
DATA-DRIVEN 3D SHAPE MODELING

A Dissertation

presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

YONGJIAN XI

Dr. Ye Duan, Dissertation Supervisor

MAY 2010

The undersigned, appointed by the dean of the Graduate School, have examined the
dissertation entitled

DATA-DRIVEN 3D SHAPE MODELING

presented by Yongjian Xi,

a candidate for the degree of Doctor of Philosophy,

and hereby certify that, in their opinion, it is worthy of acceptance.

Professor Ye Duan

Professor Dong Xu

Professor Jianlin Cheng

Professor Gang Yao

ACKNOWLEDGEMENTS

I would first and foremost like to express my deep gratitude to my adviser, Dr. Ye

Duan, for his guidance, inspiration and support to me during years.

Special thanks are due to Dr. Dong Xu, Dr. Jianlin Cheng and Gang Yao, for their

kindness in serving on my thesis committee.

I’d also like to give thanks to my colleagues, Gregory Curtis Heckenberg, Qing He

and Kevin Karsch, for their assistance during my research.

ii

TABLE OF CONTENT

ACKNOWLEDGEMENTS.. ii

TABLE OF CONTENT... iii

LIST OF FIGURES .. v

LIST OF TABLES.. vii

1 Introduction.. 1

2 Region-Growing Iso-Surface Extraction ... 4

2.1. Introduction... 4

2.2. Algorithm.. 8

2.2.1. Boundary Particles Sampling and Classification.............................. 10

2.2.2. Feature Positions Extraction ..11

2.2.3. Prioritized Seed Initialization ... 12

2.2.4. Front Propagation.. 17

2.2.5. Identify Visited Boundary Particles .. 23

2.3. Experimental Results .. 23

3 Nonparametric Noisy Points Preprocessing... 27

3.1. Introduction... 27

3.2. Algorithm.. 28

3.2.1. Parzen-window Based Kernel Density Estimation 28

3.2.2. Outlier Removal By Anisotropic Ellipsoidal Kernel 31

3.2.3. Point Projection By Line Search... 37

iii

4 Multi-view Stereo .. 39

4.1. Introduction... 39

4.1.1. Comparison With Related Works.. 41

4.2. Iterative Surface Evolution Algorithm With Outliner Removal................... 43

4.2.1. Visual Hull Construction... 44

4.2.2. 3D Points Generation.. 45

4.2.3. Outlier Removal.. 47

4.2.4. Implicit Surface Evolution.. 47

4.2.5. Explicit Surface Evolution.. 48

4.2.6. Benchmark Data Evaluation ... 49

4.3. Integrated Depth Fusion Algorithm with Graph-Cut.................................... 50

4.3.1. Saliency Weighted Normal Vector Field Construction 54

4.3.2. 3D Shape Estimation by Graph-Cut ... 59

4.3.3. Explicit Surface Evolution.. 63

4.3.4. Benchmark Data Evaluation ... 65

5 Summary .. 67

5.1. Conclusion .. 67

5.2. Future Work .. 69

Reference .. 70

VITA... 76

Publication .. 77

iv

LIST OF FIGURES

Figure 1 : Semi-regular curvature adaptive iso-surface extraction 7

Figure 2 : Algorithm flow chart 9

Figure 3 : Boundary particles sampling 10

Figure 4 : Prioritized seed initialization. 12

Figure 5 : New triangle creation 15

Figure 6 : Enhanced projection scheme 17

Figure 7 : Enforcing Delaunay face property 18

Figure 8 : A 2D illustration of the Normal Consistency Constraint 20

Figure 9 : Iso-surface extraction of a CT data of Engine 22

Figure 10 : Iso-surface extraction of a CT data of vertebra phantom 24

Figure 11 : Iso-surface extraction of a volume data with sharp edges (shown as red lines) 25

Figure 12 : Iso-surface extraction of a CT data of a lobster 25

Figure 13 : Iso-surface extraction of a MRI data of brain 25

Figure 14 : A comparison to the original marching triangle algorithm [hilt96]. 26

Figure 15 : Stanford bunny 30

Figure 16 : Synthetic torus 31

Figure 17 : A 2D slice view of the nonparametric data preprocessing process 34

Figure 18 : Outlier removal results under different user-defined thresholds 35

Figure 19 : Dino 38

Figure 20 : Flow chart of the algorithm with outliner removal. 42

Figure 21 : A 2D illustration of the whole reconstruction pipeline 44

Figure 22 : Temple and Dino 3D illustration 50

Figure 23 : Flow chart of the algorithm with Graph-Cutl 51

Figure 24 : A 2D slice view of the 3D reconstruction process from the dino ring data 52

Figure 25 : 3D view of the reconstruction process of the dino sparse ring dataset of [multiv] 52
v

Figure 26 : 3D view of the reconstruction process of the dino ring dataset of [multiv] 53

Figure 27 : 3D view of the reconstruction process of the temple sparse ring dataset of [multiv] 53

Figure 28 : 3D view of the reconstruction process of the temple ring dataset of [multiv] 54

Figure 29 : Camera view direction guided normal orientation propagation 56

Figure 30 : Construction of the volumetric saliency weighted normal vector field 58

Figure 31 : Shape estimation by graph cut 58

Figure 32 : Line In 61 2R

Figure 33 : Grid-graph 62

Figure 34 : Symmetric 8-neighboring system 62

Figure 35 : Explicit surface evolution. 64

Figure 36 : Temple and Dino 3D illustration 65

vi

LIST OF TABLES

Table 1 : Running time information ..23

Table 2 : Running time and reconstruction accuracy...49

Table 3 : Running time and reconstruction accuracy (Algorithm with graph-cut)66

vii

1 Introduction

Today, computer is used extensively to manipulate 3D model in computer vision,

computer animation and visualization. 3D shape modeling is a very fundamental and

essential issue and is bridging the gap between computers in the virtual world and human

beings in the real world. Computers cannot understand the objects and shapes in the real

world thus will require shape modeling techniques to extract the 3D information of real

world objects from source data, or raw data, such as photos, points, and volumetric data.

Currently, there exists some software users can use to create 3D models in computer.

However the 3D models created by these software are not good enough. For example, in

medical imaging, we have to reconstruct 3D model from the patient’s real data, such as

MRI, CT.

Today, people are producing more and more raw data, thanks to the technology

breakthrough. Those numerous data can be categorized into three major types, volumetric

data, points cloud and multi-view images. Volumetric data is in fact, a 3D array, which

samples discrete points in 3D space by a uniformly sampling rate, and it can be generated

by ultrasound, CT, MRI and lots of other data acquisition equipments. Points cloud is

obtained by laser or other type scanners, which contains discrete, but not uniformly

sampling points in 3D space. The multi-view images are just 2D images, taken by one or

several cameras, at different positions. Now the digital camera is so popular, even the

very low end digital camera can produce very high quality and high resolution photos.

This type of data is the most easily obtained but the most difficult to be processed and

translated into 3D model.
1

In the virtual world, computer can only understand limited information coded with

specified data structures. Unfortunately, the numerous types of data mentioned above

cannot be processed directly when computer tries to manipulate the underlying 3D object.

Of course, computer is capable of processing such raw data. E.g., image processing for

2D photos, or complex calculation on volumetric data. But before the raw data is

converted to model understandable by computer, they can hardly be used for

manipulating in 3D space (virtual world).

At this point, 3D shape modeling is essential for computer to understand our real

world. So far, 3D shaping modeling is still an open issue. There are too much raw data

around, but there is no uniform or standard way to translate them for computers. My

work is an attempt to build a bridge from real world to virtual world.

We proposed several algorithms to process those three major types of raw data, and

try to translate them into triangulation mesh, which can be understood by almost all of

applications manipulating 3D object. The first algorithm is our region growing surface

extraction algorithm, which reconstructs underlying objects from volumetric data and

generates high quality triangle meshes. For points cloud data, we propose a

nonparametric noisy points preprocessing algorithm, which eliminates the noise points.

The cleaned points cloud can be further transformed to volumetric data for 3D

reconstruction. The multi-view stereo is the most challenging, which reconstructs the 3D

object by several photos. We proposed iterative surface evolution algorithm, which

combines deformation model and our previous two algorithms for volumetric data and

points cloud.

2

In 3D shape modeling or reconstruction, it’s very important to transform one type of

dataset to another. Reconstruction from volumetric data has been studied for years; if we

can transform points cloud or 2D images into volumetric data, then we can use existed

algorithms to process those data. To unify the 3D shaping modeling processing, data

transformation is the key component; it acts like a hub to connect different types of

dataset. And even more, if there are new sorts of dataset emerging with the new

technology developed, we can transform such dataset into the dataset we’ve already

known well and use existed algorithm. This idea is deeply within our algorithms.

The following part is organized as:

Chapter 2 proposes our region-growing iso-surface algorithm based on Marching

Triangles, and targets volumetric dataset.

Chapter 3 introduces nonparametric noisy points preprocessing, it filters out noise

from points cloud dataset and makes it easy be transformed to volumetric dataset for

further processing.

Chapter 4 introduces my work on multi-view stereo, which combining deformation

model and the algorithm on chapter 2 and 3.

Chapter 5 is summary, includes conclusion and future work.

3

2 Region-Growing Iso-Surface Extraction

2.1. Introduction

Implicit surfaces defined by volumetric data have become very popular in computer

graphics, computer vision, geometric modeling, and computer animation, etc. Their

advantages are numerous, ranging from ease of use to compact storage and powerful

shape blending operations. They are particularly convenient for modeling smooth objects

of arbitrary topology and geometry such as objects with holes, branches, and handles.

Nonetheless, for many applications, an explicit polygonal representation of the implicit

surface, defined by the zero-level iso-surface of a three-dimensional scalar field is still

necessary and preferred. On the other hand, recent technical breakthroughs in new

imaging modalities such as CT, MRI and Ultrasound as well as other 3-D scanning

technologies have given rise to massive volumetric datasets. How to extract and

reconstruct the shape of 3-D objects from these datasets accurately and efficiently

remains to be both extremely challenging and significant in computer graphics, medical

imaging, and visualization, etc. In a nutshell, a good iso-surface extraction algorithm

should meet the following three criteria: (1) Geometrically accurate, i.e. the extracted

polygonal mesh should be as close to the original shape as possible and preserves small

features; (2) Topologically correct, i.e. the polygonal mesh is homeomorphic to the

original shape; and (3) Representation efficient, i.e. the sampling rate of the polygonal

mesh is adaptive to the local geometric properties (such as curvature) and maintains a

good triangle aspect ratio thus no small thin triangles will be generated.

4

To date, there have been a lot of methods proposed for extracting 3D surface from

volumetric datasets. They can be classified into two main categories: volumetric-based

cell decomposition method and surface-based region growing method. The most popular

volumetric-based approach is the Marching Cubes algorithm proposed by Lorenson and

Cline [lorensen87] in 1987. In their algorithm, a cube is bounded by eight voxels located

on two adjacent slices. Each grid point is coded as either inside or outside the object w.r.t.

the surface-defining threshold. Based on the configuration of vertices that lie inside and

outside the object, the cube is triangulated. Because marching cubes algorithm generates

at least one triangle per voxel through which the surface passes, this may result in an

enormous number of extremely small or thin triangles. Postprocessing algorithms such as

mesh optimization [hoppe93] or mesh simplification [heck97] are often needed to

improve the mesh quality and reduce the mesh size.

Over the years, many variants of the Marching Cubes algorithm have been published

[nielson03, ouh05]. To resolve ambiguities for cube types, Montani et al. [montani94a]

proposed a lookup table that prevents holes by consistently separating positive vertices on

ambiguous faces. Nielson et al. [nielson91] made use of bilinear contour topology to

resolve ambiguities on boundary faces. Cignoni et al. [cign00] extended this concept by

examining the trilinear interpolation in a cell's interior and completely determining

piecewise trilinear isosurface topology. Another powerful method to resolve ambiguity is

adaptive subdivision, such as the octree technique. In principle, subdivision-based,

adaptive techniques also improve the accuracy and efficiency of the surface

approximation through the use of spatial partitioning [wilh92, wyvi88]. Kobbelt et al.

[kobbelt01] presented an Extended Marching Cube algorithm for feature-sensitive

5

surface extraction from volumetric data using directed distance fields, in order to reduce

the alias effect. Gibson et al. [gibs98] proposed another type of volumetric-based

algorithm ”Dual Methods'' that generates one vertex lying on or near the contour for each

cube that intersects the contour. For each edge in the grid that exhibits a sign change, the

vertices associated with the four cubes that contain the edge are joined to form a quad.

Topologically, the mesh generated by the dual methods is the dual of the mesh generated

by the Marching Cubes algorithm. Since the vertices of the mesh can move within the

cube instead of being restricted to the edges of the grid as in Marching Cubes algorithm,

the mesh quality is generally better. Recently, several new "Dual Methods" algorithms

[ju02, ohta02d, nielson04, warr04] have been proposed that can either represent sharp

feature [ju02, ohta02d]}, generate smoother meshes [nielson04], or extract small thin

features adaptively without excessive subdivision of the underlying volumetric grid

[warr04].

While most of existing iso-surface extraction algorithms are based on cell

decomposition, Hilton et al. proposed a surface-based region growing algorithm - the

Marching Triangles algorithm [hilt96]. Comparing with the aforementioned

volumetric-based algorithms, the Marching Triangles algorithm can generate much

higher quality evenly-sized and quasi-equilateral meshes by iteratively joining new

triangles to the current region boundary. The original Marching Triangles algorithm

however does not adapt well to local surface properties and thus requiring large numbers

of small triangles to approximate surfaces with large variations in curvature. Recently,

researchers have proposed several curvature-adaptive iso-surface extraction algorithms

6

[akko01, kark01, rodr04] based on the concept of the Marching Triangles algorithm

[hilt96].

Figure 1 : Semi-regular curvature adaptive iso-surface extraction

(a) Curvature map of the volumetric dragon; (b) extracted mesh; (c) close-up view of the curvature

map; (d) close-up view of the corresponding mesh; (e) close-up view of mesh generated by

Marching Cubes.

We propose a new region-growing based iso-surface extraction algorithm that is also

based on the concept of the Marching Triangles algorithm. The main contribution is that

we propose a novel normal consistency constraint that ensures the intersection of the

Delaunay sphere of the new triangle and the iso-surface is a topological disk, an

important property which is lacking in the original Marching Triangles algorithm [hilt96]

and its existing variants [akko01, kark01, rodr04]. In addition, by employing a prioritized

7

seed initialization scheme, the new algorithm can generate meshes (e.g. Figure 1) that are

not only curvature-adaptive, but also semi-regular, which maybe more preferable for

most applications. Moreover, it will extract all the disjoint components of the iso-surface,

and can preserve sharp features.

2.2. Algorithm

The entire pipeline of the algorithm (Figure 2) consists of the following five main

steps:

1. Boundary Particles Sampling and Classification.

2. Feature Positions Extraction.

3. Prioritized Seed Initialization.

4. Front Propagation.

5. Visited Boundary Particles Identification.

After the first two preprocessing steps (Step 1 and Step 2), the algorithm will loop

from Step 3 to Step 5 until all the iso-surfaces are extracted.

8

Figure 2 : Algorithm flow chart

9

2.2.1. Boundary Particles Sampling and Classification

Figure 3 : Boundary particles sampling

Boundary particles (empty circles) are sampled at the intersections of the iso-surface (dashed

lines) and the edges of the boundary cells (solid lines). They will then be classified according to

their local geometric properties (e.g. curvature) and will be used for seed initialization.

The first step of the algorithm is boundary particles sampling. Figure 3 shows a 2D

illustration. Boundary particles (empty circles) are sampled at the intersections of the

iso-surface (dashed lines) and the edges (solid lines) of the boundary cells (i.e. cells that

intersect the iso-surface). These boundary particles will then be further classified into n

classes according to their local geometric properties such as curvature (we use the

maximum absolute principle curvature in this thesis). To estimate these geometric

properties such as gradient and curvature, instead of using the commonly used trilinear

interpolation, we use a more accurate cubic interpolation filter as suggested in [moller98].

The classified boundary particles will then be inserted into the seeding priority list and

will be used for seed initialization. The whole algorithm will stop only after all the

10

boundary particles are visited by one of the propagating front (Section 2.2.5). This will

ensure all the disjoint components of the iso-surface will be extracted.

2.2.2. Feature Positions Extraction

Our algorithm can preserve sharp features. For example, if Hermite type of datasets

(i.e. datasets with exact intersection points and normals) are available, we can extract the

sharp feature points/edges by solving the Quadratic Error Function (QEF) as suggested in

[kobbelt01] and [ju02]. The extracted feature positions will then be inserted with the

highest priority into the seeding priority list and will be used for seed initialization.

11

2.2.3. Prioritized Seed Initialization

Figure 4 : Prioritized seed initialization.

Candidate positions for seed initialization are organized into a priority list. Extracted feature

positions are assigned the highest priority and are put in the top row (Priority 0) of the priority list.

Boundary particles and pointers of all inactive evolving fronts are put into the next n rows (Priority

1 to Priority n) of the priority list according to the classifications.

Seed initialization will be conducted in a hierarchical fashion by placing all the

candidate seeding positions into a priority list. The seeding priority list can be

implemented as a bucket linked list (Figure 4 : Prioritized seed initialization.). Extracted

feature positions are assigned the highest priority and are put in the top row (Priority 0) of

the priority list. Boundary particles are put into the next n rows (Priority 1 to Priority n)

of the priority list according to their geometric properties such as curvature. We use the

maximum absolute principle curvature to classify the boundary particles. A suggested

12

step size is associated with each row in the priority list with the largest step size in the top

two rows and decreasing step sizes (e.g. one half of the previous step size) in the

following n-1 rows. In general, the higher curvature the boundary particle has the lower

priority it will be and the smaller step size it will be assigned to. In our implementation,

we initialize the priority list with three rows: the top row (Priority 0) stores all the

extracted features; the second row (Priority 1) stores all the boundary particles whose

curvature is below the average curvature of all the boundary particles; the third row

(Priority 2) stores all the boundary particles whose curvature is greater or equal to the

average curvature of all the boundary particles. The top row and the second row will start

with the original step size, while the third row will have one half of the original step size.

When a propagating front seeded from the Priority k row of the priority list becomes

inactive, it will be freezed and the pointer of the front will be inserted into the beginning

of the Priority k+1 row of the priority list. This way, when this front is later reactivated, it

will evolve at a step size smaller than its current step size (e.g. one half).

This prioritized seed initialization scheme will make the propagating front grows in

a layer-by-layer fashion so that at each layer the majority of the triangles will be about

equilateral. Hence our algorithm can generate meshes not only curvature adaptive, but

also semi-regular (i.e. the majority of the vertices have valence 6).

2.2.3.1. New Triangle Creation

Given a candidate seeding position, to create a new triangle, we will need to create

the base edge of the new triangle first. For extracted feature position, the adjacent feature

information is always available and will be used to create the base edge. Figure 5 shows

an illustration. For a boundary particle m with step size s, we will randomly create a line
13

segment uv of length s
3

32 on the tangent plane of m, centered at m with two endpoints

u and v, and then project the two points u and v onto the iso-surface as u' and v',

respectively. The new line segment u'v' will then serve as the base edge for this new

triangle. Given a base edge u'v' and step size s, either obtained from the above seeding

positions or from the boundary edge of an evolving front, to create a new triangle, we

will need to create the third vertex. First the middle point m between u' and v' is

calculated. A vertex w is then created at distance s away from m along the direction of the

cross product between u'v' and mn . mn is the outward-orienting unit vector obtained by

the normalized gradient of the iso-surface at position m. w is then projected to w' on the

iso-surface and will be the third vertex of the new triangle u'v'w'. Since the edge length of

u'v' is s
3

32 , and the edge length of mw is s, hence the triangle u'v'w will be equilateral

and the corresponding new triangle u'v'w' will be very close to equilateral.

14

Figure 5 : New triangle creation

A new triangle u'v'w' is created by placing the third vertex w on the iso-surface (Section 2.2.3.1)

2.2.3.2. Projection

To project a given point onto the iso-surface (e.g. w and w' in Figure 5), we

employed the iterative Newton-Raphson root-finding method as also used by Co et al. in

[hama03]. Let)(xφ represents the density function of the volume data, the iso-surface

of the volume data is then implicitly defined as { }0)(| =xx φ . The projection of a vertex

v onto the iso-surface can be found by a few steps of iterations along the gradient

direction)(xφ∇ of the density function)(xφ until converge:

nkv
v
v

vv k

k

k
kk ,...1),(

)(
)(

12
1

1
1 =∇

∇
−= −

−

−
− φ

φ
φ

 (2.1)

15

with . The equilibrium position obtained from this Newton-Raphson root

finding method however, does not always stay on the iso-surface. Hence, we propose to

conduct a finite number (e.g. three) iterations of additional line search after the

Newton-Raphson root finding method converges to position . More specifically, we

will start from and search along the gradient direction of until two consecutive

points on the searching sequence and are found to be on the different sides of

the iso-surface. A binary search is then conducted between the two points and

until the final projection point is found, which can be as close to the iso-surface as

needed. See

vv =0 nv

nv

nv nv

inv
1+inv

inv
1+inv

pv

Figure 6 for an illustration. If after a finite number of line search we can not

find two consecutive points on the search direction that are on the opposite side of the

iso-surface, the projection will be marked as invalid and the base edge will be freezed,

which will be reactivated later at a smaller step size.

16

Figure 6 : Enhanced projection scheme

After the equilibrium position is obtained from the Newton-Raphson root finding, several

additional iterations of line search is conducted along the gradient of to find the final projection

point which can be as close to the iso-surface as possible (Section

pv

nv

pv 2.2.3.2).

2.2.4. Front Propagation

After a new triangle is created (Section 2.2.3.1), several tests need to be conducted

before it can be added into the existing propagating front. One of the tests is to ensure the

Delaunay face property, which is first proposed in the original Marching Triangles

algorithm [hilt96]. However, the Delaunay face property will work only if the

intersection of the Delaunay sphere and the iso-surface is a topological disk. It’s an

important property lacking in the original Marching Triangles algorithm [hilt96] and its

existing variants [akko01, kark01, rodr04]. This problem is fixed by our new Normal

Consistency Constraint to be explained later in this section.

17

(a) (b)

(c)

Figure 7 : Enforcing Delaunay face property

(a) New vertex v is inside the Delaunay sphere of an existing boundary triangle, and is snapped

into the existing boundary vertex a; (b) The Delaunay sphere of the new triangle encloses an

existing boundary vertex a, hence the vertex v is snapped into vertex a; (c) The new vertex v is

very close to an existing boundary vertex a, hence it is snapped into vertex a to avoid creating a

thin triangle passing through vertices a and v.

2.2.4.1. Delaunay Face Property

We will briefly review the Delaunay face property in this section. For more details,

please refer to the original paper [hilt96]. In a nutshell, the Delaunay face property is: “A

new triangle xyv with new vertex v can be created if and only if the Delaunay sphere of

the triangle xyv does not contain any existing mesh vertices, and any Delaunay spheres of

existing triangles do not contain the new vertex v”. If all the triangles satisfy the

18

Delaunay face property, then the final triangulation will be the Delaunay triangulation,

which is the optimal triangulation [hilt96].

To enforce the Delaunay face property, our algorithm performs the following two

steps as illustrated in Figure 7. First, for new vertex v, we will check whether it is

enclosed by the Delaunay spheres of any existing triangles. If yes, then one of such

triangle's boundary vertices (e.g. a) will be used as the candidate for the third vertex of

new triangle (Figure 7 (a)).

The second step (Figure 7 (b)) is to check whether there are any existing boundary

vertices enclosed by the Delaunay sphere of the new triangle xyv. if yes, then one of

such boundary vertices (e.g. a) will be used as the candidate and conduct this second step

again until the Delaunay sphere of the new triangle does not include any existing vertices.

The above two tests however does not guarantee no thin triangles will be created as

is illustrated by Figure 7 (c). Here the new vertex v is not included by any Delaunay

sphere of existing triangles and the Delaunay sphere of the new triangle does not include

any existing vertices. However since v is very close to a, a thin triangle (passing through

v and a) will be created in later steps. To avoid creating such thin triangles and thus

further improving the triangulation quality, in the first step, when checking whether the

new vertex v is enclosed by the Delaunay spheres of any existing triangles, we will

increase the radius of the sphere by an extra d (Figure 7 (c)). d is the user-defined

minimum edge length of the triangles. By enlarging the sphere by an extra d, we ensure

no thin triangles whose minimum edge length is less than d will be created. If the new

triangle xyv passes these tests, it will be tested for the Normal Consistency Constraint to

be explained in the following section.

19

2.2.4.2. Normal Consistency Constraint

Figure 8 : A 2D illustration of the Normal Consistency Constraint

A new triangle (a new edge in this case) is valid only if it passes the Normal consistency constraint.

This is used to ensure that the intersection of the Delaunay sphere (dashed circle) of the current

edge (solid line) and the iso-surface (dashed curve) is a topological disk (Section 2.2.4.2). Among

the four cases shown ((a)-(d)), only the edge in (a) passes the Normal consistent constraint.

The above Delaunay face property however will only work if the intersection of the

Delaunay sphere and the iso-surface is a topological disk. One of the main contribution of

this algorithm and the main difference between this algorithm and other Marching

Triangles algorithms [hilt96, akko01, kark01, rodr04], is that we propose a specific

20

normal consistency checking step to enforce that the intersection of the Delaunay sphere

of the new triangle and the iso-surface is a topological disk. More specifically, given a

new triangle, we will uniformly sample its Delaunay sphere and calculate the maximum

normal variation among the sampled positions. In particular, besides the three vertices of

the new triangle, we will sample three extra points on each half of the Delaunay sphere

divided by the new triangle. If the maximum normal variation among the sampled

positions is less then a threshold, the new triangle is valid and can be added to existing

mesh, otherwise the new triangle will not be created, and the base edge of the new

triangle will be marked as inactive and will be freezed. Based on our experiment, the

threshold of 3
π has worked very well. When all the boundary edges of a propagating

front becomes inactive, the whole front will become inactive and will be inserted into the

seeding priority list at a row one level lower than its current priority (Section 2.2.3).

Figure 8 shows a 2D illustration of the Normal consistency constraint. Among the four

cases shown (Figure 8 (a)- Figure 8 (d)), only the case in Figure 8 (a) passes the Normal

Consistent Constraint, i.e. the intersection of the Delaunay sphere (dashed circle) of the

current edge (solid line) and the iso-surface (dashed curve) is a topological disk.

21

(a) (b)

(c) (d)

Figure 9 : Iso-surface extraction of a CT data of Engine

(a) and (b) are the front and back view of the smooth rendered mesh. (c) is a close-up view of

mesh generated by our algorithm. (d) is a close-up view of mesh generated by Marching Cubes.

22

2.2.5. Identify Visited Boundary Particles

After a new triangle is created, all the boundary particles enclosed by the triangle's

Delaunay sphere will be in the topological disk generated by the intersection of the

Delaunay sphere and the iso-surface. These boundary particles will be marked as visited

and will be removed from the seeding priority list (Section 2.2.3).

2.3. Experimental Results

Table 1 : Running time information

Figure 1 and Figure 9 to Figure Figure 14 demonstrate some of the experimental results

obtained by our new algorithm. The dark colored shape is rendered by smooth shading,

while the green lines show the wire frame view of the mesh. For example, from Figure 10

(b), we can clearly see the high quality of the mesh that is adaptive to the local shape

curvature. The new algorithm can also recover sharp features as can be seen in Figure 11.

The sharp features are detected similar to [kobbelt01] and [ju02]. Figure 14 shows a

side-by-side comparison between our new algorithm and the original marching triangle

algorithm [hilt96]. As we can see, by enforcing normal consistency constraints proposed,

our algorithm accurately extract the iso-surface in the regions around the small extrusion

23

in the data (Figure 14 (a)). On the other hand, the original algorithm [hilt96] can not

correctly extract the iso-surface and an self-intersection will be created (Figure 14 (b)).

Table 1 summarizes the statistics of the examples, including the (x, y, z) dimensions of

the input volume data, the model complexity (number of vertices, number of edges, and

number of faces), and the running time (measured in seconds). All the experiments are

conducted on a Pentium M 1.6GHZ Notebook PC with 1GB RAM. As can be seen

from the running time table, the computational complexity of the new algorithm is linear

of the size of the extracted mesh, which is similar to other region growing based

algorithms [hilt96, akko01, kark01, rodr04]

(a) (b) (c)

Figure 10 : Iso-surface extraction of a CT data of vertebra phantom

(a) smooth rendering of the extracted vertebra; (b) a close-up view; (c) a close-up view of mesh

generated by Marching Cubes.

24

Figure 11 : Iso-surface extraction of a volume data with sharp edges (shown as red lines)

(a) is the seed initialization step. (b) and (c) are two snap shots during the front propagation. (d) is

the final mesh.

(a) (b) (c)

Figure 12 : Iso-surface extraction of a CT data of a lobster

(a) and (b) are the front and back view of the smooth rendered mesh. (c) is a close-up view of (b).

(a) (b) (c)

Figure 13 : Iso-surface extraction of a MRI data of brain

(a) front view; (b) back view; (c) close up view of the generated mesh.

25

(a) (b)

Figure 14 : A comparison to the original marching triangle algorithm [hilt96].

 By enforcing normal consistency constraints, our algorithm can accurately extract the iso-surface

in the regions around the small extrusion in the data ((a)). On the other hand, the original algorithm

[hilt96] can not correctly extract the iso-surface and an self-intersection will be created ((b)).

26

3 Nonparametric Noisy Points Preprocessing

3.1. Introduction

Despite significant advancement in interactive shape modeling, creating realistic

looking 3D models from scratch is still a very challenging task. Recent advancement in

3D shape acquisition systems such as laser range scanner, structural light system and

stereo vision system have made direct 3D data acquisition feasible [seit06].

The obtained point dataset however can be quite noisy. Without preprocessing to

deal with noisy data, parametric and/or variational formulations [hopp92, baja95, curl96,

hilt98, whit97, zhao00, zhao01, carr01, ohta03, xie03, levi03, alex03] are usually used.

These methods generally composed of both a fitting term for the data and a regularization

term for the reconstructed surface. Since all data points, even outliers, are treated equally

and can affect the final reconstruction, these approaches will likely fail for highly noisy

data.

Another type of algorithms is based on popular computational geometry algorithms

such as Delaunay triangulations and Voronoi diagrams to construct triangulated surfaces

[amen99, edel98, bois84, amen98, amen98a]. For this kind of method, it is challenging to

find the right connections among all data points in three and higher dimensions,

especially for noisy data.

Recently, Medioni et al. proposed the tensor voting method [medi00], which is a

nice feature extraction algorithm. By designing an appropriate voting procedure among

27

all data points, a tensor field and an associated saliency field can be constructed.

Coherent geometric information can be extracted from the tensor field and the saliency

field. However, tensor voting method is computationally very expensive.

We propose a nonparametric approach for noisy point data preprocessing. In

particular, we proposed an anisotropic kernel based nonparametric density estimation

method for outlier removal, and a hill-climbing line search approach for projecting data

points onto the real surface boundary. Our approach is simple, robust and efficient. We

demonstrate our method on both real and synthetic point datasets.

3.2. Algorithm

3.2.1. Parzen-window Based Kernel Density Estimation

Points outside the object surface are outliers that have to be removed. Since the real

object surface is unknown, it is hard to specify a general criterion to detect outliers. We

propose to employ parzen-window based nonparametric density estimation method for

outlier removal.

Parzen window based kernel density estimation is the most popular nonparametric

density estimation method. In order to make the thesis self-contained, we will briefly

review the Parzen window method in the following. For a complete description, please

refer to the book by Duda et al. [duda00].

Given n data points xi, i = 1, … , n in the d-dimensional Euclidean space Rd, the

multivariate kernel density estimate obtained with kernel K(x) and window radius h,

computed in the point x is defined as:

28

 ∑
=

−
=

n

i

i
d h

xxK
nh

xf
1

)(1)(3.1

Without loss of generality, let’s assume h = 1 from now on, so we could simplify

Equation (3.1) as:

∑
=

−=
n

i
ixxK

n
xf

1

)(1)(3.2

K(x) is generally a spherically symmetric kernel function satisfying:

)||(||)(2
, xkCxK dk= 3.3

where k(x) is the profile function of the kernel K(x). is the normalizing constant

such that

dkC ,

0)(≥xK 3.4

and

∫ =
dR

dxxK 1)(3.5

||x|| is the L2 norm (i.e. Euclidean distance metric) of the d-dimensional vector x.

Employing the profile function notation, Equation (3.2) can be further rewritten as

∑
=

−=
n

i
i

dk xxk
n

C
xf

1

2,)||(||)(3.6

There are three types of commonly used spherical kernel functions K(x): the

Epanechnikov kernel, the uniform kernel, and the Gaussian kernel. The Epanechnikov

kernel is defined by the profile function kE(x):

⎩
⎨
⎧

>
≤≤−

=
10

101
)(

x
xx

xkE 3.7

The uniform kernel is defined by the profile function kU(x):

29

⎩
⎨
⎧

>
≤≤

=
10
101

)(
x
x

xkE 3.8

The Gaussian kernel is defined by the profile function kN(x):

0)
2
1exp()(≥−= xxxkN 3.9

(a) (b)

Figure 15 : Stanford bunny

The Stanford bunny (35678 points) with 1000% noise points added in; (b) Result after outlier

removal.

30

(a) (b)

Figure 16 : Synthetic torus

(a) A synthetic torus point data (4800 points) which has an open hole in top, with 1000% noise

points added in; (b) Result after outlier removal.

3.2.2. Outlier Removal By Anisotropic Ellipsoidal Kernel

For 3D point cloud obtained by laser scan or stereo vision, the outliers tend to spread

in the space randomly, while “real” (we use a quotation here to emphasize the fact that

the real surface is unknown) surface points will spread along a thin shell which encloses

the real surface object. In other words, the distribution of the outliers is relatively

isotropic, while the distribution of the real surface points is rather anisotropic. Hence, we

propose to employ an anisotropic ellipsoidal kernel based density estimation method for

outlier removal.

For anisotropic kernel, the L2 norm ||x-xi|| in Equation (3.6), which measures the

Euclidean distance metric between two points x and xi will be replaced by the

Mahalanobis distance metric ||x-xi||M :

2/11))()((|||| i
t

iMi xxHxxxx −−=− − 3.10

31

here H is the covariance matrix defined as:

TDDH = 3.11

and

D = (x1 - x, x2 - x, … , xn - x) 3.12

Geometrically, is a three-dimensional ellipsoid centered at x,

with its shape and orientation defined by H. Using Single Value Decomposition (SVD),

the covariance matrix H can be further decomposed as:

1)()(1 =−− −
i

t
i xxHxx

TUAUH = 3.13

with

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

2

1

00
00
00

λ
λ

λ
A 3.14

321 λλλ ≥≥ are the three eigenvalues of the matrix H, and U is an orthonormal matrix

whose columns are the eigenvectors of matrix H. We will detail the SVD-based

decomposition (Equation (3.13)) of the covariance matrix H in section 0.

To compute the anisotropic kernel based density, we will apply an ellipsoidal kernel

E of equal size and shape on all the data points. The orientation of the ellipsoidal kernel E

will be determined locally. More specifically, given a point x, we will calculate its

covariance matrix H by points located in its local spherical neighborhood of a fixed

radius. Without loss of generality, we will assume the radius is 1 (which can be done by

normalizing the data by the radius). The U matrix of Equation (3.13) calculated by the

covariance analysis is kept unchanged to maintain the orientation of the ellipsoid. The

32

size and shape of the ellipsoid will be modified to be the same as the ellipsoidal kernel E

by modifying the diagonal matrix A as:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

r
A

00
010
001

 3.15

r is half of the length of the minimum axis of the ellipsoidal kernel E. After the

density value is estimated, we will remove all the points whose estimated density value is

smaller than a user-defined threshold. Figure 15 and Figure 16 are two examples of the

proposed nonparametric density estimation based outlier removal from synthetic highly

noisy data. The input of Figure 19 is a 3D point clouds obtained from multi-view stereo.

Figure 19 (a) is the original data; Figure 19 (b) is the result after outlier removal. Figure

17 is a 2D slice view of the nonparametric data preprocessing process. In particular,

Figure 17 (a) is a 2D slice of the original 3D data of Figure 19 (a); Figure 17 (b) is the

color-coded density map of Figure 17 (a) estimated by an isotropic Gaussian kernel, with

red represents the highest density and blue the lowest density; Figure 17 (c) is the

color-coded density map of Figure 17 (a) estimated by an anisotropic Gaussian kernel of

the same scale of Figure 17 (b); Figure 17 (d) is the result after outlier removal using

Figure 17 (b), and Figure 17 (e) is the result after outlier removal using Figure 17 (c). As

we can see, better result is achieved by using the anisotropic kernel-based outlier removal

(Figure 17 (e)), comparing with the isotropic kernel-based outlier removal (Figure 17

(d)).

33

(a) (b) (c)

(d) (e) (f)

(g)

Figure 17 : A 2D slice view of the nonparametric data preprocessing process

(a) a 2D slice of the original 3D data of Figure 19 (a); (b) color-coded density map of (a) estimated

by an isotropic Gaussian kernel, with red represents the highest density and blue the lowest

density; (c) color-coded density map of (a) estimated by an anisotropic Gaussian kernel of the

same scale of (b); (d) after outlier removal using (b); (e) after outlier removal using (c); (f)

color-coded density map of (e) estimated by an anisotropic Gaussian kernel of a smaller scale

than (c); (g) result of projecting points of (e) by line search based on (f).

34

Figure 18 shows the 3D outlier removal results under different user-defined thresholds.

The top left is the original point clouds obtained by the aforementioned depth estimation

step. The next four images from top middle to bottom right are the outlier removal results

under different user-defined thresholds: 40, 60, 80, and 160, respectively. Among these

four outlier removal results, the first three data (top middle to bottom left) are all

acceptable to the subsequent implicit surface evolution step (Section 4.2.4) to construct a

watertight 3D surface. However the implicit surface evolution step might fail to create a

single watertight surface of the object for the fourth data in the bottom right of the figure

as the threshold is set too high thus creating very big holes in the data.

Figure 18 : Outlier removal results under different user-defined thresholds

Top left: original points obtained by depth estimation from the dino sparse ring data. From top

middle to bottom right are the outlier removal results under different user-defined thresholds: 40,

60, 80, and 160, respectively.

35

3.2.2.1. Decomposition of the Covariance Matrix H

Since the covariance matrix H is defined as:

,TDDH =

and

D = (x1 - x, x2 - x, … , xn - x).

Using Single Value Decomposition (SVD), D can be decomposed as:

TVUD Σ= 3.16

Σ is the diagonal matrix:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Σ

3

2

1

00
00
00

σ
σ

σ
 3.17

with 321 σσσ ≥≥ . U and V are orthonormal matrixes, i.e. I is the

identity matrix. So,

,IVVUU TT ==

TTTT UUUVVUDDH 2Σ=ΣΣ== 3.18

and let’s define matrix A as:

2Σ=A 3.19

which is also a diagonal matrix. Thus we have

TUAUH = 3.20

Furthermore, if we denote U = (u1, u2, u3), since U is an orthonormal matrix, we will

have

Hui = u2
iσ i 3.21

which means ui is the eigenvector of H, associated with its ith largest eigenvalue . 2
iσ

36

3.2.3. Point Projection By Line Search

After the outlier removal step, we will need to further process the remaining point

data so that they will be projected into the real surface. We will define the real surface as

the set of points whose density value (estimated by the above Parzen-window based

kernel density estimation) is maximum along its surface normal direction. This is similar

to the concept of “extreme surface” as suggested by Amenta et al. [amen04]. We

implement the data projection by a hill-climbing line search method. More specifically,

given a point x, it will move along a direction l that is (approximately) orthogonal to the

real surface, and will stop when a local maximum of the density value is reached. Since

the real surface is unknown, the moving direction l is approximated by the eigenvector u3

(Equation (3.21)) that is associated with the smallest eigenvalue (Equation (2
3σ 3.21)) of

the covariance matrix H (Equation (3.11)), calculated by the local neighborhood of point

x. The orientation of the moving direction is determined by the directional derivative of

the density value along l, i.e. point x will always move uphill (i.e. move towards the

direction that will increase the density value). Figure 19(c) shows the result of projecting

data points by line search. A 2D slice view of the point projection is shown in Figure

17(g). Note that the outlier removal and the point projection procedure can be iterated

one or two times to further improve the result.

37

(a) (b)

(c)

Figure 19 : Dino

(a) 3D point clouds (660,000 points) obtained from multi-view stereo; (b) after outlier removal; (c)

after point projection by line search.

38

4 Multi-view Stereo

4.1. Introduction

Despite significant advancement in interactive shape modeling, creating complex

high quality realistic looking 3D models from scratch is still a very challenging task.

Recent advancement in 3D shape acquisition systems such as laser range scanners and

encoded light projecting system have made directly 3D data acquisition feasible

[wang04]. These active 3D acquisition systems however remain expensive. Meanwhile,

the price of digital cameras and digital video cameras keeps decreasing while the quality

is improving every day, partially due to the intense competition in the huge consumer

market. Furthermore, huge amounts of images and videos are added in internet sites such

as Google ®, etc every day, a lot of which could be used for multiview image-based 3D

shape reconstruction [goes07].

To date, there have been a lot of researches conducted in the area of multiview

image-based modeling. The recent survey by Seitz et al. [seit06] gives an excellent

review of the state-of-arts in this area. As summarized by [camp08], most of the existing

algorithms follow a two-stage approach: 1) conduct depth estimation based on local

groups of input images; 2) fuse the estimated depth values into a global watertight 3D

surface estimation. The depth estimation step is often based on image correlation

[hern04]. The main differences between existing algorithms are in the second stage, the

data fusion step, which can be divided into two categories. The first type of data fusion

39

reconstructs the 3D surface by conducting volumetric data segmentation using global

energy minimization approaches such as graph cut [vogi07, goes06, horn06, vogi05,

sinh05], level-set [jim05, faug98, soat03, jin03, maxi05, kolm02], or deformable models

[hern04, duan04, hern02, yasu06]. Recently, people have proposed another types of data

fusion algorithms that are based on local surface growing and filtering [goes07, furu07,

habb07]. Without global optimization, these types of data fusion algorithms can be

computationally more efficient [merr07, brad08].

Our algorithm also follows this two-stage process. We proposed two iterative

refinement schemes that iterates between the depth estimation step and the data fusion

step. This is similar in spirit of the Expectation Maximization (EM) algorithm. The

difference between these two algorithms is in implicit and explicit surface evolution. One

uses outliner removal algorithm to clean points cloud, followed by tagging algorithm for

implicit surface evolution, and energy-optimization based partial differential equations

(PDE) for explicit surface evolution; another uses integrate graph-cut method for global

optimal initialization with flux tensor based divergence field in implicit surface evolution,

and mean shift for explicit surface evolution. Our algorithms integrate the fast implicit

region growing with the high-quality explicit surface evolution, thus they are both fast

and accurate.

The rest of this chapter is organized as follows: In Section 1.1 we discuss the main

differences between our approaches and related existing works. Section 2 and 3 describe

the details of our algorithms and show their benchmark data evaluations.

40

4.1.1. Comparison With Related Works

Our work is most related to the works of Hernandez et al. [hern04] and Quan et al.

[quan07, maxi05]. Hernandez et al. proposed a deformable model based reconstruction

algorithm [hern04] that achieves one of the highest quality reconstruction [seit06]. The

depth estimation of [hern04] is conducted by rectangular window based normalized

cross-correlation (NCC). The estimated depth values are then discretized into an

octree-based volumetric grid. Finally a gradient vector flow based deformable model is

applied to the volumetric grid to reconstruct the 3D surface.

Our depth estimation follows the similar pipeline of [hern04], with several

modifications to further improve its efficiency and accuracy. We will describe these

modifications in Section 2.2. Furthermore, unlike [hern04], we represent the depth

estimations as 3D points whose accuracy are not restricted by the resolution of the

volumetric grid. Quan et al [quan07, maxi05] also represent the estimated depth values as

3D points. However, unlike our method, they do not have an explicit outlier removal.

Instead they rely on level-set based surface evolution with high-order smoothness terms

such as Gaussian/mean curvature to overcome noises, which may create surfaces that

maybe too smooth to represent finer geometry details of the original object. Most recently,

Campbell et al. [camp08] proposed an outlier removal algorithm based on the Markov

Random Field (MRF) model which can achieve very impressive reconstruction results.

On the other hand, our outlier removal algorithm is based on kernel density estimation

and is conducted on 3D unorganized points instead of the 2D image space of [camp08].

The graph cut algorithm as well as the divergence based energy functional are

originally proposed by Lempitsky et al. [vict07]. However the way we created the

41

divergence field is totally different than [vict07]. Also [vict07] is focused on surface

fitting with multi-view stereo one of the application, where we proposed a complete

pipeline for multi-view stereo in this thesis.

To summarize, the main contributions of this thesis are: 1) a novel iterative

refinement scheme between the depth estimation and the data fusion; 2) a novel

anisotropic kernel density estimation based outlier removal algorithm and saliency

estimation algorithm; 3) a novel data fusion approach that integrates the global optimal

graph cut algorithm with a high-quality, efficient mean-shift based explicit surface

evolution algorithm.

Figure 20 : Flow chart of the algorithm with outliner removal.

42

4.2. Iterative Surface Evolution Algorithm With Outliner

Removal

The entire algorithm (Figure 1) consists of the following main steps:

1. Visual hull construction

2. 3D point generation

3. Outlier removal

4. Implicit surface evolution

5. Explicit surface evolution

Starting from an initial shape estimation such as the visual hull (Step 1), we will use

this shape estimation to generate more accurate 3d points based on image correlation

based depth estimation (Step 2), which can then be used to create a better shape

estimation (Step 3 to Step 5). In practice, two to three iterations between Step 2 and Step

5 will be sufficient to create very good shape estimation. Figure 21 is a 2d illustration of

the reconstruction process.

43

(a) (b)

(c) (d) (e)

Figure 21 : A 2D illustration of the whole reconstruction pipeline

(a) visual hull; (b) 3d points generated by depth estimation; (c) after outlier removal; (d) shape

estimated by implicit region growing; (e) refined shape estimation by explicit surface evolution.

4.2.1. Visual Hull Construction

The first step of our algorithm is to obtain initial shape estimation by constructing a

visual hull. Visual hull is an outer approximation of the observed solid constructed as the

intersection of the visual cones associated with all the input cameras [laur94]. A discrete

volumetric representation of the visual hull can be obtained by intersecting the cones

generated by back projecting the object silhouettes from different camera views. An

explicit shape representation can be obtained by iso-surface extraction algorithms such as

Marching Cubes [lorensen87].
44

4.2.2. 3D Points Generation

Once we had an initial explicit shape estimation, we will proceed to 3D depth

estimation. First, we need to estimate the visibility of the initial shape with respect to all

the cameras. We use OpenGL to render the explicit surface into the image planes of each

individual camera and extract the depth values from the Z-buffer. Given a point on the

surface, its visibility with respect to a given camera can then be decided by comparing its

projected depth value into the image plane of the given camera with the corresponding

depth value stored in the Z-buffer.

Our depth estimation is based on the Lambertian assumption, i.e. if a point belongs

to the object surface, its corresponding 2D patches in the image planes of its visible

cameras should be strongly correlated. Hence starting from a point on the object surface,

we can conduct a line search along a defined search direction to locate the best position

whose correlation between the corresponding 2D image patches of different visible

cameras is the maxima within a certain search range. This idea is first proposed by

[hern04]. Our thesis follows the same principle with several modifications. In the

following, we will first briefly describe our depth estimation method, followed by a brief

discussion of the differences between our method and the method of [hern04].

Given a point on the initial surface, we will select a set of (up to) five “best-view”

visible cameras based on the point’s estimated surface normal. Each camera in the

selected set will serve as the main camera for once. The search direction is defined as the

optical ray passing through the optical center of the main camera and the given point. We

will uniformly sample the optical ray within a certain range of the given point, and for

each sampled position, we will project it into the image planes of the main camera and

45

another camera in the set, respectively. Rectangular image patches centered at the

projected locations of the two image planes will be extracted, and the correlation between

the two image patches will be computed by similarity measures such as the normalized

cross-correlation (NCC) [hern04].

For a set of five “best-view” cameras, a total of 20 correlation curves will be

generated. For each of the correlation curve, the best position (i.e. the point with the

highest correlation value) will be selected as the depth estimation. The depth estimations

will be represented as 3d points, which will be processed further to construct a new shape

estimation of the object.

The main differences between our implementation and the method of [hern04] are:

first, we start the line search from every point on the explicit object surface. The line

search in [hern04] is initiated from every image and the correlation is computed with all

the other images, which could be computationally more expensive then ours. Secondly, in

[hern04], for each set of correlation curves computed using the same search direction and

the same main camera, only one representative depth estimation is used. While in our

method, we avoid this potentially premature averaging by using the depth estimations

from all the correlation curves, and postpone the outlier pruning into the subsequent

outlier removal step. Thirdly, in [hern04], the depth estimations are stored in an

octree-based volumetric grid, while we store them as discrete points whose accuracy are

not restricted by the grid size.

46

4.2.3. Outlier Removal

We use the algorithm detailed at section 3.2.1 and section 3.2.2 for outlier removel.

Please refer to those sections for detail.

4.2.4. Implicit Surface Evolution

After outlier removal, the remaining 3d points will be used to reconstruct the 3D

surface of the object. The shape estimation is conducted into two steps. First, a fast

implicit distance function based region growing method—tagging algorithm [zhao01] is

employed to create a coarse shape estimation from the 3d points. Next, an explicit surface

evolution step is applied to recover the finer geometry details of the object. We will

briefly review the tagging algorithm in the following, for more details please refer to the

original paper [zhao01]. The explicit surface evolution method will be discussed in the

next section.

The basic idea of tagging algorithm is to identify as many correct exterior grid

points as possible and hence provide a good initial implicit surface, which is represented

as an interface that separates the exterior grid points from the interior grid points. There

are two main steps in the original tagging algorithm. First, we will compute a volumetric

unsigned distance field based on the 3d points. This is done by the aforementioned fast

sweeping method [zhao00]. Once we had the volumetric unsigned distance field, the

tagging algorithm will iteratively grow the set of exterior grid points and stop at the

boundary of the object. The algorithm can start from any initial exterior region that is a

subset of the true exterior region, e.g. an outmost corner grid point of the bounding

volume, and iteratively tag all the grid points as exterior or interior points based on the
47

comparison of the closeness to the object boundary between the current grid points and

its neighboring interior grid points.

4.2.5. Explicit Surface Evolution

The shape estimation obtained by the implicit tagging algorithm will be converted to

explicit meshes by [lorensen87], and will serve as the initial shape for the subsequent

explicit surface evolution step to further improve the geometry accuracy of the shape

reconstruction. The surface evolution is guided by energy-optimization based partial

differential equations (PDE). Classical PDEs such as minimal surface flow [case96]

usually includes a second order curvature term to improve the robustness against noise.

However it may also prevent the surface evolution to recover finer geometry details. In

this thesis, we choose the simple convection equation to guide the explicit surface

evolution:

)(')(

,)(

SfSg

NSg
t
S

=

=
∂
∂ r

 4.1

)(tSS = is the 3D evolving surface, t is the time parameter, g(S) is speed function and is

defined as the derivative of f(S), which is the point-based density estimation calculated by

equation (3.1). is the surface normal vector. The final reconstructed 3D shape is then

given by the steady-state solution of the equation:

N
r

0=tS .

Since the speed function g is dynamically calculated at each time step based on the

local points distribution, the accuracy of our evolution method will not be limited by the

grid resolution as other volumetric image based surface evolution methods such as

[hern04]

48

4.2.6. Benchmark Data Evaluation

We had applied this algorithm to the four benchmark datasets: temple ring, temple

sparse ring, dino ring, and dino sparse ring from [multiv]. Table 2 shows the running time

and the reconstruction accuracy obtained from the evaluation site [multiv]. The running

time is based on a Pentium D Desktop PC with CPU 2.66GHz, 2GB RAM. Figure 22 are

the 3D rendering of our reconstruction results copied from the evaluation website. Note

that, the evaluation was originally done in the private evaluation mode, thus we can’t give

out the link in this thesis. We are contacting Dr. Daniel Scharstein to move our results

into the public domain.

Dataset Running time
(minutes: seconds)

of input images accuracy

Temple ring 33:17 47 98.9%
Temple Sparse Ring 29:06 16 96.8%
Dino ring 36:45 48 97.7%
Dino sparse ring 32:01 16 97.6%

Table 2 : Running time and reconstruction accuracy

49

Figure 22 : Temple and Dino 3D illustration

3D rendering of our reconstruction results running on the four Benchmark datasets of [multiv].

From top to bottom: temple ring, temple sparse ring, dino ring, and dino sparse ring.

4.3. Integrated Depth Fusion Algorithm with Graph-Cut

The entire algorithm consists of the following five main steps :

1. Visual hull construction

2. 3D point generation

3. Saliency Weighted Normal Vector Field Construction

4. 3D Shape Estimation by Graph-Cut

5. Explicit surface evolution by mean-shift

50

Figure 23 : Flow chart of the algorithm with Graph-Cutl

 Starting from an initial shape estimation such as the visual hull (Step 1), we will

conduct depth estimation which will generate a set of 3D points representing the

estimated depth (Step 2). A volumetric saliency weighted normal vector field is then

constructed based on the 3D points (Step 3), which is then be used to extract a watertight

3D surface by graph cut algorithm (Step 4). Step 2 to Step 4 can be repeated several times.

In practice, two to three iterations between Step 2 and Step 4 will be sufficient to obtain a

good shape estimation, which will be further improved by the explicit surface evolution

step (Step 5). We will discuss each step in details in the following sections. Figure 24 is a

2D slice view of the reconstruction process of the dino ring dataset of [19]. Figure 25 to

Figure 28 show the intermediate results of the 3D reconstruction process of dino sparse

ring, dino ring, temple sparse ring, temple ring.

Instead of using outliner removal and tagging algorithm, this algorithm contructs

saliency weighted normal vector field and uses graph-cut for implicit surface evolution.

51

Mean shift is used for the explicit surface evolution. The other steps of those two

algorithms are identical. The following will detail the implicit and explicit surface

evolution.

(a) (b) (c)

(d) (e) (f)

Figure 24 : A 2D slice view of the 3D reconstruction process from the dino ring data

(a) visual hull; (b) points generated by depth estimation; (c) divergence field; (d) shape estimation

by graph-cut; (e) shape estimation by graph-cut after another iteration; (f) refined shape estimation

by explicit surface evolution.

(a) (b) (c) (d) (e)

Figure 25 : 3D view of the reconstruction process of the dino sparse ring dataset of [multiv]

From left to right: visual hull; 3D points generated by depth estimation; shape estimation by

graph-cut; shape estimation by graph-cut after another iteration; refined shape estimation by

explicit surface evolution.

52

(a) (b) (c) (d) (e)

Figure 26 : 3D view of the reconstruction process of the dino ring dataset of [multiv]

From left to right: visual hull; 3D points generated by depth estimation; shape estimation by

graph-cut; shape estimation by graph-cut after another iteration; refined shape estimation by

explicit surface evolution.

(a) (b) (c) (d) (e)

Figure 27 : 3D view of the reconstruction process of the temple sparse ring dataset of [multiv]

From left to right: visual hull; 3D points generated by depth estimation; shape estimation by

graph-cut; shape estimation by graph-cut after another iteration; refined shape estimation by

explicit surface evolution.

53

(a) (b) (c) (d) (e)

Figure 28 : 3D view of the reconstruction process of the temple ring dataset of [multiv]

From left to right: visual hull; 3D points generated by depth estimation; shape estimation by

graph-cut; shape estimation by graph-cut after another iteration; refined shape estimation by

explicit surface evolution.

4.3.1. Saliency Weighted Normal Vector Field Construction

There are two main steps in the data fusion phase. First, a saliency weighted normal

vector field is constructed based on the 3D points generated by the above depth

estimation step. Next, a watertight 3D surface is extracted from the saliency weighted

normal vector field by energy minimization. The saliency weighted normal vector field is

constructed by the following three steps: 1) saliency field construction by anisotropic

kernel density estimation; 2) normal estimation and consistent normal orientation

propagation; 3) volumetric saliency weighted normal vector field construction.

We will detail the three steps of saliency weighted vector field construction in this

section. The 3D surface extraction will be discussed in the later sections.

54

4.3.1.1. Saliency field construction by anisotropic kernel

density estimation

We use the term saliency to represent the likelihood the unknown surface passes

through a certain part of 3D space. We propose to employ parzen-window based

nonparametric density estimation method to compute the saliency of each point (see

3.2.1).

4.3.1.2. Normal estimation and consistent normal orientation

propagation

Given the 3D point clouds, we can estimate the normal vector at each point based on

the Principle Component Analysis (PCA) algorithm [hugu92]. Normal vectors estimated

by the PCA algorithm however has an ambiguity of 180 degree so might not be

consistently oriented. An orientation propagation is often needed to ensure the consistent

orientation of the normal vectors. One way to do this is to first build a graph with each

point as a node and the weights of edges between the adjacent points are defined as

211 nn ⋅− , where and are the normal vectors of the two adjacent points, and

then compute the minimum spanning tree (MST) from the graph using algorithms such as

the Kruskal’s algorithm [krus56] which finds a subset of the edges that forms a tree that

includes every vertex in the graph, where the total weight of all the edges in the tree is

minimized. At the termination of the algorithm, the normals are adjusted so the two

neighbors in the tree have consistent normal orientation.

1n 2n

The above MST based normal orientation propagation approach however is not

robust against noises and outliers. In the thesis, we propose to utilize external knowledge

55

to guide the normal orientation propagation (Figure 29). Particularly, since the point

clouds are generated by depth estimation based on the image correlations between

different cam-eras, for a given point p, it should be visible to its main camera in the depth

estimation step (Section 4.2.2), i.e. the dot product between the normal vector of the point

p and the view direction of its main camera should be negative. If not we will reverse the

normal orientation at this point.

(a) (b)

Figure 29 : Camera view direction guided normal orientation propagation

(a) 3D points generated by the depth estimation based on the image correlations between the

main camera C and the other adjacent cameras. Each point is shown with its normal vector

estimated by the PCA algorithm. The orientation of the normal vectors at point p, q and r are not

correct. (b) Based on the view direction of the main camera C, the orientation of the normal

vectors at point p, q and r are reversed so that they are now opposite to the view direction of

camera C.

4.3.1.3. Volumetric Saliency Weighted Normal Vector Field

Construction

Once we have estimated the saliency and normal vector at each point, we will

proceed to construct a volumetric saliency weighted normal vector field, from which a

watertight 3D surface can be extracted by energy minimization. A volumetric grid

56

embedding all the 3D points is first constructed. The saliency and the normal vector of

each point are then propagated to its adjacent grid nodes (Figure 30). Specifically, the

saliency of a grid node g is computed as the weighted summation of the saliency

of its adjacent points :

gS

∑=
i

ppg ii
SCS 4.2

The weight is calculated using the aforementioned parzen-window kernel

function (Equation (

ipC

3.6)) based on the anisotropic Mahalanobis distance (Equation (3.10))

between the grid node g and point . Since the kernel we used (e.g. truncated Gaussian

kernel) has finite support here, only a finite number of points (i = 1, …, n) within the

kernel radius has non-zero weights . The normal vector at grid node g is

calculated similarly as the weighted summation of the normal vector of its adjacent

points :

ip

ip

ipC gN
r

ipN
r

∑=
i

pppg iii
NSCN
rr

 4.3

57

gN
r1p

2p

3p

4p
5p

6p

7p

Figure 30 : Construction of the volumetric saliency weighted normal vector field

The normal vector at grid node g is calculated as the weighted sum of the normal vectors of its

adjacent points.

s

t
(a) (b) (c)

Figure 31 : Shape estimation by graph cut

(a) Graph construction for minimization of Equation (4.8): neighboring nodes are connected via

n-links representing regularization cost. Nodes are also connected to the terminals vial t-links

based on their divergence value: blue nodes have positive divergence and are connected to the

source terminal s; red nodes have negative divergence and are connected to the sink terminal t;

the green node has zero divergence and is not connected to either terminal. (b) A 2D slice of the

divergence field for the dino ring dataset of [multiv]. (c) A 2D slice of the 3D surface (shown as

non-green pixels) estimated by the graph cut algorithm.

58

4.3.2. 3D Shape Estimation by Graph-Cut

Once the volumetric saliency weighted normal vector field is constructed, a

watertight 3D surface S can be extracted by energy minimization. We use the following

energy functional as suggested by [vict07]:

regdata EEE ε+= 4.4

dataE is the data alignment term which is the inverse of the flux that enforces the surface

alignment with the data orientation:

∫−=−=
Sdata dsvNSfluxE ,)(4.5

where <,> is (Euclidean) dot product and N is unit normal to surface elements ds

consistent with a given orientation. If vectors v is interpreted as a local speed in a stream

of water then the absolute value of flux equals the volume of water passing through the

hypersurface in a unit of time. The sign of flux will be determined by the orientation of

the surface. is the area-based regularization term that maintains the regularity of the

extracted surface:

regE

∫= Sreg dsE 4.6

ε is the coefficient of the regularization term that controls the strength of the

smoothness in the energy minimization process and is related to the sampling density of

the data.

regE

As pointed out by [vict07], combining flux with area based regularization can

overcome the shrinking effect of the area-based regularization and improve the
59

reconstruction of elongated structures, narrow protrusions, and other fine details. Based

on the divergence theorem for differentiable vector fields, the integral of flux of vector

field over surface S equals to the integral of vector field’s divergence div(v) in the interior

of S:

∫∫ ⋅=
V pS

dpvdivdsvN)(, 4.7

Where V is the region enclosed inside S. Thus E of Equation (4.5) is now:

∫∫ ⋅−=
V pS

dpvdivdsE)(ε 4.8

Equation (4.8) can be solved efficiently using the graph cut algorithm [vict07]. A typical

graph construction is shown in Fig. Figure 31(a): neighboring nodes are connected via

n-links representing area-based regularization cost. Nodes are also connected to the

terminals via one t-link based on their divergence value: blue nodes have positive

divergence and are connected to the source terminal s with weight ; red nodes

have negative divergence and are connected to the sink terminal t with weight ;

the black node has zero divergence and is not connected to either terminal. The weight of

the n-link is defined as the inverse of the edge length so that the weights of severed

n-links approximate the surface area [boyk03]. Consequently, a global minimum surface

for Equation (

)(pvdiv

)(pvdiv−

4.8) can be found by computing a minimal s/t-cut in the constructed graph.

The theory based on the graph-cut algorithm is integral geometry and Crofton

formulas.

Consider in plane , 2R]}2,0[,0:),{(π∈≥= babaL is the set of all straight lines,

each line is uniquely defined by its parameter a and b, as show in),(bal Figure 32.

60

Figure 32 : Line In
2R

In , each line can be represented by two parameters a and b. 2R),(bal

The classical Cauchy-Crofton formula demonstrates the relationship between the

Euclidean length
ε

D of curve D in and the set of lines intersecting it. 2R

ε
Ddlln

L c 2)(=∫ 4.9

Here, is the number of times the straight line l intersects D.)(lnc

Consider a weighted graph >=< EVG , and a cut C on G. The cut metrics is :

∑
∈

=
Ce

eG
wC 4.10

ew is the weigh of edge e.

If a regular grid-graph >=< EVG , is embedded in plane , a closed curve D

in is always corresponding to a cut C in G. By choose the weight of grid-graph’s

edges, the cut metrics

2R

2R

G
C will be proportional to the curve’s Euclidean length

ε
D .

61

Figure 33 : Grid-graph

Grid-graph embedded in space(plane), and curve D is responding to the cut C. 2R

1e

2φ

2φΔ

4e 3e
2e

Figure 34 : Symmetric 8-neighboring system

Symmetric 8-neighboring system in 2D grid-graph. In fact, only need to consider first 4 edges

because of symmetry.

[boyk03] give the detail information about how to construct such grid-graph

embedded in space and approximate the surface area (curve length for). nR 2R Figure

34 shows an example of grid-graph embedded in plane with 8-neigbhouring system. 2R

62

Each node has eight symmetric neighbors, which is noted as a set }81,{ ≤≤= keN kG .

In order to make a curve’s cut metrics from the grid-graph approximate its actual

Euclidean length, the edge weight should be : kw

k

k
k e

w
⋅
Δ⋅

=
2

2 φδ
 4.11

Here, δ is the cell size of the grid, kφΔ is the angular differences between the nearest

families of edge lines, e.g, 232 φφφ −=Δ ; ke is the edge length. For grid-graph with

symmetric neighboring system, δ , kφΔ are fixed, as a result, the edge weight is

inverse proportional to edge length. In this thesis, we just simple choose edge weight as :

k
k e

w 1
= 4.12

It is because there is a weight factor ε in equation (4.8). To minimize equation (9),

it’s not necessary to calculate exactly surface area, but just choose an appropriate value of

λ , which depends on the data’s sampling density and the calculation of flux. To datasets

in this thesis, we choose it in range between 0.02 and 0.07 for grid-graph with

26-neighboring system in space. 3R

4.3.3. Explicit Surface Evolution

The shape estimated by the graph cut algorithm can be further improved by an

explicit surface evolution step guided by the following partial differential equation

(PDE):

63

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

=

−
−

−
=

⋅=

=
∂
∂

∑

∑

=

=

)(')(

)||(||

)||(||
)(

)()(

1

2

1

2

xkxg

x
xxg

xxxg
xm

NxmxF

NF
t
S

n

i
i

n

i
iir

rr

r

 4.13

Here S is the 3D surface, t is the time parameter, F is the speed function. N
r

 is the

surface normal vector.)(xmr is mean shift vector proposed in [coma02] and is

proportional to , the gradient of the kernel density function f (x) of Equation ()(xf∇ 3.6),

i.e. the mean shift vector)(xmr is in the gradient ascent direction and will always point

to the direction of the maximal increase in the kernel density. Since the surface evolves

along its normal direction (Figure 35), the speed function F is defined as the inner

product between the mean shift vector)(xmr and the normal vector . Note that the

speed function F is dynamically calculated at each time step, thus the surface evolution is

not be limited by the grid resolution.

N
r

N
r

x

F)(xmr

Figure 35 : Explicit surface evolution.

The surface (shown in green) will move along its normal vector with speed function F which is the

inner product between the mean shift vector)(xmr and the normal vector.

64

4.3.4. Benchmark Data Evaluation

We had applied this algorithm to the four benchmark datasets: temple ring, temple

sparse ring, dino ring, and dino sparse ring from [multiv]. Table 3 shows the running time

and the reconstruction accuracy obtained from the evaluation site [multiv]. The running

time is based on a Pentium D Desktop PC with CPU 2.66GHz, 2GB RAM. Figure 36 are

the 3D rendering of our final reconstruction results copied from the evaluation website.

Our result is listed under the name “ECCV_216”.

Figure 36 : Temple and Dino 3D illustration

3D rendering of our reconstruction results running on the four Benchmark datasets of [multiv].

From top to bottom: temple ring, temple sparse ring, dino ring, and dino sparse ring.

65

Dataset Running time
(minutes: seconds)

of input images accuracy

Temple ring 33:50 47 99.5%
Temple Sparse Ring 29:15 16 96.8%
Dino ring 34:10 48 99.5%
Dino sparse ring 30:50 16 97.8%

Table 3 : Running time and reconstruction accuracy (Algorithm with graph-cut)

66

5 Summary

5.1. Conclusion

In this dissertation thesis, three problems related to 3D shape modeling are

addressed, extraction iso-surface from volumetric dataset, elimination noisy points from

points clouds and iterative surface evolution for multi-view stereo. They are focus on

separate issues on 3D shape modeling but also close related to each other. The basic idea

beneath them is data transformation. For cleaned points cloud, tagging algorithm can

transform it to the volumetric data; for multi-view stereo, we can use line search to

generate initial noisy points cloud, which can further be transformed to volumetric data

via our proposed algorithm; in iteration of proposed multi-view stereo algorithm,

volumetric data also need to be transformed to points cloud for new points searching.

The new region-growing based iso-surface extraction algorithm can significantly

improve the original Marching Triangles algorithm. Besides using the Delaunay face

property to check for existing triangulation, local iso-surface information is also checked

by the new Normal Consistency Constraints to ensure the intersection of the Delaunay

sphere and iso-surface is a topological disk. As can be seen from the examples, the new

algorithm is very robust for datasets of complex topology and geometry. In addition, by

employing a prioritized seeding initialization scheme, our algorithm can generate

high-quality semi-regular meshes with different level-of-details and can preserve sharp

features.

67

In this thesis, we propose a nonparametric approach for noisy point data

preprocessing. In particular, we proposed an anisotropic kernel based nonparametric

density estimation for outlier removal, and a hill-climbing line search approach for

projecting data points onto the real surface boundary. Our method is very robust with

highly noisy dataset, as can be seen from the examples shown. In addition, our approach

is very computationally efficient. For example, it only takes 3 to 4 minutes in a

middle-range desktop PC to process (outlier removal and point projection) the mult-view

stereo point data (Figure 19) which contains more than 600,000 points. The majority of

the running time actually spends on computing the density. The line search based

projection is done in less than 10 seconds for the whole dataset.

For the most challenging multi-view stereo problem, we propose an iterative surface

evolution algorithm for 3D shape reconstruction. The novel iterative refinements between

image correlations based 3d depth estimation and surface evolution based shape

estimation can significantly reduce the computational time and improve the accuracy of

the final reconstructed surface. The benchmark evaluation results are comparable with the

state-of-art methods.

In summery, those three algorithm address three close related issue in 3D shape

modeling, and they work together to provide a workable way for translating most of the

raw data from real world to the 3D model which can be understood and manipulated by

computer in virtual world.

68

5.2. Future Work

Our work is an attempt to address the 3D shape modeling which bridge the gap

between computer’s virtual world and human beings’ real world. We try to provide a

workable and reliable way to help the translation. There are still lots of further

improvement left.

For region growing iso-surface extraction, we would like to extend the algorithm to

parallel seed initialization and out-of-core computation which will further improve its

performance.

For nonparametric noisy points preprocessing, the main limitation is that currently a

fixed bandwidth of the kernel is used across the whole dataset, which can cause some of

the “good” data being removed during the outlier removal process (as can be seen in

Figure 17 (e)). We would like to develop a scheme that can automatically select the

optimal kernel bandwidth based on the local neighborhood. We would also like to extend

our approach so that it can handle hole fillings automatically.

In multi-view stereo, currently our method utilizes the visual hull for initial

estimation. This requires image segmentation that may be difficult for some images. We

would like to relax this requirement in the future. This might be possible since our

algorithm uses the iterative refinement which should be able to start from any coarse

shape such as a bounding box or a convex hull.

69

Reference

[akko01] S. Akkouche and E. Galin, Adaptive Implicit Surface Polygonization using
Marching Triangles, Computer Graphic Forum, 2001, volume 20, 2, 67-80

[amen04] Nina Amenta, Yong Joo Kil: Defining point-set surfaces. ACM Trans.
Graph. 23(3): 264-270 (2004)

[amen98] N. Amenta, M. Bern, and D. Eppstein, The crust and the –skeleton:
Combinational curve reconstruction, 14th ACM Symposium on Computational
Geometry, 1998.

[amen98a] N. Amenta, M. Bern, and M. Kamvysselis, A new voronoi-based surface
reconstruction algorithm, in SIGGRAPH '98: Proceedings of the 25th annual
conference on Computer graphics and interactive techniques, (New York, NY, USA),
pp. 415-421, ACM Press, 1998.

[amen99] N. Amenta and M. Bern, Surface reconstruction by voronoi filtering,
Discrete and Comput. Geometry, vol. 22, pp. 481-504, 1999.

[baja95] C. L. Bajaj, F. Bernardini, and G. Xu, Automatic reconstruction of surfaces
and scalar fields from 3d scans, in SIGGRAPH '95: Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques, (New York, NY, USA),
pp. 109-118, ACM Press, 1995.

[bois84] J. D. Boissonnat, Geometric structures for three dimensional shape
reconstruction, ACM Trans. Graphics 3, pp. 266-286, 1984.

[boyk03] Yuri Boykov, Vladimir Kolmogorov: Computing Geodesics and Minimal
Surfaces via Graph Cuts. ICCV 2003: 26-33.

[brad08] Bradley, D., Boubekeur, T., Heidrich, W.: Accurate multi-view
reconstruction using robust binocular stereo and surface meshing. In: Proc. IEEE
Conf. on Computer Vision and Pattern Recognition. (2008).

[camp08] Neill Campbell, George Vogiatzis, Carlos Hernández and Roberto Cipolla.
Using multiple hypotheses to improve depth-maps for multi-view stereo. ECCV 2008,
pages 766-779.

[carr01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.
McCallum, and T. R. Evans, Reconstruction and representation of 3d objects with
radial basis functions, in SIGGRAPH '01: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, (New York, NY, USA), pp. 67-76,

70

ACM Press, 2001.

[case96] Vicent Caselles, Ron Kimmel, Guillermo Sapiro, Catalina Sbert: Three
Dimensional Object Modeling via Minimal Surfaces. ECCV (1) 1996: 97-106.

[cign00] Paulo Cignoni and Fabio Ganovelli and Claudio Montani and Roberto
Scopigno, Reconstruction of topologically correct and adaptive trilinear isosurfaces,
Computers and Graphics, 2000, volume 22, 1, 312

[coma02] Comaniciu, Dorin, Peter Meer. Mean Shift: A Robust Approach Toward
Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 24 (5): 603-619. 2002.

[curl96] B. Curless and M. Levoy, A volumetric method for building complex models
from range images, in SIGGRAPH '96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, (New York, NY, USA), pp. 303{312,
ACM Press, 1996.

[duan04] Y. Duan, L. Yang, H. Qin, and D. Samaras. Shape reconstruction from 3D
and 2D data using PDE-based deformable surfaces. In ECCV, vol. 3, pp. 238-251,
2004.

[duda00] Richard O. Duda Peter E. Hart David G. Stork, Pattern Classification,
October 2000, Wiley-Interscience; 2 edition.

[edel98] H. Edelsbrunner, Shape reconstruction with delaunay complex, in LATIN
'98: Proceedings of the Third Latin American Symposium on Theoretical Informatics,
(London, UK), pp. 119-132, Springer-Verlag, 1998.

[faug98] O. Faugeras and R. Keriven. Variational principles, surface evolution,
PDE's, level set methods and the stereo problem. IEEE Trans. on Image Processing,
7(3):336-344, 1998.

[furu07] Furukawa, Y., Pons, J. Accurate, dense, and robust multi-view stereopsis. In:
Proc. IEEE Conf. on Computer Vision and Pattern Recognition. (2007).

[gibs98] S. Gibson, Using Distance Maps for Accurate Surface Representation in
Sampled Volumes, IEEE Symposium on Volume Visualization, 1998, 23-30

[goes06] Goesele, M., Curless, B., Seitz, S. Multi-view stereo revisited. In: Proc.
IEEE Conf. on Computer Vision and Pattern Recognition. (2006).

[goes07] Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, Steven M.
Seitz. Multi-View Stereo for Community Photo Collections, Proceedings of ICCV
2007, Rio de Janeiro, Brasil, October 14-20, 2007.

[habb07] Habbecke, M., Kobbelt, L.: A surface-growing approach to multi-view
stereo reconstruction. In: Proc. IEEE Conf. on Computer Vision and Pattern

71

Recognition (2007).

[hama03] C. Co and B. Hamann and K. Joy, Iso-splatting: A point-based alternative
to isosurface visualization, In 11th Pacific Conference on Computer Graphics and
Applications (PG?3), 2003, 325-334

[heck97] M. Garland and P. S. Heckbert, Surface simplification using quadric error
metrics, SIGGRAPH 97 Conference Proceddings, 1997, 209-216.

[hern02] Hernandez Esteban, C. Schmitt, F, Multi-stereo 3D object reconstruction,
Proceedings of 3D Data Processing Visualization and Transmission, 2002. 159- 166.

[hern04] C. Hernandez and F. Schmitt. Silhouette and stereo fusion for 3D object
modeling. CVIU, 96(3):367-392, 2004.

[hilt96] J. I. A. Hilton and A. Stoddart and T. Windeatt, Marching triangles: range
image fusion for complex object modeling, International Conference on Image
Processing, 1996

[hilt98] A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt, Implicit
surface-based geometric fusion, Comput. Vis. Image Underst., vol. 69, no. 3, pp.
273-291, 1998.

[hopp92] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Surface
reconstruction from unorganized points, in SIGGRAPH '92: Proceedings of the 19th
annual conference on Computer graphics and interactive techniques, (New York, NY,
USA), pp. 71-78, ACM Press, 1992.

[hoppe93] H. Hoppe and T. Derose and T. Duchamp and J. McDonald and W.
Stuetzle, Mesh optimization, SIGGRAPH 93 Conference Proceedings, 1993, 19-26.

[horn06] Hornung, A., Kobbelt, L. Hierarchical volumetric multi-view stereo
reconstruction of manifold surfaces based on dual graph embedding. In: Proc. IEEE
Conf. On Computer Vision and Pattern Recognition. (2006).

[hugu92] Hugues Hoppe, Tony DeRose, Tom Duchamp, John Alan McDonald,
Werner Stuetzle: Surface reconstruction from unorganized points. SIGGRAPH 1992:
71-78.

[jim05] H. Jin, S. Soatto, and A. Yezzi. Multi-view stereo reconstruction of dense
shape and complex appearance. IJCV, 63(3):175-189, 2005.

[jin03] H. Jin, S. Soatto, and A. Yezzi. Multi-view stereo beyond lambert. In CVPR,
vol. 1, pp. 171-178, 2003.

[ju02] T. Ju and F. Losasso and S. Schaefer AND J. Warren, Dual contouring of
hermite data, ACM Transactions on Graphics, 2002, volume 21, 3, 339-346, July

72

[kark01] T. Karkanis and A.J. Stewart, Curvature-dependent triangulation of implicit
surfaces, IEEE Computer Graphics and Applications, 2001, volume 21, 2, 60 - 69

[kobbelt01] L. P. Kobbelt and M. Botsch and U. Schwanecke and H.-P. Seidel,
Feature sensitive surface extraction from volume data, Computer Graphics
(Proceedings of SIGGRAPH 2001), 57-66, 2001

[kolm02] V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph
cuts. In ECCV, vol. III, pp. 82-96, 2002.

[krus56] Joseph. B. Kruskal: On the Shortest Spanning Subtree of a Graph and the
Traveling Salesman Problem. In: Proceedings of the American Mathematical Society,
Vol 7, No. 1 (Feb, 1956), pp. 48–50.

[laur94] A. Laurentini. The visual hull concept for silhouette-based image
understanding. IEEE Trans. Pattern Analysis and Machine Intelligence. Pages:
150-162, 1994.

[levi03] D. Levin. 2003. Mesh-independent surface interpolation. In Geometric
Modeling for Scientific Visualization, G. Brunnett, B. Hamann, K. Mueller, and L.
Linsen, Eds. Springer-Verlag.

[lorensen87] W. E. Lorensen, H. E. Cline, Marching Cubes: A high resolution 3D
surface construction algorithm, Computer Graphics (Proceedings of SIGGRAPH
1987) 21 (1987) 163-169.

[maxi05] Maxime Lhuillier, Long Quan. A Quasi-Dense Approach to Surface
Reconstruction from Uncalibrated Images. IEEE Trans. Pattern Anal. Mach. Intell.
27(3): 418-433 (2005).

[medi00] G. Medioni, M.-S. Lee, and C.-K. Tang, A computational framework for
segmentation and grouping. Elsevier, 2000.

[merr07] Merrell, P., Akbarzadeh, A., Wang, L., Mordohai, P., Frahm, J.-M., Yang,
R.,Nister, D., Pollefeys, M.: Real-time visibility-based fusion of depth maps. In: Proc.
11th Intl. Conf. on Computer Vision. (2007).

[moller98] T. Moller and K. Muller and Y. Kurzion and Raghu Machiraju and Roni
Yagel, Design of accurate and smooth filters for function and derivative
reconstruction, In Proceedings of IEEE Symposium on Volume Visualization, 1998,
143-51

[montani94a] C. Montani and R. Scateni and R. Scopigno, A modified look-up table
for implicit disambiguation of Marching Cubes, The Visual Computer, 6, volume 10,
353-355, 1994

[multiv] The multi-view stereo evaluation web site at

73

http://vision.middlebury.edu/mview/.

[nielson03] Gregory M. Nielson , On Marching Cubes, IEEE Transactions on
Visualization and Computer Graphics 9(3), 2003, 283 297.

[nielson04] Gregory M. Nielson, Dual Marching Cubes, 15th IEEE Visualization
2004 (VIS'04), 2004, 489-496

[nielson91] G. Nielson and B. Hamann, The asymptotic decider: resolving the
ambiguity in marching cubes, IEEE Visualization, 1991, 83-91

[ohta02d] Y. Ohtake and A. Belyaev, Dual/primal optimization of polygonized
implicit surfaces with sharp features, Journal of Computing and Information Science
in Engineering, 2002, volume 2, 23-45

[ohta03] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H. Seidel, Multi-level
partition of unity implicits, ACM Trans. Graph, 2003, Pages: 463-470.

[ouh05] Chien-Chang Ho and Fu-Che Wu and Bing-Yu Chen and Yung-Yu Chuang
and and Ming Ouhyoung", Cubical Marching Squares: Adaptive Feature Preserving
Surface Extraction from Volume Data, Computer Graphics Forum, Vol 24, No 3, pp
537-545, 2005, 537 545.

[quan07] Long Quan, Jingdong Wang, Ping Tan, Lu Yuan: Image-Based Modeling by
Joint Segmentation. International Journal of Computer Vision 75(1): 135-150 (2007)

[rodr04] Bruno Rodrigues de Araujo and Joaquim Armando Pires Jorge, Curvature
Dependent Polygonization of Implicit Surfaces, Computer Graphics and Image
Processing, XVII Brazilian Symposium on (SIBGRAPI'04), 2004, 266-273

[seit06] Steve Seitz, Brian Curless, James Diebel, Daniel Scharstein, Richard Szeliski,
A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms,
CVPR 2006, vol. 1, pages 519-526.

[sinh05] S. Sinha and M. Pollefeys. Multi-view reconstruction using
photo-consistency and exact silhouette constraints: A maximum-flow formulation. In
ICCV, pp. 349-356, 2005.

[soat03] S. Soatto, A. Yezzi, and H. Jin. Tales of shape and radiance in multiview
stereo. In ICCV, pp. 974-981, 2003.

[vict07] Victor S. Lempitsky, Yuri Boykov: Global Optimization for Shape Fitting.
CVPR 2007

[vogi05] Vogiatzis, G., Torr, P., Cipolla, R. Multi-view stereo via volumetric
graph-cuts. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition.
(2005).

74

[vogi07] Vogiatzis, G., Hernandez, C., Torr, P.H.S., Cipolla, R. Multi-view stereo via
volumetric graph-cuts and occlusion robust photo-consistency. IEEE Trans. Pattern
Anal. Mach. Intell. 29(12) (2007).

[wang04] Yang Wang, Xiaolei Huang, Chan-Su Lee, Song Zhangand Zhiguo Li,
Dimitris Samaras, Dimitris Metaxas, Ahmed Elgammal, and Peisen Huang. High
resolution acquisition, learning and transfer of dynamic 3d facial expressions.
Computer Graphics Forum, 23(3):677-686, 2004.

[warr04] S. Schaefer and J. Warren, Dual Marching Cubes: Primal Contouring of
Dual Grids, Proceedings of Pacific Graphics 2004, 2004, 70-76

[whit97] R. Whitaker, A level set approach to 3D reconstruction from range data,
International journal of Computer Vision, 1997.

[wilh92] Jane Wilhelms and Allen Van Gelder, Octrees for faster isosurface
generation, ACM Trans. on Graphics, 1992, volume 11, 3, 201-27

[wyvi88] G. Wyvill and C. McPheeters and B. Wyvill, Data structure for soft objects,
The Visual Computer, 1988, volume 2, 4, 227-34

[xie03] H. Xie, J. Wang, J. Hua, H. Qin, and A. Kaufman, Piecewise c1 continuous
surface reconstruction of noisy point clouds via local implicit quadric regression.
IEEE Visualization 2003, 91-98.

[yasu06] Yasutaka Furukawa and Jean Ponce. Carved Visual Hulls for Image-Based
Modeling, volume 1, pp. 564-577. ECCV 2006.

[zhao00] H.-K. Zhao, S. Osher, B. Merriman, and M. Kang, Implicit and
non-parametric shape reconstruction from unorganized data using a variational level
set method, Computer Vision and Image Understanding, vol. 80, pp. 295-319, 2000.

[zhao01] H. Zhao, S. Osher, and R. Fedkiw, Fast surface reconstruction using the
level set method, in VLSM '01: Proceedings of the IEEE Workshop on Variational
and Level Set Methods (VLSM'01), (Washington, DC, USA), p. 194, IEEE Computer
Society, 2001.

75

VITA

Yongjian Xi was born on October 28, 1971 in Guiyang, China. He received his

Bachelor degree in Electrical Engineering in 1994, and Master of Engineering in

Electrical Engineering in 1997, both in Tsinghua University, Beijing, China. He received

his Master of Science degree with major in Computer Science in Polytechnic University,

New York, in 2001. He was admitted by the Department of Computer Science,

University of Missouri-Columbia in the summer of 2004 and began to pursue his PhD

degree in major of Computer Science from then on. Yongjian Xi has been working with

Dr. Ye Duan since 2004 as a research assistant. His research interests are 3D shape

modeling and computational visualization.

76

Publication

Journals

1. Yongjian Xi and Ye Duan, “An Iterative Surface Evolution Algorithm for
Multivew Stereo”, EURASIP Journal on Image and Video Processing 2010.

2. Yongjian Xi, Ye Duan, Hongkai Zhao, “A Nonparametric Approach for Noisy
Point Data Preprocessing”, International Journal of CAD/CAM volume 9, 2010.

3. Yongjian Xi and Ye Duan, “A Region-Growing Based Iso-Surface Extraction
Algorithm”, Journal of Computer & Graphics, 2009.

4. Ye Duan and Yongjian Xi, “Thalamus Segmentation from Diffusion Tensor
Magnetic Resonance Imaging”, International Journal of Biomedical Imaging,
2007.

5. Greg Heckenberg, Yongjian Xi, Ye Duan, and Jing Hua. "Brain Structure
Segmentation from MRI by Geometric Surface Flow''. International Journal of
Biomedical Imaging, Vol. 2006, pp. 1 - 6, 2006.

Conferences

1. Yongjian Xi, Ye Duan, “A Integrated Depth Fusion Algorithm for Multi-View
Stereo”, European Conference on Computer Vision, 2010, submitted.

2. Yongjian Xi, Ye Duan, Hongkai Zhao, “A Nonparametric Approach for Noisy
Point Data Preprocessing”, The 11th IEEE International Conference on
Computer-Aided Design and Computer Graphics (CAD/Graphics 2009), 2009.

3. Yongjian Xi, Ye Duan, “A Region-Growing Based Iso-Surface Extraction
Algorithm”, The 10th IEEE International Conference on Computer-Aided Design
and Computer Graphics (CAD/Graphics 2007), Beijing, China, October 2007.

4. Guangyu Zou, Yongjian Xi, Greg Heckenberg, Ye Duan, Jing Hua, and Xianfeng
Gu, "Integrated Modeling of PET and DTI Information based on Conformal Brain
Mapping". In Proceedings of SPIE: Medical Imaging, 2006.

5. Greg Heckenberg, Yongjian Xi, Ye Duan, Jing Hua, and Otto Muzik, "Thalamus
Segmentation from MRI Images by Lagrangian Surface Flow". In Proceedings of
27th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (IEEE-EMBC05), September 2005.

77

6. Yongjian Xi, Greg Heckenberg, Ye Duan, Jing Hua, "Iso-surface extraction by
Front Propagation ", Proceedings of Pacific Graphics 2005, Macao, China, 2005.

7. Yongjian Xi, Greg Heckenberg, Ye Duan and Hongkai Zhao, "A New
Modeling-Based Algorithm for Implicit Surface Polygonization", Proceedings of
Vision Geometry XIII, SPIE 2005, January 2005, San Jose, CA.

78

	ACKNOWLEDGEMENTS
	 TABLE OF CONTENT
	LIST OF FIGURES
	 LIST OF TABLES
	1
	1 Introduction
	2 Region-Growing Iso-Surface Extraction
	2.1. Introduction
	2.2. Algorithm
	2.2.1. Boundary Particles Sampling and Classification
	2.2.2. Feature Positions Extraction
	2.2.3. Prioritized Seed Initialization
	2.2.3.1. New Triangle Creation
	2.2.3.2. Projection

	2.2.4. Front Propagation
	2.2.4.1. Delaunay Face Property
	2.2.4.2. Normal Consistency Constraint

	2.2.5. Identify Visited Boundary Particles

	2.3. Experimental Results
	3 Nonparametric Noisy Points Preprocessing
	3.1. Introduction
	3.2. Algorithm
	3.2.1. Parzen-window Based Kernel Density Estimation
	3.2.2. Outlier Removal By Anisotropic Ellipsoidal Kernel
	3.2.2.1. Decomposition of the Covariance Matrix H

	3.2.3. Point Projection By Line Search

	4 Multi-view Stereo
	4.1. Introduction
	4.1.1. Comparison With Related Works

	4.2. Iterative Surface Evolution Algorithm With Outliner Removal
	4.2.1. Visual Hull Construction
	4.2.2. 3D Points Generation
	4.2.3. Outlier Removal
	4.2.4. Implicit Surface Evolution
	4.2.5. Explicit Surface Evolution
	4.2.6. Benchmark Data Evaluation

	4.3. Integrated Depth Fusion Algorithm with Graph-Cut
	4.3.1. Saliency Weighted Normal Vector Field Construction
	4.3.1.1. Saliency field construction by anisotropic kernel density estimation
	4.3.1.2. Normal estimation and consistent normal orientation propagation
	4.3.1.3. Volumetric Saliency Weighted Normal Vector Field Construction

	4.3.2. 3D Shape Estimation by Graph-Cut
	4.3.3. Explicit Surface Evolution
	4.3.4. Benchmark Data Evaluation

	5 Summary
	5.1. Conclusion
	5.2. Future Work

	 Reference
	VITA
	 Publication

