs}_{2} \mathrm{CO}_{3}, 1.2 \mathrm{eq} 6 \\ \mathrm{PhMe}, 200 \mathrm{~W}, 135^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, N_{2} \end{gathered}$	123	14
13	2009	120	$5 \% \mathrm{Pd}_{2} \mathrm{dba}_{3}, 10 \%$ RuPhos 3.2 eq $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, 2.3 eq $S-6 \mathbf{a}$ PhMe, $135{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$, air	123	91

CHAPTER 4

Lithiation Reactivity of 2,1-Benzothiazines

Discovering and controlling benzothiazine reactivity is just as useful as creating and optimizing new syntheses to make benzothiazines. Understanding and investigating benzothiazine chemistry allows the discovery of new structures that could be useful in taking full advantage of the benzothiazine chirality. Benzothiazines represent a class of molecules that can be highly functionalized. Presented herein are several benzothiazines that were studied as part of a program directed toward the synthesis of new chiral ligands. These ligands can provide variable steric and electronic properties to tune reactivity and hopefully with high enantioselectivity in asymmetric reactions.

4.1 Previous Studies of Sulfoximine and Benzothiazine Reactivity

4.1.1 Benzothiazine Syntheses

The 4-position of benzothiazines can be functionalized using haloarenes that contain electrophilic groups ortho to the halogen on the aryl ring. In previous chapters, the intramolecular condensation of sulfoximines with various electrophilic groups was described under basic conditions. A variety of bases were used to cyclize N-substituted sulfoximines into substituted benzothiazines. A brief summary of the types of electron withdrawing groups that have been shown to condense are shown in Figure $23 .{ }^{5}$

Ortho-haloaldehydes react in a one-pot fashion under N -arylation conditions with 7,31 or without ${ }^{5}$ microwave irradiation to produce benzothiazine 1. Non-enolizable ortho-haloketones also condense in a one pot fashion ${ }^{5}$ and thermally with microwave irradiation to give 4-phenyl-2,1-benzothiazines like 26. ${ }^{7,31}$ Ortho-bromobenzonitriles give 4-amino-2,1-benzothiazines in a two step process involving N-arylation followed by
n-BuLi-induced condensation. ${ }^{5,6}$ Lastly, ortho-halobenzoate esters react in a two step sequence of N-arylation followed by KH-induced condensation to produce ketones like $20 .{ }^{5}$

Figure 23. Summary of Sulfoximine Anion Condensations

4.1.2 Sulfoximine Anion Michael Additions to $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Esters

Another reaction of sulfoximine carbanions is the stereospecific intermolecular Michael addition to α, β-unsaturated esters. Precursors are prepared by N-arylation of ortho-bromocinnamates followed in many cases by a separate intramolecular, stereoselective Michael addition of a sulfoximine carbanion to the β position of an α, β unsaturated ester. This allows for the 4-position of a benzothiazine to be stereoselectively modified. ${ }^{43}$

The first example of a stereoselective Michael addition of a chiral sulfoximine carbanion was reported by Harmata and coworkers in 2003. The reaction involved α, β unsaturated methyl ester $\mathbf{1 4 2}$ with either lithium di-iso-propyl amide, LDA, or lithium hexamethyldisilazide, LHMDS, in THF to give 2,1-benzothiazine 143 (Scheme 68). The types of substrates examined were aromatic: phenyl, thiophenyl, furyl, and pyridyl
heterocycles. The reaction was also stereospecific. $E, R-\mathbf{1 4 2 a}$ gave the $R, R-143 a$ diastereomer exclusively and E, S - $\mathbf{1 4 2 b}$ gave the S, S - 143b diastereomer exclusively. Thus, trans-alkenes bearing a R-sulfoximino group give R, R-benzothiazines and cisalkenes bearing a R-sulfoximine group give the opposite diastereomer R, S-benzothiazines (Scheme 69). ${ }^{43}$

Scheme 68. Stereoselective 1,4-additions of Sulfoximine Carbanions
The scope of this reaction was very recently expanded by Harmata and coworkers in 2009 by the addition of a variety of electron withdrawing groups. Many substrates underwent intramolecular, stereoselective 1,4-addition in good to excellent yields. Various α, β-unsaturated functional groups were examined as well as the first example of a γ, δ-unsaturated system (Table 22). Not all groups facilitated the addition reaction. For example, -SPh , -Ph , and $-\mathrm{Ph} p \mathrm{CN}$ did not react (Table 22, entries 2,3 and 6). Sulfones and phosphonates worked in excellent yields (Table 22, entries 1, 5, and 15). Cyclic and acyclic amides gave products in excellent yields as well (Table 22, entries 4 and 8). Some ketones were examined and isolated yields ranged from 53 to 82% yield (Table 22,
entries 9 - 14). Cyanide was another suitable withdrawing group giving desired benzothiazine in as much as 88% yield (Table 22, entry 16). Lastly, γ, δ-unsaturated ester gave a modest 42% yield of cyclized product (Table 22, entry 7). ${ }^{44}$

Scheme 69. Stereospecific, Stereoselective 1,4-Additions of Sulfoximine Carbanions
Table 22. Stereoselective 1,4-Additions with Different Electron Withdrawing Groups

Entry	R	Product	Yield (\%)
1	$\mathrm{SO}_{2} \mathrm{Ph}$	145a	88
2	Ph	145b	no reaction
3	SPh	145c	no reaction
4	CONMe_{2}	145d	85

5	$\mathrm{PO}(\mathrm{OMe})_{2}$	$\mathbf{1 4 5 e}$	83
6	$\mathrm{Ph} p \mathrm{CN}$	$\mathbf{1 4 5 f}$	no reaction
7	$(E)-\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}$	$\mathbf{1 4 5 g}$	42
8	$\mathrm{CON}\left(\mathrm{CH}_{2}\right)_{5}$	$\mathbf{1 4 5 h}$	88
9	$\mathrm{COPh} o \mathrm{OMe}$	$\mathbf{1 4 5 i}$	66
10	$\mathrm{COPh} p \mathrm{Me}$	$\mathbf{1 4 5 j}$	63
11	$\mathrm{COPh} p \mathrm{Cl}$	$\mathbf{1 4 5 k}$	65
12	$\mathrm{CO} t \mathrm{Bu}$	$\mathbf{1 4 5}$	82
13	COPh	$\mathbf{1 4 5 m}$	81
14	$\mathrm{CO}(2-\mathrm{furyl})$	$\mathbf{1 4 5 n}$	53
15	POPh	2	$\mathbf{1 4 5 0}$
16	CN	$\mathbf{1 4 5 p}$	88

4.1.3 Stereoselective Sulfoximine Michael Additions in Natural Product Syntheses

The previous chemistry was exploited and used in recent natural product syntheses by the Harmata group. The first example of using the stereoselective, intramolecular Michael addition reaction of sulfoximines was in the formal syntheses of $(+)$-curcumene and $(+)$-curcuphenol in 2003. ${ }^{45}$ The second synthesis was followed shortly after with the partial synthesis of psuedopteroxazole in 2004. ${ }^{46}$ The total synthesis of psuedopteroxazole was later completed in 2005^{47} and its synthesis improved in $2009 .{ }^{48}$ In the same year, the formal synthesis of erogorgiaene was reported as well. ${ }^{49}$ All total syntheses involving sulfoximines were investigated and completed by Harmata and coworkers. This displays the ever expanding role of benzothiazines in synthesis,
primarily of marine natural products. The structures of the natural products are shown below in Figure 24.

Figure 24. Benzothiazines in Natural Product Syntheses

4.1.4 Sulfoximine Stabilized Vinyl Carbanions

The first study of benzothiazine lithiation reactivity was carried out by Harmata in 1988. Harmata found that sulfoximine-stabilized vinyl carbanions can be trapped with various electrophiles at the 3-position of benzothiazine 146 in good to excellent yields. Benzothiazines were prepared for this study with the general regioselective cyclization reaction shown in early Chapter 1 ; at the time of this work, no metal-catalyzed N arylation processes were available. Hence, the sulfoximine in $\mathbf{1 4 6}$ contains an $S-p \mathrm{Tol}$ ring rather than the S-phenyl ring seen in more recent N-arylation applications. A summary of the electrophiles investigated are provided in Table $23 .{ }^{50}$

Table 23. Sulfoximine Carbanion Study of 4-Methyl-2,1-Benzothiazine 146

Entry	Electrophile	E	Product	Yield (\%)
1	TMSCl	TMS	147a	89
2	$\mathrm{CH}_{3} \mathrm{I}$	CH_{3}	147b	79
3	$\mathrm{C}_{2} \mathrm{Br}_{2} \mathrm{Cl}_{4}$	Br	147c	98
4	$\mathrm{ClCO}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	147d	76
5	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	147e	65
6	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}$	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}(\mathrm{OH})$	147f	0
7	$\mathrm{Et}_{2} \mathrm{CO}$	$\mathrm{Et}_{2} \mathrm{C}(\mathrm{OH})$	147g	0
8	EtCHO	rac- $\mathrm{EtCH}(\mathrm{OH})$	147h	$83^{\text {a }}$
9	$t \mathrm{BuCHO}$	rac-t $\mathrm{BuCH}(\mathrm{OH})$	147i	$76^{\text {b }}$
10	PhCHO	rac- $\mathrm{PhCH}(\mathrm{OH})$	147j	$84^{\text {c }}$

[^1]Respectable to excellent yields were seen with all electrophiles reported except enolizable ketones, which likely quenched the benzothiazine during enolate formation (Table 23, entries 6 and 7). Trimethylsilyl chloride gave 89% of the TMS-benzothiazine 147 (Table 23, entry 1); this product provides a removable protecting group to allow for further deprotonation of the $S-p$ Tol ring. Larger excesses of $n-\mathrm{BuLi}$ allowed for minor
amounts of dilithiation, in only one example of trapping was dilithiation seen affording di-TMS product 148 in very minor amounts (Figure 25).

148

Figure 25. Evidence of Benzothiazine Dilithiation
Aldehydes and unsymmetrical ketones are prochiral; they have two enantiotopic faces that a sulfoximine stabilized vinyl carbanion can approach, providing a mixture of isomeric products. No unsymmetrical ketones were studied. Of the aldehydes studied, ratios ranged from $2.8-1.2$: 1 for products in yields above 75% for $\mathbf{1 4 7} \mathbf{h}-\mathbf{j}$ (Table 23, entries $8-10$). In the presence of a chloroformate, smooth transformation to $\mathbf{1 4 7 d}$ was seen (Table 23, entry 4). Finally, benzophenone as an electrophile provided for the lowest isolated yield of 65% (Table 23, entry 65). The low yield may have been due to steric hindrance in the approach of the nucleophile to the electrophile. Side product 149 was observed in trace amounts when benzophenone was used as an electrophile (Figure 26). These products demonstrate the unique reactivity of benzothiazine 146.

Figure 26. Benzophenone Side Product

This chemistry inspired the lithiation work reported later in this chapter. It is important to visualize the charge based reactivity pattern of 2,1-benzothiazines as shown below in Figure 27. Notice that the predicted reactivity matches that seen for 2- and 4-methyl- positions; however, the reactivity pattern of the $S-p \mathrm{Tol}$ ring is opposite to the theoretical reactivity based on alternating charges.

Theoretical Reactivity

Observed Reactivity

Figure 27. Reactivity Patterns of 2,1-Benzothiazine 146

4.1.5 Sulfoximine Stabilized Vinyl Lithiocarbanions

Nine years later in 1997, a crystal structure was elucidated for a tetrameric rac-S-ethyl- N-methyl-S-phenylsulfoximine cluster with $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine, TMEDA. This cluster (Figure 28) was prepared by treating a racemic sulfoximine with 2 equiv. of n - BuLi in TMEDA and in the presence of $\mathrm{Li}_{2} \mathrm{O}$ to theoretically create a lithiodicarbanion. Within the entire cluster, a pair of S-sulfoximine monoanions and a pair of R-sulfoximine dianions are present with eight TMEDA molecules. The cluster is centrosymmetric meaning an internal chiral resolution took place. At the cluster center an octahedral $\mathrm{Li}_{6} \mathrm{O} \mathrm{O}(22)$ is present. Each side of the symmetrical cluster contains one mono- and one dianion pair. The dianion consists of an ortho-C(36) anion interacting with $\operatorname{Li}(2)$ and $\operatorname{Li}(4)$ cations which chelate to the adjacent R-sulfoximine $\mathrm{O}(21)$ and $\mathrm{N}(21)$
in five-membered chelates. Interestingly, no Li-C bond was observed with the α-ethyl $\mathrm{C}(21)$ anion of the R-sulfoximine dianion. ${ }^{51}$

The S-sulfoximine α-ethyl $\mathrm{C}(1)$ monoanion interacts with the $\mathrm{Li}(2)$ cation bridging R-sulfoximine ortho- $\mathrm{C}(36)$ anion. Keep in mind only the α-ethyl $\mathrm{C}(1)$ is deprotonated suggesting that a significant amount of $n-\mathrm{BuLi}$ "lingers" in the reaction. This unique reactivity and structure appears to be partly driven by the presence of an organolithium contaminant, lithium oxide, which in turn suggests that the organolithium reactivity with sulfoximines could change from bottle to bottle. ${ }^{51}$

The oxygen and nitrogen heteroatoms of the sulfoximine help coordinate the lithium cations in an extremely complex network. The sulfoximine oxygen, sulfoximine nitrogen, sulfoximine α-ethyl carbanion, and sulfoximine ortho-phenyl carbanion all participate in various chelating interactions to further increase the complexity of this highly compact cluster. Therefore, with many sites available for stabilization and deprotonation, the multi-lithiation of our sulfoximine containing benzothiazines merits more investigation to understand the intricacies of their chemistry. ${ }^{51}$

Figure 28. Tetrameric Structure of a Sulfoximine Dilithiocarbanion

4.1.6 Ortho-Lithiation of Sulfoximines

Levacher, Dupas and coworkers examined the reactivity of S - t-butyl- S phenylsulfoximines in 1999 and observed them to be an ortho-director for lithiation reactions. The reaction was optimized and found to be general. The bases tried for the ortho-lithiation of sulfoximines were LDA, n - BuLi , and s - BuLi . Deprotonation of LDA took place exclusively at elevated temperatures. In the end, both lithium alkyl bases were preferred because of higher yields over shorter periods of time at reduced temperatures. Yields did not increase with an increase in temperature. Under the optimized conditions, deprotonation of the ortho-H about the S-phenyl ring of $\mathbf{1 5 0}$ took only 10 minutes at -78 ${ }^{\circ} \mathrm{C}$ in THF to allow for 95% deuterium incorporation as shown in Scheme 70. ${ }^{52}$

Scheme 70. Optimized Ortho-Lithiation Procedure of S-tert-Butyl Sulfoximine
With an optimized procedure for metalation in hand, the reaction was examined with several electrophiles to determine reaction scope. The summary of electrophiles examined is shown in Table 24. Only four electrophiles were tested. The best electrophile was shown to be dimethyl disulfide, affording a 95% yield of product (Table 24, entry 3). Benzaldehyde was tested and the corresponding diastereomeric alcohols were isolated in 60% yield with only a 25% diastereomeric excess (Table 24 , entry 4). With a change in base to s - $\mathrm{BuLi} /$ TMEDA in toluene, the diastereomeric excess increased to as much as $50 \% .{ }^{52}$

Table 24. Ortho-Lithiation of S-tert-Butyl Sulfoximine and Various Electrophiles

	$\xrightarrow[-78^{\circ} \mathrm{C}, \mathrm{THF}, 10 \mathrm{~min} .]{\text { 1. } 1.1 \mathrm{eq} n \text {-BuLi }}$ 2. Electrophile, 1 h			
Entry	Electrophile	E	Product	Yield (\%)
1	$\mathrm{C}_{2} \mathrm{Cl}_{6}$	Cl	151a	76
2	I_{2}	I	151b	75
3	MeSSMe	SMe	151c	95
4	PhCHO	rac- $\mathrm{PhCH}(\mathrm{OH})$	151d	60

An interesting side reaction was observed during further investigations of sulfoximine ortho-lithiations in 2005. With different aldehydes, a de-tert-butylation was observed. The reaction was general for three aldehydes and S-tert-butyl-S-phenyl sulfoximine 150. First, acetaldehyde as an electrophile gave no desired product and only sulfinic ester before chromatography in quantitative yield and with $13 \% \mathrm{de}$. Then benzaldehyde was used as the electrophile affording a quantitative yield of $\mathbf{1 5 1 d}$ with $10 \% d e$ in the crude NMR; however, when subjected to silica gel chromatography, all of sulfoximine $\mathbf{1 5 1 d}$ was converted to sulfinic ester 152 in 100% yield maintaining the 10% $d e$ (Scheme 71). This suggests the mechanism of de-tert-butylation occurs with retention of configuration. Similarly, with pivaldehyde as the electrophile a sulfinic ester was also isolated in 50% yield as a $1: 1$ mixture of sulfoximine to sulfinic ester in 95% de. The scope of this decomposition reaction is currently under investigation by Dupas and coworkers. ${ }^{53}$

Scheme 71. Benzaldehyde Side Product: New Sulfinic Ester Formation

4.1.7 Summary of Sulfoximine Lithiation

The reactivity of several sulfoximine stabilized vinyl, methyl, and ortho-phenyl lithiocarbanions and dilithiocarbanions has been reported. Only 4-methyl-2-S-oxa-2-S-phenyl-2,1-benzothiazine 146 has been examined in the benzothiazine family of compounds. A summary of the selected lithiated sulfoximine containing compounds are summarized in Figure 29.

1988
Harmata

1998 Muller

1999 \& 2005
Levacher \& Dupas

1999 Harmata

Figure 29. Summary of Lithiated Sulfoximine Containing Compounds
In other cases, metalation takes place with strong alkyl lithium bases at low temperature in THF solvent. In one example, the solid state structure of a multi-lithiated
sulfoximine cluster was very complex. Both the mono- and the dilithiation of sulfoximine-containing compounds have been reported. Overall, the study of benzothiazine compounds to date has been somewhat limited. Therefore, the goals of the research conducted in the sections that follow were to examine benzothiazine metalation and examine the reaction scope in order to advance our chiral benzothiazine-based ligand program.

4.2 Lithiation of Benzothiazines

4.2.1 $\boldsymbol{\alpha}$-Lithiation of Benzothiazine 1

Initial attention was drawn toward preparing a P, N-ligand using the previous methodology presented by Harmata in $1988 .{ }^{50}$ The goal was to first protect the most acidic 3-position of $\mathbf{1}$ with a removable silyl group. Once protected, access to the less acidic ortho-S-phenyl site would allow trapping of a phosphine chloride to prepare a new family of P, N-ligands for use in asymmetric reactions. The retrosynthesis is shown in Figure 30.

Figure 30. Retrosynthesis of 2,1-Benzothiazine P, N-Ligand 153
N-Arylation of 2-bromobenzaldehyde $\mathbf{1 2}$ is well known and highly reproducible in multigram scales and affording an 87% yield of $\mathbf{1}$ (Scheme 72). The lithiation of $\mathbf{1}$ should be similar to that of $\mathbf{1 4 6}$. The final step, accessing the ortho-S-phenyl ring hydrogen via lithiation was observed only in minor amounts and was trapped by TMSCl
only. Lithiation of the ortho-S-phenyl ring of the benzothiazine sulfoximine was the emphasis of the research conducted.

Scheme 72. Thermal N-Arylation of 2-Bromobenzaldehyde 12
A large selection of electrophiles were studied in order to probe reactivity and provide the best protecting group to complete the synthesis of P, N-ligand 153. Examining a large range of electrophiles provides detailed information on the nucleophilicity of the sulfoximine stabilized vinyl carbanion and provides a direct comparison to benzothiazine 146 in many examples (Table 25).

Silyl chlorides were chosen for their ease of removal once attached. Several silyl chlorides of various bulk were used to trap the lithiocarbanion. Yield slightly decreased as steric bulk of the silyl alkyl groups increased but all yields remained above 80% (Table 25, entries 1-4). Very near stoichiometric amounts of TMSCl were needed to prevent formation of di-TMS product $\mathbf{1 5 4}$ (Figure 31) as seen previously with 4-methyl-2,1-benzothiazine 146. Bulkier silyl groups did not have issues with either hydrolysis or multiple trapping.

Table 25. α-Lithiation Summary of Benzothiazine 1

Entry	 1. 1 2. 1	$2 \text { eq } n \text {-BuLi, THF }$ $8^{\circ} \mathrm{C}, 10 \mathrm{~min}$. 4 eq Electrophile		
	Electrophile	E	Product	Yield (\%)
1	TMSCl	TMS	154a	98
2	TESCl	TES	154b	94
3	TIPSCl	TIPS	154c	94
4	TBSCl	TBS	154d	85
5	PhSSPh	PhS	154e	38-92
6	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	154 f	91
7	$2-\mathrm{Br}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CHO}$	$r a c-2-\mathrm{Br}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}(\mathrm{OH})$	154g	$94^{\text {a }}$
8	$\mathrm{C}_{2} \mathrm{Br}_{2} \mathrm{Cl}_{4}$	Br	154h	81
9	I_{2}	I	$154 i$	96
10	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}$	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}(\mathrm{OH})$	154j	97
11	$\mathrm{ClCO}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	$\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	154k	$11-51$
12	DMF	CHO	1541	92
13	$\mathrm{Et}_{2} \mathrm{CO}$	$\mathrm{Et}_{2} \mathrm{C}(\mathrm{OH})$	154m	85
14	$\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}$	$\mathrm{CH}_{2} \mathrm{OH}$	154n	76
15	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	1540	91
16	$\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{C}_{4} \mathrm{H}_{9}$	154p	0
17	$\mathrm{Me}_{2} \mathrm{CO}$	$\mathrm{Me}_{2} \mathrm{C}(\mathrm{OH})$	154q	85

[^2]

155
Figure 31. Lithiation Side Product 155
An aromatic aldehyde reacted very smoothly in 94% yield to give a 1.4:1 mixture of diastereomers (Table 25, entry 7). Both cyclic and acyclic symmetrical ketones trapped smoothly to give yields greater than 85% for both examples (Table 25, entries 6 , 10,13 , and 19). Propylene oxide reacted smoothly to give $\mathbf{1 5 4 o}$ in 91% yield (Table 25, entry 15). Polymeric paraformaldehyde provided alcohol 154n in 76% yield from freshly cracked paraformaldehyde; the reaction was very exothermic and could not be reproduced on larger scales. Other electrophiles such as $\mathrm{C}_{2} \mathrm{Br}_{2} \mathrm{Cl}_{4}, \mathrm{I}_{2}$, and DMF gave very clean reactions in respectable to excellent yields (Table 24, entries 8,9 , and 12).

Two electrophiles failed to provide any products. First, t-butyl bromoacetate did not alkylate in a $\mathrm{S}_{\mathrm{n}} 2$ fashion nor did it react at the ester functional group. The second failed electrophile was diphenylphosphinic chloride, which provided no recovered starting material or product. It appeared that many new very polar products were formed but none could be isolated and identified.

Two other electrophiles gave particularly large ranges in yield. Both diphenyl disulfide and isobutyl chloroformate were problematic in achieving respectable yields consistently. During the isolation of sulfide $\mathbf{1 5 4 e}$, the baseline material was flushed off the column and collected in an additional vial; a single crystal grew out of the remaining brown residue. The x-ray quality crystal was analyzed, and evidence for new
benzothiazine reactivity was seen. Remarkably, the lithiocarbanion attacked product 154 e to generate a dimeric benzothiazine 156 (Figure 32).

156

Figure 32. Lithiation Side Product 156
To further investigate this unforeseen reactivity. The sulfide $\mathbf{1 5 4 e}$ was simply treated with n-BuLi and allowed to warm to room temperature. This gave butylated product 157 in 85% yield in a 3.8:1 diasteromeric ratio (Scheme 73). This new Michael reaction of a 2,1-benzothiazine suggests that the sulfoximine and other polarizable or electron withdrawing groups will consume excess base and prevent further deprotonation. If n - BuLi acts as a nucleophile rather than a base, the protecting group scope becomes an issue.

Scheme 73. 1,4-Addition of n-BuLi to 154e
This provides evidence for the reason that iso-butyl formate $\mathbf{1 5 4 k}$ had a range of yields. It is possible that once the product began forming that the remaining
lithiocarbanion began attacking the product in a similar fashion to the sulfide $\mathbf{1 5 4 e}$ to give dimeric product 156. In the end, a new synthetic method for creating chiral benzylic centers has been shown. The ability to remove both the sulfide and sulfoximine via reductive desulfurization allows for highly functionalized benzothiazine precursors that could be applied to natural product syntheses. Further explorations into this Michael addition need to be examined for generality.

4.2.2 Ortho-S-phenyl Lithiation of α-Silyl Protected Benzothiazines

Initial studies began by using TBS-protected benzothiazine 154d. This was deemed the most logical protecting group as it could be easily removed with TBAF later. Many attempts were made to ortho-lithiate the S-phenyl sulfoximino ring (Table 26). Shown previously to be general for sulfoximines, benzothiazine reactivity appeared quite different. All efforts to ortho-lithiate failed except for deuterium trapping (Table 26, entries 13-15).

Various lithium bases were tried with or without TMEDA, of which none were successful with any electrophile other than MeOD used for deuterium exchange (Table 26 , entries $12-15$). A recent addition to the unique variety of commercial main group metal bases, i - $\mathrm{PrMgCl}-\mathrm{LiCl} / \mathrm{TMPH}$ developed by Knochel and coworkers was also employed that helped in the ortho-lithiation of 2-phenylpyridine systems; ${ }^{54}$ however, only recovered starting material was seen (Table 26, entries 8-10). Deprotonation with n $\mathrm{BuLi} / \mathrm{THF} /-78{ }^{\circ} \mathrm{C} / \mathrm{MeOD}$ reactions gave $81-83 \%$ deuterium incorporation seen in 2-6 hours respectively (Table 26, entries 13-15). Other attempts were made with trimethylsilyl, TMS-benzothiazine 154a and the results are summarized in Table 27.

Table 26. Ortho-Lithiation Study of α-TBS-Protected Benzothiazine 154d

			1. 1.2 eq Base solvent, temp time 2. Electrophile				
Entry	Base	Additive	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	E	Yield (\%)
1	s-BuLi	---	ether	-78	1	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	$n . r$.
2	s-BuLi	---	PhMe	-78	0.5	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	n.r.
3	s-BuLi	TMEDA	PhMe	-78	2	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	dec.
4	s-BuLi	---	PhMe	0	2	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	dec.
5	s-BuLi	---	PhMe	35	2	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	dec.
6	$n-B u L i$	---	THF	-78	3	$\mathrm{A}^{\text {a }}$	dec.
7	$n-\mathrm{BuLi}$	TMEDA	PhMe	115	3	A^{a}	dec.
8	$\begin{gathered} i-\mathrm{PrMgCl}- \\ \mathrm{LiCl} \end{gathered}$	TMPH	THF	-78	2	PCy_{2}	$n . r$.
9	$\begin{aligned} & i-\mathrm{PrMgCl}- \\ & \mathrm{LiCl} \end{aligned}$	TMPH	THF	35	20	I	n.r.
10	$\begin{gathered} i-\mathrm{PrMgCl}- \\ \mathrm{LiCl} \end{gathered}$	TMPH	THF	55	24	I	$n . r$.
11	$n-\mathrm{BuLi}$	---	THF	-78	1	PPh_{2}	$n . r$.
12	t-BuLi	---	THF	-78	0.2	D	14
13	$n-\mathrm{BuLi}$	---	THF	-78	2	D	81
14	$n-\mathrm{BuLi}$	---	THF	-78	4	D	83
15	$n-\mathrm{BuLi}$	---	THF	-78	6	D	83

[^3]Table 27. Ortho-Lithiation Study of α-TMS-Protected Benzothiazine 154a

Entry	Base	Additive	Solvent	Temp ($\left.{ }^{\circ} \mathbf{C}\right)$	Time (h)	E	Yield (\%)
1	$n-\mathrm{BuLi}$	---	THF	-78	1	TMS	mixture a
2	$n-\mathrm{BuLi}$	TMEDA	PhMe	-78	2	TMS	mixture a
3	$s-\mathrm{BuLi}$	---	PhMe	0	2	Br	mixture a

${ }^{\text {a }}>85 \%$ conversions by crude NMR but partial hydrolysis on silica gel gave inseparable mixtures
It appears from the Table 26 that in 2 hours n-BuLi deprotonates the ortho- S phenyl hydrogen to the extent of at least 80%. The acidity of the silica gel gave partial cleavage of the α-TMS group as well as the ortho-TMS group yielding a mixture of numerous adducts that could not be individually separated. This suggested at the time that the only compatible electrophile was MeOD for ortho-S-phenyl trapping of 154d. The next section describes another attempted path to metalate the ortho-S-phenyl ring.

4.2.3 Ortho-S-phenyl Lithiation of a Hydroxy Substituted Benzothiazine

The iso-propanol appendage was investigated to determine if the lithium base could be directed. The hope was that the lithium base aggregate would position itself in such a way to allow for a more reactive species. Another equivalent of base was required to deprotonate the hydroxy group first; the second equivalent of base, would deprotonate the ortho-S-phenyl sulfoximine hydrogen. A neighboring group participation effect
could allow the alkoxide to assist in deprotonation of the S-phenyl ring (Figure 33). In the end, the few deprotonation sequences that were tried were unsuccessful (Table 28).

Figure 33. Possible Stabilization Model for S-phenyl Lithiation
Table 28. Ortho-Lithiation Study of Benzothiazine 154s

		$\xrightarrow[\text { 2. } 1.4 \text { eq Electrophile }]{\text { 1. } 2.4 \mathrm{eq} n \text {-BuLi, THF }}$				
Entry	Additive	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	E	Yield (\%)
1	---	THF	-78	3	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	$n . r$.
2	---	THF	35	3	Br	$n . r$.
3	TMEDA	THF	-78	4	$\mathrm{A}^{\text {a }}$	dec.

This concludes the description of our studies on the protection-deprotonation sequence in order to achieve P, N-ligand 153. Only two electrophiles were able to shed any light on dilithiation reactivity of $\mathbf{1}$. Both TMSCl and MeOD are very small, reactive electrophiles for our metalated benzothiazine nucleophiles. Increasing bulk at the 4position of the benzothiazine is likely required to avoid unwanted Michael additions. This is the topic for the following section.

4.2.4 $\boldsymbol{\alpha}$-Lithiation of Benzothiazine 26

Due to the difficulty in preparing benzothiazine $\mathbf{1 4}$ or $\mathbf{1 4 6}$ in enantiopure form via sulfoximine N-arylation of bromo- or chloroacetophenone, we directed our attention to the non-enolizable ketone 2-chlorobenzophenone. Initially, the thermal reaction $\left(\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{BINAP}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathbf{6}, \mathrm{PhMe}, 7\right.$ days $)$ afforded quantitative conversion, albeit in nearly a week. The new procedure $\left(\mathrm{Pd}_{2} \mathrm{dba}_{3} / \mathrm{RuPhos}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathbf{6}, \mathrm{PhMe}, 12 \mathrm{~h}\right)$ afforded an acceptable yield (77%) in as little as 12 hours. Both reactions are shown below in Scheme 74.

Scheme 74. Thermal N-Arylation of 2-Chlorobenzophenone 25c
A similar monolithiation approach was investigated 26 as for the less bulky benzothiazine 1 shown previously. The goal was to expand the scope of the metalation reaction of benzothiazines. Several electrophiles were examined as shown below (Table 29).

Table 29. α-Lithiation Summary of Benzothiazine 26

Entry	Electrophile	E	Product	Yield (\%)
1	TIPSCl	TIPS	161a	0
2	$\mathrm{Me}_{2} \mathrm{CO}$	$\mathrm{Me}_{2} \mathrm{C}(\mathrm{OH})$	161b	0
3	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	161c	0
4	I_{2}	I	161d	74
5	$\mathrm{C}_{2} \mathrm{Br}_{2} \mathrm{Cl}_{4}$	Br	161e	95
6	PhCHO	rac- $\mathrm{PhCH}(\mathrm{OH})$	161f	$75^{\text {a }}$
7	MeSSMe	SMe	161g	$98^{\text {b }}$
8	PhSSPh	SPh	161h	$94^{\text {b }}$
9	EtSSEt	Set	161i	$88^{\text {b }}$
10	CySSCy	SCy	161j	$98^{\text {b }}$
11	$t \mathrm{BuSSt}$ Bu	St Bu	161k	19

a Diasteromeric ratio of 2.4:1 observed.
${ }^{\mathrm{b}}$ Dilithiocarbanion was trapped in minor amounts.
The reactivity pattern of $\mathbf{2 6}$ was quite different from that of $\mathbf{1}$. TIPSCl did not react with the sulfoximine stabilized vinyl carbanion of benzothiazine 26, most likely due to steric effects (Table 29, entry 1). Both the enolizable acetone and non-enolizable benzophenone were unreactive with the organolithium derived from 26 although they appeared very reactive with 1 (Table 29, entries 2 and 3). Remember, benzothiazine 146
was reported by Harmata to react with benzophenone as an electrophile in 65% yield ${ }^{50}$ suggesting that steric hindrance plays at least a minor role in the metalation studies presented herein. Note that benzaldehyde reacted smoothly in 75% yield to give $\mathbf{1 6 1 f}$ with slightly improved diastereoselectivity as compared to both 1 . This increase in diastereomeric ratio is likely due to steric crowding near the adjacent 4-phenyl substituent.

The reaction of disulfides gave a remarkable breakthrough in benzothiazine dilithiation chemistry. Previously, benzothiazine 1 gave butylated product 157 when trapped with diphenyl disulfide. Now with the 4-position crowded with the phenyl group, numerous disulfides reacted smoothly without butylation in yields ranging from $98-88 \%$ yield ($\mathbf{1 6 1 g} \mathbf{g} \mathbf{j}$, Table 29, entries $7-10$). Only a 19% yield of $\mathbf{1 6 1 k}$ was obtained using di-t-butyl disulfide, the bulkiest disulfide electrophile tested (Table 29, entry 11). In the crude NMR, doubly substituted benzothiazines were observed in all cases except for very bulky di-t-butyl disulfide.

Based on the fact that benzothiazine 146 reacts with benzophenone in 65% yield to form $\mathbf{1 4 7} \mathrm{e}^{50}$ and benzothiazine $\mathbf{1}$ reacts with benzophenone in 91% yield, but that benzothiazine 26 did not react, an investigation probing lithiation was carried out to see if changes in reaction conditions would allow for an observable reaction of benzophenone with benzothiazine 26. The results are shown in Table 30. In the best examples, less than $<5 \%$ conversion was observed with extremely dirty crude reactions. Thus, it appears that benzophenone is too bulky to be trapped by the conjugate base of $\mathbf{2 6}$ in observable amounts. Significant differences in reactivity are shown by both
unsubstituted benzothiazine 1, methyl-substituted benzothiazine 146, and phenylsubstituted benzothiazine 26 .

Table 30. α-Lithiation Summary of Benzothiazine 26 with Benzophenone

Entry	X (eq)	y-BuLi	Additive	Solvent	Temp. $\left({ }^{\text { }}\right.$ C $)$	Time (h)	$\begin{gathered} \text { Ratio } \\ (26: 161 \mathrm{c}) \end{gathered}$
1	1.2	n	---	THF	-78	0.25	no reaction
2	2.2	t	---	ether	-78	0.20	trace
3	2.2	t	---	ether	-78	1	trace
4	2.2	t	---	ether	0	2	trace
5	2.2	t	---	ether	0	0.20	trace
6	2.2	t	---	ether	-78	2	trace
7	2.1	t	---	THF	-78	0.20	no reaction
8	2.1	t	---	THF	-78	1	$36: 1$
9	2.1	s	TMEDA	THF	-78	0.75	no reaction
10	2.1	s	TMEDA	THF	-78	4	no reaction
11	2.1	s	TMEDA	THF	-78	8	no reaction
12	2.1	s	TMEDA	THF	0	0.33	34:1
13	2.1	s	TMEDA	THF	0	4	no reaction
14	2.1	n	TMEDA	THF	0	0.33	no reaction
15	2.1	n	TMEDA	THF	0	3	no reaction

16	2.1	n	TMEDA	THF	0	0.33	no reaction
17	2.1	n	TMEDA	THF	0	3	no reaction
18	2.1	n	TMEDA	THF	-78	1	no reaction
19	2.1	n	TMEDA	THF	-78	4	$30: 1$
20	2.1	n	TMEDA	THF	-78	22	$37: 1$
21	2.1	n	TMEDA	THF	-78	0.25	no reaction

4.2.5 \boldsymbol{P}-Ligand Syntheses

Up to this point, we experienced limited success trapping larger electrophiles with the lithiocarbanion of 4-phenyl substituted benzothiazine 26. The steric bulk of the 4phenyl ring of $\mathbf{2 6}$ introduced a different challenge than seen before with benzothiazine $\mathbf{1}$, namely, trapping of bulkier electrophiles. To our delight, monolithiation of both benzothiazine 26 and benzothiazine 1 and their subsequent trapping with phosphine chlorides was general (Table 31).

Overall, the difference in yield between benzothiazines 1 and 26 was minimal, except with di-t-phosphine chloride (Table 31, entries 4 and 8). All of the phosphines prepared were sensitive to oxidation during their isolation and purification. Thus, we oxidized the products with hydrogen peroxide in the hope that the corresponding phosphine oxides could be isolated. However, baseline impurities prevented these extremely polar compounds from being isolated cleanly. As a result, reaction conversion is shown instead of reaction yield because upon isolation, some minor impurities remained. Therefore, if these potential ligands were to be used in asymmetric reaction, the crude products would be better utilized if trapped in situ by the appropriate metal and used as a metal-bound catalyst.

Table 31. α-Lithiation Summary of Benzothiazines $\mathbf{1}$ and 26 with Phosphines

4.3 Dilithiation of Benzothiazines

4.3.1 Multilithiation Deuterium Study

With some data for the α-lithiation of some benzothiazines we concluded that benzothiazine 26 appeared to have the most promise and would allow for the fewest side reactions. For that reason, 26 was studied for dimetalation reactivity as it appeared that dilithiation had occurred to a small extent in previous metalation studies. For
comparison, benzothiazine 1 was also screened with MeOD to see if deuterium incorporation was general. The results are shown in Table 32. The reactions were run in THF at $-78^{\circ} \mathrm{C}$ with $n-\mathrm{BuLi}$ as base. The base was allowed to stir for 30 minutes before it was quenched with 5 equiv. of MeOD and the ratio was determined by the disappearance of the respective protons from the crude ${ }^{1} \mathrm{H}$ NMR spectra.

Table 32. Deuterium Study of 2,1-Benzothiazines 26 and 1

Entry	\mathbf{R}	$\mathbf{X}(\mathbf{e q})$	$\mathbf{D}^{\mathbf{1}} \mathbf{(\%)}$	$\mathbf{D}^{\mathbf{2}} \mathbf{(\%)}$
1	$\mathbf{1}$	3.0	95	109
2	$\mathbf{2 6}$	3.0	82	108
3	$\mathbf{1}$	2.5	93	62
4	$\mathbf{2 6}$	2.5	92	76
5	$\mathbf{1}$	2.0	70	19
6	$\mathbf{2 6}$	2.0	95	72
7	$\mathbf{1}$	1.5	99	38
8	$\mathbf{2 6}$	1.5	90	17
9	$\mathbf{1}$	1.0	96	16
10	$\mathbf{2 6}$	1.0	83	19
11	$\mathbf{1}$	3.0	98	100

12	$\mathbf{2 6}$	3.0	100	107
13	$\mathbf{1}$	$1.0 / \mathrm{TMPH}$	81	40
14	$\mathbf{1}$	$1.5 / \mathrm{TMPH}$	77	25
15	$\mathbf{1}$	$2.0 / \mathrm{TMPH}$	92	52
16	$\mathbf{1}$	$2.5 / \mathrm{TMPH}$	94	46
17	$\mathbf{1}$	$3.0 / \mathrm{TMPH}$	95	50
18	$\mathbf{1}$	$3.5 / \mathrm{TMPH}$	95	81

One equivalent of base gave primarily monolithiation with an observable amount of dilithiation (Table 32, entries 9 and 10). It was not until 3 equivalents of base were added that complete deprotonation of the ortho-S-hydrogen was seen along with a trace amount of trilithiation (Table 32, entries 1 and 2). Since excess n-BuLi is an incompatible base for benzothiazine 1, TMPH was evaluated. As a result, 80% Dincorporation of the ortho-S-position was observed when 3.5 equiv. of LiTMP was added. In general, deprotonation of both benzothiazines $\mathbf{1}$ and $\mathbf{2 6}$ were very similar. This confirmed the hypothesis that differences in electrophile trapping were due to steric hindrance. Sulfoximine-stabilized dilithiocarbanions were examined in the next section.

4.3.2 Dilithiation of Benzothiazine 26

Using the previous methods, several electrophiles were employed to see if, indeed, double electrophilic trapping was a general process as shown earlier with the D incorporation. Due to visibility of di-sulfido products in the crude NMR of previous monometallations, disulfides were the central focus (Table 33). This reaction was carried out under similar conditions as reported above in Table 32 using excess n - BuLi and an even a slightly larger excess of electrophile.

Table 33. Dilithiation Study of Benzothiazine 26

 26		$\xrightarrow{1.3 .0 \text { eq } n \text {-BuLi, } 30 \mathrm{~min}}$ THF, $-78^{\circ} \mathrm{C}$ 2. 3.2 eq Electrophile		 165	
Entry	Electrophile	E	Product	Yield (\%) (Double)	$\begin{gathered} \hline \text { Yield (\%) } \\ \text { (Single) } \\ \hline \end{gathered}$
1	MeSSMe	SMe	165a	98	trace
2	PhSSPh	SPh	165b	94	2
3	EtSSEt	SEt	165c	89	3
4	CySSCy	SCy	165d	98	0
5	$t \mathrm{BuSS} t \mathrm{Bu}$	StBu	165e	0	19
6	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	$165 f$	0	0
7	TMSCl	TMS	165g	mixture	mixture
8	I_{2}	I	165h	91	0
9	$\mathrm{Br}_{2} \mathrm{Cl}_{4} \mathrm{C}_{2}$	Br	$165 i$	95	0
10	ClPCy_{2}	PCy_{2}	165j	0	$70^{\text {a }}$
11	ClP(piperidyl) ${ }_{2}$	$\mathrm{P}\left(\right.$ piperidyl) ${ }_{2}$	165k	0	$54^{\text {a }}$
12	$\mathrm{ClP}(t-\mathrm{Bu})_{2}$	$\mathrm{P}(t-\mathrm{Bu})_{2}$	1651	0	0

[^4]Most disulfides examined trapped extremely well (Table 33, entries 1-4). Only di-t-butyl disulfide provided a monosubstituted adduct in poor yield (Table 33, entry 5). Halide trapping sources worked well giving di-iodo $\mathbf{1 6 5 h}$ and di-bromo $\mathbf{1 6 5 i}$ (Table 33, entries 8 and 9). Phosphines that were investigated also gave only monosubstituted
products in either no yield or moderate conversions (Table 33, entries 10-12). Thus, P, N ligands of this type seem unattainable at this time by metalation and, as a result, were not investigated further.

Overall, this provides evidence that dilithiation occurs and the resulting dianion can be trapped by several electrophilic classes. Bulky substrates did not trap efficiently in a disubstituted fashion and only the $\alpha-3$-position was trapped. The remaining ortho- S phenyl lithiocarbanion must have a relatively long lifetime because deuterium studies reported earlier provided evidence that dimetalation was complete under this procedure. Thus the anion must have been quenched in the workup with ammonium chloride. The investigation above is the first example of a successful dilithiation of a 2,1-benzothiazine. Many examples gave excellent yields with numerous electrophiles.

4.3.3 Dilithiation of Benzothiazine 1

Due to the dilithiation success of benzothiazine 26, we examined dilithiation of benzothiazine 1 taking into consideration the limitations of the bare 4-postion when using an excess of alkyl lithium base. It was shown previously that moderate amounts of deprotonation were observed with LiTMP amine base in the deuterium incorporation study. Thus, we reacted $\mathbf{1}$ with LiTMP, stirred for 30 minutes, and quenched with excess disulfide. To our surprise, we observed three products. One product was identified by Xray crystallography as a trisubstituted benzothiazine found in trace amounts. The following scheme shows identities of all three products (Scheme 75).

Since this provided an alternate route by which problematic electrophiles could be trapped via monometallation 1.3 equiv. of LiTMP were added and the resulting anion was trapped with dimethyl disulfide. Previously butylation was observed with phenyl
sulfide products generated in situ, but, in this example, successful monometallation and trapping of dimethyl disulfide was seen with no side products (Scheme 76).

Scheme 75. Dilithiation of Benzothiazine 1 with Dimethyl Disulfide

Scheme 76. Monolithiation of Benzothiazine 1 with Dimethyl Disulfide

4.3.4 Attempts Toward Electrophile "Dancing"

The deuterium study discussed earlier provided evidence that multiple anions exist of differing character. We were interested in exploiting the pK_{a} difference between the two metalation sites. We wanted to "dance" an electrophile from the α-position of our benzothiazine by an intermolecular electrophile exchange to the ortho-S-phenyl position. Theoretically, the ortho-S-phenyl position would have a much higher pK_{a} than the sulfoximine stabilized vinyl carbanion site. To test this hypothesis, various monosubstituted products containing softer electrophiles were subjected to various basic conditions to see if, indeed, the ortho-S-phenyl lithiocarbanion would attack the electrophile and generate the more stable anion, which could be quenched by a proton in the workup. A possible mechanism of this mode of "electrophile dancing" is shown generically below in Figure 34. This is not a new concept as halogen dancing has been
studied in depth as shown in a review by Stanetty and coworkers. ${ }^{55}$ A summary of our investigation is shown in Table 34. In short, we found no significant exchange from the α-position to the ortho-S-phenyl position of any of the substrates we investigated. It appeared that -SMe was slightly more favorable and led to trace exchanges as observed in the crude NMR compared to the - SPh substrate. Overall, there is not enough evidence in this study to suggest that significant "dancing" occurred.

Figure 34. Mechanism of an Electrophile "Dance"
Table 34. Attempts Toward an Electrophile "Dance"

	Oase, THF, Temp.			
Entry	Base (eq)	R	Temp. ${ }^{\text {a }}$ (${ }^{0} \mathrm{C}$)	Result
1	LiTMP (1.1)	Br	-78	no reaction
2	LiTMP (1.1)	I	-78	no reaction
3	$n-\mathrm{BuLi}(1.05)$	SMe	-78	decomposition
4	$n-B u L i ~(1.05) ~$	SPh	-78	decomposition
5	LiTMP (1.05)	Br	35	decomposition
6	LiTMP (1.05)	I	35	decomposition
7	LiTMP (1.05)	SMe	-40	trace

8	LiTMP (1.05)	SPh	-40	trace
9	LHMDS (1.05)	SMe	-78	no reaction
10	LHMDS (1.05)	SPh	-78	no reaction
11	$s-\operatorname{BuLi}(1.05)$	SMe	-78	decomposition
12	$s-\operatorname{BuLi}(1.05)$	SPh	-78	decomposition
13	PhLi (1.05)	SMe	-78	trace
14	PhLi (1.05)	SPh	-78	no reaction
15	LDA (1.05)	SMe	-78	trace
16	LDA (1.05)	SPh	-78	no reaction
17	LDEA (1.05)	SMe	-78	trace
18	LDEA (1.05)	SPh	-78	no reaction
19	PhLi (2.0)	SMe	-78	no reaction
20	PhLi (3.0)	SMe	-78	no reaction
21	PhLi (1.0)	SMe	0	trace
22	PhLi (2.0)	SMe	0	decomposition
23	LiTMP (1.25)	SMe	-78	no reaction
24	LiTMP/LiBr (1.25)	SMe	-78	no reaction

${ }^{\text {a }}$ All reactions were warmed to room temperature overnight.

4.3.5 Lithiation Summary

Numerous investigations of both benzothiazine 1 and benzothiazine 26 led to the same conclusion. Lithiation of these benzothiazine were quite different than their less rigid N-substituted sulfoximine analogs. The N-substituted sulfoximines presented in the beginning of this chapter had limited functionality outside the acidic α-methyl carbon and
the acidic ortho-S-phenyl hydrogen. Our study began by extensively trapping benzothiazine 1 with a variety of electrophiles exclusively at the 3-position. Butylation of benzothiazine 1 with n - BuLi gave 1,4 addition products in lieu of the desired dilithiation. Several polarizing and electron withdrawing substituents at the 3-position provided for a wide range of isolated yields likely due to the similar 1,4-addition processes. These side reactions were circumvented by switching to benzothiazine $\mathbf{2 6}$.

Benzothiazine 26 was trapped by a variety of electrophiles at the 4 -position as well. Several electrophiles provided poor yields due to steric interactions of the 4-phenyl group. Once a more efficient procedure was devised several electrophiles were trapped at both the α-3-position and ortho-S-phenyl position of benzothiazine 26 in good yields. The electrophiles were limited, however, to disulfides and halogenating electrophiles. Larger less reactive electrophiles, such as benzophenone, failed to trap at either position. In the same manner, seemingly large phosphine chlorides did trap in good yield with benzothiazine 26.

The dilithiation of benzothiazine 26 was found to be general, and the dilithiation of benzothiazine 1 was found to not be general. A deuterium study expressed no difference in the rate at which deprotonation occurred with n-BuLi. Differences in reactivity were determined to be driven by electrophile reactivity and electrophile size compared to the metalated benzothiazine. All routes to P, N-ligands via benzothiazine 1 or 26 failed. Several mono P-ligands were prepared from benzothiazine 26 but required oxidative trapping due to their inherent sensitivity to oxidation. All of the research reported herein describes the novel but unique nature of benzothiazines. The potential of benzothiazines was expanded and we increased the applications of benzothiazines in
synthetic organic chemistry. A list of all lithiation reactions reported herein is illustrated below in Figure 35.
Monolithiation

17 examples

161
8 examples
Dilithiation

165
6 examples

166
2 examples
Michael Additions

Trilithiation

1 example

156

157

Figure 35. Lithiation Reactivity Summary

CHAPTER 5

Experimental Results

5.1 General Information

All reactions performed were carried out under anhydrous conditions involving either nitrogen or argon gas, except the metal ligand reactions of Chapter 2. The reaction design of Chapter 2 experiments involved "air". Glassware was oven dried $\left(125^{\circ} \mathrm{C}\right)$ and cooled by a continuous flow of dry nitrogen. Solvents were distilled under anhydrous and oxygen free conditions. Ether, toluene, and THF were dried over sodium metal and oxygen was removed by generation of a benzophenone ketyl. Dichloromethane was dried over calcium hydride in a dry nitrogen atmosphere. In most cases, reagents were distilled prior to use if liquid; solids reagents were crystallized or used directly from a newly purchased commercial container.

Handling of pyrophoric reagents, namely organometallic reagents, was done so with glass gas tight syringes, rubber septa, and argon balloons. Air and moisture sensitive reagents were handled with a dry nitrogen filled plastic glove bag. Molecular sieves used were freshly activated by heating to $200{ }^{\circ} \mathrm{C}$ under full vacuum ($<2 \mathrm{~mm} \mathrm{Hg}$) for several hours. Reaction mixtures were concentrated using rotary evaporators with both water aspiration and pneumatic vacuum pump sources depending on the boiling point of the solvent being removed. Residual solvent was removed by full vacuum when necessary. Silica gel used in chromatographic separations was purchased from Silicycle (230-400 mesh). Reactions were monitored by glass backed silica gel TLC plates purchased from Sigma Aldrich; all highly conjugated compounds were recognized by a UV irradiation lamp.

Melting points taken of new compounds were done so by a Fisher-Johns melting point apparatus. IR spectra were recorded via a liquid NaCl chamber on a Perkin Elmer 1600 series FT-IR spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were taken on one of three Bruker ARX-250, ARX-300, or ARX-500 Ultrashield spectrometers. Chemical shifts reported were in ppm with an internal TMS standard (TMS; $\delta=0.0$). Spectra were taken with CDCl_{3} solution containing TMS. NMR data is reported as follows: chemical shift, ppm; splitting pattern $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, ddd $=$ doublet of doublet of doublets, etc.); coupling constant, Hz ; and integration. ${ }^{13} \mathrm{C}$ NMR spectra taken were ${ }^{1} \mathrm{H}$ decoupled and contained a CDCl_{3} $\left(\mathrm{CDCl}_{3} ; \delta=77.0\right)$ internal standard. HRMS were analyzed by a Bruker 12 Tesla ApexQe FTICR-MS with an Apollo II ion source.

5.2 Experimental Methods

5.2.1 Synthetic Procedures and Compound Characterization: Chapter 2

Methyl 3-(methoxymethoxy)benzoate (97): Commercially available, methyl 3hydroxybenzoate 96 ($5.27 \mathrm{~g}, 34.6 \mathrm{mmol}$) was dissolved in dry
 dichloromethane (70 mL), dimethoxymethane ($15.27 \mathrm{~mL}, 173 \mathrm{mmol}$) and p-TSA $(0.1319 \mathrm{~g}, 0.694 \mathrm{mmol})$ were mixed together. A Soxhlet extractor (filled with activated $4 \AA$ molecular sieves) with reflux condenser was flushed with dry nitrogen and attached. The mixture was brought to reflux for 24 hours or until the completion was observed by TLC. $\left(\mathrm{R}_{\mathrm{f}}=0.75\right.$ in 50% EtOAc/hexanes; short UV dark spot). The reaction was taken up in $10 \% \mathrm{NaOH}(30 \mathrm{~mL})$. Keep in mind hydrolysis of the methyl benzoate to the benzoic acid is possible and the workup stage should be carried out quickly. The resultant organic layer is washed first by water $(2 \times 20 \mathrm{~mL})$ then brine
$(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was pure by TLC and NMR which yielded 6.619 g 97 in 97% as a clear oily semi-solid with matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as reported in the literature. ${ }^{56}{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.45(\mathrm{~s}$, $3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (63 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 51.8,55.7,94.1,116.7$, $120.8,122.8,129.2,131.3,157.0,166.4$.
(3-(methoxymethoxy)phenyl)methanol (98): The MOM ester 97 (19.0 g, 96.9 mmol$)$
 in THF (17 mL) was added dropwise to a solution containing lithium aluminum hydride, LAH, ($5.88 \mathrm{~g}, 193.8 \mathrm{mmol}$) in THF (100 mL) over 30 minutes at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to stir further at $0^{\circ} \mathrm{C}$ until TLC showed completion (3.5 hours), ($\mathrm{R}_{\mathrm{f}}=0.23$ in 50% EtOAc/hexanes; short UV dark spot). The reaction was taken up in water $(5.88 \mathrm{~mL})$ then $15 \% \mathrm{NaOH}(5.88 \mathrm{~mL})$, then water $(17.64 \mathrm{~mL})$ to form a gray granular precipitate which was filtered off and washed by ether (20 mL). The organic layer was collected and the aqueous layer was extracted with ether ($2 \times 20 \mathrm{~mL}$). The collected organic layers were washed by brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The crude residue was pure by TLC and NMR which yielded 14.75 g 98 in 92% as a clear oil with matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as reported in the literature. ${ }^{571} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.32(\mathrm{~s}, 1 \mathrm{H}$, broad $), 3.45(\mathrm{~s}, 3 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H})$, $5.15(\mathrm{~s}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.1,2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.9,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (63 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 55.9,64.9,94.3,114.6,115.4,120.3,129.5,142.6,157.3$.
(2-bromo-3-(methoxymethoxy)phenyl)methanol (107): A dry flask was flushed with
 argon and the MOM protected benzalcohol $98(5.05 \mathrm{~g}, 30.3 \mathrm{mmol})$ was dissolved in toluene (60 mL). At room temperature n - $\mathrm{BuLi}(72.9 \mathrm{~mL}$, 2.20 M in hexane, freshly titrated by diphenylacetic acid) was added to give a white suspension. This slurry was heated to $65{ }^{\circ} \mathrm{C}$ for 6 hours with vigorous stirring turning the heterogeneous mixture to a dark red-orange slurry. Upon cooling to room temperature, 1,1,2,2-tetrachloro-1,2-dibromoethane ($11.84 \mathrm{~g}, 36.3 \mathrm{mmol}$) was added in toluene (50 mL) dropwise and stirred further for 2 hours at room temperature. The reaction was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The organic layer was collected; the aqueous layer was extracted by dichloromethane (2 x 15 mL); the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. $\left(\mathrm{R}_{\mathrm{f}}=0.58\right.$ in 50% EtOAc/hexanes; short UV dark spot). Purification by flash chromatography (silica gel) with $15 \% \mathrm{EtOAc} /$ hexanes to afford $7.18 \mathrm{~g} 107 \mathrm{in} 96 \%$ as a yellow oil with matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as reported in the literature. ${ }^{57}{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.46$ $(\mathrm{s}, 1 \mathrm{H}$, broad $), 3.51(\mathrm{~s}, 3 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $6.7,1 \mathrm{H}), 7.25(\mathrm{t}, J=7.8,1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 56.3,65.1,95.1,112.9$, $115.0,121.8,128.1,141.5,153.6$.

2-bromo-3-(methoxymethoxy)benzaldehyde (108): Procedure A: A dry flask was
 flushed with nitrogen and oxalyl chloride ($3.03 \mathrm{~mL}, 34.7 \mathrm{mmol}$) and dichloromethane $(100 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ via a dry ice/acetone bath and was stirred for 10 minutes. Then anhydrous DMSO ($4.94 \mathrm{~mL}, 69.4$ mmol) was added dropwise over 10 minutes. Next, the MOM protected bromobenzalcohol $107(1.0 \mathrm{~g}, 4.97 \mathrm{mmol})$ was dissolved in dichloromethane (190 mL) and
added via cannula over 1 hour at $-78^{\circ} \mathrm{C}$. The reaction was stirred further for one hour and then triethylamine, TEA, $(20.1 \mathrm{~mL}, 144.5 \mathrm{mmol})$ was added and warmed to room temperature over 1 hour, stirred further for one additional hour. Water (50 mL) was then added; the organic layer was collected and washed again with 1 N HCl until no longer basic. The organic layer was again washed by water and brine, and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. $\left(\mathrm{R}_{\mathrm{f}}=0.44\right.$ in 50% EtOAc/hexanes; short UV dark spot $)$. Kugelrorh distillation at 2.0 mm Hg at $110^{\circ} \mathrm{C}$ yielded $5.95 \mathrm{~g} \mathbf{1 0 8}$ in 84% as a yelloworange semi-solid at room temperature with matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as reported in the literature. ${ }^{29}{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.54(\mathrm{~s}, 3 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H})$, 7.31-7.41 (m, 2H), $7.57(\mathrm{dd}, J=6.7 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.43(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (63 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 56.5,95.3,118.0,121.2,122.8,128.3,134.9,154.2,192.1$.

2-bromo-3-(methoxymethoxy)benzaldehyde (108): Procedure B: Commercially
 available, 2-bromo-3-hydroxybenzaldehyde $\mathbf{1 1 0}(1.0 \mathrm{~g}, 4.97 \mathrm{mmol})$ was dissolved in THF (10 mL) along with triethylamine, TEA ($3.4 \mathrm{~mL}, 24.8$ $\mathrm{mmol}), \mathrm{NaI}(0.372 \mathrm{~g}, 2.48 \mathrm{mmol})$ and stirbar. The resulting dark orange solution was then flushed with dry N_{2} gas and $\mathrm{MOMCl}(0.751 \mathrm{~mL}, 9.94 \mathrm{mmol})$ was added drop-wise forming a white $\mathrm{TEA} \cdot \mathrm{HCl}$ salt. The reaction was allowed to stir further until TLC showed completion (1 hour), ($\mathrm{R}_{\mathrm{f}}=0.72$ in 50% EtOAc/hexanes; short UV dark spot). The reaction was taken up in water (10 mL) and extracted with ethyl acetate (3 x $10 \mathrm{~mL})$. Next the combined organic layers were washed by brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Purification by flash chromatography (silica gel) with 25% EtOAc/hexanes yielded 1.13 g 108 in 93% as a yellow-orange semi-solid with matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as reported in the literature. ${ }^{29}{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$3.54(\mathrm{~s}, 3 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 7.31-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{dd}, J=6.7 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.43$ (s, 1H) $;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 56.5,95.3,118.0,121.2,122.8,128.3,134.9$, 154.2, 192.1.

8-(methoxymethoxy)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (109): (N-Arylation
 Procedure A) The protected bromoaldehyde, $\mathbf{1 0 8}(1.00 \mathrm{~g}, 4.08 \mathrm{mmol})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(45 \% \mathrm{Pd}, 0.046 \mathrm{~g}, 0.204 \mathrm{mmol})$, rac-BINAP ($0.191 \mathrm{~g}, 0.306$ mmol), methyl phenyl sulfoximine $6(0.759 \mathrm{~g}, 4.89 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(2.12 \mathrm{~g}, 6.51 \mathrm{mmol})$ in toluene $(80 \mathrm{~mL})$ was flushed with dry N_{2} for several minutes. A reflux condenser was added as well as a N_{2} balloon. The mixture was stirred at reflux temperature $\left(120^{\circ} \mathrm{C}\right)$ for 48 hours. The solution was then cooled to room temperature, diluted in dichloromethane (25 mL), and filtered through a plug of celite. After being concentrated in vacuo, the dark brown semi-solid was purified by flash chromatography (silica gel) with $40 \% \mathrm{EtOAc} /$ hexanes $\left(\mathrm{R}_{\mathrm{f}}=0.60\right.$ in $50 \% \mathrm{EtOAc} /$ hexanes; long UV yellow spot) to afford 1.17 g 109 in 89% as a yellow-orange solid. ${ }^{28} \mathrm{Mp} .140{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.53(\mathrm{~s}, 3 \mathrm{H}), 5.33(\mathrm{q}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=7.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.34(\mathrm{dd}, J=7.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}) ; 7.50-7.62(\mathrm{~m}, 3 \mathrm{H}) ; 7.63(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 56.1,95.5,110.4,117.1,118.4,119.7,123.4,128.8,129.1,133.2,136.4$, 138.5, 141.6, 149.6; IR ($\mathrm{NaCl} \mathrm{cm}^{-1}$) 3020, 1605, 1547, 1434, 1284, 1250, 1153, 1104, 1044, 992, 669; HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$324.0664; Found 324.0661 .
$(2.43 \mathrm{~g}, 8.06 \mathrm{mmol})$ was added a solution of iso-propanol (32.1 mL ,
 $419 \mathrm{mmol}), \mathrm{HCl}(12.1 \mathrm{~N}, 16.6 \mathrm{~mL}, 201 \mathrm{mmol})$, THF ($17.05 \mathrm{~mL}, 209$ mmol), and stirbar. The mixture was stirred at room temperature until completion was observed by TLC (3 hours). Diluted in water (20 mL), extracted by ether ($3 \times 20 \mathrm{~mL}$), washed by $5 \%(\mathrm{w} / \mathrm{w}) \mathrm{NaHCO}_{3}$, brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The remaining yellow-orange solid afforded 2.06 g of phenol 111 which was pure by NMR and TLC ($\mathrm{R}_{\mathrm{f}}=0.68$ in 50% EtOAc/hexanes; brown/orange long UV spot) in $>99 \%$ yield. ${ }^{28}$ The solid can be purified by flash chromatography (silica gel) with 50% EtOAc/hexanes. Mp. $147{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.37(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.7(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{p}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{~d}$, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 110.2,114.9$, 115.7, 120.2, 120.4, 128.8, 129.1, 133.2, 133.6, 138.7, 141.3, 148.5; IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right)$ $3460,3022,1620,1592,1550,1440,1278,1223,1244,1206,1190,1101,992,792,729$, 588, 426; HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$280.0402; Found 280.0399.

8-(P-oxa-P-diphenyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (115): Benzothiazine 111
 $(0.0587 \mathrm{~g}, 0.228 \mathrm{mmol})$ and stirbar were flushed by dry argon. THF (1.5 mL) was added to dissolve the solid resulting in a yellow solution. This solution was cooled to $-78{ }^{\circ} \mathrm{C}$ via a dry ice/acetone bath and argon balloon. Then $n-\operatorname{BuLi}(2.20 \mathrm{M}$ in hexanes, $0.114 \mathrm{~mL}, 0.250$ mmol, freshly titrated by diphenylacetic acid) was added dropwise resulting in dark brown solution. This solution was stirred further for 5 minutes at $-78{ }^{\circ} \mathrm{C}$ and then diphenylphosphinic chloride ($0.522 \mathrm{~mL}, 0.273 \mathrm{mmol}$) was added and warmed to room
temperature and further stirred overnight at room temperature resulting in a yelloworange solution. $\mathrm{MeOH}(2 \mathrm{~mL})$ was used to quench the reaction and the solvent was removed in vacuo to reveal a yellow oil which. Purification by flash chromatography (silica gel) with $50 \% \mathrm{EtOAc} /$ hexanes and flushed with $100 \% \operatorname{EtOAc}\left(\mathrm{R}_{\mathrm{f}}=0.23\right.$ in 50% EtOAc/hexanes; yellow-green long UV spot) to afford 0.0953 g of $\mathbf{1 1 5}$ in 91% yield as a yellow semi-solid with matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as reported in the literature. ${ }^{28}$ ${ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.37(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.71(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 110.6,117.5,119.5,123.9,123.9,125.9,128.0,128.2$, $128.5,128.7,129.0,129.8,130.5,131.9,132.0,132.1,132.8,133.3,138.3,138.3,141.6$, 143.3; ${ }^{31}$ P NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.1.

4-tert-butyl-2,6-diformylphenyl trifluoromethanesulfonate (117): Commercially available phenol $116(1.741 \mathrm{~g}, 8.44 \mathrm{mmol})$ and stirbar were treated
 with pyridine ($1.229 \mathrm{~mL}, 15.1 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ in dichloromethane (50 mL) under a dry N_{2} balloon. Triflic anhydride (1.845 mL , 10.9 mmol) was added by syringe pump ($0.2 \mathrm{~mL} / \mathrm{min}$) dropwise over 10 minutes. The reaction mixture was warmed to room temperature and was stirred for an additional 30 minutes when reaction completion was observed by TLC. $\left(\mathrm{R}_{\mathrm{f}}=0.55\right.$ in 25% EtOAc/hexanes; dark short UV spot). The reaction was cooled to $0^{\circ} \mathrm{C}$ and quenched by $1.5 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ and extracted by dichloromethane ($30 \mathrm{~mL} \times 2$). The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The resulting organic layer was filtered by silica gel and washed by dichloromethane (100 mL). Once concentrated by vacuum,
2.38 g crude triflate $\mathbf{1 1 7}$ was recovered in 83% yield as a bright yellow solid. $\mathrm{Mp} .51{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.41(\mathrm{~s}, 9 \mathrm{H}), 8.27(\mathrm{~s}, 2 \mathrm{H}), 10.30(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.9,35.3,129.4,132.6,147.2,153.4,185.7 ;{ }^{19} \mathrm{~F}$ NMR: (235 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-72.3 ; \mathrm{IR}\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 2970,2878,1700,1595,1479,1464,1436,1410,1368$, 1217, 1156, 1136, 1103, 1087, 864, 614, 407; HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}$361.0328; Found 361.0335.

6-tert-butyl-8-formyl-2-S-oxa-2-S-phenyl-2,1-benzothiazine (118): Dialdehyde 117
 $(0.215 \mathrm{~g}, 0.636 \mathrm{mmol}), \operatorname{Pd}(\mathrm{OAc})_{2}(45 \% \mathrm{Pd}, 0.0072 \mathrm{~g}, 0.0318$ mmol), rac-BINAP ($0.0297 \mathrm{~g}, 0.0477 \mathrm{mmol}$), methyl phenyl sulfoximine $6(0.118 \mathrm{~g}, 0.763 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(0.332 \mathrm{~g}, 1.01$ mmol) in toluene (7 mL) was flushed with dry N_{2} for several minutes. A reflux condenser was added as well as a N_{2} balloon. The mixture was stirred at reflux temperature $\left(120^{\circ} \mathrm{C}\right)$ for 20 hours. The solution was then cooled to room temperature, diluted in dichloromethane (10 mL), and filtered through a plug of celite. After being concentrated in vacuo, the dark residue was purified by flash chromatography (silica gel) with $25 \% \mathrm{EtOAc} /$ hexanes $\left(\mathrm{R}_{\mathrm{f}}=0.16\right.$ in 25% EtOAc/hexanes; long UV light blue spot) to afford 0.095 g 118 in 46% as an orange solid. Mp. $131{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.37(\mathrm{~s}, 9 \mathrm{H}), 6.46(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.88(\mathrm{~d}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=2.50 \mathrm{~Hz}, 1 \mathrm{H}), 10.87(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.2,34.2,111.0,116.7,127.6,128.6,128.7,129.0,129.1,132.5,133.6$, $138.6,141.1,142.7,145.3,191.5 ; \mathrm{IR}\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 2965,2868,1678,1614,1543,1448$, 1310, 1299, 1280, 1242, 1221, 1120, 1097, 607, 573, 499; HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$348.1029; Found 348.1028.
 118 ($0.210 \mathrm{~g}, 0.645 \mathrm{mmol})$ was dissolved in $\mathrm{DCM}(6.5 \mathrm{~mL})$ with a magnetic stirbar and cooled to $-40{ }^{\circ} \mathrm{C}$. Next, DIBALH (1.29 $\mathrm{mL}, 1 \mathrm{M}$ solution, 1.29 mmol) was added dropwise to aldehyde 118 over 30 minutes and then warmed to room temperature. Reaction completion was found by TLC. $\left(\mathrm{R}_{\mathrm{f}}=0.55\right.$ in $50 \% \mathrm{EtOAc} /$ hexanes; orange long UV spot). The reaction was quenched with water (5 mL) and extracted by dichloromethane ($3 \times 5 \mathrm{~mL}$). The organic extracts were again washed by water (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The remaining crude oil was pure by ${ }^{1} \mathrm{H}$ NMR affording 0.208 g of benzothiazine 119 in 99% yield as an orange oil. ${ }^{1} \mathrm{H}$ NMR: (250 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.35(\mathrm{~s}, 9 \mathrm{H}), 3.83(\mathrm{~s}, 1 \mathrm{H}$, broad), $4.79(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}$, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.65(\mathrm{~m}, 4 \mathrm{H})$, $7.68(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.2$, $34.1,64.0,109.6,115.2,124.9,128.5,128.9,129.1,132.9,133.3,139.2,141.4,141.5$, 142.6; IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$) 3445, 3070, 2966, 2246, 1616, 1588, 1551, 1448, 1296, 1269, 1250, 1118, 1098, 1005, 989, 736, 577, 511; HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 350.1185$; Found 350.1183.
(2-S-oxa-2-S-phenyl-2,1-benzothiazine-8-yl) trifluoromethylsulfonate (120): Phenol

$111(0.196 \mathrm{~g}, 0.763 \mathrm{mmol})$ and stirbar were treated with pyridine $(0.309 \mathrm{~mL}, 3.81 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ in dichloromethane $(50 \mathrm{~mL})$ under a dry
N_{2} balloon. Triflic anhydride ($0.270 \mathrm{~mL}, 1.60 \mathrm{mmol}$) was added by syringe pump ($0.2 \mathrm{~mL} / \mathrm{min}$) dropwise over 10 minutes. The reaction mixture was warmed to room temperature and was stirred for an additional 30 minutes when reaction
completion was observed by TLC. $\left(\mathrm{R}_{\mathrm{f}}=0.09\right.$ in $25 \% \mathrm{EtOAc} /$ hexanes; blue green long UV spot). The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by $1.5 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ and extracted by dichloromethane $(30 \mathrm{~mL} \mathrm{x} 2)$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The resulting organic layer was filtered by silica gel and washed by dichloromethane $(100 \mathrm{~mL})$. Once concentrated by vacuum, a thick yellow-orange semi-solid afforded 0.297 g crude triflate 120 in 100% yield. Mp. $48{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR: (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.47(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.39(\mathrm{~m}, 2 \mathrm{H})$, $7.51-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (63 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 112.2,116.2,118.2,119.1,121.3,124.0,126.4,128.6,129.1,129.4$, 133.6, 136.9, 137.3, 138.4, 140.5, 142.0, 148.8; ${ }^{19}$ F NMR: $\left(235 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-73.9$; IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3069,2928,1617,1540,1436,1423,1294,1249,1216,1159,1141,1102$, 1002, 992, 864, 803, 589, 499; HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 411.9896; Found 411.9898.

8-chloro-2-S-oxa-2-S-phenyl-2,1-benzothiazine (121): (N-Arylation Procedure A)
 This reaction required an extended reaction time of 6 days of refluxing toluene for observable amounts of product by TLC $\left(\mathrm{R}_{\mathrm{f}}=\right.$ 0.73 in 50% EtOAc/hexanes; light green long UV spot) with matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as reported in the literature ${ }^{31}$ in 40% yield as a white solid. Mp. $189{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.0(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30\left(\mathrm{dd}, J_{l}=7.8 \mathrm{~Hz}, J_{2}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.53-7.67(\mathrm{~m}, 5 \mathrm{H}), 7.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 111.2,117.4,120.0,127.5,128.3,128.9,129.0,132.2,133.5$, 138.2, 141.1, 142.0.

2,6-bis(chloromethyl)pyridinium chloride (127): (Step 1 of 3) Commercially available
 dicarboxylic acid $\mathbf{1 2 6}(2.57 \mathrm{~g}, 15.4 \mathrm{mmol})$ was suspended in absolute ethanol (80 mL). Six drops of concentrated sulfuric acid was then added and the mixture was brought to reflux $\left(85^{\circ} \mathrm{C}\right)$ for 20 hours. The solvent was removed under full vacuum and the product was not purified further affording 3.17 g of diethyl pyridine-2,6-dicarboxylate in 92% yield as a white semi-solid with matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as reported in the literature. ${ }^{33}\left(\mathrm{R}_{\mathrm{f}}=0.15\right.$ in 50% EtOAc/hexanes; yelloworange long UV spot). Mp. $29{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.46(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $6 \mathrm{H}), 4.49\left(\mathrm{q}, J_{l}=7.2 \mathrm{~Hz}, 4 \mathrm{H}\right), 8.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,62.2,126.6,127.7,128.6,138.1,148.6,164.5$. (Step 2 of 3) Then diethyl pyridine-2,6-dicarboxylate ($3.17 \mathrm{~g}, 14.1 \mathrm{mmol}$) was dissolved in absolute ethanol $(75 \mathrm{~mL}) . \mathrm{NaBH}_{4}(1.07 \mathrm{~g}, 17.0 \mathrm{mmol})$ was added in portions in air and then $\mathrm{CaCl}_{2}(2.15 \mathrm{~g}, 17.0 \mathrm{mmol})$ was added in portions evolving hydrogen gas at room temperature. The reaction mixture was stirred further for 4 hours at which time no starting material remained by TLC and a dark baseline spot appears $\left(\mathrm{R}_{\mathrm{f}}=0.0\right.$ in 25% EtOAc/hexanes; dark short UV spot). The solvent was evaporated under vacuum and saturated potassium carbonate solution was added (30 mL) and left overnight. Dichloromethane was then added (50 mL) which was extracted by EtOAc (3 x 25 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was again removed resulting in an off white solid that was recrystallized in absolute ethanol to afford 1.63 g of pyridine-2,6-diyldimethanol in 82% yield with matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as reported in the literature. ${ }^{34} \mathrm{Mp}$. $131{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.35(\mathrm{~s}, 2 \mathrm{H}$, broad), $4.78(\mathrm{~s}, 4 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 63.9,128.4,129.6$,
139.3. (Step 3 of 3) A portion of the pyridine-2,6-diyldimethanol ($0.269 \mathrm{~g}, 1.93 \mathrm{mmol}$) was suspended in diethyl ether $(10 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Then $\mathrm{SOCl}_{2}(0.170 \mathrm{~mL}, 2.32$ $\mathrm{mmol})$ was added in diethyl ether (5 mL) over 15 minutes. The reaction mixture was warmed to room temperature and stirred overnight. The white hydrochloride salt was filtered to afford 0.382 g of $\mathbf{1 2 7}$ in 93% with matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as reported in the literature. ${ }^{35} \mathrm{Mp} .117{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.17(\mathrm{~s}, \mathrm{H}), 5.22$ $(\mathrm{s}, 4 \mathrm{H}), 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 50.8, 123.4, 146.5, 150.9.

Phenol 111 ($0.106 \mathrm{~g}, 0.414 \mathrm{mmol})$ and stirbar were treated with $\mathrm{NaH}(60 \%$ in mineral oil, $0.026 \mathrm{~g}, 0.6587 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$ in DMF $(10 \mathrm{~mL})$ under a dry N_{2} balloon resulting in a dark red solution. After 5 minutes, the 2,6bis(chloromethyl)pyridinium chloride $(0.040 \mathrm{~g}, 0.188$ mmol) was added as a solid, allowed to warm to room temperature and stirred until completion by TLC (20 hours) ($\mathrm{R}_{\mathrm{f}}=0.15$ in 50% EtOAc/hexanes; yellow-orange long UV spot). The reaction was quenched with water (5 mL) and extracted by dichloromethane ($3 \times 5 \mathrm{~mL}$). The organic extracts were again washed by water (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The remaining crude oil was purified by flash chromatography (silica gel) with 50% EtOAc/hexanes and flushed by 80% EtOAc/hexanes to afford 0.073 g of heterocycle $\mathbf{1 2 8}$ in 89% as an off-white solid. Mp . $124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.42(\mathrm{~s}, 4 \mathrm{H}), 6.35(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.6(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.47-7.66(\mathrm{~m}, 11 \mathrm{H}), 7.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$

NMR (63 MHz, CDCl_{3}) $\delta 71.6,110.3,115.3,117.0,119.6,120.0,122.3,128.8,129.05$, $133.2,136.1,137.6,138.5,141.7,150.8,157.0 ;$ IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3015,1605,1546,1464$, 1449, 1432, 1284, 1256, 1223, 1206, 1105, 1090, 993, 792, 729, 426; HRMS calculated for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$640.1335; Found 680.1362.

Cd-complex (129a): The heterocycle $128(0.0244 \mathrm{~g}, 0.00394 \mathrm{mmol})$ was dissolved in
 dichloromethane $(1 \mathrm{~mL})$ and $\mathrm{CdI}_{2}(0.0217 \mathrm{~g}, 0.00592$ $\mathrm{mmol})$ was added in methanol (1 mL) with a stirbar, then flushed with dry N_{2}. The solution was heated to reflux ($40{ }^{\circ} \mathrm{C}$) for 3 hours and then cooled to room temperature. The flask was capped and allowed to stand for 48 hours from which off-white spikes formed, the crystals were filtered to afford 0.0354 g of Cd-complex $\mathbf{1 2 9 a}$ in 84% as off-white needles. Mp: $192{ }^{\circ} \mathrm{C}$. The absolute structure was identified by x-ray crystal analysis. Due to the insolubility of this complex in many commercially available deuterated solvents, no NMR or IR data was taken.

6-bromopicolinaldehyde (131): The commercially available dibromide $\mathbf{1 3 0}$ (10.0 g,
 42.3 mmol) dissolved in THF (35 mL) and was added to a diluted solution of n-BuLi ($18.4 \mathrm{~mL}, 2.3 \mathrm{M}, 42.3 \mathrm{mmol}$) in THF (50 mL) at $78{ }^{\circ} \mathrm{C}$ dropwise over 1.5 hours such that $-75^{\circ} \mathrm{C}$ was maintained throughout the duration. The reaction mixture was stirred an additional 30 minutes. DMF ($4.92 \mathrm{~mL}, 63.5 \mathrm{mmol}$) was added to the dark green solution and warmed to $0{ }^{\circ} \mathrm{C}$ and then room temperature. The solvent was quenched by saturated ammonium chloride solution (10 mL), extracted by DCM (3 x 25 mL), concentrated and purified by flash chromatography (silica gel)
with $100 \% \mathrm{DCM}\left(\mathrm{R}_{\mathrm{f}}=0.28\right.$ in $100 \% \mathrm{DCM}$; dark short UV spot) to afford 1.11 g of $\mathbf{1 3 1}$ in 7% isolated yield as a orange to brown solid with matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as reported in the literature. ${ }^{36} \mathrm{Mp} .74{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.81$ (m, $1 \mathrm{H}), 7.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 10.0(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 120.3,132.6$, $139.3,142.5,153.3,191.5$.

2-(chloromethyl)-6-phenylpyridinium chloride (132): (Step 1 of 3) Aldehyde 131
 $(1.10 \mathrm{~mL}, 2.0 \mathrm{M}, 2.20 \mathrm{mmol})$, diphenyl boronic acid ($0.208 \mathrm{~g}, 1.71$ mmol) and a stirbar were added to $\mathrm{PhMe}(10 \mathrm{~mL})$. The mixture was refluxed overnight and diluted with DCM $(20 \mathrm{~mL})$. The aqueous layer was extracted by DCM ($3 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$ which corresponded to $>95 \%$ conversion of crude 6-phenylpicolinaldehyde as a white semi-solid with matching ${ }^{1} \mathrm{H}$ NMR as reported in the literature. ${ }^{37}{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.87-7.97(\mathrm{~m}, 3 \mathrm{H}), 7.94$ $(\mathrm{d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 10.17(\mathrm{~s}, 1 \mathrm{H}) ;($ Step 2 of 3$) \quad$ The crude residue of 6phenylpicolinaldehyde ($0.224 \mathrm{~g}, 1.22 \mathrm{mmol}$) was dissolved in absolute ethanol (25 mL). $\mathrm{NaBH}_{4}(0.0693 \mathrm{~g}, 1.83 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred further for 2 hours at which time no starting material remained by $\operatorname{TLC}\left(\mathrm{R}_{\mathrm{f}}=0.46\right.$ in 50% EtOAc/hexanes; light blue long UV spot). The solvent was evaporated under vacuum. Then EtOAc (10 mL) was added with $1 \mathrm{~N} \mathrm{HCl}(1 \mathrm{~mL})$ and further extracted by EtOAc (3 x 5 mL$)$ and dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was again removed and the remaining clear semi-solid gave quantitative crude conversion of (6-phenylpyridin-2-yl)methanol with the same ${ }^{1} \mathrm{H}$ NMR spectra as reported in the literature. ${ }^{38} \quad{ }^{1} \mathrm{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.20(\mathrm{~s}, 1 \mathrm{H}$, broad), $4.78(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.57(\mathrm{~d}, J$
$=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$; (Step 3 of 3) The residue of (6-phenylpyridin-2-yl)methanol $(0.328 \mathrm{~g}, 1.77 \mathrm{mmol})$ was suspended in diethyl ether $(10 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Then $\mathrm{SOCl}_{2}(0.155 \mathrm{~mL}, 2.13 \mathrm{mmol})$ was added in diethyl ether (5 mL) over 15 minutes. The reaction mixture was warmed to room temperature and stirred overnight. The tan hydrochloride salt was filtered to afford 0.417 g of $\mathbf{1 3 2}$ in 98% yield over 3 steps with matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as reported in the literature. ${ }^{38} \mathrm{Mp} .132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.17(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H})$, $7.38-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 42.6,127.3,127.8,130.2,130.8,132.0,133.5,149.3$, 153.1, 155.2.

R-2-(methyl-8-O-2-S-oxa-2-S-phenyl-2,1-benzothiazine)-6-phenylpyridine
 Phenol 111 ($0.0922 \mathrm{~g}, 0.358 \mathrm{mmol}$) and stirbar were treated with $\mathrm{NaH}(60 \%$ in mineral oil, $0.034 \mathrm{~g}, 0.854$ mmol) at $0{ }^{\circ} \mathrm{C}$ in DMF (7 mL) under a dry N_{2} balloon resulting in a dark red solution. After 5 minutes, 132 $(0.082 \mathrm{~g}, 0.341 \mathrm{mmol})$ was added as a solid, allowed to warm to room temperature and stirred until completion by TLC (20 hours) $\left(\mathrm{R}_{\mathrm{f}}=0.41\right.$ in 50% EtOAc/hexanes; yellow long UV spot). The reaction was quenched with water (5 mL) and extracted by dichloromethane (3 x 5 mL). The organic extracts were again washed by water $(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The remaining crude oil was purified by flash chromatography (silica gel) in $25 \% \mathrm{EtOAc} /$ hexanes to afford 0.0684 g of heterocycle 133 in 47% as an orange semi-solid. ${ }^{1} \mathrm{H}$ NMR: (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.50(\mathrm{~s}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=8.6$
$\mathrm{Hz}, 2 \mathrm{H}), 7.37-7.70(\mathrm{~m}, 10 \mathrm{H}), 7.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 71.8,110.3,115.1,116.9,119.1,119.5,119.6,122.2,126.9$, $128.7,128.9,129.1,133.2,136.0,137.4,138.4,139.3,141.6,150.7,156.6,157.7$; IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3064,2927,2232,1605,1595,1544,1448,1433,1285,1218,1106,992$, 763, 686, 590, 501, 459; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$447.1138; Found 447.1136.

5.2.2 Synthetic Procedures and Compound Characterization: Chapter 3

N-phenyl-S-oxa-S-phenyl-S-methyl sulfoximine (2): (N-Arylation Procedure B) Chloro benzene 134 ($0.250 \mathrm{~g}, 2.22 \mathrm{mmol}$), sulfoximine 6 ($0.413,2.66$, and RuPhos ($0.0776 \mathrm{~g}, 0.166 \mathrm{mmol}$) were added together in a sealed tube in air with toluene (22 mL). The sealed tube was capped in air and refluxed to $135^{\circ} \mathrm{C}$. The reaction was stopped after 6 hours by a power outlet timer. Once at room temperature, the reaction was diluted in dichloromethane $(10 \mathrm{~mL})$ and filtered through a plug of celite. After being concentrated in vacuo, the brownish semi-solid was purified by flash chromatography (silica gel) with $25 \% \mathrm{EtOAc} /$ hexanes $\left(\mathrm{R}_{\mathrm{f}}=0.23\right.$ in $25 \% \mathrm{EtOAc} /$ hexanes; dark short UV spot) to afford 0.513 g 2 in 100% as a orange solid with matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as reported in the literature. ${ }^{6} \mathrm{Mp} .75{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 3.20(\mathrm{~s}, 3 \mathrm{H}), 6.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.44-7.57 (m, 3H), $7.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 45.8,121.5$, 123.1, 128.4, 128.8, 129.4, 133.1, 139.2, 144.8.

$R, R-N$-(2-S-oxa-2-S-phenyl-2,1-benzothiazine-8-yl)-S-oxa-S-phenyl-S-methyl

sulfoximine (123): (N-Arylation Procedure B) Another addition of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$, RuPhos, sulfoximine 6 and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was added after 24 hours and an additional 24 hours reaction time was added. Orange oil in 91% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.17\right.$ in $50 \% \mathrm{EtOAc} /$ hexanes; yellow long UV spot) This compound had matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as reported in the literature. ${ }^{31}{ }^{1} \mathrm{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.18(\mathrm{~s}, 3 \mathrm{H}), 6.32(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.63(\mathrm{~m}, 10 \mathrm{H}), 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 45.0,109.5,116.8,120.0,124.1,128.0,128.5,128.6$, 128.7, 128.9, 132.7, 133.1, 137.4, 139.3, 140.2, 141.2, 142.3.
\boldsymbol{S}, S-1 $N, 2 N$-bis(S-oxa- S-phenyl- S-methyl sulfoximine)benzene (31): (N-Arylation
 Procedure B) Another addition of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$, RuPhos, sulfoximine 6 and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was added after 24 hours and an additional 24 hours reaction time was added. This compound could not be separated from sulfoximine 6 and was calculated in 8-37\% conversions from an orange oily reaction mixture $\left(\mathrm{R}_{\mathrm{f}}=0.02\right.$ in 50% EtOAc/hexanes; dark short UV spot). For that reason ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra reported in the literature is listed herein for reference. ${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.37(\mathrm{~s}, 6 \mathrm{H}), 6.70(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.59(\mathrm{~m}, 6 \mathrm{H}), 8.12-8.15(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $45.8,122.5,124.1,128.6,129.2,132.8,129.2,132.8,138.3,140.2 .{ }^{14}$

Procedure B) Orange oil in 37-45\% yield. This compound $\left(\mathrm{R}_{\mathrm{f}}=0.43\right.$ in 25% EtOAc/hexanes; dark short UV spot) matched ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra reported in the literature. ${ }^{14}{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.25(\mathrm{~s}, 3 \mathrm{H}), 6.76(\mathrm{t}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.60(\mathrm{~m}, 4 \mathrm{H}), 8.08$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 45.4,119.3,123.1,123.6,127.9$, 128.6, 129.5, 132.9, 133.4, 139.0, 143.4.

2-S-oxa-2-S-phenyl-2,1-benzothiazine (1): (N-Arylation Procedure B) Yellow solid in
 86% yield. This compound $\left(\mathrm{R}_{\mathrm{f}}=0.32\right.$ in 25% EtOAc/hexanes; yellow long UV spot) matched ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra reported in the literature. ${ }^{5,7} \mathrm{Mp} .163{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.38(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.62(\mathrm{~m}, 3 \mathrm{H})$, $7.66(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 109.9$, $116.1,120.2,124.2,128.7,129.0,129.6,132.1,133.2,138.8,141.6,145.1$.

4-phenyl-2-S-oxa-2-S-phenyl-2,1-benzothiazine (26): (N-Arylation Procedure B)
 Yellow solid in 77% yield. This compound $\left(\mathrm{R}_{\mathrm{f}}=0.58\right.$ in 25% EtOAc/hexanes; green long UV spot) matched ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra reported in the literature. ${ }^{5,7} \mathrm{Mp} .140{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.32(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.59(\mathrm{~m}, 10 \mathrm{H}), 7.98(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (63 MHz, CDCl_{3}) $\delta 108.4,116.9,119.9,124.7,128.0,128.4,128.8$, $128.9,129.0,131.8,133.2,137.2,141.3,145.8,150.8$.

5.2.3 Synthetic Procedures and Compound Characterization: Chapter 4

3-(trimethylsilyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154a): Lithiation Procedure

A: To an oven dried, N_{2} cooled flask with stirbar, benzothiazine $\mathbf{1}$ $(0.107 \mathrm{~g}, 0.443 \mathrm{mmol})$ was added and covered with a rubber septum. The flask was charged with argon, and freshly distilled THF (4 mL) was added via syringe. The reaction was then cooled to $-78{ }^{\circ} \mathrm{C}$ via a dry ice/acetone bath. Then n-BuLi $(0.256 \mathrm{~mL}, 2.08 \mathrm{M}, 0.532 \mathrm{mmol})$ was added drop-wise to the cooled solution resulting in a dark orange solution. After 5 minutes, $\mathrm{TMSCl}(0.0793 \mathrm{~mL}, 0.621$ mmol) was added thru the rubber septum by syringe. The reaction mixture was stirred further for up to 3 hours (or until completion was observed by TLC). The mixture was quenched with saturated ammonium chloride (2 mL) and extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$), concentrated in by vacuum, and dried $\left(\mathrm{MgSO}_{4}\right)$. Purification $\left(\mathrm{R}_{\mathrm{f}}=0.40\right.$ in 25\% EtOAc/hexanes; yellow long UV spot) by flash chromatography (silica gel) with $25 \% \mathrm{EtOAc} /$ hexane afforded $136.5 \mathrm{~g} \mathbf{1 5 4 a}$ as a yellow solid in 98% yield. $\mathrm{Mp} .183{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 9 \mathrm{H}), 6.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H})$, $7.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.7,116.3,119.7,121.4,123.7$, 128.7, 129.3, 129.7, 132.3, 133.2, 142.5, 145.6, 146.0; IR ($\left.\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3015,2964,1605$, 1577, 1531, 1308, 1289, 1254, 1206, 990, 845, 729, 426; HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NOSSiNa}[\mathrm{M}+\mathrm{Na}]^{+} 336.0849$; Found 336.0851.

3-(triethylsily)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154b): (Lithiation Procedure

A) Yellow solid in 94% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.57\right.$ in 25% EtOAc/hexanes; yellow long UV spot) Mp. $60{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 0.37 (sextet, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.63$ (sextet, $J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 9 \mathrm{H}), 6.98(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.1,6.8,116.1,118.4,119.5,123.5,128.4,129.0,129.6,132.1$, 133.1, 142.7, 145.5, 147.0; IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$) 2959, 2912, 2878, 1605, 1576, 1529, 1308, 1289, 1308, 1224, 1127, 1004, 848, 787, 723, 667, 580, 438; HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NOSSiNa}[\mathrm{M}+\mathrm{Na}]^{+}$378.1318; Found 378.1313.

3-(tri-iso-propylsilyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154c): (Lithiation

Procedure A) Orange solid in 94% yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=0.55\right.$ in 25% EtOAc/hexanes; yellow long UV spot) Mp. $115{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.75(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 9 \mathrm{H}), 0.95-1.11(\mathrm{~m}, 12 \mathrm{H}), 6.88$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (63 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.7,17.6,18.2,18.5,115.8,117.2,119.4,123.3,128.4,128.8,129.7,132.3$, 133.0, 144.1, 145.4, 148.7; IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$) 3013, 2949, 2869, 1605, 1527, 1467, 1448, 1313, 1206, 1127, 1097, $988,883,844,787,727,684,643,478$; HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NOSSiNa}[\mathrm{M}+\mathrm{Na}]^{+} 420.1788$; Found 420.1791.

3-(dimethyl-tert-butylsilyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154d): (Lithiation

Procedure A) Yellow solid in 85% yield. $\quad\left(R_{f}=0.44\right.$ in 25% EtOAc/hexanes; yellow long UV spot) Mp. $117{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.20(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 6.97(\mathrm{t}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.48-7.60(m, 3H), 7.80-7.84 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.1,-4.8,17.7$, $26.5,115.8,119.0,119.6,123.5,128.5,128.9,129.7,132.4,132.9,143.7,145.4,148.3 ;$ IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$) 3067, 3015, 1605, 1579, 1531, 1286, 1224, 1206, 1097, 991, 728, 685, 438; HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NOSSiNa}[\mathrm{M}+\mathrm{Na}]^{+} 378.1318$; Found 378.1315.

3-(phenylsulfanyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154e): (Lithiation P_{S} Procedure A) Yellow solid in $38-92 \%$ yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=0.41\right.$ in 25%
 EtOAc/hexanes; yellow long UV spot) Mp. $104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 5 \mathrm{H}), 7.32-7.54(\mathrm{~m}$, $7 \mathrm{H}), 7.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 116.0,118.5$, $120.4,124.0,127.2,128.5,128.9,129.2,129.7,130.1,132.8,133.4,134.6,138.5,145.4$, 147.9; IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$) 3015, 2960, 2860, 1605, 1575, 1529, 1468, 1310, 1257, 1205, 1097, $988,844,811,728,667$; HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NOS}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$372.0487; Found 372.0470.

3-(hydroxydiphenylmethyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154f): (Lithiation
 Procedure A) Tan solid in 91% yield. $\quad\left(R_{f}=0.26\right.$ in 25% EtOAc/hexanes; orange long UV spot) Mp. $176{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.86(\mathrm{~s}, 1 \mathrm{H}$, broad $), 6.97-7.10(\mathrm{~m}, 6 \mathrm{H})$, 7.15-7.47 (m, 12H), $7.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (63
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 81.6,116.6,120.3,123.5,126.6,127.1,127.6,127.9,128.0,128.3$, $128.4,130.0,130.3,131.9,132.6,138.3,139.5,141.3,144.4,145.8 ; \mathrm{IR}\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right)$ 3579, 3064, 3018, 1608, 1447, 1292, 1223, 1206, 1188, 729, 702, 471, 445; HRMS calculated for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 446.1185$; Found 446.1185 .

(Lithiation Procedure A) A racemic mixture of two diastereomers (1.4:1) was made as off-white solids in 94% overall yield. $\left(\mathrm{R}_{\mathrm{f}}=\right.$
0.46 in 25% EtOAc/hexanes; yellow long UV spot) Major diastereomer: Mp. $204{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.49(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 70.4,116.8,120.5,122.2,123.4,123.6,127.7,128.9,129.0,129.7,130.1$, $130.3,132.2,132.7,133.7,137.0,137.5,138.0,144.7 ;$ IR ($\left.\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3540,3068,3015$, 1612, 1446, 1288, 1217, 1185, 1129, 1096, 1014, 991, 831, 771, 534; HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$447.9977; Found 447.9979. Minor diastereomer: Mp. $193{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.62(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 7 \mathrm{H})$, $7.65(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 72.3,116.7,120.3$, $121.8,122.6,123.4,127.6,128.7,129.1,129.1,129.9,130.0,132.2,132.2,132.9,133.2$, $138.6,139.3,140.5,144.7$; IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3592,3067,3014,1612,1545,1446,1343$, 1292, 1227, 1194, 1097, 991, 775, 765, 521; HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}$447.9977; Found 448.0019.

3-bromo-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154h): (Lithiation Procedure A) Br Yellow solid in 81% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.54\right.$ in 50% EtOAc/hexanes; yellowgreen long UV spot) $\mathrm{Mp} .105{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.70(\mathrm{~m}, 3 \mathrm{H})$, $7.82(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 103.2,118.6,120.8$, $123.8,128.8,128.9,130.1,132.1,133.9,138.4,141.3,143.5$; $\mathrm{IR}\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3069$, $3014,2930,1604,1535,1444,1342,1288,1225,1206,1098,995,918,786,728,569$, 534; HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrNOSNa}[\mathrm{M}+\mathrm{Na}]^{+}$341.9559; Found 341.9570.

3-iodo-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154i): (Lithiation Procedure A) Orange

solid in 96% yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=0.68\right.$ in 50% EtOAc/hexanes; dark short UV spot) Mp. $103{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.04(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 74.2,118.9,120.5,123.9,128.7,128.8$, $130.0,132.3,133.8,139.5,144.2,148.6 ;$ IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3069,3014,1604,1528,1342$, 1288, 1207, 1097, 992, 787, 729, 434, 426; HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{10}$ INOSNa $[\mathrm{M}+\mathrm{Na}]^{+}$389.9420; Found 389.9421.

3-(1-hydroxycyclohexyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154j): (Lithiation
 Procedure A) Yellow-tan solid in 97% yield. ($\mathrm{R}_{\mathrm{f}}=0.71$ in 50% EtOAc/hexanes; light green long UV spot) Mp. $135{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.08-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.92(\mathrm{~m}, 9 \mathrm{H}), 2.07(\mathrm{~s}$, $1 \mathrm{H}), 7.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5,21.5,25.0,38.3,40.5,74.0,116.4,120.0,123.1,128.5,128.9$,
129.4, 130.1, 131.6, 132.8, 135.6, 143.8, 143.9; IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$) 3574, 3016, 2939, 2861, 1608, 1447, 1343, 1295, 1224, 1206, 1096, 993, 787, 728, 523, 467, 430; HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 362.1185$; Found 362.1178 .

2-methylpropyl 2-S-oxa-2-S-phenyl-2,1-benzothiazine-3-carboxylate (154k):

(Lithiation Procedure A) Yellow solid in 11-51\% yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=\right.$ 0.45 in 25% EtOAc/hexanes; yellow long UV spot) $\mathrm{Mp} .93{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.74(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.75($ septet, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.92\left(\mathrm{dd}, J_{1}=6.7 \mathrm{~Hz}, J_{2}=3.8 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 7.07(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.65(\mathrm{~m}, 5 \mathrm{H}), 7.92(\mathrm{~d}, J=$ 6.7 Hz, 2H), $8.56(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.9,18.9,27.5,72.0,111.8$, $116.3,120.7,124.0,128.5,129.3,131.3,133.2,134.8,141.5,145.7,147.3,161.9$; IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3027,2963,2875,1712,1609,1533,1448,1287,1206,1152,1098,986$, 469; HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 364.0978$; Found 364.0968 .

2-S-oxa-2-S-phenyl-2,1-benzothiazine-3-carbaldehyde (154I): (Lithiation Procedure
A) Yellow solid in 92% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.14\right.$ in $25 \% \mathrm{EtOAc} /$ hexanes;
 orange long UV spot) $\mathrm{Mp} .119{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.68(\mathrm{~m}, 5 \mathrm{H})$, $7.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 9.57(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 116.4, $119.1,121.2,124.6,128.8,129.9,131.5,133.8,135.9,139.5,147.2,148.6,184.7$; IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3022,2928,2855,1688,1609,1586,1531,1291,1223,1206,1153,729$, 426; HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 292.0403$; Found 292.0345.

3-(3-hydroxypentan-3yl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154m): (Lithiation

Procedure A) Tan solid in 85% yield. $\quad\left(R_{f}=0.47\right.$ in 25%
EtOAc/hexanes; purple long UV spot) Mp. $156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.63(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.38 (sextet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\operatorname{sextet}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.50$ (s, 1H), $7.02(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ $(\mathrm{s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.85(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.5,7.9,33.3,34.9,78.2,116.4,120.1,123.2,126.5,128.4,129.5$, 131.6, 133.0, 136.2 143.0, 144.1; IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$) 3574, 3018, 2975, 1608, 1446, 1344, 1296, 1224, 1206, 1094, 989, 792, 668, 528; HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 350.1185$; Found 350.1179.

3-(hydroxymethyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154n): (Lithiation OH Procedure A) Orange solid in 76% yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=0.03\right.$ in 25% EtOAc/hexanes; green long UV spot) Mp. $134{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.05(\mathrm{~s}, 1 \mathrm{H}$, broad), $4.36(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=$ 8.2 Hz, 1H), $7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.90$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 60.7,116.9,120.5,121.6,123.7$, $129.1,129.4,129.7,132.0,133.6,137.4,139.3,144.7 ;$ IR $\left(\mathrm{NaCl}^{2} \mathrm{~cm}^{-1}\right) 3601,3465,3067$, $3014,2874,1616,1447,1340,1287,1224,1205,1097,991,728,686,666,532 ;$ HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$294.0559; Found 294.0573.

3-(2-hydroxyethyl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (1540): (Lithiation

$\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.37-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.67(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.85(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.67(\mathrm{~m}$, $4 \mathrm{H}), 7.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.1,62.0,117.3,120.1$, $120.4,123.5,129.1,129.1,129.5,131.4,133.5,138.1,138.9,143.8 ;$ IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right)$ 3620, 3487, 3067, 3016, 1613, 1447, 1289, 1223, 1206, 1099, 993, 729, 470, 426; HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 308.0716$; Found 308.0726.

3-(2-hydroxypropan-2-yl)-2-S-oxa-2-S-phenyl-2,1-benzothiazine (154q): (Lithiation

Procedure A) Green-tan solid in 85% yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=0.12\right.$ in 25% EtOAc/hexanes; light green long UV spot) Mp. $175{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 1 \mathrm{H}$, broad), $7.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (63 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.9,32.6,72.6,116.5,120.1,123.0,128.6,129.3,129.4,129.5,131.6$, 133.0, 135.4, 142.8, 143.8; IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$) 3534, 2975, 2361, 1608, 1546, 1447, 1345, 1322, 1296, 1202, $990,910,521,507,502,408$; HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}$322.0872; Found 322.0869.
R-(3S,4R)-4-butyl-2-phenyl-3-(phenylsulfanyl)-3,4-dihydro-2-S-oxa-2-S-phenyl-2,1-
 benzothiazine (157): (Lithiation Procedure A) No electrophile was used and the reaction was stirred for 4 hours at $-78{ }^{\circ} \mathrm{C}$ before it was stopped and quenched. Orange semi-solid in 85% yield in a $3.8: 1$ diastereomeric mixture. ($\mathrm{R}_{\mathrm{f}}=0.57$ in 25% EtOAc/hexanes; green long UV spot) Major diastereomer (all cis product shown): ${ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-1.61(\mathrm{~m}, 4 \mathrm{H}), 2.06-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.45(\mathrm{~m}, 1 \mathrm{H}), 3.91$
$(\mathrm{m}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.14-6.95(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~d}, J$ $=7.3,1 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,22.7,28.3,29.3,120.7,123.0,125.8$, $127.6,128.5,128.6,130.0,131.5,131.6,133.9135 .1 ;$ IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3478,3012,2959$, $2931,2859,2361,1732,1582,1477,1444,1374,1251,1146,1090,1023,787,689,471$; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NOS}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 430.1270$; Found 430.1275 .

3-iodo-2-S-oxa-2-S,4-diphenyl-2,1-benzothiazine (161d): Lithiation Procedure B: To
 an oven dried, N_{2} cooled flask with stirbar, benzothiazine $26(0.052 \mathrm{~g}$, 0.164 mmol) was added and covered with a rubber septum. The flask was charged with argon, and freshly distilled THF (2 mL) was added via syringe. The reaction was then cooled to $-78{ }^{\circ} \mathrm{C}$ via a dry ice/acetone bath. Then $n-\mathrm{BuLi}$ $(0.0936 \mathrm{~mL}, 2.10 \mathrm{M}, 0.196 \mathrm{mmol})$ was added drop-wise to the cooled solution resulting in a dark orange solution. After 15 minutes, $\mathrm{I}_{2}(0.0582 \mathrm{~g}, 0.229 \mathrm{mmol})$ was added in THF $(1 \mathrm{~mL})$ thru the rubber septum by syringe. The reaction mixture was stirred further for up to 3 hours (or until completion was observed by TLC). The mixture was quenched with saturated ammonium chloride (2 mL) and extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$), concentrated in by vacuum, and dried $\left(\mathrm{MgSO}_{4}\right)$. Purification $\left(\mathrm{R}_{\mathrm{f}}=0.24\right.$ in 25% EtOAc/hexanes; green long UV spot) by flash chromatography (silica gel) with 25% EtOAc/ hexane afforded $0.537 \mathrm{~g} \mathrm{161e}$ in 74% yield as an orange solid. Mp. $83{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.84(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.11$ $(\mathrm{m}, 1 \mathrm{H}), 7.24-7.68(\mathrm{~m}, 9 \mathrm{H}), 7.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 80.9, 119.2, 120.3, 124.0, 128.0, 128.6, 128.7, 129.0, 130.1, 131.9, 133.7, 140.1, 140.9, 144.6, 156.3; IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$) 3064, 2928, 2855, 2252, 1600, 1566, 1515, 1490, 1326,
$1249,1218,1098,996,959,699,650,589,545,508,499,473$; HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{INOSNa}[\mathrm{M}+\mathrm{Na}]^{+}$465.9733; Found 465.9728.

3-bromo-2-S-oxa-2-S,4-diphenyl-2,1-benzothiazine (161e): (Lithiation Procedure B) Yellow solid in 95% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.47\right.$ in 25% EtOAc/hexanes; green
 long UV spot) $\mathrm{Mp} .174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88-7.01$ $(\mathrm{m}, 2 \mathrm{H}), 7.16-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.71(\mathrm{~m}, 9 \mathrm{H}), 8.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (63 MHz, CDCl_{3}) $\delta 104.1,119.7,120.5,124.1,128.4,128.5,128.7$, $128.9,130.1,131.6,131.9,133.8,136.9,138.7,143.8,150.8$; IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3065$, 2927, 2855, 1600, 1567, 1523, 1492, 1330, 1252, 1222, 1098, 970, 605, 589, 545, 495, 476, 447, 408; HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{BrNOSNa}$ [M+Na] 417.9872; Found 417.9866.

3-(phenyl(hydroxy)methyl)-2-S-oxa-2-S,4-diphenyl-2,1-benzothiazine
(161f):

(Lithiation Procedure B) A 2.4:1 diastereomeric mixture could not be separated by flash chromatography and was identified by its mixture as a tan solid in 75% yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=0.20\right.$ in 25% EtOAc/hexanes; yellow long UV spot) A 2.4:1 diastereomeric mixture: Mp. $103{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ Major diastereomer: $3.60(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ (s, 1H), 7.64 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$); Minor diastereomer: 2.59 (s, 0.4 H), $5.60(\mathrm{~s}, 0.4 \mathrm{H}), 7.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 0.8 \mathrm{H}) ; 6.68-7.42(\mathrm{~m}, 27 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (63 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 70.6,70.9,118.7,102.1,124.1,124.8,125.4,126.3,127.5,127.6,127.8,128.1$, $128.3,128.5,128.6,128.8,129.2,129.6,130.4,131.5,132.9,135.5,139.8,140.7,144.6$, 148.6; IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$) 3468, 3064, 2924, 2854, 1601, 1572, 1530, 1336, 1248, 1248,

1208, 1190, 1153, 1127, 1039, 541, 538; HRMS calculated for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 446.1185; Found 446.1183.

3-(methylsulfanyl)-2-S-oxa-2-S,4-diphenyl-2,1-benzothiazine (161g): (Lithiation

EtOAc/hexanes; yellow long UV spot) Mp. $137{ }^{\circ}$ C. ${ }^{1} \mathrm{H}$ NMR: (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.93(\mathrm{~s}, 3 \mathrm{H}), 6.81-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.63(\mathrm{~m}, 9 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.5,116.1,119.2,119.8,124.2,128.2,128.3,128.6,129.0,130.0,132.0$, 133.3, 136.4, 139.7, 145.2, 157.6; IR (NaCl, $\left.\mathrm{cm}^{-1}\right) 3065,3045,2925,1601,1562,1515$, $1490,1448,1332,1245,1210,1153,1097,996,971,821,590,550,491,463,431,428$; HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NOS}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 386.0644$; Found 386.0640.

3-(phenylsulfanyl)-2-S-oxa-2-S,4-diphenyl-2,1-benzothiazine (161h): (Lithiation

Procedure B) Yellow solid in 94% yield. ($\mathrm{R}_{\mathrm{f}}=0.46$ in 25% EtOAc/hexanes; yellow long UV spot) Mp. $120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 6.81-6.89 (m, 3H), 6.95-6.98 (m, 4H), 7.07-7.11 (m, $1 \mathrm{H}), 7.21-7.48(\mathrm{~m}, 9 \mathrm{H}), 7.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 113.7$, $119.6,119.9,124.3,126.3,127.9,128.2,128.3,128.3,128.4,128.7,128.8,129.3,129.7$, $130.3,132.3,133.2,135.2,135.8,138.3,145.7,158.3 ;$ IR ($\left.\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3065,3042,2926$, $1601,1560,1512,1490,1331,1244,1213,1153,1097,995,972,819,684,590,553$, 474, 444 441; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{NOS}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 448.0800$; Found 448.0797 .

Procedure B) Yellow solid in 88% yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=0.41\right.$ in 25% EtOAc/hexanes; yellow long UV spot) Mp. $164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.33-2.43(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.87$ $(\mathrm{m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.45-7.64(\mathrm{~m}$, $4 \mathrm{H}), 8.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,32.2,115.0,119.2$, 119.7, 124.1, 128.0, 128.1, 128.1, 128.4, 128.6, 129.0, 129.1, 129.9, 131.8, 133.2, 136.4, 139.5, 145.1, 157.0; IR ($\mathrm{NaCl} \mathrm{cm}^{-1}$) 3066, 3048, 2929, 1601, 1561, 1514, 1490, 1448, $1331,1245,1210,1154,1097,996,971,821,685,590,550,467,403$; HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NOS}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 400.0800$; Found 400.0797.

3-(cyclohexylsulfanyl)-2-S-oxa-2-S,4-diphenyl-2,1-benzothiazine (161j): (Lithiation
 Procedure B) Yellow solid in 98% yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=0.53\right.$ in 25% EtOAc/hexanes; yellow long UV spot) $\mathrm{Mp} .56{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.71-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.91-0.98(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.58(\mathrm{~m}$, $5 \mathrm{H}), 2.45-2.52(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.09-7.14 (m, 1H), 7.36-7.45 (m, 5H), 7.47-7.64 (m, 4H), $8.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.2,25.6,25.7,32.5,32.8,49.8,115.1,119.2,119.7,124.1$, 127.9, 128.0, 128.4, 128.9, 129.0, 129.6, 130.1, 133.1, 136.3, 139.5, 145.1, 156.3; IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3023,2932,2854,1600,1560,1512,1490,1449,1331,1245,1213,1153$, 1096, $970,820,618,590,479,473,403$; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NOS}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 454.1270; Found 454.1270.

Procedure B) Orange semi-solid in 19% yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=0.45\right.$ in 25%
 EtOAc/hexanes; yellow-orange long UV spot) ${ }^{1} \mathrm{H}$ NMR: (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{~s}, 9 \mathrm{H}), 6.86(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13-7.62(\mathrm{~m}, 20 \mathrm{H}), 7.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 31.4,50.1,119.3,119.7,124.3,127.6,127.9,128.2,128.4,129.6,129.9,130.4$, $130.6,132.1,133.1,136.8,140.1,145.7 ;$ IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$) $3463,3061,2925,1601,1571$, $1529,1448,1321,1247,1193,1154,1097,991,699,682,603,523,504,499,439$; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NOS}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 428.1113$; Found 428.1115.

3-(methylsulfanyl)-2-S-oxa-2-S-[2-(methylsulfanyl)phenyl]-4-phenyl-2,1-

benzothiazine (165a): Lithiation Procedure C: To an oven dried, N_{2} cooled flask with stirbar, benzothiazine $26(0.107 \mathrm{~g}, 0.338$ mmol) was added and covered with a rubber septum. The flask was charged with argon, and freshly distilled THF (4 mL) was added via syringe. The reaction was then cooled to $-78{ }^{\circ} \mathrm{C}$ via a dry ice/acetone bath. Then n - $\operatorname{BuLi}(0.467 \mathrm{~mL}, 2.17 \mathrm{M}, 1.02 \mathrm{mmol})$ was added drop-wise to the cooled solution resulting in a dark red solution. After 30 minutes, dimethyl disulfide ($0.122 \mathrm{~mL}, 1.35 \mathrm{mmol}$) was added thru the rubber septum by syringe. The reaction mixture was stirred further overnight (or until completion was observed by TLC). The mixture was quenched with saturated ammonium chloride (2 mL) and extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$), concentrated in by vacuum, and dried $\left(\mathrm{MgSO}_{4}\right)$. Purification $\left(\mathrm{R}_{\mathrm{f}}=0.45\right.$ in $25 \% \mathrm{EtOAc} /$ hexanes; green long UV spot) by flash chromatography (silica gel) with $25 \% \mathrm{EtOAc} /$ hexane afforded $0.131 \mathrm{~g} \mathrm{165a}$ in 95%
yield as a yellow solid. Mp. $193{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.36$ $(\mathrm{s}, 3 \mathrm{H}), 6.86-6.96(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.31-7.60(\mathrm{~m}, 10 \mathrm{H}), 8.40(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 15.9,21.1,119.7,119.9,124.0,124.4,125.9,127.9,128.2,128.3$, $128.9,129.1,131.1,131.8,133.6,134.4,137.0,143.5,145.4,159.1$; IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right)$ $3049,2927,2855,1601,1563,1517,1488,1437,1332,1245,1208,1154,701,590,556$, 500, 497, 444, 402; HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NOS}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 432.0521$; Found 432.0517.

3-(phenylsulfanyl)-2-S-oxa-2-S-[2-(phenylsulfanyl)phenyl]-4-phenyl-2,1-

benzothiazine (165b): (Lithiation Procedure C) Yellow solid (m, 12H), $8.24(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 111.1,120.0,120.2$, $124.4,124.8,126.8,127.8,127.9,128.1,128.5,128.8,129.0,129.2,129.6,129.8,129.9$, $131.0,132.2,133.5,134.6,134.8,136.3,143.7,145.4,160.6$; $\operatorname{IR}\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3023$, 2927, 2855, 1601, 1581, 1561, 1514, 1490, 1441, 1332, 1213, 1153, 820, 590, 558, 499, 469, 445; HRMS calculated for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{NOS}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 556.0834$; Found 556.0830.

3-(ethylsulfanyl)-2-S-oxa-2-S-[2-(ethylsulfanyl)phenyl]-4-phenyl-2,1-benzothiazine

 (165c): (Lithiation Procedure C) Yellow solid in 89% yield. $\left(\mathrm{R}_{\mathrm{f}}=\right.$ 0.63 in 25% EtOAc/hexanes; yellow long UV spot) $\mathrm{Mp} .184{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 2.46-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.91(\mathrm{~m}, 2 \mathrm{H})$, $6.83(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.56(\mathrm{~m}, 9 \mathrm{H})$,
$8.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.5,14.3,27.0,32.2,112.6$, $119.6,119.7,124.2,124.2,127.6,128.0,128.2,129.0,130.9,131.5,133.4,135.4,137.1$, 142.1, 145.2, 158.4; IR ($\mathrm{NaCl} \mathrm{cm}^{-1}$) 2967, 2929, 2855, 1601, 1562, 1516, 1488, 1450, $1332,1245,1206,734,701,590,555,409,402$; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NOS}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 460.0834$; Found 460.0837.

3-(cyclohexylsulfanyl)-2-S-oxa-2-S-[2-(cyclohexylsulfanyl)phenyl]-4-phenyl-2,1-

benzothiazine (165d): (Lithiation Procedure C) Yellow solid in 98% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.53\right.$ in 25% EtOAc/hexanes; yellow long

UV spot) Mp. $117{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85-$
$1.26(\mathrm{~m}, 10 \mathrm{H}), 1.34-1.89(\mathrm{~m}, 10 \mathrm{H}), 2.96-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.21-$ $2.23(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.59(\mathrm{~m}, 9 \mathrm{H}), 8.38$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.4,25.5,25.6,25.6,25.7,25.9,32.4$, $32.6,33.0,33.6,45.5,50.4,113.1,119.3,119.8,124.0,124.9,127.8,128.0,128.4,129.0$, $129.3,130.1,130.7,130.9,131.3,133.0,137.1,137.7,140.5,145.3,157.9 ;$ IR $\left(\mathrm{NaCl} \mathrm{cm}^{-}\right.$ $\left.{ }^{1}\right) 3032,2934,2855,1600,1562,1514,1489,1449,1332,1244,1211,1154,1050,997$, 971, 820, 590, 556, 456, 452; HRMS calculated for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NOS}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 568.1773$; Found 568.1771.

3-iodo-2-S-oxa-2-S-(2-iodophenyl)-4-phenyl-2,1-benzothiazine (165h): (Lithiation

Procedure C) Brown solid in 91% yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=0.64\right.$ in 25% EtOAc/hexanes; short dark UV spot) Mp. $174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.63(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $8.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 98.0$,
$120.0,120.4,124.1,127.6,128.4,128.7,128.7,128.8,129.0,131.9,132.2,134.4,139.7$, $141.0,142.9,145.4,159.1$; IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3065,3044,2928,1599,1566,1515,1491$, $1342,1328,1248,1218,1154,998,959,599,587,548,489,424$; HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{I}_{2} \mathrm{NOSNa}[\mathrm{M}+\mathrm{Na}]^{+}$591.8699; Found 591.8696.

3-bromo-2-S-oxa-2-S-(2-bromophenyl)-4-phenyl-2,1-benzothiazine
(Lithiation Procedure C) Brown solid in 95% yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=0.73\right.$ in 25% EtOAc/hexanes; dark short UV spot) $\mathrm{Mp} .172{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.86-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{t}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.63(\mathrm{~m}, 5 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.51$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 100.9,119.8,120.5,124.0,124.8$, 127.7, 128.1, 128.2, 128.7, 128.7, 131.9, 132.2, 134.9, 135.8, 136.5, 137.0, 144.3, 153.9; IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3068,3033,2931,1600,1567,1523,1443,1343,1333,1250,1224$, $1155,1043,971,605,587,551,483,464,412$; HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{NOSNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}$495.8977; Found 495.8975.

3-(methylsulfanyl)-2-S-oxa-2-S-[2-(methylsulfanyl)phenyl]-4-phenyl-2,1-

 argon, and freshly distilled THF (21 mL) was added via syringe. The reaction was then cooled to $-78{ }^{\circ} \mathrm{C}$ via a dry ice/acetone bath. Then LiTMP ($4.55 \mathrm{~mL}, 0.68 \mathrm{M}$ in THF, 2.87 mmol) was added drop-wise to the cooled solution resulting in a dark red solution. After 30 minutes, dimethyl disulfide $(0.211 \mathrm{~mL}, 2.34 \mathrm{mmol})$ was added thru the rubber septum by syringe. The reaction mixture was stirred further overnight (or until completion was
observed by TLC). The mixture was quenched with saturated ammonium chloride (5 mL) and extracted with dichloromethane (3 x 10 mL), concentrated in by vacuum, and dried $\left(\mathrm{MgSO}_{4}\right)$. Purification $\left(\mathrm{R}_{\mathrm{f}}=0.49\right.$ in $25 \% \mathrm{EtOAc} /$ hexanes; yellow long UV spot) by flash chromatography (silica gel) with $25 \% \mathrm{EtOAc} /$ hexane afforded 0.565 g 166 in 92% yield as a very viscous orange oil. ${ }^{1} \mathrm{H}$ NMR: $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.21(\mathrm{~s}, 3 \mathrm{H}), 6.94(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~s}$, $1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.7,117.7,118.5,119.9$, $123.0,128.3,128.9,129.2,131.7,133.1,138.7,143.8,144.1$; IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) 3071$, 2927, 1604, 1579, 1534, 1286, 1210, 1127, 993, 909, 583, 495, 454, 439; HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NOS}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 310.0331$; Found 310.0328.

CHAPTER 6

APPENDIX

Selected ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and X-ray Structures for New Compounds

20E69' \downarrow

06829

\qquad

111
ㅁ

โе」бәұuI

Current Data Parameters	
NAME	NC－I－16A
EXPNO	2
PROCNO	1
F2－Acquisition Parameters	
Date＿	20041028
Time	15.32
InSTRUM	arx 250
PROBHD 5	5 mm QNP 1H
PULPROG	zgdc 30
TD	36864
SOLVENT	CDC13
NS	335
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
AQ	1.0691060 sec
RG	22800
DW	29.000 use
DE	41.43 use
TE	300.0
012	0.00002000 sec
5	23.00 dB
CPDPRG	waltz16
P31	103.00 use
D1	1.00000000 sec
P1	6.00 use
SF01	62． 9023694 MHz
NUCLEUS	135
D11	0.03000000 sec
F2－Process	sing parameters
SI	32768
SF	62.8952424 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
10 NMR plot parameters	
CX	20.00 cm
CY	25.00 cm
F1P	220.000 ppm
F1	13836.95 Hz
F2P	－10．000 ppm
F2	$-628.95 \mathrm{~Hz}$
PPMCM	11.50000 ppm
HZCM	723．29529 Hz／

067 $9 /$ $966^{\circ} \angle L$

88！ 0
998
22L 51
991 0 О โ
0レ8•8ご
190．6टt
しだとを
ISG EE
ટยL 8モた
としで切
6しG•8も

Current DataParameters NAME XH－VI－15	
EXPNO	1
PROCND	1

	H	Sกวาวกn
zHW	โટ६¢IEए 0¢	10¢5
әsn	0G 6	id
गอs	00000000＇T	IO
¢	0．00E	31
asn	－よ＇LEL	$\exists 0$
วsn	$000 \cdot 96$	MC
	GIL	98
ววร	6LLLSbr \mathcal{E}	OV
2 H	9ャ689！ 0	S3y0i」
2 H	દદ\＆воट૬	HMS
	2	SO
	91	SN
	ยโวOכ	
	89くてを	01
	086z	90udind
	HI dNO ww g	वH80¢d
	OGExJe	WnuISNI
	¢¢ ¢ ¢	อш！ 1
	0ट己兀g00e	a7e0
S」əzawesed uoţztestnboy		

을
$\stackrel{\rightharpoonup}{a}$
$\stackrel{\rightharpoonup}{2}$

29652＂ \qquad

115

セコธコวาUI

Current Data Parameters	
NAME	XH-VI-15
EXPNO	?
PROCNO	1
F2 - Acquisition Parameters	
Date_	20051220
Time	13.45
INSTRUM	arx250
PROBHD	$5 \mathrm{~mm} \mathrm{QNP} \mathrm{1H}$
PULPROG	zgdc 30
T0	36864
SOLVENT	CDC13
NS	231
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
A ${ }^{\text {a }}$	1. 0691060 sec
RG	22800
DW	29.000 use
DE	41.43 use
TE	300.0 K
012	0.00002000 sec
DL5	23.00 dB
CPDPRG	waltz16
P31	103.00 use
D1	2.00000000 sec
P1	8.00 use
SF01	62.9023694 MHz
NUCLEUS	13 C
011	0.03000000 sec
F2-Processing parameters	
SI	32768
SF	62.8952440 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
10 NMR plot parameters	
CX	20.00 cm
CY	10.00 cm
F1P	220.000 ppm
F1	13836.95 Hz
F2P	-10.000 ppm
F2	-628.95 Hz
PPMCM	11.50000 ppm
HZCM	723.29529 Hz/

rrent Data Parameters	
NAME	XH-VI-15
EXPNO	3
PROCNO	1
F2-Acquisition Рагameters	
Date_	20051220
Time	13.55
INSTRUM	агх250
PROBHD 5	5 mm QNP 1H
PULPROG	zgdc 30
TD	61440
SOLVENT	CDC13
NS	85
DS	4
SWH	41667.047 Hz
FIDRES	0.678175 Hz
AQ	0.7373300 sec
RG	16384
DW	12.000 use
DE	17.14 use
TE	300.0
012	0.00002000 sec
DL5	23.00 dB
CPDPRG	garp
P31	103.00 use
01	1.50000000 sec
P1	8.00 use
SF01	101.2548342 MHz
NUCLEUS	31P
011	0.03000000 sec
F2-Processing parameters	
SI	32768
SF	101.2544133 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
10 NMA plot parameters	
CX	20.00 cm
CY	9.00 cm
F1P	200.000 ppm
F1	20250.88 Hz
F2P	-200.000 ppm
F2	-20250.88 Hz
PPMCM	20.00000 ppm
HZCM	$2025.08813 \mathrm{~Hz} /$

E9ET CE

115

प्वWN H

13C NMR

119

โехБәานI

 NAME
EXPNO

PROCNO Current Data Parameters | NAME | NC－IV－83 |
| :--- | ---: |
| EXPNO | 2 |
| 1 | |

1

エテて＇Tを
Tร0＇币を

119

／ ZH		WJZH
wdd	00g2 0	WJWdd
	LO＇get－	2．
wdd	005＇0－	dट」
zH	0ع Loge	If
wdd	000 O	dIJ
шว	00 L	10
шว	00＇02	X3
suazawejed 70¢d UWN OL		
	OG＇	Jd
	0	日9
2 H	$02 \cdot 0$	97
	0	日SS
	W ${ }^{\text {a }}$	MAM
ZHW	89000EI OG2	\pm ¢
	ャ8E9¢	IS
รuafawesed 6uṭssajoud－टコ		
	HI	Sกقาวกn
ZHW	LટをGIEさ 0G己	10．JS
əsก	09＇6	Id
วas	00000000 「	10
	0．O0E	31
asn	ヤい＇LEし	$\exists 0$
asn	$000 \cdot 96$	MO
	己IG	$9 \cup$
วอง	6LLLGロ・¢	OV
2 H	9668GI•0	Şuaid
2H	£દ๕ 80z¢	HMS
	己	So
	91	SN
	ยโวロว	INGA 70 S
	892 ${ }^{\text {ce }}$	01
	$0 \chi^{6 \%}$	90 ed 9¢
	HL dNo ww g	매아d
	ogexue	WMHISNI
	$\angle \square \bigcirc \downarrow$	อш！ 1
	80809002	－атео
suazawesed uotztstn		
	「	ONJOUd
	\downarrow	ONAX ${ }^{\text {a }}$
	LG－III－ON	JWVN
suafawesed eqea fuadung		

wdd

120

\qquad

［елбати

Current Data Parameters
$\begin{array}{lr}\text { NAME } & \text { NC-III-57 } \\ \text { EXPNO } & 3 \\ \text { PROCNO } & 1\end{array}$

โ96' $\varepsilon L-\square$

Current	Data Parameters
NAME	NC-I-780
EXPNO	1
PROCNO	1
F2 - Acquisition Parameters	
Date_	20051222
Time	13.31
InSTRUM	ar×250
PROBHD	$5 \mathrm{~mm} \mathrm{QNP} \mathrm{1H}$
PULPROG	2930
TD	32768
SOLVENT	CDC13
NS	16
DS	2
SWH	5208.333 Hz
FIDRES	0.158946 Hz
AQ	3.1457779 sec
AG	4096
DW	96.000 use
DE	137.14 use
TE	300.0
01	1.00000000 sec
P1	9.50 use
SFO1	250.1315321 MHz
NUCLEUS	1 H
F2 - Processing parameters	
SI	16384
SF	250.1300072 MHz
WDW	EM
SSB	0
LB	0.20 Hz
6B	0
PC	1.50
10 NMR plot parameters	
cx	20.00 cm
CY	6.00 cm
F1P	10.000 ppm
F1	2501.30 Hz
F2P	-0.500 ppm
F2	$-125.07 \mathrm{~Hz}$
PPMCM	0.52500 ppm
HZCM	131.31825 Hz/

0000 ©

6069 ' \qquad
1H NMR
1-benzothiazine)) pyridine 12/22/05
1

0
1
0
0
0
0
0
0
0

wdd

Current Data	a Parameters
NAME	NC-I-780
EXPNO	2
PROCNO	1
F2 - Acquisition Parameters	
Date_	20050118
Time	15.18
INSTRUM	arx250
PROBHD 5	$5 \mathrm{~mm} \mathrm{QNP} \mathrm{1H}$
PULPAOG	zgdc 30
TD	36864
SOL VENT	CDC13
NS	193
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
AB	1.0691060 sec
RG	22800
DW	29.000 use
DE	41.43 use
TE	300.0 k
D12	0.00002000 sec
DL5	23.00 dB
CPDPRG	waltz16
P31	103.00 use
01	1.00000000 sec
P1	6.00 use
SF01	62.9023694 MHz
NUCLEUS	130
D11	0.03000000 sec
F2-Processing parameters	
SI	32768
SF	62.8952424 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
10 NMF plot parameters	
CX	20.00 cm
CY	15.00 cm
F1P	220.000 ppm
F1	13836.95 Hz
F2P	-10.000 ppm
F2	$-628.95 \mathrm{~Hz}$
PPMCM	11.50000 ppm
HZCM	723.29529 Hz/

2, 6-dimethyl (8-oxobenzothiazine) pyridine 1/18/05
wdd

128

I	ONJOYd
I	OndXE
	alw
sхәдәигехе	quวxxno

$$
200000
$$

\qquad

L852.T

T	ONDOYd
乙	ONdXG
【⿰亻⿱丶万⿱⿰㇒一乂⿹\zh26灬－II－JN	chEV
sォәวəurexed	ұuәגxnว

07.1

 PPMCM
HZCM

$=66006$

187
[evโałui

	HI	Sกコาวกn
ZHW		LOAS
asn	0L8	Id
วәง	00000000 ＇	L0
¢	O 008	91
asn	ロI「くをし	30
əsn	000＇96	MO
	992	9
วəร	6Lllsble	OV
2 H	9ャ689「 0	S3\％01」
2 H	£と¢ ${ }^{\text {eozs }}$	HMS
	己	So
	91	SN
	£เวoง	」Nヨ＾ 70 S
	89くटを	01
	0¢6z	90ud7nd
	HL ane ww g	aHgoyd
	ogexue	WกyISNI
	$\varepsilon \downarrow$ ¢ ¢	วพ¢1
	8ट0ヶb002	－a7e0
S」azameved voŗurstn		

[^5]NUCLEUS

	LVG62 ¢ £ L	wJZH
wdd	0000s＇\downarrow	WJWdd
	G6 829－	$2 \pm$
wdd	000 OL－	¢己 \ddagger
	G6＇9888	［J
wdd	000 022	『」
шว	00 If	10
	$00^{\circ} \mathrm{OL}$	x
Suazzwesed zotd yln or		
	Ob I	Jd
	0	¢9
	00 ！	8า
	0	日SS
	W	MOM
2 HW	80G2568 29	JS
	89く己を	IS
suazawesed 6utsssajoud－ट̧		
วэง	000000と0 0	uo
	Јモโ	Sกヨาวกn
ZHW		10 JS
әsก	$00 \cdot 9$	1 dd
วэร	00000000 ［	¢0
asn	00 ¢0 し	เعd
	9tz7tem	9४d0dう
gp	00．$๕ 己$	G70
ววร	$00020000 \cdot 0$	टto
	0．00¢	$\exists 1$
asn	E \square^{\prime} 功	30
asn	000 6	MC
	00822	98
دas	0902690．\downarrow	OV
2 H	20LL96 0	S3yoia
${ }_{2} \mathrm{H}^{2}$	6८ع 氓く」	HMS
	\checkmark	SO
$9 \square$		SN
とโวロว		INヨ＾า0s
จ989¢		01
		90yd7nd
Hi dNo wus ah8otd		
Ogexue Wnyisni		
	ع0ılbooz	－аұе0
Suazaweved voţitsṭnbov－ट」		
	「	ONOOHd
	己	ONdX ${ }^{\text {a }}$
	妃与－I－JN	JW＊N
	Suałวшeงed	7uasuna

ことさ 9
$6 ⿰ ⿺ 乚 一 匕$ •8 $98 \circ \cdot$ と \downarrow IE6 8と！ เモ9 6ど
くOし「とを
くらO દと
G0L टヵた 929 Gbl
$100^{\circ} \mathrm{Lb}$
suazawesed e7ed fuajung
NAME
EXPNO
PROCNO

โе」6ąuI

Current Data	a Parameters
NAME	NC-I-54A
EXPNO	2
PROCNO	1
F2-Acquisition Parameters	
Date_	20041103
Time	12.55
InSTRUM	ar $\times 250$
PROBHD 5	$5 \mathrm{~mm} \mathrm{QNP} \mathrm{1H}$
PULPROG	zgdc 30
TD	36864
SOLVENT	COC13
NS	40
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
AG	1.0691060 sec
RG	22800
DW	29.000 use
DE	41.43 use
TE	300.0 k
012	0.00002000 sec
DL5	23.00 dB
CPDPRG	waltz16
P31	103.00 use
D1	1.00000000 sec
P1	6.00 use
SF01	62. 9023694 MHz
NUCLEUS	13 C
D11	0.03000000 sec
F2-Process	sing parameters
SI	32768
SF	62.8952471 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
1 D NMR plot parameters	
CX	20.00 cm
CY	10.00 cm
F1P	220.000 ppm
F1	13836.95 Hz
F2P	-10.000 ppm
F2	$-628.95 \mathrm{~Hz}$
PPMCM	11.50000 ppm
HZCM	$723.29535 \mathrm{Hz/}$

154c

686「0-
L/SE• 0 \qquad

ILLE 0

$\xrightarrow{\square}$	$\stackrel{\text { ت゙ }}{\text { ज }}$	$\sum_{\substack{\text { I }}}$	ㅏㅠㅇ		
吕					
色空爻花		$\text { " } \overrightarrow{v_{2}} \vec{a} \vec{a} \vec{u}$			

こ $\angle 9^{\circ} \angle V \square$

929•92 \qquad

／2H	Gટ8โE＇LEL	WJZH
wdd	00gzc 0	WJWdd
2 H	＜0＇ger－	己」
wdd	00G 0 －	dट」
	0e．Loge	［J
wdd	000 0 \％	d \downarrow
	$00 \cdot 02$	13
	00．02	$\times 3$
Suazamesed foid thn oi		
	0G． 1	गd
	0	89
	$02 \cdot 0$	87
	0	ass
	W ${ }^{\text {a }}$	MOM
2HW	L6000EI OSC	JS
	จ®६9¢	IS
suazawejed 6utssajoud－－j		
	HL	Sก3าวกn
2HW	โટદ¢โをए 0g己	TOJS
әsก	$0<8$	Id
ววs	00000000 ［	ı0
	$0 \cdot 008$	$\exists 1$
asn	ヤよ＜¢ ¢	30
asn	000＇96	MO
	เટ01	9
วas	6LLLGロ！¢	Or
	9768GT 0	S3H0IJ
	£દ์＇ 0 ट¢	HMS
	2	SO
	91	SN
	عโวอง	1nヨ＾า 70 S
	89くこを	O1
	0¢6z	90ydากd
	HI dNo ww g	वH80¢ d
	OGExue	WMUISNI
	81．8โ	วш！ 1
	900ヶbooz	－эวе0
		ONOOUd
	1	ONdX ${ }^{\text {a }}$
	V95－I－JN	JWVN
suafawesed eqea fuanung		

$10000^{\circ}=$
$6 E \angle 0^{\circ} 0$

Current Data Parameters	
NAME	NC-I-56A
EXPNO	2
PROCNO	1
F2 - Acquisition Parameters	
Date_	20041006
Time	18.27
INSTRUM	arx250
PROBHD	5 mm QNP 1H
PULPROG	zgdc 30
TD	36864
SOLVENT	CDC13
NS	496
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
AQ	1.0691060 sec
RG	22800
DW	29.000 use
DE	41.43 use
TE	300.0 K
D12	0.00002000 sec
DL5	23.00 dB
CPDPRG	waltz16
P31	103.00 use
01	1.00000000 sec
P1	6.00 use
SFO1	62.9023694 MHz
NUCLEUS	13 C
011	0.03000000 sec
F2-Proces	ssing parameters
SI	32768
SF	62.8952424 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
10 NMR plot parameters	
CX	20.00 cm
CY	10.00 cm
F1P	220.000 ppm
F1	13836.95 Hz
F2P	-10.000 ppm
F2	$-628.95 \mathrm{~Hz}$
PPMCM	11.50000 ppm
HZCM	$723.29529 \mathrm{~Hz} /$

154e

Current Data Parameters
$\begin{array}{lr}\text { NAME } & \text { NC－I－57A } \\ \text { EXPNO } & 3\end{array}$
EXPNO
PROCNO

$\begin{array}{lr}\text { Date＿} & 20041013 \\ \text { Time } & 14.28 \\ \text { INSTRUM } & \text { ar } \times 250\end{array}$ HI dNO WW G OH日O甘с 우N 잉․ ．

วอง 6LLLSカT•E

 suazaweved butssajoud－ट！

／ZH Ģ8IE 圤	WJZH
wdd 00G2S 0	WJWd
ZH 20 ＇g2t－	己」
wdd 009 ${ }^{\text {O－}}$	d己 \downarrow
zH OE Loge	โ」
wdd 000 or	d｣
พว 00 ¢	10
พ 0000	x
sงəұวшеле	HWN

SL89＇ \qquad

Current Data	a Parameters
NAME	NC-I-57A
EXPNO	4
PROCNO	1
F2-Acquisition Parameters	
Date_	20041013
Time	14.40
InSTRUM	arx250
PROBHD 5	$5 \mathrm{~mm} \mathrm{QNP} \mathrm{1H}$
PULPROG	zgoc30
TD	36864
SOLVENT	CDC13
NS	812
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
AQ	1.0691060 sec
RG	22800
DW	29.000 use
DE	41.43 use
TE	300.0
012	0.00002000 sec
DL5	23.00 dB
CPDPRG	waltz16
P31	103.00 use
D1	1.00000000 sec
P1	6.00 use
SF01	62.9023694 MHz
NUCLEUS	13C
011	0.03000000 sec
F2 - Processing parameters	
SI	32768
SF	62.8952413 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
10 NMR plot parameters	
CX	20.00 cm
CY	30.00
F1P	220.000 ppm
F1	13836.95 Hz
F2P	-10.000 ppm
F2	$-628.95 \mathrm{~Hz}$
PPMCM	11.50000 ppm
HZCM	$723.29529 \mathrm{~Hz} /$

$\angle 8 \nabla^{\circ} 9$
$\downarrow 66$.9
EOG ${ }^{\circ} \angle L$
969'18

$$
\begin{aligned}
& \text { Current Data Parameters } \\
& \text { NAME } \\
& \text { NC-I-73B }
\end{aligned}
$$

NAME
EXPNO
PROCNO

======= It 7 7 $\mathrm{NNWHO}=======$

$2000^{\circ} 0$

$066 \sigma^{\circ} \mathrm{E}$
960

200

Current Data	Data Parameters
NAME	NC－I－73C
EXPNO	1
PROCNO	1
F2－Acquisition Parameters	
Date＿	20050208
Time	15.17
InSTRUM	drx300
PROBHD 5 m	5 mm Mult inucl
PULPROG	2930
TD	32768
SOLVENT	COC13
NS	16
DS	2
SWH	6172.839 Hz
FIDRES	0.188380 Hz
AO	2.6542580 sec
RG	574.7
0w	81.000 usec
DE	6.00 usec
TE	300.0 K
01	1.00000000 sec
031	0.00000000 sec
＝CHANNEL f1＝＝＝＝＝＝＝	
NUC1	1H
P1	7.05 usec
PL1	0.00 dB
SF01	300.1318534 MHz
F2－Processing parameters	
SI	32768
SF	300.1300071 MHz
WOW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	1.30
10 NMR plot parameters	
cX	20.00 cm
CY	7.00 cm
F1P	10.000 ppm
F1	3001.30 Hz
F2P	－0．500 ppm
F2	$-150.06 \mathrm{~Hz}$
PPMCM	$0.52500 \mathrm{ppm} / \mathrm{cm}$
HZCM	$157.56825 \mathrm{~Hz} / \mathrm{cm}$

$99000^{\circ} 0$

26ELG＇ I－ L8819•己— G6LE9＇己

Current Data Parameters NAME \quad NC-I-60B
EXPNO
1 EXPNO
PROCNO
cquisition Parameters
 NN N.
 Suazameued 6uṭssaวoud
 Nucleus

$8000^{\circ} 0$ $8690^{\circ} 0$
\qquad

udd

〔e」ธววยI

WJ／ZH	G2899 $\angle 51$	WJZH
／wdd	0092s 0	WJWdd
zH	90＇091－	2」
udd	009 $0-$	d己」
	OE IOOE	1」
wdd	000.01	dIJ
шว	OG＇己1	入〕
แว	$00 \cdot 02$	XJ
suafzeesed fotd thn		
	OE． 1	3d
	0	99
zH	OE． 0	日
	0	日SS
	W F	MGM
2HW	LLOOOET OOE	JS
	89く己を	IS
Suafaweded butssajoud－2f		
ZHW	ヤEG8IET OOE	10．5
8 P	00%	17d
コวลก	90\％	id
	HT	I OnN
ววร	$00000000 \cdot 0$	$1 \varepsilon \square$
วəs	00000000 I	10
Y	0．00E	$\exists 1$
Јəธп	009	70
วəรก	000 18	MO
	992	94
ว习ร	0892ヵ59 己	OV
zH	08E88し0	S3401」
2H	6E8．こく19	HMS
	己	50
	91	5N
	EโフOJ	INJA $70 S$
	89くこを	01
	0¢Бz	904d7nd
		वHgobd
	O0Exup	WกHISNI
	90.81	วแบ1
	カロしち00己	－ョาе0
suafameded uoţisstn		

HWN JET

 Current Data Parameters $\begin{array}{lr}\text { NAME } & \text { NC－I－67A } \\ \text { EXPNO } & 1 \\ \text { PROCNO } & 1\end{array}$
 F2－
Date Time
INSTRUM 몸
发 SヨUOI ZH 9b68Gし コas 6LLLGDV＇E
 $\begin{array}{lr}\text { HT } & \text { Sחヨ7Jกn } \\ \text { ZHW LEEGLET．OGट } & \text { LOJS }\end{array}$ s」ə7วшeงed бu！ssaコ0ปd

s．aławe

udd

GSG0ㅊ

1
\qquad
-3908

โелбағи！

Current Data	a Parameters
NAME	NC-1-67A
EXPNo	?
PROCNO	1
F2-Acquisition Parameters	
Date_	20041230
Time	22. 19
InSTRUM	arx250
PROBHD	$5 \mathrm{~mm} \mathrm{QNP} \mathrm{1H}$
PULPROG	zgoc 30
TD	36864
SOLVENT	CDC13
NS	1882
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
AQ	1.0691060 sec
RG	22800
DW	29.000 use
DE	41.43 use
TE	300.0
D12	0.00002000 sec
DL5	23.00 dB
CPDPRG	waltz16
P31	103.00 use
D1	1.00000000 sec
P1	6.00 use
SF01	62.9023694 MHz
NUCLEUS	13C
D11	0.03000000 sec
F2-Process	sing parameters
SI	32768
SF	62.8952408 MHz
WOW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
1 D NMF plot parameters	
CX	20.00 cm
CY	40.00
F1P	220.000 ppm
F1	13836.95 Hz
F2p	-10.000 ppm
F2	$-628.95 \mathrm{~Hz}$
PPMCM	11.50000 ppm
HZCM	723.29529 Hz/

2 28 -9ゅ

Wכ／2H 9	g2899 ${ }^{\text {LGI }}$	WכZH
wว／wdd	00ges． 0	WJWdd
zH	90．09「－	2」
wdd	009 0－	d2J
	OE．Loos	15
wdd	000＇01	dIJ
шว	$00^{\circ} \mathrm{Or}$	10
шว	00.02	x
	shazawesed fot	UVIN al
	$0{ }^{\prime} 1$	วd
	0	89
	OE． 0	97
	0	855
	W ${ }^{\text {a }}$	MIM
zHW	¢9000er－ODE	ds
	89くくを	IS
	azวшeued 6ụ̧saว	da－ $\mathrm{c}^{\text {d }}$
zHW	ャ¢¢8ا¢т 00ε	10．5
		17 d
ววรก	50.1	Id
	HI	ion
＝＝－＝－		＝－＝＝－＝
ววร	00000000＇0	IEO
วas	00000000 I	10
	0.008	$\exists 1$
ววรก	$00 \cdot 9$	30
วəรก	000． 18	MO
	£ टाб	94
วэs	08G2tg9＇ 2	O\％
	08E881\％	S3yOIt
2 H	6と8＊こく19	HMS
	2	S0
	91	SN
	ยเวロว	INGATOS
	89く己を	01
	OEEz	90४dาก】
	¢כחutatn ww g	वНво४d
	00Exap	WกHISNI
	L9＇2e	วшบ1
	0¢己っちOO己	－а7е0
S．1a	7ameued uotztstin	b）－－¢」
	1	ONODYd
	I	ONdX3
	769－1－JN	IW＊N
	suafawesed efed	ไบวコuņ

E000 0 －

6ロG己「「 —
$\nabla G \angle g \cdot$ ．
r962•9

154m
154

แว／2H 50		WJZH
wว／wdd 00	d 0000s＇if	WOWdd
	H 89＇pgL－	己」
	$000 \cdot 0$ ¢－	dट．
	H 06＇ 2099 ¢	if
	d 000 0 0 e	di」
	00＇sz	13
suazawesed ford tin ai		
	0r．1	ग
	0	${ }^{9}$
	H 00.1	日า
	0	日SS
	W E	MIM
	W 80S $\angle 19 \mathrm{p} \cdot \mathrm{S}$ L	${ }^{\text {s }}$
	B9くटE	IS
	W Sooziel 00 E	20． 5
	Ip $09 . \mathrm{Gz}$	टाาd
	po 000 0¢	＜7d
วэรก 0	00．005	20¢Jd
	HI	2Jn
		セ๐งร
	¢00＇s	เาd
	05＇в	Id
Je】 IJกN		
	00000000＇0	IEC
	os 000000eo 0	Lip
	96666662＇ 1	10
	－1 262	$\exists 1$
	¢ $00 \cdot 9$	30
	5n 059＇92	мо
	вг¢гट	9¢
	as boeooblit	O
	zH 09ELBE＇0	53 3 It
zH EEE＇ZEBbI HMS		
102		SN
		1N3＾705
		01
оеэрбz		90Нชากอ
โ כnutiaink ww		마앋
		WTHISNI
	$5{ }^{\text {¢ }}$ ¢ 2	әш！ 1
1		ONOOU
889－1－2N		ONdX ${ }^{\text {a }}$
		IWtN
		วuaコ」п

วəร	00000000°	IEO
วas	000000001	10
4	O．OOE	$\exists 1$
วаรп	$00 \cdot 9$	$\exists 0$
วəธก	$000 \cdot 18$	мо
	モ．216	94
ววร	08G2tc9 ${ }^{\text {－}}$	OH
z	08E88「 0	SㅋyロI」
zH	6¢8． 2 く19	HMS
	己	So
	91	SN
	£เวอ）	1N3＾ 70 S
	89く己E	01
	0Ebz	903d7nd
		वHgotd
	ooexap	WחUISNI
	$00^{\circ} 01$	วшบุ
	ट120g00e	－аұе
	1	onjoyd
	1	ONdX ${ }^{\text {a }}$
	BLL－I－JN	JWYN

221

	Hi	Sกヨาวกn
2 HW		โ0．」S
asn	0L＇8	Id
วas	00000000＇	10
¢	$0 \cdot 00 \mathrm{E}$	$\exists 1$
asn	听しEし	70
əsก	000＇96	MO
	0と■	98
गวร		OV
	9b68St 0	Şuaid
2 H	દદદ 80こ¢	HMS
	己	50
	91	5 N
	とโวロコ	1NJ＾705
	89L己E	01
	086z	904d7nd
	HI dND ww g	वняОчd
	ogexue	Wnyisni
	¢ع 0 －	әш！ 1
	9120g00己	－จวยอ
Suazawesed uotutstnbor－ट』		
	\downarrow	onjoud
	\downarrow	ONdX ${ }^{\text {a }}$
	＊98－I－Jn	JWVN
suafamesed e7en fuaunn		

$\begin{array}{lr}\text { 1D NMR plot parameters } \\ \text { CX } & 20.00 \mathrm{~cm} \\ \text { CY } & 5.00 \mathrm{~cm} \\ \text { F1P } & 10.000 \mathrm{ppm} \\ \text { F1 } & 2501.30 \mathrm{~Hz} \\ \text { F2P } & -0.500 \mathrm{ppm} \\ \text { F2 } & -125.07 \mathrm{~Hz} \\ \text { PPMCM } & 0.52500 \mathrm{ppm} \\ \text { HZCM } & 131.31825 \mathrm{~Hz} /\end{array}$

```
9000%0-_
```


wdd

โе」ธатuI

Current Data Parameters	
NAME	NC-I-86A
EXPNo	?
PROCNO	1
F2 - Acquisition Parameters	
Date_	20050216
Time	10.43
INSTRUM	arx250
PROBHD	$5 \mathrm{~mm} \mathrm{QNP} \mathrm{1H}$
PULPROG	zgdc 30
TD	36864
SOLVENT	CDC13
NS	283
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
AQ	1.0691060 sec
RG	22800
DW	29.000 use
DE	41.43 use
TE	300.0 K
D12	0.00002000 sec
QL5	23.00 dB
CPDPRG	waltz16
P31	103.00 use
01	1.00000000 sec
P1	6.00 use
SF01	62.9023694 MHz
NUCLEUS	13 C
D11	0.03000000 sec
F2-Process	sing parameters
SI	32768
SF	62.8952419 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
10 NMR plot parameters	
CX	20.00 cm
CY	10.00 cm
F1P	220.000 ppm
F1	13836.95 Hz
F2P	-10.000 ppm
F2	$-628.95 \mathrm{~Hz}$
PPMCM	11.50000 ppm
HZCM	723.29529 Hz/

$$
1000^{\circ} 0-
$$

\square
-淂

Current Data Parameters

($00^{\circ} 0$ oz
zH $56^{\circ} 9 \varepsilon 8$
udd 000.02
us $00^{\circ} 0 \tau$

ux $/ 2 \mathrm{H}$
uro $/$ ữã

$616.0 \varepsilon=$
689° 28

Current Data	a Parameters
NAME	NC-I-88
EXPNo	4
PROCNO	1
F2 - Acquisition Parameters	
Date_	20050210
Time	10.21
InStRUM	аг×250
PROBHD 5	$5 \mathrm{~mm} \mathrm{QNP} \mathrm{1H}$
PULPROG	zgdc 30
TD	36864
SOLVENT	CDC 13
NS	1320
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
AQ	1.0691060 sec
RG	22800
DW	29.000 use
DE	41.43 use
TE	300.0 k
2	0.00002000 sec
DL5	23.00 dB
CPDPRG	waltz16
P31	103.00 use
01	1.00000000 sec
P1	6.00 use
SFO1	62.9023694 MHz
NUCLEUS	13 C
011	0.03000000 sec
F2-Process	sing parameters
SI	32768
SF	62.8952403 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
10 NMR plot parameters	
CX	20.00 cm
CY	30.00 cm
F1P	220.000 ppm
F1	13836.95 Hz
F2P	-10.000 ppm
F2	-628.95 Hz
PPMCM	11.50000 ppm
HZCM	723.29529 Hz/

I	Onvoyd
9	ONAX
＊9T－IM－כN	Muti
sтәдәиптед	วuวxınว

	HI	Snation
zHW	T८\＆¢TET0¢て	TOAS
วəsn	05•8	td
Јəs	00000000 － 1	IU
X	0＇008	时
วəsn	DİLET	H0
วəsn	000•96	Ma
	2T5	פ¢
כəS	6LLLSぁt＇ε	OH
2H	9768ST＇0	Sgyaia
zH	£દと・8029	HMS
	2	Sa
	95	SN
	\＆TJФフ	UNGATOS
	89Lそを	GL
	$0 \varepsilon^{\text {bz }}$	poydind
	HT ano unu c	वНя0\％d
	0szxat	WnYLSNI
	70．$冖$	әut山
	TEZT6002	－7ec

[^6]

$685^{\circ} 9 \mathrm{~L}$
$866^{\circ} 9 \mathrm{~L}$
$205^{\circ} \mathrm{LL}$
$768^{\circ} 08$

 EXPNO
PROCNO
$\stackrel{\rightharpoonup}{r}$

て\&86て'T

161e

$$
9 L 000^{\circ} 0
$$

出出䛼莨罚思品品

 161f

ux／zH	LZ8TE＇T\＆T	Wこ2H
uo／udad	00925．0	Wวฟむd
	LO．SZI－	て，
udd	009．0－	dて\＃
	Oع＇tosz	TH
uđđ	000．01	dโa
	0¢． 2τ	TO
	$00 \cdot 02$	\％
Sxə7əurexed 70ヶむ पuni at		
	05.1	วd
	0	ตจ
	02.0	g7
	0	ass
	WH	Mam
	62toost•092	AS
	¢8¢9T	
	HT	Snatonn
zHW	L乙६GTET•0¢	T04S
วəsn	05．6	¢d
วəs	$00000000 \cdot T$	Ta
	0．008	（4］
pasn	あt L	呺
गasn	000．96	Ma
	098	¢y
ขas	6LLLSET・を	Ot
	9068ST：0	Shyata
zH	をと¢．802¢	HMS
	¢	Sa
	91	SN
	\＆LDCT	LNAMTOS
	89してを	［1
	$0 \varepsilon^{\text {¢\％}}$	90ydTna
	Hi dniõ unu S	G aHgoyd
	oscxat	Wnyusic
	$9 \varepsilon^{\prime} \mathrm{Z} \mathrm{\tau}$	әurt
	T080L002	－ә7ea
	I	onjoyd
	T	ONCX ${ }^{\text {a }}$
	WLE－In－ON	9WY\％
sдə7әuexed e7ed ұuәaxn		

13C NMR

13 C NMR \qquad

Current Data	Parameters
NAME	NC-IV-17B
EXPNO	1
PROCNO	1

$9 \varepsilon 000^{\circ} 0$

161k

L6す'9L $500^{\circ} \mathrm{LL}$ てIG"LL

 161k

$\tau 0000^{\circ} 0$

T	ONDOYd
\checkmark	ONdX＇A
gəWS－IA－JN	HWVN
siəqวureлed	๙コエทว

165b

\％$/ \mathrm{zH}$	¢¢¢6て＇¢ L	Wว 2 H
up／udd	0000＇IT	WวWむd
	$56.829-$	$2 \pm$
udd	000．07－	dて．
	¢6．988\＆	TH
udd	000．02z	dTa
แว	$00^{\circ} 0$ T	S 2
us	$00^{\circ} 02$	x 3
steqourexed 7otd cimi at		
	00^{\prime} T	Jd
	0	g9
	00.1	g7
	0	gSS
	W日	MCM
2HIN	L6币こら68＇29	\＃S
	89Lて\＆	IS
sגәдәuexed 6utssəวохd－2』		
Јəs	$00000080 \cdot 0$	III
	ว¢T	S＠aTonn
zнй	769とZ06＊29	TOMS
วəsn	00＇8	Ld
จəs	$00000000 \cdot 7$	IT
จəsn	00^{\prime} ¢ 0 T	Tદむ
	9тz7тем	פษd【むว
gр	$00^{\prime} \varepsilon z$	gTa
จәธ	$00020000 \cdot 0$	2TI
Y	0．008	日L
ขəsn	晾功	Ha
วəsn	$000 \cdot 62$	ML
	00822	9
อəร	090T690．${ }^{\text {T }}$	OH
2 H	20LL97．0	Stadilu
2 H	6LE＇tもでT	HMS
	ஏ	SI
68		SN
		UNHATOS
		（1］
0عэр6\％		90yd 7 d
HI diõo unu gogzxat		वHyoyd
		WกYLSNI
LD．GT		วurtiu
	\＆20tLOoz	－วาロ
I		OnPOYd
2		ONdXE
989－IA－OM		diken
	sдәдәшехед е	

sxə7әurexed 7otd ydin 0.02 $96^{\circ} 9 \varepsilon 8 \varepsilon T$
$000^{\circ} 0 z Z$
$000 \cdot 0 \tau-$
$96^{\circ} \cdot 9 \varepsilon 8 \varepsilon T$

© 告
路总总買
gugoyd
昜
㔡

AQ
RG
DW
DE
TE
D1
P1
SF01
NUCLEUS

sגəzəurexed buṭssəวoxd－2曰

EXPNO
PROCNO

	HT	SneTonn
2HW	โ८\＆¢TET•09\％	TOAS
วəsn	05．8	¢d
วəs	00000000 ．	II
Y	0.00ε	日L
วəsn	\＃t． LEL	¢
วəsn	000．96	MG
	06	๖¢
อวร	6LLLStT $¢$	OH
2 H	9768ST＇0	Styaia
2 H	દદ¢．80乙¢	HMS
	\bigcirc	Sa
	91	SN
	£โจaつ	UNAMTOS
	89Lてを	Q山
	0 0¢z	פ0\％dTกฐ
		वНદ0บன
	0gzxie	WnyLSNI
	6I＇IT	วuț
	とてZT6002	әдеп
Sxəzəurexed uotzțstnbot－乙ı		
	I	onjoyd
	τ	ONdXE
	－¢\％－In－ON	cWen
sләдәurexed eqea quәл		

[^7]

166

тех．БəュuI
LTL'OZ
\qquad

REFERENCES

1. Okamura, H.; Bolm, C. "Sulfoximines: Synthesis and Catalytic Applications." Chem. Lett. 2004, 33, 482.
2. Bentley, H. R.; McDermott, E. E.; Pace, J.; Whitehead, J. K.; Moran, T. "Action of Nitrogen Trichloride on Proteins: Progress in the Isolation of the Toxic Factor." Nature. 1949, 163, 675.
3. (a) Drabowicz, J.; Lyzwa, P.; Popierlarczyk, M.; Mikolajczyk, M. "A Convenient Procedure for the Oxidation of Sterically Hindered Sulfides to Sulfoxides." Synthesis. 1990, 10, 937.
(b) Johnson, C. J.; Haake, M.; Schroeck, C. W. "Preparation and Synthetic Applications of (Dimethylamino)phenyl-oxosulfonium Methylide." J. Am. Chem. Soc. 1970, 92, 6594.
(c) Brandt, J.; Gais, H. "An Efficient Resolution of (+/-)-S-methyl-Sphenylsulfoximine with $(+)-10-$ Camphorsulfonic Acid and the Method of Halfquantities." Tetrahedron: Asymmetry. 1997, 8, 909.
4. Harmata, M.; Schlemper, E. O. "Lewis Acid Mediated Reactions of N-phenyl-(4-methylphenyl)-sulfoximidoyl Chloride with Alkynes. A Novel Route to Benzothiazines." Tettrahedron Lett. 1987, 48, 5997.
5. Harmata, M.; Pavri, N. "A One-Pot, One-Operation [3+3] Annulation Approach to Benzothiazines." Angew. Chem. Int. Ed. 1999, 16, 2419.
6. Bolm, C.; Hilderbrand, J. P. "Palladium-catalyzed Carbon-Nitrogen Bond Formation: A Novel, Catalytic Approach Towards N-arylated Sulfoximines." Tetrahedron Lett. 1998, 37, 5731.
7. Harmata, M.; Hong, X.; Ghosh, S. K. "Microwave-assisted N-arylation of a Sulfoximine with Aryl Chlorides." Tetra hedron Lett. 2004, 45, 5233.
8. Bolm, C.; Hilderbrand, J. P. "Palladium-Catalyzed N-Arylation of Sulfoximines with Aryl Bromides and Aryl Iodides." J. Org. Chem. 2000, 65, 169.
9. Cho, G. Y.; Remy, P.; Jansson, J.; Moessner, C.; Bolm, C. "Copper-mediated Cross-coupling Reactions of N -unsubstituted Sulfoximines and Aryl Halides." Org. Lett. 2004, 6, 3293.
10. Sedelmeier, J.; Bolm, C. "Efficient Copper Catalyzed N-Arylation of Sulfoximines with Aryl Iodides and Aryl Bromides." J. Org. Chem. 2005, 70, 6904.
11. Correa, A.; Bolm, C. "Iron Catalyzed C-N Coupling of Sulfoximines with Aryl Iodides." Adv. Synth. Cat. 2008, 350, 391.
12. Bolm, C.; Bienewald, F.; Harms, K. "Syntheses and Vanadium Complex of Salen-like Bissulfoximines." Synlett. 1996, 775.
13. Wagaw, S.; Rennels, R. A.; Buchwald, S. L. "Palladium-Catalyzed Coupling of Optically Active Amines with Aryl Bromides." J. Am. Chem. Soc. 1997, 119, 8451.
14. Bolm, C.; Simic, O. "Highly Enantioselective Hetero-Diels-Alder Reactions Catalyzed by a C_{2}-Symmetric Bis(sulfoximine) Copper(I) Complex." J. Am. Chem. Soc. 2001, 123, 3830.
15. (a) Harmata, M.; Ghosh, S. K. "A New, Chiral Bis-Benzothiazine Ligand." Org. Lett. 2001, 3, 3321.
(b) Harmata, M.; Ghosh, S. K.; Barnes, C. L. "Crystal Structure of a Chiral, Copper(I) Complex of Styrene." J. Supra. Chem. 2002, 2, 349.
16. Bolm, C.; Martin, M.; Gibson, L. "Palladium-catalyzed Formation of Heterocycles by Coupling of Dibromo-arenes and Sulfoximines." Syn. Lett. 2002, 5, 832 .
17. Lee, S.; Hartwig, J. F. "Improved Catalysts for the Palladium-Catalyzed Synthesis of Oxindoles by Amide α-Arylation. Rate Acceleration, Use of Aryl Chloride Substrates, and a New Carbene Ligand for Asymmetric Transformations." J. Org. Chem. 2001, 66, 3402.
18. Bolm, C.; Martin, M.; Simic, O.; Verrucci, M. "C ${ }_{2}$-Symmetric Bissulfoximines as Ligands in Copper-Catalyzed Enantioselective Diels Alder Reactions." Org. Lett. 2003, 5, 427.
19. Bolm, C.; Verrucci, M.; Simic, O.; Cozzi, P. G.; Raabe, G.; Okamura, H. "A New Class of C_{1}-symmetric Monosulfoximine Ligands for Enantioselective Hetero-Diels Alder Reactions." Chem. Commun. 2003, 2826.
20. Langer, M.; Bolm, C. "C C_{1}-Symmetric Sulfoximines as Ligands in CopperCatalyzed Asymmetric Mukiayama-Type Aldol Reactions." Angew. Chem. Int. Ed. 2004, 43, 5984.
21. Langner, M.; Rémy, P.; Bolm, C. "C C_{1}-Symmetric Aminosulfoximines as Ligands in Copper-Catalyzed Carbonyl-Ene Reactions." Synlett. 2005, 781.
22. Reetz, M. T.; Bonderev, O. G.; Gais, H. J.; Bolm, C. "BINOL-derived NPhosphino Sulfoximines as Ligands for Asymmetric Catalysis." Tetrahedron Lett. 2005, 46, 5643.
23. Langer, M.; Remy, P.; Bolm, C. "Highly Modular Synthesis of C_{1}-Symmetric Aminosulfoximines and their Use as Ligands in Copper-Catalyzed Asymmetric Mukaiyama-Aldol Reactions." Chem. Eur. J. 2005, 11, 6254.
24. Moessner, C.; Bolm, C. "Diphenylphosphinosulfoximines as Ligands in Iridiumcatalyzed Asymmetric Imine Hydrogenations." Angew. Chem. Int. Ed. 2005, 44, 7564.
25. Remy, P.; Langner, M.; Bolm, C. "Sulfoximines as Ligands in CopperCatalyzed Asymmetric Vinylogous Mukiayama-Type Aldol Reactions." Org. Lett. 2006, 8, 1209.
26. Lu, S. M.; Bolm, C. "Synthesis of Sulfoximine-Derived P,N-Ligands and Their Applications in Asymmetric Quinoline Hydrogenations." Adv. Synth. Catal. 2008, 350, 1101.
27. Sedelmeir, J.; Hammerer, J.; Bolm, C. " C_{1}-Symmetric Oxazolinyl-Sulfoximines as Ligands in Copper-Catalyzed Asymmetric Mukaiyama Aldol Reactions." Org. Lett. 2008, 10, 917.
28. Harmata, M.; Calkins, N. L.; Baughman, R. G.; Barnes, C. L. "New Chiral Benzothiazine Ligand and Its Use in the Synthesis of a Chiral Receptor." J. Org. Chem. 2006, 71, 3650.
29. Kaiser, F.; Schwink, L.; Velder, K.; Schmalz, H. "Synthetic Analogues of the Antibiotic Pestalone." Tetrahedron. 2003, 59, 7345.
30. Van Otterlo, W. A. L.; Michael, J. P.; Fernandes, M. A.; de Koning, C. B. "Unforseen Formation of 2-bromo-3-hydroxybenzaldehyde by Bromination of 3hydroxybenzaldehyde." Tetrahedron Lett. 2004, 45, 5091.
31. Harmata, M.; Hong, X. "Palladium-Catalyzed Cross-Coupling Reaction of a Sulfoximine with Aryl Dichlorides under Microwave Irradiation." SynLett. 2007, 6, 969.
32. Seitz, M.; Kaiser, A.; Stempfhuber, S.; Zabel, M.; Reiser, O. "Helical, Nonracemic Inorganic-Organic Hybrid Polymers of Cadmium Halides with Pentadentate Bis(oxazoline) Ligands." J. Am. Chem. Soc. 2004, 126, 11426.
33. Lamture, J. B.: Zhou, Z. H.; Kumar, A. S.; Wensel, T. G. "Luminescence Properties of Terbium(III) Complexes with 4-Substituted Dipicolinic Acid Analogues." Inorg. Chem. 1995, 34, 864.
34. Xinyan, W.; Yongbin, H.; Chengtai, W. "New Method for Reducing 2,6Pyridinedicarboxylic Acid Diethyl Ester to 2,6-Di(hyroxymethyl)pyridine." Wuhan University Journal of Natural Sciences. 1996, 3, 105.
35. Nock, B.; Pietzsch, H-J.; Tisato, F.; Maina, T.; Leibnitz, P.; Spies, H.; Chiotellis, E. "Oxorhenium Mixed-ligand Complexes with the 2,6dimercaptomethylpyridine Ligand. Crystal Structure of [2,6-dimercaptomethylpyridinato][p-methoxy-benenethiolato]oxorhenium(V)." Inorganica Chemica Acta. 2000, 304, 26.
36. Hicks, R. G.; Koivisto, B. D.; Lemaire, M. T. "Synthesis of Multitopic Verdazyl Radical Ligands. Paramagnetic Supramolecular Synthons." Org. Lett. 2004, 6, 1887.
37. Jensen, M. P.; Lange, M. P.; Que, E. L.; Que, Jr., L. "Biomimetic Aryl Hydroxylation Derived from Alkyl Hydroperoxide at a Nonheme Iron Center, Evidence for an Fe(IV)=O Oxidant." J. Am. Chem. Soc. 2003, 125, 2113.
38. Szajna, E.; Dobrowolski, P.; Fuller, A. L.; Arif, A. M.; Berreau, L. M. "NMR Studies of Mononuclear Octahedral Ni(II) Complexes Supported by Tris((2-pyridyl)methyl)amine-Type Ligands." Inorganic Chem. 2004, 43, 3988.
39. Kantchev, E. A. B.; O’Brien, C. J.; Organ, M. G. "Palladium Complexes of NHeterocyclic Carbenes as Catalysts for Cross-Coupling Reactions - A Synthetic Chemist's Perspective." Angew. Chem. Int. Ed. 2007, 46, 2768.
40. Singer, R. A.; Dore, M.; Sieser, J. E.; Berliner, M. A. "Development of Nonproprietary Phosphine Ligands for the Pd-catalyzed Amination Reaction." Tetrahedron Lett. 2006, 47, 3727.
41. Kotecki, B. J.; Fernando, D. P.; Haight, A. R.; Lukin, K. A. "A General Method for the Synthesis of Unsymmetrically Substituted Ureas via Palladium-Catalyzed Amidation." Org. Lett. 2009, 11, 947.
42. (a) Biscoe, M. R.; Fors, B. P.; Buchwald, S. L. "A New Class of Easily Activated Palladium Precatalysts for Facile C-N Cross Coupling Reactions and the Low Temperatures Oxidative Addition of Aryl Chlorides." J. Am. Chem. Soc. 2008, 130, 6686.
(b) Fors, B. P.; Watson, D. A.; Biscoe, M. R.; Buchwald, S. L. "A Highly Active Catalyst for Pd-Catalyzed Amination Reactions: Cross-Coupling Reactions Using Aryl Mesylates and the Highly Selective Monoarylationof PrimaryAmines Using Aryl Chlorides." J. Am. Chem. Soc. 2008, 130, 13552.
(c) Fors, B. P.; Davis, N. R.; Buchwald, S. L. "An Efficient Process for PdCatalyzed C-N Cross Coupling Reactions of Aryl Iodides: Insights Into Controlling Factors." J. Am. Chem. Soc. 2009, 131, 5766.
43. Harmata, M.; Hong, X. "The Intermolecular, Stereoselective Addition of Sulfoximine Carbanions to α, β-Unsaturated Esters." J. Am. Chem. Soc. 2003, 125, 5754.
44. Harmata, M.; Rayanil, K.; Espejo, V. R. "Benzothiazines in Synthesis. Further Studies of the Intramolecular, Stereoselective Addition of Sulfonimidoyl Carbanions to α, β-Unsaturated Functional Groups." J. Org. Chem. 2009, 74, 3214.
45. Harmata, M.; Hong, X.; Barnes, C. L. "Benzothiazines in Synthesis. Formal Syntheses of (+)-cucumene and (+)-cucuphenol." Tetrahedron Lett. 2003, 44, 7261.
46. Harmata, M.; Hong, X.; Barnes, C. L. "Benzothiazines in Synthesis. Toward the Synthesis of Pseudopteroxazole." Org. Lett. 2004, 6, 2201.
47. Harmata, M.; Hong, X. "Benzothiazines in Synthesis. A Total Synthesis of Pseudopteroxazole." Org. Lett. 2005, 7, 3581.
48. Harmata, M.; Cai, Z.; Chen, Y. "Benzothiazines in Synthesis. A Formal Total Synthesis of Pseudopteroxazole." J. Org. Chem. 2009, 74, 5559.
49. Harmata, M.; Hong, X. "Benzothiazines in Synthesis. Formal Synthesis of Erogorgiaene." Tetrahedron Lett. 2005, 46, 3847.
50. Harmata, M. "Functionalization of Benzothiazines via a Sulfoximine Stabilized Vinyl Carbanion." Tetrahedron Lett. 1988, 29, 5229.
51. Muller, J. F. K.; Neuburger, M.; Zehnder, M. "Structure and Reactivity of a Sulfoximine-Stabilized Chiral Dilithiocarbanion." Helvetica Chimica Acta. 1997, 80, 2182.
52. Levacher, V.; Eriksen, B. L.; Begtrup, M.; Dupas, G.; Queguiner, G.; Duflos, J.; Bourguignon, J. "The tert-Butyl Sulfoximine Group as an Effective OrthoDirector of Lithiation: Ortho-Metallated S-(tert-butyl)-S-Phenylsulfoximines." Tetrahedron Lett. 1999, 40, 1665.
53. Gaillard, S.; Papamicael, C.; Dupas, G.; Marsais, F.; Levacher, V. "OrthoLithiation of S-tert-butyl-S-phenylsulfoximines. New Route to Enantiopure Sulfinamides via a De-tert-butylation Reaction." Tetrahedron. 2005, 61, 8138.
54. Krasovskiy, A.; Krasovskaya, V.; Knochel, P. "Mixed Mg/Li Amides of the Type $\mathrm{R}_{2} \mathrm{NMgCl}-\mathrm{LiCl}$ as Highly Efficient Bases for the Regioselective Generation of Functionalized Aryl and Heteroaryl Magnesium Compounds." Angew. Int. Ed. 2006, 45, 2958.
55. Schnurch, M.; Spina, M.; Khan, A. F.; Mihovilovic, M. D.; Stanetty, P. "Halogen Dance Reactions-A Review." Chem. Soc. Rev. 2007, 36, 1046.
56. Ronald, R. C.; Winkle, M. R. Tetrahedron. "Regioselective Metallations of (Methoxymethoxy) arenes." 1983, 39, 2031.
57. Okamoto, H.; Morita, Y.; Segawa, Y.; Takenaka, S. "Synthesis and Thermal Properties for 4-(4-Alkoxyphenoxycarbonyl)phenyl 3-Alkoxy-2-X-benzoates." Molecular Crystals and Liquid Crystals. 2005, 439, 2087.

VITA

Nathan L. Calkins was born on September $16^{\text {th }}$ of 1982 in Washington, Missouri. He graduated valedictorian of the Gasconade County R-2 High School in Owensville, Missouri in May of 2000. Later that fall, he began his undergraduate education at Truman State University in Kirksville, MO. He graduated in May of 2004 with an American Chemical Society certified bachelors of science degree in chemistry. He participated in the Stevens' Summer Fellowship with Norman Rabjohn Distinguished Professor of Chemistry, Michael Harmata, in the summer of 2003. He then joined Dr. Harmata's research group at the University of Missouri-Columbia after his undergraduate commencement in May of 2004. He took part in a variety of research funded by the Petroleum Research Fund of the American Chemical Society, National Institute of Health, and the United States Air Force. He graduated from the University of MissouriColumbia in May of 2010 under Dr. Harmata's guidance. He served briefly as an adjunct Chemistry Instructor at Westminster College and is currently an Assistant Professor in Chemistry at Mineral Area College in Park Hills, MO. He currently resides in Bonne Terre, MO with his wife Nora Calkins and his three children Lainey, Evonelle, and Maggie Calkins.

[^0]: ${ }^{\mathrm{a}}$ Appearance when cooled to rt under N_{2}.
 ${ }^{\mathrm{b}}$ Reaction was not heated.

[^1]: ${ }^{\text {a }}$ Isomeric ratio, 1.9:1
 ${ }^{\mathrm{b}}$ Isomeric ratio, 2.4-2.8:1
 ${ }^{\text {c }}$ Isomeric ratio, 1.2:1

[^2]: ${ }^{a}$ Diastereomeric ratio of 1.4:1 observed.

[^3]: ${ }^{a} \mathrm{E}=\mathrm{A}($ Figure 15, p. 50)

[^4]: ${ }^{\mathrm{a}}$ Conversion is reported as the product could not be isolated cleanly.

[^5]:

[^6]:

[^7]: 吾白

