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1 Introduction 

Today, computer is used extensively to manipulate 3D model in computer vision, 

computer animation and visualization. 3D shape modeling is a very fundamental and 

essential issue and is bridging the gap between computers in the virtual world and human 

beings in the real world. Computers cannot understand the objects and shapes in the real 

world thus will require shape modeling techniques to extract the 3D information of real 

world objects from source data, or raw data, such as photos, points, and volumetric data. 

Currently, there exists some software users can use to create 3D models in computer. 

However the 3D models created by these software are not good enough. For example, in 

medical imaging, we have to reconstruct 3D model from the patient’s real data, such as 

MRI, CT. 

Today, people are producing more and more raw data, thanks to the technology 

breakthrough. Those numerous data can be categorized into three major types, volumetric 

data, points cloud and multi-view images. Volumetric data is in fact, a 3D array, which 

samples discrete points in 3D space by a uniformly sampling rate, and it can be generated 

by ultrasound, CT, MRI and lots of other data acquisition equipments. Points cloud is 

obtained by laser or other type scanners, which contains discrete, but not uniformly 

sampling points in 3D space. The multi-view images are just 2D images, taken by one or 

several cameras, at different positions. Now the digital camera is so popular, even the 

very low end digital camera can produce very high quality and high resolution photos. 

This type of data is the most easily obtained but the most difficult to be processed and 

translated into 3D model. 
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In the virtual world, computer can only understand limited information coded with 

specified data structures. Unfortunately, the numerous types of data mentioned above 

cannot be processed directly when computer tries to manipulate the underlying 3D object. 

Of course, computer is capable of processing such raw data. E.g., image processing for 

2D photos, or complex calculation on volumetric data. But before the raw data is 

converted to model understandable by computer, they can hardly be used for 

manipulating in 3D space (virtual world). 

At this point, 3D shape modeling is essential for computer to understand our real 

world. So far, 3D shaping modeling is still an open issue. There are too much raw data 

around, but there is no uniform or standard way to translate them for computers. My 

work is an attempt to build a bridge from real world to virtual world. 

We proposed several algorithms to process those three major types of raw data, and 

try to translate them into triangulation mesh, which can be understood by almost all of 

applications manipulating 3D object. The first algorithm is our region growing surface 

extraction algorithm, which reconstructs underlying objects from volumetric data and 

generates high quality triangle meshes. For points cloud data, we propose a 

nonparametric noisy points preprocessing algorithm, which eliminates the noise points. 

The cleaned points cloud can be further transformed to volumetric data for 3D 

reconstruction. The multi-view stereo is the most challenging, which reconstructs the 3D 

object by several photos. We proposed iterative surface evolution algorithm, which 

combines deformation model and our previous two algorithms for volumetric data and 

points cloud. 
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In 3D shape modeling or reconstruction, it’s very important to transform one type of 

dataset to another. Reconstruction from volumetric data has been studied for years; if we 

can transform points cloud or 2D images into volumetric data, then we can use existed 

algorithms to process those data. To unify the 3D shaping modeling processing, data 

transformation is the key component; it acts like a hub to connect different types of 

dataset. And even more, if there are new sorts of dataset emerging with the new 

technology developed, we can transform such dataset into the dataset we’ve already 

known well and use existed algorithm. This idea is deeply within our algorithms. 

The following part is organized as: 

Chapter 2 proposes our region-growing iso-surface algorithm based on Marching 

Triangles, and targets volumetric dataset. 

Chapter 3 introduces nonparametric noisy points preprocessing, it filters out noise 

from points cloud dataset and makes it easy be transformed to volumetric dataset for 

further processing. 

Chapter 4 introduces my work on multi-view stereo, which combining deformation 

model and the algorithm on chapter 2 and 3. 

Chapter 5 is summary, includes conclusion and future work. 
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2 Region-Growing Iso-Surface Extraction 

2.1. Introduction 

Implicit surfaces defined by volumetric data have become very popular in computer 

graphics, computer vision, geometric modeling, and computer animation, etc. Their 

advantages are numerous, ranging from ease of use to compact storage and powerful 

shape blending operations. They are particularly convenient for modeling smooth objects 

of arbitrary topology and geometry such as objects with holes, branches, and handles. 

Nonetheless, for many applications, an explicit polygonal representation of the implicit 

surface, defined by the zero-level iso-surface of a three-dimensional scalar field is still 

necessary and preferred. On the other hand, recent technical breakthroughs in new 

imaging modalities such as CT, MRI and Ultrasound as well as other 3-D scanning 

technologies have given rise to massive volumetric datasets. How to extract and 

reconstruct the shape of 3-D objects from these datasets accurately and efficiently 

remains to be both extremely challenging and significant in computer graphics, medical 

imaging, and visualization, etc. In a nutshell, a good iso-surface extraction algorithm 

should meet the following three criteria: (1) Geometrically accurate, i.e. the extracted 

polygonal mesh should be as close to the original shape as possible and preserves small 

features; (2) Topologically correct, i.e. the polygonal mesh is homeomorphic to the 

original shape; and (3) Representation efficient, i.e. the sampling rate of the polygonal 

mesh is adaptive to the local geometric properties (such as curvature) and maintains a 

good triangle aspect ratio thus no small thin triangles will be generated. 
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To date, there have been a lot of methods proposed for extracting 3D surface from 

volumetric datasets. They can be classified into two main categories: volumetric-based 

cell decomposition method and surface-based region growing method. The most popular 

volumetric-based approach is the Marching Cubes algorithm proposed by Lorenson and 

Cline [lorensen87] in 1987. In their algorithm, a cube is bounded by eight voxels located 

on two adjacent slices. Each grid point is coded as either inside or outside the object w.r.t. 

the surface-defining threshold. Based on the configuration of vertices that lie inside and 

outside the object, the cube is triangulated. Because marching cubes algorithm generates 

at least one triangle per voxel through which the surface passes, this may result in an 

enormous number of extremely small or thin triangles. Postprocessing algorithms such as 

mesh optimization [hoppe93] or mesh simplification [heck97] are often needed to 

improve the mesh quality and reduce the mesh size. 

Over the years, many variants of the Marching Cubes algorithm have been published 

[nielson03, ouh05]. To resolve ambiguities for cube types, Montani et al. [montani94a] 

proposed a lookup table that prevents holes by consistently separating positive vertices on 

ambiguous faces. Nielson et al. [nielson91] made use of bilinear contour topology to 

resolve ambiguities on boundary faces. Cignoni et al. [cign00] extended this concept by 

examining the trilinear interpolation in a cell's interior and completely determining 

piecewise trilinear isosurface topology. Another powerful method to resolve ambiguity is 

adaptive subdivision, such as the octree technique. In principle, subdivision-based, 

adaptive techniques also improve the accuracy and efficiency of the surface 

approximation through the use of spatial partitioning [wilh92, wyvi88]. Kobbelt et al. 

[kobbelt01] presented an Extended Marching Cube algorithm for feature-sensitive 
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surface extraction from volumetric data using directed distance fields, in order to reduce 

the alias effect. Gibson et al. [gibs98] proposed another type of volumetric-based  

algorithm ”Dual Methods'' that generates one vertex lying on or near the contour for each 

cube that intersects the contour. For each edge in the grid that exhibits a sign change, the 

vertices associated with the four cubes that contain the edge are joined to form a quad. 

Topologically, the mesh generated by the dual methods is the dual of the mesh generated 

by the Marching Cubes algorithm. Since the vertices of the mesh can move within the 

cube instead of being restricted to the edges of the grid as in Marching Cubes algorithm, 

the mesh quality is generally better. Recently, several new "Dual Methods" algorithms 

[ju02, ohta02d, nielson04, warr04] have been proposed that can either represent sharp 

feature [ju02, ohta02d]}, generate smoother meshes [nielson04], or extract small thin 

features adaptively without excessive subdivision of the underlying volumetric grid 

[warr04]. 

While most of existing iso-surface extraction algorithms are based on cell 

decomposition, Hilton et al. proposed a surface-based region growing algorithm - the 

Marching Triangles algorithm [hilt96]. Comparing with the aforementioned 

volumetric-based algorithms, the Marching Triangles algorithm can generate much 

higher quality evenly-sized and quasi-equilateral meshes by iteratively joining new 

triangles to the current region boundary. The original Marching Triangles algorithm 

however does not adapt well to local surface properties and thus requiring large numbers 

of small triangles to approximate surfaces with large variations in curvature. Recently, 

researchers have proposed several curvature-adaptive iso-surface extraction algorithms 
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[akko01, kark01, rodr04] based on the concept of the Marching Triangles algorithm 

[hilt96]. 

 

Figure 1 : Semi-regular curvature adaptive iso-surface extraction 

(a) Curvature map of the volumetric dragon; (b) extracted mesh; (c) close-up view of the curvature 

map; (d) close-up view of the corresponding mesh; (e) close-up view of mesh generated by 

Marching Cubes. 

We propose a new region-growing based iso-surface extraction algorithm that is also 

based on the concept of the Marching Triangles algorithm. The main contribution is that 

we propose a novel normal consistency constraint that ensures the intersection of the 

Delaunay sphere of the new triangle and the iso-surface is a topological disk, an 

important property which is lacking in the original Marching Triangles algorithm [hilt96] 

and its existing variants [akko01, kark01, rodr04]. In addition, by employing a prioritized 
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seed initialization scheme, the new algorithm can generate meshes (e.g. Figure 1) that are 

not only curvature-adaptive, but also semi-regular, which maybe more preferable for 

most applications. Moreover, it will extract all the disjoint components of the iso-surface, 

and can preserve sharp features. 

2.2. Algorithm 

The entire pipeline of the algorithm (Figure 2) consists of the following five main 

steps: 

1. Boundary Particles Sampling and Classification. 

2. Feature Positions Extraction. 

3. Prioritized Seed Initialization. 

4. Front Propagation. 

5. Visited Boundary Particles Identification. 

After the first two preprocessing steps (Step 1 and Step 2), the algorithm will loop 

from Step 3 to Step 5 until all the iso-surfaces are extracted. 
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Figure 2 : Algorithm flow chart 
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2.2.1. Boundary Particles Sampling and Classification 

 

Figure 3 : Boundary particles sampling 

Boundary particles (empty circles) are sampled at the intersections of the iso-surface (dashed 

lines) and the edges of the boundary cells (solid lines). They will then be classified according to 

their local geometric properties (e.g. curvature) and will be used for seed initialization. 

The first step of the algorithm is boundary particles sampling. Figure 3 shows a 2D 

illustration. Boundary particles (empty circles) are sampled at the intersections of the 

iso-surface (dashed lines) and the edges (solid lines) of the boundary cells (i.e. cells that 

intersect the iso-surface). These boundary particles will then be further classified into n 

classes according to their local geometric properties such as curvature (we use the 

maximum absolute principle curvature in this thesis). To estimate these geometric 

properties such as gradient and curvature, instead of using the commonly used trilinear 

interpolation, we use a more accurate cubic interpolation filter as suggested in [moller98]. 

The classified boundary particles will then be inserted into the seeding priority list and 

will be used for seed initialization. The whole algorithm will stop only after all the 
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boundary particles are visited by one of the propagating front (Section 2.2.5). This will 

ensure all the disjoint components of the iso-surface will be extracted. 

2.2.2. Feature Positions Extraction 

Our algorithm can preserve sharp features. For example, if Hermite type of datasets 

(i.e. datasets with exact intersection points and normals) are available, we can extract the 

sharp feature points/edges by solving the Quadratic Error Function (QEF) as suggested in 

[kobbelt01] and [ju02]. The extracted feature positions will then be inserted with the 

highest priority into the seeding priority list and will be used for seed initialization. 

11 



2.2.3. Prioritized Seed Initialization 

 

Figure 4 : Prioritized seed initialization. 

Candidate positions for seed initialization are organized into a priority list. Extracted feature 

positions are assigned the highest priority and are put in the top row (Priority 0) of the priority list. 

Boundary particles and pointers of all inactive evolving fronts are put into the next n rows (Priority 

1 to Priority n) of the priority list according to the classifications. 

Seed initialization will be conducted in a hierarchical fashion by placing all the 

candidate seeding positions into a priority list. The seeding priority list can be 

implemented as a bucket linked list (Figure 4 : Prioritized seed initialization.). Extracted 

feature positions are assigned the highest priority and are put in the top row (Priority 0) of 

the priority list. Boundary particles are put into the next n rows (Priority 1 to Priority n) 

of the priority list according to their geometric properties such as curvature. We use the 

maximum absolute principle curvature to classify the boundary particles. A suggested 
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step size is associated with each row in the priority list with the largest step size in the top 

two rows and decreasing step sizes (e.g. one half of the previous step size) in the 

following n-1 rows. In general, the higher curvature the boundary particle has the lower 

priority it will be and the smaller step size it will be assigned to. In our implementation, 

we initialize the priority list with three rows: the top row (Priority 0) stores all the 

extracted features; the second row (Priority 1) stores all the boundary particles whose 

curvature is below the average curvature of all the boundary particles; the third row 

(Priority 2) stores all the boundary particles whose curvature is greater or equal to the 

average curvature of all the boundary particles. The top row and the second row will start 

with the original step size, while the third row will have one half of the original step size. 

When a propagating front seeded from the Priority k row of the priority list becomes 

inactive, it will be freezed and the pointer of the front will be inserted into the beginning 

of the Priority k+1 row of the priority list. This way, when this front is later reactivated, it 

will evolve at a step size smaller than its current step size (e.g. one half). 

This prioritized seed initialization scheme will make the propagating front grows in 

a layer-by-layer fashion so that at each layer the majority of the triangles will be about 

equilateral. Hence our algorithm can generate meshes not only curvature adaptive, but 

also semi-regular (i.e. the majority of the vertices have valence 6). 

2.2.3.1. New Triangle Creation 

Given a candidate seeding position, to create a new triangle, we will need to create 

the base edge of the new triangle first. For extracted feature position, the adjacent feature 

information is always available and will be used to create the base edge. Figure 5 shows 

an illustration. For a boundary particle m with step size s, we will randomly create a line 
13 



segment uv of length s
3

32  on the tangent plane of m, centered at m with two endpoints 

u and v, and then project the two points u and v onto the iso-surface as u' and v', 

respectively. The new line segment u'v' will then serve as the base edge for this new 

triangle. Given a base edge u'v' and step size s, either obtained from the above seeding 

positions or from the boundary edge of an evolving front, to create a new triangle, we 

will need to create the third vertex. First the middle point m between u' and v' is 

calculated. A vertex w is then created at distance s away from m along the direction of the 

cross product between u'v' and mn . mn  is the outward-orienting unit vector obtained by 

the normalized gradient of the iso-surface at position m. w is then projected to w' on the 

iso-surface and will be the third vertex of the new triangle u'v'w'. Since the edge length of 

u'v' is s
3

32 , and the edge length of mw is s, hence the triangle u'v'w will be equilateral 

and the corresponding new triangle u'v'w' will be very close to equilateral. 
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Figure 5 : New triangle creation 

A new triangle u'v'w' is created by placing the third vertex w on the iso-surface (Section 2.2.3.1) 

 

2.2.3.2. Projection 

To project a given point onto the iso-surface (e.g. w and w' in Figure 5), we 

employed the iterative Newton-Raphson root-finding method as also used by Co et al. in 

[hama03]. Let )(xφ  represents the density function of the volume data, the iso-surface 

of the volume data is then implicitly defined as { }0)(| =xx φ . The projection of a vertex 

v onto the iso-surface can be found by a few steps of iterations along the gradient 

direction )(xφ∇  of the density function )(xφ  until converge: 
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with . The equilibrium position  obtained from this Newton-Raphson root 

finding method however, does not always stay on the iso-surface. Hence, we propose to 

conduct a finite number (e.g. three) iterations of additional line search after the 

Newton-Raphson root finding method converges to position . More specifically, we 

will start from  and search along the gradient direction of  until two consecutive 

points on the searching sequence  and are found to be on the different sides of 

the iso-surface. A binary search is then conducted between the two points  and  

until the final projection point  is found, which can be as close to the iso-surface as 

needed. See 

vv =0 nv

nv

nv nv

inv
1+inv

inv
1+inv

pv

Figure 6 for an illustration. If after a finite number of line search we can not 

find two consecutive points on the search direction that are on the opposite side of the 

iso-surface, the projection will be marked as invalid and the base edge will be freezed, 

which will be reactivated later at a smaller step size. 
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Figure 6 : Enhanced projection scheme 

After the equilibrium position  is obtained from the Newton-Raphson root finding, several 

additional iterations of line search is conducted along the gradient of  to find the final projection 

point  which can be as close to the iso-surface as possible (Section 

pv

nv

pv 2.2.3.2). 

2.2.4. Front Propagation 

After a new triangle is created (Section 2.2.3.1), several tests need to be conducted 

before it can be added into the existing propagating front. One of the tests is to ensure the 

Delaunay face property, which is first proposed in the original Marching Triangles 

algorithm [hilt96]. However, the Delaunay face property will work only if the 

intersection of the Delaunay sphere and the iso-surface is a topological disk. It’s an 

important property lacking in the original Marching Triangles algorithm [hilt96] and its 

existing variants [akko01, kark01, rodr04]. This problem is fixed by our new Normal 

Consistency Constraint to be explained later in this section. 
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(a) (b) 

(c) 

Figure 7 : Enforcing Delaunay face property 

(a) New vertex v is inside the Delaunay sphere of an existing boundary triangle, and is snapped 

into the existing boundary vertex a; (b) The Delaunay sphere of the new triangle encloses an 

existing boundary vertex a, hence the vertex v is snapped into vertex a; (c) The new vertex v is 

very close to an existing boundary vertex a, hence it is snapped into vertex a to avoid creating a 

thin triangle passing through vertices a and v. 

2.2.4.1. Delaunay Face Property 

We will briefly review the Delaunay face property in this section. For more details, 

please refer to the original paper [hilt96]. In a nutshell, the Delaunay face property is: “A 

new triangle xyv with new vertex v can be created if and only if the Delaunay sphere of 

the triangle xyv does not contain any existing mesh vertices, and any Delaunay spheres of 

existing triangles do not contain the new vertex v”. If all the triangles satisfy the 
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Delaunay face property, then the final triangulation will be the Delaunay triangulation, 

which is the optimal triangulation [hilt96]. 

To enforce the Delaunay face property, our algorithm performs the following two 

steps as illustrated in Figure 7. First, for new vertex v, we will check whether it is 

enclosed by the Delaunay spheres of any existing triangles. If yes, then one of such 

triangle's boundary vertices (e.g. a) will be used as the candidate for the third vertex of 

new triangle (Figure 7 (a)). 

The second step (Figure 7 (b)) is to check whether there are any existing boundary 

vertices enclosed by the Delaunay sphere of the new triangle xyv.  if yes, then one of 

such boundary vertices (e.g. a) will be used as the candidate and conduct this second step 

again until the Delaunay sphere of the new triangle does not include any existing vertices. 

The above two tests however does not guarantee no thin triangles will be created as 

is illustrated by Figure 7 (c). Here the new vertex v is not included by any Delaunay 

sphere of existing triangles and the Delaunay sphere of the new triangle does not include 

any existing vertices. However since v is very close to a, a thin triangle (passing through 

v and a) will be created in later steps. To avoid creating such thin triangles and thus 

further improving the triangulation quality, in the first step, when checking whether the 

new vertex v is enclosed by the Delaunay spheres of any existing triangles, we will 

increase the radius of the sphere by an extra d (Figure 7 (c)). d is the user-defined 

minimum edge length of the triangles. By enlarging the sphere by an extra d, we ensure 

no thin triangles whose minimum edge length is less than d will be created. If the new 

triangle xyv passes these tests, it will be tested for the Normal Consistency Constraint to 

be explained in the following section. 
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2.2.4.2. Normal Consistency Constraint 

 

Figure 8 : A 2D illustration of the Normal Consistency Constraint 

A new triangle (a new edge in this case) is valid only if it passes the Normal consistency constraint. 

This is used to ensure that the intersection of the Delaunay sphere (dashed circle) of the current 

edge (solid line) and the iso-surface (dashed curve) is a topological disk (Section 2.2.4.2). Among 

the four cases shown ((a)-(d)), only the edge in (a) passes the Normal consistent constraint. 

The above Delaunay face property however will only work if the intersection of the 

Delaunay sphere and the iso-surface is a topological disk. One of the main contribution of 

this algorithm and the main difference between this algorithm and other Marching 

Triangles algorithms [hilt96, akko01, kark01, rodr04],  is that we propose a specific 
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normal consistency checking step to enforce that the intersection of the Delaunay sphere  

of the new triangle  and the iso-surface is a topological disk. More specifically, given a 

new triangle, we will uniformly sample its Delaunay sphere and calculate the maximum 

normal variation among the sampled positions. In particular, besides the three vertices of 

the new triangle, we will sample three extra points on each half of the Delaunay sphere 

divided by the new triangle. If the maximum normal variation among the sampled 

positions is less then a threshold, the new triangle is valid and can be added to existing 

mesh, otherwise the new triangle will not be created, and the base edge of the new 

triangle will be marked as inactive and will be freezed. Based on our experiment, the 

threshold of 3
π  has worked very well. When all the boundary edges of a propagating 

front becomes inactive, the whole front will become inactive and will be inserted into the 

seeding priority list at a row one level lower than its current priority (Section 2.2.3). 

Figure 8 shows a 2D illustration of the Normal consistency constraint.  Among the four 

cases shown (Figure 8 (a)- Figure 8 (d)), only the case in Figure 8 (a) passes the Normal 

Consistent Constraint, i.e. the intersection of the Delaunay sphere (dashed circle) of the 

current edge (solid line) and the iso-surface (dashed curve) is a topological disk. 
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(a) (b) 

(c) (d) 

Figure 9 : Iso-surface extraction of a CT data of Engine 

(a) and (b) are the front and back view of the smooth rendered mesh. (c) is a close-up view of 

mesh generated by our algorithm. (d) is a close-up view of mesh generated by Marching Cubes. 
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2.2.5. Identify Visited Boundary Particles 

After a new triangle is created, all the boundary particles enclosed by the triangle's 

Delaunay sphere will be in the topological disk generated by the intersection of the 

Delaunay sphere and the iso-surface. These boundary particles will be marked as visited 

and will be removed from the seeding priority list (Section 2.2.3). 

2.3. Experimental Results 

 

Table 1 : Running time information 

Figure 1 and Figure 9 to Figure Figure 14 demonstrate some of the experimental results 

obtained by our new algorithm. The dark colored shape is rendered by smooth shading, 

while the green lines show the wire frame view of the mesh. For example, from Figure 10 

(b), we can clearly see the high quality of the mesh that is adaptive to the local shape 

curvature. The new algorithm can also recover sharp features as can be seen in Figure 11. 

The sharp features are detected similar to [kobbelt01] and [ju02]. Figure 14 shows a 

side-by-side comparison between our new algorithm and the original marching triangle 

algorithm [hilt96]. As we can see, by enforcing normal consistency constraints proposed, 

our algorithm accurately extract the iso-surface in the regions around the small extrusion 
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in the data (Figure 14 (a)). On the other hand, the original algorithm [hilt96] can not 

correctly extract the iso-surface and an self-intersection will be created (Figure 14 (b)). 

Table 1 summarizes the statistics of the examples, including the (x, y, z) dimensions of 

the input volume data, the model complexity (number of vertices, number of edges, and 

number of faces), and the running time (measured in seconds). All the experiments are 

conducted on a Pentium M 1.6GHZ Notebook PC with 1GB RAM.  As can be seen 

from the running time table, the computational complexity of the new algorithm is linear 

of the size of the extracted mesh, which is similar to other region growing based 

algorithms [hilt96, akko01, kark01, rodr04] 

(a) (b) (c) 
 

Figure 10 : Iso-surface extraction of a CT data of vertebra phantom 

(a) smooth rendering of the extracted vertebra; (b) a close-up view; (c) a close-up view of mesh 

generated by Marching Cubes. 
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Figure 11 : Iso-surface extraction of a volume data with sharp edges (shown as red lines) 

(a) is the seed initialization step. (b) and (c) are two snap shots during the front propagation. (d) is 

the final mesh. 

(a) (b) (c) 
 

Figure 12 : Iso-surface extraction of a CT data of a lobster 

(a) and (b) are the front and back view of the smooth rendered mesh. (c) is a close-up view of (b). 

(a) (b) (c) 
 

Figure 13 : Iso-surface extraction of a MRI data of brain 

(a) front view; (b) back view; (c) close up view of the generated mesh. 
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(a) (b) 

Figure 14 : A comparison to the original marching triangle algorithm [hilt96]. 

 By enforcing normal consistency constraints, our algorithm can accurately extract the iso-surface 

in the regions around the small extrusion in the data ((a)). On the other hand, the original algorithm 

[hilt96] can not correctly extract the iso-surface and an self-intersection will be created ((b)). 
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3 Nonparametric Noisy Points Preprocessing  

3.1. Introduction 

Despite significant advancement in interactive shape modeling, creating realistic 

looking 3D models from scratch is still a very challenging task. Recent advancement in 

3D shape acquisition systems such as laser range scanner, structural light system and 

stereo vision system have made direct 3D data acquisition feasible [seit06]. 

The obtained point dataset however can be quite noisy. Without preprocessing to 

deal with noisy data, parametric and/or variational formulations [hopp92, baja95, curl96, 

hilt98, whit97, zhao00, zhao01, carr01, ohta03, xie03, levi03, alex03] are usually used. 

These methods generally composed of both a fitting term for the data and a regularization 

term for the reconstructed surface. Since all data points, even outliers, are treated equally 

and can affect the final reconstruction, these approaches will likely fail for highly noisy 

data. 

Another type of algorithms is based on popular computational geometry algorithms 

such as Delaunay triangulations and Voronoi diagrams to construct triangulated surfaces 

[amen99, edel98, bois84, amen98, amen98a]. For this kind of method, it is challenging to 

find the right connections among all data points in three and higher dimensions, 

especially for noisy data. 

Recently, Medioni et al. proposed the tensor voting method [medi00], which is a 

nice feature extraction algorithm. By designing an appropriate voting procedure among 
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all data points, a tensor field and an associated saliency field can be constructed. 

Coherent geometric information can be extracted from the tensor field and the saliency 

field. However, tensor voting method is computationally very expensive.  

We propose a nonparametric approach for noisy point data preprocessing. In 

particular, we proposed an anisotropic kernel based nonparametric density estimation 

method for outlier removal, and a hill-climbing line search approach for projecting data 

points onto the real surface boundary. Our approach is simple, robust and efficient. We 

demonstrate our method on both real and synthetic point datasets. 

3.2. Algorithm 

3.2.1. Parzen-window Based Kernel Density Estimation 

Points outside the object surface are outliers that have to be removed. Since the real 

object surface is unknown, it is hard to specify a general criterion to detect outliers. We 

propose to employ parzen-window based nonparametric density estimation method for 

outlier removal. 

Parzen window based kernel density estimation is the most popular nonparametric 

density estimation method. In order to make the thesis self-contained, we will briefly 

review the Parzen window method in the following. For a complete description, please 

refer to the book by Duda et al. [duda00]. 

Given n data points xi, i = 1, … , n in the d-dimensional Euclidean space Rd, the 

multivariate kernel density estimate obtained with kernel K(x) and window radius h, 

computed in the point x is defined as: 
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Without loss of generality, let’s assume h = 1 from now on, so we could simplify 

Equation (3.1) as: 
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K(x) is generally a spherically symmetric kernel function satisfying: 
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where k(x) is the profile function of the kernel K(x).  is the normalizing constant 

such that 

dkC ,

0)( ≥xK          3.4 
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||x|| is the L2 norm (i.e. Euclidean distance metric) of the d-dimensional vector x. 

Employing the profile function notation, Equation (3.2) can be further rewritten as 
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There are three types of commonly used spherical kernel functions K(x): the 

Epanechnikov kernel, the uniform kernel, and the Gaussian kernel. The Epanechnikov 

kernel is defined by the profile function kE(x): 
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The uniform kernel is defined by the profile function kU(x): 
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The Gaussian kernel is defined by the profile function kN(x): 
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(a)                  (b) 

Figure 15 : Stanford bunny 

The Stanford bunny (35678 points) with 1000% noise points added in; (b) Result after outlier 

removal. 

 

30 



   
(a)                      (b) 

Figure 16 : Synthetic torus 

(a) A synthetic torus point data (4800 points) which has an open hole in top, with 1000% noise 

points added in; (b) Result after outlier removal. 

3.2.2. Outlier Removal By Anisotropic Ellipsoidal Kernel 

For 3D point cloud obtained by laser scan or stereo vision, the outliers tend to spread 

in the space randomly, while “real” (we use a quotation here to emphasize the fact that 

the real surface is unknown) surface points will spread along a thin shell which encloses 

the real surface object. In other words, the distribution of the outliers is relatively 

isotropic, while the distribution of the real surface points is rather anisotropic. Hence, we 

propose to employ an anisotropic ellipsoidal kernel based density estimation method for 

outlier removal. 

For anisotropic kernel, the L2 norm ||x-xi|| in Equation (3.6), which measures the 

Euclidean distance metric between two points x and xi will be replaced by the 

Mahalanobis distance metric ||x-xi||M : 

2/11 ))()((|||| i
t

iMi xxHxxxx −−=− −     3.10 
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here H is the covariance matrix defined as: 

TDDH =           3.11 

and  

D = (x1 - x, x2 - x, … , xn - x)      3.12 

Geometrically,  is a three-dimensional ellipsoid centered at x, 

with its shape and orientation defined by H. Using Single Value Decomposition (SVD), 

the covariance matrix H can be further decomposed as: 

1)()( 1 =−− −
i

t
i xxHxx
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321 λλλ ≥≥ are the three eigenvalues of the matrix H, and U is an orthonormal matrix 

whose columns are the eigenvectors of matrix H. We will detail the SVD-based 

decomposition (Equation (3.13)) of the covariance matrix H in section 0. 

To compute the anisotropic kernel based density, we will apply an ellipsoidal kernel 

E of equal size and shape on all the data points. The orientation of the ellipsoidal kernel E 

will be determined locally. More specifically, given a point x, we will calculate its 

covariance matrix H by points located in its local spherical neighborhood of a fixed 

radius. Without loss of generality, we will assume the radius is 1 (which can be done by 

normalizing the data by the radius). The U matrix of Equation (3.13) calculated by the 

covariance analysis is kept unchanged to maintain the orientation of the ellipsoid. The 
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size and shape of the ellipsoid will be modified to be the same as the ellipsoidal kernel E 

by modifying the diagonal matrix A as: 
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         3.15 

r is half of the length of the minimum axis of the ellipsoidal kernel E. After the 

density value is estimated, we will remove all the points whose estimated density value is 

smaller than a user-defined threshold. Figure 15 and Figure 16 are two examples of the 

proposed nonparametric density estimation based outlier removal from synthetic highly 

noisy data. The input of Figure 19 is a 3D point clouds obtained from multi-view stereo. 

Figure 19 (a) is the original data; Figure 19 (b) is the result after outlier removal. Figure 

17 is a 2D slice view of the nonparametric data preprocessing process. In particular, 

Figure 17 (a) is a 2D slice of the original 3D data of Figure 19 (a); Figure 17 (b) is the 

color-coded density map of Figure 17 (a) estimated by an isotropic Gaussian kernel, with 

red represents the highest density and blue the lowest density; Figure 17 (c) is the 

color-coded density map of Figure 17 (a) estimated by an anisotropic Gaussian kernel of 

the same scale of Figure 17 (b); Figure 17 (d) is the result after outlier removal using 

Figure 17 (b), and Figure 17 (e) is the result after outlier removal using Figure 17 (c). As 

we can see, better result is achieved by using the anisotropic kernel-based outlier removal 

(Figure 17 (e)), comparing with the isotropic kernel-based outlier removal (Figure 17 

(d)). 
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(a)                     (b)                    (c) 

   

(d)                     (e)                    (f) 

 

(g) 

Figure 17 : A 2D slice view of the nonparametric data preprocessing process 

(a) a 2D slice of the original 3D data of Figure 19 (a); (b) color-coded density map of (a) estimated 

by an isotropic Gaussian kernel, with red represents the highest density and blue the lowest 

density; (c) color-coded density map of (a) estimated by an anisotropic Gaussian kernel of the 

same scale of (b); (d) after outlier removal using (b); (e) after outlier removal using (c); (f) 

color-coded density map of (e) estimated by an anisotropic Gaussian kernel of a smaller scale 

than (c); (g) result of projecting points of (e) by line search based on (f). 
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Figure 18 shows the 3D outlier removal results under different user-defined thresholds. 

The top left is the original point clouds obtained by the aforementioned depth estimation 

step. The next four images from top middle to bottom right are the outlier removal results 

under different user-defined thresholds: 40, 60, 80, and 160, respectively. Among these 

four outlier removal results, the first three data (top middle to bottom left) are all 

acceptable to the subsequent implicit surface evolution step (Section 4.2.4) to construct a 

watertight 3D surface. However the implicit surface evolution step might fail to create a 

single watertight surface of the object for the fourth data in the bottom right of the figure 

as the threshold is set too high thus creating very big holes in the data.   

 
Figure 18 : Outlier removal results under different user-defined thresholds 

Top left: original points obtained by depth estimation from the dino sparse ring data. From top 

middle to bottom right are the outlier removal results under different user-defined thresholds: 40, 

60, 80, and 160, respectively. 
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3.2.2.1. Decomposition of the Covariance Matrix H 

Since the covariance matrix H is defined as: 

,TDDH =  

and  

D = (x1 - x, x2 - x, … , xn - x). 

Using Single Value Decomposition (SVD), D can be decomposed as: 

TVUD Σ=           3.16 

Σ is the diagonal matrix: 
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with 321 σσσ ≥≥ . U and V are orthonormal matrixes, i.e.  I is the 

identity matrix.  So,  

,IVVUU TT ==

TTTT UUUVVUDDH 2Σ=ΣΣ==     3.18 

and let’s define matrix A as: 

2Σ=A            3.19 

which is also a diagonal matrix. Thus we have  

TUAUH =           3.20 

Furthermore, if we denote U = (u1, u2, u3 ), since U is an orthonormal matrix, we will 

have  

Hui = u2
iσ i           3.21 

which means ui is the eigenvector of H, associated with its ith largest eigenvalue . 2
iσ
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3.2.3. Point Projection By Line Search 

After the outlier removal step, we will need to further process the remaining point 

data so that they will be projected into the real surface. We will define the real surface as 

the set of points whose density value (estimated by the above Parzen-window based 

kernel density estimation) is maximum along its surface normal direction. This is similar 

to the concept of “extreme surface” as suggested by Amenta et al. [amen04]. We 

implement the data projection by a hill-climbing line search method. More specifically, 

given a point x, it will move along a direction l that is (approximately) orthogonal to the 

real surface, and will stop when a local maximum of the density value is reached. Since 

the real surface is unknown, the moving direction l is approximated by the eigenvector u3 

(Equation (3.21)) that is associated with the smallest eigenvalue  (Equation (2
3σ 3.21)) of 

the covariance matrix H (Equation (3.11)), calculated by the local neighborhood of point 

x. The orientation of the moving direction is determined by the directional derivative of 

the density value along l, i.e. point x will always move uphill (i.e. move towards the 

direction that will increase the density value). Figure 19(c) shows the result of projecting 

data points by line search. A 2D slice view of the point projection is shown in Figure 

17(g). Note that the outlier removal and the point projection procedure can be iterated 

one or two times to further improve the result. 
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(a)                            (b) 

 

(c) 

Figure 19 : Dino 

(a) 3D point clouds (660,000 points) obtained from multi-view stereo; (b) after outlier removal; (c) 

after point projection by line search. 
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4 Multi-view Stereo 

4.1. Introduction 

Despite significant advancement in interactive shape modeling, creating complex 

high quality realistic looking 3D models from scratch is still a very challenging task. 

Recent advancement in 3D shape acquisition systems such as laser range scanners and 

encoded light projecting system have made directly 3D data acquisition feasible 

[wang04]. These active 3D acquisition systems however remain expensive. Meanwhile, 

the price of digital cameras and digital video cameras keeps decreasing while the quality 

is improving every day, partially due to the intense competition in the huge consumer 

market. Furthermore, huge amounts of images and videos are added in internet sites such 

as Google ®, etc every day, a lot of which could be used for multiview image-based 3D 

shape reconstruction [goes07]. 

To date, there have been a lot of researches conducted in the area of multiview 

image-based modeling. The recent survey by Seitz et al. [seit06] gives an excellent 

review of the state-of-arts in this area. As summarized by [camp08], most of the existing 

algorithms follow a two-stage approach: 1) conduct depth estimation based on local 

groups of input images; 2) fuse the estimated depth values into a global watertight 3D 

surface estimation.  The depth estimation step is often based on image correlation 

[hern04]. The main differences between existing algorithms are in the second stage, the 

data fusion step, which can be divided into two categories. The first type of data fusion 
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reconstructs the 3D surface by conducting volumetric data segmentation using global 

energy minimization approaches such as graph cut [vogi07, goes06, horn06, vogi05, 

sinh05], level-set [jim05, faug98, soat03, jin03, maxi05, kolm02], or deformable models 

[hern04, duan04, hern02, yasu06]. Recently, people have proposed another types of data 

fusion algorithms that are based on local surface growing and filtering [goes07, furu07, 

habb07]. Without global optimization, these types of data fusion algorithms can be 

computationally more efficient [merr07, brad08]. 

Our algorithm also follows this two-stage process. We proposed two iterative 

refinement schemes that iterates between the depth estimation step and the data fusion 

step. This is similar in spirit of the Expectation Maximization (EM) algorithm. The 

difference between these two algorithms is in implicit and explicit surface evolution. One 

uses outliner removal algorithm to clean points cloud, followed by tagging algorithm for 

implicit surface evolution, and energy-optimization based partial differential equations 

(PDE) for explicit surface evolution; another uses integrate graph-cut method for global 

optimal initialization with flux tensor based divergence field in implicit surface evolution, 

and mean shift for explicit surface evolution. Our algorithms integrate the fast implicit 

region growing with the high-quality explicit surface evolution, thus they are both fast 

and accurate. 

The rest of this chapter is organized as follows: In Section 1.1 we discuss the main 

differences between our approaches and related existing works. Section 2 and 3 describe 

the details of our algorithms and show their benchmark data evaluations. 
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4.1.1. Comparison With Related Works 

Our work is most related to the works of Hernandez et al. [hern04] and Quan et al. 

[quan07, maxi05]. Hernandez et al. proposed a deformable model based reconstruction 

algorithm [hern04] that achieves one of the highest quality reconstruction [seit06]. The 

depth estimation of [hern04] is conducted by rectangular window based normalized 

cross-correlation (NCC). The estimated depth values are then discretized into an 

octree-based volumetric grid. Finally a gradient vector flow based deformable model is 

applied to the volumetric grid to reconstruct the 3D surface. 

Our depth estimation follows the similar pipeline of [hern04], with several 

modifications to further improve its efficiency and accuracy. We will describe these 

modifications in Section 2.2. Furthermore, unlike [hern04], we represent the depth 

estimations as 3D points whose accuracy are not restricted by the resolution of the 

volumetric grid. Quan et al [quan07, maxi05] also represent the estimated depth values as 

3D points.  However, unlike our method, they do not have an explicit outlier removal. 

Instead they rely on level-set based surface evolution with high-order smoothness terms 

such as Gaussian/mean curvature to overcome noises, which may create surfaces that 

maybe too smooth to represent finer geometry details of the original object. Most recently, 

Campbell et al. [camp08] proposed an outlier removal algorithm based on the Markov 

Random Field (MRF) model which can achieve very impressive reconstruction results. 

On the other hand, our outlier removal algorithm is based on kernel density estimation 

and is conducted on 3D unorganized points instead of the 2D image space of [camp08]. 

The graph cut algorithm as well as the divergence based energy functional are 

originally proposed by Lempitsky et al. [vict07]. However the way we created the 
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divergence field is totally different than [vict07]. Also [vict07] is focused on surface 

fitting with multi-view stereo one of the application, where we proposed a complete 

pipeline for multi-view stereo in this thesis. 

To summarize, the main contributions of this thesis are: 1) a novel iterative 

refinement scheme between the depth estimation and the data fusion; 2) a novel 

anisotropic kernel density estimation based outlier removal algorithm and saliency 

estimation algorithm; 3) a novel data fusion approach that integrates the global optimal 

graph cut algorithm with a high-quality, efficient mean-shift based explicit surface 

evolution algorithm. 

 

Figure 20 : Flow chart of the algorithm with outliner removal. 
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4.2. Iterative Surface Evolution Algorithm With Outliner 

Removal 

The entire algorithm (Figure 1) consists of the following main steps: 

1. Visual hull construction  

2. 3D point generation 

3. Outlier removal 

4. Implicit surface evolution 

5. Explicit surface evolution 

Starting from an initial shape estimation such as the visual hull (Step 1), we will use 

this shape estimation to generate more accurate 3d points based on image correlation 

based depth estimation (Step 2), which can then be used to create a better shape 

estimation (Step 3 to Step 5). In practice, two to three iterations between Step 2 and Step 

5 will be sufficient to create very good shape estimation. Figure 21 is a 2d illustration of 

the reconstruction process. 
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(a)          (b) 

   

(c)       (d)        (e) 

Figure 21 : A 2D illustration of the whole reconstruction pipeline 

(a) visual hull; (b) 3d points generated by depth estimation; (c) after outlier removal; (d) shape 

estimated by implicit region growing; (e) refined shape estimation by explicit surface evolution. 

4.2.1. Visual Hull Construction 

The first step of our algorithm is to obtain initial shape estimation by constructing a 

visual hull. Visual hull is an outer approximation of the observed solid constructed as the 

intersection of the visual cones associated with all the input cameras [laur94]. A discrete 

volumetric representation of the visual hull can be obtained by intersecting the cones 

generated by back projecting the object silhouettes from different camera views. An 

explicit shape representation can be obtained by iso-surface extraction algorithms such as 

Marching Cubes [lorensen87]. 
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4.2.2. 3D Points Generation 

Once we had an initial explicit shape estimation, we will proceed to 3D depth 

estimation. First, we need to estimate the visibility of the initial shape with respect to all 

the cameras. We use OpenGL to render the explicit surface into the image planes of each 

individual camera and extract the depth values from the Z-buffer. Given a point on the 

surface, its visibility with respect to a given camera can then be decided by comparing its 

projected depth value into the image plane of the given camera with the corresponding 

depth value stored in the Z-buffer. 

Our depth estimation is based on the Lambertian assumption, i.e. if a point belongs 

to the object surface, its corresponding 2D patches in the image planes of its visible 

cameras should be strongly correlated. Hence starting from a point on the object surface, 

we can conduct a line search along a defined search direction to locate the best position 

whose correlation between the corresponding 2D image patches of different visible 

cameras is the maxima within a certain search range. This idea is first proposed by 

[hern04]. Our thesis follows the same principle with several modifications. In the 

following, we will first briefly describe our depth estimation method, followed by a brief 

discussion of the differences between our method and the method of [hern04]. 

Given a point on the initial surface, we will select a set of (up to) five “best-view” 

visible cameras based on the point’s estimated surface normal. Each camera in the 

selected set will serve as the main camera for once. The search direction is defined as the 

optical ray passing through the optical center of the main camera and the given point. We 

will uniformly sample the optical ray within a certain range of the given point, and for 

each sampled position, we will project it into the image planes of the main camera and 
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another camera in the set, respectively. Rectangular image patches centered at the 

projected locations of the two image planes will be extracted, and the correlation between 

the two image patches will be computed by similarity measures such as the normalized 

cross-correlation (NCC) [hern04].  

For a set of five “best-view” cameras, a total of 20 correlation curves will be 

generated. For each of the correlation curve, the best position (i.e. the point with the 

highest correlation value) will be selected as the depth estimation. The depth estimations 

will be represented as 3d points, which will be processed further to construct a new shape 

estimation of the object. 

The main differences between our implementation and the method of [hern04] are: 

first, we start the line search from every point on the explicit object surface. The line 

search in [hern04] is initiated from every image and the correlation is computed with all 

the other images, which could be computationally more expensive then ours. Secondly, in 

[hern04], for each set of correlation curves computed using the same search direction and 

the same main camera, only one representative depth estimation is used. While in our 

method, we avoid this potentially premature averaging by using the depth estimations 

from all the correlation curves, and postpone the outlier pruning into the subsequent 

outlier removal step. Thirdly, in [hern04], the depth estimations are stored in an 

octree-based volumetric grid, while we store them as discrete points whose accuracy are 

not restricted by the grid size. 
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4.2.3. Outlier Removal 

We use the algorithm detailed at section 3.2.1 and section 3.2.2 for outlier removel. 

Please refer to those sections for detail. 

4.2.4. Implicit Surface Evolution 

After outlier removal, the remaining 3d points will be used to reconstruct the 3D 

surface of the object. The shape estimation is conducted into two steps. First, a fast 

implicit distance function based region growing method—tagging algorithm [zhao01] is 

employed to create a coarse shape estimation from the 3d points. Next, an explicit surface 

evolution step is applied to recover the finer geometry details of the object. We will 

briefly review the tagging algorithm in the following, for more details please refer to the 

original paper [zhao01]. The explicit surface evolution method will be discussed in the 

next section. 

The basic idea of tagging algorithm is to identify as many correct exterior grid 

points as possible and hence provide a good initial implicit surface, which is represented 

as an interface that separates the exterior grid points from the interior grid points. There 

are two main steps in the original tagging algorithm. First, we will compute a volumetric 

unsigned distance field based on the 3d points. This is done by the aforementioned fast 

sweeping method [zhao00]. Once we had the volumetric unsigned distance field, the 

tagging algorithm will iteratively grow the set of exterior grid points and stop at the 

boundary of the object. The algorithm can start from any initial exterior region that is a 

subset of the true exterior region, e.g. an outmost corner grid point of the bounding 

volume, and iteratively tag all the grid points as exterior or interior points based on the 
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comparison of the closeness to the object boundary between the current grid points and 

its neighboring interior grid points. 

4.2.5. Explicit Surface Evolution 

The shape estimation obtained by the implicit tagging algorithm will be converted to 

explicit meshes by [lorensen87], and will serve as the initial shape for the subsequent 

explicit surface evolution step to further improve the geometry accuracy of the shape 

reconstruction. The surface evolution is guided by energy-optimization based partial 

differential equations (PDE). Classical PDEs such as minimal surface flow [case96] 

usually includes a second order curvature term to improve the robustness against noise. 

However it may also prevent the surface evolution to recover finer geometry details. In 

this thesis, we choose the simple convection equation to guide the explicit surface 

evolution: 
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)(tSS = is the 3D evolving surface, t is the time parameter, g(S) is speed function and is 

defined as the derivative of f(S), which is the point-based density estimation calculated by 

equation (3.1). is the surface normal vector. The final reconstructed 3D shape is then 

given by the steady-state solution of the equation: 

N
r

0=tS . 

Since the speed function g is dynamically calculated at each time step based on the 

local points distribution, the accuracy of our evolution method will not be limited by the 

grid resolution as other volumetric image based surface evolution methods such as 

[hern04] 
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4.2.6. Benchmark Data Evaluation 

We had applied this algorithm to the four benchmark datasets: temple ring, temple 

sparse ring, dino ring, and dino sparse ring from [multiv]. Table 2 shows the running time 

and the reconstruction accuracy obtained from the evaluation site [multiv]. The running 

time is based on a Pentium D Desktop PC with CPU 2.66GHz, 2GB RAM. Figure 22 are 

the 3D rendering of our reconstruction results copied from the evaluation website. Note 

that, the evaluation was originally done in the private evaluation mode, thus we can’t give 

out the link in this thesis. We are contacting Dr. Daniel Scharstein to move our results 

into the public domain. 

Dataset Running time 
(minutes: seconds) 

# of input images accuracy  

Temple ring 33:17 47 98.9% 
Temple Sparse Ring 29:06 16 96.8% 
Dino ring 36:45 48 97.7% 
Dino sparse ring 32:01 16 97.6% 

Table 2 : Running time and reconstruction accuracy 
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Figure 22 : Temple and Dino 3D illustration 

3D rendering of our reconstruction results running on the four Benchmark datasets of [multiv]. 

From top to bottom: temple ring, temple sparse ring, dino ring, and dino sparse ring. 

 

4.3.  Integrated Depth Fusion Algorithm with Graph-Cut 

The entire algorithm consists of the following five main steps :  

1. Visual hull construction  

2. 3D point generation 

3. Saliency Weighted Normal Vector Field Construction 

4. 3D Shape Estimation by Graph-Cut 

5. Explicit surface evolution by mean-shift  
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Figure 23 : Flow chart of the algorithm with Graph-Cutl 

 Starting from an initial shape estimation such as the visual hull (Step 1), we will 

conduct depth estimation which will generate a set of 3D points representing the 

estimated depth (Step 2). A volumetric saliency weighted normal vector field is then 

constructed based on the 3D points (Step 3), which is then be used to extract a watertight 

3D surface by graph cut algorithm (Step 4). Step 2 to Step 4 can be repeated several times. 

In practice, two to three iterations between Step 2 and Step 4 will be sufficient to obtain a 

good shape estimation, which will be further improved by the explicit surface evolution 

step (Step 5). We will discuss each step in details in the following sections. Figure 24 is a 

2D slice view of the reconstruction process of the dino ring dataset of [19]. Figure 25 to 

Figure 28 show the intermediate results of the 3D reconstruction process of dino sparse 

ring, dino ring, temple sparse ring, temple ring. 

Instead of using outliner removal and tagging algorithm, this algorithm contructs 

saliency weighted normal vector field and uses graph-cut for implicit surface evolution. 
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Mean shift is used for the explicit surface evolution. The other steps of those two 

algorithms are identical. The following will detail the implicit and explicit surface 

evolution. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 24 : A 2D slice view of the 3D reconstruction process from the dino ring data 

(a) visual hull; (b) points generated by depth estimation; (c) divergence field; (d) shape estimation 

by graph-cut; (e) shape estimation by graph-cut after another iteration; (f) refined shape estimation 

by explicit surface evolution. 

 

  
(a) (b) (c) (d) (e) 

Figure 25 : 3D view of the reconstruction process of the dino sparse ring dataset of [multiv] 

From left to right: visual hull; 3D points generated by depth estimation; shape estimation by 

graph-cut; shape estimation by graph-cut after another iteration; refined shape estimation by 

explicit surface evolution. 
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(a) (b) (c) (d) (e) 

Figure 26 : 3D view of the reconstruction process of the dino ring dataset of [multiv] 

From left to right: visual hull; 3D points generated by depth estimation; shape estimation by 

graph-cut; shape estimation by graph-cut after another iteration; refined shape estimation by 

explicit surface evolution. 

  

  
(a) (b) (c) (d) (e) 

Figure 27 : 3D view of the reconstruction process of the temple sparse ring dataset of [multiv] 

From left to right: visual hull; 3D points generated by depth estimation; shape estimation by 

graph-cut; shape estimation by graph-cut after another iteration; refined shape estimation by 

explicit surface evolution. 
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(a) (b) (c) (d) (e) 

Figure 28 : 3D view of the reconstruction process of the temple ring dataset of [multiv] 

From left to right: visual hull; 3D points generated by depth estimation; shape estimation by 

graph-cut; shape estimation by graph-cut after another iteration; refined shape estimation by 

explicit surface evolution. 

 

4.3.1. Saliency Weighted Normal Vector Field Construction 

There are two main steps in the data fusion phase. First, a saliency weighted normal 

vector field is constructed based on the 3D points generated by the above depth 

estimation step. Next, a watertight 3D surface is extracted from the saliency weighted 

normal vector field by energy minimization. The saliency weighted normal vector field is 

constructed by the following three steps: 1) saliency field construction by anisotropic 

kernel density estimation; 2) normal estimation and consistent normal orientation 

propagation; 3) volumetric saliency weighted normal vector field construction.  

We will detail the three steps of saliency weighted vector field construction in this 

section. The 3D surface extraction will be discussed in the later sections. 
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4.3.1.1. Saliency field construction by anisotropic kernel 

density estimation 

We use the term saliency to represent the likelihood the unknown surface passes 

through a certain part of 3D space. We propose to employ parzen-window based 

nonparametric density estimation method to compute the saliency of each point (see 

3.2.1). 

4.3.1.2. Normal estimation and consistent normal orientation 

propagation 

Given the 3D point clouds, we can estimate the normal vector at each point based on 

the Principle Component Analysis (PCA) algorithm [hugu92]. Normal vectors estimated 

by the PCA algorithm however has an ambiguity of 180 degree so might not be 

consistently oriented. An orientation propagation is often needed to ensure the consistent 

orientation of the normal vectors. One way to do this is to first build a graph with each 

point as a node and the weights of edges between the adjacent points are defined as 

211 nn ⋅− , where  and  are the normal vectors of the two adjacent points, and 

then compute the minimum spanning tree (MST) from the graph using algorithms such as 

the Kruskal’s algorithm [krus56] which finds a subset of the edges that forms a tree that 

includes every vertex in the graph, where the total weight of all the edges in the tree is 

minimized. At the termination of the algorithm, the normals are adjusted so the two 

neighbors in the tree have consistent normal orientation. 

1n 2n

The above MST based normal orientation propagation approach however is not 

robust against noises and outliers. In the thesis, we propose to utilize external knowledge 
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to guide the normal orientation propagation (Figure 29). Particularly, since the point 

clouds are generated by depth estimation based on the image correlations between 

different cam-eras, for a given point p, it should be visible to its main camera in the depth 

estimation step (Section 4.2.2), i.e. the dot product between the normal vector of the point 

p and the view direction of its main camera should be negative. If not we will reverse the 

normal orientation at this point. 

  
(a) (b) 

Figure 29 : Camera view direction guided normal orientation propagation 

(a) 3D points generated by the depth estimation based on the image correlations between the 

main camera C and the other adjacent cameras.  Each point is shown with its normal vector 

estimated by the PCA algorithm. The orientation of the normal vectors at point p, q and r are not 

correct. (b) Based on the view direction of the main camera C, the orientation of the normal 

vectors at point p, q and r are reversed so that they are now opposite to the view direction of 

camera C. 

4.3.1.3. Volumetric Saliency Weighted Normal Vector Field 

Construction 

Once we have estimated the saliency and normal vector at each point, we will 

proceed to construct a volumetric saliency weighted normal vector field, from which a 

watertight 3D surface can be extracted by energy minimization. A volumetric grid 
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embedding all the 3D points is first constructed. The saliency and the normal vector of 

each point are then propagated to its adjacent grid nodes (Figure 30). Specifically, the 

saliency  of a grid node g is computed as the weighted summation of the saliency  

of its adjacent points : 

gS

∑=
i

ppg ii
SCS       4.2 

The weight  is calculated using the aforementioned parzen-window kernel 

function (Equation (

ipC

3.6)) based on the anisotropic Mahalanobis distance (Equation (3.10)) 

between the grid node g and point . Since the kernel we used (e.g. truncated Gaussian 

kernel) has finite support here, only a finite number of points  (i = 1, …, n) within the 

kernel radius has non-zero weights . The normal vector  at grid node g is 

calculated similarly as the weighted summation of the normal vector  of its adjacent 

points : 

ip

ip

ipC gN
r

ipN
r

∑=
i

pppg iii
NSCN
rr

      4.3 
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Figure 30 : Construction of the volumetric saliency weighted normal vector field 

The normal vector at grid node g is calculated as the weighted sum of the normal vectors of its 

adjacent points. 

  

s

t    
(a) (b) (c) 

Figure 31 : Shape estimation by graph cut 

(a) Graph construction for minimization of Equation (4.8): neighboring nodes are connected via 

n-links representing regularization cost. Nodes are also connected to the terminals vial t-links 

based on their divergence value: blue nodes have positive divergence and are connected to the 

source terminal s; red nodes have negative divergence and are connected to the sink terminal t; 

the green node has zero divergence and is not connected to either terminal. (b) A 2D slice of the 

divergence field for the dino ring dataset of [multiv]. (c) A 2D slice of the 3D surface (shown as 

non-green pixels) estimated by the graph cut algorithm. 
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4.3.2. 3D Shape Estimation by Graph-Cut 

Once the volumetric saliency weighted normal vector field is constructed, a 

watertight 3D surface S can be extracted by energy minimization. We use the following 

energy functional as suggested by [vict07]: 

regdata EEE ε+=       4.4 

dataE  is the data alignment term which is the inverse of the flux that enforces the surface 

alignment with the data orientation: 

∫−=−=
Sdata dsvNSfluxE ,)(  4.5 

where <,> is (Euclidean) dot product and N is unit normal to surface elements ds 

consistent with a given orientation. If vectors v is interpreted as a local speed in a stream 

of water then the absolute value of flux equals the volume of water passing through the 

hypersurface in a unit of time. The sign of flux will be determined by the orientation of 

the surface.  is the area-based regularization term that maintains the regularity of the 

extracted surface: 

regE

∫= Sreg dsE      4.6 

ε  is the coefficient of the regularization term that controls the strength of the 

smoothness in the energy minimization process and is related to the sampling density of 

the data. 

regE

As pointed out by [vict07], combining flux with area based regularization can 

overcome the shrinking effect of the area-based regularization and improve the 
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reconstruction of elongated structures, narrow protrusions, and other fine details. Based 

on the divergence theorem for differentiable vector fields, the integral of flux of vector 

field over surface S equals to the integral of vector field’s divergence div(v) in the interior 

of S: 

∫∫ ⋅=
V pS

dpvdivdsvN )(,     4.7 

Where V is the region enclosed inside S. Thus E of Equation (4.5) is now: 

∫∫ ⋅−=
V pS

dpvdivdsE )(ε      4.8 

Equation (4.8) can be solved efficiently using the graph cut algorithm [vict07]. A typical 

graph construction is shown in Fig. Figure 31(a): neighboring nodes are connected via 

n-links representing area-based regularization cost. Nodes are also connected to the 

terminals via one t-link based on their divergence value: blue nodes have positive 

divergence and are connected to the source terminal s with weight ; red nodes 

have negative divergence and are connected to the sink terminal t with weight ; 

the black node has zero divergence and is not connected to either terminal. The weight of 

the n-link is defined as the inverse of the edge length so that the weights of severed 

n-links approximate the surface area [boyk03]. Consequently, a global minimum surface 

for Equation (

)( pvdiv

)( pvdiv−

4.8) can be found by computing a minimal s/t-cut in the constructed graph. 

The theory based on the graph-cut algorithm is integral geometry and Crofton 

formulas. 

Consider in plane , 2R ]}2,0[,0:),{( π∈≥= babaL  is the set of all straight lines, 

each line  is uniquely defined by its parameter a and b, as show in ),( bal Figure 32. 
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Figure 32 : Line In  
2R

In , each line  can be represented by two parameters a and b. 2R ),( bal

The classical Cauchy-Crofton formula demonstrates the relationship between the 

Euclidean length 
ε

D  of curve D in  and the set of lines intersecting it.  2R

ε
Ddlln

L c 2)( =∫      4.9 

Here,  is the number of times the straight line l intersects D.  )(lnc

Consider a weighted graph >=< EVG ,  and a cut C on G. The cut metrics is : 

∑
∈

=
Ce

eG
wC      4.10 

ew  is the weigh of edge e.  

If a regular grid-graph >=< EVG ,  is embedded in plane  , a closed curve D 

in  is always corresponding to a cut C in G. By choose the weight of grid-graph’s 

edges, the cut metrics 

2R

2R

G
C  will be proportional to the curve’s Euclidean length 

ε
D .  
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Figure 33 : Grid-graph 

Grid-graph embedded in  space(plane), and curve D is responding to the cut C. 2R

  

1e

2φ

2φΔ

4e 3e
2e

 
Figure 34 : Symmetric 8-neighboring system 

Symmetric 8-neighboring system in 2D grid-graph. In fact, only need to consider first 4 edges 

because of symmetry. 

[boyk03] give the detail information about how to construct such grid-graph 

embedded in  space and approximate the surface area (curve length for ). nR 2R Figure 

34 shows an example of grid-graph embedded in  plane with 8-neigbhouring system. 2R
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Each node has eight symmetric neighbors, which is noted as a set }81,{ ≤≤= keN kG  . 

In order to make a curve’s cut metrics from the grid-graph approximate its actual 

Euclidean length, the edge weight should be : kw

k

k
k e

w
⋅
Δ⋅

=
2

2 φδ
     4.11 

Here, δ  is the cell size of the grid, kφΔ  is the angular differences between the nearest 

families of edge lines, e.g, 232 φφφ −=Δ ; ke  is the edge length. For grid-graph with 

symmetric neighboring system, δ , kφΔ are fixed,  as a result, the edge weight is 

inverse proportional to edge length. In this thesis, we just simple choose edge weight as :  

k
k e

w 1
=      4.12 

It is because there is a weight factor ε  in equation (4.8). To minimize equation (9), 

it’s not necessary to calculate exactly surface area, but just choose an appropriate value of 

λ , which depends on the data’s sampling density and the calculation of flux. To datasets 

in this thesis, we choose it in range between 0.02 and 0.07 for grid-graph with 

26-neighboring system in  space. 3R

4.3.3. Explicit Surface Evolution 

The shape estimated by the graph cut algorithm can be further improved by an 

explicit surface evolution step guided by the following partial differential equation 

(PDE): 
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Here S is the 3D surface, t is the time parameter, F is the speed function. N
r

 is the 

surface normal vector. )(xmr is mean shift vector proposed in [coma02] and is 

proportional to , the gradient of the kernel density function f (x) of Equation ()(xf∇ 3.6), 

i.e. the mean shift vector )(xmr  is in the gradient ascent direction and will always point 

to the direction of the maximal increase in the kernel density. Since the surface evolves 

along its normal direction (Figure 35), the speed function F is defined as the inner 

product between the mean shift vector )(xmr  and the normal vector . Note that the 

speed function F is dynamically calculated at each time step, thus the surface evolution is 

not be limited by the grid resolution. 

N
r

N
r

x

F)(xmr

 

Figure 35 : Explicit surface evolution. 

The surface (shown in green) will move along its normal vector with speed function F which is the 

inner product between the mean shift vector )(xmr  and the normal vector. 
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4.3.4. Benchmark Data Evaluation 

We had applied this algorithm to the four benchmark datasets: temple ring, temple 

sparse ring, dino ring, and dino sparse ring from [multiv]. Table 3 shows the running time 

and the reconstruction accuracy obtained from the evaluation site [multiv]. The running 

time is based on a Pentium D Desktop PC with CPU 2.66GHz, 2GB RAM. Figure 36 are 

the 3D rendering of our final reconstruction results copied from the evaluation website. 

Our result is listed under the name “ECCV_216”. 

Figure 36 : Temple and Dino 3D illustration 

3D rendering of our reconstruction results running on the four Benchmark datasets of [multiv]. 

From top to bottom: temple ring, temple sparse ring, dino ring, and dino sparse ring. 
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Dataset Running time 
(minutes: seconds) 

# of input images accuracy  

Temple ring 33:50 47 99.5% 
Temple Sparse Ring 29:15 16 96.8% 
Dino ring 34:10 48 99.5% 
Dino sparse ring 30:50 16 97.8% 

Table 3 : Running time and reconstruction accuracy (Algorithm with graph-cut) 
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5 Summary 

5.1. Conclusion 

In this dissertation thesis, three problems related to 3D shape modeling are 

addressed, extraction iso-surface from volumetric dataset, elimination noisy points from 

points clouds and iterative surface evolution for multi-view stereo. They are focus on 

separate issues on 3D shape modeling but also close related to each other. The basic idea 

beneath them is data transformation. For cleaned points cloud, tagging algorithm can 

transform it to the volumetric data; for multi-view stereo, we can use line search to 

generate initial noisy points cloud, which can further be transformed to volumetric data 

via our proposed algorithm; in iteration of proposed multi-view stereo algorithm, 

volumetric data also need to be transformed to points cloud for new points searching. 

The new region-growing based iso-surface extraction algorithm can significantly 

improve the original Marching Triangles algorithm. Besides using the Delaunay face 

property to check for existing triangulation, local iso-surface information is also checked 

by the new Normal Consistency Constraints to ensure the intersection of the Delaunay 

sphere and iso-surface is a topological disk. As can be seen from the examples, the new 

algorithm is very robust for datasets of complex topology and geometry. In addition, by 

employing a prioritized seeding initialization scheme, our algorithm can generate 

high-quality semi-regular meshes with different level-of-details and can preserve sharp 

features. 
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In this thesis, we propose a nonparametric approach for noisy point data 

preprocessing. In particular, we proposed an anisotropic kernel based nonparametric 

density estimation for outlier removal, and a hill-climbing line search approach for 

projecting data points onto the real surface boundary. Our method is very robust with 

highly noisy dataset, as can be seen from the examples shown. In addition, our approach 

is very computationally efficient. For example, it only takes 3 to 4 minutes in a 

middle-range desktop PC to process (outlier removal and point projection) the mult-view 

stereo point data (Figure 19) which contains more than 600,000 points. The majority of 

the running time actually spends on computing the density. The line search based 

projection is done in less than 10 seconds for the whole dataset. 

For the most challenging multi-view stereo problem, we propose an iterative surface 

evolution algorithm for 3D shape reconstruction. The novel iterative refinements between 

image correlations based 3d depth estimation and surface evolution based shape 

estimation can significantly reduce the computational time and improve the accuracy of 

the final reconstructed surface. The benchmark evaluation results are comparable with the 

state-of-art methods.  

In summery, those three algorithm address three close related issue in 3D shape 

modeling, and they work together to provide a workable way for translating most of the 

raw data from real world to the 3D model which can be understood and manipulated by 

computer in virtual world. 
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5.2. Future Work 

Our work is an attempt to address the 3D shape modeling which bridge the gap 

between computer’s virtual world and human beings’ real world. We try to provide a 

workable and reliable way to help the translation. There are still lots of further 

improvement left. 

For region growing iso-surface extraction, we would like to extend the algorithm to 

parallel seed initialization and out-of-core computation which will further improve its 

performance. 

For nonparametric noisy points preprocessing, the main limitation is that currently a 

fixed bandwidth of the kernel is used across the whole dataset, which can cause some of 

the “good” data being removed during the outlier removal process (as can be seen in 

Figure 17 (e)). We would like to develop a scheme that can automatically select the 

optimal kernel bandwidth based on the local neighborhood. We would also like to extend 

our approach so that it can handle hole fillings automatically. 

In multi-view stereo, currently our method utilizes the visual hull for initial 

estimation. This requires image segmentation that may be difficult for some images. We 

would like to relax this requirement in the future. This might be possible since our 

algorithm uses the iterative refinement which should be able to start from any coarse 

shape such as a bounding box or a convex hull. 
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