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cal and CDE grain shapes . . . . . . . . . . . . . . . . . . . . . . . . . 258

9.10 Synthetic spectra generated using new α-SiC vs. Pégourié SiC, CDS
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ABSTRACT

Stars between about 0.8 and 8 times the mass of the Sun will eventually evolve

become asymptotic giant branch (AGB) stars, where they pulsate and throw off mass

from their atmospheres, forming dust shells in the space around them. AGB stars

between about 2 to 4 solar masses can develop atmospheres that have an overabun-

dance of carbon relative to oxygen (thus becoming carbon stars), which results in their

dust shells containing mineral species dominated by carbonaceous compounds. One of

these, silicon carbide (SiC) has been extensively investigated in an attempt to discover

the conditions present in these dust shells. In this work, we investigate the nature and

uses of SiC for astronomical research, and in particular what SiC can tell us about the

dust shells around carbon stars. We investigate the SiC feature found in a collection

of carbon stars, and then do the same for an additional set of ‘extreme’ carbon stars

which are very close to the end of their lives. We investigate a single carbon star,

V Cyg, in more detail, looking at the changes in the dust shell as functions of both

position and time. We then examine existing optical constants for SiC, and obtain a

new set of optical properties that eliminates limitations in the older data. Finally, we

use small-particle absorption and scattering theory to produce a program which allows

us to apply commonly used shape and size parameters to these new optical properties

for use in radiative transfer modeling.

xviii



Chapter 1

Introduction

“I was trying to tell you that the search for explicative laws in natural facts proceeds in a tortuous

fashion. In the face of some inexplicable facts you must try to imagine many general laws, whose

connection with your facts escapes you. Then, suddenly in the unexpected connection of a result, a

specific situation, and one of those laws, you perceive a line of reasoning that seems more

convincing than others. You try applying it to all similar cases, to use it for making predictions,

and you discover that your intuition was right. But until you reach the end you will never know

which predicates to introduce into your reasoning and which to omit. And this is what I am trying

to do now.” - Umberto Eco

1.1 Beginnings

With the exception of hydrogen, helium, and a tiny amount of lithium created during

the Big Bang, all the elements in the Universe come from nucleosynthesis inside stars.

At the end of their lives these elements are ejected; either slowly and gently in the case

of low to intermediate mass stars, or violently in the case of high mass stars. Elements

from both kinds of stars become part of the interstellar medium in the form of dust and

gas and eventually can form new stars and planets. The primary purpose of this work
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is to investigate the nature and evolution of SiC dust grains, in order to understand

dust formation processes which pertain to many astrophysical environments.

With the emergence of IR astronomy in the late sixties, the importance of dust

particles in the Universe began to be revealed. Dust is a vital ingredient in many astro-

physical environments, because it plays an essential role in star formation processes,

and contributes to several aspects of interstellar processes such as gas heating and the

formation of molecules. In addition, since mass loss from evolved stars is driven by

radiation pressure on dust grains, it is intimately linked to the precise nature of the

circumstellar dust. Dust needs to be well understood in its own right, if we are to

understand how it contributes to many aspects of astrophysics.

The major factors in determining the mineralogy (chemical composition and crystal

structure), size and shape of dust grains are the temperature, chemistry and density

of the gas from which it forms. The chemistry determines the type of atoms available

to form the dust particles, whereas the density determines how likely these atoms are

to come into contact and make dust particles, and the temperature determines which

solid-state species are stable enough to form. The chemistry, density and temperature

of a dust-forming circumstellar shell are in turn determined by the nature of the central

star, including its metallicity and its initial mass, and by the evolution of the star.

An evolution in the nature of the dust produced may, in turn, influence the stellar

evolution, indicating a feedback relationship between the changes in the star and dust

formation in its circumstellar envelope. The evolution of these stars cannot be fully

understood until we determine the precise nature of their circumstellar dust.

The mineralogy of dust grains in space is typically studied by means of IR spec-

troscopy. The IR wavelength regime is particularly suited to determining mineral

compositions because the dust in a circumstellar envelope absorbs the mostly optical

light from the central star and re-radiates it at IR wavelengths. Dust particles of a
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given size, shape, temperature, structure and composition, have their own character-

istic IR spectrum. We can thus use the IR spectra of candidate dust species studied in

the laboratory to identify IR spectral features observed in astronomical environments.

Astromineralogy has undergone a surge in popularity in recent years mostly as

a result of superior spectroscopic observations from the Infrared Space Observatory,

(ISO; Kessler et al., 1996) and SST (for astromineralogy reviews, see Speck et al.,

1997; Speck, 1998; Speck et al., 2000; Molster, 2000; Henning, 2003; Kwok, 2004,

and references therein). However, most of these studies have concentrated on the

mineralogy of O-rich stars. Carbon stars have been largely neglected. Furthermore,

these studies have been limited by the paucity of available laboratory spectra and

optical constants. Moreover, many of these studies have yielded differing results, and

methods must be sought to differentiate between proposed mineral carriers of the

various features (such as spatially resolved spectroscopy). There are other constraints

or lines of evidence that can be used to aid our studies of dust in space, including

spatial distributions of materials, theoretical models for dust formation and evidence

from meteoritic studies of presolar grains.

In this work, we are concerned with low to intermediate mass stars (LIMS), which

start their lives with masses between approximately 0.8 and 8 solar masses (a solar

mass is denoted by M�). About 95% of all stars are LIMS (Kwok, 2004). In particular

we will study LIMS late in their lives, when they lose large amounts of mass and form

circumstellar shells of dust and gas. This is called the Asymptotic Giant Branch or

AGB phase of the star’s evolution.

Stars evolve chemically during the AGB phase, and this strongly influences the

type of dust produced. The most important parameter which determines the dust

composition is the carbon-to-oxygen ratio in the star’s atmosphere. LIMS stars start

out with oxygen-rich atmospheres, but the star’s core produces carbon which can be
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dredged to the surface by powerful convection currents. For stars between about 2

to 4 M�, enough carbon can be mixed into the star’s atmosphere by this process to

make the carbon-to-oxygen ratio greater than one, and we refer to such stars as carbon

stars; these stars make up about 1/3 of all AGB stars, though the exact proportion

depends on the metallicity1 (Matsuura et al., 2005).

The carbon-to-oxygen ratio strongly affects the chemistry in the dust shell because

one of the first things that forms out of the outflowing gas is the extremely stable

carbon monoxide (CO) molecule. The formation of CO will consume most of the

carbon and oxygen in the gas, and the less abundant element will be almost entirely

bound up by this process, making it unavailable for later chemistry.

For a carbon star, the primary solid-state constituent of the dust shell is carbon,

though the exact crystal structure of the carbon (or if it is in fact amorphous) is

still uncertain. The second most common constituent, silicon carbide (SiC), has been

detected in the spectra of many carbon stars (e.g. Hackwell, 1972; Treffers & Cohen,

1974), and is useful because it displays a characteristic spectral peak at about 11µm,

unlike the carbon which has no diagnostic spectral feature in the infrared (IR).

In this work, we will investigate astronomical SiC and what it can tell us about the

dust shells that form around carbon stars. We will begin by examining the evolution

of LIMS stars, and then turn our attention to the properties of SiC. This will lead

us to an investigation of the SiC feature found in a collection of carbon stars, and

then we will do the same for an additional set of ‘extreme’ carbon stars which are

very close to the end of their lives. We will investigate a single carbon star, V Cyg,

in more detail, looking at the changes in the dust shell as functions of both position

and time. We then examine existing optical constants for SiC, and obtain a new set

of optical properties that eliminates limitations in the older data. Finally, we use

1In astronomy, all elements with atomic number greater than 2 are called metals. The metallicity
is a measure of the amount of these elements present in a star.
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small-particle absorption and scattering theory to produce a program which allows us

to apply commonly used shape and size parameters to these new optical properties

for use in radiative transfer modeling.
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Chapter 2

Stellar Evolution and AGB Stars

“Looking at these stars suddenly dwarfed my own troubles and all the gravities of terrestrial life. I

thought of their unfathomable distance, and the slow inevitable drift of their movements out of the

unknown past into the unknown future.” - H.G. Wells

2.1 Introduction

Before going into the details of how stars are formed, live their lives, and eventually

die, it would be wise for us to first take a few moments to consider how we know what

we do about them.

With the exception of our own sun, the only direct information we have about

stars comes from the light we receive from them and their surroundings. Even before

applying any advanced techniques to analyze the light from a star, two properties of

it are immediately apparent; how bright the light is, and its color.
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2.1.1 Surface temperature and size

Since stars are reasonable approximations to blackbodies, we can relate the star’s color

with its surface temperature by Wien’s Law,

λpeakT = 2.898 · 10−3 m ·K (2.1)

Now that we have the temperature in addition to the brightness, we will be tempted

to use the Stefan-Boltzmann equation

L = AσT 4 (2.2)

where L, the luminosity, is the total power output of the emitting object, A is

the surface area of the emitting object, σ is the Stefan-Boltzmann constant (σ ≈

5.67 · 10−8 W ·m−2 · K−4), and T is the surface temperature of the object. However,

we must be cautious here, because the brightness we observe when we look at a star

in the sky differs from the star’s true luminosity not only because we only see visible

wavelengths and the star gives off radiation at all wavelengths, but also because the

brightness we see falls off as a function of distance according to the inverse square law

F =
L

2πr2
(2.3)

where F is the flux we observe, and r is the distance between us and the star.

Additionally, we would have to take account of the absorption of light by our own

atmosphere and the interstellar medium between us and the star, but for this discussion

we will ignore these factors (and from this point onwards the flux and luminosity will

always refer to the flux or luminosity over all wavelengths).
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2.1.2 Distance

To obtain the luminosity of a star, we must to find a way to determine its distance

from us. In general, this is very difficult (and consequently distances are not known

accurately for many stars), but one technique that can be used for relatively nearby

stars (within about 3.084·1019m; see below) is a measurement of the stellar parallax,

which is shown in figure 2.1.

d
θ

Figure 2.1: Stellar parallax. The large gray sphere is the Sun, the small black sphere is
the Earth, and the dashed circle represents the Earth’s orbit; d is the average distance
between the Earth and the star being observed, and θ is the parallax angle.

If we imagine an observer on the Earth looking at a nearby star, the apparent

position of that star in the sky will change (relative to much more distant stars) as

the Earth moves in its orbit around the Sun; if we take measurements of the apparent

position of the star at 6 month intervals as shown in figure 2.1, then the apparent

change in position of the star between those two measurements will be at its maximum.

Using trigonometry, we can relate this apparent positional change and the distance to

the star by

d =
ra.u.
sin θ

(2.4)

where ra.u. is the average distance between the Earth and the Sun (∼149.6·109m).
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Because θ is extremely tiny for any object outside our solar system (the closest star

to our solar system has θ < 1 arcsecond; Carroll & Ostlie, 1996) we can make use of

the small angle approximation sin θ ≈ θ to obtain

d =
ra.u.
θ

(2.5)

Since ra.u. is well known, this lets us determine the distance to objects to within

our ability to measure θ; the distance given by θ of one arcsecond is referred to as a

parsec (denoted by pc; about 3.09·1016m or 3.26 light-years). Unfortunately, the best

measurements of θ carried out so far (by the Hipparcos satellite) have only achieved

an astrometric accuracy of about 0.001 arcseconds, so the furthest distance that could

be determined by this method was 1000 pc, which is about 5% of the diameter of our

galaxy (Carroll & Ostlie, 1996). Measurements beyond this distance involve the use

of more complicated, indirect techniques that are beyond the scope of this discussion.

2.1.3 Size

Returning to our star, if we assume that its distance is known and that stars closely

approximate spheres, we can return to equation (2.2) and obtain

L = AσT 4
eff

= 4πr2σT 4
eff =⇒ r =

( L

4πσT 4
eff

) 1
2

(2.6)

where r is the radius of the star and Teff is the effective surface temperature (Teff

is the temperature at which a perfect blackbody would emit the same total amount

of electromagnetic energy as the star). Thus, we now know the star’s size as well.
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2.1.4 Hertzsprung-Russell diagram

Now that we have these relationships, our next step is to plot these values for many

stars in a useful way and see what conclusions we can draw from it. If we make

a plot of Teff (increasing to the left) vs. log(L) (conventionally given relative to the

luminosity of the Sun, denoted by L�), we obtain what is called a Hertzsprung-Russell

or H-R diagram, a schematic example of which is shown in figure 2.2.

40000 20000 10000 5000 2500

-4

-3

-2

-1

0

1

2

3

4

5

6

Lo
g(

L/
L 

 )

Te� (K)

Figure 2.2: A schematic Hertzsprung-Russell diagram.

It is clear that stars tend to group in certain regions of this diagram; as we will see as

we begin to explore the life cycle of stars, these regions correspond to different periods

of a star’s life. Though not explicitly marked on figure 2.2, from equation (2.6) we can

also easily obtain size information from inspection of a H-R diagram. For example, the

stars grouped to the lower left of the diagram are very hot, but have low luminosity;

thus, we can deduce that they are small compared to other stars on the diagram. By
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the same logic, the stars in the upper right of the diagram are relatively cool but very

luminous, thus they must be large.

2.2 Stellar evolution

A star’s mass almost entirely determines how that star will live out its life (primarily

because the mass determines what fusion reactions can occur in the core, and how

fast those reactions run). For this reason, it is convenient to treat the evolution of

low-to-intermediate mass stars (stars between 0.8 M� and 8 M�) separately from the

evolution of high mass stars (stars above about 8 M�). The difference in evolution,

however, mostly occurs near the end of a star’s life; as will be discussed below in

section 2.3.0.4, this is because the core of a star near the end of its life is composed of

degenerate matter, and only star of high enough mass can overcome the degeneracy.

The earlier part of a star’s life is much the same for both low and high mass stars.

2.2.1 Birth of stars

2.2.1.1 Molecular clouds

Though we normally think of the vast spaces between the stars as only containing

vacuum, it is actually filled with an extremely tenuous gas and dust called the inter-

stellar medium. This material both originates from stars (apart from that left over

from the big bang) and forms new stars, in a cycle of creation and destruction that

has been occurring for billions of years.

In some regions of space, this gas and dust can become dense enough to become

optically thick at visible wavelengths (that is, most or all of the visible emission we

see from that region comes from the gas and dust, not objects located behind; the
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concept of optical depth will be discussed in more detail in chapter 3). Though there

are different kinds of these optically thick clouds in space, when considering star

formation we are interested in what are called molecular clouds, so named because they

are optically thick enough for H2 to form and survive (outside the cloud, ultraviolet

radiation tends to dissociate H2; see Carroll & Ostlie, 1996). An example of a small,

dense molecular cloud (also called a Bok globule) can be seen in figure 2.3.

Figure 2.3: Barnard 68, a molecular cloud of gas and dust optically thick enough to
block the light from stars behind it. Sometime in the future this cloud will likely form
several low mass stars. Image courtesy of the European Southern Observatory.

Because such a cloud is only held together by gravity, if it is in equilibrium (i.e. nei-

ther expanding nor contracting) it satisfies the virial theorem (the following discussion

is based on the discussion in Carroll & Ostlie, 1996)
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2K + U = 0 (2.7)

where K is the internal kinetic energy of the cloud and U is the gravitational

potential energy of the cloud. If 2K is larger than U , the cloud will expand; if it is

smaller, then the cloud will collapse. Therefore, we want to examine the boundary

condition given by equation (2.7) in more detail. If we assume a spherical cloud of uni-

form density (for ease of analysis) the gravitational potential energy is approximately

given by (Carroll & Ostlie, 1996)

U ∼ −3GM2
C

5RC

(2.8)

where RC is the radius of the cloud, MC is the mass of the cloud, and G is the

gravitational constant. If we assume that the cloud is an ideal gas (a reasonable ap-

proximation considering the large particle separation), we can apply the equipartition

theorem to obtain the kinetic energy of the cloud

K =
3

2
NkT (2.9)

where N is the total number of particles in the cloud, T is the temperature of the

cloud, and k is Boltzmann’s constant. We can rewrite N as

N =
MC

µmH

(2.10)

where µ is the mean molecular weight of the cloud relative to hydrogen, and mH is

the mass of a hydrogen atom (we use this definition for convenience because any such

cloud will be mostly composed of hydrogen). Therefore, we can rewrite equation (2.7)

as
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3MCkT

µmH

+−3GM2
C

5RC

= 0 =⇒ kT

µmH

=
GM2

C

5RC

(2.11)

The equality in equation (2.11) holds when the cloud is in equilibrium; for it to

collapse, we must replace it by an inequality (the potential energy must be greater

than the kinetic energy), giving us

kT

µmH

<
GM2

C

5RC

(2.12)

Because we assumed a constant initial density (which we shall denote by ρ0), we

can rewrite RC as

Volume =
MC

ρ0

4

3
πR3

C =
MC

ρ0

=⇒ RC =
(3MC

4πρ0

) 1
3

(2.13)

which allows us to express equation (2.11) entirely in terms of mass. Substituting,

we obtain

kT

µmH

<
GM2

C

5(3MC

4πρ0
)
1
3

M
2
3

C >
5kT

µmHG
·
( 3

4πρ0

) 1
3

MC >
( 5kT

µmHG

) 3
2 ·
( 3

4πρ0

) 1
2

(2.14)

If a cloud has a mass fulfilling the inequality in equation (2.14), it will collapse in
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on itself (the critical value where both sides of equation (2.14) are equal is known as

the Jeans mass). This can happen in several ways; one is for the cloud to have a shock

strike it, increasing the density (this can be the result of nearby star formation or from

the extremely violent death of a nearby massive star). Examining equation (2.14), we

can see that if the ρ0 density term on the right side of the inequality is increased, the

required mass for collapse decreases; thus, any increase in density will make a cloud

in equilibrium collapse.

We can obtain another important result by considering what happens to the cloud

as it collapses if there are any local regions of higher density, even if only by a small

amount (small enough to not invalidate our approximation of constant density). As the

cloud collapses, these regions will become more dense along with the rest of the cloud

(the same number of particles are in a smaller space); as a result, these regions can

themselves fulfill the inequality in equation (2.14), causing them to locally collapse

independently of the rest of the cloud. This will cause the cloud to fragment into

smaller collapsing regions (which themselves can fragment if large enough); this helps

to explain why stars tend to be found in groups of similar chemical composition called

clusters. In addition, at least half of all stars are gravitationally bound to one or more

additional stars (a system of two such stars is called a binary system, for example),

and this can also be explained by the fragmentation of the initial molecular cloud

(Carroll & Ostlie, 1996).

Though the preceding discussion incorporated several important assumptions (the

cloud is perfectly spherical, motionless, of uniform composition and density) that are

not accurate representations of the situation actually present in molecular clouds.

However, it serves to give a qualitative understanding of the process involved in col-

lapse.

15



2.2.1.2 Hydrostatic equilibrium

Before we continue further, we need to develop a concept that we will return to several

times in this discussion, that of hydrostatic equilibrium. This occurs when the energy

generated in the core of a star produces a pressure gradient which exactly balances

the force of gravity pulling the star’s matter inwards. If we imagine an infinitesimal

cylinder of the star’s matter with mass dm, height dr, and base of area A, located at

distance r from the star’s center, we can use Newton’s Second Law to write the net

force on the cylinder as (this discussion follows Carroll & Ostlie, 1996)

dm
d2r

dt2
= Fgravity + Ftop + Fbottom (2.15)

where Fgravity is the gravitational force on the cylinder, Ftop is the force of pressure

on the top of the cylinder, and Fbottom is the force of pressure on the bottom of the

cylinder. The pressure on the top and bottom of the cylinder are of opposite sign, and

differ by a term dFpressure which represents the change in the force of pressure over the

distance dr. Thus, we can write

Ftop = −(Fbottom + dFpressure) (2.16)

Substituting this into equation (2.15), we obtain

dm
d2r

dt2
= Fgravity − (Fbottom + dFpressure) + Fbottom

dm
d2r

dt2
= Fgravity − dFpressure (2.17)

The gravitational force on the cylinder is given by
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Fgravity = −GMinside dm

r2
(2.18)

where G is the gravitational constant, and Minside is the mass of the star inside

radius r. To obtain the force due to the pressure, we observe that by definition

P =
Fpressure

A
(2.19)

where P is the pressure. Because the area A of the cylinder does not change with

r, we can write the differential pressure as

dP =
dFpressure

A
−→ dFpressure = A dP (2.20)

Substuting these expressions into equation (2.17), we can see that

dm
d2r

dt2
= −GMinside dm

r2
− A dP (2.21)

The expression for dm can be easily obtained by observing that the mass in the

cylinder is simply the volume of the cylinder times the density of the material in the

cylinder (which in this approximation is assumed to be constant), simply giving

dm = ρA dr (2.22)

Substituting this into equation (2.21) gives us

ρA dr
d2r

dt2
= −GMinside ρA dr

r2
− A dP

ρ
d2r

dt2
= −GMinside ρ

r2
− dP

dr
(2.23)
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This is the equation of motion for the cylinder in the radial direction. Because

we are examining the situation of hydrostatic equilibrium where the star is neither

expanding nor contracting, the cylinder is motionless and the d2r
dt2

is therefore zero.

Thus, for hydrostatic equilibrium,

dP

dr
= −GMinside ρ

r2
(2.24)

For a star to maintain the same radius, a pressure gradient given by equation (2.24)

must exist. This pressure gradient is a result of the temperature gradient that exists

due to energy coming from the star’s core. If we assume the star is an ideal gas (which

as we will see below can be inappropriate in the case of the star’s core, but is valid

for most of the star’s atmosphere - and in any event, the general concept holds true

for the entire star), then the gas pressure generated by the temperature (i.e. kinetic

energy) of atoms in the star can be written as

Pgas =
NkT

V
(2.25)

where k is Boltzmann’s constant, and N is the number of particles in volume V ,

at temperature T . Substituting equation (2.10), we can rewrite this as

Pgas =
MVkT

µmHV
(2.26)

where MV is the mass contained in V. Under the assumption that the density in

V is constant, this becomes

Pgas =
ρkT

µmH

(2.27)

This gas pressure is not, however, the only pressure present as a result of the
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temperature. Such a large number of photons are present in a star that the radiation

pressure due to the photon gas cannot always be neglected. It can be shown that the

pressure generated by a photon gas of temperature T is given by (see, for example,

Huang, 1987)

Pphotons =
π2k4

60~2c3
T 4 (2.28)

resulting in a total pressure of

Ptotal =
ρk

µmH

T +
π2k4

60~2c3
T 4 (2.29)

Converting this equation from an equation involving T to one involving r is com-

plicated by the fact that convection can play an important role in the interiors of

some stars, making a solution extremely difficult. However, for our purposes, it is

enough to have investigated the general concepts of hydrostatic equilibrium; whenever

the energy generated by the star (and therefore the temperature/pressure gradient) is

enough to overcome the gravitational force, the star will expand until the equilibrium

is once again reached. Whenever the energy generated is not enough to overcome

gravity, the star will contract until the energy output is again large enough to balance

equation (2.24).

2.2.1.3 Protostars

As the material in a cloud (cloud will now refer to the collapse of a region that will

form a single star; this could be one of the fragments mentioned above), collapses

inwards, the material begins to rise in temperature as well as density, particularly in

the center. Additionally, as the cloud collapses, it will start to spin increasingly fast.

This is due to conservation of angular momentum; since it is to be expected that the
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progenitor cloud would have some angular momentum (even if only a small amount),

the cloud must spin faster as its radius decreases to maintain the same momentum.

Another result of this is that the cloud will become increasingly disk shaped, aligned

with the rotational plane of the cloud. As the system evolves, some of the material in

the disk will fall into the star, some will accrete together, forming planets and other

objects that remain in orbit around the star, and most of the rest is dispersed into

space by a stellar wind of very rapidly moving charged particles streaming out from

the star’s surface.

The center of the star forming in the cloud eventually becomes dense and hot

enough for hydrogen to begin fusing into helium (described below); this causes the

core to heat up even more, halting the collapse of the core and the star around it as it

begins to reach a state of hydrostatic equilibrium. When this occurs, the star is said

to be on the main sequence.

2.2.2 Main sequence

A star on the main sequence, by definition, is generating energy by fusing hydrogen

into helium in its core. A schematic of a main sequence star can be seen in figure 2.4.

Hydrogen fusion in a main sequence star happens through two processes that are

present in all main sequence stars, but the fraction of the star’s energy generated by

each depends on the mass of the star; the proton-proton chain provides the majority of

the energy for a star below about 1.3 M�, while the CNO cycle provides the majority

of the energy for a star more massive than this.
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Hydrogen
Fusion

Non-burning Atmosphere

Figure 2.4: Schematic diagram of a main sequence star. The relatively tiny core of the
star is fusing hydrogen into helium, and is surrounded by a much larger atmosphere
that does not participate in the fusion processes. This schematic is not to scale.

2.2.2.1 Proton-proton chain

1
1H + 1

1H→ 2
1H + e+ + νe

2
1H + 1

1H→ 3
2He + γ

3
2He + 3

2He→ 4
2He + 2 1

1H

3
2He + 4

2He→ 7
4Be + γ

7
4Be + e− → 7

3Li + νe

7
3Li + 1

1H→ 2 4
2He
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7
4Be + 1

1H→ 8
5B + γ

8
5B→ 8

4Be + e+ + νe

8
4Be→ 2 4

2He

When combined, these branches produce energy at a rate proportional to roughly

T 4 (here and for the remainder of this chapter, T when used to refer to nuclear

processes is the core temperature).

2.2.2.2 CNO cycle

The CNO cycle also converts hydrogen into helium; difference is that the CNO cycle

uses carbon, nitrogen, and oxygen atoms as catalysts that are needed for the reaction,

but are not consumed (though the isotopic ratios of these atoms do change; Carroll &

Ostlie, 1996).
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12
6 C + 1

1H→ 13
7 N + γ

13
7 N→ 13

6 C + e+ + νe

13
6 C + 1

1H→ 14
7 N + γ

14
7 N + 1

1H→ 15
8 O + γ

15
8 O→ 15

7 N + e+ + νe

15
7 N + 1

1H→ 12
6 C + 4

2He

15
7 N + 1

1H→ 16
8 O + γ

16
8 O + 1

1H→ 17
9 F + γ

17
9 F→ 17

8 O + e+ + νe

17
8 O + 1

1H→ 14
7 N + 4

2He

When combined, these branches produce energy at a rate proportional to roughly

T 20, which is why this becomes the dominant energy process for higher mass stars;

the cores of these stars have a higher temperature than those of lower mass stars.

We can also see from this that the metallicity of a star can play a role in which of

these processes is dominant; a star with a low metallicity may not have enough carbon

atoms to make the CNO cycle run at the same rate as a higher metallicity star.
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2.2.2.3 Life on the main sequence

A star will spend the majority of its lifespan on the main sequence; this is because

hydrogen fusion generates the most energy per atom, and also because the star contains

more hydrogen (by far) than any other element. Stars do, however, experience some

changes during this time, because converting hydrogen into helium decreases the mass

fraction in the core (i.e. the pressure given by equation (2.27) decreases; or to look at

it another way, when four hydrogen atoms become one helium atom there are fewer

total atoms available to participate in the gas pressure). This causes the core to slowly

decrease in size, resulting in the density and temperature increase required to increase

the fusion reaction rate and thus the energy output enough to return the core to a

state of hydrostatic equilibrium. Thus, the energy output of the core is always slowly

increasing, and so the star slowly becomes more luminous over time.

2.2.3 Red giants

Eventually, the star will have consumed all the hydrogen available in the core, which

means it is no longer able to generate energy through hydrogen fusion. As a result,

the core begins to collapse (though this takes place relatively slowly) and increases in

temperature and density. The material around the core also contracts inwards and is

heated by the core, and eventually a shell of hydrogen around the core becomes dense

and hot enough to begin fusing hydrogen into helium. This is the same process that

once occurred in the core, but now the reactions occur at a much greater rate due to

the continual temperature increase generated by the core collapse. Because of this,

several orders of magnitude more energy is generated by this shell of fusion than was

previously generated by the core; the envelope of the star outside the shell is heated

by this, which increases the temperature/pressure gradient. This causes the star to
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expand (simultaneously increasing the right side of equation (2.24) and decreasing the

left side) until it has once again reached a state of hydrostatic equilibrium. A star in

this condition is called a red giant, and a schematic diagram of such a star can be seen

in figure 2.5.

Hydrogen Fusion

Non-burning Atmosphere

Non-burning
Helium 

Core

Figure 2.5: Schematic diagram of a red giant. The now inert core of helium is sur-
rounded by a shell where hydrogen is being fused into helium, itself surrounded by a
very much larger inert envelope. This schematic is not to scale.

Though the star is now generating more energy in its interior, the surface layers

of the star are much further away from the center due to the expansion, and the star

has a lower surface temperature than it did during the main sequence. However, the

expansion is so great that the increase in surface area more than compensates for the

decrease in temperature, and these stars are more luminous than when they were on

the main sequence.

The subsequent evolution of low-to-intermediate mass red giants varies slightly de-

pending on their mass, and we shall treat red giant stars of mass <∼2.5M� separately

from that of higher mass red giants.
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2.2.3.1 Below ∼2.5M�

The core of these red giant stars cannot continue shrinking forever, because eventually

its volume will have decreased to the point where it must be treated as degenerate

matter; that is, the pressure due to quantum mechanical interactions between the

electrons in the core dominates the pressure due to the temperature, as explained

below.

2.2.3.2 Degenerate matter

Because electrons are fermions, they are subject to the Pauli exclusion principle and

therefore there can only be one electron in each quantum state. To see why this causes

the core of a red giant to resist further collapse, we must use quantum mechanics.

First, consider a collection of N non-interacting electrons bound inside a cube with

sides of length L, where the potential is zero inside the cube and infinite outside. The

allowed energies of each electron are given by

Enxnynz =
~2π2

2meL2
(n2

x + n2
y + n2

z) (2.30)

where nx = 1, 2, 3, ... , ny = 1, 2, 3, ... , and nz = 1, 2, 3, ... are the quantum

numbers of this system and me is the electron mass. Let us now define a vector ~w in

the following way:

~w = nx~x+ ny~y + nz~z (2.31)

If we imagine a three-dimensional vector space with ~w as its basis, then each point

(wx, wy, wz) in the space corresponds to an allowed energy

26



E~w =
~2π2 ‖ ~w ‖2

2meL2
(2.32)

Now, consider an energy level Emax, corresponding to the situation where every

quantum state with energy below Emax is filled with an electron and no electron has

energy above this (i.e. the ground state of this system). This energy corresponds to

the vector ~wmax in the ~w space. If N is large, then the number of allowed states with

energies below Emax can be very closely approximated by the fraction of the volume

of a sphere of radius ‖ ~wmax ‖ which lies within the ~w space. We must also include a

factor of two, however, because each energy state can contain two electrons, one for

each value of the spin. Therefore, the total number of states below Emax is (observing

that only 1
8

of the sphere lies within the ~w space)

Nstates = 2 · 4

24
π· ‖ ~wmax ‖3 (2.33)

However, we defined Emax as the ground state of this system, so by definition the

number of filled states is given by the number of electrons, N , and thus Nstates = N .

Therefore, we can write

N = 2 · 4

24
π· ‖ ~wmax ‖3 =⇒ ‖ ~wmax ‖=

(3N

π

) 1
3

(2.34)

Substituting this into equation (2.32) gives

Emax =
~2π2 ‖ ~wmax ‖2

2meL2

=
~2

2meL2
· (3Nπ2)

2
3 (2.35)
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Finally, if we substitute the volume of the cube for the length (using V = L3 =⇒

L2 = V
2
3 ) we obtain

Emax =
~2

2me

·
(3Nπ2

V

) 2
3

(2.36)

This is known as the Fermi energy (which we shall now denote by EF), and it

marks the division between occupied and unoccupied states of this system. For the

volume of this system to decrease, some of the electrons must have enough energy to

transition to states above the Fermi energy; if they cannot obtain this energy, then the

volume cannot be compressed. Of course, any collection of electrons with temperature

above absolute zero (certainly electrons in a star’s core!) will statistically have some

electrons with an energy above the Fermi energy, and so there will be deviation from

this result. However, in the cases where we are applying this concept, the Fermi energy

is very large and such a small fraction of the electrons are above this level that the

assumption of the ground state is quite good. On the other hand, even matter at high

temperature will have some electrons below the Fermi energy, and so the resistance

to compression is always present (simply vastly smaller than the thermal pressure in

any non-degenerate matter).

We can calculate the pressure that results from this effect by considering the work

done by this pressure if it expands the cube by dV

dW = P dV (2.37)

The work done, dW , is equivalent to the change in the total energy of this system,

dEtotal. Therefore, we must calculate the total energy of the system, and we can do

so in the following manner. Consider that the Fermi energy gives us the energy of

the highest filled state of this system of N electrons. This is true for any value of N ,
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however, so the Fermi energy of a system of n electrons gives us the energy of the two

nth electrons. Therefore, we can obtain the total energy of the system by integrating

the Fermi energy over all N

Etotal =

∫ N

0

EF(n)dn

=
~2

2me

·
(3π2

V

) 2
3 ·
∫ N

0

n
2
3 dn

=
~2

2me

·
(3π2

V

) 2
3 · 3

5
N

5
3

=
~2

2me

·
(3π2N

V

) 2
3 · 3

5
N

=
3

5
NEF (2.38)

In order to use this in equation (2.37) we must calculate the derivative of this with

respect to V

dEtotal

dV
=

3

5
N · dEF

dV

=
3

5
N · ~2

2me

·
(

3Nπ2
) 2

3 · −2

3
V −

5
3

= −2NEF

3V
(2.39)

The negative sign is exactly what we should expect; as the volume increases, the

total energy decreases. Therefore, using equation (2.37) we can obtain the expression

for the pressure
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P =
dW

dV
= −dEtotal

dV
=

2NEF

3V
(2.40)

2.2.3.3 Evolution as a red giant

The fact that the core of a red giant becomes degenerate has two important results.

First, the core stops collapsing, because the gravitational force due to the core itself

and the matter around it is not strong enough to overcome the degeneracy pressure.

Second, because the degeneracy pressure is essentially independent of the temperature

(they only interact through the very small increase in available quantum states below

EF when some electrons obtain enough energy to transition above this area), so the

core can freely increase in temperature without expanding and cooling.

Eventually, the core will become hot enough for helium to begin fusing into carbon

(this process is described in section 2.2.4.1 below). Degenerate matter is a good

conductor of heat, so as soon as helium fusion begins it spreads extremely rapidly to

the entire core. But because the core is degenerate, the rapid temperature increase

does not expand and cool the core, and the rate of the fusion reactions increase .

This causes the temperature to increase, which again increases the reaction rate, and

so on, causing the core to release a massive pulse of energy called the helium flash;

these events happen over a period of only a few seconds (Freedman & Kaufmann,

2005). This liberates enough energy to break the degeneracy (many electrons can now

transition above the Fermi energy) which means that the pressure due to temperature

again dominates, forcing the core to rapidly expand and stabilize the rate of helium

fusion.
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2.2.3.4 Above ∼2.5M�

Low-to-intermediate stars of a higher mass evolve in nearly the same way as their lower

mass counterparts, but because they are more massive their cores reach a temperature

high enough to begin helium fusion before their cores become dense enough to become

degenerate. As a result, helium fusion begins much more gradually in the cores of these

stars, and they transition onto the next stage of their evolution without generating a

helium flash.

2.2.4 Horizontal branch

Regardless of how it began, a star at this stage is now fusing helium into carbon in

its core, and such a star is said to be on the horizontal branch (so named because a

star on this stage moves in a relatively horizontal line on the H-R diagram). These

stars are in some respect analogous to stars on the main sequence, because they are

again producing energy in their core. However, in addition to the core helium fusion,

the hydrogen burning shell is still active, although the rate of the hydrogen fusion

reactions greatly decreases due to the core expansion. This causes the total energy

output of the star to decrease, so the luminosity decreases, and the star itself shrinks

(which increases the surface temperature). A schematic of a star on the horizontal

branch is depicted in figure 2.6.

The method by which the core converts helium into carbon is called the triple-alpha

process, and is described below.

2.2.4.1 Triple-alpha process

The triple-alpha process converts three atoms of helium (hence the name triple-alpha)

into one of carbon, by the following process:
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Hydrogen Fusion

Non-burning Atmosphere

Helium
Burning

Core

Figure 2.6: Schematic diagram of a horizontal branch star. The core of the star is
now fusing helium into carbon, and is surrounded by a shell where hydrogen is being
fused into helium, itself surrounded by a much larger inert envelope. This schematic
is not to scale.

4
2He + 4

2He 
 8
4Be

8
4Be + 4

2He→ 12
6 C + γ

This reaction has a rate proportional to ∼ T 41 (Carroll & Ostlie, 1996), so the

energy output is extremely sensitive to fluctuations in the temperature.

At this high a temperature there are other, more minor fusion reactions occurring

in the core; for stars of the masses we are interested in, the most important of these

occurs when the carbon atom generated in step two of the triple-alpha process captures

another helium atom, generating oxygen:

12
6 C + 4

2He→ 16
8 O + γ
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2.2.4.2 End of the horizontal branch

Eventually the star will run out of helium in its core, just as it once ran out of

hydrogen. However, this happens much more rapidly; there are fewer helium atoms

available than there were of hydrogen, and each reaction generates less energy (so

the reaction rate has to be higher to produce enough energy to maintain hydrostatic

equilibrium). The exhaustion of the helium fuel causes the core to collapse again

until it becomes degenerate (this happens to all stars between 0.8 and 8 M�), heating

up a region of helium around the core (recall that helium is being produced by the

hydrogen burning shell, see figure 2.6), which then begins to fuse through the triple-

alpha process. A star where this occurs is said to be an asymptotic giant branch star,

because at this point its movement on the H-R diagram is roughly aligned with the

evolutionary track it made as a red giant.

2.2.5 Asymptotic giant branch

Just as a star on the horizontal branch is analogous to a main sequence star, an

asymptotic giant branch star (or AGB star) is analogous to a red giant in that the

energy production in the star is coming from a region around the core. Now, however,

the structure is more complicated. At the center of the star is a degenerate core of

carbon (and depending on the mass a varying amount of oxygen), surrounded by a

shell of helium being fused into carbon, itself surrounded by a shell fusing hydrogen

into helium. A schematic of this kind of star can be seen in figure 2.7

The energy production in the interior of an AGB star is more complicated that it

might first appear, because typically both shells are not active at the same time (or, at

least, one shell is generally producing the dominant amount of energy at a time). This

happens for the following reason. The helium burning shell is much thinner than the
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Figure 2.7: Schematic diagram of an asymptotic giant branch star. The now inert
core of carbon is surrounded by a shell where helium is being fused into carbon,
itself surrounded by a shell where hydrogen is being fused into helium, all of which is
surrounded by a much larger inert envelope. This schematic is not to scale.

hydrogen burning shell, and as we will see below it can rapidly run out of helium fuel,

causing the fusion reaction in the helium burning shell to cut off. During this period,

the hydrogen burning shell is the only energy producing part of the star. The helium

generated through the hydrogen fusion falls into the the region that was formerly

helium burning, increasing its temperature and density. The density can increase so

much that this region, though still dominated by the thermal pressure, can become

degenerate enough to weaken the temperature dependence of the pressure. Eventually,

this leads to a kind of low-order helium flash, when the region becomes hot enough

to fuse helium again, and the small amount of degeneracy present helps to make the

energy generation rate quite rapid. This causes the layers above this shell to expand,

which cools the hydrogen burning shell and can even turn it off completely. The

luminosity of the star increases greatly while the helium burning shell is active. This

period is relatively short, however, and soon the helium shell will reduce its energy

output and finally deactivate, making the outer layers of the star contract, which will
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heat the hydrogen shell burning region and reactivate it. This process will continue

throughout the rest of the star’s life.

The pulsations described above have a period that is dependent on the mass of

the star, but is in the region of thousands of years for higher mass stars, and can be

tens or hundreds of thousands of years for lower mass stars. There is however another

mechanism that makes these stars pulsate, and on a very much smaller timescale.

2.2.5.1 Pulsation

To understand this pulsation mechanism, we must first think about what makes up

the star’s envelope. The primary constituent of the envelope is hydrogen; helium

makes up almost all the rest. There are also, however, other elements present, some of

which were present when the star formed (based on the composition of the molecular

cloud that the star formed from) and as we shall see in section 2.2.5.2 below some

of these were created during the star’s lifetime. We will begin by first considering

the hydrogen. Normally, a hydrogen atom has a single electron, but at high enough

temperature (like in the interior of a star) the electron can receive enough energy to

escape the atom, ionizing it. Because the star’s temperature increases with depth,

we can imagine a radius below which all the hydrogen atoms have lost their electrons

(becoming fully ionized). In the same way, we can imagine a radius above which the

temperature is not high enough to strip the electron from the atom and so there is

no ionization (i.e. the atoms are neutral). These radii, however, do not coincide.

Between them there is a layer of the star’s material where there is a partial ionization;

some of the hydrogen atoms are ionized, and some are not. This is referred to as the

partial ionization zone. In this region, a small increase in temperature can cause a

large change in the ionization state.

As we shall see in chapter 3, the opacity κ of a material determines how well it can
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absorb the light passing through it. In a star, the relationship between the opacity,

the density, and the temperature for most of the star’s envelope is given by (Carroll

& Ostlie, 1996)

κ ∝ ρ

T 3.5
(2.41)

This is called Kramers’ Law. If we compress some of the star’s material, we increase

its density, which tends to increase the opacity; however, because the temperature also

increases as it is compressed, the total opacity will decrease. This law also holds for the

partial ionization zone, but now the ionization state has an important consequence

related to the opacity. Imagine such a zone being compressed (for example, in the

contraction phase of a pulsation); the density increases, also increasing the opacity.

In this case, though, a large fraction of the energy from the compression that would

normally go towards heating the zone is now used to increase the ionization state of

the zone. As a result, the temperature increase is not enough to overcome the density

increase, and the opacity increases. This causes the zone to absorb more energy from

the interior of the star, and so it expands outwards, pushing the material above it.

As the zone expands, it cools and decreases in density; this does not continue

indefinitely however because eventually the gas in the zone will cool enough that

electrons will start to recombine with the ionized atoms. This releases energy, heating

the zone. The heating due to the recombination counteracts the temperature decrease

due to the expansion; once again the density term in Kramers’ law is dominant, and

the decrease in density results in a decrease in opacity. The zone is now absorbing less

energy from the interior of the star, and so it falls back towards the center, resulting

in compression, and the cycle starts over again.

Elements other than hydrogen can also have partial ionization zones, but this
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situation is slightly more complex because while hydrogen has only a single electron,

heavier elements have more and thus can have more than one partial ionization zone

(one for each ionized electron; for example, helium has two). The location of the

ionization zones will depend on the temperature of the star. If the star is relatively

cool, the zones will be deep inside the star; if the star is relatively hot, they will

be near the surface. The precise location of the zones is important because if an

ionization zone is located too deeply within a star, the envelope above the zone will

be too massive for the zone to push effectively. The opposite case occurs if the zone is

located too near the surface; if there isn’t enough mass above the zone, then it doesn’t

have enough material to push to create a significant pulsation.

2.2.5.2 Chemistry of AGB stars

In the previous section we noted that a star can contain elements in its atmosphere

that were generated after it formed. We will now investigate how this occurs. In

section 2.2.4.1 we examined the triple-alpha process that converts helium into carbon;

this is sporadically occurring in the helium burning shell. When the helium burning

shell (discussed at the beginning of section 2.2.5) is active, it releases such a large

amount of energy that it cannot all be radiated away; powerful convection currents

develop which can mix the elements generated by the helium burning shell up into the

region between the fusing shells and up into the hydrogen burning shell, and eventually

up into the envelope of the star. This is known as the third dredge up (the previous

two take place at earlier phases of the star’s life and won’t be considered here). It is

somewhat of a misnomer because it implies that this happens only once; in fact, it

can happen multiple times throughout the AGB phase as the helium shell activates

(each one of these events is known as the third dredge up).

This involves more elements than were originally present in the core because as
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the material moves through and becomes trapped between the fusing shells during

different stages of the convection, it is subjected to a relatively intense neutron flux

that leads to neutron capture events and the generation of heavier elements. This

is called the s-process (s for slow, as opposed to the R for the rapid nucleosynthesis

process that occurs in supernovae). Here we will consider only the carbon.

A star which forms in our galaxy has an initial ratio of carbon to oxygen ratio in its

envelope (called the C/O ratio) of ∼0.4 (Thompson et al., 2006), but this changes due

to the third dredge up. For stars between ∼2 to 4M� enough carbon will be dredged

up into the outer envelope to increase the C/O ratio above 1; such stars are known

as carbon stars or C stars. This mass dependence can be understood by examining

what happens in the interior of stars outside ∼2 to 4M�. In stars below this limit,

two processes interact to prevent the C/O ratio from increasing beyond one; first,

such stars make less carbon in the helium burning shell and also more slowly, and

second the convection currents in these stars are less powerful and don’t extend as

deeply than those in more massive stars, so less material is brought up out of the

core. In stars above ∼4M�, the explanation lies in the details of the CNO cycle that

is occuring in the hydrogen burning shell and the effect this has on the carbon as it

passes through. The steps of the CNO cycle take place rapidly until 14
7 N is generated.

This is a stable isotope with a small cross section, so it takes a long time for the rest

of the cycle to occur (and thus regenerate the carbon). So when the carbon passes

through the hydrogen burning shell, if the reaction rate of the initial parts of the cycle

is rapid enough (implying high temperature and thus high mass) much of the carbon

will be consumed and locked into 14
7 N. Only in stars below ∼4� can enough carbon

survive the journey to make the star’s atmosphere carbon rich.

A final point to consider here is the effect of metallicity on the ability of a star

to become carbon rich. Imagine two equal-mass stars of the same C/O ratio, but
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with one having a greater metallicity than the other. This means that, though the

ratios of these elements is the same for both these stars, the actual number of carbon

and oxygen atoms are greater in the higher metallicity star (recall that metallicity, by

definition, is a measure of the number of atoms heavier than hydrogen and helium in

a star). Therefore the higher metallicity star will have to dredge up more carbon than

the lower metallicity star for the same change in the C/O ratio. This makes it easier

for a low metallicity star to become carbon rich.

2.2.5.3 Dust shell formation

AGB stars are large and therefore have a low surface gravity, which means that ma-

terial lifts off the star’s surface and flows outward with each pulsation. This material

cools as it moves away from the star, and condenses to form molecules and dust grains.

Once the material condenses, it is subject from the radiation pressure generated by

the star which pushes the dust outwards even more (Lamers & Cassinelli, 1999). As

a result of this extra push, the pressure near the star decreases, and so more material

flows off the star’s surface. The rate the star loses mass due to the pulsations is thus

closely related to the formation of dust.

The nature of the dust that forms around the AGB star is strongly dependent

on the chemistry of the star’s atmosphere. As the material from the star’s surface

cools, carbon monoxide molecules are formed; this formation will continue until either

all of the carbon or oxygen is consumed, depending on which is more abundant.

Because carbon monoxide is extremely stable, this essentially locks in the element with

lesser abundance, removing it from further reactions. This explains the importance

of the C/O ratio, because the subsequent chemistry of the dust shell is dominated by

whichever of those elements survives.

Determining what dust forms, and in what order (known as the dust condensation
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sequence) is complicated because there are many factors to consider; the gas pressure,

temperature, C/O ratio, nitrogen abundance, and metallicity all play a role (Lodders

& Fegley, 1995; Sharp & Wasserburg, 1995), and these factors themselves are influ-

enced by other factors (for example, the gas pressure depends on the mass-loss rate,

temperature, and the outflow velocity).

Carbon grains, either in the form of amorphous or graphitic carbon, dominate the

dust shell around a carbon star; however, it is difficult to probe through observations

because it does not have a diagnostic spectral feature in the infrared. The next

most important grain which forms is silicon carbide (SiC), and as we shall see in

the following chapters it is extremely interesting for research because it does have a

diagnostic spectral feature in the infrared, at ∼11 µm.

Dust shells are expected to have heterogeneities and anisotropies in their density

structure as a result of pulsation-driven dust formation and the ensuing hydrodynamic

turbulent effects (e.g. Woitke 2006). These dust formation models suggest that car-

bon star mass-loss should be modulated on several timescales, especially that of the

pulsation cycle. In addition, pulsations give rise to shocks in the outflowing gas, which

are predicted to have a strong effect on local conditions (e.g. Cherchneff 2006) and

thus could affect the type of dust that forms.

The spatial scale of heterogeneities arising from turbulence and shock is expected

to be small. These small spatial-scale structure present observational challenges. For

example, local density increases are expected to result from the pulsation-driven mass

loss. However, the timescale for pulsation is much shorter than the timescale over

which the star has been losing mass. Thus, spectroscopic studies include dust pro-

duced by several/many consecutive pulsation cycles. Moreover, these inhomogeneities

in the density structure are expected to be wiped out over time by the subsequent

hydrodynamic interactions (Villaver et al. 2002a,b).
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2.3 Death

As mass flows out from the star, the radius of the star decreases due to the loss of

material. Because the surface of the star is increasingly close to the star’s center, it

grows in temperature over time and thus also in luminosity. Additionally, the surface

gravity of the star is also decreasing because of the loss of mass. As a result, the mass

loss rate increases over time (Carroll & Ostlie, 1996); the dust shell around the star

will eventually have enough material in it that it absorbs all the light coming from the

star, itself emitting in the infrared. Eventually the star loses so much of its envelope

that it can no longer throw off much material, and as the rest of the shell continues

to spread and becomes less dense the star once more becomes visible.

2.3.0.4 Degeneracy revisited

Earlier in the star’s life, it overcame the degeneracy in its core to begin helium fusion

there. Why does this not occur now, allowing the star to fuse carbon? The answer

lies in the star’s mass. The temperature of a star’s core increases with its mass in

order to maintain hydrostatic equilibrium; stars below ∼8 M� are not massive enough

to generate the temperature needed to start carbon fusion. Without this source of

energy, there is no way to break the degeneracy, and so the only source of energy for

the star is the

2.3.1 Planetary nebulae

At this point, the star has shed nearly all of its envelope, leaving behind the core,

still surrounded by a hydrogen fusing shell. The star’s temperature at this time is

so great that it can emit ultraviolet photons which ionize the material the star threw

out during the AGB phase; this causes the gas in the shell to generate visible light.
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Additionally, a powerful stellar wind develops, which has a velocity much higher than

the earlier material thrown out by the star. This wind sweeps up material, compressing

it and forming much of the material into a shell-like relatively thin layer around the

star (Kwok, 2000); for reasons not entirely understood, however, this shell of material

around the star can form very complicated structures. The name planetary nebulae

was coined because seen in a small telescope these objects look somewhat like the disc

of a planet. They have no relationship to planet formation, except in the indirect way

of spreading material into the interstellar medium that may eventually become part

of a new star.

2.3.2 White dwarf

The planetary nebula phase of a star’s life is very short, a few tens of thousands of

years at most, because the hydrogen fusing shell cannot continue generating energy

for long. When it exhausts the available fuel, there is no longer any source of energy

and the now dormant core of the star begins to slowly cool. The remaining extremely

hot core is called a white dwarf. Because a hot object emits energy at a rate much

higher than a cooler one, the white dwarf initially cools relatively quickly, losing the

ability to emit enough ultraviolet photons to ionize the material around it, which

gradually becomes invisible (at least to visible wavelengths) and continues drifting

away, spreading out into the interstellar medium.

The white dwarf itself is very small, and so it has a low luminosity for its temper-

ature (these are the objects found to the bottom left of figure refhrdiagram). Because

of this, it can remain hot for a very long time; white dwarfs older than our galaxy still

have surface temperatures of thousands of kelvins (Fontaine et al., 2001).
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2.4 Conclusion

We have seen how stars form out of gas and dust between the stars; and we have also

seen how near the end of their lives these stars throw off nearly all their mass, which

spreads out into space and can eventually become incorporated into molecular clouds

and new generations of stars. Indeed, as we will see later in this work, we have even

discovered some of this material in our own solar system by examining meteorites.

The life, evolution, and death of these stars helped to create everything around us.
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Chapter 3

Optical Properties of Solids

“This art [astronomy] which is as it were the head of all the liberal arts and the one most worthy of

a free man leans upon nearly all the other branches of mathematics. Arithmetic, geometry, optics,

geodesy, mechanics, and whatever others, all offer themselves in its service.” - Nicolaus Copernicus

3.1 Introduction

Almost everything we know about dust in space comes from the interactions between

light and that dust; almost the entire rest of this work is related to light interactions

in some form or another. We will therefore examine some basic principles behind

these interactions, starting with a method used later in this work for determining the

optical properties of solids, and then continuing on to a basic discussion of how light

propagates through dust.
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3.2 Classical dispersion analysis

In order to understand how light interacts with a dust grain, we must first understand

how we can determine the optical properties of a material through laboratory mea-

surements. One such method, used later in chapter 8, is called classical dispersion

analysis. Before we begin, we should recall some basic electrodynamics that will soon

become useful; from Maxwell’s equations, we can write

D = ε0E + P (3.1)

where D is the electric displacement, ε0 is the electric permittivity of free space, and

P is the polarization. If we now assume that we are dealing with a linear, homogeneous,

and isotropic material under the influence of electric field E, we can write

P = ε0χE (3.2)

where χ is the electric susceptibility of the material we are investigating. Combin-

ing these two equations, we obtain

D = ε0E + ε0χE

= ε0(1 + χ)E

= εE (3.3)

The term (1 + χ) = ε is the relative permittivity of the material and is known

as the dielectric function. The dielectric function is a function of the frequency of

the electric field impinging on the material, and in general it is complex valued (in
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order to correctly represent the lag between the electric field and the reaction of

the material). With these preliminaries complete, we can now examine the classical

dispersion method. We will begin our investigation of this method by constructing a

seemingly crude, but actually quite powerful model of electrons in matter called the

Lorentz model.

3.2.1 Lorentz model

The Lorentz model is very simple; imagine an electron of mass m and charge q con-

nected to a spring with spring constant k, and assume that the other end of the

spring is fixed. The force on the electron from the spring is F = −kx, where x is the

displacement of the electron. The equation of motion of the electron is thus given by

m
dx2

dt2
= −kx (3.4)

This has the solution (neglecting the phase)

x = A sin(2πν0t) (3.5)

where A is the amplitude of the motion, and

ν0 =
1

2π

√
k

m
(3.6)

is the natural frequency of the motion. Now, let us make this simple model more

complicated by adding in a damping force b which resists the movement of the electron

(in other words, it acts like a frictional force). This is represented by

Fd = −bdx

dt
(3.7)
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Also, we now wish to allow the electric field to influence the electron; we shall

assume that E is harmonic with frequency ν. From the Lorentz Force Law, we can

write the force on the electron due to E as

FE = qE (3.8)

as there is no magnetic field in our model. To derive the new equation of motion,

we must include both this force and the damping force, giving us

m
dx2

dt2
= −kx− bdx

dt
+ qE (3.9)

To solve this equation it is first convenient to rearrange the terms in the following

way

dx2

dt2
+

b

m

dx

dt
+
k

m
x =

qE

m
(3.10)

We can see that the coefficient in front of the x-term is just the square of ν0.

Additionally, let us define γ = b
m

; this is called the damping coefficient. If we rewrite

the equation of motion using these terms, we obtain

dx2

dt2
+ γ

dx

dt
+ ν2

0x =
qE

m
(3.11)

This is called the Abraham-Lorentz equation. To obtain the solution we should

explicitly include the harmonic nature of the electric field by writing

E = E0 cos(νt) (3.12)

Doing this immediately gives us a clue to the solution, as it suggests a test function

of

47



x = A cos(νt− φ) (3.13)

where φ is the phase. Let us substitute this function into the equation of motion,

which results in

−ν2A cos(νt− φ)− Aνγ sin(νt− φ) + Aν2
0 cos(νt− φ) =

Aq

m
cos(νt− φ)

A(ν2
0 − ν2) cos(νt− φ)− Aνγ sin(νt− φ) =

AqE0

m
cos(νt− φ) (3.14)

If we now apply the trigonometric identities sin(νt−φ) = sin(νt) cos(φ)−cos(νt) sin(φ)

and cos(νt− φ) = cos(νt) cos(φ) + sin(νt) sin(φ), this becomes

(A(ν2
0 − ν2) cos(φ) + Aνγ sin(φ)− qE0

m
) cos(νt) +

A((ν2
0 − ν2) sin(φ)− νγ cos(φ)) sin(νt) = 0 (3.15)

This equality is always true, so the terms in front of sin(νt) and cos(νt) must both

be zero. Thus,

A(ν2
0 − ν2) cos(φ) + Aνγ sin(φ)− qE0

m
= 0 (3.16)

and

A((ν2
0 − ν2) sin(φ)− νγ cos(φ)) = 0 (3.17)
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We now have two equations and two unknowns, so we can solve for A and φ. Doing

so, we obtain

A =
qE0

m
· 1(

(ν2
0 − ν2)2 + γ2ν2

) 1
2

(3.18)

and

φ = arctan
( γν

ν2
0 − ν2

)
(3.19)

Now, these equations are useful in this form (particularly the phase), but unfortu-

nately they is not very helpful for our present requirements. It is somewhat tedious,

but using trigonometric identities (such as cos(arctan(y)) = 1√
1+y2

), it is possible to

show that

x =
qE0

m
· 1

ν2
0 − ν2 − iγν

(3.20)

Let us return our attention to electrodynamics. The dipole moment p̂ of a single

electron is just the charge of the electron times the displacement of the electron.

However, the dipole moment is also the polarizability α̂ times the electric field, so we

can write (additionally removing the vector nature of these equations, which we have

been ignoring)

α̂ =
q2

m
· 1

ν2
0 − ν2 − iγν

(3.21)

Finally, we can return to the electrodynamic relations we observed at the beginning

of this section. For a single oscillator, the polarization is just the polarizability, and

therefore
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D = ε0E + P

= ε0E + p̂

= ε0E + α̂E (3.22)

But D = εE, so this becomes

ε = ε0 + α̂

=
q2

m
· 1

ν2
0 − ν2 − iγν

(3.23)

This equation is at the heart of classical dispersion analysis, and it is extremely

powerful because ε determines the optical properties of the material, and the unknown

values γ and ν0 can be determined through an examination of resonances in the reflec-

tion spectrum of the material (as we shall see in chapter 8). Of course, a real spectrum

will have multiple resonances, and we can include that into this model by imagining

additional oscillators with different γ and ν0. One can show that the value of ε for

such a collection of oscillators is just the summation of the individual ε terms (Bohren

& Huffman, 1983). In practice, one would fit a curve generated by equation 3.23 to

the resonances in the spectrum, and thus obtain an accurate value for ε.

The dielectric function is useful in its own right, but because in general we are

more used to thinking about the complex refractive index m, we will now examine the

relationship between these two parameters. By definition,
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m =
c

vp

(3.24)

where c is the speed of light in vacuum and vp is the phase velocity of light in the

medium. If we return to Maxwell’s equations, we can show that the phase velocity is

given by

vp
c
√
εµ

(3.25)

where µ is the magnetic permeability of the material. Almost all solid materials

have a µ very close to one (though other environments like plasmas do not), so we can

write

vp =
c√
ε

(3.26)

But from the definition of the complex refractive index, we can rewrite this as

c

m
=

c√
ε

(3.27)

m =
√
ε (3.28)

And thus we see that the relationship between the complex refractive index and

the dielectric function is straightforward.
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3.3 Light propagation through dust

In section 2.2.5.3, we examined the dust shells that form around AGB stars, and in

particular the shells that form around carbon stars. All the research we will consider

in later chapters is in some way connected to the way light travels through this dust,

so we must examine the fundamentals of light propagation through such a medium.

Consider light with flux Fλ propagating through a slab of dust of density ρ and

thickness dx, with the resulting flux emerging from the other slide denoted by F ′λ.

This is illustrated in figure 3.1 below.

ρ

dx

F F ‘λ λ

Figure 3.1: Light propagating through a slab of dust. See discussion for an explanation
of terms.

We can write the change in the flux, dFλ as the beam of light passes through the

slab as

dFλ = F ′λ − Fλ (3.29)

52



What causes this change in flux? The three processes we will consider here are

absorption, scattering, and emission (there are other possible processes like florescence,

but we will not consider them here).

3.3.0.1 Extinction

If we ignore the contribution from the dust emission, we expect the flux emerging

from the right side of the slab to be less than the flux that entered on the left for

two reasons. First, some of the light will be absorbed by the dust (through heating

of the material or destruction of molecules, for example). Second, the light will be

scattered; though some of the scattered light will still pass through the right side of

the slab, some will scatter out through the left. In order to describe these processes,

called extinction, we can define the wavelength-dependent opacity κλ such that

dFλ = −κλρFλ dx (3.30)

Integrating, we obtain

Fλ(x) = Ce−(κλρx) (3.31)

With C as the constant of integration. We can easily determine the value for this

constant by observing that at x = 0, Fλ(0) = C, thus giving

Fλ(x) = Fλ(0)e−(κλρx) (3.32)

with Fλ(0) as the flux before it interacts with the slab. From this, we can see that

the flux will exponentially decrease in intensity as it passes through the dust. This is

called Beer’s Law. We now define the wavelength-dependent optical depth τλ as
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We define the wavelength-dependent optical depth τλ as

dτ(λ) = κ(λ)ρdx (3.33)

Often the optical depth is denoted in a more specific way by explicitly giving the

wavelength at which the optical de; for example, many optical depths in this work are

at 10 µm, and so are denoted by τ10µm. We can now substitute this definition into

equation (3.32) to obtain

Fλ(x) = Fλ(0)e−τλ(x) (3.34)

From this, we can see that the optical depth is a measure of how much light is

being absorbed per unit distance; with a high optical depth, the exponential term will

make the flux fall off quickly. Optical depth is a useful concept because often we wish

to know how well and how far light is penetrating into a body of dust; the opacity

alone doesn’t give us this information, because the density and how much material

the light goes through also are important. For example, consider fog; the fog itself

is relatively diffuse, which is why it doesn’t hinder seeing nearby objects, but objects

further away are obscured. This is because the optical depth is higher for objects

further away. We can see this more explicitly by integrating equation 3.33

τλ =

∫ l

0

κ(λ, x)ρ(x) dx (3.35)

where l is the length of our line of sight. In general, when we are looking through

dust with τ < 1 we say that the dust is optically thin; if greater than this we say it is

optically thick.

Let us return to equation (3.32). We can obtain this result in another way that
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has useful consequences. Imagine radiation in the form of an ideal sinusoidal wave

passing through the dust. This wave takes the form

A = A0e
−i(ωt− 2πx

λ
) (3.36)

where A0 is the amplitude, ω is the angular frequency, and λ is the wavelength.

The energy contained in this wave is proportional to A2. As this wave enters the dust,

it slows by an amount governed by the complex index of refraction; we can express

this in the wave equation by writing

A = A0e
−i(ωt− 2πmx

λ
)

= A0e
−i(ωt− 2π[n+ik]

λ
)

= A0e
−i(ωt− 2πn

λ
)e−( 2πk

λ
) (3.37)

The first exponential is just a wave traveling with a velocity dependent on n (pre-

cisely what we expect), and the second term is an exponential falloff. This is the

same exponential falloff found in equation (3.32), except this time we are only dealing

with the opacity due to absorption, which is κabs, the absorption coefficient. Since the

exponential term in equation (3.32) is the same as the term here (except now that we

have switched to the absorption coefficient we no longer need to include ρ, as this is

already included in the term), we can write
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−κabsx = −2πkx

λ
(3.38)

κabs =
2πk

λ
(3.39)

Now, consider what happens at the interfaces of the slab. Some of the light will

be reflected, some will be absorbed, and some will pass through the dust; there are

two reflections we are concerned with here, the one that occurs when the light passes

into the slab and the one that occurs when the light meets the boundary on the right.

At each of these interfaces, the light will reflect back a fraction R of the total energy;

therefore the transmitted light T at each interface is (1 − R). In addition, the light

continues to be absorbed as it continues through the dust. Therefore, the equation for

the amount of transmitted light is (assuming the same fraction of light is reflected at

each interface).

T = (1−R)2e−κabs (3.40)

This equation tells us that we can obtain a value for κabs from measuring the

amount of transmitted light, and from this and equation (3.39) the value of k also.

3.3.1 Radiative transfer

The discussion above is somewhat simplistic, because it only considers the change in

the flux due to the opacity of the dust; there is also a change in the flux due to the

thermal emission of the dust itself. Let us define the emission coefficient jλ such that

the increase in flux dFλ as it passes through the slab is given by
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dF emission
λ = jλρ dx (3.41)

This allows us to write the total change in flux as

dFλ = jλρ dx− κλρFλ dx (3.42)

Now, divide this expression by −κλρ dx to obtain

− 1

κλρ
· dFλ

dx
= Fλ −

jλ
κλ

(3.43)

The fraction jλ/κλ is known as the source function, Sλ. Now, examine the term on

the left side of equation (3.43). Using the definition of optical depth, we can rewrite

this as

− 1

κλρ
· dFλ

dx
= −dFλ

dτλ
(3.44)

Rewriting equation (3.43) gives us

dFλ
dτλ

= Sλ − Fλ (3.45)

This is called the transfer equation and it forms the basis for radiative transfer.

We can also integrate to obtain the transfer equation in another form

Fλ(τλ) = Fλ(0)e−τλ +

∫ τλ

0

Sλ(zλ)e
−(τλ−zλ) dzλ (3.46)

The transfer equation is, in general, very difficult to solve; a great deal of effort has

gone into developing solutions and techniques to use the transfer equation; a classic
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work on the subject is Chandrasekhar (1950). For some situations and geometries

exact solutions exist, but usually some kind of numerical method is needed.

3.4 Spectral analysis

Now let us investigate the methods we will use when analyzing the spectra produced

by dust in space (and in particular, the dust shells around C stars). The emission at

wavelength λ from a dusty region with optical depth τ(λ) and a single temperature T

is

F (λ) ∝ B(λ, T )[1− e(−τ(λ))]

where B(λ, T ) is the Planck function.

When the source is optically thick, F (λ) ∝ B(λ, T ), otherwise F (λ) ∝ B(λ, T ) ×

κ(λ), where κ(λ) is the grains’ wavelength dependent absorption coefficient. The

source will emit as a blackbody when either τ(λ)� 1 or κ(λ) is wavelength indepen-

dent (gray opacity). When the optical depth is low, and the absorption coefficient is

κ(λ) ∝ λ−β so that

F (λ) ∝ B(λ, T )× λ−β

The index β depends on the size, structure, and composition of the dust grains.

As discussed above, the spectrum is essentially given by: F (λ) ∝ B(λ, T )× κ(λ),

where κ(λ) is the grains’ wavelength dependent absorption coefficient. However, κ(λ)

is made up of an amalgam of optical behaviors of the various grain sizes, shapes and

compositions within the dust shell. Therefore there are two interpretations of how

to extract the absorption/emission properties of the circumstellar dust from a given

spectrum. The spectrum can be interpreted as a product of the underlying continuum
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and an extinction efficiency factor for the entire spectrum,

Fλ = BBλ ×Qλ (3.47)

or as though the entire spectrum is made up of the sum of products of individual

components.

Fλ = [BBCarbon ×QCarbon] + [BBSiC ×QSiC ] + [BBother ×Qother] (3.48)

where BB is the temperature-dependent Planck function and Q ∝ absorbance.

Using the continuum-divided spectrum assumes the type of spectrum described

by Equation 3.47. Dividing the entire spectrum by the fitted underlying continuum,

leaves only the absorption/extinction efficiency of the dust (assuming all dust species

have the same blackbody temperature). In this case, we effectively end up with an

optical depth spectrum which is equivalent to an extinction efficiency for some sort of

composite grains that represents all the grains present. Using this technique implicitly

assumes that SiC is the dominant cause of wavelength dependent changes to the optical

depth, and fails to account for different sizes, shapes and/or temperatures within the

SiC grain population.

In the case of Equation 3.48, subtracting the product of underlying continua and

absorbances of everything but SiC would leave only SiC’s spectrum. In this case,

the continuum is taken to be due to the prevalent carbon grains (which do not have

diagnostic mid-IR features and thus Q is constant with wavelength). This implies that

the continuum-subtracted spectrum is due to SiC, but neglects the fact that SiC will

also contribute to the continuum. Both scenarios are oversimplifications of the true

situations and it is difficult to know which approach is most appropriate.

In reality the situation is even more complex:
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Fλ =

n,m∑
i=1,j=1

BBi ×Qj (3.49)

where each BBi represents a single dust (or stellar) temperature, and each Qj

represents the extinction efficiency for a single grain type as defined by its size, shape,

composition and crystal structure. Such a complex situation can only be completely

addressed using radiative transfer modeling (which assumes optical data are available

for all relevant dust grain species).
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Chapter 4

Silicon Carbide

”En plus de ce phosphure cristallisé nous avons rencontré, dans les résidus qui ont résisté aux attaques

alternées d’acide fluorhydrique concentré et d’acide sulfurique bouillant, des cristauz hexagonaux

verts, caractéristiques, de siliciure de carbone.

C’est la premié fois que ce siliciure de carbone est rencontré dans la nature.” - Henri Moissan

4.1 Introduction

Silicon carbide (SiC) is the focus of much of the remainder of this work due to its

diagnostic spectral feature at ∼11 µm, and so we should carefully examine the nature

and properties (particularly the optical properties) of this substance before proceeding

further. The first theoretical prediction that SiC could exist in nature was made over

180 years ago by Berzelius (1824), but more modern investigation has focused on

SiC’s usefulness as a high temperature, wide band-gap semiconductor (O’Connor &

Smiltens, 1960; Levinshtein et al., 2001; Saddow & Agarwal, 2004, only a few of many

examples). This extensive research on SiC is useful for our purposes, but we must
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keep in mind that conditions in a terrestrial lab are very different from those found in

astrophysical environments, and care must be taken before using the results of that

research.

4.2 Physical properties of SiC

4.2.1 Crystal structure

SiC comes in ∼250 different crystalline forms or polytypes (Mitra et al., 1969; Liu

et al., 2004). All polytypes of SiC possess tetrahedral linkage of the Si and C atoms

(Taylor & Jones, 1960, and see figure 4.1 below), which combine to form sheets; it is

the alignment of these sheets as they stack which determines the particular polytype.

Figure 4.1: Tetrahedral structure of Si and C atoms in SiC; the light gray spheres are
Si, the dark gray sphere is C, and the thick lines represent the atomic bonding of this
structure (the thin lines are provided as an aid to seeing the tetrahedral structure).

An illustration of how the tetrahedral structures produce sheets can be seen in

figure 4.2.
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Figure 4.2: Schematic of how the tetrahedral structures of the Si (large gray spheres)
and C atoms (small dark spheres) form sheets in SiC; the tetrahedrons are being
viewed from one side, and the fourth Si atom is omitted for clarity.

This discussion will examine only the face centered cubic form of SiC (known as

the 3C or β polytype) and the 2H and 6H forms of α-SiC, which are two different

combinations of cubic and hexagonal layering patterns (Pitman et al., 2008). The

structure of these polytypes is shown in Figure 4.3.

4.2.2 Optical properties

The most obvious optical property of SiC (at least in the infrared) is a distinctive fea-

ture at ∼ 11µm, which has been observed around nearly every C star. (Pitman et al.,

2008). This is useful, because this feature of should have different properties depend-

ing on several factors; the polytype or mixture of polytypes present, the concentration

of SiC, and the temperature, as a few examples. This has led to the hope that the

∼ 11µm feature could be used as a diagnostic tool to determine the conditions present

in the dust shell, and a great deal of research has focused on SiC for this reason.

The structural differences between SiC polytypes affect their interaction with light

in two ways. First, light which passes through a sample of β-SiC has no preferred

direction due to the symmetry of the crystal lattice, but light interacting with α-

SiC experiences different effects depending on if the light’s electric field vector is
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(a) (2H) α-SiC (b) β-SiC

Figure 4.3: Crystal structure of (2H) α-SiC and β-SiC. The larger light gray spheres
are Si, the smaller darker spheres are C. Thick lines represent the atomic bondings
between Si and C, the thin lines are an aid to seeing the lattice structure, and the
dashed lines are an aid to seeing one of the tetrahedral elements (around the dark
black C atom) of the lattice. In the case of β-SiC, the sheets described in the text
and in figure 4.2 are arranged diagonally in this view.

perpendicular to the crystal’s c axis (called the ordinary ray) or parallel to c (called

the extraordinary ray).

Second, the different SiC polytypes have different numbers of vibrational modes,

also because of the symmetry of the lattices (Patrick, 1968; Feldman et al., 1968).

Because the polytypes are related to each other through the different stackings of

layers, it is possible to determine the number, type, and frequency of the vibrational

modes of a polytype by comparing the size of its unit cell with that of β-SiC (Burns,

1990). Phonon dispersion curves of β-SiC have been determined using symmetry

analysis and Raman spectroscopic measurements of various polytypes (Nakashima &

Harima 1997). In Raman measurements, the transverse optic (TO) component of each
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IR mode, or minimum in ε2, manifests as a peak that is distinct from the longitudinal

optic (LO) component, or maximum in Im(1/ε). However, IR activity is complicated

by several factors.

1. Energy in an IR experiment is absorbed at all frequencies between the TO and

LO components.

2. Si-C pairs that produce LO activity when ~E⊥~c are the same pairs that produce

TO activity when ~E‖~c.

3. Some modes are strong, and some are weak. Although symmetry considerations

do not predict intensities, the main Si-C stretch in β-SiC should dominate the

IR spectra of the various hexagonal and rhombohedral polymorphs.

4. Stacking disorder may contribute additional modes expected for other poly-

morphs (e.g., 15R modes may occur in 6H crystals).

5. Acoustic overtones and accidental degeneracies are always possible in IR spectra.

Many measurements of the optical properties of SiC have been made; quite a

few have been used for astronomical research (Spitzer et al., 1960; Philipp & Taft,

1960; Lipson, 1960; Dorschner et al., 1977; Friedemann et al., 1981; Borghesi et al.,

1985; Orofino et al., 1991; Papoular et al., 1998; Mutschke et al., 1999; Andersen

et al., 1999b); as will be discussed in chapter 8, these measurements all have various

limitations. A new set of SiC optical constants is presented in that chapter which

overcome these limitations.
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4.3 SiC in astronomical environments

Over 40 years ago, equilibrium condensation models predicted the formation of SiC in

carbon rich astrophysical environments (Friedemann, 1969; Gilman, 1969). Equilib-

rium condensation models such as these attempt to determine the temperature (and

therefore in the case of condensation around stars the distance from the parent star)

at which a given molecule can begin to be found in the solid phase; equilibrium refers

to the assumption made that the vapor and condensate are in equilibrium at the point

of condensation. These models can sometimes also be used to determine the cooling

history of a molecule, which determines (in part) if that molecule will be found in an

amorphous or crystalline form. The assumption of equilibrium is relatively simplistic

because non-equilibrium condensation is also possible (for example, nucleation pro-

cesses can decrease the condensation temperature, see Tanaka et al., 2000), but these

models were qualitatively confirmed by the detection of SiC’s characteristic 11 µm

spectral feature (discussed in section 4.2.2) a few years later around C stars (Hack-

well, 1972; Treffers & Cohen, 1974). Observations of many C stars since that time

have shown that SiC is nearly always present around these stars, though it appears to

only make up a very small percentage of the interstellar medium, which is taken as evi-

dence that almost all SiC grains are destroyed sometime after leaving the environment

around their parent star (Whittet et al., 1990).

4.3.1 Meteoritic evidence

Despite the tremendous distance separating our solar system from the other stars, we

can still obtain actual physical samples of astrophysical SiC (and other minerals) by

carefully examining meteorites for the presence of grains that were produced before

our solar system formed (such grains are called ”presolar grains”). As discussed in
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Clayton & Nittler (2004), presolar grains can be distinguished from grains that formed

along with our solar system by an analysis of the isotopic composition of those grains.

Because of the chemistry that occurred during the formation of our solar system, the

isotopic ratio C12/C13 (as an example) of material involved in that chemistry should be

close to the interstellar average of 89; carbon atoms found in presolar SiC grains have

been observed with C12/C13 of anywhere between 5 and 5000, very strongly suggesting

that these grains were formed outside our solar system (Hoppe & Ott, 1997; Clayton

& Nittler, 2004). In addition, isotopic ratios of specific grains including SiC have been

identified as coming from the nuclear processes that only occur inside particular types

of stars (many references can be found in Clayton & Nittler, 2004).

In fact, the first identification of natural SiC (as opposed to the synthetic SiC

which was in use as an abrasive at that time) was made through an investigation of

meteorites by Moissan (1904, and in his honor naturally occurring SiC is sometimes

called ”moissanite”; this term is also now used for synthetic SiC used as a gemstone).

Much later SiC was the first presolar grain to be found in meteorites (Bernatowicz

et al., 1987) and remains the best studied (Bernatowicz et al., 2006, and references

therein); an important reason for this is that SiC is impervious to acidic assault, and

so one can relatively easily obtain SiC grains from a meteorite by simply dissolving it

in acid and looking at the remnants for the SiC grains.

The two decades of work on presolar SiC have led to several important conclusions,

among which are Bernatowicz et al. (2006);

1. Most (∼ 99%) SiC presolar grains were formed around C stars.

2. ≈ 95% of the SiC grains that could be identified as coming from AGB stars

appear to have originated around low-mass carbon stars (<3 M�), based on

nucleosynthesis models of isotopic compositions.
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3. All the presolar SiC grains are crystalline (not amorphous).

4. Most (≈80%) presolar SiC grains are of the β polytype, with the remainder com-

prised of the 2H α polytype or intergrowths of these two polytypes (this analysis

was performed by using high-resolution transmission electron microscopy to ex-

amine the lattices of presolar grains; see also Daulton et al., 2003).

5. With one exception, SiC grains have not been found in the cores of carbon

presolar grains (unlike other carbides: TiC, ZrC, and MoC); in other words,

presolar SiC grains are virtually never found coated with carbon.

6. The grain size distribution of the SiC grains includes both very small and very

large grains (1.5 nm → 26µm), with most grains in the 0.1–1µm range.

It is important to remember, though, that this kind of evidence has to be given

careful thought before being used in other kinds of analysis. As an example, consider

the grain size distribution given in 6. above. One might uncritically use this size

distribution as the actual SiC grain size distribution present around carbon stars;

however, this leads to discrepancies with actual observations (Speck et al., 2009). It is

possible that grains of certain sizes are preferentially destroyed as they move through

the interstellar medium, or the techniques used to obtain and analyze the grains

may be biased towards some grain sizes over others. So, one can see that though the

meteoritic data is extremely useful, it is only through a combination of both meteoritic

and observational evidence that the most accurate results can be obtained.
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Chapter 5

Observations of Carbon Stars and
the Dust Condensation Sequence

“True learning must not be content with ideas which are, in fact, signs, but must discover things in

their individual truth.” - Umberto Eco

5.1 Introduction

In section 2.2.5 we briefly examined the dust shell that forms around AGB stars with

C/O ratio > 1, and then in section 4.3 we discussed this in more detail; in particular,

we looked at the many studies of the ∼11 µm feature and the contradictory conclusions

reached by that research. In an attempt to resolve these contradictions, we analyzed

the spectra of a collection of C stars, examining not only the ∼11 µm feature but also

the molecular bands present in the spectra of these stars, and a ∼9 µm feature that

was also investigated in several of the previous studies.

This research was previously published in Thompson et al. (2006), for which this author was a
co-author.
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5.1.1 ∼11 µm feature

The chararacteristic ∼11µm SiC feature present in the spectra of C stars has been

discussed extensively (Baron et al., 1987; Willems, 1988; Chan & Kwok, 1990; Goebel

et al., 1995; Speck et al., 1997; Sloan et al., 1998; Speck et al., 2005). Datasets including

the Infrared Astronomical Satellite (IRAS; Neugebauer et al., 1984) Low Resolution

Spectrometer (LRS), the Infrared Space Observatory (ISO; Kessler et al., 1996) Short

Wavelength Spectrometer (SWS; de Graauw et al., 1996) and the United Kingdom

Infrared Telescope (UKIRT) have been used to study the ∼11µm feature. However,

in most cases the dataset used for the analyses comprised IRAS LRS spectra. All

these analyses looked at the strength and peak position of the ∼11µm feature.

One justification for the many studies of the ∼ 11 µm spectral feature is that it

is of some interest to know which polytypes of SiC can form around C stars (and the

exact spectral feature these polytypes would produce), because the crystal structure

of SiC grains contains important information about the environment these grains

formed within and also their cooling history. This problem has not yet been fully

resolved (Speck et al., 1999; Pitman et al., 2008), and theoretical analysis is made

more complicated by the fact that the polytypes which form depend not only on the

temperature but also on the gas pressure in the surrounding environment (Daulton

et al., 2002). In the kind of environment we expect to find around C stars, however, it is

predicted that below about 2400 K the β polytype of SiC is most likely to form. When

heated to above 2400 K β-SiC will transform into 6H α-SiC, but it is energetically

unfavorable for the reverse process to occur (Speck et al., 1997, and references therein).

Though the majority of the results have been based on the same IRAS LRS data,

the apparent trends are not consistent from one study to the next. Furthermore, there

have been several hypotheses proposed to explain the apparent trends in the shape,

strength and position of the SiC feature which seem to be contradictory. Each analysis
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took a slightly different approach, some simply subtracting a stellar continuum from

the IRAS LRS spectra (e.g. Sloan et al., 1998). Some analyses divided the spectra

by the continuum (either the dust continuum or the assumed stellar continuum); and

some both divided and subtracted by continua (e.g. Willems, 1988). The justifications

for each approach are discussed in section 3.4 . Given the range of analytical techniques

used, it is not entirely surprising that the results are not altogether consistent. There

is a trend that appears to be consistent amongst all analyses, i.e. that the ∼11µm SiC

feature gets weaker as the underlying dust continuum temperature (Tcont) decreases.

Both Baron et al. (1987) and Chan & Kwok (1990) suggested this behavior is due to

SiC grains becoming coated by a mantle of the more abundant amorphous carbon.

This hypothesis is however not supported by meteoritic evidence, which shows that

SiC grains from carbon stars are rarely coated in carbon (Clayton & Nittler, 2004, and

references therein). To date only a single presolar SiC grain with a carbon mantle has

been found (discussed below in section 4.3.1). Speck et al. (1997) put forth the idea

that the reason for the behavior of the emission/absorption feature is that there is

SiC self-absorption by cooler particles further out in the circumstellar dust shell (see

also Cohen, 1984). These cooler dust grains absorb what was emitted by warmer SiC

grains closer to the star. Speck et al. (1997) used ground-based UKIRT CGS3 data

and showed that every star in their sample whose Tcont < 1200 K was best fitted by

self-absorbed SiC, whether the ∼11µm feature was in net emission or net absorption.

Whereas the trend of the ∼11µm SiC feature strength with Tcont appears to be

fairly consistent between studies, the variation in position of this feature with Tcont

has been found to behave differently in the separate analyses. Baron et al. (1987)

found that, as Tcont decreases and the peak-continuum strength of the ∼11µm feature

diminishes, the peak position moves from 11.3µm to 11.7µm. Speck et al. (2005)

showed that such shifts in the peak of the ∼11µm SiC feature may be attributable to
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a combination of optical depth and grain sizes. SiC absorption features tend to peak

at shorter wavelengths (∼ 10.8µm). Speck et al. (2005) suggest that the only way to

see a shift in the absorption feature to 10.8µm is if the absorbing grains are larger

than the emitting grains. This suggests that grains forming in circumstellar shells

get smaller as the parent stars evolve. Willems (1988) found stars with high Tcont

have their ∼11µm feature located at 11.7µm, while features at 11.3µm are associated

with lower Tcont. This result is the opposite of that presented by Baron et al. (1987).

Goebel et al. (1995) concur with Willems (1988) regarding the trend of the position

of ∼11µm emission feature (i.e. it peaks at longer wavelengths for higher Tcont).

In addition to these analyses using IRAS data, Speck et al. (1997) performed

a similar analysis on 32 ground-based UKIRT CGS3 data and found no correlation

between the SiC peak wavelength and the continuum temperature, but did find one

between SiC peak-to-continuum ratio (strength) and Tcont. Using 19 ISO SWS spec-

tra, Sloan et al. (2006) found that the ‘central’ wavelength of the SiC feature increases

monotonically to about 11.6µm as the continuum temperature decreases in agreement

with Baron et al. (1987).

The difference in trends with Tcont may be attributable to the differences in the

adopted values of Tcont. The poor resolution and wavelength coverage of IRAS may

lead to underestimation of the continuum, and the effect is not necessarily constant

across the spectrum. For instance, there are well-known molecular absorption bands

that coincide with the short wavelength cut-off for IRAS (due to HCN, C2H2 and CS).

These absorptions, together with the lower sensitivity at these wavelengths, lead to

an apparent dip in the IRAS spectra around 7-8µm, as demonstrated in Figure 5.1f.

This short wavelength drop-off in IRAS LRS spectra mimics a lower temperature

blackbody continuum. This may explain why our minimum Tcont values for IRAS

data appear to be considerably higher than those of previous studies using the same
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dataset (see section 5.3). For example, Baron et al. (1987) had 500 >∼Tcont
>∼3000 K. In

addition, to the choices of continua, their application to the problem at hand (division

by and/or subtraction of) leads to further problems in comparing the results. These

issues are discussed in more detail in section 5.3.

Dissimilar analyses and interpretations of the same data yield no clear correla-

tions between changes in spectral features and the evolution of dust, though it has

been agreed that the spectra of carbon stars change with the evolution of the star.

Therefore, there are some accepted trends: early in the carbon star phase, there is a

low mass-loss rate, an optically thin shell, and a strong, narrow, and sharp ∼11µm

SiC feature. As the mass-loss rate increases, the shell becomes optically thicker, and

the emission feature broadens, flattens, and weakens, until, eventually it appears in

absorption (Speck et al., 1997, 2005).

5.1.2 9 µm feature

Another apparent spectral feature of carbon stars appears at ∼ 9µm. Willems (1988)

suggested that this feature is of molecular origin because its strength correlates with

the strength of the 3µm molecular absorption band. However, Willems (1988) used

NIR data observed at a different epoch to the IRAS data (see Noguchi et al., 1981).

Given the intrinsic variability of AGB stars (see section 5.2.1), this correlation may

be meaningless. Correlations (or lack thereof) of various spectral parameters with

the strength of the 3µm molecular absorption band are investigated in section 5.4.3.

Baron et al. (1987) and Goebel et al. (1995) found that this feature emerges as Tcont

decreases; Sloan et al. (1998) found that the 9µm feature is associated with higher

Tcont. However, the definition of Tcont varies, making it difficult to interpret differing

trends. It is possible that the emergence of the ∼ 9µm feature is an artifact caused by
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underestimation of molecular absorption bands (Aoki et al., 1999). This is investigated

in section 5.4.1.

5.1.3 Purpose

The differing interpretations of the IRAS LRS data probably arise from a combina-

tion of different ‘best fit’ underlying continua and the application of these continua

(i.e. division by or subtraction of, etc.). It has been suggested that the low resolution

of IRAS LRS data precludes the identification of the potentially strong molecular

bands due to HCN, C2H2 and CS, and thus hinders the proper identification of the

continuum level in these data (Aoki et al., 1999). The limited wavelength coverage of

the IRAS LRS data exacerbates the problem. Since one of the major components of

the analysis uses Tcont, the choice of continuum is crucial. Strong molecular absorp-

tions can artificially increase the apparent strength of the SiC feature. The relative

strengths of the absorption features can also vary (Jørgensen et al., 2000) causing

complications in fitting the continuum temperature.

Here we present a reassessment of the ‘best-fit’ continuum for 26 known carbon

stars using the IRAS LRS data as well as ISO SWS spectra in order to determine

the true effect of molecular bands on the identification of the continuum tempera-

ture. Using the newly-defined continua, we generate both continuum-divided and

continuum-subtracted spectra and analyze the trends (or lack thereof) using the shape,

strength and position of the SiC feature and associated mid-IR features (section 5.3).

In addition, using the ISO SWS spectra, we determine whether there are any trends

associated with the relative strength of the molecular bands. We also investigate

whether the apparent ∼ 9µm feature is real or an artifact (section 7.4). Furthermore,
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we present radiative transfer modeling to show that, in fact, we should not expect to

see such trends (section 5.5). The reasons for this are addressed in section 5.6.

5.2 Observations

We examined spectra of 26 known carbon stars observed spectroscopically using both

IRAS LRS and ISO SWS (See table 5.1.).

The raw ISO data were extracted from the ISO data archive, and the IRAS

dataset was obtained from Kevin Volk’s website1 (Volk et al., 1991). For the ISO data

we used pipeline version OLP 10.1 from the ISO data archive. Individual spectral

sub-bands were cleaned from glitches (caused by cosmic ray particles) and other bad

data sections. Next they were flat-fielded, sigma-clipped (using the default values

σ = 3) and rebinned, the final spectral resolution (R = λ/∆λ), which ranged from

200-700, depending on the scanning speed of the SWS grating during the observation

(Leech, 2003). The resulting spectra are shown in Fig 5.1.

5.2.1 Source variability

In the majority of our sources, the spectra from both ISO and IRAS are essentially

identical. However, in several cases (∼25%), spectra taken by ISO and IRAS are not

overlapping. This is simply due to the fact that these sources are intrinsically variable.

Given the intrinsic variability of our sources, one might expect to see as many as

half our sample sources to show different spectra at different epochs. The sources for

which the ISO and IRAS spectra are offset are: HV Cas, V384 Per, IRC+10◦216, Y

CVn, RU Vir, RY Dra, LP And (see figure 5.1b, f, k, m, n, o & y). Comparing these

1http://www.iras.ucalgary.ca/∼volk/getlrs plot.html
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Figure 5.1: IRAS LRS and ISO SWS spectra of carbon stars together with their
fitted underlying continua. x-axis is wavelength (µm); y-axis is Log[Flux density
(W m−2µm−1)]; IRAS LRS data = asterisks “*”.; ISO SWS data = small dots; fitted
continuum to ISO SWS = dashed line; fitted continuum to IRAS = solid line.
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Figure 5.1: IRAS LRS and ISO SWS spectra of carbon stars continued.
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Figure 5.1: IRAS LRS and ISO SWS spectra of carbon stars continued.

79



Figure 5.1: IRAS LRS and ISO SWS spectra of carbon stars continued.

seven sources to the entire sample, 5 of these are Mira variables (see table 5.2), have

very long periods (> 433 days), and are intrinsically brighter than the average of the

entire set. Approximately half the Mira variables in our sample show offset spectra,

whereas <∼15% of spectra of the non-Mira variables display this characteristic. Clearly

the large amplitude variations of Mira variables has larger effect on the IR spectrum

of these stars than does the smaller amplitude changes in non-Mira variables.

It is worth noting that the continuum-divided spectra of HV Cas (figure 5.2b)

are essentially identical for both ISO and IRAS, whereas the other six sources for

which ISO and IRAS spectra are offset, show varying degrees of difference in their

continuum-divided spectra. This phenomenon can also be seen in analyses of “ex-

treme” carbon star spectra. The UKIRT CGS3 ground-based mid-IR spectrum of

AFGL 3068 has a markedly different brightness and slope to that observed by ISO

(see Speck et al., 1997; Clément et al., 2003; Speck et al., 2005; Pitman et al., 2006).

The underlying continuum temperature was seen to change from ∼380 K (Speck et al.,

1997) to∼295 K (Clément et al., 2003; Pitman et al., 2006) in these observations. How-

ever, the continuum-divided spectra are essentially identical for both epochs (Pitman

et al., 2006), implying that while the energy flow through the circumstellar shell has

changed, the absorbance properties of the dust remain unaltered. This phenomenon is
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also observed for AFGL 5625 (Speck et al., 1997; Clément et al., 2005; Pitman et al.,

2006).

Examining the continuum-divided spectra in figure 5.2 we can see that some spec-

tra are identical for both IRAS and ISO data, whereas, even some sources with

almost identical “undivided” spectra look quite different once their spectra have been

continuum-divided. Therefore, the effect of the variability of the underlying AGB

stars on the intrinsic nature of their circumstellar dust is not clear, and certainly not

consistent from star to star. In some cases, the bulk absorbance properties of the

dust remain more or less unchanged, and in others they are markedly different. This

observation is potentially devastating to any attempt to decipher carbon star dust

condensation sequences.

5.3 Method

In order to re-analyze and compare with previous studies, we fitted continua to our

spectra. Continua are assumed to be either blackbodies or modified blackbodies (i.e.

B × λ−β)

Initially we applied our technique to the IRAS dataset without reference to the

ISO data. For each spectrum, the variables of continuum temperature, β, and nor-

malization wavelength were adjusted to find an underlying continuum that fitted the

spectrum well. While the default continuum was a pure blackbody, it was also possible

to change the emissivity law to produce a modified blackbody.

In general, pure blackbodies were more successful than modified blackbodies, though

some of the modified blackbody continua for the IRAS spectra fit as well as the pure

blackbodies. Once the underlying continuum fitting for the IRAS data was accom-

plished, we applied the fitting technique to the ISO data. It was not possible to achieve
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good fits to the ISO data using modified blackbodies. The continuum-fitting of the

ISO data was performed without reference to the IRAS data in order to compare the

independent results from each dataset.

The results of continuum-division and continuum-subtraction of our spectra are

shown in figures 5.2 and 5.3.

The predominance of the pure blackbody continua suggests that the dust is op-

tically thick close to the star and we are seeing the surface at the temperature of

underlying continuum where the shell transitions from optically thin to optically thick.

After assigning continua to all 26 spectra for both IRAS and ISO, the Tcont

values for a single source as assessed from both IRAS and ISO were compared (See

table 5.2.). The difference between the continuum temperatures for IRAS and ISO

were compared to the absolute temperature. No correlations were found.

It is clear from the values in table 5.2 that the spread in ∆T is similar for both

Miras and non-Mira variables. The difference in temperatures for the two datasets

(∆T) could be due to the poor resolution and wavelength coverage of IRAS or perhaps

to the intrinsic variability of the star. There are well-known molecular absorption

bands that coincide with the short wavelength cut-off for IRAS. These absorptions,

together with the lower sensitivity at these wavelengths, lead to an apparent dip in the

IRAS spectra around 7-8µm, as demonstrated in Figure 5.1f. This short wavelength

drop-off in IRAS LRS spectra mimics a lower temperature blackbody continuum.

Because of the possible impact of molecular bands, we ignored wavelengths shortward

of ∼ 8.5µm in fitting our continua. This may explain why our minimum Tcont values

for IRAS data appear to be considerably higher than those of previous studies using

the same dataset. For example, Baron et al. (1987) had 500 <∼Tcont
<∼3000 K.

As suggested by Aoki et al. (1999), it is possible that the cause of the difference in

temperatures for the two datasets (∆T) is due to varying molecular absorption band
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Figure 5.2: Continuum-divided IRAS LRS and ISO SWS spectra of carbon stars.
x-axis is wavelength (µm); y-axis is dimensionless; ISO SWS = bold dots; IRAS
LRS = solid line; dashed line denotes y = 1.
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Figure 5.2: Continuum-divided spectra continued.
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Figure 5.2: Continuum-divided spectra continued.
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Table 5.2: Underlying continuum temperatures obtained for both IRAS and ISO, as
well as the periods, Vmax, Vmin, and variable types of all 26 sources.

Source Name TIRAS TISO ∆T Period (days) Vmax Vmin Variable Type

VX And 1475 2165 +690 369 7.8 9.3 SRa
HV Cas 1455 1100 −355 527 12.9 17.2 M
R Scl 2150 2115 −35 370 9.1 12.9 SRb
R For 1100 1272 +172 388.73 7.5 13 M
V623 Cas 2800 2850 +50 — 9 9.8 Lb
V384 Per 920 843 −77 535 11.3 14.2 M
U Cam 1950 1850 −100 — 11 12.8 SRb
W Ori 1900 2140 +240 212 8.2 12.4 SRb
TU Tau 2850 2050 −800 190 5.9 9.2 SRb
V636 Mon 1725 1217 −508 — 6.2 9.8 M
IRC+10◦216 480 550 +70 630 10.96 14.8 M
SS Vir 1500 1900 +400 364.14 6 9.6 SRa
Y CVn 1425 2475 +1050 157 7.4 10 SRb
RU Vir 2225 1075 −1150 433.2 9 14.2 M
RY Dra 1850 2200 350 200 6.03 8 SRb
V CrB 1450 1475 +25 357.63 6.9 12.6 M
T Dra 960 1175 +215 421.62 7.2 13.5 M
S Sct 2450 2100 −350 148 9.63 10.9 SRb
V Aql 1675 2100 +425 353 6.6 8.4 SRb
V Cyg 1085 1120 +35 421.27 7.7 13.9 M
T Ind 1980 2660 +680 320 7.7 9.4 SRb
S Cep 1550 1400 −150 486.84 7.4 12.9 M
V460 Cyg 2450 2350 −100 180 5.57 7 SRb
PQ Cep 2800 1735 −1065 — 10.5 15.5 M
LP And 660 505 −155 — 16.9 20.6 M
TX Psc 2350 3475 +1125 — 4.79 5.2 Lb

TIRAS is the continuum temperature in K found by fitting a blackbody to the IRAS LRS
data; TISO is the continuum temperature in K found by fitting a blackbody to the ISO SWS
data; ∆T is the difference between the fitted continua temperatures for ISO and IRAS for
a single source.
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Figure 5.2: Continuum-divided spectra continued.
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Figure 5.3: Continuum-subtracted IRAS LRS and ISO SWS spectra of carbon stars.
x-axis is wavelength (µm); y-axis is Spectra minus Continuum in W m−2µm−1); ISO
SWS = bold dots; IRAS LRS = solid; dashed line denotes y = 0.
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Figure 5.3: Continuum-subtracted spectra continued.
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Figure 5.3: Continuum-subtracted spectra continued.
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Figure 5.3: Continuum-subtracted spectra continued.
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strengths. Furthermore, Jørgensen et al. (2000) showed that the relative strengths of

different molecular bands varies, complicating this issue. Table 5.3 shows that there

are no correlations between the 3µm, 7–8µm or 13.7µm molecular band strengths

and underlying continuum temperatures (Tcont, see also section 5.4.3).

To ensure our results are robust, we conducted the experiment using both continuum-

divided and continuum-subtracted spectra (hereafter divided spectra and subtracted

spectra respectively; see the discussion in section 3.4).

Each spectrum was divided by its assigned continuum in order to determine the

characteristics of the solid-state spectral features (See Figure 5.2.). By applying this

technique, the features are apparent from the underlying continuum. It is very impor-

tant to have an accurate continuum temperature because the parameters that define

the spectral features in continuum-divided spectra are greatly affected by the choice of

continuum. The continuum-divided spectra were then analyzed in great detail look-

ing for possible correlations between the SiC peak position, peak strength, and the

assigned underlying continuum temperature. In addition, we also looked for similar

correlations with molecular bands due to HCN, C2H2 and CS. Finally, the divided

spectra of a single source for IRAS was compared to that of ISO to see how similar

the results were. In addition to using continuum-divided spectra, we used continuum-

subtracted spectra which were obtained using the same continuum used to produce

the continuum-divided spectra (See Figure 5.3.).
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Table 5.3: Determination coefficient (R-squared) values of silicon carbide and molec-
ular band linear regression correlations of all 26 sources and without IRC+10◦216.

IRAS ISO
SiC Divided Spectra Spectra less Spectra Spectra less
Correlation Type (All 26) IRC+10◦216 (All 26) IRC+10◦216

Strength vs Peak position 0.1644 0.1355 0.3512 0.3567
Peak position vs Tcont 0.0036 0.0338 0.0044 0.0348
Tcont vs Strength 0.0002 0.0128 0.2710 0.3428
BC Strength vs BC position 0.2044 0.1775 0.3407 0.3454
BC position vs Tcont 0.0035 0.0317 0.0026 0.0282
Tcont vs BC Strength 0.0004 0.0134 0.2680 0.3388

IRAS ISO
SiC Subtracted Spectra Spectra less Spectra Spectra less
Correlation Type (All 26) IRC+10◦216 (All 26) IRC+10◦216

Strength vs Peak position 0.0812 0.2487 0.0198 0.3304
Peak position vs Tcont 0.0365 0.1336 0.2165 0.3193
Tcont vs Strength 0.1893 0.3560 0.1397 0.4522
BC Strength vs BC position 0.0835 0.2226 0.0223 0.3318
BC position vs Tcont 0.0383 0.1383 0.2269 0.3377
Tcont vs BC Strength 0.1890 0.3542 0.1396 0.4475

ISO
3µm Band Divided Spectra Spectra less
Correlation Type (All 26) IRC+10◦216

Tcont vs Strength 0.0154 0.0247
3µm Strength vs SiC Strength 0.081 0.0788

ISO
7–8µm Band Divided Spectra Spectra less
Correlation Type (All 26) IRC+10◦216

Tcont vs Strength 0.4184 0.3777
7–8µm Strength vs SiC Strength 0.3356 0.3910
7–8µm Strength vs 9µm Strength 0.0007 0.0083

ISO
13µm Band Divided Spectra Spectra less
Correlation Type (All 26) IRC+10◦216

Tcont vs Strength 0.0511 0.0799
13µm Strength vs SiC Strength 0.2797 0.2756

BC = Barycentric
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5.4 Results

5.4.1 The “9 µm” feature

Using the divided and the subtracted spectra for each source, we have sought the

infamous 9µm “feature”. By inspection of the continuum-divided and continuum-

subtracted spectra (figures 5.2 and 5.3.), it is clear that sometimes there appears to

be some excess emission at ∼ 9µm and sometimes a deficit. In order to assess whether

there is really a feature, we used the continuum-divided spectrum and sought the

highest flux point in the 9–10µm region. We then determined the strength of the

“feature” (i.e. the flux-to-continuum ratio) at this point. The resulting “features”

have strengths in the range 0.7 to 1.4. This spread is indicative of there not being

a feature at this wavelength, and the ranges arises from uncertainty in fitting the

continuum. In addition, if we examine continuum-divided spectra for which there is a

clear ∼ 9µm feature in the IRAS spectra (e.g. VX And, U Cam, Y CVn, RY Dra and

V Aql, see figure 5.2 a, g, m, o and s) the ISO spectra either do not show the feature,

or it is clearly an artifact of molecular absorptions. In section 5.2.1, we discussed the

possible affect of stellar variability on the observed dust feature. This effect is far from

understood and further complicates interpretation of the ∼ 9µm feature which may

appear in the IRAS data but not that of ISO or vice versa.

To confirm the that the ∼ 9µm is indeed an artifact of uncertainties in continuum

fitting, we looked for correlations between the feature strength and underlying contin-

uum temperature Tcont and between the ∼ 9µm feature and the SiC feature strengths.

Finally we sought a correlation between the ∼ 9µm feature strength and the strength

of the HCN, C2H2 and CS molecular bands at 3, 7–8, and 13.7µm. The results are

shown in figure 5.4 and correlation parameters are listed in table 5.4. There are no

94



clear correlations which leads us to suggest that the ∼ 9µm feature probably does not

exist.

Figure 5.4: “9µm feature” continuum-divided correlations. a) Tcont vs. ∼ 9µm peak
strength; b) ∼ 9µm peak strength vs. SiC feature strength; c) ∼ 9µm peak strength
vs. C2H2 13.7µm band strength; d) ∼ 9µm peak strength vs. HCN 3µm band
strength; In each panel, IRAS LRS points = open square; ISO SWS points = open
triangle; IRAS LRS IRC+10◦216 point = filled square; ISO SWS IRC+10◦216 point
= filled triangle; Correlation line including IRC+10◦216 = solid line; Correlation line
not including IRC+10◦216 = dotted line; IRAS LRS correlations = black lines; ISO
SWS correlations = gray lines.

An alternative interpretation would be that the ∼ 9µm feature is sometimes real

and sometimes an artifact, but the lack of correlation with any other spectral pa-

rameter precludes determination of the origin of such a feature. Speck et al. (2005)

suggested that the feature was associated with carbon impurities in amorphous SiC.
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Table 5.4: Determination coefficient (R-squared) values of linear regression correla-
tions for the “9µm” for all 26 sources

IRAS ISO
Correlation Spectra spectra
9µm Strength vs Tcont 0.0115 0.0001
9µm Strength vs SiC strength 0.2408 0.1921
9µm vs 3µm Molecular Band Strength — 0.2046
9µm vs 7–8µm Molecular Band Strength — 0.0087
9µm vs 13µm Molecular Band Strength — 0.0144

The occasional appearance of the feature would then be due to the physical conditions

within the circumstellar shell conspiring to produce such material.

5.4.2 The ∼ 11µm feature

Using the divided and the subtracted spectra for each source we analyzed the shape,

strength and position of the ∼11µm SiC feature (See Figures 5.2 and 5.3.).

For each spectrum of both IRAS and ISO, the continuum temperature (as deter-

mined by the best-fit blackbody) as well as four parameters of the ∼11µm SiC feature

were measured; the peak position, peak strength (peak-to-continuum ratio), barycen-

tric peak position, and barycentric strength-to-continuum ratio. We then sought cor-

relations between any and all of these parameters, and with Tcont; i.e.: 1) SiC feature

strength versus SiC peak position; 2) SiC peak position versus Tcont; 3) SiC feature

peak strength versus Tcont; 4) SiC barycentric strength-to-continuum ratio versus SiC

barycentric peak position; 5) SiC barycentric peak position versus Tcont; and 6) SiC

barycentric strength-to-continuum ratio versus Tcont. The correlations or lack thereof

are plotted in Figures 5.5 and 5.6. We used the coefficients derived from linear regres-
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sion in determining whether the above pairings of spectral parameters indeed yield

correlations2 (see table 5.3 for the coefficent values.).

The largest correlation coefficient value obtained was 0.4522, therefore there are

very weak correlations at best. The only “correlations” for which the coefficients are

>0.4 are for the SiC strength (peak or barycentric). This fits with the only trend

agreed upon by previous studies.

According to Speck et al. (2005), self-absorption of the ∼ 11µm feature may lead

to asymmetric features. Therefore, we have investigated whether there are any appar-

ent trends in the shape of the SiC feature with Tcont. For symmetrical features the

barycentric and peak positions will coincide, and asymmetric features will have these

two positions offset. In order the determine whether shape effects correlate with Tcont,

we have taken the difference between peak position and the barycentric peak position

and divided by the barycentric peak position. This value was then correlated with the

continuum temperature. Likewise we took the barycentric strength, subtracted the

peak strength and divided by the barycentric strength and correlated with Tcont. This

method was applied only to the SiC ∼ 11µm feature because the molecular bands’

peak and barycentric positions were the same. No correlations were found, implying

that there is no clear trend for the shapes of 11µm feature to vary with Tcont, and

thus with optical depth.

5.4.3 The molecular bands

In addition to the sought correlations for the SiC feature, we examined whether there

are any correlations between the various spectral parameters and the molecular ab-

2Note that a correlation is assumed to exist if R2 > 0.5. R2 values less than 0.5 imply that
less than 50% of the data point positions can be explained by the relationship given my the linear

regression trendline. This also implies that the linear correlation coefficients R must be
>∼ 0.7
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Figure 5.5: SiC continuum-divided correlations. a) SiC peak strength vs. SiC peak
position; b) SiC peak position vs. Tcont; c) Tcont vs. SiC peak strength; d) SiC
barycentric strength vs. SiC barycentric position; e) SiC barycentric position vs.
Tcont; f) Tcont vs. SiC barycentric strength. In each panel, IRAS LRS points =
open square; ISO SWS points = open triangle; IRAS LRS IRC+10◦216 point =
filled square; ISO SWS IRC+10◦216 point = filled triangle; Correlation line including
IRC+10◦216 = solid line; Correlation line not including IRC+10◦216 = dotted line;
IRAS LRS correlations = black lines; ISO SWS correlations = gray lines.
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Figure 5.5: SiC continuum-divided correlations continued.
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Figure 5.5: SiC continuum-divided correlations continued.
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Figure 5.6: SiC continuum-subtracted correlations. a) SiC peak position vs. Tcont; b)
SiC barycentric position vs. Tcont. In each panel, IRAS LRS points = open square;
ISO SWS points = open triangle; IRAS LRS IRC+10◦216 point = filled square;
ISO SWS IRC+10◦216 point = filled triangle; Correlation line including IRC+10◦216
= solid line; Correlation line not including IRC+10◦216 = dotted line; IRAS LRS
correlations = black lines; ISO SWS correlations = gray lines.
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sorption bands. These bands are located at 3µm (due to HCN) 7–8µm (due to a blend

of HCN, CS and C2H2) and 13.7µm (due to C2H2; Aoki et al., 1999; Jørgensen et al.,

2000). This time we sought trends between the strength of the molecular bands, Tcont

and SiC feature strength. We also sought correlations with the ∆T, i.e., difference

between the Tcont as determined using ISO and using IRAS spectra. This was to de-

termine whether the difference in fitted continua could be attributed to the strengths

of the molecular bands. Correlations for the molecular bands are weak to non-existent

(See figure 5.7.). The only correlation with a coefficient > 0.4 is for the strength of

the 7–8µm band and Tcont. In light of the results of Jørgensen et al. (2000), further

analysis of the molecular bands, and in particular the ratios of the band strengths,

may yield some interesting results. Such analysis is beyond the scope of the present

work.

5.4.4 The effect of IRC+10◦216

While attempting to find correlations between the various parameters, we chose to

investigate the effect of discarding the source IRC+10◦216 as it often appears as an

outlier in the correlation plots and could possibly skew the results. The dataset

excluding IRC+10◦216 provided slightly better correlations for all the comparisons

involving the SiC feature (both divided and subtracted spectra). However, there was

not a discernible change in the correlations of the molecular bands regarding the use

of IRC+10◦216. And in all cases, the linear regression coefficient is low enough to

preclude an actual correlation. The data used for correlation analyses and the fitted

correlations are shown in figures 5.5, 5.6 and 5.7 as well as table 5.3. In conclusion,

no pair of spectral parameters could be contrived that yielded a correlation. This is

a distinctly different result from previous work. The highest correlation coefficients
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Figure 5.7: Molecular bands in continuum-divided spectra. a) Tcont vs. HCN 3µm
band strength; b) HCN 3µm band strength vs. SiC feature strength; c) ∆T vs. HCN
3µm band strength; d) Tcont vs. C2H2 13.7µm band strength; e) C2H2 13.7µm band
strength vs. SiC feature strength; f) ∆T vs. C2H2 13.7µm band strength; g) Tcont vs.
C2H2/HCN/CS 7-8µm molecular band strength; h) C2H2/HCN/CS 7-8µm molecular
band strength vs. SiC feature strength; i) ∆T vs. C2H2/HCN/CS 7-8µm molecular
band strength; ISO SWS points = open triangle; ISO SWS IRC+10◦216 point =
filled triangle; Correlation line including IRC+10◦216 = solid line; Correlation line
not including IRC+10◦216 = dotted line; ISO SWS correlations = black lines.
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Figure 5.7: Molecular bands in continuum-divided spectra continued.
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Figure 5.7: Molecular bands in continuum-divided spectra continued.
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Figure 5.7: Molecular bands in continuum-divided spectra continued.
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Figure 5.7: Molecular bands in continuum-divided spectra continued.

were obtained for SiC strength vs. Tcont in the continuum-subtracted data. This is

the only trend that is agreed upon by all previous studies.

5.5 Modeling

In addition to analyzing observational data, we performed one dimensional radiative

transfer modeling using DUSTY (Ivezic & Elitzur, 1995; Nenkova et al., 2000, also see

the discussion in section 3.3.1), which allowed us to determine theoretically how the

emerging spectrum should change as a function of various dust shell parameters. In

this case, the parameters examined were the effective temperature of the star, inner

dust shell temperature, optical depth, and dust composition. In all cases the dust

was entirely composed of a mixture of SiC and amorphous carbon, but the relative

abundances of these constituents varied. The optical constants for SiC came from

Pègouriè (1988), while those for amorphous carbon came from Hanner (1988).

107



For simplicity we assumed spherical dust grains, though DUSTY has the capability

of processing non-spherical shapes. In addition, we assumed a radial dust density

distribution of 1/r2, which was shown by Rowan-Robinson & Harris (1982, 1983b,a)

to reproduce the IR spectrum of AGB stars. Finally, we assumed an MRN grain size

distribution (i.e., n(a) proportional to a−q, where n is the number of grains in the size

interval (a, a + da) and q = 3.5; amin = 0.005µm and amax = 0.25 µm; Mathis et al.,

1977).

Spectra were produced by varying the chosen parameters until a complete grid of

models was produced (See table 5.5.). For each of these spectra, we fitted a blackbody

continuum to the mid-infrared region, which was then used to produce continuum-

divided spectra (in an identical manner to the technique used in section 5.3 for ob-

servational spectra.). This allowed us to determine the ∼11µm feature strength and

position. We were then able to repeat the search for correlations between different

spectral parameters, this time for model spectra.

Table 5.5: The parameters and their value ranges for the 1-D radiative transfer mod-
eling.

Parameter Minimum Value Maximum Value Interval
Stellar Temperature 2000 K 4000 K 1000 K
Dust Temperature 500 K 1500 K 500 K
Optical Depth of Dust 0.1 1 1 dex
SiC concentration 0% 30% 5%

Figure 5.8 shows the fitted continuum temperature versus the ∼11µm feature

peak strength. Here it is clear that there is no discernible correlation between these

parameters. Similar results were obtained in all pairings of parameters, with one

exception. Figure 5.9 shows the relative abundance of SiC versus the peak strength of

the ∼11µm feature. As one may expect, the maximum peak strength increases with

an increase of SiC abundance (relative to amorphous carbon). However, this is not a
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correlation per se because it is impossible to determine the SiC abundance from the

peak strength alone.

Figure 5.8: Radiative transfer model results: Tcont vs. peak strength. Model param-
eters are denoted as follows: star effective temperature is denoted by color (black =
2000K, dark grey = 3000K, light grey = 4000K); composition of dust is denoted by
shape (short bar = 5% SiC/95% amorphous carbon, diamond = 10%SiC/90% amor-
phous carbon, square = 15%SiC/85% amorphous carbon, circle = 20%SiC/80% amor-
phous carbon,, triangle = 25%SiC/75% amorphous carbon, long bar = 30%SiC/70%
amorphous carbon,); and optical depth is denoted by fill (hollow = τ10µm of 0.1 [except
for the long and short bars, which are slightly longer in this case]; filled = τ10µm of 1).

For low SiC abundance, the ∼11µm feature is always weak. Higher SiC abun-

dances can yield SiC features which are stronger, but also yield features that are

weak, depending on the details of the other parameters of the models. Thus, a strong

feature necessitates a certain minimum SiC abundance, whereas a weak feature is not

very diagnostic of the relative abundance of SiC.

Our radiative transfer modeling results are in good agreement with our observa-
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Figure 5.9: Radiative transfer model results: composition vs. feature strength. Model
parameters are denoted as follows: star effective temperature is denoted by color (black
= 2000K, dark grey = 3000K, light grey = 4000K); inner dust shell temperature is
denoted by shape (square = 500K, diamond = 1000K, triangle = 1500K); and optical
depth is denoted by fill (hollow = τ10µm of 0.1, filled = τ10µm of 1).
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tional studies, and suggests that we should not expect to find correlations between

pairings of spectral parameters. This is due to the large degeneracy present in these

systems; as an example, weak feature strength could be due to low optical depth, low

SiC concentration, or low inner dust shell temperature (or a combination of these).

This makes it impossible to use the SiC ∼11µm feature to determine specific informa-

tion about the dust shell without first limiting the parameter space. As can be seen in

figure 5.9, for a given stellar temperature, inner dust temperature and optical depth,

the ∼11µm feature increases in strength as the fraction of SiC increases. However,

once a realistic range of these parameters is adopted, we can no longer see such a simple

trend. Since optical depth, dust shell composition and dust temperature parameters

are intimately linked to each other and with the C/O ratio, N-abundance, metallicity,

mass-loss rate, outflow velocities etc., there is obviously a large free parameter space.

This precludes the determination of dust shell parameters from the infrared spectrum

alone.

Our dust models have a maximum optical depth at 10µm of 1, and thus do not

exhibit self-absorption behavior in the 11µm feature. However, including the effect

of self-absorption of the ∼11µm feature into our analysis would further obfuscate

any trends. The effect would be to lower the probability of getting the strongest

possible feature for a given composition. Therefore our modeling results err towards

the possibility of finding trends in the spectra.

5.6 Discussion

Previous analyses have determined apparent patterns in the mid-IR spectral features

of carbon stars which have been explained in terms of condensation sequences.

The current study suggests that there are no simple patterns in the mid-IR spectral
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features of carbon stars and, thus, no single condensation sequence can explain the

nature and evolution of circumstellar dust around carbon stars. The disparity between

the current and previous studies arises predominantly from the mis-identification of

the continuum level in the IRAS spectra. This is exacerbated by the many different

approached to normalization of spectra (continuum-subtraction vs continuum division;

Tcont = dust continuum or stellar continuum etc). There is no simple relationship

between the 3, 7–8, and 13.7µm band strengths, however, simply being aware of the

locations of the molecular absorption bands yield better continuum estimations for

the IRAS data. Application to the larger IRAS dataset (>100 carbon star spectra)

should not change the results presented here, but will facilitate sub-division of the

sample according to other parameters (see below).

We have modeled the effect of various dust shell parameters using DUSTY (see

section 5.5), where optical depth and dust shell density distribution act as proxies

for gas pressure, and the C/O ratio is represented by different dust compositions (i.e.

ratio of SiC/carbon). Our radiative transfer models show that, for the range of optical

depths, stellar and dust temperatures and compositions expected in carbon stars, it

should be impossible to discern trends such as those discussed above. Therefore our

results should have been expected.

In order to discern trends in the spectral features, and thus determine a conden-

sation sequence it will be necessary to classify stars into subgroups according to, for

example, C/O ratio, N-abundance, mass-loss rate, galactic latitude, metallicity, stellar

variability, etc.

In addition, as these stars evolve the Si-abundance remains more or less constant,

while the C/O increases. Therefore dust far from the star (formed in an earlier mass-

loss episode) may have a different nature (composition, structure, size) to that close

to the star - further complicating the interpretation of the spectra.
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Speck et al. (2005) showed that simply changing the grain size from the inner to

the outer shell can affect the spectra, since the optical properties change. In addition,

Speck et al. (2005) suggested that the emergence of the 9µm feature is associated

with the decrease in Si/C ratio, leading to more carbon impurities in SiC grains. This

argument has also been used to explain the 21µm feature seen in C-rich post-AGB

stars in terms of C-doped SiC grains (Speck & Hofmeister, 2004; Speck et al., 2005).

However, we showed in section 5.4.1 that the apparent ∼ 9µm feature is probably not

real.

With all these complexities feeding into the physical nature of the dust formation

zones around carbon stars, it is not entirely surprising that we do not find any trends

indicative of a single dust condensation sequence. The true situation is even more

complex and has more possibilities than accounted for in our modeling. In order to

extract the condensation sequence(s), and to test theoretical models, we must separate

a large sample of carbon stars according to various parameters (e.g. C/O; metallicity;

mass-loss rate; variability type; phase of light curves; etc.) and again hunt for trends

in the spectral features. We cannot sub-divide the present sample according to these

criteria and still obtain statistically meaningful results. Therefore, we must apply the

knowledge gleaned from the present study to determine continua for the larger IRAS

dataset. This dataset should be sufficiently large for subdivision into groups which

still yield statistically meaningful results.

Furthermore, as expressed in equation 3.49, it is necessary to determine the dust

shell parameters through radiative transfer modeling rather than through such sim-

plistic approaches as presented here.

Moreover, we need to use radiative transfer codes that can accommodate chang-

ing dust parameters with distance from the star (and possibly changing dust shell

geometries.)
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5.7 Conclusion

Previous studies of the evolution of IR dust features based on IRAS have yielded

contradictory results. In order to assess the problems/complications of previous stud-

ies, we have re-evaluated 26 IRAS spectra and compared them to their respective

ISO spectra. Inaccurate estimates of continuum levels in carbon star spectra are due

largely to the difficulty in assessing the impact of molecular absorptions in low reso-

lution spectra such as IRAS LRS. This effect is exacerbated by the relatively narrow

wavelength range. This has led to inaccurate spectra used to analyze trends in the

shape, strength, and position of mid-IR features. The higher resolution of the ISO

data and their broader wavelength coverage allow a more accurate fitting of the un-

derlying continuum. We have therefore reassessed the trends in shape, strength, and

position of the ∼11µm SiC feature, and the apparent emergence of the ∼ 9µm feature

and find that there does not appear to be any correlation of these feature parameters

with the temperature of the underlying continuum, all of which is in accordance with

1-D radiative transfer modeling. In addition to looking for correlations between the

continuum temperature, feature strength, and feature peak position, we also investi-

gated whether any of these parameters correlate with the strength of the molecular

bands. In all cases, only very weak correlations were found at best.

These null results are due in part to the large number of factors that feed into

determining the emerging spectrum from a star (e.g. the stellar effective temperature,

C/O ratio, mass-loss rates, metallicity, etc). In order to determine the true carbon

dust condensation sequence(s) and thus test theoretical predictions, we must divide our

dataset into subsets according to such parameters and seek stronger correlations within

these subsets. Furthermore, as suggested by equation 3.49, the only realistic way to

extract the spectral parameters accurately is through radiative transfer modeling,
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which in turn requires a broader wavelength coverage than provided by IRAS to

provide unique results.
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Chapter 6

The Carbon Star V Cyg

“I cannot without great astonishment - I might say without great insult to my intelligence - hear it

attributed as a prime perfection and nobility of the natural and integral bodies of the universe that

they are invariant, immutable, inalterable, etc., while on the other hand it is called a great

imperfection to be alterable, generable, mutable, etc. For my part I consider the earth very noble

and admirable precisely because of the diverse alterations, changes, generations, etc. that occur in it

incessantly.” - Galileo Galilei

6.1 Introduction

In chapter 5 we examined a large collection of dust shells around carbon stars to look

for general trends. Now we will investigate the dust shell around a single carbon

star, V Cyg, in greater detail in order to see how the shell has changed with time, in

addition to attempting to observe the spatial structure of the shell through the use of

long-slit spectroscopy.
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6.1.1 V Cyg

V Cyg is a relatively bright Mira variable, with a visual magnitude varying between

about 7.7 and 13.9 over a period of about 421 days (Kholopov et al., 1998) and it has

been recognized as a carbon star for at least sixty years (Lee et al., 1943). Forrest et al.

(1975) detected significant emission from a circumstellar shell around V Cyg. More

recently, V Cyg has been included in several studies of circumstellar shells because of

its brightness and the fact that it has been observed with both IRAS and ISO. LeVan

& Sloan (1989) compared two observations five years apart for a sample of 8 stars,

including V Cyg, in an attempt to observe variations in spectral features over that

time. For the carbon stars in their sample, including V Cyg, they saw no variation

in the width of the ∼11µm feature over this period, however, the temperature of the

continuum for V Cyg underwent a variation which correlated with the magnitude

of the star. Speck et al. (1997) performed a survey of 32 carbon stars, including

V Cyg. This study used a χ2 spectral fitting technique in order to determine the

composition and continuum temperatures for their sample. Interestingly in the case

of V Cyg (in addition to three other stars) this technique failed, and the blackbody-

continuum divided spectrum had to be used in order for the minimization routine to

produce acceptable fits for this star. Speck et al. (1997) found that V Cyg has one

of the strongest ∼11 µm SiC features, significantly stronger than all but one other

sample star. This apparent high feature strength may be an artifact of missing the

molecular absorption bands either side of the SiC feature, and thus underestimating

the continuum level. Furthermore, they found that the shape and strength of the

SiC feature was consistent with pure emission; no self-absorption of the feature was

apparent. In addition, the ∼9 µm feature is evident, if weak, in their spectrum

(see section 5.1.2 for a discussion of this feature). Sloan et al. (1998) developed a

spectral classification system for carbon stars, using a large sample (96) of carbon
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stars observed by IRAS and including V Cyg. They classified V Cyg as a SiC star,

indicating a weak-to-moderate∼9 µm feature, and implying that V Cyg has progressed

somewhat along its evolutionary track. Yang et al. (2004) concurred with Sloan et al.

(1998) in the assessment of the evolutionary status, classifying V Cyg in their group

B. This indicates that V Cyg has a higher C/O ratio than a younger AGB star and

its shell is optically thicker than for a new-born carbon star.

Bieging et al (2001) used millimeter CO observations of V Cygs circumstellar shell

and concluded that the mass-loss rate has decreased by a factor of 2-3 over the past few

hundred years. Meanwhile Groenewegen et al. (2002) selected V Cyg as part of their

millimeter survey investigating the mass-loss rate and expansion velocities of IR carbon

stars. [expand on this] Thompson et al. (2006) investigated the SiC feature of V Cyg

as part of their analysis of 26 carbon stars, looking for correlations between various

spectral parameters, including molecular bands. No correlations were found, and this

was attributed to the large degeneracy space implicit in circumstellar parameters. In

their investigation of carbon stars in the Magellanic Clouds, Matsuura et al. (2002,

2005) used V Cyg as a Galactic comparison star, because its molecular bands seem

similar to the Magellanic Cloud samples they studied (i.e. strong). They hypothesize

that the unusually strong molecular absorption bands seen in the Magellanic Cloud

carbon stars are due to a high C/O ratio, which implies that V Cyg could have an

above-average high C/O ratio for a Galactic carbon star.

6.2 Observations

The data presented here include 5 observations spread over one of V Cyg’s pulsation

cycles, obtained by the ISO SWS instrument. The distribution of observations dates

provides data for investigation of temporal changes in the spectrum of this carbon star.
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In addition, new observations from Gemini MICHELLE also provide data for analysis

of the spatial structure of the dust shell at a single epoch. Below we divide the detailed

description of the acquisition and processing of the spectra into spatially-resolved and

time-resolved datasets.

6.2.1 Spatially resolved spectra

In an attempt to observe any structure in V Cyg’s dust shell, we performed long-

slit spectroscopy using the Michelle mid-infrared imager/spectrometer attached to the

Gemini North Observatory’s 8.1 m telescope at Mauna Kea, Hawaii. As this is not

always a familiar use of a spectrometer, we will briefly discuss it below.

6.2.1.1 Long-slit spectroscopy

Imagine a simple spectrometer, consisting of an entrance slit, a grating, and an exit

slit (though for this discussion we will ignore the exit slit). The width of the entrance

slit is one of the factors that determines the resolution of the spectrum; to see why,

consider the spectrometer obtaining a line spectrum. The spectrometer images the

entrance slit on the detector, so the width of the lines will be the width of the image

of the slit (which is controlled by the slit width). The wider the slit, and therefore the

lines, the harder it is to get the precise location of the line; in addition, lines that are

near each other could overlap and become difficult or impossible to resolve. However,

a narrower slit lets in less light, which requires more time from the instrument to

obtain the same signal, and instrument time is very precious in astronomy. So the

choice of slit width is an important decision to make when planning an observation.

The slit width is not the only dimension the slit has, however; it also has a length.

This is often ignored during basic treatments of spectroscopy, but we will examine it
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here because spatially-resolved spectra can be generated by exploiting this dimension

of the slit. Because the spectrometer images the slit on the detector, the whole length

of the slit is projected onto this surface; if the detector is large enough, it can record

data from all points of the slit’s length in addition to the spectral information governed

by its width. But because different parts of the slit’s length are covering different areas

of the sky (and the object being observed), this means the detector is getting spectral

information from those areas on different parts of its own surface, and so can resolve

this spatial data as well. A schematic diagram illustrating this method of observation

is given in figure 6.1.

λ

xx

Figure 6.1: A schematic diagram illustrating the technique of long slit spectroscopy.
On the left, the entrance slit to the spectrometer is placed over an extended source.
The length of the slit determines how much of the source will be observed. On the
right, the resulting spectrum on the observing device (typically a CCD) is shown.
The horizontal axis gives the spectral information, the vertical axis is the spatial
dependence of the spectrum.

6.2.1.2 Data processing

The raw data was reduced in the standard manner using the Gemini IRAF package.

For imaging the raw frames were stacked and the images were calibrated using the

observation of the photometric standard star to convert from ADU to Jansky or from

ADU to Jansky per square arc-second as appropriate. The expected fluxes of the
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standard star were taken from Cohen et al. (1999). For spectroscopy the telluric

correction and absolute calibration were carried out by taking the ratio of the object

spectrum to the standard star spectrum, with a small wavelength shift and scaling for

airmass as required to remove the atmospheric bands, and then multiplying through by

the expected spectrum of the standard star, again taken from the spectrophotometic

templates of Cohen et al. (1999). Then, the 2-d spectrum was sliced (that is, the 2-d

data was reduced to a series of 1-d spectra corresponding to positions in the shell).

Ten of these slices were produced, each [0.4] in width. The two outermost slices were

discarded from further analysis due to their very low signal-to-noise ratio. These

spectra are presented in figure 6.2

6.2.2 Time resolved spectra

The time-resolved spectral sample comprises seven observations stretching from 1993

to 2007. The spectra presented here were collected using ISO SWS and were acquired

from the ISO database. This comprises 5 observations between February 1996 and

October 1997. For the raw ISO data we used pipeline version OLP 10.1 from the ISO

data archive. Individual spectral sub-bands were cleaned from glitches (caused by

cosmic ray particles) and other bad data sections. Next they were flat-fielded, sigma-

clipped (using the default value σ = 3) and rebinned, the final spectral resolution

(R = λ
∆λ

), which ranged from 200-700, depending on the scanning speed of the SWS

grating during the observation (Leech et al. 2003). All these spectra can be seen in

figure 6.3.

In order to interpret the variations in spectra over time, we accessed the American

Association of Variable Star Observers (AAVSO) database and extracted the visual

lightcurve data for V Cyg (see figure 6.4).

121



Figure 6.2: Spectra of the dust shell around V Cyg showing the SiC feature at different
positions. Each spectrum corresponds to one of the slices referred to in section refslices.
The dashed line represents the fitted blackbody to each spectrum. The x-axis is
wavelength in µm, y-axis is normalized flux in W ·m−2 · µm−1
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Figure 6.3: Spectra of the dust shell around V Cyg showing the SiC feature at dif-
ferent times. Each spectrum corresponds to one of the observations referred to in
section reftime. The dashed line represents the fitted blackbody to each spectrum.
The x-axis is wavelength in µm, y-axis is normalized flux in W ·m−2 · µm−1

6.3 Analysis

Both spatially and time-resolved spectra were first analyzed by manually fitting a

blackbody continuum to each spectrum. This process was complicated, however, by

the presence of strong molecular bands throughout the spectral range of the obser-

vations. Molecular absorption bands (particularly broad, shallow ones) were not rec-

ognized in early, low-resolution spectroscopic studies of carbon stars. When not rec-

ognized, these molecular bands can lead to misinterpretation of the continuum level,

which gives rise to apparent emission features (Thompson et al. 2006; Speck et al.

2006; see also chapter 5). Consequently the strong molecular absorptions in the spectra

of V Cyg make continuum fitting difficult. They can obscure the true position of the

continuum. In particular, automatic fitting routines and chi-squared analyses of the
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Figure 6.4: The light curve of V Cyg over the period of observation. The x-axis is
time in Julian days with the dates of observation denoted by the dashed lines, and
the y-axis is the visual magnitude. Because of the way the magnitude scale functions,
a smaller magnitude means a brighter object. This data was kindly provided by the
American Association of Variable Star Observers, www.aavso.org .
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quality of fits are precluded by the problem of limited true continuum in these spectra.

In order to ameliorate these fitting issues, we determined the wavelengths at which the

continuum is not compromised by molecular absorptions, which enabled us to fit a sin-

gle blackbody continuum to each of these observational spectra. We then divided each

spectrum by its corresponding blackbody continuum. The fitted continua are shown

in figures 6.2 and 6.3. Using the continuum-divided data the following parameters for

the 11m SiC feature were determined: the peak-to-continuum ratio, the peak wave-

length position, and the full width half maximum (FWHM). A further parameter, the

FWHM multiplied by the peak-to-continuum ratio, was calculated as a proxy for the

feature strength (equivalent width). These spectral parameters were compiled along

with the previously determined blackbody continuum temperature (see tables 6.1 and

6.2). For time resolved spectra, the visual magnitude at the time of observation was

extracted from the AAVSO data and compiled with the spectral parameters.

Apparent Fitted Peak to Peak
Observation Magnitude Blackbody Continuum Position FWHM Feature

Date During Temp. (K) Ratio (µm) Strength
Observation

Feb 05, 1996 12.6 895 1.53 11.2 1.61 2.47

Jan 10 ,1997 12.5 1040 1.62 11.3 1.62 2.63

Jan 12 ,1997 12.6 1010 1.61 11.1 1.64 2.63

Apr 13, 1997 13.3 920 1.49 10.8 1.37 2.05

Jul 3, 1997 12.2 950 1.55 11 1.53 2.37

Oct 10, 1997 9.2 1125 1.70 10.9 1.69 2.87

Table 6.1: Parameters of the ISO SWS time-resolved spectra and fitted blackbodies.
FWHM refers to the Full Width Half Maximum of the SiC feature; feature strength
refers to the FWHM multiplied by the peak to continuum ratio.
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Fitted Peak to Peak
Slice Blackbody Continuum Position FWHM Feature

Number Temp. (K) Ratio (µm) Strength

1 1000 1.45 10.9 1.3 1.89

2 700 1.39 10.9 1.19 1.65

3 900 1.36 10.9 1.19 1.62

4 1000 1.34 10.8 1.14 1.53

5 1000 1.35 10.8 1.10 1.49

6 600 1.42 10.8 1.19 1.69

7 500 1.42 10.8 0.98 1.39

8 600 1.48 10.8 1.13 1.67

Table 6.2: Parameters of the Gemini Michelle sliced spectra and fitted blackbodies.
FWHM refers to the Full Width Half Maximum of the SiC feature; feature strength
refers to the FWHM multiplied by the peak to continuum ratio.
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6.3.1 Correlations

In order to determine whether changes in spectral feature could be correlated with

either position in the dust shell (in the case of the spatially-resolved spectra) or with

the dust shells variations in time as a result of pulsations cycles (the time-resolved

spectra) we then sought least-square fits correlations between all possible sets of pa-

rameters. The results of this analysis can be seen below, where the R2 values of the

best-fits are listed in tables 6.3 and 6.4 respectively, followed by plots of the data

points and the best-fit lines.

Apparent
Magni-

tude

Blackbody
Temp.

Peak to
Continuum

Ratio

Peak
Position

FWHM
Feature
Strength

Feature
Strength

0.0033 0.1135 0.2551 0.7353 0.6275

FWHM 0.3907 0.4289 0.6897 0.2768

Peak
Position

0.0592 0.0004 0.0202

Peak to
Continuum

Ratio

0.6869 0.9284

Blackbody
Temp.

0.6411

Table 6.3: Correlations in the time-resolved spectra of V Cyg. R2 is the linear corre-
lation coefficient for the given correlation.

6.4 Discussion

Inspection of table 5.4.2 reveals several correlations between the measured parameters

in the time-resolved spectra. The strong correlation between the peak to continuum

ratio and the blackbody temperature occurs because the dust emits more strongly
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(a) Visual magnitude vs. fitted blackbody tem-
perature.

(b) Visual magnitude vs. peak to continuum ra-
tio.

(c) Visual magnitude vs. peak position. (d) Visual magnitude vs. FWHM

(e) Visual magnitude vs. feature strength.

Figure 6.5: Correlations in the time-resolved spectra of V Cyg, with the visual mag-
nitude as the x-axis in all figures.
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(a) Fitted blackbody temperature vs. peak to
continuum ratio.

(b) Fitted blackbody temperature vs. peak po-
sition.

(c) Fitted blackbody temperature vs. FWHM. (d) Visual magnitude vs. feature strength.

Figure 6.6: Correlations in the time-resolved spectra of V Cyg, with the fitted black-
body temperature as the x-axis in all figures.
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(a) Peak to continuum ratio vs. peak position. (b) Peak to continuum ratio vs. FWHM.

(c) Peak to continuum ratio vs. feature strength.

Figure 6.7: Correlations in the time-resolved of V Cyg, with the peak to continuum
ratio as the x-axis in all figures.

(a) Peak position vs. FWHM. (b) Peak position vs. feature strength.

Figure 6.8: Correlations in the time-resolved spectra of V Cyg, with the peak position
as the x-axis in all figures.
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Figure 6.9: Correlations in the time-resolved spectra of V Cyg, with the FWHM as
the x-axis and feature strength as the y-axis.

Blackbody
Temp.

Peak to
Contin-

uum
Ratio

Peak
Position

FWHM
Feature
Strength

Feature
Strength

0.0543 0.2420 0.3250 0.8628

FWHM 0.2331 0.0185 0.4464

Peak
Position

0.0974 0.0004

Peak to
Continuum

Ratio

0.3094

Table 6.4: Correlations in the spatially resolved spectra of V Cyg. R2 is the linear
correlation coefficient for the given correlation.
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(a) Fitted blackbody temperature vs. peak to
continuum ratio.

(b) Fitted blackbody temperature vs. peak po-
sition.

(c) Fitted blackbody temperature vs. FWHM. (d) Visual magnitude vs. feature strength.

Figure 6.10: Correlations in the spatially-resolved spectra of V Cyg, with the fitted
blackbody temperature as the x-axis in all figures.
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(a) Peak to continuum ratio vs. peak position. (b) Peak to continuum ratio vs. FWHM.

(c) Peak to continuum ratio vs. feature strength.

Figure 6.11: Correlations in the spatially-resolved spectra of V Cyg, with the peak to
continuum ratio as the x-axis in all figures.

(a) Peak position vs. FWHM. (b) Peak position vs. feature strength.

Figure 6.12: Correlations in the spatially-resolved spectra of V Cyg, with the peak
position as the x-axis in all figures.
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Figure 6.13: Correlations in the spatially-resolved spectra of V Cy, with the FWHM
as the x-axis and feature strength as the y-axis.

as it is heated; the correlation between the apparent magnitude and the blackbody

temperature is also reasonable, because we expect the dust to warm when the star is

bright. To explain the other two correlations, we must recall section 7.1.2, where we

discussed the SiC absorption feature around extreme carbon stars. Because those stars

are totally obscured by their dust shells, we saw an absorption feature that resulted

from the cooler SiC grains towards the outside of the shell absorbing light emitted by

the warm grains nearer the star. Though V Cyg has a much lower optical depth and

essentially the whole shell is being illuminated and heated by the star (which is the

explanation for the correlation between the apparent magnitude and the blackbody

temperature), the outer layers are still relatively cooler than the inner layers, and so

it is not unreasonable that we would observe some self-absorption of the SiC feature.

Another more speculative possibility is that there is possibly a grain shape effect which

is influencing the exact position on the emission feature where the self-absorption is

taking place; as we shall see in chapter 9, theoretical models involving different grain

shapes show differing absorption features. This would be influencing the correlation

between peak position and the feature strength. the More work would need to be done

on this data though before a firmer conclusion could be reached.
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The lack of correlations in the spatially-resolved spectra (except for the single one

between the feature strength and the FWHM, which isn’t meaningful) is somewhat

strange, because we were so successful finding them in the time-resolved spectra. One

possibility is that the difficulty in determining the continuum for the short wavelength

range available for these spectra has introduced enough uncertainty in the fits to mask

correlations. Another factor that may be preventing us from discovering correlations

is that the pulsation scale (the distance between two pulsations as they drift away

from the star) is much smaller than our spatial resolution. This would tend to smear

out any dependence the SiC feature may have on the structure of the dust shell. A

schematic diagram illustrating this is seen in figure 6.14.

Figure 6.14: A schematic diagram illustrating the slices over the dust shell and the finer
structure present in the shell. The slice numbers in this figure are only for illustrative
purposes; they do not correspond to the actual position of the slices discussed in
section refslices.

In order to observe the fine structure of the dust shell believed to be present, it

would be necessary to obtain spectra of much higher spatial/angular resolution.
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6.5 Summary and conclusions

Using a series of data sets taken over one of V Cyg’s pulsation cycles, we generated

blackbody fits and determined several parameters of the SiC emission feature visible in

this star’s spectrum. Then we investigated these parameters, looking for correlations;

several were found, which seem to support the idea that V Cyg’s dust shell is quite

optically thin, and suggests that the SiC emission feature may be undergoing slight

self-absorption. There is also the tentative possibility that a grain shape effect is

altering the SiC feature.

The spatially-resolved spectra did not possess any significant correlations, which

probably indicates that our spatial-resolution is much to low to observe structure and

so any positional dependence on the SiC feature is averaged out and lost. It is also

possible that the difficulty in obtaining a precise blackbody fit to the observational

data over so short a wavelength range is influencing this result.
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Chapter 7

Extreme Carbon Stars

“We can only see a short distance ahead, but we can see plenty there that needs to be done.” - Alan

Turing

7.1 Introduction

In section 2.2.5.2 we introduced the concept of a carbon star, and the dust shells that

form around these stars; in chapter 5 we examined this concept in more detail through

an investigation of a collection of these stars and their dust shells. The dust shells in

that collection had relatively low optical depth; now we turn our attention to stars

who have a dust shell so optically thick that only the infrared emission from the shell

can be seen; the star itself is hidden from view.

This research was previously published in Speck et al. (2009), for which this author was a co-
author.
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7.1.1 Extreme Carbon Stars

As carbon stars evolve, mass loss is expected to increase. Consequently, their circum-

stellar shells become progressively more optically thick, and eventually the central star

is obscured. Volk et al. (1992, 2000) christened such stars “extreme carbon stars”.

These stars have also been dubbed “infrared carbon stars” (Groenewegen, 1994), and

“very cold carbon stars” (Omont et al., 1993). Extreme carbon stars are expected rep-

resent that small subset of carbon-rich AGB stars which are in the superwind phase,

which is a period of intense mass loss just prior to leaving the AGB. The existence of

the superwind has been inferred from observations, but the mechanism behind it is

uncertain; possibly it is a result of particularly efficient dust-driven gas loss.

Because the superwind phase is short-lived compared to the AGB phase the number

of extreme carbon stars is intrinsically small. Consequently, few of these objects are

known. At present there are ∼30 known extreme carbon stars in the Galaxy (Volk

et al., 1992) compared to ∼30,000 known visible carbon stars (Skrutskie et al., 2001).

van der Veen & Habing (1988) attempted to define a way to distinguish between

oxygen-rich and carbon-rich AGB stars using IRAS color-color space, which was di-

vided into subsections according to the properties of the dusty shells are these stars

(see table 1 of van der Veen & Habing, 1988). This was further refined by Omont

et al. (1993) who identified a population of very cold carbon stars using HCN and CO

observations, and showed that the regions originally designated as extremely dusty

O-rich AGB stars also contain a significant fraction of C-rich stars.

The refinement of the van der Veen & Habing (1988) color-color diagram by Omont

et al. (1993) defined subdivisions of the seven zones in color-color space (see figure 1

in Omont et al., 1993). Cool carbon stars with high mass-loss rates (and little or

no SiC emission) fall into regions III and IV, which had previously been assumed to

define OH-IR stars (i.e. the oxygen-rich counterparts to extreme carbon stars). The
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numbered regions have been subdivided into smaller regions denoted by IIIa1, IIIa2,

IIIb1 etc.

A subset of the color-color space, covering parts of regions IIIa1c, IIIb2, IIIb2 and

VIb is reproduced in figure 7.1 and includes our sample stars.

Figure 7.1: Regions in the IRAS color-color diagram populated by extreme carbon
stars; see text for details. The black body curve is indicated by the solid grey line.
The modified blackbody [B(T, λ) ∗ λ−1] is indicated by the dashed grey line

7.1.2 SiC absorption features

A few extreme carbon stars have been shown to have an absorption feature at ∼ 11µm

which has been tentatively attributed to SiC. This feature was discovered in the “pro-
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totype” extreme carbon star AFGL 3068 (hereafter referred to as IRAS 23166+1655;

Jones et al., 1978), and was re-examined by Speck et al. (1997), which also identified

three additional extreme carbon stars with this feature. Clément et al. (2003) exam-

ined the absorption features of two of these extreme carbon stars (IRAS 23166+1655

and IRAS 02408+5458), and showed that their 11µm absorption features are consistent

with β-SiC.

The broad absorption features of IRAS 19548+3035 and IRAS 21318+5631 (also

discovered by Speck et al., 1997) were attributed to SiC absorption with an interstellar

silicate absorption contribution (see also Groenewegen et al., 1996). This will be

discussed further in section 7.4.6.

The absorption features in the spectra of IRAS 19548+3035 and IRAS 21318+5631

were revisited by Clément et al. (2005) who suggested Si3N4 grains as the carrier.

However, this hypothesis has been shown to be erroneous (Pitman et al., 2006).

The failure of the Si3N4 hypothesis led Speck et al. (2005) to suggest that amor-

phous SiC grains may be able to account for the breadth, structure and barycentric po-

sition of the observed broad 10-13µm feature in IRAS 19548+3035 and IRAS 21318+5631.

However, the dearth of amorphous presolar SiC grains seems to preclude this hypoth-

esis (see section 7.1.4).

An alternative explanation for this feature is molecular line absorption, however,

currently available line lists are not sufficient to properly assess this hypothesis (see

Speck et al., 2006, and references therein). One molecular candidate which has transi-

tions in the correct wavelength range is C3 (e.g. Zijlstra et al., 2006; Jørgensen et al.,

2000), but the line lists are not readily available. Furthermore, C3 is expected to be

photospheric, rather than circumstellar, which probably precludes its detection in op-

tically obscured stars. Moreover, the theoretical spectrum of C3 from Jørgensen et al.

(2000) shows a strong absorption close to the ∼ 5µm CO line, which is stronger than
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the∼ 11µm feature. As will be seen in section 7.4.4, the spectrum of IRAS 17534−3030

does not show the 5µm absorption band and provides evidence that the observed ab-

sorption feature is not molecular in origin.

Though previous research has included the effects of SiC self-absorption (shown

to be crucial to produce accurate models Volk et al., 1992; Speck et al., 1997, 2005),

no work has been done to directly fit the apparent SiC absorption feature in radiative

transfer models of extreme carbon stars.

7.1.3 Previous Radiative Transfer Models of Extreme Carbon
Stars

Volk et al. (1992) performed radiative transfer modeling in order to match the Infrared

Astronomical Satellite (IRAS; Neugebauer et al., 1984) Low Resolution Spectrometer

(LRS) data for several of extreme carbon stars. They determined that the exact star

temperature entered into the model was not important for the emerging spectra due

to the very thick dust shells around extreme carbon stars (c.f. DePew et al., 2006;

Speck et al., 2000). Their models used a fixed composition (a mixture of graphite and

SiC), and a fixed dust condensation temperature. Groenewegen (1994) also performed

radiative transfer modeling on a larger set of extreme carbon stars, but these models

varied the dust condensation temperature. Again this was based on IRAS LRS data.

Following up on this, Groenewegen (1995) modeled a large sample of carbon stars

using amorphous carbon optical constants (Rouleau & Martin, 1991), and assumed

low dust condensation temperature in a fairly narrow range (650–900 K for the extreme

carbon stars). Consequently the inner dust radius is larger than expected. Moreover

the resulting models all have relatively low optical depths (τ11.3µm < 2). The optical

depth for their IRAS 23166+1655 model was found to be τ11.3µm < 1, even though this

star has an absorption feature at 11µm. Groenewegen et al. (1998) remodeled these
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stars, again assuming relatively low dust condensation temperatures, with similar

results.

Finally, Volk et al. (2000) used the improved spectral resolution of the the Infrared

Space Observatory (ISO; Kessler et al., 1996) Short Wavelength Spectrometer (SWS;

de Graauw et al., 1996) to examine five extreme carbon stars. In their modeling

study, Volk et al. (2000) allowed the optical depth and radial dust density distribution

to vary; the resulting optical depths were relatively high (1.4-4.5 at 11.3µm), and

the density of the dust shell was found to increase rapidly towards the center. This

increase was interpreted as evidence of an increasing mass-loss rate within the last few

thousand years, consistent with the identification of extreme carbon stars as the final

stage of AGB star evolution. While these models did include SiC opacity data, the

11µm absorption feature was not recognized and consequently no attempt was made

to fit this feature in these models.

A summary of the parameters of previous models for extreme carbon stars with

11µm absorption features in our sample can be found in table 7.1.

Interestingly, all previous models assume relatively low inner dust temperatures.

This will be discussed further in section 7.3.4.1. Furthermore, the modeled dust density

distributions suggest a relatively slow increase in mass-loss rates (1/rx, where x ≈

2.25—3.0).

In reality, dust shells are expected to have heterogeneities and anisotropies in

their density structure as a result of pulsation-driven dust formation and the ensuing

hydrodynamic turbulent effects (e.g. Woitke, 2006). These dust formation models

suggest that carbon star mass-loss is expected to be modulated on several timescales,

especially that of the pulsation cycle.

Furthermore Woitke (2006) has suggested that the dynamics in the dust-forming

zones around carbon stars lead to inhomogeneous dust formation, producing fine scale
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Table 7.1: Previous models of extreme carbon stars with 11µm absorption features

Star composition† Grain-size τ11.3µm drop-off R∗in Tin Ṁ∗ REF
(SiC%) (µm) (×10−4 pc) (K) M� yr−1

00210+6221 0 0.1 4.5 3.00 0.362/D 1000 12×10−5/D 2
01144+6658 8 0.1 4.84 1000 9.50 ×10−7 4
06582-1507 0 ... 5.15 1000 1.08×10−4 1

0 0.1 2.1 2.25 1.23 1000 2.59×10−4 2
17534−3030 0 0.1 4.4 2.50 1.39 1000 8.20×10−4 2
19548+3035 0 0.1 2.5 2.50 1.17 1000 3.89×10−4 2
21318+5631 0 ... 1.36 700 1.10×10−4 3
23166+1655 0 0.1 1.12 650 5.50×10−7 4

30 ... 7.85 1000 3.30×10−5 1
0 ... 1.19 650 1.00×10−4 3

References 1: Volk et al. (1992); 2: Volk et al. (2000); 3: Groenewegen (1995); 4:
Groenewegen et al. (1998)
∗ originally quoted as a function of distance. Value quoted here assume distances from
Groenewegen et al. (2002), listed in table 7.5
† composition assumes remainder dust is carbon. In all but Volk et al. (1992) the carbon
is amorphous; Volk et al. (1992) uses graphitic carbon.
Neither Volk et al. (1992) nor Groenewegen (1995) specify the grains sizes used in their
models

structure in the density of¿ the dust envelope. In addition, while pulsation shocks are

predicted to have a strong effect on local conditions (e.g. Cherchneff, 2006), this is

not reflected in temporal changes in the IR spectra of carbon stars (see chapter 6).

As will be seen in section 7.4, the spatial scale of the heterogeneities is small and the

timescale for pulsations is short compared to the timescales associated with even the

thinnest dust shells. Moreover, the inhomogeneities are expected to be wiped out over

time by the hydrodynamic interactions (Villaver et al., 2002b,a). Consequently, we do

not consider these small scale structures in our models.
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7.1.4 Meteoritic evidence for non-SiC grain types

In section 4.3.1 we discussed the properties of presolar grains of SiC discovered in

meteorites. SiC, is not, however, the only kind of presolar grain that has been observed,

and at this point it is useful to discuss two kinds of these grains.

7.1.4.1 Presolar “graphite”

In addition to SiC presolar grains, carbon grains are also relatively abundant and well

studied (see Bernatowicz et al., 2005, and references therein). Presolar carbon grains

are usually referred to as “graphite” grains, but their structures are more complex

than this name infers. Presolar graphite is found in two types of spherules classified

according to their external morphologies as “onion-like” and “cauliflower-like”. In

general the graphite spherules follow a similar size distribution to the SiC grains.

However, the high-density grains (ρ ≈ 2.15 − 2.20 g cm3) associated with AGB stars

have a mean size of 2µm. In addition, the AGB presolar graphite spherules span a

larger range of isotopic compositions than the SiC grains, possibly suggesting that

they form at a wider range of times during the AGB phase.

While the presolar SiC grains tend to be single crystals, the graphite grains reg-

ularly contain carbide grains. These carbides are enriched in s-process elements, in-

dicative of formation around late-stage AGB stars.

Many of the “onion-like” graphite grains have a core mantle structure in which the

core contains disordered agglomerations of graphene1 sheets and PAH2-like products,

while the mantle is composed of well-ordered graphitic concentric shells. The graphene

particles have a typical size of 3-4nm.

1Graphene is basically a single sheet of graphitic material. If it is disordered, there are some
heptagons and pentagons in place of the regular hexagonal carbon structure. Graphite is the 3-d
structure.

2polycyclic aromatic hydrocarbon

144



The “cauliflower-like” graphite grains also have a concentric shell structure, but it

is less well ordered, and is composed primarily of the disordered graphene.

Whether “onion” and “cauliflower” graphites are formed in the same outflows is

not known. Both types of grain contain the refractory carbides and both span the

same range of isotopic compositions.

7.1.4.2 Other presolar carbides

As discussed in chapter 4 and section 7.1.4.1, refractory carbides are found inside

“graphite” grains but not in SiC grains. Furthermore, SiC is not one of the carbides

found in “graphite” grains. The refractory carbides (TiC, ZrC, MoC and RuC) provide

more constraints on the dust formation processes around carbon stars. In particular,

the formation of “graphite” spherules with TiC nuclei limits the range of C/O ratios

in which these grains could form to 1 ≈ C/O ≈ 1.2. Meanwhile, the ZrC can form

nuclei at higher C/O, but the value still needs to be less than two. This is consistent

with the measured C/O ratios of Galactic carbon stars, which have an average of 1.15

and a maximum of 1.8 (Lambert et al., 1986)

7.1.5 Investigation

In the present work, we investigate a subset of extreme carbon stars, those which

exhibit the 11µm absorption feature. Through radiative transfer modeling, we inves-

tigate the nature of these dust shells. We use theoretical models and meteoritic data

to limit the parameter space and thus reduce the degeneracy within the model results.

In addition, we look for correlations between observed parameters, such as those that

define the 11µm feature (strength, position, etc) as well as mass-loss rates and ex-
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pansion velocities associated with the dust shells. Finally, we determine timescales

associated with the dust shells.

7.2 Observations and Data Processing

We investigated 10 extreme carbon stars observed spectroscopically by the ISO SWS

all of which show evidence for an ∼ 11µm absorption feature (see table 7.2 and fig-

ures 7.2, 7.3,7.4 and 7.5).
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Figure 7.2: ISO SWS spectra of ten extreme C-stars. Left Panel : Flux-calibrated
spectra and fitted blackbody continua. Solid line = ISO spectrum; dashed line =
best-fitting blackbody continuum; The y-axis is the flux (Fλ) in W m−2 µm−1; the
x-axis is wavelength in µm. Right Panel : Continuum-divided spectra. Table 7.3 lists
the blackbody temperatures used in each case to produce the continuum and the
continuum-divided spectra.
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Figure 7.3: ISO SWS spectra of sample extreme C-stars together with IRAS 12, 25, 60
and 100µm photometry points and IRAS LRS spectra. Solid line = IRAS spectrum;
points = IRAS photometry points; dashed line = ISO SWS spectrum. The y-axis is
the flux (λFλ) in W m−2; the x-axis is wavelength in µm.

These sources were chosen by searching the ISO archive for spectra of extreme car-

bon stars listed in Volk et al. (1992) and selecting those with an apparent 11µm absorp-

tion feature. In addition, we used the color-color classification of “very cold” carbon

stars by Omont et al. (1993) to identify further potential sources. Unfortunately most

of the potential sources found in the color-color space (e.g. IRAS 17583-2291) were

not observed by ISO SWS, and the IRAS LRS spectra are too low resolution and/or

too noisy to be used in the present study.

Four of our sources (IRAS 02408+5458, IRAS 19548+3035, IRAS 21318+5631, and

IRAS 23166 +1655) were previously studied using ground-based observations and were
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Figure 7.4: ISO SWS spectra of sample extreme C-stars together with IRAS 12, 25,
60 and 100µm photometry points and IRAS LRS spectra (part 2). Solid line = IRAS
spectrum; points = IRAS photometry points; dashed line = ISO SWS spectrum. The
y-axis is the flux (λFλ) in W m−2; the x-axis is wavelength in µm.

found to be consistent with a self-absorbed SiC feature (Speck et al., 1997). Two of

these sources needed an extra absorption component at ∼10µm, which were attributed

to interstellar absorption. As discussed in section 7.1.2, these have since been the

source of some controversy (Clément et al., 2005; Pitman et al., 2006).

Following the modeling efforts of Volk et al. (2000), Speck et al. (2005) identified

IRAS 00210+6221, IRAS 06582+1507, and IRAS 17534−3030 as exhibiting an SiC ab-

sorption feature. The modeling of Volk et al. (2000) did not include SiC and did not

attempt to fit the 11µm absorption. Thus, division of the observed spectra by their

respective RT model spectra revealed the 11µm absorption feature.
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Figure 7.5: ISO SWS spectra of sample extreme C-stars together with IRAS 12, 25,
60 and 100µm photometry points and IRAS LRS spectra (part 3). Solid line = IRAS
spectrum; points = IRAS photometry points; dashed line = ISO SWS spectrum. The
y-axis is the flux (λFλ) in W m−2; the x-axis is wavelength in µm.

Three new, potential SiC absorption features in ISO SWS spectra (IRAS 01144+6658,

IRAS 03313+6058, and IRAS 22303+5950) were discovered by searching the ISO archive

for any extreme or “very cold” carbon stars as determined by their location in the

IRAS color-color space. Those sources that fall within region III without OH maser

emission were examined.

The locations of the stars in our sample in IRAS color-color space (van der Veen &

Habing, 1988; Omont et al., 1993) are plotted in figure 7.1. Interestingly, all sources

except IRAS 19548+3035 plot along a line parallel to and between the blackbody

emission and the B(T, λ, T )× λ−1 emission lines.

The raw ISO data were extracted from the ISO data archive, and we used the

Off-Line Processing (OLP) pipeline, version 10.1. Individual spectral sub-bands were

cleaned of glitches (caused by cosmic ray particles) and other bad data sections. Next,

they were flat-fielded, sigma-clipped (using the default values σ = 3) and rebinned to

the final spectral resolution (R = ∆λ/λ), which ranged from 200 to 700, depend-

ing on the scanning speed of the SWS grating during the observation (Leech, 2003).
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Table 7.3: Observed parameters of the target sources

IRAS TBB Feature Feature1 FWHM Equivalent 9.7µm2 11.3µm3 SiC4

Number (K) Barycenter Strength Width Strength Strength position
00210+6221 290K 10.45 0.73 2.28 0.60 0.76 0.77 11.3
01144+6658 280K 10.51 0.82 2.32 0.35 0.88 0.87 11.3
02408+5458 250K 11.28 0.73 2.20 0.30 — 0.83 11.3
03313+6058 350K 10.12 0.87 1.72 0.17 0.90 0.97 10.8
06582+1507 320K 10.25 0.91 0.70 0.1 0.97 0.94 11.0
17534−3030 280K 10.59 0.87 0.80 0.30 0.92 0.83 11.3
19548+3035 295K 10.24 0.87 2.39 0.25 0.88 0.93 11.0
21318+5631 300K 10.20 0.84 2.90 0.37 0.88 0.93 11.0
22303+5950 350K 10.25 0.84 1.70 0.25 0.86 0.94 11.0
23166+1655 290K 11.42 0.86 2.00 0.21 — 0.88 11.4

1 Feature strength is the “peak”-to-continuum ratio and is measured and the barycentric position.
2 The 9.7µm strength is the feature-to-continuum ratio measured at 9.7µm.
3 The 11.3µm strength is the feature-to-continuum ratio measured at 11.3µm.
4 The SiC position, the the approximate barycentric position that the SiC feature would have if the short wavelength
side of the absorption were due to silicate 9.7µm absorption.

The final spectra are presented in figure 7.2, which also shows the best-fitting3 black-

body continuum for each spectrum and the resulting continuum-divided spectra. The

blackbody temperatures of the continua at listed in table 7.3.

The continuum-divided spectra clearly show an absorption feature in the 10-13µm

region, the basic parameters of which (barycentric position, peak-to-continuum ratio,

full width half maximum; FWHM) are listed in table 7.3. The excellent match between

the overall spectrum and a single temperature blackbody suggests that we are seeing an

isothermal surface within the dust shell. This represents the depth at which the shell

becomes optically thick. The lack of extra emission at longer wavelengths suggests

that any outlying dust is low enough in density to have an insignificant contribution

to the overall emission.

In addition to the ISO SWS spectra, Fig 7.3, 7.4 and 7.5 shows the IRAS LRS

spectra and the IRAS 12, 25, 60 and 100µm photometry measurements. The difference

in the flux levels between the IRAS and ISO data is not unexpected, since these

stars are variable. However, the shape of the spectrum does not change significantly

3Best fits are achieved by eye and proceed by examination of the continuum-divided spectra.
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between the two observations, suggesting that changes in the stellar luminosity do not

significantly impact the structure and composition of the dust shells.

In order to determine the cause of the 10-13µm feature and the factors that govern

its strength, width and position we have tabulated the barycentric position, feature-to-

continuum ratio and equivalent width of the feature (table 7.3). In addition, we have

also tabulated where the barycenter of the SiC feature would be if the short wavelength

side of the absorption is due to silicate (as has been postulated, see section 7.1.2). This,

along with the feature-to-continuum ratio measured at 9.7 and 11.3µm, can be found

in table 7.3.

7.2.1 The “30µm” feature

Another prominent spectral feature exhibited by our sample of extreme carbon stars is

the so-called “30µm” feature. This feature is relatively common amongst carbon-rich

AGB stars, PPNe and PNe and was first discovered in Kuiper Airborne Observatory

(KAO) spectra of carbon stars and PNe (Forrest et al., 1981). It has been widely

attributed to magnesium sulfide (MgS; e.g. Goebel & Moseley, 1985; Nuth et al.,

1985; Omont et al., 1995; Begemann et al., 1994; Hony et al., 2002). Modeling this

feature is beyond the scope of the present work, but will be investigated in follow-up

modeling. Our models make no attempt to fit the “30µm” feature.

7.3 Radiative Transfer Modeling

Radiative transfer modeling has been particularly useful in investigating extreme car-

bon stars (see section 7.1.3; Volk et al., 1992; Groenewegen, 1995; Volk et al., 2000).

We used the 1-D radiative transfer program DUSTY (Ivezic & Elitzur, 1995; Nenkova
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et al., 2000), to determine the effect of dust shell parameters on the emerging spectra

from carbon stars. In all cases, the central star was assumed to be at 3000 K (typical

for an AGB star). Speck et al. (2000) and DePew et al. (2006) showed that chang-

ing this temperature by ±1000 K did not significantly change the radiative transfer

model’s spectra (c.f. Volk et al., 2000). For simplicity, dust grains are assumed to

be spherical. While DUSTY can include other grain shapes, this expands parame-

ter space to create more degeneracy between models and is beyond the scope of the

present work.

7.3.1 Radial dust density distribution

We assume a radial dust density distribution of 1/r2 which would reflect a constant

mass-loss rate. This choice is somewhat controversial and certainly needs justifying.

Current dust formation models suggest that carbon star mass-loss is expected to be

modulated on several timescales, especially that of the pulsation cycle (Woitke, 2006,

and references therein). Furthermore Woitke (2006) has suggested that the dynamics

in the dust-forming zones around carbon stars lead to inhomogeneous dust formation,

producing fine scale structure in the density of the dust envelope. While pulsation

shocks are predicted to have a strong effect on local conditions (e.g. Cherchneff, 2006),

this is not reflected in temporal changes in the IR spectra of carbon stars (see chapter

6). Previous models of extreme carbon stars have included steeper a density drop-off

(see table 7.1; Volk et al., 1992, 2000; Groenewegen, 1995; Groenewegen et al., 1998),

which is meant to represent the increasing mass-loss rate associated with the onset

of the superwind phase. However, Villaver et al. (2002b,a) showed that the hydrody-

namics in the circumstellar shell wipe out density structure and leave a shell with a
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1/r2 density distribution. In addition Rowan-Robinson & Harris (1983a) showed that

carbon star spectra can be well-fitted using such a density distribution.

In our models we assume that modulations in density have been wiped out or

are unimportant in determining the spectrum at these high optical depths, as we

are clearly seeing an outer dust shell surface. We also assume we are only detecting

the dust that has formed since the onset of the superwind. We assume that there

was a sudden increase in mass loss at some time in the last ∼10000 years and that

this mass-loss rate is now approximately constant, with small scale fluctuations being

unimportant for dust properties. Consequently, the 1/r2 density distribution suffices.

As will be seen in section 7.4, the impact of assuming a steeper the density distribu-

tion is to remove dependence on shell size, and thus remove the ability to out limits

on timescales. If we were to adopt a 1/r3 density distribution, all the dust would

effectively be contained close to the star and would reflect the total mass lost over

only a relatively short period.

7.3.2 Modeling grain-size distributions

The issue of choosing a grain size distribution is interesting and certainly requires

more discussion. Our initial modeling studies used an MRN distribution (i.e., n(a)

proportional to a−q, where n is the number of the grains in the size interval (a, a+da)

and q = 3.5;amin = 0.005µm; and amax = 0.25µm; Mathis et al., 1977). This was

chosen because as will become evident below, we do not actually know the grain size

distribution and MRN is as plausible as any other. However, the MRN distribution

was developed for interstellar dust where the balance of formation and destruction

is different from AGB circumstellar environments. Dominik et al. (1989) suggested

that the grain-size distribution created in the circumstellar environments of AGB stars
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has a steeper power law (i.e. a5), while Kim et al. (1994, KMH) modified the MRN

distribution to include an exponential fall-off term.

We should also consider the “observational” evidence for range and distribution

of grain sizes in carbon star outflows. Meteoritic presolar SiC grains from carbon

stars have a huge grain-size distribution, ranging for 1.5nm up to 26µm, with the

majority of grains (∼70%) falling in the 0.3–0.7µm range (see Daulton et al., 2003;

Bernatowicz et al., 2006; Clayton & Nittler, 2004). Half the mass of the presolar SiC

found in the Murchison meteorite is in grains larger than 0.6µm (Virag et al., 1992).

Carbon presolar grains follow a similar grain size distribution to SiC (Bernatowicz

et al., 2005). However, the sample may be biased in favor of large grains, which may

be more apt to survive the journey through the ISM and incorporation into a solar

system body.

Conventional theories of grain growth cannot produce the largest grains. Since

AGB stars typically have mass-loss rates < 10−5 M� yr−1 there should be an upper

limit to the grain sizes of ∼ 0.1µm. However, this assumes an isotropic distribution of

material. The existence of meteoritic titanium carbide (TiC) within presolar carbon

grains necessitates density inhomogeneities in the gas outflows (c.f., inhomogeneities

caused by turbulence in hydrodynamic models of carbon-rich dust formation regions;

Woitke, 2006). In addition, the grains must be ≈ 1µm to produce the 11µm feature,

implying that there is a large population of small grains (but not necessarily preclud-

ing large grains). Constraints on grain size were also discussed by Martin & Rogers

(1987) who found an upper limit to the grain size of ∼0.1µm based on polarization

measurements of the famous carbon star, IRC+10216. On the other hand, Groenewe-

gen et al. (1997) used polarization measurements to limit the grain size to 0.1 = a

= 0.35µm and suggested that very small grains (<80 nm) may not exist around carbon
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stars (however, smaller SiC grains are found in meteorites). Meanwhile, Jura (1994)

argued the case for grains larger than 1µm in the circumstellar shells of IRC+10216.

Towards the end of the AGB the onset of the superwind may lead to mass-loss

rates as high as a few ×10−4 M� yr−1 (e.g. Hony et al., 2003) which could translate

into larger grains (see e.g. Bernatowicz et al., 2005, and references therein). However,

the relationship between the evolution of carbon stars and the consequent evolution

of grain sizes in their circumstellar shells was discussed by Speck et al. (2005). They

argued that the increased mass-loss rates at the end of the AGB phase lead to smaller,

rather than larger grains as suggested by meteoritic evidence. Even the highest ob-

served mass-loss rates cannot account for formation of titanium carbide (TiC) grains

unless the distribution of material is not spherically symmetric and density enhance-

ments exist (Bernatowicz et al., 2005). Such a distribution of material makes the

concept of grain size distributions even more complex.

The range of grain sizes used in previous radiative transfer modeling attempts

varies hugely. The IRC+10216 models of Griffin (1990) required grain sizes limited

to 5 ≤ a ≤ 50nm. Similarly Bagnulo et al. (1995) required grains smaller than 50nm.

Groenewegen et al. (1997) also modeled IRC+10216 and found that the spectrum was

best fit using a single grain size of 0.16µm (rather than a distribution of grain sizes).

The single-grain size approach was also adopted by Volk et al. (2000) who assume a

single grain size of 0.1µm. This is supported by the success of the early carbon star

models of Rowan-Robinson & Harris (1983a) who also used a single grain size (0.1µm).

However, since extreme carbon stars are expected to be the direct precursors for post-

AGB objects, it may be more appropriate to consider the models of post-AGB stars.

Such modeling efforts have found they need grains up to millimeter- or even centimeter-

in size (e.g. Jura et al., 2000; Meixner et al., 2002). Meixner et al. (2002) used a KMH-

like distribution with an effective maximum grain size of 200µm (hereafter referred to
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as KMH200). Meanwhile, Szczerba et al. (1997) modeled a carbon-rich post-AGB

object with a power-law distribution of grains in the range 0.01–1µm.

Given the range of possible grain sizes and distributions, it is difficult to know

how best to model the dust. Groenewegen (1995) argued that the specific grain-

size is not important as long as the grains are small enough that the absorption and

scattering properties are independent of grain size. However, given the arguments for

a population of large grains, limiting grains to smaller than 0.1µm is unrealistic.

In order to determine the effect of the choice of grain sizes on the model spectra

we have generated models using five additional grains size distributions: 1) MRN-like

with a steeper power law, i.e. amin = 0.005µm, amax = 0.25µm; q = 5 (as suggested

by Dominik et al., 1989); 2) only 0.1µm-sized grains (as used or suggested by Volk

et al., 2000; Rowan-Robinson & Harris, 1983a; Groenewegen, 1995; Martin & Rogers,

1987); 3) the dominant meteoritic grain sizes, i.e. 0.1–1µm only; 4) the standard

KMH distribution (i.e. n(a) ∝ a−qea/a0 , amin = 0.005µm, a0 = 0.2µm; q = 3.5); and

finally 5) KMH200: KMH with a0 = 200µm. The results of this study are shown in

figure 7.6, which shows the effect of changing the grain size distribution while keeping

all other parameters constant.

If we examine the differences in the spectra generated by changing the grain-

size distributions, this can be understood in terms of the absorption efficiency of the

grains and breadth of the grain size distribution. Changing from our default grain

size distribution (MRN) to a modified MRN-like distribution with a steeper power

law drop off (q = 5) as suggested by Dominik et al. (1989) makes very little difference

to the model spectral energy distribution (SED). Likewise, switching from MRN to

KMH has little effect on the overall shape of the SED. That the MRN, q = 5 and the

KMH models are so similar is because they are basically weighted towards the same

small grains. While the weighting is different, the same-sized small grains dominate
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Figure 7.6: The effect of grain-size distributions on the model spectral energy dis-
tribution. In all cases the model parameters are identical except for the grain-size
distribution; see section 7.3.2 for detailed description of the grain-size distributions.
The grey line shows the ISO-SWS spectrum of IRAS 03313+6058 for comparison.

the SED. However, changing the size distribution to include larger dust grains as used

in models of post-AGB stars (e.g. Meixner et al., 2002) has an major effect. The SED

shifts to peak at much shorter wavelengths. This is because of the reduction in the

number of small grains in order to include larger grains. The proportion of larger

grains is small, but the removal of the smaller grains makes it possible for the stellar

photons to penetrate deeper into the dust shell and provides a large population of

warmer grains, resulting in a warmer SED. In both the KMH200 and 0.1µm cases

there is a lack of very small grains which absorb a lot of stellar photons and change
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the temperature distribution (i.e. after the first layer of dust the temperature is lower,

but if there are no small grains the stellar photons penetrate further.) Since size

distributions similar to KMH200 are typically associated with long-lived dust disks,

this particular distribution is not considered further.

For the meteoritic grain size distribution, the short wavelength side of the SED is

similar to the default (MRN) model, but now the SED is much narrower. This can

be explained by the very narrow range of grain sizes. There are no very small grains

that can be easily heated and thus the shorter wavelength emission seen in KMH200

does not occur, but the lack of small grains also allows deeper penetration of stellar

photon leading to a narrower temperature distribution.

This grain size study suggests that for most adopted grain-size distributions, the

resulting SEDs will be equivalent and we assume the MRN distribution as “generic”.

However, the meteoritic grain-size distribution can narrow the overall SED. For this

reason, our modeling efforts concentrate on the generic (MRN) and “meteoritic” grain

size distributions, where the “meteoritic” is taken to be an extreme amongst the

range of reasonable grain-size assumptions. The impact of choosing different grain

size distributions and the implications of these differences for the potential errors

in our models will be discussed in section 7.4. However, essentially, most grain-size

distributions will yield the same results except for “meteoritic” and KMH200. In both

cases changes in optical depth, inner dust temperature and/or relative geometrical

shell thickness can be manipulated to fit the spectrum. There is a degeneracy in model

fits due to the relationship between these three parameters that will be discussed in

the next section. As will be seen in the section 7.4, the grain size effects cannot be

ignored. In one source the need for “meteoritic” grain-size distribution is clear.
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7.3.3 Parameter space investigated

In addition to grain sizes and radial density distribution, the variables investigated

with DUSTY are the inner dust shell temperature (Tinner), optical depth (specified

at 10µm; τ10µm), dust composition, and the geometrical thickness of the dust shell,

ξ = Rout/Rin, where Rin and Rout are the inner and outer radii of the dust shell, re-

spectively. The optical constants for the dust components came from Pègouriè (1988);

Hanner (1988) and Draine & Lee (1984) for SiC, amorphous carbon and graphite,

respectively. In nearly all cases it was possible to generate more than one model to fit

the spectra, consequently we also investigate this degeneracy in parameter space and

look for realistic ways to restrict it.

7.3.3.1 Degeneracies in radiative transfer modeling

There is a clear degeneracy in the models because of the relationship between certain

parameters, e.g. optical depth and geometric shell thickness, or optical depth and the

temperature at the inner edge of the dust shell. Ivezic & Elitzur (1997) discussed these

degeneracies and the relationship between the different input parameters in radiative

transfer models, but we need to understand these relationship if we are to understand

what our models mean.

The wavelength-dependent optical depth, τλ is defined by:

dτλ = ρ(r)κλdr (7.1)

where ρ(r) is the density of the absorbing/scattering particles (i.e. the dust grains)

and κλ is the wavelength dependent opacity of the assemblage of particles along the

line of sight.

161



τλ =

∫ Rout

Rin

ρ(r)κλdr

where Rin is the inner dust shell radius and Rout is the outer dust shell radius. While

κλ is dependent on the density distribution of the grains, maintaining the size, shape

and composition (and crystal structure) of the grains means that κλ will not change

significantly. For simplicity we assume κλ remains constant. In our models we assume

the density of the dust shell drops off as 1/r2 from the central star. In addition, our

models specify the relative geometrical thickness of the dust shell as ξ = Rout/Rin.

Thus we get:

τλ = κλ

[
ξ − 1

ξRin

]
(7.2)

The value of Rin is set by the values we input for the star’s effective temperature and

the inner dust radius (or condensation temperature, Tinner). If we know the tempera-

ture and luminosity of the star, we can use a T (r) ∝ r−
1
2 temperature distribution to

determine the relationship between Tinner and Rin and substituting into equation 7.2

we get:

τλ =

√
16πσ

L?
κλT

2
inner

[
ξ − 1

ξ

]
(7.3)

Here we assume that the grains are blackbodies because they are largely carbon.

Including the albedo would allow for a more accurate calculation, but this would

depend on detailed dust parameters (like crystal structure), and the error incurred by

our assumption is small (i.e. significantly less than an order of magnitude).

Therefore, according the equation 7.3, for a dust shell with constant relative shell

thickness (ξ) the optical depth should increase with the square of the inner dust

temperature. Alternatively, if the inner dust temperature is fixed, then increasing the
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relative shell thickness should decrease optical depth a little (as (ξ−1)/ξ). This latter

effect becomes negligible for large geometric sizes.

7.3.4 Determining the Dust Condensation Temperature

7.3.4.1 Theoretical dust condensation models

As seen in the previous section, the value of the dust condensation temperature is a

source of degeneracy on radiative transfer modeling. In order to reduce this degeneracy

we turn to dust condensation theory to determine a theoretical dust condensation

temperature (i.e. Tinner) that is appropriate for our stars.

As discussed in section 7.1.4, many presolar grains can be attributed to carbon stars

and are valuable resources for investigation of dust formation regions. For example, in

presolar grains titanium carbide (TiC) is found in the center of carbon (C) grains from

AGB stars, but only one SiC grain has been found coated in carbon (Clayton & Nittler,

2004; Bernatowicz et al., 2005). Consequently there have been many studies of the

theoretical condensation sequence in Galactic carbon stars in attempts to constrain the

physical parameters of the dust condensation regions. These studies showed how the

condensation sequence of C, TiC and SiC is dependent on various parameters, most

notably C/O ratio and gas pressure4 (Lodders & Fegley, 1995; Sharp & Wasserburg,

1995).

Sharp & Wasserburg (1995) argued that if carbon forms at a higher condensation

temperature, closer to the star than SiC, there is a significant decrease in the amount of

carbon available in the gas, and thus SiC and C do not form simultaneously, resulting

in naked SiC grains. Therefore, for Galactic sources, the condensation sequence in

4Gas pressure is a measure of the mass-loss rate (Ṁ) convolved with the photospheric temperature
(T?) and outflow velocity (vexp).
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the majority of carbon stars should be TiC — C — SiC, in order to produce the

coated TiC grains and uncoated (naked) SiC grains seen in the meteoritic presolar

grains samples. Observational evidence for naked SiC grains is discussed by Speck

et al. (2005). Sharp & Wasserburg (1995) argued that from kinetic and stellar model

considerations, dust grains should form in the pressure range 2 ×10−7 < P < 4× 10−5

bars5.

Lodders & Fegley (1995) also modeled the effect of C/O and pressure on the

condensation sequence in carbon stars, as well as the effect of s-process and nitrogen

abundances. They also briefly discuss the effect of metallicity. The general trends

in condensation temperatures are: (1) all condensation temperatures decrease as the

gas pressure decreases; and (2) At C/O > 1 the condensation temperature of graphite

increases with C/O (for a given pressure and otherwise constant composition).

Figure 7.7 shows how the condensation temperature of carbon and SiC vary with

the gas pressure in the dust condensation zone.

For the range plotted carbon always forms first from a cooling gas. Very high

pressures are required for SiC to form before carbon. For solar metallicity and C/O =

1.05, SiC forms before carbon for P ≥ 3.4×10−5 bars. As C/O increases, the minimum

pressure required to form SiC first increases. Above C/O ∼1.5 carbon always forms

before SiC. The exact C/O ratio at which the carbon forms before SiC depends on

pressure. Therefore, in order to account for observations of SiC features in the Galaxy,

and the presolar grain record, we can restrict the P–C/O space such that, for low C/O

the gas pressure must remain low, but for higher C/O the pressure can be higher. This

can be used to constrain the dust forming environment around Galactic carbon stars.

Studies of carbon star spectra in the Galaxy and the Magellanic Clouds have lead

to different interpretations with respect to the condensation sequence. Lagadec et al.

5The expected range of gas pressures in the dust formation zone for O-rich AGB stars in the LMC
is 10−7 bars ≈ P ≈ 10−4 bars (Dijkstra et al., 2005)
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Figure 7.7: Pressure-Temperature space for the dust condensation region around
extreme carbon stars (assumes solar metallicity). Grey lines indicate the condensation
temperature for a given pressure as calculated by Lodders & Fegley (1995). Black lines
indicate the P–T paths for the otuflowing gas from our sample stars; (top) as calculated
from the published CO mass-loss rates and expansion velocities (see section 7.3.4.2 for
details); and (bottom) as calculated from the modeled dust temperature radial profile.
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(2007) argued for a sequence in which SiC forms before C in the Galaxy, whereas

SiC and C form together in the Large Magellanic Cloud (LMC) and the sequence

is reversed (C, then SiC) in the Small Magellanic Cloud (SMC). However, they also

suggest that the change in the strength of the features is due to the lower number of

Si atoms available for SiC formation. The proposed Galactic condensation sequence

is at odds with both the models and the meteoritic evidence. Leisenring et al. (2008)

support the condensation sequence in which C forms before SiC for the Galactic carbon

stars, while finding that the Magellanic Clouds tended to form SiC first, followed by

simultaneous condensation of SiC and C. Speck et al. (2006) used the Lodders & Fegley

(1995) model to explain an unusual LMC carbon star spectrum, which suggests that

the condensation sequence is sensitive to both metallicity and mass-loss rate.

7.3.4.2 P-T space in the condensation zone around extreme carbon stars

In order to constrain the input parameters to our model we need to be able to deter-

mine the pressure-temperature space in the dust condensation zone. For a mass-losing

star with a mass-loss rate Ṁ and an expansion velocity of vexp, the density ρ of the

circumstellar shell at a radius r is given by:

ρ =
Ṁ

4πr2vexp

If we know the temperature and luminosity of the star and the composition of

the outflowing material we can combine this information with the Ideal Gas Law

and a T (r) ∝ 1/
√
r temperature distribution to determine the gas pressure at the

condensation radius, where the condensation radius is the distance from the star where

the gas has the condensation temperature (Tcond).

For simplicity, the solid and gas phases are assume to be at the same temperature.
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While this is clearly a simplification (e.g. Chigai & Yamamoto, 2003), the temperature

difference is small compared to the difference needed to significantly affect dust forma-

tion. We assume that most of the outflowing material is atomic hydrogen. In fact it will

probably be a mixture of atomic and molecular hydrogen (H2) since H2 forms around

2000 K and the temperature in the outflow is decreasing from the stellar surface tem-

perature of ∼3000 K to the dust condensation temperature in the 1000–1800 K range.

An entirely molecular hydrogen gas would halve the gas pressure compared to the the

atomic gas. However, we also assume published CO outflow velocities, which reflect

the speed of the outflowing material after radiation pressure acceleration. Adopting

the pre-dust-formation outflow speed (≈ 5km/s), would increase the pressure. Thus

using published values for our sample stars’ luminosities, mass-loss rates and expansion

velocities, we can estimate where their dust condensation zones fall in P–T space.

7.3.4.3 Comparison of P–T space for dust condensation models and sam-
ple stars

Figure 7.7 shows how the P–T space for the dust condensation zone for our target stars

compares to condensation models in P–T space. It is clear the pressure is never high

enough for SiC to form before carbon. Since our sample stars are expected to be the

carbon stars with the highest mass-loss rates, it implies that this NEVER happens

in Galactic carbon stars. This agrees with the meteoritic evidence which suggests

that SiC does not get coated in carbon and supported the idea that variations in the

strength of the SiC feature are related to self-absorption.

The dust condensation temperature is dependent on the pressure in the gas from

which the dust forms. In addition, the P–T space occupied by the target sources

suggests that carbon grains will form at temperatures ≈ 1600 K. If the C/O is very

high, then graphite could form as high as ∼1800 K. However, Galactic carbon stars
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for which the C/O ratios have been measured show that it is in the range 1 to 1.8,

with a mean C/O ratio of ∼1.15 (Lambert et al., 1986; Olofsson et al., 1993a,b). The

precise C/O for our sample is not known, but even low C/O stars yield Tcond ≈ 1550 K

(see figure 7.7). Previous models of carbon stars have assumed much lower inner dust

temperatures. The pressures and temperatures in the gas around these stars meet the

criteria for forming carbon dust at Tcond ≈ 1600 K, (precise temperature depends on

the C/O ratio). Therefore it should form at these high temperatures.

Once dust starts to form, the radial temperature profile will change due to ab-

sorption of starlight by dust grains. Therefore, we use the comparison above only to

determine the inner dust radius. Using radial temperature profiles from our models

we show that the temperature drops significantly more rapidly than 1/
√
r (see fig-

ure 7.7), which suggests that the next condensate (SiC) forms fairly close to the inner

dust radius and thus mitigates the problem with DUSTY that the grains are assumed

to be co-spatial. Indeed the models show that the temperature in the dust shell drops

to the SiC formation temperature at ∼1.3Rin for all cases, which is small compared

to the shell thickness, even for the thinnest shells.

7.3.5 Constraining Dust Composition

Since our stars are carbon-rich, we limit the models to only including carbonaceous

species such as graphite, amorphous carbon and silicon carbide. The choice of carbon

grains is equivocal. We do not know whether the grains composed mostly of carbon

are glassy, poly-nanocrystalline or well-ordered. The meteoritic presolar “graphite”

grains suggest that circumstellar dust can contain either well-ordered graphite or poly-

nanocrystalline-graphene grains. It should be noted, however, that even the disordered

graphene sheets are considered to be more graphitic than amorphous.
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Amorphous carbon essentially consists of a mixture of sp2 (graphite-like) and sp3

(diamond-like) carbon bonds. On heating, sp3 bonds tend to convert to sp2 bonds, thus

graphitizing the amorphous carbon, but it will remain dense like the amorphous phase

(2.8 g/cm3 Comelli et al., 1988; Saada, 2000; Kelires, 1993). At ∼1300 K the fraction of

graphitic bonds is ∼90%. Comparison of the gas pressure in the circumstellar outflows

to graphite formation temperature in section 7.3.4.3 shows that graphite should be able

to form at temperatures significantly above 1300 K. Even if solid state carbon forms

as a chaotic solid, at these temperatures it will quickly anneal to a graphitic form.

Consequently, we argue that graphite is the better choice of carbonaceous material for

modeling extreme carbon star dust shells.

The limitations of the use of the Pègouriè (1988) data are discussed in chapter 8;

this research was conducted before the new optical constants presented in that chapter

were available. Clearly, this data cannot produce the broad absorption feature seen in

the observations. However, we can use the relative changes in composition from star

to star as a guide to understanding why these stars have the features we see.

7.4 Radiative Transfer Modeling Results

The results of the radiative transfer modeling can be seen in figures 7.8, 7.9 and 7.10.

The parameters used in each case can be seen in table 7.4. For each source, we have

produced models using both MRN (generic) and “meteoritic” (extreme) grain size

distributions.
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Table 7.4: Model and derived parameters

IRAS T? Tinner Rout/Rin τ10µm Composition
Number SiC% Graphite %

MRN grain size distribution
00210+6221 3000 1800 10 6 10 90
01144+6658 3000 1800 15 6.5 10 90
02408+5458 3000 1800 20 12 3 97
03313+6058 3000 1800 15 4 10 90
06582+1507 3000 1800 10 6 5 95
17534-3030 3000 1800
19548+3035 3000 1800 15 6.5 5 95
21318+5631 3000 1800 10 8 3 97
22303+5950 3000 1800 15 4 10 90
23166+1655 3000 1800 15 7.5 3 97

Meteoritic grain size distribution
00210+6221 3000 1800 10 6 30 70
01144+6658 3000 1800 10 7.5 30 70
02408+5458 3000 1800 100 8.5 12 88
03313+6058 3000 1800 500 3.25 40 60
06582+1507 3000 1800 10 6 20 80
17534-3030 3000 1800 20 5 35 65
19548+3035 3000 1800 100∗ 4.75 25 75
21318+5631 3000 1800 100 5 20 80
22303+5950 3000 1800 500 3.25 40 60
23166+1655 3000 1800 50 5 25 75

∗ Models with Rout/Rin > 100 can be accommodated because the data beyond 26µm
is poor and ignored, but based on the similarity of this source to IRAS 21318+5631,
we assume this is a good upper limit.
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Figure 7.8: Extreme C-star best fit models (Part 1). solid line = ISO-SWS spectrum;
dashed line = best fit model using MRN grain-size distribution; dotted line = best fit
model using “meteoritic” grain-size distribution; X-axis is wavelength (µm); y-axis is
flux (λFλ) in W m−2. In all cases, T?=3000 K and Tinner=1800 K. Model parameters
are listed in table 7.4

7.4.1 The effect of grain-size distribution

Table 7.4 shows the model input parameters for both grainsize distributions. In all

cases switching from MRN to “meteoritic” grainsizes leads to the need for increased

SiC component (compared to graphite), typically requiring a three- or fourfold increase

in the SiC fraction.

There are other general trends including the need for decreased optical depths

(τ10µm) and increased geometric shell thickness. However, these trends do not hold

for all objects. In the cases of IRAS 00210+6221 and IRAS 06582+1507, the only

difference in parameters between the different grain size models is the fraction of SiC.
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Figure 7.9: Extreme C-star best fit models (Part 2). solid line = ISO-SWS spectrum;
dashed line = best fit model x-axis is wavelength (µm); y-axis is flux (λFλ) in W m−2.
In all cases, T?=3000 K and Tinner=1800 K. Model parameters are listed in table 7.4

IRAS 01144+6658 is the only source for which optical depth was increased and shell

thickness was decreased in the “meteoritic” model.

7.4.2 Dust Shell Thicknesses

As discussed in section 7.3.3.1, there is a degeneracy between relative shell thickness,

inner dust temperature and optical depth. The inner dust temperature variability

has been limited to 1550–1800 K by theoretical considerations (see section 7.3.4.1). It

is possible to tweak parameters such as shell thickness, inner dust temperature and

optical depth and get almost identical models. figure 7.11 shows two almost identical

model spectra for IRAS 23166+1655 with different inner dust temperatures, optical
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Figure 7.10: Extreme C-star best fit models (Part 3). solid line = ISO-SWS spec-
trum; dashed line = best fit model x-axis is wavelength (µm); y-axis is flux (λFλ) in
W m−2. In all cases, T?=3000 K and Tinner=1800 K. other parameters are indicated in
the legend. Parameters of these models are also listed in table 7.4

depths and shell thicknesses. However, reducing the inner dust temperature merely

requires reduction of the optical depth.

While increasingly geometrically large dust shells can be accommodated by de-

creasing optical depth (see equation 7.3), at some point, this also breaks down, as it

leads to a significant population of colder grains which emit too much at long wave-

lengths. In this way we can use the models to place to an upper limit to the shell

thickness. Table 7.5 lists the published expansion velocities for our extreme carbon

stars.

From the model parameters, the physical value for Rout can be calculated, which

gives the physical size of the dust shell. Since the models give an upper limit to the

shell thickness, this upper limit to Rout together with the expansion velocity (vexp)

was used to calculate the time since the outermost edge of the shell was ejected from

the star. The resulting ages of the dust shells are listed in table 7.6.

As can be seen in figure 7.6, it is possible to accommodate thick shells, if we

assume a much lower Tinner (1000 K), and assume that the dust grain are composed

of amorphous rather than graphitic carbon, but these parameter values are precluded
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Table 7.5: Compilation of CO mass-loss rates and expansion velocities, together with
distances and luminosities of sample stars.

Source Name vexp D Ṁgas Ṁdust L?
km/s kpc M� yr−1 M� yr−1 L�

00210+6221* 16.7 3.97 3.02×10−5 — 1×104

01144+6658 18 2.78 6.38×10−5 1.51×10−7 1.69×104

02408+5458* 11 5.3 1.60×10−5 3.5 ×10−7 5.70×103

03313+6058 13.9 5.24 2.37×10−5 1.14×10−7 1.31×104

06582+1507 13.7 4.7 1.43×10−5 1.07×10−7 1.32×104

17534−3030 19 2 3.76×10−5 1.06×10−7 1.21×104

19548+3035 22.3 3.38 1.14×10−4 2.15×10−7 1.32×104

21318+5631 19.6 1.77 7.69×10−6 1.18×10−7 1.24×104

22303+5950 18.3 3.86 3.19×10−4 1.09×10−7 1.25×104

23166+1655 15.1 1 1.44×10−5 8.27×10−8 1.10×104

All data are from Groenewegen et al. (2002) except those marked
with ∗. IRAS 02408+5458 data come from Groenewegen et al. (1999).
IRAS 00210+6221 data are compiled from Volk et al. (2000) (Ṁ , which also
convolves the distance from Groenewegen et al., 2002); and Volk et al. (1992)
(vexp).

Table 7.6: Size and age of the extreme C-star dust shells

MRN size distribution Meteoritic size distribution
IRAS Rin Rout Age Rin Rout Age
Number (1014cm) (1014cm) (yrs) (1014cm) (1014cm) (yrs)
00210 2.68 26.8 50.9 2.78 2.78 52.8
01144 2.74 41.1 72.4 3.08 30.8 54.2
02408 4.11 82.2 236.8 2.99 299 861.3
03313 2.17 32.6 74.2 2.10 1050 2393.7
06582 2.73 27.3 63.1 2.72 27.2 62.9
17534 2.51 50.2 83.7 2.51 50.2 83.7
19548 2.78 41.7 59.3 2.38 238 338.2
21318 3.18 31.8 51.4 2.41 241 389.6
22303 2.24 33.6 58.2 2.10 1050 1818.2
23166 2.88 43.2 90.7 2.45 123 257.1

Calculation of Rout is based on the model parameters listed in table 7.4. Rin comes
from the model output. The calculation of the age of the dust shells is then done
using these data and the observed expansion velocities listed in table 7.5
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Figure 7.11: Degeneracy in the best fit models for IRAS 23166+1655. solid line =
ISO-SWS spectrum; dashed line = best fit model with Tinner=1800 K dotted line =
best fit model with Tinner=1600 K X-axis is wavelength (µm); y-axis is flux (λFλ) in
W m−2. In both cases, T?=3000 K other parameters are indicated in the legend.

by the theoretical constraints on Tinner and composition/crystal structure discussed

above. Clearly, since our constraints are theoretical, they may change as hypotheses

are refined.

The timescales for increased mass-loss are model dependent. As can be seen in

table 7.4 using a “meteoritic” grain size distribution generally requires a geometri-

cally thicker shell, as well as lower values for τ10µm and higher percentages of SiC.

However, timescales associated with our dust shells are always very short (less than

a few thousand years) regardless of grain-size distribution. Moreover, our timescales
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are consistent with those derived for the “superwind” seen in post-AGB objects (e.g.

Skinner et al., 1997; Meixner et al., 2004). These timescales are too short to be associ-

ated with the theoretical superwind (e.g. Vassiliadis & Wood, 1993), which is expected

to last up to ∼10% of the duration of the thermally-pulsing AGB phase. However, if

we compare the number of extreme carbon stars to the total number of carbon stars

in the Galaxy, we find that extreme carbon stars constitute only ∼0.1% of the total

C-star population. The thermally pulsing AGB phase is expected to last ∼ 106 years,

and the time a star spends as a C-stars is even shorter (e.g. Lagadec et al., 2007).

Consequently, we might expect the dust-obscured phase to only last ∼ 103 years.

This is consistent with the model timescales, although the MRN-models still appear

to have very short timescales. Lagadec & Zijlstra (2008) suggested that the trigger

for the superwind is a combination of luminosity and carbon abundance. Although

the duration of the C-star phase maybe be ∼ 3 × 105 years, for much of this time, a

C-star will be below the critical carbon abundance required to drive the superwind

and obscure the star.

How does the extreme carbon star phase fit into the broader C-star evolution?

Many, if not most, carbon-rich post-AGB stars showed marked axisymmetric mor-

phologies (Meixner et al., 1999; Waelkens & Waters, 1999; Sahai, 2004; Soker & Subag,

2005). The extreme carbon stars are expected to be the direct precursors of these ob-

jects (e.g. Skinner et al., 1998), but presently show little evidence for axisymmetry6.

The cause and timing of this axisymmetric structure is not known, but is believed

to occur at the very end of the AGB phase. Dijkstra & Speck (2006) showed that

significant axisymmetry is not expected to develop until the last few tens or hundreds

of years of the superwind phase. The onset of axisymmetry also leads to an optically

thicker toroid of dust, as the circumstellar shell becomes equatorially enhanced. We

6one would expect to see more near-IR emission in the spectrum of strongly axisymmetric objects
due to scattering of starlight escaping in the bipolar axis direction.
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suggest that the very short timescales associated with our model results may indicate

that the extreme AGB stars are in the process of developing axisymmetry, but that

this has not developed to the point of allowing large amounts of NIR scattered light

into the spectrum.

7.4.3 Dust Shell Density Distribution

In section 7.3 we argued the case for maintaining a dust density distribution that

follows a 1/r2 law. However, it has been argued that the increasing stellar luminosity

and the onset of the superwind phase should give rise to a steeper density drop-off.

Following the same arguments as shown in section 7.3.3.1, giving rise to equa-

tion 7.3 we can derive an equation in which the exponent of the density power law is

a variable. This gives us the relationship between the optical depth (τλ), inner dust

temperature (Tinner), relative shell thicks (ξ) and the exponent of the density power

law (x):

τλ = κλ

[
ξx−1 − 1

(x− 1)ξx−1

](√
16πσ

L?
T 2

inner

)x−1

(7.4)

where κλ is the wavelength dependent opacity of the assemblage of particles along the

line of sight; L? is the luminosity of the star; and σ is the Stefan-Boltzmann constant.

As an example of the effect this, we assume the exponent, x = 3 (which is the

highest value in the previous models). In this case, the relative shell thickness de-

pendence dwindles, and the optical depth is essential strongly dependent on the inner

dust temperature only. Since the previous models have severely underestimated the

inner dust temperature, they have also underestimated the optical depth (which may

explain Groenewegen, 1995).

The lack of dependence on shell thickness at x > 2 leads to a situation where

most of the dust is essentially confined to a region close to the star and the outer
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dust becomes negligible, and so this confinement to the inner region is effectively

the same as our assumption that there was a sudden increase in mass loss in the

recent past. However, we attempted to model our sources with a 1/r3 radial density

distribution and found that we cannot match the shape of the SED without restricting

the geometrical shell thickness. Using the 1/r3 radial density distribution with the

MRN grain-size distribution and Rout/Rin ≈ 20 produces a SED that has too much

emission longwards of ∼ 20µm. Therefore, even if the radial density distribution is

indicative of a steep increase in mass-loss rate the shells still need to be geometrically

thin, and the shell thickness and percentage of SiC needed are essentially the same

as for the 1/r2 models (see figure 7.11 for an example.) If the “meteoritic” grain-size

distribution is used in conjunction with a 1/r3 drop-off, the observed SED cannot be

matched. The model SED becomes too narrow, and increasing the outer dust-shell

radius does not help.

7.4.4 IRAS 17534−3030

IRAS 17534−3030 is exceptional amongst the present sample of extreme carbon stars,

and certainly requires more discussion. As can be seen in the flux-calibrated and

continuum-divided spectra in figure 7.2, IRAS 17534−3030 does not exhibit the usual

molecular absorption bands around 13.7µm (due the C2H2) and shortwards of ∼ 8µm

(due to both C2H2 and HCN), which are present in the other sample sources. Its 11–

13µm feature is intermediate between the narrow feature exemplified by IRAS 23166+1655

and the broad feature exemplified by IRAS 19548+3035, indicating that at least some

of whatever substance causes the broadening is present around IRAS 17534−3030. One

of the suggested carriers for the short wavelength broadening of the 10-13µm absorp-

tion feature is C3 (Zijlstra et al., 2006). However, C3 is expected to be photospheric,
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rather than circumstellar, which probably precludes its detection in optically obscured

stars. Moreover, the theoretical spectrum of C3 from Jørgensen et al. (2000) shows

a strong absorption close to the ∼ 5µm CO line, which is stronger than the ∼ 11µm

feature. The spectrum of IRAS 17534−3030 does not show this 5µm absorption band.

This, together with the lack of other molecular absorption feature provides evidence

that the broadening of the 10-13µm feature is not molecular in origin.

In addition to the lack of molecular absorption in its spectrum, IRAS 17534−3030

is unique is another way: it cannot be modeled with the MRN grain-size distribution.

Modeling of this source requires the “meteoritic” grain-size distribution because of its

narrow SED. Whereas our other sources can be fitted with either MRN or “meteoritic”

grains, IRAS 17534−3030 cannot.

7.4.5 Impact of the dust condensation temperature

The increase in the inner dust temperature from ≈ 1000 K in previous models up to

≈ 1600 K decreases the inner dust radius significantly. Consequently the flux of energy

from the star hitting the inner dust radius is increased, leading to a greater acceleration

and consequently a more effectively dust-driven wind. If graphite is formed by anneal-

ing of amorphous carbon, the grain density should remain high (with ρ=2.8g/cm3) and

the increased acceleration is entirely due to increases flux of stellar photons. However,

if graphite forms directly, rather than by annealing of amorphous carbon, the radia-

tion pressure effect is further enhanced, because graphite grains generally have a lower

density than amorphous carbon. Assuming 0.1µm-sized grains, the acceleration felt by

graphite grains (with ρ=2.2g/cm3; c.f. meteoritic presolar grains; see section 7.1.4.1)

at Tinner = 1800 K is 13 times greater than the acceleration felt by amorphous carbon

grains (with ρ=2.8g/cm3) at Tinner = 1000 K.
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7.4.6 Correlations between observed and model parameters

In the course of this investigation we have compiled a large number of parameters

for these stars. For instance, table 7.3 lists the peak position, peak strength, FWHM

and equivalent width of the ∼ 11µm absorption feature. Table 7.5 lists the published

mass-loss rates, luminosities and expansion velocities for our sample stars.

In order to understand the physical conditions that give rise to the observed 11µm

absorption feature, we have sought correlations between various parameters associated

with the sample stars (as found in tables 7.3, 7.5, 7.4). We have looked for correlations

between each of the following:

• Mass-loss rate (from CO observations);

• Expansion velocity (from CO observations);

• Stellar luminosity;

• Strength of the observed absorption;

• FWHM of the absorption;

• Barycentric position of the absorption;

• Equivalent width of the absorption;

• Model parameters.

Loup et al. (1993) showed that, for low mass loss rates there is a simple relationship

between the [25]-[12] color and mass-loss rates. This breaks down at mass-loss rates

≈ 10−5 M�yr−1. It has been suggested that such high mass-loss rate stars at CO-

emission deficient due to either saturation effects, low kinetic temperatures or possibly
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dramatic recent increases in mass-loss. If we extrapolate the trends from low mass-

loss rates to determine mass-loss rates from the [25]-[12] color we find that these

objects should have a mass-loss rate in excess of 10−4 M�yr−1, consistent with the

high modeled optical depths. Because of this relationship, we sought correlations

between the various observed and modeled parameters and the [25]-[12] and [60]-[25]

colors. This search yielded only one correlation: between the [60]-[25] colors and the

dust mass-loss rate from previous models. It is possible that a better correlation may

be found using the Manchester Method i.e. the [6]-[9] color (e.g. Sloan et al., 2006;

Zijlstra et al., 2006), however, we suspect that the lack of correlation arises because

of the intrinsic degeneracy in the modeling.

In section 7.1.2 and section 7.2 we discussed the possibility that the broadening of

the 10–13µm feature might be due to silicate dust. With this in mind, we re-measured

the position and strength of the 11µm feature assuming that the short wavelength

wing is due to silicate. This involved measuring the feature-to-continuum strength at

9.7 and 11.3µm. These data are presented in table 7.3 and were also included in the

investigation of correlations between parameters.

One pair of parameters that yielded a correlation were the best-fit blackbody tem-

perature and the model optical depth, which is demonstrated in figure 7.12. This

correlation occurs whether we assume MRN or “meteoritic” grainsizes.

Since there is a relationship between the optical depth and shell thickness, this

correlation seems to support models validity.

In addition to this relationship between the modeled optical depth and the best-fit

blackbody temperature, we found two other parameters that the optical depth corre-

lates with: modeled percentage of SiC in the dust shell; and the calculated timescale of

the obscuring dust. In both cases, these correlations only hold for the generic (MRN)

grain-sze distribution models. (shown in figure 7.13).
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Figure 7.12: Correlations between the best-fit blackbody temperature and (top) mod-
eled optical depth; (middle) 11.3µm feature-to-continuum ratio; and (bottom) SiC
feature position. Solid lines represent the linear regression fit through the points.
In the top figure, the dotted line represents the linear regression for model fits with
MRN grainsize distributions. Grey points are for meteoritic grainsize models, and
grey dashed line is the linear regression fit through the points.
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Figure 7.13: Correlations between the modeled optical depth and (top) the mod-
eled %age SiC (bottom) the calculated superwind timescale from table 7.6 Solid lines
represent the linear regression fit through the points.

The correlation between optical depth and percentage SiC is such that lower optical

depths require more SiC. This in turn suggests that as mass-loss rates increase, the SiC

component dwindles. This can be interpreted in two ways: (1) at these high mass-loss

rates SiC gets coated by carbon; and (2) increased mass-loss rates are associated with

higher C/O ratios; carbon is enriched but not silicon, and thus more carbon grains

can be made, but not more SiC grains. The first option seems unlikely in light of me-

teoritic evidence (section 7.1.4) and theoretical condensation models (section 7.3.4.1).

However, it is possible that there is a metallicity effect in play. The presolar grains

were formed prior to the formation of the solar system, and thus their source stars

may have had lower metallicities. Speck et al. (2006); Leisenring et al. (2008) argued
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that coating of SiC grains is more likely in lower metallicity environments, and thus it

is difficult to see how the higher metallicity objects we are now witnessing could have

carbon-coated SiC grains. However, Leisenring et al. (2008) argued that SiC grains

form the nucleation seed for MgS, which may explain this correlation. The second

option may be logical if outflows are dust driven. If more carbon grains can form, the

radiation pressure driving the outflow is more effective.

The second optical depth correlation is with the calculated timescale (also shown

in figure 7.13 and again, only for the MRN grain-size distribution). In this case, the

timescale for the dust shell increases with optical depth. The oldest shells have the

highest optical depth. This may simply be due to the path length dependence of

optical depth (see equation 7.1), since τ depends on the geometric size of the dust

shell the oldest shells should have the largest optical depth. However, this should also

lead to a correlation between model dust shell thickness and optical depth. No such

correlation exists. Another interpretation is that older stars have higher mass-loss

rates, and thus denser dust shells and higher optical depths. However, this assumes

the stars all had the same initial mass. This apparent correlation is not strong, and

does not holds for “meteoritic” grains. Consequently, we will not attempt to place too

much importance on it.

There is no correlation between the strength of the 9.7µm absorption and that at

11.3µm, implying that the carriers of these features may not be related. Furthermore,

there is no correlation between the 9.7µm strength and distance to the object, which

leads us to suggest that the cause is not interstellar. Obviously there is a strong

correlation between the strength of the 9.7µm absorption and the barycentric position

of the feature, indicating that this is the cause of the broadening.

The most interesting correlations are between the “isolated” 11.3µm feature (i.e.

the residual feature after taking silicate absorption into account) and the fitted black-
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body temperature. There is a correlation both between the SiC barycentric position

and the blackbody temperature and between the 11.3µm feature-to-continuum ratio

(i.e. SiC feature strength) and the blackbody temperature (both shown in figure 7.12).

The position of the SiC absorption feature moves to shorter wavelengths for higher

blackbody temperatures while also becoming weaker. This can be understood as

being the result of more absorption occurring when the surface we see is at a lower

temperature, which is associated with longer wavelength absorption.

We can interpret this result in terms of the self-absorption scheme described by

Speck et al. (2005). The shifts in wavelength were attributed to a changes in grain

size. However, the weaker absorption and warmer blackbody temperatures associated

with the shortest wavelength peaks is the opposite trend to that described by Speck

et al. (2005). Following their scheme, this would imply that the weakest absorption is

associated with the largest SiC grain. The problem with interpreting this observation

is that we do not know the C/O ratios for these stars. While C/O does not affect the

SiC condensation temperature, it will affect the graphite condensation temperature.

As seen in Fig 7.11, we can reduce the inner dust temperature and compensate by

decreasing both the optical depth and the shell thickness. This would also change

the depth into the shell at which the SiC forms. It is also possible that the shift in

position is due to incomplete subtraction of the silicate contribution. Further studies

are ongoing, but are beyond the scope of the present work.

The assumption that there is a silicate contribution to the spectrum raises several

questions. Identifying the source of the 9.7µm contribution to the absorption feature

remains beyond the scope of the present work, but, needless to say, if it is silicate,

the specter of dual chemistry would require seriously rethinking our current models of

dust formation around carbon stars. Lodders & Fegley (1999) suggested that silicates

could form around carbon stars, and indeed silicate carbon stars exist. It is possible
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that the feature may be attributable to some form of hydrogenated amorphous carbon,

which has been postulated as the source of an ∼ 9µm emission feature in optical thin

carbon star spectra; see chapter 5.

No additional correlations were found. The lack of correlation between most of

the observable or modeled parameters echoes the results of chapter 5, where we found

that there are no trends in the parameters associated with 11µm emission feature in

visibly observable carbon stars. This suggests that even amongst the extreme carbon

stars, variations in C/O, s-process and nitrogen enhancements make discernment of

the physical properties associated with the 11µm feature very difficult.

7.5 Conclusions

We have presented three previously unrecognized SiC absorption features in the spec-

tra of extreme carbon stars. Together with the seven known SiC absorption stars, this

brings the total of known extreme carbon stars with SiC absorption features to ten.

Previous radiative transfer models of extreme carbon stars utilized relatively low

condensation temperatures. Here, theoretical condensation models have been used to

justify much higher condensation temperatures. In addition, our models use graphite

instead of amorphous carbon, because of the preferential formation of graphite at

higher temperature and the meteoritic evidence. Both the higher condensation tem-

perature (through a decrease in the inner radius of the dust shell) and to a smaller

extent the use of graphite will greatly increase the acceleration felt by the dust grains

in the shell relative to parameters used in previous research.

We have shown that grain-size issues cannot be ignored in the production of models

that accurately fit the observed spectra of extreme carbon stars. The size distribution

that is needed is not clearly defined because of the inherent degeneracy in radia-
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tive transfer modeling. Meteoritic grain-size distributions are as valid as other size

distributions with the advantage of being model independent. However, they may

underestimate the contribution from small grains.

With the exception of IRAS 17534−3030, all sample stars could be modeled with

either the generic (MRN) or “meteoritic grain-size distribution IRAS 17534−3030’s

narrow SED required the use of the “meteoric” distribution. Furthermore, there is no

evidence for any molecular absorption in its spectrum. Because the 11µm feature is

still present in the absence of the other molecular features, it supports the attribution

of this feature to a solid state carrier.

The various parameters compiled in the course of this research (both through

radiative transfer modeling and from observations) have been compared in order to

identify any correlations, with the result that the cause of differences is the spectra

cannot be attributed to mass-loss rate or gas pressure in the dust condensation zone. In

fact the paucity of correlations between parameters echoes the results of chapter 5 and

suggests that even amongst the extreme carbon stars, variations in C/O, s-process and

nitrogen enhancements make 11µm a poor probe of the details of dust shell parameters.

The timescales associated with the heavy mass-loss experienced by these extreme

carbon stars are very short (tens to hundred of years) and are not consistent with

timescales for the superwind. This indicates that the heavy mass-loss phase of carbon

stars is not a direct result of thermal pulse (although thermal pulses may be the root

cause).
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Chapter 8

New Silicon Carbide Optical
Constants

“It is one thing to show a man that he is in error, and another to put him in possession of the

truth.” - John Locke

8.1 Introduction

As was mentioned in chapter 4, previous measurements of the optical properties of

SiC all have various limitations (discussed below in section 8.1.1). In order to improve

this situation, new SiC optical constants were measured that eliminate the limitations

in previous data sets.

This research was previously published in Pitman et al. (2008), for which this author was a
co-author.
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8.1.1 Limitations of previously obtained optical properties of
SiC

The limitations of the previous data can be summarized as follows:

1. Most of the obtained optical constants (the complex refractive indices) were cal-

culated through measurements of α-SiC (which is easily available commercially)

rather than the β-SiC believed to be more common in astronomical environ-

ments.

2. The previously obtained data was mostly acquired by absorbance studies of

powdered SiC rather than bulk samples. SiC powder tends to clump and produce

grain clusters, which can strongly influence the optical properties of the sample

(Huffman, 1988). Additionally, the matrix in which the powder is dispersed also

modifies the optical properties (Mutschke et al., 1999).

3. SiC samples produced through laser pyrolysis are believed to produce parti-

cles that resemble those in stellar environments (Willacy & Cherchneff, 1998;

Mutschke et al., 1999); however, these samples are not appropriate for deter-

mining the bulk (grain size independent) optical constants because the crys-

tals present in the samples are not large enough for polarized IR reflectance

data (Hofmeister et al., 2003). Basically, because the optical constants obtained

through analysis of these samples depend on the specific grain size and shape

distributions used during the measurement, it is inappropriate to use these con-

stants with any other size or shape distributions; the bulk optical constants

however are size and shape independent and so can be used in a wider verity of

situations.

4. The KBr matrix correction (essentially this correction attempts to remove the

effect of the potassium bromide matrix in which particles are dispersed; see
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Friedemann et al., 1981) has been applied to some laboratory spectra of sub-

micron diameter SiC grains dispersed in single-crystal matrices; studies of thin

films and isolated nanoparticles of β-SiC have shown that this correction is

unnecessary when measurements are carefully made (Speck et al., 1999; Clément

et al., 2003). In fact, use of this correction produced a discrepancy between

spectra of SiC found in meteorites and SiC around C stars (Speck et al., 1999).

Because the most widely used SiC optical constants were produced before this

was discovered, the KBr matrix correction was used by Bohren & Huffman (1983,

for spherical grains) and Pègouriè (1988). Laor & Draine (1993) used these two

data sets to produce their own values for the optical constants, so the KBr matrix

correction affects their data as well.

8.1.2 Implications of these limitations on previous research

Because most radiative transfer models of the dust shells around C stars have used

constants affected by the limitations mentioned in 8.1.1 (Martin & Rogers, 1987;

Lorenz-Martins & Lefevre, 1993, 1994; Lorenz-Martins et al., 2001; Groenewegen,

1995; Groenewegen et al., 1998; Griffin, 1990, 1993; Bagnulo et al., 1995, 1997, 1998,

and others) in order to place limits on the SiC abundance, those abundances are

probably incorrect. Additionally, models other than those of C stars have used these

optical constants; examples are LMC stars (Speck et al., 2006, LMC stands for Large

Magellanic Cloud, a small companion galaxy to our own), protoplanetary nebulae

(Clube & Gledhill, 2004; Jiang et al., 2005), and planetary nebulae (Hoare, 1990). At

least some of the conclusions drawn from these models are now suspect.

Because the SiC laboratory data obtained by Borghesi et al. (1985), later used by

both Pègouriè (1988) and Laor & Draine (1993), used particles of SiC instead of a
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bulk sample, these data sets are only appropriate (even ignoring the other limitations)

for modeling SiC particles with exactly the same size and shape distributions as the

original sample (this was previously mentioned in 8.1.1; in this case the particles fit a

narrow size distribution of ∼ r−2.1, with r = 0.004µm as a typical size). However, this

data has in fact been used in attempts to analyze grain size effects on the spectrum of

SiC (for example, Bagnulo et al., 1995, see Speck et al. 2005), which is inappropriate.

8.2 Experimental methods

8.2.1 Sample characteristics

Grain properties and manufacturers’ information for the SiC samples studied here are

presented in table 8.1. We verified sample polytype by optical microscopy and by the

spectroscopic results below. Some samples were highly pure (table 8.1). Though we

cannot rule out small departures from non-stoichiometry (e.g., Kimura et al. 2006),

impurities at the few per cent level would be required to affect band positions in the

mid- to far-IR. The colors of the α-SiC samples are associated with impurities which

should not affect the main spectral band. Under magnification of x50, the samples are

homogeneous in color and, thus, in estimated impurities. The samples lack inclusions

but present crystal growth sectors (i.e. planes parallel to ~c).

Hexagonal polymorphs of SiC grow as plates perpendicular to the crystal plane

(001). This orientation was confirmed using sample morphology and optical mi-

croscopy. For α-SiC, we created ~a-~a plates and ~a-~c plates by grinding and polishing

parallel or perpendicular to the large faces of our samples, respectively. Because SiC

is an extremely hard mineral (9.1–9.5 on the Mohs scale at 20◦ C), with layering and
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growth sectors, mirror surfaces were difficult to attain. Thus, the measured reflectance

will be lower than the true, absolute reflectance.

8.2.2 Laboratory IR spectroscopic measurements

Room temperature (18–19◦C) IR specular reflectance spectra were acquired at near-

normal incidence (i.e., the beam passes through the microscope at an angle of = 90±10◦)

using a Spectra-Tech Fourier transform infrared (FT-IR) spectrometer1 microscope in

an evacuated Bomem DA 3.02 Fourier transform spectrometer2. Resolutions of 1 cm−1

(mostly for the mid-IR) or 2 cm−1 resolution (far-IR) suffice to separate peaks for solid

samples at room temperature. Instrumental accuracy is ∼ 0.01 cm−1. For the ~E‖~c

polarization of 6H only, we used a specular reflection device instead of the microscope,

wherein the incident beam strikes the center of the sample at 30◦ to the normal. We

used the “S” polarization, where the direction of the electric field is parallel to the

line defined by the two mirror planes. The beam size was 600 µm in the microscope

and ∼ 1 mm in the specular reflectance device. A Si-bolometer and a coated mylar

beamsplitter were used for the far-IR, ∼ 50 to 650 cm−1 (∼ 200–15.0 µm). A KBr

beamsplitter and a liquid-nitrogen-cooled HgCdTe detector were used for the mid-IR,

450–4000 cm−1 (∼ 22–2.5 µm). A gold mirror (100% reflection assumed; 98% average

reflection measured) was used as the reference. 2000 scans yielded a reasonable noise

level.

The laboratory reflectance spectra in figure 8.1 and figure 8.2 have been merged,

corrected for artifacts and rescaled from the raw spectra. Where reflectance spectra

were available for both wavelength regions, mid- and far-IR reflectance intensities

were scaled to match in the region of overlap and merged. Because back reflections

1Spectra-Tech Inc. (Thermo Electron Corp.), Stamford, CT, USA.
2Bomem Inc., Quebec, Canada.
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(e.g. from growth sectors, Hofmeister et al., 2003) increase apparent reflectance, the

segment with the lowest reflectance above 1000 cm−1 was presumed to be correct. For

the ~a-~a sections, we collected spectra from several areas and present the spectrum

with the highest reflectance at the peak center (i.e., best polished surface). For our

α-SiC, the maximum absolute reflectance measured is low (R = 0.72) due to surface

imperfections. We estimate the effect of errors in R on our data analysis and compare

peak shapes by scaling all reflectance spectra to 92–99% maximum reflectance (cf.

Spitzer et al., 1959b; Il’in et al., 1972; Zorba, 1996; Goncharenko et al., 1996). Our

(blue-gray) α-SiC hopper crystal sample was large enough to provide good data from

the ~a-~c section, but its structure of intergrown, stacked crystals caused artifacts in

the reflectance spectrum. The ~a-~a plates we studied were too thin to allow us to

collect data from the ~a-~c edges. The size of our mossanite sample was marginally

large enough for a ~a-~c sample but is comparable in size to the beam diameter and thus

our apparatus may not have sampled the same areas from the reference mirror and

the moissanite sample.

8.2.3 IR Data Analysis

To avoid presenting results that are affected back reflections, we compared reflectance

Rν in the limit that k → 0 at visible wavelengths,

Rν ≈
(nν − 1)2

(nν + 1)2
. (8.1)

with literature values of the index of refraction determined through microscopy in

white or yellow light (either n(λ = 467 nm) or n(ν = 22 000 cm−1) (λ = 467 nm or

ν = 22 000 cm−1, respectively, table 8.1). If the reflectance at ν = 4000 cm−1 was less

than Rwhite by a few percent, then back reflections did not affect the data.
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We used Kramers-Kronig analyses (Fahrenfort, 1961; Roessler, 1965) to determine

starting estimates of peak positions and widths and followed up with classical disper-

sion analyses to provide robust n(ν) and k(ν) values. β-SiC has poorly resolved peaks;

this is problematic for a Kramers-Kronig calculation, but not for classical dispersion

analysis (e.g. Giesting & Hofmeister, 2002). Values of n and k from our best fits are

presented in figures 8.3b-8.7b.

We constructed synthetic reflectance spectra from three parameters: (1) the TO

peak positions (νi) determined from the maxima in ε2(ν), the full width at half-

maximum (FWHMi) of each peak in ε2(ν), and the oscillator strength fi =2 FWHMiσmax/ν
2
i ,

where the conductivity σ(ν) = νε2(ν)/2. The light angle of incidence Φ is accounted

for after Jackson (1975):

rsΦ =
√
Rmeas =

cosΦ−
√
n2 − k2 + 2ink − sin2Φ

cosΦ +
√
n2 − k2 + 2ink − sin2Φ

. (8.2)

The equations for the components of the dielectric function for m oscillators using

the damping coefficient Γi = 2πFWHMi are

ε1 = ε∞ +
m∑
j=1

4π2fj(ν
2
j − ν2)

4π2(ν2
j − ν2)2 + Γ2

jν
2
, (8.3)

where ε∞ is n2 in the visible, and

ε2 =
m∑
j=1

2πfjν
2
jΓjν

4π2(ν2
j − ν2)2 + Γ2

jν
2
. (8.4)

The absorption coefficient A is calculated from

A(ν) =
2πνε2(ν)

n(ν)
= 4πνk(ν). (8.5)

We note that Mutschke et al. (1999) have calculated spectral absorption and emis-
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Figure 8.1: Mid- and mid+far-IR laboratory specular reflectance as a function of
wavenumber (wavelength) for ~E‖~c faces of α-SiC: moissanite (dash-dot line) and gray
6H (dashed line). Laboratory values scaled to 95% maximum reflectance from 35%
(moissanite) and 45% (gray 6H).

sion cross-sections for different particle shapes using ad hoc damping coefficients γ

for 6H-SiC. Mutschke et al. (1999) provide a simplified version of Eq. 7 that is ap-

propriate for spectra arising from one oscillator (their eq. 1) and further relate the

strength of a single oscillator to ν2
LO − ν2

TO (their eq. 2). Because multiple oscillators

occur for certain polarizations of SiC and are seen in all of our samples, we instead

use equations (8.3) through (8.5) to constrain peak widths and oscillator strengths.
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Figure 8.2: Mid- and mid+far-IR laboratory specular reflectance for ~E⊥~c faces of β-
SiC (dashed line), and two α-SiC samples: moissanite (solid line) and gray 6H (dash-
dot line). A mode occurs at ∼ 965 cm−1; polish effects account for the differences
in shape of the main peak. Values scaled from 72% (β-SiC), 95% (moissanite), 84%
(gray 6H), 76% (green 6H) and 84% (yellow 6H) to 98% maximum reflectance.
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8.3 Results

8.3.1 Laboratory reflectance spectra

Laboratory reflectance spectra of α- and β-SiC are presented in figures 8.1–8.2; peak

positions are given in cm−1 wavenumber, or 104/(λ in µm). Reflectance spectra of

β-SiC show a large, broad feature extending from the TO position near 797.5 cm−1 to

a LO mode near 973 cm−1, consistent with Raman frequencies measured by Feldman

et al. (1968). Because the sum of transverse and longitudinal acoustic modes at

νTA + νLA = 876 cm−1 falls between the LO and TO modes of β-SiC, a resonance is

possible near that position. For α-SiC, from zone folding and Raman measurements

of the dispersion, IR modes for ~E‖~c could also occur at 965, 940, 889, and 836 cm−1

and in ~E⊥~c at 797, 789, 772, and 767 cm−1. As in β-SiC, the strong TO mode in

α-SiC occurs near 797 cm−1 in ~E⊥~c and at ∼ 789 cm−1 for ~E‖~c in α-SiC. Modes at

lower frequencies are not apparent, i.e. these are too weak for resolution in reflectivity

data, if they exist.

We fitted the laboratory reflectance spectra via classical dispersion analysis to

characterize the position, FWHM, and oscillator strength parameters of the main peak

and also to resolve the structure near the TO and LO positions in both SiC polytypes.

This structure does not occur near the expected peak positions and appears to be

due to physical optics effects, as discussed in section 8.3.2. The suspect features

may be described as a divot in the reflectance spectrum near the TO mode for both

polarizations of the α-SiC (moissanite and 6H gray) samples, in ~E⊥~c polarization only

for the yellow α-SiC sample, and also in the β-SiC wafer sample. In ~E⊥~c for the 6H

gray and, to some extent, the green α-SiC reflectance spectra, the slope near the LO

mode is more shallow than that of the yellow α-SiC and moissanite reflectance spectra

and may also be a spectral artifact.
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8.3.2 Optical constants: n(ν), k(ν)

We fitted our laboratory reflectance data to various numbers of oscillators via classical

dispersion analysis to determine if the derived optical constants and absorption coef-

ficients are strongly affected by both weak features predicted from symmetry analyses

and by spectral artifacts induced by layering or small sample size. Figures 8.3-8.7

show the resulting optical functions and the corresponding fitting parameters. By

comparing and contrasting these fits, we determine whether multiple oscillators or a

single oscillator best represents the behavior of α- and β-SiC. The n and k values

obtained from single-crystal spectra samples are not dependent on grain size.

For β-SiC, a classical dispersion analysis fit using one oscillator matches the peak

sites and the sloping top of the main reflectance peak well, but to fit the corner dip

and the slight sway on the top of the peak, three oscillators are required (figures 8.7,

8.10a). The LO mode is at ν = 973 cm−1. The large breadth and the position of the

875 cm−1 feature is consistent with assignment as an acoustic overtone. Its presence

is within the uncertainty of the measurements. From figure 8.10a, n and k are slightly

affected by the number of oscillators used. Using three oscillators instead of one makes

the peak in k more narrow and causes the maximum k value to increase by 25%. The

total area under the peak for k is not affected by the number of oscillators. Similarly,

n differs little when the number of oscillators is varied. Because no extra oscillators

are expected at 802 cm−1 for β-SiC, we suspect the appearance of a peak at that

location is associated with back reflections for this very thin wafer. For the purpose of

modeling the spectrum, the single oscillator fit (ν = 797.5 cm−1, FWHM = 6.0 cm−1,

and f = 3.5 with νLO = 975 cm−1) suffices and agrees with symmetry analysis.

Fitting the moissanite ~E⊥~c reflectance spectrum with one oscillator shows that

there is structure on the main band near both 800 and 950 cm−1 (figure 8.6). Also,

the divot makes it difficult to constrain the TO position. A one oscillator fit with
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peak wavenumber at 797.5 cm−1, FWHM = 4.5 cm−1, and f = 3.45 is equally

good (not shown). Two additional oscillators are needed to characterize the struc-

ture near 800 cm−1, and one additional oscillator is needed to account for the struc-

ture near 970 cm−1 (figure 8.6). The best fit for two oscillators is ν1 = 797.5 cm−1,

FWHM1 = 4.1 cm−1, f1 = 3.45 and ν2 = 970.0 cm−1, FWHM2 = 11.0 cm−1, and

f2 = 0.0010. The presence of a peak at 970 cm−1 is in agreement with zone folding

and Raman data. Addition of the 970 cm−1 makes very little difference to n and k

(figure 8.10).

For the 6H gray α-SiC sample ( ~E⊥~c), a one oscillator fit does not match the slope at

high frequency (figure 8.4). n and k differ very little between the fits, though multiple

oscillators appear to make k more narrow and peak at a higher value (figure 8.10).

The main peak parameters differ very little among various fits to different numbers of

oscillators for this reflectance spectrum. The green and yellow α-SiC samples ( ~E⊥~c)

were fitted with a single oscillator (not shown). For the green α-SiC, the best fitting

parameters are a peak position of 797.5 cm−1, FWHM = 6.0 cm−1 and f = 3.3; n.b.,

this does not fit the slope at high frequency well. For the yellow α-SiC, the best fitting

parameters are a peak position at 798.0 cm−1, FWHM = 5.5 cm−1 and f = 3.5. This

TO position is not well constrained due to the presence of the divot.

Regarding possible spectral artifacts, Spitzer et al. (1959b) also observed a divot

in their reflectance spectrum for a polished SiC surface and a slope for an oxidized

surface; they obtained their best data for a grown surface. Data on α-SiC, ~E⊥~c from

figure 9.6 in Bohren & Huffman (1983) resemble the results of Spitzer et al. (1959b)

for the grown surface. No divot exists, but the slope is greater than we observed

for moissanite. We note that the green and 6H gray α-SiC samples both have thin

layers perpendicular to ~c and high slopes at high ν. The 6H gray α-SiC sample has

a slightly stronger slope, but not much (figure 8.2). The yellow α-SiC and moissanite
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samples lack the slope but have the divot at low ν. These samples are single crystals;

however, the yellow α-SiC is the thinnest sample and its spectrum has the deepest

divot. The moissanite is not thin but has growth sectors (on the order of 0.5 mm

thick). We conclude that the divot is connected with back reflections, not surface

polish, because the green and yellow α-SiC and moissanite samples are all polished

by the manufacturers and have smooth surfaces. Given how difficult this divot was to

fit via classical dispersion analysis, it cannot be a vibrational mode and is probably

associated with a physical optics effect and the high reflectivity of the sample. We

also conclude that the slope at high frequency is associated with the thin layers and is

also a problem of physical optics. Neither the slope nor the divot are intrinsic to the

samples. Samples larger than 5 mm in diameter without growth sectors are needed to

provide the best possible data for SiC.

For moissanite ( ~E‖~c), the main reflectance peak has a very large divot, which

is an artifact, as in the ~E⊥~c polarization (figure 8.5). Because of the divot, the

TO peak position is difficult to constrain. The best classical dispersion fit provides

a high value of ν (802 cm−1) that is uncertain. The data do not reveal the pres-

ence of any of the folded modes or of acoustic overtone/combination bands. The

6H gray ( ~E‖~c) sample can be fitted with one oscillator at ν = 787.8 cm−1 with a

FWHM = 5.5 cm−1 and f = 4.45 (figure 8.3). The peak position is hard to constrain,

but clearly it is lower than the TO peak for ~E⊥~c. The corresponding LO position is

at νLO = 966.9 cm−1. The divot at low frequency is different, being comprised of one

broad mode near 830 cm−1 and having reduced intensity near the TO position, like

the other samples (figure 8.1). The latter fact should not impact the TO position of

the main peak. We attempted fits with various numbers of peaks. The 4 oscillator

fit in figure 8.3 confirms the low frequency TO position near 787 cm−1 for 6H gray

α-SiC ( ~E‖~c). The presence of two modes near 888 cm−1 are consistent with zone
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folding and possible involvement of resonance with the acoustic modes. However, the

narrow widths for these bands indicate that these are fundamentals, not overtones.

The broad feature near 835 cm−1 appears to be a folded mode; its position is consis-

tent with Raman spectra, although its breadth suggests it is an overtone/combination

band. In contrast, the reduced intensity near the TO position was difficult to fit, which

is the hallmark of a spectral artifact and consistent with the problems incurred in the

other samples. The strong layering in the 6H gray α-SiC sample could contribute to

the artifacts. The fit parameters that should represent the intrinsic behavior of this

particular sample is ν = 787.8 cm−1 (FWHM = 5.5 cm−1, f = 4.35), 836.0 cm−1

(FWHM = 30.0 cm−1, f = 0.10), 883.7 cm−1 (FWHM = 2.5 cm−1, f = 0.0041)

and 888.5 cm−1 (FWHM = 3.3 cm−1, f = 0.0033). The intense LO mode occurs at

968.9 cm−1, consistent with Raman measurements. We suggest that the sample has

impurities connected with the strength of the folded modes. These weak modes add

structure to the n and k spectra but do not change the peak maximum.

8.3.3 Calculated absorbance

Absorbances calculated via classical dispersion analyses are cross-checked through

comparison with measured absorbance of the α- and β-SiC samples (figure 8.8,8.9).

In contrast to the calculated A(ν), laboratory absorbances (aSCM) are dependent on

grain size via

aSCM =
A(ν)d

2.3026
− 2 log10(1−R). (8.6)

aSCM is converted for direct comparison to A(ν) in the figures. For α-SiC, a

weighted average,
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aavg = (2a⊥ + a‖)/3, (8.7)

is used in the comparison of figure 8.8. Averaging provides one main peak and a

shoulder for α-SiC. The position of the main peak matches that of β-SiC (figure 8.9),

but the shoulder is at lower frequency. Real, measured spectra have strongly rounded

peaks due to light leakage between cracks in thin-film samples or around the particu-

lates in dispersions. In measured spectra, the α-SiC peak occurs at a lower frequency

than for β-SiC, consistent with our calculations. Because of the light leakage, the

two peaks for α-SiC are blended into one band. In figure 8.8, the measured spec-

trum of α-SiC fits into the envelope. Some of the differences between the calculated

and measured absorbances are due to reflectivity not being subtracted from the raw

data; in these diamond anvil cell measurements, the spectral baseline involves both

the reflectivity of the diamonds and of the sample, and it is not clear how best to

proceed with the subtraction. In dispersions, the spectral baselines are uncontrolled,

consisting of sample and medium properties. For β-SiC, the measured peaks are much

more rounded than in the calculations, and more rounded than the peaks measured

for α-SiC (cf. figures 8.8,8.9). Because the β-SiC chips are harder, it is more difficult

to make a thin film; this results in a more rounded profile. The nano-β-SiC samples

are softer and form a better thin film, producing a peak very close to the ideal, and

also a large shoulder at the LO position. The prominence of the LO mode is expected

for the β-SiC absorbance spectrum which consists of a doubly degenerate TO mode

and a single LO mode. Hence absorbance peaks round and shift to high frequency

in measurements as compared to classical dispersion analysis calculations (figure 8.9).

For the hexagonal samples, symmetry suggests something much different: a degener-

ate planar optic mode near the cubic TO position and 1 axial optic mode near the
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LO position. That is, the TO and LO modes that are strongly coupled in the cubic

structure are decoupled in the hexagonal structure. For ~E⊥~c in α-SiC, the TO and

LO modes are like those in β-SiC. The behavior of the absorbance spectrum for α-SiC

( ~E‖~c) is confusing because several criteria must be met that seem to be contradictory.

One is that the TO mode must be lower in frequency than the LO mode, despite the

fact that symmetry suggests a main mode occurs near ν = 970 cm−1 for the axial

configuration. Another is that the same dipoles exist, so the stretching frequency

cannot be much different. The end result is that the LO position is preserved and

the TO position is derived from a zone-folded mode. It seems that more strength is

shifted to the TO position in the process. But it is also expected that the hexagonal

particles are preferentially oriented and that the measured absorption is skewed to the

TO position. These effects combined indicate that less energy goes toward the LO

position in α-SiC than in β-SiC, consistent with the rounding of the peaks and the

lower frequency of the α-SiC peak maximum.

8.4 Discussion

Past studies are divided on whether the crystal structure of SiC can be determined

from IR spectra (in favor: Borghesi et al. 1985; Speck et al. 1999; opposed: Spitzer

et al. 1959a,b; Papoular et al. 1998; Andersen et al. 1999a,b; Mutschke et al. 1999).

Section 8.3 shows that spectroscopic differences exist between certain orientations of

α- and β-SiC. This section compares β-SiC to α-SiC from the laboratory perspective

and discusses implications for astronomers.
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(a)

(b)

Figure 8.3: Reflectivity at near-normal incidence of 6H gray α-SiC ( ~E‖~c orientation)
and derived functions from classical dispersion analysis. (a) Laboratory reflectivity
spectrum (solid line, scaled to 95% maximum reflectance), calculated reflectivity fitted
by 1 oscillator (ν1 = 787.5 cm−1, FWHM1 = 5.50 cm−1, oscillator strength f1 = 4.45)
(long dashed line), and fitted by 4 oscillators (ν1 =787.5 cm−1, FWHM1 = 6.60 cm−1,
f1 = 3.57; ν2 = 825.0 cm−1, FWHM2 = 20.0 cm−1, f2 = 0.3; ν3 = 883.7 cm−1,
FWHM3 = 2.5 cm−1, f3 = 0.00475; ν4 = 888.5 cm−1, FWHM4 = 3.3 cm−1,
f4 = 0.00425) (short dashed line). (b) Real and imaginary parts of the complex
index of refraction for the 1 oscillator fit: n (solid line) and k (dashed line).
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(a)

(b)

Figure 8.4: Reflectivity at near-normal incidence of 6H gray α-SiC ( ~E⊥~c orien-
tation) and derived n and k. (a) Laboratory reflectivity spectrum (solid line,
scaled to 97% maximum reflectance), calculated reflectivity fitted by 1 oscillator
(ν = 797.5 cm−1, FWHM = 5.30 cm−1, f = 3.33) (long dashed line), and by 2
oscillators (ν1 = 797.5 cm−1, FWHM1 = 5.20 cm−1, f1 = 3.32; ν2 = 928.0 cm−1,
FWHM2 = 65.0 cm−1, f2 = 0.013) (short dashed line). (b) n (solid line) and k
(dashed line) for the 2 oscillator fit.

206



(a)

(b)

Figure 8.5: Reflectivity at near-normal incidence of moissanite (α-SiC, ~E‖~c orienta-
tion) and derived n and k fitted by 1 oscillator (ν = 802.0 cm−1, FWHM = 4.0 cm−1,
f = 3.4). (a) Laboratory reflectivity spectrum (solid line, scaled to 97% maximum
reflectance) and calculated reflectivity (dashed line). (b) n (solid line) and k (dashed
line).
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(a)

(b)

Figure 8.6: Reflectivity at near-normal incidence of moissanite (α-SiC, ~E⊥~c ori-
entation) and derived n and k. (a) Laboratory reflectivity spectrum (solid line,
scaled to 97% maximum reflectance), calculated reflectivity fitted by 1 oscillator
(ν = 799.0 cm−1, FWHM = 4.0 cm−1, f = 3.4) (long dashed line), and by 4 os-
cillators (ν1 = 797.5 cm−1, FWHM1 = 1.75 cm−1, f1 = 2.04; ν2 = 799.0 cm−1,
FWHM2 = 7.0 cm−1, f2 = 1.10; ν3 = 808.0 cm−1, FWHM3 = 14.0 cm−1, f3 = 0.28;
ν4 = 970.0 cm−1, FWHM4 = 12.5 cm−1, f4 = 0.0010) (short dashed line). (b) n (solid
line) and k (dashed line) for the 1 oscillator fit.
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(a)

(b)

Figure 8.7: Reflectivity at near-normal incidence of β-SiC and derived n, k. (a) Labo-
ratory reflectivity spectrum (solid line, scaled to 98% maximum reflectance), calculated
reflectivity for 1 oscillator (long dashed line: ν = 797.5 cm−1, FWHM = 6.0 cm−1,
f = 3.5) and 3 oscillators (short dashed line: nu1 = 797.5 cm−1, FWHM1 = 2.66
cm−1, f1 = 2.7, nu2 = 802 cm−1, FWHM2 = 7.0 cm−1, f2 = 0.68, nu3 = 875 cm−1,
FWHM3 = 7.0 cm−1, f3 = 0.03). An LO mode occurs at ν = 975 cm−1. (b) n (solid
line) and k (dashed line) for the 1 oscillator fit.
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Figure 8.8: Laboratory thin film absorbances (Speck et al. 1999; Speck et al. 2005) di-
vided by estimated sample thicknesses (d ∼ 0.5 µm) compared to calculated classical
dispersion analysis absorbance coefficients for α-SiC. Calculated absorbance coeffi-
cients for the remaining α-SiC samples are indistinguishable.
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Figure 8.9: Laboratory thin film absorbances (Speck et al., 1999, 2005) divided by esti-
mated sample thicknesses (d ∼ 0.15 µm for β-SiC, 0.5 µm for nano samples) compared
to calculated classical dispersion analysis absorbance coefficients for a 1 oscillator fit to
β-SiC (figure 8.7). Given the uncertainty in estimated sample thicknesses, laboratory
values can be scaled by factors of 3-5.
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Figure 8.10: Comparison of n and k values calculated via classical dispersion for
single and multiple oscillator fits: (a) β-SiC (figure 8.7, section 8.3.2), and (b) α-

SiC (moissanite ~E⊥~c, figure 8.6b). In (a), peak heights for n and k increase if more
oscillators are used in the fit. In (b), adding oscillators to account for structure at
ν ∼ 800, 970 cm−1 improves the fit to the laboratory reflectance spectrum, but the
difference to n and k is small.
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8.4.1 Comparisons to previous works

Spitzer et al. (1959a) obtained reflectivity data from a thin (0.06 µm) film of β-SiC

that was vapor-deposited on a Si surface (νTO = 793.6 cm−1, Γ = 8.4 cm−1, f = 3.30).

The film was slightly irregular in appearance and thin enough to transmit light at all

frequencies (their figure 3). Because the TO mode dominates those spectra, the TO

peak position should be as accurate as their spectrometer could provide. However,

the width of 8.5 cm−1 is large compared to that from 6H crystals, which probably

stems from the LO mode being disproportionately large in the thin-film spectra. This

effect occurs commonly due to non-normal beam incidence, wedging of the film, or

irregular film thickness (Berreman, 1963). The LO value obtained from the parameters

of Spitzer et al. (1959a) will be influenced by the large Γ value.

The α-SiC ~E⊥~c data shown in figure 9.6 of Bohren & Huffman (1983) is historically

important because it was used in the widely cited work by Laor & Draine (1993).

Because Bohren & Huffman (1983) only provide reflectance data for ~E⊥~c and did not

provide experimental details, such as which type of α-SiC was used, direct comparison

between our 6H-SiC data and past studies is weighted more heavily toward results

of the Spitzer et al. (1959b) study, which provides data for both polarizations of 6H

single-crystals.

Our results suggest that the n(λ) and k(λ) for ν = 797.5 cm−1, FWHM = 4.0–

6.0 cm−1 and f = 3.3–3.45 best represents α-SiC ~E⊥~c. These values are quite sim-

ilar to the ~E⊥~c results of Spitzer et al. (1959b) for 6H-SiC (νTO = 793.9 cm−1,

FWHM = 4.8 cm−1, f = 3.30) and Bohren & Huffman (1983) for α-SiC (νLO = 969.2 cm−1,

νTO = 793 cm−1, Γ = 4.7 cm−1). Thus, we confirm past findings that f is high and

that the FWHM of the main SiC peak is of the order of 5 cm−1. For dispersive in-

struments such as the ones used by Spitzer et al. (1959b) and presumably Bohren

& Huffman (1983), resolutions depend on the slits used and vary with wavelength.
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Low resolution is suggested by the spacing of data points in previous figures by these

authors. High resolution is needed to properly depict profiles of sharp, steeply rising

peaks (cf. Bowey et al., 2001), such as the reflectance peaks for SiC. The few cm−1

difference for the reported TO positions may either be due to resolution difference

or to older, dispersive instruments lacking internal calibration that exists in modern

FT-IR spectrometers. Peak positions obtained from our high resolution reflectance

measurements agree closely with Raman studies; because Raman peaks are narrower

than IR reflectance or absorbance peaks and have FWHM values similar to those of

the TO modes in the dielectric functions, the TO values presented in this study can be

considered more accurate than the lower values previously reported. Spectral artifacts

observed by Spitzer et al. (1959b) exist for our samples as well and are consistent with

the presence of back reflections from internal surfaces. This deduction is based on

the different thicknesses of the internal reflection surfaces in our various samples. In

contrast to the Bohren & Huffman (1983) α-SiC data and Spitzer et al. (1959b) data

for the 6H-SiC grown surface, we see a new divot in our 6H-SiC spectra. The slope of

the spectral profiles in past studies is greater than what we observed for moissanite.

The weak oscillator seen in our 6H-SiC data at ν = 970 cm−1, FWHM = 11.0 cm−1

and f = 0.001 is real, but its presence barely alters n and k and will not affect RT

models.

For ~E‖~c, Spitzer et al. (1959b) observed one weak band near 883 cm−1. We ob-

served a doublet due to use of higher resolution. Their peak parameters of ν = 785.9 cm−1,

FWHM = 5.5 cm−1, and f = 3.3 for a single oscillator fit (with a LO mode at

966.9 cm−1) are quite similar to ours and within the experimental uncertainty, given

the results for various samples. Their TO positions for both polarizations are low, con-

sistent with the resolution or calibration. We conclude that the best representation of

~E‖~c for essentially pure α-SiC is the 1 oscillator fit for our 6H gray sample.
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There exists precedent in the SiC literature to average spectral parameters from

many laboratory studies to obtain TO frequency positions, LO frequency positions or

oscillator strengths, and FWHM values for SiC. For example, Mutschke et al. (1999)

give the following frequencies, averaged from experimental studies from the 1960’s to

1990’s (their table 1): (for 3C-SiC) E1T = A1T = 795.9 cm−1, E1L = A1L = 972.3

cm−1, and (for 6H-SiC) E1T = 797.0 cm−1, A1T = 788.1 cm−1, E1L = 969.9 cm−1,

A1L = 965.3 cm−1. The frequency positions presented in this work seem at first glance

to be farther from values based on Raman measurements (from Hofmann et al. 1994,

3C-SiC: E1T = A1T = 795.7 cm−1, E1L = A1L = 979.0 cm−1; 6H-SiC: E1T = 797.0

cm−1, A1T = 788.1 cm−1, E1L = 969.9 cm−1, A1L = 965.3 cm−1); however, if the

data by Spitzer et al. (1959a,b) had been included in the averages, the mean values

reported by Mutschke et al. (1999) would be shifted by an amount up to 0.4 cm−1.

We have discussed our data in context with some of the major past laboratory

studies and compilations of experimental data on SiC. To determine which spectral

parameters are most representative of SiC, we strongly encourage readers to assess

individual datasets on a case-by-case basis. This is because a single set of extremely

precise data may be as accurate or more so than values obtained by averaging several

sets of moderately precise data (McKenna & Hodges, 1988; Kohn & Spear, 1991). Av-

eraging datasets also presumes that all errors in each dataset are random. If, instead,

systematic errors arise either in data collection or analysis, then averaging will not

provide the true values (e.g. Bevington, 1969). Systematic errors exist in previously

published SiC reflectance data, e.g., the differences between the instrumental reso-

lutions of dispersive and FT-IR spectrometers can contribute up to factors of a few

cm−1 difference in the reported positions of peaks. For these reasons, we discourage

readers from directly combining our (or any FT-IR) SiC data with older results.
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8.4.2 Differences between β- and α-SiC; implications for 2H

By obtaining reflectivity spectra from different samples and polytypes, we have con-

strained the peak parameters of the main SiC features and the optical functions below

UV frequencies where metal-anion charge transfer exists. Peak parameters for β and

~E⊥~c of 6H α SiC were virtually indistinguishable (ν = 797.5 cm−1, FWHM = 5–

6 cm−1, f ∼ 3.5). The parameters for ~E‖~c of 6H α-SiC were also similar but the

peaks occurred at slightly lower frequencies. This behavior is consistent with symme-

try analysis and Raman data, indicating that peak positions from past IR studies err

by several cm−1. Additional weak modes exist (acoustic for β-SiC, zone-folded for 6H

α-SiC), but most of these are too weak and broad to affect n(λ) and k(λ). For samples

with impurities (excess C), zone-folded modes near 880 cm−1 are relatively strong and

sharp. The presence of these modes in ~E‖~c alters n(λ) and k(λ) in a minor way by

shifting the main peak ν down by < 2 cm−1. Thus, we believe that the 1 oscillator fit

should be used for β-SiC or for “pure” SiC. The doublet in α-SiC ( ~E‖~c) is real and

should be accounted for; we recommend use of a 3 oscillator fit for that or for SiC

with carbon excess or stacking anomalies.

The peak parameters for 6H α-SiC can also be used for 2H α-SiC. Symmetry

analysis and Raman data indicate that the IR peak parameters for ~E⊥~c of 2H should

be similar to those for 6H, i.e., our data on moissanite represent 2H for ~E‖~c. For

~E‖~c of 2H α-SiC, a weak mode should occur near 838 cm−1 and the strong mode is

downshifted in frequency to about 965 cm−1. Although folded modes are not expected

near 888 cm−1, a broad feature is seen in this region for 3C SiC. We suggest that 2H

α-SiC ( ~E‖~c) is represented by the parameters found for the main peak and 838 cm−1

mode of 6H SiC, with the broad oscillator near 881 cm−1 from β-SiC.
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8.4.3 Recommendations for radiative transfer modelers

The purpose of this research is to provide accurate optical data for the polytype of SiC

most commonly found in astronomical environments (β-SiC) and the most commonly

manufactured SiC polytype (α-SiC), so that we and others may construct improved

radiative transfer (RT) models. The advantages to modelers in using this dataset are:

1. We measured β-SiC and α-SiC in all orientations in the same laboratory;

2. We have used the full classical dispersion equations to arrive at n(λ) and k(λ);

3. Our n and k data are not dependent on grain shape or size.

The electronic files for n and k have been prepared assuming that these will be

inputs to the RT code DUSTY (see section 5.5). The original n and k data files

we generated contained over 4000 points; we have regridded these data to a smaller

number of points as required for DUSTY, maintaining high λ resolution where needed

(i.e., where the slope of the data is steep) and using low λ resolution where the slope

is shallow or flat. We provide the regridded n and k data electronically; readers may

contact the author for the 4000 point high resolution files. If using DUSTY, the

default wavelength grid is too coarse and must be altered to provide sufficient spectral

resolution at 10–13 µm where SiC has its strong resonance feature. The spectral

resolution in this region is 0.005 µm. DUSTY and many other RT models invoke Mie

theory to calculate absorption and scattering cross-sections when a user supplies n

and k. This implicitly assumes spherical grains. As discussed below, spherical grains

are probably inappropriate in most astrophysical environments. Thus, we recommend

supplying absorption and scattering coefficients for non-spherical grains calculated

from our n and k instead of directly supplying n and k to DUSTY.
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The intrinsic shape for circumstellar SiC grains remains unknown. Some recent

works have modeled SiC grains as spheres (cf. Gauba & Parthasarathy, 2004; Thomp-

son et al., 2006; Lunttila & Juvela, 2007). Jiang et al. (2005) argue that spheres are

adequate for µm- or sub-µm-sized SiC grains at λ > 11 µm because the broadening of

the 11.3 and 21 µm features (expected if one assumes that the grains are a continuous

distribution of ellipsoids) is not likely to differ in the Rayleigh regime. Rayleigh scat-

tering suffices when particles are small. However, the strength of the absorption as

well as particle size is required to ascertain which scattering regime pertains (Lynch &

Mazuk, 1999). Because SiC has high absorption and nearly perfect reflection at peak

center and the SiC particle sizes expected in astronomical environments are close to the

sizes where Rayleigh scattering no longer applies, other shapes should be considered.

It is clear that distributions of more complex shapes (e.g., Continuous Distribution

of Ellipsoids, CDE, Bohren & Huffman 1983; Distribution of Hollow Spheres, DHS,

Min et al. 2003 ; aggregates, Andersen et al. 2006 and references therein; CDE and

DHS grain shape distributions will be discussed in more detail in chapter 9) should

be used in rigorous parameter space explorations of SiC grains. Most of the standard

non-spherical grain shape distributions give rise to a feature at the relevant wavelength

and with the broader observed feature width.

There is no clear consensus on what the grain size distribution for SiC grains should

be. We expect SiC grains to deviate from the MRN grain size distribution (i.e., md(a)

∝ a−q, where md is the number of grains in the size interval (a, a + da) and q = 3.5

amin = 0.005 µm and amax = 0.25 µm; Mathis et al. 1977), used in works cited in

section 8.1 and the default grain size distribution in DUSTY. The MRN distribution is

based on UV and visible data and gives no information for IR wavelengths. In addition,

SiC dust is generally found in circumstellar, not interstellar, dust; circumstellar dust

is known not to be MRN in size or composition. Some previously published n and

218



k data are based on specific samples and are only relevant to the grain sizes used

in the lab experiments which provided the raw data. In both Pègouriè (1988) and

Laor & Draine (1993), the data originates from SiC-600 (ground and sedimented)

sample from Borghesi et al. (1985). The Borghesi et al. (1985) sample is 99.3% pure

6H α-SiC, with a typical grain size of 0.04µm and a large grain size tail which goes

as ∝ a−2.1 (amax ∼ 0.5 µm). From the IR spectrum, one infers that the grains are

ellipsoidal rather than spherical or irregular (even though the unground grains are

clearly irregular in morphology). n and k derived from the Borghesi et al. (1985) data

should thus only be applied to the grains in a similar grain size/shape regime. The

n and k values presented here offer an advantage over past datasets in that the new

values may be used for extended grain size distributions such as MRN or KMH (Kim

et al., 1994, this is discussed in further detail in section 9.1.5 below).

Several recent papers have discussed the occurrence of a mid-IR absorption feature

in the spectra of a few carbon stars (e.g. Clément et al., 2003, 2005; Speck et al., 2005,

2006; Pitman et al., 2006). Whilst this feature has been attributed to SiC, it tends

to occur at a shorter wavelength. Investigating grain size and shape effects with

the new optical constants may allow us not only to fit this mid-IR feature, but also

to determine what physical parameters differ in the stars that exhibit this absorption

feature. In addition, past studies of grain size and shape based on the optical constants

of Pègouriè (1988) and Laor & Draine (1993) should be revisited.

8.5 Conclusions

1. Previously reported laboratory reflectivity data are for α-SiC, whereas SiC dust

surrounding astronomical objects is β-SiC; the optical functions n(λ) and k(λ)

for these differ slightly. We have provided electronic table values for optical
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functions n(λ) and k(λ) at λ = 0.05–2000 µm derived via classical dispersion

analysis from room temperature, near-normal incidence laboratory specular re-

flectance spectra of several samples of both 3C (β-) and 6H (α-) SiC. These n

and k values are independent of grain size, do not change with scaling of the raw

reflectance spectra, and may be used when modeling optically thin conditions.

2. We have investigated whether fitting SiC IR spectra with one or more oscillators

makes a difference to n and k. We suggest that a one oscillator fit best represents

pure SiC. A three oscillator fit best represents impure SiC (due to carbon excess

or layer stacking). β-SiC and α-SiC ~E⊥~c are best fitted using one oscillator with

peak parameters ν = 797.5 cm−1, FWHM = 4.0–6.0 cm−1, and f = 3.5. Adding

a peak at ν = 970 cm−1 makes little difference to n and k. For pure α-SiC ~E‖~c,

1 oscillator works well; as impurities increase, 3 oscillators are needed. Strong

layering of the sample contributes spectral artifacts to the reflectance spectra

of α-SiC when ~E‖~c; thus, the fit parameters for that orientation carry more

uncertainty. The main difference between n and k for the different orientations

of 6H α-SiC is that the TO peak position for ~E‖~c is lower than that of ~E⊥~c.

Because the fit parameters for 6H α-SiC ( ~E⊥~c) are similar to those of β-SiC,

this is also the main difference between α-SiC and β-SiC. Peak parameters for

the moissanite sample may also be used for meteoritic 2H α-SiC.

3. Peak positions in our SiC reflectance spectra are in agreement with Raman de-

terminations of peak positions for SiC, which should be highly accurate due to

the narrow widths, instrument calibrations, and large number of measurements

made. Our calculated peak widths and strengths for 6H-SiC are in agreement

with published Raman and reflectance studies. Past data for β-SiC were col-

lected from a thin film and give information on the TO mode, but the presence of
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the LO mode may affect those results. Differences in peak positions between this

and past works are due to calibration, instrumental resolution, or a combination

of both effects. Apart from the fact that past n and k datasets were compiled

from several studies, older n and k values are not appropriate for dust that is

optically thin at all frequencies, nor are these values appropriate for all grain

sizes; thus, n and k data from past studies should be used carefully. Comparing

and contrasting results of more sophisticated radiative transfer models that use

these new n and k values as inputs will allow the community to test compet-

ing hypotheses on grain size and shape effects in astronomical environments in

future work.
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Chapter 9

Size and Shape Dependent Optical
Properties

”Software and cathedrals are much the same - first we build them, then we pray.” - Samuel Redwine

9.1 Introduction

The previous chapter illustrated how one advantage of the new optical constants is

the freedom to set the size and shape of dust particles over a wide range. To exploit

this freedom, the size and shape independent complex refractive index must first be

converted to the size and shape dependent absorption and scattering efficiencies (for

a given size and shape distribution). A program, absscat1, was developed to calculate

these values. Before a discussion of this program can begin, however, it is first neces-

sary to understand the theoretical background behind absorption and scattering that

was used to generate the code.

1The source code for this program may be found in Appendix A starting on page 271.
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9.1.1 Theoretical background

The following analysis assumes that the particles under investigation are small com-

pared to the wavelength of the incident light (i.e. the Rayleigh limit). That is,

2πr
λ

= kr � 1, where for non-spherical particles r represents the radius of the sphere

of equivalent volume; this will be the convention used for the rest of this chapter. An

additional requirement is that kr|m| � 1, where m is the complex refractive index

of the particles. The second requirement comes from the fact that Rayleigh approxi-

mations become increasingly inaccurate as |m| increases relative to kr (Kerker et al.,

1978; Bohren & Huffman, 1983). Finally, we will only examine smooth particles, the

most general form of which is the ellipsoid.2

If these criterion are met, it is possible to write the absorption and scattering cross

section of an ellipsoid averaged over all orientations as (Bohren & Huffman, 1983)

Cabs = k Im(
1

3
P1 +

1

3
P2 +

1

3
P3) (9.1)

Csca =
k4

6π
(
1

3
|P1|2 +

1

3
|P2|2 +

1

3
|P3|2) (9.2)

where P1, P2, and P3 are the polarizabilities of the particle in each orientation. In

the case of the isotropic ellipsoids we will be discussing,

Pi = 4πr3 ε− εm
3εm + 3Li(ε− εm)

(9.3)

where ε and εm are the complex dielectric functions of the particle and the sur-

rounding medium, respectively. Li are geometric factors given by

L1 =
abc

2

∫ ∞
0

dq

(a2 + q)f(q)
(9.4)

2An ellipsoid is a particle bound by the surface x2

a2 + y2

b2 + z2

c2 .
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a
c

b

Ellipsoid

Sphere
a = b = c

Prolate Spheroid
a = c, a/b < 1

(cigar shaped)

Oblate Spheroid
a = c, a/b > 1

(pancake shaped)

Figure 9.1: Smooth particle shapes

L2 =
abc

2

∫ ∞
0

dq

(b2 + q)f(q)
(9.5)

L3 =
abc

2

∫ ∞
0

dq

(c2 + q)f(q)
(9.6)

where f(q) is given by f(q) = [(q + a2)(q + b2)(q + c2)]
1
2 .

If the factor of 4πr3 in each Pi is removed, and we assume the surrounding medium

is vacuum (i.e. εm = 1; a reasonable assumption for dust particles in space!) we obtain

Cabs = kV Im(α1 + α2 + α3) (9.7)

Csca =
k4V 2

2π
(|α1|2 + |α2|2 + |α3|2) (9.8)
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where

αi =
m2 − 1

3 + 3Li(m2 − 1)
(9.9)

are the polarizabilities of the particle per unit volume, with m as the complex

refractive index of the particle, obtained from the relationship ε = m2. It is at this

point that Min et al. (2003) begin their analysis of the absorption and scattering

efficiencies for several particle shape distributions; the following discussion will closely

follow that work and use identical notation.

9.1.2 Spherical particles

In the case of a homogeneous spherical particle, a = b = c = r which gives us

L1 = L2 = L3 =
r3

2

∫ ∞
0

dq

(r2 + q)
5
2

=
r3

3(r2 + q)
3
2

∣∣∣∞
0

=
1

3
(9.10)

Applying this to (9.9) gives

α1 = α2 = α3 = αsph =
m2 − 1

m2 + 2
(9.11)

which can then be applied to (9.7) and (9.8) to produce

Cabs = 3kV Im(αsph)

= 3kV Im
(m2 − 1

m2 + 2

)
(9.12)
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Csca =
3k4V 2

2π
|αsph|2

=
3k4V 2

2π

∣∣∣m2 − 1

m2 + 2

∣∣∣2 (9.13)

The remainder of this section deals with distributions of particles, but in the case

of spheres a ’distribution’ is simply a collection of identical spheres of volume V . The

situation where there is a distribution of spheres of varying volume will be considered

in 9.1.5.

9.1.3 Distributions of non-spherical particles

For non-spherical particles the situation is more complex, because a distribution of

particles of the same volume will be a collection of particles of varying dimensions

and therefore different absorption and scattering cross sections. For the absorption

cross section, the average value over the distribution can be obtained by averaging

the polarizabilities per unit volume, but the non-linear nature of the scattering cross

section makes this impossible. However, Min et al. (2003) showed that it is possible

to obtain a relationship between the absorption and scattering coefficients that can

be used to eliminate this difficulty. First, observe

Im(z) = −|z|2 Im(z−1) ∀z ∈ C (9.14)

Following Min et al., the proof of this is as follows:

Proof.

∀z ∈ C, z = |z|eiφ ⇒ z−1 = |z−1|e−iφ. Thus,
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Im(z) = |z| sin(φ), Im(z−1) = −|z−1|sin(φ)

Im(z)

|z|
= −Im(z−1)

|z|−1

Im(z) = −|z|2Im(z−1)

Applying this to (9.9) gives

Im(αi) = −|αi|2 Im(α−1
i ) = −|αi| Im(

3 + 3Li(m
2 − 1)

(m2 − 1)
)

= −|αi|2 · Im(
3

(m2 − 1)
) · Im(3Li) (9.15)

Because the Li are real numbers, this becomes

Im(αi) = −3|αi|2 Im(
1

(m2 − 1)
) (9.16)

Using (9.14) again gives

Im(
1

(m2 − 1)
) = −

∣∣∣ 1

(m2 − 1)

∣∣∣2 Im(m2 − 1) = − Im(m2)

|m2 − 1|2
(9.17)

Substituting this into (9.16), we obtain

Im(αi) =
3|αi|2Im(m2)

|m2 − 1|2
(9.18)

Rewriting this to get |αi|2,

|αi|2 =
|m2 − 1|2 Im(αi)

3 Im(m2)
(9.19)
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Now that we have an equation relating Im(αi) and |αi|2, we can substitute it into

(9.8)

Csca =
k4V 2

2π

( |m2 − 1|2 Im(α1)

3 Im(m2)
+
|m2 − 1|2 Im(α2)

3 Im(m2)
+
|m2 − 1|2 Im(α3)

3 Im(m2)

)
=
k4V 2|m2 − 1|

6π Im(m2)
(Im(α1) + Im(α2) + Im(α3))

=
k4V 2|m2 − 1|

6π Im(m2)
Im(α1 + α2 + α3) (9.20)

Inspection of this along with (9.7) immediately gives us the final relationship,

Csca =
Cabs
σ

(9.21)

where

σ =
6π Im(m2)

k3V |m2 − 1|2
(9.22)

using the same notation as Min et al.. Now we are ready to progress to specific

distributions of non-spherical particles.

9.1.3.1 Continuous distribution of ellipsoids

If a distribution of ellipsoids contains particles of the same volume, it is possible to

normalize the Li terms in (9.4), (9.5), and (9.6) so that for all the particles

L1 + L2 + L3 = 1 (9.23)

This allows us to reduce the number of independent terms to two (setting L3 =
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1−L1−L2). With this, we can write the average value of the absorption cross section

over a normalized shape probability function P(L1, L2) as (Bohren & Huffman, 1983;

Min et al., 2003)

〈Cabs〉 = kV

∫ 1

0

dL1

∫ 1−L1

0

dL2 Im(α1 + α2 + α3)P(L1, L2)

= kV Im(ᾱ) (9.24)

where ᾱ represents the averaged polarizability per unit volume over the distribution

P . Because σ is shape independent, from (9.21) we obtain

〈Csca〉 =
〈Cabs〉
σ

(9.25)

If we consider a shape distribution where all possible ellipsoidal shapes with a

given volume are equally probable - a continuous distribution of ellipsoids, or CDE -

the shape probability function is simply P = 2 (Bohren & Huffman, 1983; Min et al.,

2003). It may seem odd that P = 2 instead of 1, particularly as P is normalized!

However, the factor of 2 is in fact a result of that normalization (due to the Li terms

having 2 degrees of freedom). Consider the normalization condition

∫ 1

0

dL1

∫ 1−L1

0

P(L1, L2)dL2 = 1.

If we assume a constant P , this becomes

1 = P
∫ 1

0

dL1

∫ 1−L1

0

dL2 = P
∫ 1

0

dL1(1− L1) = P(
1

2
)

Thus P = 2 in the case of a continuous distribution of ellipsoids.
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Using this, we can now determine ᾱ, as the αi terms are the only ones in (9.24)

that are functions of L1 and L2

ᾱ = 2

∫ 1

0

dL1

∫ 1−L1

0

(α1 + α2 + α3)dL2 (9.26)

= 2
(∫ 1

0

dL1

∫ 1−L1

0

α1 dL2 +

∫ 1

0

dL1

∫ 1−L1

0

α2 dL2 +

∫ 1

0

dL1

∫ 1−L1

0

α3 dL2

)

It is most convenient to take each of these terms separately. Starting with the first

term, we have

∫ 1

0

dL1

∫ 1−L1

0

m2 − 1

3 + 3L1(m2 − 1)
dL2

=
m2 − 1

3

∫ 1

0

dL1

∫ 1−L1

0

1

1 + (m2 − 1)L1

dL2

=
m2 − 1

3

∫ 1

0

1− L1

1 + L1(m2 − 1)
dL1

=
m2 − 1

3

(m2 lnm2 −m2 − 1

(m2 − 1)2

)
=

m2 lnm2

3(m2 − 1)
− 1

3
(9.27)

Moving on to the second term, we obtain
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∫ 1

0

dL1

∫ 1−L1

0

( (m2 − 1)

3 + 3L2(m2 − 1)

)
dL2

=
m2 − 1

3

∫ 1

0

dL1

∫ 1−L1

0

1

1 + (m2 − 1)L2

dL2

=
m2 − 1

3

∫ 1

0

ln (m2 − (m2 − 1)L1)

m2 − 1
dL1

=
m2 lnm2

3(m2 − 1)
− 1

3
(9.28)

And finally, the third term

∫ 1

0

dL1

∫ 1−L1

0

( m2 − 1

3 + 3(1− L1 − L2)(m2 − 1)

)
dL2

=
m2 − 1

3

∫ 1

0

dL1

∫ 1−L1

0

1

(m2 −m2L1 + L1)− (m2 − 1)L2

dL2

=
m2 − 1

3

∫ 1

0

ln (m2 − (m2 − 1)L1)

(m2 − 1)
dL1

=
m2 lnm2

3(m2 − 1)
− 1

3
(9.29)

And so we can see that in fact all three integrals evaluate to the same expression.

Combining these expressions with the additional factor of two in (9.26) gives us

ᾱ =
2m2 lnm2

m2 − 1
− 2 (9.30)

Precisely the same equation obtained by Min et al.. If we now use this value for ᾱ

to evaluate (9.24) and (9.25), we obtain
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〈Cabs〉 = 2kV Im(
m2 lnm2

m2 − 1
− 1)

= 2kV Im(
m2 lnm2

m2 − 1
) (9.31)

and

〈Csca〉 =
〈Cabs〉
σ

(9.32)

9.1.3.2 Continuous distribution of spheroids

Having considered the most general case where the relationship between the axes of

the particles is arbitrary, we now turn to a special case where two of the axes are the

same length. This kind of shape is called a spheroid (see Figure 9.1). If we examine

(9.4), (9.5), and (9.6) under the condition that a = c, it can immediately be seen that

L1 = L3 = 1−L2

2
, thus reducing the degrees of freedom of the Li terms to only one; L2.

Following Min et al., we will therefore simply refer to L, where L = L2.

If we imagine a continuous distribution of such particles, and re-examine (9.24)

this time only allowing L a single degree of freedom3, ᾱ will be

3Thus, P(L) = 1
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ᾱ =

∫ 1

0

(2α1 + α2)dL

=
m2 − 1

3

∫ 1

0

( 2

1 + (m2 − 1)(1−L
2

)
+

1

1 + (m2 − 1)L

)
dL

=
m2 − 1

3

(∫ 1

0

4

(m2 + 1)− (m2 − 1)L
dL+

∫ 1

0

1

1 + (m2 − 1)L
dL

)

=
m2 − 1

3

(
4

ln (m
2−1
2

)

m2 − 1
+

lnm2

m2 − 1

)
=

4

3
ln (

m2 − 1

2
) +

1

2
lnm2 (9.33)

which is again the same result obtained by Min et al.. Substituting this into (9.24)

and (9.25), we get

〈Cabs〉 = kV Im(
4

3
ln (

m2 − 1

2
) +

1

2
lnm2) (9.34)

and

〈Csca〉 =
〈Cabs〉
σ

(9.35)

9.1.4 Non-homogeneous particles

9.1.4.1 Distribution of hollow spheres

Up to this point we have only considered homogeneous particles, but the presence

of ’fluffy’ agglomerations of dust grains and their role in light extinction has been a

matter of some debate in the literature (for example, Mathis, 1996; Li, 2005). As
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can be expected, actually calculating the absorption and scattering efficiencies of such

agglomerations is much more difficult than the simple homogeneous grains we have

previously considered4. Fortunately for our purposes, though, it has been shown

that the much simpler case of a hollow sphere (that is, a sphere with a centered,

spherical void containing vacuum) can give a good approximation to the absorption

and scattering properties of agglomerations (at least in the infrared; see Jones, 1988;

Iat̀ı et al., 2001; Min et al., 2003). This is very advantageous, because (9.7)5 reduces

to simply

Cabs = kV Im(3α) (9.36)

due to the perfect symmetry of the hollow sphere. Actually calculating α for this

case is more complex than the examples we have considered so far, but it has been

shown that the α of such a sphere is (van de Hulst, 1957; Min et al., 2003)

α =
(m2 − 1)(2m2 + 1)

(m2 + 2)(2m2 + 1)− 2(m2 − 1)2f
(9.37)

where f is the fraction of the sphere’s volume containing void.

At this point, we should pause and consider what the volume of such a sphere really

represents. In all the previous examples the meaning of volume has been unambiguous,

but for a hollow sphere one can speak of both the total volume of the sphere (4
3
πr3)

and the material volume of the sphere (that is, the volume of the matter it contains,

4
3
πr3(1 − f)). For our purposes, we will consider volume to refer only to the latter

4Several workers have examined this problem, though in practice their results are rather too
complex to be used here; see for example Borghese et al. (1992, 1994) and the brief discussion in the
appendix of Iat̀ı et al. (2001).

5This equation is still valid for a non-homogeneous particle; as discussed by Bohren & Huffman
(1983), this equation holds for any particle whose dielectric anisotropy can be diagonalized (that is,
expressed entirely in terms of separate α1, α2, α3), and so certainly in the case of a perfectly isotropic
hollow sphere.

234



meaning; the α given in (9.37) in fact is the polarizability per unit material volume,

instead of total volume as we have considered before. If we apply (9.37) to (9.36),

we can obtain the scattering cross section of a single hollow sphere, but we wish to

examine a collection of such hollow spheres just as we considered distributions of the

previous particle shapes. As before, all the particles in our distribution will have the

same volume, so the only parameter that can vary over the distribution is f . Thus,

in order to calculate the average ᾱ needed for (9.24) we must perform an integration

over all possible values of f

ᾱ =

∫ 1

0

(3α)df

=
6m2 + 3

2m2 − 2
ln
((2m2 + 1)(m2 + 2)

9m2

)
(9.38)

Unfortunately, as pointed out by Min et al. (2003), we cannot use equation (9.21)

to determine the scattering cross section as we did before, because the derivation of

the relationship between Cabs and Csca depended on the equations for αi (and thus Li)

which were only valid for homogeneous ellipsoids. Therefore a numerical integration

of |α|2 over f will be required; the technique for this will be discussed when we deal

with the actual algorithms used in absscat.

9.1.5 Size distributions and cross-sections

So far we have dealt with only distributions of particle shapes, where the particles all

have the same material volume. Realistically, however, we would expect the particles

to not only vary in shape, but in volume as well, so we wish to extend these results

to include the effects of a distribution of particle volumes.

235



First, in order to simplify notation, we will speak of a particle’s ’size’ and refer to

this size by using the radius r of the equivalent volume sphere discussed earlier. It is

important to remember, though, that what is really changing is the material volume

of the particles; for the DHS distribution, in particular, the exterior radius of the

particles follows a distribution of rext = ( 3V
4π(1−f)

)
1
3 , where f is continuous from 0 to 1.

Second, we should consider that what we have derived so far are the absorption

and scattering cross sections for our particle distributions, where ’cross section’ again

refers to the cross sectional area of the volume equivalent sphere. Now that we are

going to apply specific distributions of volumes to the particles, it is most convenient

to eliminate the cross sectional dependence entirely and obtain the absorption and

scattering efficiencies (Qabs and Qsca) of the particle distributions. This will be done

by including a factor of 1
πr2

when we apply the size distributions to our absorption

and scattering cross sections.

If we examine equation (9.7), we can see that it is possible to split this equation into

three parts; a part that depends on the complex index of refraction of the particles,

a part that depends on the volume (and thus the volume equivalent radius) of the

particles, and a part that depends on the wavelength, in the following way

Cabs = (k) · (V ) · Im(α1 + α2 + α3)

= (k) · (4

3
πr3) · Im(α1 + α2 + α3)

= (
4kπ

3
) · (r3) · Im(α1 + α2 + α3) (9.39)

and so we can see that it will only be necessary to examine how the r3 term changes

when the size distribution is applied, as none of the other terms depend on the size
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(the Li terms in αi depend only on the shape of the particle, not its volume). This kind

of separation is both convenient for the current analysis, and will be convenient later

when we apply these equations to the program. We can perform the same analysis on

the scattering cross section (9.8)

Csca =
k4V 2

2π
(|α1|2 + |α2|2 + |α3|2)

= (
k4

2π
) · ( 16

9π
r6) · (|α1|2 + |α2|2 + |α3|2)

= (
8k4

3π2
) · (r6) · (|α1|2 + |α2|2 + |α3|2) (9.40)

so this time only the r6 term will be changed when we apply the size distribution.

Now, we must consider specifically how to apply the size distributions. All the

distributions we will examine can be expressed by the function n(r), which represents

the probability that a randomly chosen particle in the distribution has volume equiv-

alent radius r. Because the total probability over all r must be 1, we are required to

normalize the distributions by dividing by a normalization constant

C =

∫ rmax

rmin

n(r)dr (9.41)

If we apply n(r) and the normalization constant to the r-dependent term in equa-

tions (9.39) and (9.40), also including the 1
2πr2

term mentioned earlier to eliminate

the cross sectional dependence, we will obtain the general form for the absorption and

scattering efficiencies
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Qabs =
(non r terms)

C
·
∫ rmax

rmin

r3

πr2
n(r)dr

=
(non r terms)

Cπ

∫ rmax

rmin

rn(r)dr (9.42)

Qsca =
(non r terms)

C
·
∫ rmax

rmin

r6

πr2
n(r)dr

=
(non r terms)

Cπ

∫ rmax

rmin

r4n(r)dr (9.43)

9.1.5.1 Single grain size

In this simple case n(r) = 1 and Csingle = 1, and no integration is required.

9.1.5.2 MRN

A very commonly used grain size distribution for astronomical purposes was devel-

oped by Mathis, Rumpl, & Nordsieck (1977) (hence, it is referred to as the ’MRN’

distribution). This distribution takes the form (this distribution and the one which

follows were also discussed in section 8.4.3 above)

n(r) ∝ r−q , rmin ≤ r ≤ rmax (9.44)

where q is a specified exponential falloff term. The original parameters used in the

MRN distribution (for non-graphite grains) were rmin = 0.005µm, rmax = 0.25µm,

and q = 3.5, but they are often varied depending on the usage. Applying this to

equations (9.42) and (9.43), we obtain
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Qabs =
1

πCMRN

∫ rmax

rmin

r−q+1dr

=
1

πCMRN(−q + 2)
(r(−q+2)
max − r(−q+2)

min ) (9.45)

Qsca =
1

πCMRN

∫ rmax

rmin

r−q+4dr

=
1

πCMRN(−q + 5)
(r(−q+5)
max − r(−q+5)

min ) (9.46)

where CMRN is a given by

CMRN =

∫ rmax

rmin

r−qdr

=
1

(−q + 1)
(r(−q+1)
max − r(−q+1)

min ) (9.47)

9.1.5.3 KMH

The MRN distribution was later modified by Kim, Martin, & Hendry (1994) (hence,

’KMH’ distribution) to include an exponential falloff instead of a maximum grain size.

This distribution takes the form

n(r) ∝ r−qe−r/r0 , rmin ≤ r (9.48)

where r0 represents the ’falloff’ point where the exponential term begins to signif-
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icantly affect the distribution. If we apply this distribution to (9.42) and (9.43), we

get

Qabs =
1

πCKMH

∫ ∞
rmin

r−q+1e−r/r0dr (9.49)

Qsca =
1

πCKMH

∫ ∞
rmin

r−q+4e−r/r0dr (9.50)

where CKMH is given by

CKMH =

∫ ∞
rmin

r−qe−r/r0dr (9.51)

Unfortunately, unlike the MRN case, these integrals do not have closed-form solu-

tions for arbitrary values of the parameters (the integration results in the incomplete

gamma function). Therefore, it will be necessary to perform numerical integrations in

order to evaluate these integrals for practical use.

9.2 Implementation

Now that we have fully derived the absorption and scattering efficiencies for all the

cases we wish to examine, we can begin to investigate how to implement these equa-

tions into code. We will do so by looking at a program developed by the author,

absscat. The source code for this program is available in Appendix A starting on page

271, and is also included in the CD supplement to this text.
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9.2.1 Overview of absscat

absscat is written in Java, which is the programming language the author is most

familiar with. However, though it may seem like an odd choice for a scientific code, it

also has other advantages for this purpose. It is easily expandable and maintainable,

and relatively easy to read even for someone not familiar with the language. Addi-

tionally, though it is commonly considered to be slow, it has become increasingly more

efficient over time and for some high-performance uses it can approach the speed of

Fortran (Amedro et al., 2008). It is certainly fast enough for the kind of calculations

presented here.

The general usage of absscat is as follows. The user supplies a configuration file

which contains a list of data files, containing the n and k data for any number of grain

species (the same data file can be use repeatedly if different configurations of grains

with the same n and k values are desired in a single ensemble of grains). For each

of these files, the configuration file also contains details about the parameters of the

desired grains; the grain shape distribution, size distribution, and the parameters of

the size distribution. A weighting factor is also supplied which allows multiple different

kinds of grains to be combined (for example, one could have 10% of one kind of grain,

and 90% of another). Additionally, if desired, the data files can be interpolated to a

supplied wavelength grid. This allows data files based on differing wavelength grids to

be combined, but it also allows the output to be tuned to whatever is optimum for the

desired purpose of the absorption and scattering efficiencies. Example configuration

files can be found in section A.2.2 of the appendix and the CD supplement.

When called, absscat requires a command line argument (-inputfile) which specifies

which file it should look at for the configuration information. There are several other

command line arguments available; information about the others is available in the

readme file given in section A.2.1 of the appendix or on the CD. absscat will then
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input the configuration file using the methods found in the FileInput class, and parse

the file for the configuration parameters using the Parser class. Once the file is parsed,

absscat then begins to open (again using FileInput) the specified n and k data files for

each set in the configuration file; these files are then parsed by Parser and the data is

stored in arrays for further processing.

If interpolation has been requested in the configuration file, absscat then opens the

supplied wavelength grid, and performs a linear interpolation to match the data sets

to that grid (and also a linear extrapolation if the wavelength grid extends beyond

some part of a data set).

The calculations are then straightforward (except for the numerical integration,

which we will examine below), but because Java contains no native methods to ma-

nipulate complex numbers it was necessary to create a new class, Complex, that could

handle the required operations on complex numbers. The equations themselves are

implemented in the Calculations class, which calls on the SizeIntegrator class to han-

dle the r-dependent parts of the equations. As seen in section 9.1.5, the ’integration’

involved for everything except the KMH size distribution is simply the evaluation of an

equation, but for the KMH distribution SizeIntegrator calls on the IterativeSimpsons

class to perform the required numerical integrations (see section 9.2.1.1 below). Ad-

ditionally, for the DHS distribution’s scattering efficiency, Calculations directly calls

on the IterativeSimpsons class to perform the numerical integration. After all the

calculations are complete, absscat uses the FileOutput class to write the absorption

and scattering efficiencies to a file, and then exits.

9.2.1.1 Numerical integration

An adaptive Simpson’s method was chosen for the technique of numerical integration;

though there are more complicated methods which are more efficient, it has the double
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benefit of being conceptually easy to understand and also easy to code. Any adaptive

Simpson’s method starts from Simpson’s Rule, which states (derivations can be found

in many sources; one example is Thomas & Finney (1996))

∫ b

a

f(x)dx ≈ b− a
6

(
f(a) + 4f

(a+ b

2

)
+ f(b)

)
(9.52)

where the error in the approximation is given by

|E| ≤ (b− a)5

2880
M (9.53)

with M as an upper bound for |f 4| over [a, b].

Inspection of this error term immediately shows that the error in approximation

very rapidly decreases as the interval between a and b decreases, and so Simpson’s

method gives improved results by subdividing the integral at the midpoint between a

and b. In other words, since

∫ b

a

f(x)dx =

∫ a+b
2

a

f(x)dx+

∫ b

a+b
2

f(x)dx (9.54)

one can obtain an improved result by using Simpson’s Rule twice over the interval

(once for each of the integrals on the right hand side of equation (9.54)) instead of

once over the interval. This process of subdivision can be continued as deeply as

desired. It is possible to write an algorithm that will subdivide an integral in this

way and repeatedly apply Simpson’s Rule to each subdivision until the error bound

is met, but in practice this is inefficient because some areas of the function may need

a finer degree of subdivision than other areas, and applying the finest subdivision to

the entire function can lead to many unneeded evaluations. Instead, it is better to

produce a routine that can adaptively change the degree of subdivision to different
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areas of the integral based on how well that area is converging, and such a routine is

called an adaptive Simpson’s method.

The general way an adaptive Simpson’s method works is as follows (this derivation

also can be found in many sources; one example is Mathews & Fink (1999)). Simpson’s

Rule (denoted by S in the rest of this discussion) is first used over the entire interval,

and then the interval is split in half (as in (9.54)) and Simpson’s Rule is applied

to each of those subintervals. The result of Simpson’s Rule over the full interval is

then compared to the sum of the results of Simpson’s Rule over the subintervals, and

evaluated according to the criterion

∣∣S(a, a+ b

2

)
+ S

(a+ b

2
, b
)
− S(a, b)

∣∣ ≤ ε

15
(9.55)

where ε is the desired error bound for the integration. If the inequality is met,

then the method has completed and the approximation to the integration is given by

∫ b

a

f(x)dx ≈ S
(
a,
a+ b

2

)
+ S

(a+ b

2
, b
)

+
|S
(
a, a+b

2

)
+ S

(
a+b

2
, b
)
− S(a, b)

∣∣
15

(9.56)

If it is not met, then the method continues by treating each of the subdivisions

(a, a+b
2

) and (a+b
2
, b) as a full interval, and then repeating the process in (9.55) and

(9.56). The only difference is that the error bound for the two new inequalities is

now given by ε
30

, because the eventual summation must have combined error under ε
15

(and the error bound for each new subinterval gets divided by 2 every time an interval

is split, for the same reason). This process repeats until a set of subdivisions meets

the inequality in (9.55), at which point the approximate value over that subdivision

is obtained using (9.56), and the value is added to the total value of the integral over
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the entire interval. Then any parts of the interval that have not yet met the inequality

are processed.

This method has the advantage that any particular subinterval is only processed

long enough to meet the inequality in (9.55); some subintervals may very rapidly

satisfy the inequality, while others take more subintervals, but in all cases only the

minimum number of subintervals needed to meet the error bound are used.

This is the basic theory; the exact details of how this method was implemented in

absscat can be seen in the source code for IterativeSimpsons, located in section A.1.9

starting on page 359 of the appendix, but it is useful to examine the outline of the

algorithm here. First, the program makes a stack in which it will store each subsection

of the interval as it subdivides; each element in the stack consists of the beginning and

endpoint of the subdivision, the result of Simpson’s Rule as applied to this interval

(which would have been calculated in the previous step of the algorithm), and the error

bound to be used to evaluate the inequality in (9.55) (recall that the error bound is

divided by a factor of two each time an interval is subdivided). As the algorithm

progresses, when it subdivides an interval each of those subintervals is added to the

stack (this is referred to as ’pushing’ an element onto the stack), and every time it

loops it removes the topmost element from the stack for evaluation against (9.55)

(removing an element from a stack is referred to as ’popping’ that element). This

process continues until all the needed subdivisions have been calculated, which results

in the stack becoming empty and the algorithm ends. More formally,
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Algorithm 1 Adaptive Simpson’s method using iteration

1: T ← 0
2: PUSH(a, b, S(a, b), ε)
3: while POP (MIN,MAX,SOLD, εOLD) do
4: MID ← (MAX +MIN)/2
5: LEFT ← S(MIN,MID)
6: RIGHT ← S(MID,MAX)
7: DIFFERENCE ← LEFT +RIGHT − SOLD
8: if |DIFFERENCE| < εOLD/15 then
9: T ← LEFT +RIGHT + (DIFFERENCE)/15

10: else
11: PUSH(MIN,MID,LEFT, εOLD/2)
12: PUSH(MID,MAX,RIGHT, εOLD/2)
13: end if
14: end while
15: return T

9.3 Application to newly derived SiC optical prop-

erties

In order to more fully investigate the optical properties of SiC discussed in 8, absscat

was used to generate the absorption and scattering efficiencies for each of the sets of

new optical constants (α-SiC and β-SiC) and for one set of older optical constants (the

SiC constants generated by Pègouriè (1988)). Because of the way the Pégourié data

was obtained (as discussed in Chapter 8), it is not really appropriate to obtain the

absorption and scattering efficiencies using shape and size distributions different than

the size and shape distribution found in the original sample (which is not available).

However, as long as we keep that in mind, it is useful to apply the shape and size

distributions we derived to this data set, both because it provides an illustrative

example which can be compared to the α and β-SiC data, and also because the

Pégourié data is often wrongly treated as being size and shape independent (and

thus appropriate for this kind of analysis).

For each of these sets of optical constants, absorption and scattering efficiencies
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were obtained for all four of the shape distributions discussed in 9.1.1. The three

size distributions discussed in 9.1.5 were applied to each of these shape distributions,

resulting in twelve sets of absorption and scattering data for each optical constant set.

The parameters used for the size distributions are given in table 9.1.

Distribution Parameters

Single r = 0.1µm

MRN rmin = 0.005µm, rmax = 0.25µm, q = 3.5

KMH rmin = 0.005µm, r0 = 0.25µm, q = 3.5

Table 9.1: The grain size distribution parameters used to investigate the newly derived
SiC optical properties.

Radiative transfer models were then produced using these absorption and scatter-

ing efficiencies; the parameters used for those models and the models themselves may

be found in section 9.3.2 below.

9.3.1 Absorption and scattering efficiencies of SiC

The absorption and scattering efficiencies generated by absscat are presented in the

following figures. For each set of newly derived SiC optical constants, there is one

figure for each grain size distribution, containing the four grain shape distributions

discussed in 9.1.1. Additionally, the absorption and scattering efficiencies calculated

for the SiC optical properties presented by Pègouriè (1988) that correspond to the grain

size distribution for a paticular figure are also presented on that figure for comparison.
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(a) Absorption efficiencies

(b) Scattering efficiencies

Figure 9.2: Absorption and scattering efficiencies of α-SiC compared to Pegourie SiC,
0.1 µm single size grains; the x-axis is wavelength in µm, the y-axis is the logarithm
of the absorption or scattering efficiency.
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(a) Absorption efficiencies

(b) Scattering efficiencies

Figure 9.3: Absorption and scattering efficiencies of α-SiC compared to Pegourie SiC,
MRN grain size distribution; the x-axis is wavelength in µm, the y-axis is the logarithm
of the absorption or scattering efficiency.
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(a) Absorption efficiencies

(b) Scattering efficiencies

Figure 9.4: Absorption and scattering efficiencies of α-SiC compared to Pegourie SiC,
KMH grain size distribution; the x-axis is wavelength in µm, the y-axis is the logarithm
of the absorption or scattering efficiency.
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(a) Absorption efficiencies

(b) Scattering efficiencies

Figure 9.5: Absorption and scattering efficiencies of β-SiC compared to Pegourie SiC,
0.1 µm single size grains; the x-axis is wavelength in µm, the y-axis is the logarithm
of the absorption or scattering efficiency.
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(a) Absorption efficiencies

(b) Scattering efficiencies

Figure 9.6: Absorption and scattering efficiencies of β-SiC compared to Pegourie SiC,
MRN grain size distribution; the x-axis is wavelength in µm, the y-axis is the logarithm
of the absorption or scattering efficiency.
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(a) Absorption efficiencies

(b) Scattering efficiencies

Figure 9.7: Absorption and scattering efficiencies of β-SiC compared to Pegourie SiC,
KMH grain size distribution; the x-axis is wavelength in µm, the y-axis is the logarithm
of the absorption or scattering efficiency.
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9.3.1.1 Discussion

An examination of these figures immediately shows that spherical grains have absorp-

tion and scattering efficiencies quite different than the other grain shape distributions

(though the effect is less pronounced for the Pégourié data). For both the absorption

and scattering efficiencies, the spherical grains produce a sharp peak, where the other

grain shape distributions produce a broader feature. Additionally, the center of the

feature is at a longer wavelength for the non-spherical grains; the peak produced by

the spherical grains is at the short-wavelength end of the broader feature. Finally, in

the case of α-SiC, a smaller peak is present at about 12 µm in the case of spherical

grains, but not in the other grain shape distributions (this small feature is not present

in the β-SiC or the Pégourié data for any grain shape distribution).

We can explain the difference between the homogeneous spheres and the other

shape distributions by considering that a perfect mathematical sphere should be ex-

pected to have strong resonances due to the symmetry. In addition, since all orienta-

tions of a sphere are absolutely identical, there is no possibility that one orientation

could produce a spectral feature that another orientation did not (which would ’dilute’

that feature, making it less intense, and possibly shift the peak wavelength of that

feature as well). This is not the case with the other shape distributions. If we think

of a single grain, we would expect that due to the anisotropy of the elliptical shape

(we will consider hollow spheres in a moment) the main spectral feature would shift

in position and intensity depending on how the grain was orientated relative to the

incident light. To put it another way, the anisotropy in the dielectric function of the

grain depends on the way it is oriented. This dependence would grow larger as the

grain shape became less spherical, and smaller the closer its shape was to that of a

sphere. Returning to a collection of ellipsoids, we have shapes ranging from nearly

spherical (and thus having absorption and scattering efficiencies close to that of perfect
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spheres) to extreme elliptical shapes, and the absorption and scattering efficiencies of

the collection would be a mixture of all of the individual absorption and scattering

efficiencies. The individual resonances of the particles thus tend to get ’smeared out’

when large numbers of them are combined. In fact, Min et al. (2003) was able to

show that as increasingly elliptical shapes are added to a collection of particles, the

central peak of the absorption cross section of a Lorentz oscillator (in this case, based

on a model fit to fosterite [Mg2SiO4]) broadens and shifts towards longer wavelengths,

which is precisely what we see for all our sets of SiC data. Though hollow spheres are

isotropic, the inner void will certainly change the resonance of the particle; because

the distribution of hollow spheres contains spheres with everything from tiny voids to

ones nearly filling the sphere, we can expect this same sort of ’smearing’ to occur.

In order to understand the small peak around 12 µm, it is necessary to examine the

different orientations of the α-SiC separately (recall from Chapter 8 that the overall

optical properties of a large collection of randomly oriented α-SiC grains is a weighted

average of (2⊥+‖)
3

). If we calculate the absorption efficiencies for the two orientations

separately, as in Figure 9.8,

we can see that the small feature is a result of a resonance in the parallel orien-

tation of the crystal. This actually provides a good example of the ’smearing’ effect

mentioned previously, because the mixture of parallel and perpendicular orientations

diminishes the intensity of the small feature (and also some other structure in the par-

allel orientation between the small peak and the main peak, which is nearly completely

eliminated).

Additionally, the figures show that the absorption and scattering efficiencies for the

three kinds of non-spherical particles investigated here are quite similar in the infrared

(this property of non-spherical grains was also noted by Min et al. (2003), though that

conclusion was drawn from an examination of the absorption and scattering cross-
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(a) Parallel orientation (b) Perpendicular orientation

Figure 9.8: Comparison of the absorption efficiencies of the parallel and perpendicu-
lar orientations of α-SiC. x-axis is wavelength in µm, y-axis is the logarithm of the
absorption efficiency.

sections of fosterite). On one hand, this means that, at least in the infrared, any

of these grain shape distributions is equally good (or bad) at modeling a particular

distribution of grain shapes present in an astrophysical environment; on the other

hand, however, it also means that the observed infrared spectra of dust grains alone

doesn’t provide enough information by which one can distinguish the actual shape

distribution of astronomical grains, unless the grains are mostly spherical. Min et al.

(2003) also points out though that this provides a strong justification for using the

artificial distributions we have derived to model actual astrophysical grains, because if

these different distributions all have quite similar absorption and scattering efficiencies,

then it is reasonable to assume this approximates the actual irregular grain shapes we

expect to see in space.

It is also interesting to look at the difference between the absorption and scattering

efficiencies of α and β-SiC compared to those of the Pégourié data. First, as previously

noted, the difference between spherical and non-spherical grains is less in the Pégourié

data. This is not unexpected, because as discussed in Chapter 8 the sample used to
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obtain the Pégourié data was composed of particles of many different shapes and thus

the ’smearing out’ effect of non-spherical shapes would, to some extent, have already

been included in the complex refractive index before the absorption and scattering

efficiencies were calculated. Second, and more importantly, much finer structure is

present in α and β-SiC. We will discuss this more fully when we examine synthetic

spectra produced by these grains below (9.3.2.1), as the finer structure carries over to

those spectra.

9.3.2 Radiative transfer modeling using shape and size de-
pendent optical properties of SiC

DUSTY (previously discussed in 5.5) was used to produce synthetic spectra of dust

shells containing SiC dust grains, using the absorption and scattering efficiencies pro-

duced in 9.3.1. The parameter space investigated for the models shown here can be

found in 9.2.

Parameter Value(s)

Star Temperature 3000 K

Inner Dust Shell Temperature 1000 K

Shell Relative Thickness (SRT) 10 and 1000 times the inner radius

Optical Depth at 10 µm 0.1 and 10

Table 9.2: The parameter space investigated by radiative transfer models using the
generated absorption and scattering efficiencies.

Synthetic spectra were produced for each of the sets of absorption and scattering

efficiencies located in 9.3.1; when combined with the parameter space investigated, a

total of 68 models were generated. Therefore, only the models using the MRN grain

size distribution and with 10 times the inner radius thickness will be presented here;

all the essential properties we wish to examine are present in this subset of the models.
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(a) Spherical grains.

(b) CDE grain shape distribution.

Figure 9.9: Synthetic spectra generated using new α-SiC vs. Pégourié SiC, spherical
and CDE grain shapes. Each large plot is log-log, with wavelength in µm on the x-axis
and flux on the y-axis. The smaller insets are the same data as their respective large
plots, but both axes are linear and the wavelength range is restricted from 8.5 µm to
13.5 µm. The upper left inset does not show the Pégourié spectrum, as it is much too
large to fit into the smaller range. All spectra were generated using a MRN grain size
distribution.
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(a) CDS grain shape distribution.

(b) DHS grain shape distribution.

Figure 9.10: Synthetic spectra generated using new α-SiC vs. Pégourié SiC, CDS and
DHS grain shapes. Each large plot is log-log, with wavelength in µm on the x-axis
and flux on the y-axis. The smaller insets are the same data as their respective large
plots, but both axes are linear and the wavelength range is restricted from 8.5 µm to
13.5 µm. The upper left inset does not show the Pégourié spectrum, as it is much too
large to fit into the smaller range. All spectra were generated using a MRN grain size
distribution.
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(a) Spherical grains.

(b) CDE grain shape distribution.

Figure 9.11: Synthetic spectra generated using new β-SiC vs. Pégourié SiC, spherical
and CDE grain shapes. Each large plot is log-log, with wavelength in µm on the x-axis
and flux on the y-axis. The smaller insets are the same data as their respective large
plots, but both axes are linear and the wavelength range is restricted from 8.5 µm to
13.5 µm. The upper left inset does not show the Pégourié spectrum, as it is much too
large to fit into the smaller range. All spectra were generated using a MRN grain size
distribution.
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(a) CDS grain shape distribution.

(b) DHS grain shape distribution.

Figure 9.12: Synthetic spectra generated using new β-SiC vs. Pégourié SiC, CDS and
DHS grain shapes. Each large plot is log-log, with wavelength in µm on the x-axis
and flux on the y-axis. The smaller insets are the same data as their respective large
plots, but both axes are linear and the wavelength range is restricted from 8.5 µm to
13.5 µm. The upper left inset does not show the Pégourié spectrum, as it is much too
large to fit into the smaller range. All spectra were generated using a MRN grain size
distribution.

261



9.3.2.1 Discussion

A major difference revealed by an inspection of these synthetic spectra is that the new

constatants in general emit and absorb much more strongly than was predicted by the

older data. This is particularly obvious when looking at the 100% SiC, τ10µm = 0.1

spectra, where the Pégourié data produces a strong emission feature, but the new

data is self absorbed in every grain size distribution. What appears to be happening

is that, at least in the non-spherical cases, is that a large, broad emission feature is

being self absorbed from roughly the center, and with this combination of parameters

the self-absorption has reached just about to the continuum; this is what causes the

two small peaks on either side. In fact, if we examine the 100% SiC, τ10µm = 10

spectra, we are probably seeing the continuation of this process; with a higher optical

depth we expect more self-absorption (because the more of the outer layers of dust will

be cool) and here we see the absorption continued to the point where it has widened

and destroyed the two small peaks.

Another important difference visible in these spectra is that the spherical grains

produce features that are narrower and at least in the self-absorbing cases more

rounded, compared to the broader, flatter absorption features present in the other

grain size distributions. This has the potential to be a diagnostic difference between

the spherical and non-spherical grain shapes in observational spectra.

A somewhat unexpected result is the visible differences between the spectra gen-

erated by the non-spherical grain shape distributions. Of course, the absorption and

scattering efficiencies are slightly different for each of the distributions, but the way

the difference manifests in these spectra is interesting. For example, the difference be-

tween the DHS and CDS grain shape distributions; if we examine the 10% SiC, τ10µm

spectra, the self absorption is clearly wider in the case of the CDS shape distribution.

This can also be seen in the 100% SiC, τ10µm = 0.1 cases, where the small ‘peak’ to
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the left of the absorption feature is thinner in the case of the CDS shape distribution;

it appears that under the same conditions, a wider ‘chunk’ of the emission feature is

being absorbed by this grain shape distribution.

There is a smaller difference between the α-SiC and β-SiC spectra, but differences

are present; in all four of the 100% SiC, τ10µm = 0.1 spectra, the small peaks on each

side of the absorption feature are taller relative to the absorption feature for β-SiC.

In the other spectra, differences are visible but are more subtle, which means that

identifying β-SiC in observational spectra - at least using this technique - might be

difficult. A wider variety of test cases must be run however. It is possible that under

certain conditions, such as the 100% SiC, τ10µm = 0.1 models, the differences become

more pronounced and could possibly be visible in observational spectra of dust shells

with similar parameters.

9.4 Summary and Conclusions

Starting with small particle absorption and scattering theory, we developed equations

that allowed us to generate the absorption and scattering efficiencies for four different

grain shape distributions; in addition, we incorporated the effects of different grain

size distributions into our formulas. With this as a basis, we produced a code which

applied the shape and size-dependent equations to the complex refractive index of

the commonly used Pégourié SiC data, as well as to the new SiC refractive indices

discussed in chapter 8. Using the absorption and scattering efficiencies output by the

program, we then performed radiative transfer modeling over a test set of parameters,

looking for differences in the resulting synthetic spectra.

The research presented here has only just begun to explore the possibilities that

shape-dependent optical constants present. Many more synthetic spectra need to be
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produced in order to explore the properties of these shape distributions when applied

to SiC; and there is no barrier from applying this theory to other grain species as

well. It is clear, though, that spherical grains produce spectra different than any of

the other grain shape distributions, and this is additional evidence that we should be

wary before applying spherical grains to any model. The other shape distributions

produce spectra that are similar but not exactly the same, leading to the tantalizing

possibility that it may be possible to identify which grain shapes are contributing to

a given SiC feature, and perhaps the features of other grain species as well.
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Chapter 10

Summary and Future Work

”My undertaking is not difficult, essentially... I should only have to be immortal to carry it out.” -

Jorge Luis Borges

10.1 Observations of carbon stars and the dust con-

densation sequence

In chapter 5, we examined a collection of carbon stars, examining their SiC features to

attempt to identify any correlations between the feature parameters and other param-

eters of the star and dust shell. A major motivation for this research was the fact that

previous similar studies of carbon stars have yielded contradictory results. Despite a

careful analysis using ISO data to supplement the lower resolution IRAS datasets,

we were unable to observe correlations. A possible cause for this is that there are

many parameters that influence the spectrum we see when we observe these stars, and

the parameter space is large enough that there is a degeneracy where different com-
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binations of dust shell parameters could lead to similar spectral features. Theoretical

radiative transfer models were produced that seem to support this conclusion.

10.1.1 Future work

If very accurate radiative transfer models were fit to these star’s spectra, it might

be possible to obtain more precise or additional dust shell parameters, which would

either help strengthen our result or instead show a way past the degenerate parameter

space. Additionally, it may be possible to subdivide our data set into smaller sets of

stars based on common parameters; correlations within those smaller groups would be

more likely as there would be less degeneracy.

10.2 Extreme carbon stars

In chapter 7 we investigated a collection of carbon stars whose dust shell has become

so optically thick that we can no longer see the central star, only the infrared emission

of the shell. These objects are called extreme carbon stars, and few are known; they

probably represent a short period in a carbon star’s life right before it leaves the AGB

phase. Our investigation discovered three extreme carbon stars with a SiC absorption

feature; this brought the total number of known extreme carbon stars with absorption

features to ten. Additionally, we performed radiative transfer modeling in order to fit

synthetic spectra to these star’s spectra in an attempt to determine the parameters

present in the dust shells; we discovered that we obtained the best fits when we used

a higher dust condensation temperature than had been used by previous workers, and

also that the use of graphite instead of amorphous carbon in our models improved our

fit. One of the spectra we fitted required the use of a different grain size distribution
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in the radiative transfer models to produce an acceptable fit. In a similar situation

to chapter 5, we were unable to discover correlations between the parameters of these

star’s dust shells.

10.2.1 Future work

With such a small number of extreme carbon stars currently known, and a particularly

small number of extreme carbon stars with an absorption feature, the discovery of

additional such objects could provide important new information about them. We have

continued to investigate the dependence of radiative transfer models on the grain size

and shape; in addition, we are continuing to investigate the use of graphite as opposed

to amorphous carbon in the radiative transfer models of other stars. Finally, we are

continuing to use the theoretical condensation models mentioned in this work, using

them to constrain radiative transfer parameters in order to decrease the parameter

space.

10.3 V Cyg

In chapter 6 we turned our focus onto a single carbon star. This star, V Cyg, had

observational data available for several points over a pulsation cycle, and this data

was processed and examined for correlations, several of which were found. Two of

these correlations may indicate that a small amount of self-absorption is going on in

the outer part of the dust shell around V Cyg; a more tentative and speculative possi-

bility is that grain shape effects may partially explain these correlations. In addition,

we used long-slit spectroscopy to obtain spatially resolved spectra of this star. No sig-

nificant correlations were observed, which is possibly a result of the uncertainty in the
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blackbody fits, but could also be due to the low spatial resolution of our measurements

relative to the structure expected to be present in the dust shell.

10.3.1 Future work

One feature in the spectrum of V Cyg that was not investigated for this work is a

∼30 µm feature present in all the time-resolved data sets. An analysis of this feature

is planned, and the parameters of this feature will be compared with both the other

parameters of that feature and also the parameters of the SiC feature. Additional

work will be done to try and make the spatially-resolved blackbody fits more precise.

And though not directly related to V Cyg, spatially-resolved data for other carbon

stars was obtained along with that of V Cyg, and it will undergo the same type of

analysis.

10.4 New SiC optical constants

In chapter 8 we discussed limitations present in commonly used optical constants

of SiC, and how these limitations make it inappropriate to use those constants for

radiative transfer modeling without careful consideration. In order to obtain SiC

optical constants that were not limited in the same way, we performed reflectance

measurements on samples of α and β-SiC, and then used classical dispersion analysis

to obtain the optical constants from those measurements.

10.4.1 Future work

An obvious extension of this kind of research is to obtain optical constants for addi-

tional mineral species; other optical constants suffer from the same kind of limitations
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that were addressed for SiC in this work. Also, we hope to raise awareness among

other researchers that the origin and limitations of optical data should be understood

and carefully considered before using them in radiative transfer models with possibly

inappropriate parameters.

10.5 Size and shape dependent optical constants

In chapter 9, we investigated the scattering and absorption of light by different size and

shape distributions of small particles. We began by using small particle absorption

and scattering theory to develop equations which allowed us to convert shape and

size-independent bulk optical properties into shape and size-dependent absorption

and scattering efficiencies.

10.5.1 Future work

The absscat code presented in chapter 9.2 is already being used to investigate grain

species other than SiC; the theory behind the equations holds for many different types

of grain species.

Optical properties generated by this code will be used to generate additional radia-

tive transfer model spectra, in order to try and fit observed spectra. This will not only

test the reasonableness of our technique, but could perhaps also give us information

about parameters of the dust grains that have been otherwise difficult to obtain, like

the grain shape. It may also be possible to distinguish between α-SiC and β-SiC in

some cases.

It is also interesting to consider shape distributions not currently incorporated into

the absscat code. For example, the continuous distribution of spheroids described in
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section 9.1.3.2 contains spheroids of all shapes, with no bias towards any particular

shape. A shape distribution that only included some types of spheroids (for example,

only prolate or oblate) or the full distribution but biased towards certain shapes would

be useful to represent preferential growth and destruction of SiC based on its crystal

structure. The absorption and scattering equations for such particles would need

to consider not only the shape of the grain, but also the orientation of the crystal

structure in relation to that shape.
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Appendix A

Source code for absscat

A.1 Package edu.missouri.stardust.absscat

A.1.1 Main.java

/∗

∗ class Main

∗

∗ Version 2.3

∗

∗ 01/30/10

∗

∗/

package edu.missouri.stardust.absscat;
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import java.util.LinkedList;

/∗∗

∗ The Main class connects all the other classes of this package and runs them

∗ in the proper order to calculate a combined set of scattering and absorption

∗ efficiencies when given given nk files, dust distributions, and the

∗ percentage of the dust that each nk file represents.

∗

∗ @author Adrian Corman

∗ @version 2.3

∗/

class Main {

/∗ Indicates the desired level of console output. 0 indicates that

∗ everything other than errors is suppressed, 1 is the standard output

∗ wint starting and stopping messages, and 2 is the verbose option.

∗/

static int outputLevel = 1;

/∗ Indicates the desired accuracy for the numerical integration of the

∗ KMH grain size distribution.

∗/

static double epsilon = 1e−10;

/∗ Indicates if the output file already exists, should it be overwritten. ∗/

static boolean overwrite = false;
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/∗ Indicates if the interpolated nk data files are required to also be

∗ outputted along with the final result.

∗/

static boolean outputInterpolation = false;

/∗ Indicates if the interpolated nk data files only are required to be

∗ outputted.

∗/

static boolean onlyInterpolate = false;

static int precision = 3;

/∗ Holds the filename of the desired input file containing the parameters

∗ for the calculations. This must be specified when the program is

∗ called.

∗/

static String inputFilename = null;

/∗ Holds the filename of the desired output file. If not specified on

∗ the command line, this file name will be generated from the input

∗ filename.

∗/

static String outputFilename = null;

/∗∗
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∗ Calls and coordinates the other classes of package absscat.

∗ The order is as follows; Main first calls the FileInput class, which

∗ inputs the abscat.inp file in the default case, or the input file

∗ specified by the user on the command line when the program is run

∗ (in order to facilitate batch processing). This input file contains

∗ the parameters needed to run the necessassary calculations.

∗ It then passes this to the Parser class, which extracts

∗ the parameters from the abscat.inp file, which Main then uses to

∗ determine which data files it needs to open (again using FileInput),

∗ and also if it needs to open the wavelengths.inp file for use in

∗ interpolation. These files too are parsed using Parser, which gives

∗ Main all the data needed to perform the calculations.

∗

∗ If interpolation is required, Main passes this data to the Interpolator

∗ class, which performs the requisite calculations. After this, or if

∗ interpolation is not required, Main calls on the Calculations class

∗ which generates the final output data.

∗

∗ Finally, Main calls on the FileOutput class, which outputs the final

∗ data to a file as specified in abscat.inp or the user supplied input

∗ file.

∗

∗ @param args the command line arguments.

∗/

public static void main(String[] args) {
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/∗ Gets the starting time for this run ∗/

long startTime = System.nanoTime();

/∗ First, parse and check the arguments given to abscat on the command

∗ line.

∗/

Parser argsParser = new Parser(args);

argsParser.parseArguments();

/∗ If verbose mode is selected this will output a message that

∗ absscat is beginning to work.

∗/

ConsoleOutput.beginWorking();

/∗ Next use FileInput to open this file and obtain an array containing

∗ each line of the file.

∗/

FileInput parameterReader = new FileInput(inputFilename);

String[] unparsedParameters = parameterReader.lineReturner();

/∗ Pass this array to the Parser class to obtain an array containing

∗ the individual parameters in the proper order. If verbose mode is

∗ active, also output a message.

∗/

ConsoleOutput.parsingParameters();

Parser parameterParser = new Parser(unparsedParameters);
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String[] parsedParameters = parameterParser.parseParameters();

/∗ Now we extract the nk data files from the parameter array, open

∗ them with FileInput, and store their data in one large array.

∗ The first index of this array will indicate the internal

∗ number of the nk data file (i.e. from 0 to the total number of

∗ files − 1), the second will indicate the column of the data

∗ file (0 = wavelength, 1 = n, 2 = k), and the third will hold the

∗ line number of the data file.

∗/

int numberOfNKFiles = Integer.parseInt(parsedParameters[0]);

/∗ Need to check and make sure that the total number of lines in the

∗ input file corresponds with the number of nk files specified

∗ on the first line. Because of the way Parser fills the

∗ parsedParameters array, parsedParameters.length should equal

∗ (numberOfNKFiles ∗ 7) + 3.

∗/

if (parsedParameters.length != (numberOfNKFiles ∗ 7) + 3){

/∗ Executes if the number of parameters doesn’t correspond to

∗ the given number of nk files. First calculate the number

∗ of nk files the parameters do correspond to, then output

∗ an error message and exit.

∗/

int correspondingNumber = ((parsedParameters.length − 3)/7);
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ConsoleOutput.wrongNumberOfNKFiles(numberOfNKFiles,

correspondingNumber);

System.exit(0); //Can’t continue until this is fixed

}

/∗ Holds the parsed nk data before any further manipulation ∗/

double[][][] rawNK = new double[numberOfNKFiles][][];

for (int i = 0; i < numberOfNKFiles; i++) {

/∗ parsedParameters contains an nk data file name starting with

∗ index 3 and then every 7th index after that. Also, output a

∗ status message for each file that is read in, if verbose mode

∗ is active.

∗/

ConsoleOutput.fileInputMessage(parsedParameters[(i∗7) + 3]);

FileInput nkInput = new FileInput(parsedParameters[(i ∗ 7) + 3]);

Parser nkParser = new Parser(nkInput.lineReturner());

rawNK[i] = nkParser.parseNK();

}

/∗ Now we must perform interpolation if it was requested, and also

∗ handle the case where interpolation was not requested, there are

∗ more than two nk data files, and the wavelength grids of those

∗ files are not identical (in which case we have to output an error

∗ message and exit).

∗/
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/∗ Holds the final set of nk data to be used in the scattering and

∗ absorption coefficient calculations.

∗/

double[][][] finalNK = new double[numberOfNKFiles][][];

if (parsedParameters[1].equalsIgnoreCase(”yes”)) {

/∗ If the verbose flag has been selected, this will output

∗ a line indicating interpolation has begun.

∗/

ConsoleOutput.verboseInterpolating(parsedParameters[2]);

/∗ Perform the interpolation. First input the wavelength grid

∗ file and parse its data, then pass this along to the

∗ Interpolator.

∗/

FileInput wavelengthInput = new FileInput(parsedParameters[2]);

Parser wavelengthParser =

new Parser(wavelengthInput.lineReturner());

double[] wavelengthArray = wavelengthParser.parseWavelengths();

for (int j = 0; j < numberOfNKFiles; j++) {

/∗ Split rawNK up into the x and y values ∗/

double[] xArray = new double[rawNK[j].length];
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double[] nArray = new double[rawNK[j].length];

double[] kArray = new double[rawNK[j].length];

for (int k = 0; k < rawNK[j].length; k++) {

xArray[k] = rawNK[j][k][0];

nArray[k] = rawNK[j][k][1];

kArray[k] = rawNK[j][k][2];

}

/∗ Call the Interpolator and obtain the new, interpolated

∗ values, then fill finalNK with this data.

∗/

Interpolator nInterpolator = new Interpolator(xArray, nArray,

wavelengthArray);

Interpolator kInterpolator = new Interpolator(xArray, kArray,

wavelengthArray);

double[] finalN = nInterpolator.returnInterpolation();

double[] finalK = kInterpolator.returnInterpolation();

double[][] combinedArray =

new double[wavelengthArray.length][3];

for (int m = 0; m < wavelengthArray.length; m++) {

combinedArray[m][0] = wavelengthArray[m];

combinedArray[m][1] = finalN[m];

combinedArray[m][2] = finalK[m];

}

finalNK[j] = combinedArray;
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}

} else if (numberOfNKFiles != 1 &&

parsedParameters[1].equalsIgnoreCase(”no”)) {

/∗ In this case, we need to check and make sure all the given

∗ nk data files have the same wavelength grid (or else we

∗ can’t continue because no interpolation was selected.

∗/

for (int n = 1; n < numberOfNKFiles; n++) {

try {

for (int p = 0; p < rawNK[n].length; p++) {

if (rawNK[0][p][0] == rawNK[n][p][0]) {

continue; //Keep checking

} else {

/∗ The nk data files use different wavelength grids

∗ so output an error message and exit.

∗/

ConsoleOutput.needsInterpolation();

System.exit(0);

}

}

} catch(ArrayIndexOutOfBoundsException e) {
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/∗ If this block executes, it means that the wavelength

∗ grids are not the same size and thus cannot be

∗ the same.

∗/

ConsoleOutput.needsInterpolation();

System.exit(0);

}

}

/∗ If this is reached, it means that there is no problem with the

∗ wavelength grids for the nk data sets.

∗/

finalNK = rawNK;

} else {

finalNK = rawNK; //No manipulation needed in this case either

}

/∗ If either −outputinterpolation or −onlyinterpolation (or both) were

∗ selected, output the interpolated nk data files now. If

∗ −onlyinterpolate was selected, exit after this output.

∗/

if (outputInterpolation || onlyInterpolate) {

if (parsedParameters[1].equalsIgnoreCase(”yes”)){

LinkedList <String>alreadyOutput = new LinkedList();

for (int w = 0; w < numberOfNKFiles; w++){
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String interpFilename;

String nkFilename = parsedParameters[(w ∗ 7 + 3)];

/∗ If the same nk data file is input more than once, the

∗ program needs to check and see if the interpolated

∗ version of that file has already been output. If it has,

∗ then skip the second occurance and continue through

∗ the rest of the files.

∗/

if (alreadyOutput.contains(nkFilename)) {

continue; //Skip to the next nk data file

}

alreadyOutput.add(nkFilename);

if (nkFilename.contains(”.”)) {

/∗ If the nk data filename has a . extention, get rid of it

∗ so the interpFilename doesn’t have two of them.

∗/

String[] interpSplit = nkFilename.split(”\\.”);

interpFilename = interpSplit[0] + ” interp.dat”;

} else {

interpFilename = nkFilename + ” interp.dat”;

}

FileOutput interpolatedOutput =

new FileOutput(interpFilename,finalNK[w],overwrite);

282



interpolatedOutput.output();

}

if (onlyInterpolate) {

ConsoleOutput.onlyInterpolateExit();

System.exit(0); //Processing is finished in this case

} else {

ConsoleOutput.outputInterpolationFinished();

}

} else {

/∗ This block executes when the interpolation flag was set in

∗ the input file as no, but output of the interpolated files

∗ was requested on the command line. In this case, output

∗ an error message and exit (because the program doesn’t

∗ know what it is supposed to do here).

∗/

ConsoleOutput.interpOptionsDontMatch();

System.exit(0);

}

}

/∗ Finally, all the data has been read in and prepared for processing.

∗ Now we pass this data on to the Calculations class to calculate,

∗ and additionally output a status message if verbose mode is

∗ active.

∗/
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ConsoleOutput.beginningCalculations();

Calculations calculations = new Calculations(parsedParameters, finalNK);

double[][] finalResult = calculations.returnResult();

/∗ Output this result to a file ∗/

FileOutput fileOutput = new FileOutput(outputFilename, finalResult,

overwrite);

fileOutput.output();

/∗ Get the estimated runtime for the program ∗/

long estimatedTime = System.nanoTime() − startTime;

/∗ Print the finish message (will not output anything if the silent

∗ flag was activated (and nonVerboseFinish will call on

∗ verboseFinish if the verbose flag was activated).

∗/

ConsoleOutput.nonVerboseFinish(estimatedTime ∗ 1E−9);

/∗ End of absscat ∗/

}

}

A.1.2 FileInput.java

/∗

∗ FileInput
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∗

∗ Version 2.2

∗

∗ 01/30/10

∗

∗/

package edu.missouri.stardust.absscat;

import java.io.∗;

import java.util.ArrayList;

/∗∗

∗ FileInput opens a file of a given filename and stores an array of Strings

∗ corresponding to the individual lines of that file.

∗

∗ @author Adrian Corman

∗ @version 2.2

∗/

class FileInput {

/∗ The given input filename ∗/

private final String fileName;

/∗ The file input stream ∗/

private BufferedReader bufferedFile;
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/∗ The array holding each of the file’s lines ∗/

private String[] lineArray;

/∗The only constructor for this class. Initalizes the class with a given

∗ filename, then reads in each line of the file to an array.

∗/

FileInput(String fileName) {

this.fileName = fileName;

this.openFile();

this.lineReader();

this.closeFile();

}

/∗ A simple class to open and return a file of the specified filename ∗/

private void openFile() {

try {

bufferedFile = new BufferedReader(new FileReader(fileName));

} catch (FileNotFoundException e) {

System.out.println(fileName+ ” ” + ”not found.”);

System.exit(0); //Exit because we need an input file to continue.

}

}
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/∗ A simple class to convert each line of a file into a string ∗/

private void lineReader() {

/∗ We start with an ArrayList because we don’t know the number of lines

∗ in the file

∗/

ArrayList lineList = new ArrayList();

try {

/∗ Iterate over every line; we will know we have read in the

∗ whole file when readLine returns null

∗/

String line = null; //Contains each individual line as read in

int lineNumber = 0; //Keeps track of which line we are on

while ((line = bufferedFile.readLine()) != null) {

lineList.add(lineNumber, line);

lineNumber++;

}

} catch (IOException e) {

/∗ If this block executes it means that the program is somehow

∗ unable to read in lines from the specified file
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∗/

System.out.println(”Error reading ” + bufferedFile);

System.exit(0); //Exit because we can’t recover from this

}

/∗ Convert lineList to an array of Strings ∗/

lineArray = (String[])lineList.toArray(new String[0]);

}

/∗ Simple class to close the bufferedFile and deal with the exception

∗ handling.

∗/

private void closeFile() {

try {

bufferedFile.close();

} catch(IOException e) {

/∗ This block should never execute unless something has gone

∗ seriously wrong with file IO

∗/

System.out.println(”Error closing ” + fileName);

System.exit(0); //Dangerous to continue if file IO is messed up

}

}
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/∗ Returns the String array containing each line of the file specified

∗ when FileInput was initalized.

∗/

String[] lineReturner() {

return lineArray;

}

}

A.1.3 Parser.java

/∗

∗ Parser

∗

∗ Version 1.1

∗

∗ 01/30/09

∗

∗/

package edu.missouri.stardust.absscat;

import java.util.ArrayList;

/∗∗

∗ Parser contains methods that parse a given String array in a variety of
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∗ ways useful to the rest of the package.

∗

∗ @author Adrian Corman

∗ @version 1.1

∗/

class Parser {

/∗ The given String array ∗/

private final String[] unparsedArray;

/∗The only constructor for this class. Initializes the initial unparsed

∗ String array, preparing it for parsing.

∗/

Parser(String[] unparsedArray) {

this.unparsedArray = unparsedArray;

}

/∗∗

∗ Parses a parameter file into a String array of the individual parameters.

∗ The parameter file is structured as follows. There are always two

∗ parameters at the beginning of the file corresponding to the number

∗ of nk data files and then the interpolation parameter. If

∗ interpolation is requested, then there is a third parameter

∗ containing the wavelength grid the data will be interpolated to.

∗ After these lines are blocks of parameters for each nk data file.

∗ First is the filename, then the grain shape distribution, then
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∗ the grain size distribution. If the size distribution is single,

∗ then there is one additional parameter (corresponding to the

∗ single value for size), but for the others there are three. Finally,

∗ each block ends with the weight used for the given nk file when

∗ the weighted average is taken. The parser will ignore any line

∗ not containing an = sign.

∗

∗ @return a String array containing the parsed parameters.

∗/

String[] parseParameters() {

/∗ Create an ArrayList to hold the parsed parameters one by one. The

∗ maximum size it can be at the end is the length of the unparsed

∗ array.

∗/

ArrayList initialArray = new ArrayList(unparsedArray.length);

/∗ Keeps track of which line of data we are on, as opposed to the

∗ overall line number (which can contain comments).

∗/

int dataLineNumber = 0;

boolean interpolationNeeded = false;

String sizeDistribution = null;

/∗ Iterate through each of the members of unparsedArray, discarding

∗ lines that do not contain an = sign.
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∗/

for (int i = 0; i < unparsedArray.length; i++) {

if (unparsedArray[i].startsWith(”#”)){

/∗ Ignore lines starting with # − this comes first because

∗ a line starting with # could be a commented out line with a

∗ = sign in it.

∗/

continue;

}

if (unparsedArray[i].contains(”=”)) {

if (dataLineNumber == 0) {

/∗ The number of nk data files ∗/

initialArray.add(0,

this.parseAndClean(unparsedArray[i], ”=”));

dataLineNumber++;

} else if (dataLineNumber == 1) {

/∗ Interpolation flag ∗/

String interpolation = this.parseAndClean(unparsedArray[i],

”=”);

initialArray.add(1, interpolation);

dataLineNumber++;

/∗ Set interpolationNeeded for later use ∗/
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if (interpolation.equalsIgnoreCase(”yes”)) {

interpolationNeeded = true;

} else if (interpolation.equalsIgnoreCase(”no”)){

interpolationNeeded = false;

} else {

/∗ If this block executes it means that the input file

∗ is not formatted correctly ∗/

ConsoleOutput.interpolationFlagError();

System.exit(0); //This is a fatal error

}

/∗ The rest of the parameters are more complicated to

∗ parse because if interpolation is not required the

∗ rest of the parameters will be shifted up one (due

∗ to the absence of the wavelength file) and if a single

∗ grain size distribution is selected it only takes

∗ one parameter instead of the usual three (thus shifting

∗ the rest of the parameters up two every time this

∗ happens).

∗/

} else if (dataLineNumber == 2) {

/∗ A block to fill the third element (index 2) of the array

∗ with either the wavelength file name if interpolation

∗ is needed or null otherwise.
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∗/

if (interpolationNeeded) {

initialArray.add(2,

this.parseAndClean(unparsedArray[i], ”=”));

dataLineNumber++;

} else {

initialArray.add(2, null);

dataLineNumber++;

i−−; //In this case we shouldn’t advance the file line

}

} else if ((dataLineNumber − 3) % 7 == 0 &&

(dataLineNumber − 3) >= 0) {

/∗ This block stores in the nk data file names, which

∗ after the initial parameters are found every 7th line

∗/

initialArray.add(dataLineNumber,

this.parseAndClean(unparsedArray[i], ”=”));

dataLineNumber++;

} else if ((dataLineNumber − 4) % 7 == 0 &&

(dataLineNumber − 4) >= 0) {

/∗ This block stores in the desired grain shape

∗ distribution for this nk data file.

∗/

initialArray.add(dataLineNumber,
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this.parseAndClean(unparsedArray[i], ”=”));

dataLineNumber++;

} else if ((dataLineNumber − 5) % 7 == 0 &&

(dataLineNumber − 5) >= 0) {

/∗ This block stores the desired grain size distribution ∗/

sizeDistribution =

this.parseAndClean(unparsedArray[i], ”=”);

initialArray.add(dataLineNumber, sizeDistribution);

dataLineNumber++;

} else if ((dataLineNumber − 6) % 7 == 0 &&

(dataLineNumber − 6) >= 0) {

/∗ This block stores the first grain size distribution

∗ parameter. In the case of a single grain size,

∗ there is only one parameter so it will fill in the

∗ other two spots with null.

∗/

if (sizeDistribution.equalsIgnoreCase(”single”)) {

initialArray.add(dataLineNumber,

this.parseAndClean(unparsedArray[i], ”=”));

dataLineNumber++;

initialArray.add(dataLineNumber, null);

dataLineNumber++;

initialArray.add(dataLineNumber, null);

dataLineNumber++;

295



} else if (sizeDistribution.equalsIgnoreCase(”MRN”) ||

sizeDistribution.equalsIgnoreCase(”KMH”)) {

initialArray.add(dataLineNumber,

this.parseAndClean(unparsedArray[i], ”=”));

dataLineNumber++;

} else {

/∗ If this block executes it means that the parameter

∗ file has not been correctly formatted.

∗/

System.out.println(”Size distribution must be one of” +

” single, MRN, or KMH”);

System.exit(0); //This is a fatal error

}

} else if ((dataLineNumber − 7) % 7 == 0 &&

(dataLineNumber − 7) >= 0) {

/∗ This block will only execute in the case of either the

∗ MRN or KMH size distribution, in which case it will

∗ obtain the second distribution parameter.

∗/

initialArray.add(dataLineNumber,

this.parseAndClean(unparsedArray[i], ”=”));

dataLineNumber++;

} else if ((dataLineNumber − 8) % 7 == 0 &&

(dataLineNumber − 8) >= 0) {

296



/∗ This block will also only execute in the case of either

∗ the MRN or KMH size distribution, in which case it

∗ will obtain the third and final distribution

∗ parameter.

∗/

initialArray.add(dataLineNumber,

this.parseAndClean(unparsedArray[i], ”=”));

dataLineNumber++;

} else if ((dataLineNumber − 9) % 7 == 0 &&

(dataLineNumber − 9) >= 0) {

/∗ This block obtains the weighting factor ∗/

initialArray.add(dataLineNumber,

this.parseAndClean(unparsedArray[i], ”=”));

dataLineNumber++;

}

} else {

continue; //No data on this line so go to the next one

} //This ends the = checking block

} //This ends the for loop iterating over all the file lines

return (String[])initialArray.toArray(new String[0]);

}

/∗ Parses a string at the given regex and returns the string to the
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∗ right of the regex, removing any whitespace.

∗/

private String parseAndClean(String unparsedString, String regex){

String[] parsed = unparsedString.trim().split(regex);

String parsedAndCleanedString = parsed[1].trim();

return parsedAndCleanedString;

}

/∗ Parses a nk data file into an array containing the data. The nk data

∗ files are formatted as follows. It must contain exactly three

∗ columns, which may be delimited by any of comma, space, or tab. The

∗ first column contains the wavelengh, and must be arranged from

∗ lowest wavelength to highest wavelength. The second column contains the

∗ n data, and the third column contains the k data. Any line in this

∗ file beginning with the # symbol is ignored. The returned array

∗ is structured as follows: the first index represents the line number

∗ of the data file (note: only lines of actual data are counted, not

∗ lines starting with # which are not stores), and the second index

∗ represents the column − 0 for wavelength, 1 for n, and 2 for k.

∗/

double[][] parseNK() {

/∗ Contains the parsed nk data ∗/

double parsedNK[][] = new double[unparsedArray.length][3];
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/∗ Contains the line number we are on when only lines containing data

∗ are considered (so there will be no gaps when a line is blank or

∗ if a line starts with #).

∗/

int dataLineNumber = 0;

for (int i = 0; i < unparsedArray.length; i++) {

/∗ Ignore lines starting with # ∗/

if (unparsedArray[i].startsWith(”#”)) {

continue;

/∗ Ignore blank lines ∗/

} else if (unparsedArray[i].isEmpty()) {

continue;

} else {

/∗ Split the columns. They can be delimited by any comma,

∗ tab, or space. Then convert the column values into

∗ doubles and store these values in parsedNK.

∗/

String[] conversionArray =

unparsedArray[i].trim().split(”\\,|\\s+”);

for (int j = 0; j < 3; j++) {

parsedNK[dataLineNumber][j] =

Double.parseDouble(conversionArray[j]);

}
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dataLineNumber++;

}

}

/∗ If there were any lines starting with #, parsedNK is larger than it

∗ needs to be (complicating length measurements later). If this is

∗ the case, copy the data over to a new array of the proper size

∗ and return that.

∗/

if (dataLineNumber == unparsedArray.length) {

return parsedNK;

}

else {

double[][] trimmedArray = new double[dataLineNumber][3];

System.arraycopy(parsedNK, 0, trimmedArray, 0, dataLineNumber);

return trimmedArray;

}

}

/∗ Parses a wavelength grid file into an array. This file can have any

∗ number of columns, but only the first is read in. This column must

∗ contain the wavelengths in order from lowest to highest, and any line

∗ starting with # is ignored. The only index of the returned array

∗ represents the line number of the wavelength grid file (not storing or

∗ counting lines with # as with the nk data files).

∗/

300



double[] parseWavelengths() {

/∗ Containes the parsed wavelength values ∗/

double[] parsedWavelengths = new double[unparsedArray.length];

/∗ Contains the line number we are on when only lines containing

∗ data are considered.

∗/

int dataLineNumber = 0;

for (int i = 0; i < unparsedArray.length; i++) {

/∗ Ignore lines starting with # ∗/

if (unparsedArray[i].startsWith(”#”)) {

continue;

} else {

String[] conversionArray =

unparsedArray[i].trim().split(”\\,|\\s+”);

parsedWavelengths[dataLineNumber] =

Double.parseDouble(conversionArray[0]);

dataLineNumber++;

}

}

/∗ If there were any lines starting with #, parsedWavelengths

∗ is larger than it needs to be (complicating length measurements
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∗ later). If this is the case, copy the data over to a new array of

∗ the proper size and return that.

∗/

if (dataLineNumber == unparsedArray.length) {

return parsedWavelengths;

}

else {

double[] trimmedArray = new double[dataLineNumber];

System.arraycopy(parsedWavelengths, 0, trimmedArray, 0,

dataLineNumber);

return trimmedArray;

}

}

/∗ Parses the command line arguments and sets the appropriate values in

∗ Main accordingly.

∗/

void parseArguments() {

if (unparsedArray.length == 0) {

ConsoleOutput.noArguments();

System.exit(0); //The input filename has to be specified.

}

/∗ A series of variables that let us keep track of which arguments

∗ were given.

∗/
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boolean inputFound = false; boolean outputFound = false;

boolean verboseFound = false; boolean silentFound = false;

boolean epsilonFound = false; boolean precisionFound = false;

/∗ Iterate through all the members of args ∗/

for (int i = 0; i < unparsedArray.length; i++) {

if (unparsedArray[i].equals(”−help”)) {

/∗ Look for help first of all because if it is given then

∗ absscat will only output the help message and exit without

∗ doing anything else.

∗/

ConsoleOutput.helpMessage();

System.exit(0);

} else if (unparsedArray[i].equals(”−inputfile”)) {

Main.inputFilename = unparsedArray[++i];

inputFound = true;

} else if (unparsedArray[i].equals(”−outputfile”)) {

Main.outputFilename = unparsedArray[++i];

outputFound = true;

} else if (unparsedArray[i].equals(”−verbose”)) {

Main.outputLevel = 2;

verboseFound = true;

} else if (unparsedArray[i].equals(”−silent”)) {

Main.outputLevel = 0;

silentFound = true;
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} else if (unparsedArray[i].equals(”−overwrite”)) {

Main.overwrite = true;

} else if (unparsedArray[i].equals(”−epsilon”)) {

Main.epsilon = Double.parseDouble(unparsedArray[++i]);

epsilonFound = true;

} else if (unparsedArray[i].equals(”−outputinterpolation”)){

Main.outputInterpolation = true;

} else if (unparsedArray[i].equals(”−onlyinterpolate”)){

Main.onlyInterpolate = true;

} else if (unparsedArray[i].equals(”−precision”)) {

Main.precision = Integer.parseInt(unparsedArray[++i]);

precisionFound = true;

} else {

ConsoleOutput.unrecognizedArgument(unparsedArray[i]);

System.exit(0); //Because we don’t know what the user wanted

}

}

/∗ Check for the case where both the −silent and −verbose flags

∗ were given. absscat will assume −verbose was meant.

∗/

if (verboseFound && silentFound){

Main.outputLevel = 2;

ConsoleOutput.verboseSilent();

}
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/∗ Check if the mandatory input file was found ∗/

if (!inputFound) {

/∗ Executes if the required input file was not found ∗/

ConsoleOutput.noArguments();

System.exit(0);

} else {

ConsoleOutput.inputGiven(); //Displays a message if verbose is on

}

/∗ Check if the output file argument was found, and if not set the

∗ output filename to the default inputFilename out.dat

∗/

if (!outputFound) {

if (Main.inputFilename.contains(”.”)) {

/∗ If inputFilename has a . extention, get rid of it so

∗ the outputFilename doesn’t have two of them.

∗/

String[] inputSplit = Main.inputFilename.split(”\\.”);

Main.outputFilename = inputSplit[0] + ” out.dat”;

} else {

Main.outputFilename = Main.inputFilename + ” out.dat”;

ConsoleOutput.outputGiven();

}

}
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/∗ Output messages for the other various arguments if present. ∗/

if (verboseFound){

ConsoleOutput.verboseActivated();

}

if (Main.overwrite){

ConsoleOutput.overwrite();

}

if (epsilonFound){

ConsoleOutput.epsilonSpecified();

}

if (Main.outputInterpolation){

ConsoleOutput.outputInterpolation();

}

if (Main.onlyInterpolate){

ConsoleOutput.onlyInterpolate();

}

if (precisionFound){

ConsoleOutput.precisionSpecified();

}

}

}

A.1.4 Interpolator.java

/∗
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∗ Interpolator

∗

∗ Version 2.4

∗

∗ 01/30/10

∗

∗/

package edu.missouri.stardust.absscat;

import java.util.ArrayDeque;

import java.util.Arrays;

/∗∗

∗ Interpolator interpolates a given set of (x,y) values to a given x grid.

∗ Linear interpolation is used where the domains of the original values and

∗ the new grid overlap, and linear extrapolation is used when the new grid

∗ extends beyond the original data set.

∗

∗ @author Adrian Corman

∗ @version 2.4

∗/

class Interpolator {

/∗ The x values of the original data ∗/

private final double[] originalX;
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/∗ The y values of the original data ∗/

private final double[] originalY;

/∗ The grid the data set will be interpolated to ∗/

private final double[] newX;

/∗ The final result of the interpolation ∗/

private double[] newY;

/∗ The only constructor for this class. The index of the inputs should

∗ correspond to the lines of the data, and initX and initY must contain

∗ the same number of elements.

∗/

Interpolator(double[] originalX, double[] originalY,

double[] newX) {

/∗ Check to see that the wavelengths are in order from smallest on

∗ top to biggest on bottom; if not, reverse them.

∗/

if (newX[0] > newX[1]){

this.newX = this.reverse(newX);

} else {

this.newX = newX;

}

if (originalX[0] > originalX[1]){
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this.originalX = this.reverse(originalX);

this.originalY = this.reverse(originalY);

} else {

this.originalX = originalX;

this.originalY = originalY;

}

/∗ Set the size of newY now that we have a wavelength grid to measure ∗/

newY = new double[newX.length];

this.interpolate();

}

/∗ Performs all the steps needed for the linear interpolation, calling on

∗ the other specific methods in this class.

∗/

private void interpolate() {

/∗ Check to see if the data is already matched to the new x grid;

∗ if so no interpolation is required.

∗/

if (Arrays.equals(originalX, newX)) {

newY = originalY; //No interpolation required in this case

return;

}
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/∗ If the new x grid extends beyond the original data set, we need

∗ to perform a linear extrapolation and fill in newY with these

∗ extrapolated values for the extended region(s).

∗/

/∗ Integer corresponding to the lowest index of newX corresponding

∗ to a value greater than or equal to the lowest x value in

∗ originalX. The default case is 0 (meaning that no filling is

∗ required).

∗/

int lowestIndex = 0;

/∗ Equivalent integer for the highest x. Default value in this case is

∗ the largest index in newX (i.e. newX.length − 1).

∗/

int highestIndex = (newX.length − 1);

if (originalX[0] > newX[0]) {

lowestIndex = this.extrapolateLess();

} else if (originalX[originalX.length − 1] < newX[newX.length − 1]) {

highestIndex = this.extrapolateMore();

}

/∗ Now that we’ve dealt with these cases, we can perform the

∗interpolation proper.

∗/
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this.linearInterpolation(lowestIndex, highestIndex);

}

/∗ Fills in all values where the new x grid has values below the lowest

∗ x point in the original grid with a linear extrapolation, and

∗ returns the index of newX corresponding to lowest x value in minX not

∗ less than the lowest x value in originalX.

∗/

private int extrapolateLess() {

int minline = 0;

/∗ Iterate through newX to find the lowest x value not less than the

∗ lowest x value in originalX. The iteration starts at index 1 because

∗ if index 0 was the lowest value, there would be no need for

∗ filling (and thus this method would not be called).

∗/

for (int i = 1; i < newX.length; i++) {

if (newX[i] < originalX[0]) {

continue; //Keep searching

} else {

/∗ This block executes when we have found the min value ∗/

minline = i;

break;

}

}
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/∗ Fill in the newY array with the values of the linear

∗ extrapolation below the lowest data point.

∗/

for (int j = minline − 1; j >= 0; j−−) {

newY[j] = this.interpolatedValue(newX[j], originalX[1],

originalX[0], originalY[1], originalY[0]);

}

return minline;

}

/∗ Fills in all values where the new x grid has values above the highest

∗ x point in the original grid with a linear extrapolation, and

∗ returns the index of newX corresponding to highest x value in minX not

∗ greater than the highest x value in originalX.

∗/

private int extrapolateMore() {

int maxline = newX.length − 1;

/∗ Iterate through newX (from the bottom up) to find the highest index

∗ for which newX has an x value not greater than the value at

∗ originalX[originalX.length − 1]. The iteration starts at

∗ newX.length − 2 because if newX.length − 1 was the max

∗ index, there would be no need for filling and thus this method

∗ would not be called.
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∗/

for (int i = (newX.length − 2); i > 0; i−−) {

if (newX[i] > originalX[originalX.length − 1]) {

continue; //Keep searching

} else {

/∗ This block executes when we have found the max index ∗/

maxline = i;

break;

}

}

/∗ Fill in the newY array with the linear extrapolation above

∗ the highest data point.

∗/

for (int j = maxline + 1; j < newX.length; j++) {

newY[j] = this.interpolatedValue(newX[j],

originalX[originalX.length − 2],

originalX[originalX.length − 1],

originalY[originalX.length − 2],

originalY[originalX.length − 1]);

}

return maxline;

}

/∗ Performs the linear interpolation proper, between indices min and
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∗ max applied to newX.

∗/

private void linearInterpolation(int min, int max) {

/∗ First deal with the special cases where newX[min] = originalX[0]

∗ and/or newX[max] = originalX[originalX.length − 1] (as opposed

∗ to simply being greater than or less than respectively, which

∗ is all we checked for when calculating min and max). If either of

∗ these is the case we have to directly copy the original y values

∗ over. Integers minshift and maxshift keep track of if this happens

∗ so that we can iterate properly in the next step.

∗/

int minshift = 0;

int maxshift = 0;

if (newX[min] == originalX[0]) {

newY[min] = originalY[0];

minshift++;

}

if (newX[max] == originalX[originalX.length − 1]) {

newY[max] = originalY[originalY.length − 1];

maxshift++;

}

/∗ Iterate over all the remaining values, performing the linear

∗ interpolation.

∗/
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/∗ Keeps track of where we previously ’split’ the old x and y values

∗ so we can save time searching for the new splitpoint.

∗/

int oldSplit = 0;

for (int i = min + minshift; i < max + 1 − maxshift; i++) {

/∗ Find the point at which to ’split’ originalX and originalY (i.e.

∗ we want the x and y values to each side of the new x value.

∗/

int splitPoint = this.findIndex(newX[i], oldSplit);

newY[i] = this.interpolatedValue(newX[i], originalX[splitPoint],

originalX[splitPoint + 1], originalY[splitPoint],

originalY[splitPoint + 1]);

oldSplit = splitPoint;

}

}

/∗ Finds the index of the x value in originalX that is closest to but

∗ not above the given double. Additionally takes an integer argument

∗ indicating where it should start the search.

∗/

private int findIndex(double comparator, int startpoint) {

int index = 0;

/∗ Iterate through originalX to search for the desired index, stopping
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∗ when we find the first x value greater than comparator, then

∗ returning that index minus one. If there is an index in originalX

∗ for which the x value is equal to comparator, then return that

∗ index.

∗/

for (int i = startpoint; i < originalX.length − 1; i++) {

if (originalX[i] < comparator) {

continue; //Keep searching

} else if (originalX[i] == comparator) {

index = i;

break;

} else if (originalX[i] > comparator) {

index = i − 1;

break;

}

}

return index;

}

/∗ Calculates the interpolated value for these points ∗/

private double interpolatedValue(double x, double x 0, double x 1,

double y 0, double y 1) {

double slope = (y 1 − y 0)/(x 1 − x 0);
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return y 0 + ((x − x 0) ∗ slope);

}

/∗ Returns the new interpolated y values corresponding to the x values

∗ specified when the class was initialized.

∗/

double[] returnInterpolation() {

return newY;

}

/∗ Reverses the order of elements in an array, using a stack ∗/

private double[] reverse(double[] xArray) {

double[] reversedArray = new double[xArray.length];

ArrayDeque <Double>stack = new ArrayDeque();

for (int i = 0; i < xArray.length; i++){

stack.push(xArray[i]);

}

for (int j = 0; j < xArray.length; j++){

reversedArray[j] = stack.pop().doubleValue();

}

return reversedArray;

}

}

A.1.5 Complex.java
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/∗

∗ Complex

∗

∗ Version 1.3

∗

∗ 01/30/10

∗

∗/

package edu.missouri.stardust.absscat;

/∗∗

∗ Complex is a simple utility class to more easily handle the required complex

∗ operations for the rest of the package. No optimizations have been made

∗ for speed.

∗

∗ @author Adrian Corman

∗ @version 1.3

∗/

public class Complex {

private final double real;

private final double imaginary;

/∗∗

∗ The only constructor for this class. Initializes the real and imaginary
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∗ parts of this complex number.

∗

∗ @param real the real part of this complex number.

∗ @param imaginary the imaginary part of this complex number.

∗/

public Complex(double real, double imaginary) {

this.real = real;

this.imaginary = imaginary;

}

/∗∗

∗ Returns the real part of this complex number.

∗

∗ @return Re(this).

∗/

public double real() {

return real;

}

/∗∗

∗ Returns the imaginary part of this complex number.

∗

∗ @return Im(this).

∗/

public double imaginary() {
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return imaginary;

}

/∗∗

∗ Returns a new complex number whose value is (this + addend), when

∗ addend is another complex number.

∗

∗ @param addend the complex number to be added to this complex number.

∗ @return this + addend.

∗/

public Complex plus(Complex addend) {

double real sum = real + addend.real();

double imaginary sum = imaginary + addend.imaginary();

return new Complex(real sum, imaginary sum);

}

/∗∗

∗ Returns a new complex number whose value is (this + addend), when

∗ addend is a double. This eliminates the need to convert addend

∗ to a new Complex object for simple addition.

∗

∗ @param addend the real double value to be added to this complex number.

∗ @return this + addend.

∗/

public Complex plus(double addend) {
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double real sum = real + addend;

return new Complex(real sum, imaginary);

}

/∗∗

∗ Returns a new complex number whose value is (this − subtrahend), when

∗ subtrand is another complex number.

∗

∗ @param subtrahend the complex number to be subtracted from this complex

∗ number.

∗ @return this − subtrahend.

∗/

public Complex minus(Complex subtrahend) {

double real difference = real − subtrahend.real();

double imaginary difference = imaginary − subtrahend.imaginary();

return new Complex(real difference, imaginary difference);

}

/∗∗

∗ Returns a new complex number whose value is (this − subtrahend), when

∗ subtrahend is a double. This eliminates the need to convert

∗ subtrahend into a new Complex object for simple subtraction.

∗

∗ @param subtrahend the real double to be subtracted from this complex
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∗ number.

∗ @return this − subtrahend.

∗/

public Complex minus(double subtrahend) {

double real difference = real − subtrahend;

return new Complex (real difference, imaginary);

}

/∗∗

∗ Returns a new complex number whose value is (this ∗ factor), when

∗ factor is another complex number.

∗

∗ @param factor the complex number to be multiplied with this complex

∗ number.

∗ @return this ∗ factor.

∗/

public Complex times(Complex factor) {

double real product = (real ∗ factor.real())

− (imaginary ∗ factor.imaginary());

double imaginary product = (real ∗ factor.imaginary()) +

(imaginary ∗ factor.real());

return new Complex (real product, imaginary product);

}
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/∗∗

∗ Returns a new complex number whose value is (this ∗ factor), when

∗ factor is a double. This elimainates the need to convert factor into

∗ a new Complex object for simple multiplication.

∗

∗ @param factor the double to be multiplied with this complex number.

∗ @return this ∗ factor.

∗/

public Complex times(double factor) {

double real product = real ∗ factor;

double imaginary product = imaginary ∗ factor;

return new Complex (real product, imaginary product);

}

/∗∗

∗ Returns a new complex number whose value is (this / divisor), when

∗ divisor is another complex number.

∗

∗ @param divisor the complex number by which this will be divided.

∗ @return this / divisor.

∗/

public Complex divide(Complex divisor) {

double real quotient = ((real ∗ divisor.real())

+ (imaginary ∗ divisor.imaginary()))

/ ((divisor.real() ∗ divisor.real())
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+ (divisor.imaginary() ∗ divisor.imaginary()));

double imaginary quotient = ((imaginary ∗ divisor.real())

− (real ∗ divisor.imaginary()))

/ ((divisor.real() ∗ divisor.real())

+ (divisor.imaginary() ∗ divisor.imaginary()));

return new Complex(real quotient, imaginary quotient);

}

/∗∗

∗ Returns a new complex number whose value is (this / divisor), when

∗ divisor is a double. This elimainates the need to convert divisor

∗ into a new Complex object for simple division.

∗

∗ @param divisor the double by which this will be divided.

∗ @return this / divisor.

∗/

public Complex divide(double divisor) {

double real quotient = real / divisor;

double imaginary quotient = imaginary / divisor;

return new Complex(real quotient, imaginary quotient);

}

/∗∗

∗ Returns the square of a complex number.
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∗

∗ @return this ∗ this.

∗/

public Complex squared() {

double real value = (real ∗ real) − (imaginary ∗ imaginary);

double imaginary value = (2 ∗ real ∗ imaginary);

return new Complex(real value, imaginary value);

}

/∗∗

∗ Returns the absolute value of a complex number.

∗

∗ @return |this|

∗/

public double abs() {

return Math.sqrt((real ∗ real) + (imaginary ∗ imaginary));

}

/∗∗

∗ Returns the square of the absolute value of a complex number.

∗

∗ @return |this|ˆ2

∗/

public double absSquared() {
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return ((real ∗ real) + (imaginary ∗ imaginary));

}

/∗∗

∗ Returns the principle value of the natural logarithm of a complex

∗ number, given by ln(z) = ln(|z|) + i tanˆ−1(Im(z)/Re(z)).

∗

∗ @return ln(this).

∗/

public Complex ln() {

double real part = Math.log(this.abs());

double imaginary part = Math.atan2(imaginary, real);

return new Complex(real part, imaginary part);

}

}

A.1.6 Calculations.java

/∗

∗ Calculations

∗

∗ Version 1.3

∗
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∗ 01/30/10

∗

∗/

package edu.missouri.stardust.absscat;

/∗∗

∗ Calculations takes a prepared set of n and k data and generates the

∗ absorption and scattering coefficients corresponding to those sets, combined

∗ with a user−supplied weighting factor for each set. Calculations performs

∗ most of the needed mathematics itself, but the required integrands are

∗ generated by calling on the SizeIntegrator class. The required complex

∗ mathematics is provided by the included Complex class.

∗

∗ These calculations are based on theoretical work found in Min, M.,

∗ Hovenier, J. W., and de Koter, A., Astronomy and Astrophysics, v. 404,

∗ p. 35−46, 2003.

∗

∗ @author Adrian Corman

∗ @version 1.3

∗ @see Complex

∗ @see SizeIntegrator

∗ @see <a href=”http://www.aanda.org/index.php?option=article&access=

∗ bibcode&bibcode=2003A%2526A...404...35MFUL”>Min et al.</a>

∗/

class Calculations {
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/∗ A note on the methodology used in these calculations: for all cases,

∗ it is possible to split the equations for the absorption and scattering

∗ coefficients into three parts. The first part is comprised of constants

∗ and wavelength data, the second is comprised of the part involving

∗ operations on complex numbers, and the third is dependant on r and

∗ thus is subject to integration over the grain size distribution. This

∗ class calculates the first two of these parts, calling on the class

∗ SizeIntegrator to calculate the third. Then this class combines the

∗ three parts and as a final step calculates the weighted average

∗ of all the nk data files.

∗/

/∗ The parameters of the calculations ∗/

private final String[] parameterArray;

/∗ The number of nk files ∗/

private final int numberOfNKFiles;

/∗ The data from the nk data files ∗/

private final double[][][] nkData;

/∗ Holds the n and k values from nkData after conversion into Complex

∗ objects. The first index represents the number of the original nk data

∗ file, and the second represents the line number of each data set.

∗/
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private final Complex[][] complexNK;

/∗ The final set of absorption and scattering coefficients. The first

∗ index represents the line number of the data set, and the second

∗ represents the column of the data set (0 = wavelengths, 1 = absorption

∗ coefficients, 2 = scattering coefficients).

∗/

private final double[][] finalResult;

/∗ The only constructor for this class. Takes the String array representing

∗ the parameters of the calculations, and a double array with the n and

∗ k data from each data file.

∗/

Calculations(String[] parameterArray, double[][][] nkData) {

this.parameterArray = parameterArray;

numberOfNKFiles = Integer.parseInt(parameterArray[0]);

this.nkData = nkData;

complexNK = this.complexConversion();

finalResult = this.applyWeighting(this.unweightedCalculation());

}

/∗ Converts the array of n and k values into an array of Complex objects ∗/

private Complex[][] complexConversion() {

Complex[][] complexArray = new Complex[nkData.length][nkData[0].length];

for (int i = 0; i < nkData.length; i++) {

for (int j = 0; j < nkData[0].length; j++) {

329



complexArray[i][j] = new Complex(nkData[i][j][1],

nkData[i][j][2]);

}

}

return complexArray;

}

/∗ A wrapper method to correctly select and call on the various other

∗ methods of this class, in order to obtain the set of final results

∗ before the weighted average.

∗/

private double[][][] unweightedCalculation() {

/∗ The results before the unweighted average ∗/

double[][][] unweightedResult =

new double[numberOfNKFiles][nkData[0].length][2];

/∗ Perform the grain shape and size calculations on each of the

∗ nk data files.

∗/

for (int i = 0; i < numberOfNKFiles; i++) {

/∗ The shape distribution for this data set ∗/

String shape = parameterArray[(i ∗ 7) + 4];

/∗ The size distribution for this data set ∗/
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String size = parameterArray[(i ∗ 7) + 5];

/∗ The size distribution parameters for this data set ∗/

double[] distributionParameters = new double[3];

distributionParameters[0] =

Double.parseDouble(parameterArray[(i ∗ 7) + 6]);

if (size.equalsIgnoreCase(”single”)) {

/∗ Double.parseDouble can’t handle a null input so in the

∗ case of a single grain size don’t do anything for the

∗ indices 1 and 2 (they are already filled with 0 when

∗ the array is created.

∗/

} else {

distributionParameters[1] =

Double.parseDouble(parameterArray[(i ∗ 7) + 7]);

distributionParameters[2] =

Double.parseDouble(parameterArray[(i ∗ 7) + 8]);

}

/∗ Send the data set to the proper method, along with the size

∗ distribution.

∗/

if (shape.equalsIgnoreCase(”spherical”)) {

unweightedResult[i] = this.calculateSpherical(size,

distributionParameters, i);

331



} else if (shape.equalsIgnoreCase(”cde”)) {

unweightedResult[i] = this.calculateCDE(size,

distributionParameters, i);

} else if (shape.equalsIgnoreCase(”cds”)) {

unweightedResult[i] = this.calculateCDS(size,

distributionParameters, i);

} else if (shape.equalsIgnoreCase(”dhs”)) {

unweightedResult[i] = this.calculateDHS(size,

distributionParameters, i);

} else {

/∗ If this block executes there has been a formatting error

∗ in the input file.

∗/

ConsoleOutput.incorrectShape();

System.exit(0); //Fatal error

}

}

return unweightedResult;

}

/∗ Calculates the absorption and scattering coefficients for a nk data

∗ set in the case of spherical grains, with a given size distribution.

∗ The set parameter refers to the number of the data set we are working

∗ with.

∗/

private double[][] calculateSpherical(String size,
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double[] parameters, int set) {

/∗ Holds the result of the calculation for this set ∗/

double[][] sphericalResult =

new double[nkData[0].length][2];

/∗ Gets and holds the result of the integration. integral[0] is the

∗ result for the absorption coefficient, integral[1] is the result for

∗ the scattering coefficient. Additionally, output a status message

∗ if verbose mode is active.

∗/

ConsoleOutput.integrating(size);

SizeIntegrator sphericalIntegrator = new SizeIntegrator(size,parameters);

double []integral = sphericalIntegrator.getIntegration();

ConsoleOutput.nonRTerms(”spherical”); //Output status for verbose

for (int i = 0; i < nkData[0].length; i++){

sphericalResult[i][0] = this.sphericalAbsNonR(nkData[set][i][0],

complexNK[set][i]) ∗ integral[0];

sphericalResult[i][1] = this.sphericalScaNonR(nkData[set][i][0],

complexNK[set][i]) ∗ integral[1];

}

return sphericalResult;

}

/∗ Calculates the alpha value needed in the equations for spherical dust
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∗ grains.

∗/

private Complex calculateSphericalAlpha(Complex m) {

Complex numerator = (m.squared()).minus(1.0);

Complex denominator = (m.squared()).plus(2.0);

return numerator.divide(denominator);

}

/∗ Calculates the absorption and scattering coefficients for a nk data set

∗ in the case of a continuuous distribution of ellipsoids, for a given

∗ size distribution. The set parameter refers to the data set we are

∗ working with.

∗/

private double[][] calculateCDE(String size, double[] parameters, int set) {

/∗ Holds the result of the calculation for this set ∗/

double[][] cdeResult =

new double[nkData[0].length][2];

/∗ Gets and holds the result of the integration. integral[0] is the

∗ result for the absorption coefficient, integral[1] is the result for

∗ the scattering coefficient.Additionally, output a status message

∗ if verbose mode is active.

∗/

ConsoleOutput.integrating(size);

SizeIntegrator cdeIntegrator = new SizeIntegrator(size,parameters);

double[] integral = cdeIntegrator.getIntegration();
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ConsoleOutput.nonRTerms(”CDE”); //Output a status message for verbose

for (int i = 0; i < nkData[0].length; i++){

cdeResult[i][0] = this.otherAbsNonR(nkData[set][i][0],

complexNK[set][i],”cde”) ∗ integral[0];

cdeResult[i][1] = this.otherScaNonR(nkData[set][i][0],

complexNK[set][i],”cde”) ∗ integral[1];

}

return cdeResult;

}

/∗ Calculates the alpha value needed in the equations for a continuuous

∗ distribution of ellipsoids.

∗/

private Complex calculateCDEAlpha(Complex m) {

Complex numerator = (m.squared()).times(2.0).times(m.squared().ln());

Complex denominator = (m.squared()).minus(1.0);

return numerator.divide(denominator).minus(2.0);

}

/∗ Calculates the absorption and scattering coefficients for a nk data set

∗ in the case of a continuuous distribution of sphereoids, for a given

∗ size distribution. The set parameter refers to the data set we are

∗ working with.

∗/

private double[][] calculateCDS(String size, double[] parameters, int set) {
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/∗ Holds the result of the calculation for this set ∗/

double[][] cdsResult =

new double[nkData[0].length][2];

/∗ Gets and holds the result of the integration. integral[0] is the

∗ result for the absorption coefficient, integral[1] is the result for

∗ the scattering coefficient.Additionally, output a status message

∗ if verbose mode is active.

∗/

ConsoleOutput.integrating(size);

SizeIntegrator cdsIntegrator = new SizeIntegrator(size,parameters);

double[] integral = cdsIntegrator.getIntegration();

ConsoleOutput.nonRTerms(”CDS”); //Output a status message for verbose

for (int i = 0; i < nkData[0].length; i++){

cdsResult[i][0] = this.otherAbsNonR(nkData[set][i][0],

complexNK[set][i],”cds”) ∗ integral[0];

cdsResult[i][1] = this.otherScaNonR(nkData[set][i][0],

complexNK[set][i],”cds”) ∗ integral[1];

}

return cdsResult;

}

/∗ Calculates the alpha value needed in the equations for a continuuous

∗ distribution of sphereoids.

∗/
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private Complex calculateCDSAlpha(Complex m) {

Complex firstTerm = (m.squared().ln()).times(1.0/3.0);

Complex secondTerm =

(m.squared().plus(1.0).divide(2.0).ln()).times(4.0/3.0);

return firstTerm.plus(secondTerm);

}

/∗ Calculates the absorption and scattering coefficients for a nk data set

∗ in the case of a distribution of hollow spheres. The set parameter

∗ refers to the data set we are working with.

∗/

private double[][] calculateDHS(String size, double[] parameters, int set) {

/∗ Holds the result of the calculation for this set ∗/

double[][] dhsResult =

new double[nkData[0].length][2];

/∗ Gets and holds the result of the integration. integral[0] is the

∗ result for the absorption coefficient, integral[1] is the result for

∗ the scattering coefficient.Additionally, output a status message

∗ if verbose mode is active.

∗/

ConsoleOutput.integrating(size);

SizeIntegrator dhsIntegrator = new SizeIntegrator(size,parameters);

double[] integral = dhsIntegrator.getIntegration();

/∗ Will perform the needed numerical integration for the scattering
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∗ case.

∗/

IterativeSimpsons dhs sca Integrator =

new IterativeSimpsons(1.0, 0, Main.epsilon);

ConsoleOutput.nonRTerms(”DHS”); //Output a status message for verbose

for (int i = 0; i < nkData[0].length; i++){

double wavelength = nkData[set][i][0];

Complex m = complexNK[set][i];

dhsResult[i][0] =

this.otherAbsNonR(wavelength, m ,”dhs”) ∗ integral[0];

/∗ Unfortunately, the simple relationship between the scattering and

∗ absorption coefficients present in the other shape distributions

∗ does now hold here, so we have to perform a numerical integration.

∗/

Function f = new Function.f DHS sca(m);

dhsResult[i][1] = dhs sca Integrator.integrate(f) ∗

(8.0 ∗ Math.pow(this.k(wavelength), 4.0) ∗

Math.PI ∗ integral[1]) / 9;

}

return dhsResult;

}

/∗ Calculates the alpha value needed in the equations for a distribution

∗ of hollow spheres.
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∗/

private Complex calculateDHSAlpha(Complex m) {

Complex firstNumerator = (m.squared()).times(6.0).plus(3.0);

Complex firstDenominator = (m.squared()).times(2.0).minus(2.0);

Complex firstTerm = firstNumerator.divide(firstDenominator);

Complex secondTerm = (m.squared()).times(2.0).plus(1.0);

Complex thirdNumerator = (m.squared()).plus(2.0);

Complex thirdDenominator = (m.squared()).times(9.0);

Complex thirdTerm = thirdNumerator.divide(thirdDenominator);

return firstTerm.times(secondTerm.times(thirdTerm).ln());

}

/∗ Calculates the part of the equation for the absorption coefficient

∗ of spherical shaped particles that does not depend on r (the part

∗ that does is handled in the integration).

∗/

private double sphericalAbsNonR (double wavelength, Complex m) {

double firstTerm = 4.0∗Math.PI∗this.k(wavelength);

double secondTerm = this.calculateSphericalAlpha(m).imaginary();

return firstTerm∗secondTerm;

}

/∗ Calculates the part of the equation for the scattering coefficient

∗ of spherical shaped particles that does not depend on r (the part

∗ that does is handled in the integration).

∗/
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private double sphericalScaNonR (double wavelength, Complex m) {

double firstTerm = 8.0∗Math.PI∗Math.pow(this.k(wavelength), 4.0) ∗

(1.0/3.0);

double secondTerm = this.calculateSphericalAlpha(m).absSquared();

return firstTerm∗secondTerm;

}

/∗ Calculates the part of the equation for the absorption coefficient

∗ for CDE, CDS, and DHS shape distributions that does not depend

∗ on r (the part that does is handled in the integration).

∗/

private double otherAbsNonR (double wavelength, Complex m, String shape) {

Complex alpha = null;

if (shape.equalsIgnoreCase(”CDE”)) {

alpha = this.calculateCDEAlpha(m);

} else if (shape.equalsIgnoreCase(”CDS”)) {

alpha = this.calculateCDSAlpha(m);

} else if (shape.equalsIgnoreCase(”DHS”)) {

alpha = this.calculateDHSAlpha(m);

}

double firstTerm = 4.0∗Math.PI∗this.k(wavelength) ∗ (1.0/3.0);

double secondTerm = alpha.imaginary();

return firstTerm∗secondTerm;

}

/∗ Calculates the part of the equation for the scattering coefficient
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∗ for the CDE and CDS shape distributions that does not depend on

∗ r (the part that does is handled in the integration).

∗/

private double otherScaNonR(double wavelength, Complex m, String shape) {

Complex alpha = null;

if (shape.equalsIgnoreCase(”CDE”)) {

alpha = this.calculateCDEAlpha(m);

} else if (shape.equalsIgnoreCase(”CDS”)) {

alpha = this.calculateCDSAlpha(m);

}

double firstNumerator = 4.0∗Math.PI∗this.k(wavelength);

double firstDenominator = 3.0∗this.sigma(wavelength, m);

double firstTerm = firstNumerator / firstDenominator;

double secondTerm = alpha.imaginary();

return firstTerm∗secondTerm;

}

/∗ Calculates the part of sigma (needed for the non−spherical cases) that

∗ is not dependant on the size. The part that is dependant on the size

∗ (a factor of 1/rˆ3) has been incorporated into the integrations.

∗/

private double sigma (double wavelength, Complex m) {

double firstTerm = 9.0 /(2.0∗Math.pow(this.k(wavelength), 3.0));

double secondTerm = m.squared().imaginary();

double thirdTerm = 1.0 /(m.squared().minus(1.0).absSquared());

return firstTerm ∗ secondTerm ∗ thirdTerm;
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}

/∗ A very simple method to calculate the k [i.e. (2 ∗ pi)/(wavelength)] for

∗ a given wavelength, to help simplify the rest of the calculations.

∗/

private double k(double wavelength) {

return (2.0 ∗ Math.PI)/(wavelength);

}

/∗ Performs the averaging over all the grain species, using the weights

∗ specified in the parameter file.

∗/

private double[][] applyWeighting(double[][][] uncombinedArray) {

/∗ Holds the final result of the weighted averaging ∗/

double[][] weightedAverage = new double[nkData[0].length][3];

for (int i = 0; i < nkData[0].length; i++) {

double sumOfWeights = 0;

double weightedAbs = 0;

double weightedSca = 0;

weightedAverage[i][0] = nkData[0][i][0]; //The wavelengths

for (int j = 0; j < numberOfNKFiles; j++) {

double weight = Double.parseDouble(parameterArray[(j ∗ 7) + 9]);

weightedAbs = weightedAbs + (weight ∗ uncombinedArray[j][i][0]);

weightedSca = weightedSca + (weight ∗ uncombinedArray[j][i][1]);
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sumOfWeights = sumOfWeights + weight;

}

weightedAverage[i][1] = weightedAbs/sumOfWeights;

weightedAverage[i][2] = weightedSca/sumOfWeights;

}

return weightedAverage;

}

/∗ Returns the array containing the final results of the absorption and

∗ scattering calculations.

∗/

double[][] returnResult() {

return finalResult;

}

}

A.1.7 Integrator.java

/∗

∗ SizeIntegrator

∗

∗ Version 3.1

∗

∗ 01/30/10
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∗

∗/

package edu.missouri.stardust.absscat;

/∗∗

∗ SizeIntegrator calculates the integral over the part of the equations for

∗ the absorption and scattering coefficients that depend only on r. This

∗ essentially involves the r−dependant term from the single grain size

∗ distribution equations, the size distribution formula, and the cross

∗ sectional area (2∗pi∗rˆ2). These elements are combined to produce

∗ the equations in this class. The elements not depending on r are calculated

∗ by the Calculations class, where additional description of the mathematics

∗ can be found.

∗

∗ For the single grain size case, or for the

∗ MRN grain size distribution, the integral over these equations has a

∗ closed form solution so those equations are evaluated directly.

∗ In the case of the KMH grain size distribution, there is no general closed

∗ form solution so a numerical integration is performed, subject to the

∗ error bound in the Main class (either a default value, or specified on the

∗ command line when absscat is called).

∗

∗ @author Adrian Corman

∗ @version 3.1

∗ @see Calculations
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∗/

class SizeIntegrator {

/∗ The grain size distribution parameters ∗/

private final double[] parameters;

/∗ The result of the integration of this grain size distribution over

∗ the specified parameters.

∗/

private final double[] integrationResult;

/∗ The only constructor for this class. Takes the array of size distribution

∗ parameters, and a String representing which distribution is being

∗ integrated over.

∗/

SizeIntegrator(String size, double[] parameters) {

this.parameters = parameters;

if (size.equalsIgnoreCase(”single”)) {

integrationResult = this.singleIntegral();

} else if (size.equalsIgnoreCase(”MRN”)) {

integrationResult = this.mrnIntegral();

} else {

integrationResult = this.kmhIntegral();

}
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}

/∗ Calculates the value of the integral for a single grain size ∗/

private double[] singleIntegral() {

/∗ Check the parameter array for errors ∗/

ParameterChecker.checkSingle(parameters);

double[] integral = new double[2];

integral[0] = parameters[0]/Math.PI;

integral[1] = Math.pow(parameters[0], 4.0)/Math.PI;

return integral;

}

/∗ Calculates the value of the integral for the MRN grain size

∗ distribution.

∗/

private double[] mrnIntegral() {

/∗ Check the parameter array for errors ∗/

ParameterChecker.checkMRN(parameters);

double[] integral = new double[2];

double q = parameters[1];

double min = parameters[0];

double max = parameters[2];
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/∗ Calculate the normalization constant ∗/

double normalization = (1/(1.0 − q)) ∗ (Math.pow(max,(1.0 − q)) −

Math.pow(min,(1.0 − q)));

/∗ If q = 2 for the absorption case, we have to be careful because

∗ the integrand becomes (1/x) which has a different solution

∗ for the q!=2 situation. The same holds true for the scattering

∗ case when q=5.

∗/

if (q == 2) {

/∗ Special (1/x) case for absorption ∗/

integral[0] = ((Math.log(max / min))/Math.PI) / normalization;

/∗ The normal scattering integral (as q != 5 here) ∗/

double scaFirstTerm = 1/(Math.PI ∗ (5.0 − q));

double scaSecondTerm = Math.pow(max,(5.0 − q));

double scaThirdTerm = Math.pow(min, (5.0 − q));

integral[1] =

scaFirstTerm∗(scaSecondTerm − scaThirdTerm) / normalization;

} else if (q == 5) {

/∗ Special (1/x) case for scattering ∗/

integral[1] = ((Math.log(max / min))/Math.PI) / normalization;

/∗ The normal absorption integral (as q != 2 here) ∗/
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double absFirstTerm = 1/(Math.PI ∗ (2 − q));

double absSecondTerm = Math.pow(max,(2 − q));

double absThirdTerm = Math.pow(min, (2 − q));

integral[0] =

absFirstTerm∗(absSecondTerm − absThirdTerm) / normalization;

} else {

/∗ The integral for absorption in all other cases ∗/

double absFirstTerm = 1/(Math.PI ∗ (2 − q));

double absSecondTerm = Math.pow(max,(2 − q));

double absThirdTerm = Math.pow(min, (2 − q));

integral[0] =

absFirstTerm∗(absSecondTerm − absThirdTerm) / normalization;

/∗ The integral for scattering in all other cases ∗/

double scaFirstTerm = 1/(Math.PI ∗ (5 − q));

double scaSecondTerm = Math.pow(max,(5 − q));

double scaThirdTerm = Math.pow(min, (5 − q));

integral[1] =

scaFirstTerm∗(scaSecondTerm − scaThirdTerm) / normalization;

}

return integral;

}

/∗ Calculates the value of the integral in the case of the KMH grain size

∗ distribution, by calling on the methods forming the algorithm for

∗ the iterative adaptive Simpson’s method.
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∗/

private double[] kmhIntegral() {

/∗ Holds the results of the calculations ∗/

double[] results = new double[3];

/∗ Check the parameter array for errors ∗/

ParameterChecker.checkKMH(parameters);

/∗ The integrals for both the absorption and scattering cases when

∗ the size distribution is KMH does not have a closed form

∗ solution for arbitrary values of the parameters. Thus, we must

∗ perform a numerical integration. Because this integration is

∗ otherwise simple, we will use an adaptive Simpsons method,

∗ with the accuracy of the integration given by the epsilon in the Main

∗ class. The normalization constant will also be obtained in this

∗ way.

∗/

double q = parameters[1];

double r 0 = parameters[2];

Function f norm = new Function.f KMH norm(q, r 0);

Function f abs = new Function.f KMH abs(q, r 0);

Function f sca = new Function.f KMH sca(q, r 0);

IterativeSimpsons kmhIntegrator =

new IterativeSimpsons(1.0/parameters[0],0,Main.epsilon);
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double normalization = kmhIntegrator.integrate(f norm);

results[0] = kmhIntegrator.integrate(f abs) / normalization;

results[1] = kmhIntegrator.integrate(f sca) / normalization;

return results;

}

/∗ Returns the value of the integration calculated when this class

∗ was initialized.

∗/

double[] getIntegration(){

return integrationResult;

}

/∗ A small nested class to check the size parameters for errors ∗/

private static class ParameterChecker {

/∗ Checks the given parameters in the case of a single grain

∗ size.

∗/

private static void checkSingle(double[] parameters) {

if (parameters[0] == 0) {

/∗ Grain size has to be greater than zero! ∗/

ConsoleOutput.zeroGrainSize();
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System.exit(0); //The result would just be zero

} else if (parameters[0] < 0) {

ConsoleOutput.negativeGrainSize();

System.exit(0); //The result would be meaningless

} else {

return; //Everything is fine in this case

}

}

/∗ Checks the given parameters in the case of a MRN grain size

∗ distribution.

∗/

private static void checkMRN(double[] parameters) {

if (parameters[0] < 0) {

/∗ The minimum grain size must be positive ∗/

ConsoleOutput.negativeMinGrainSize();

System.exit(0); //The result would be meaningless

} else if (parameters[2] == 0) {

/∗ The maximum grain size shouldn’t be zero ∗/

ConsoleOutput.zeroMaxGrainSize();

System.exit(0); //The result would be meaningless

} else if (parameters[2] < 0) {

/∗ The maximum grain size must be positive ∗/

ConsoleOutput.negativeMaxGrainSize();

System.exit(0); //The result would be meaningless

} else if (parameters[0] > parameters[2]) {
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/∗ The maximum grain size has to be larger than the minimum

∗ grain size.

∗/

ConsoleOutput.minMoreThanMax();

System.exit(0); //The result would be meaningless

} else {

return; //Everything is fine in this case

}

}

/∗ Checks the given parameters in the case of a KMH grain size

∗ distribution.

∗/

private static void checkKMH(double[] parameters) {

if (parameters[0] < 0) {

/∗ The minimum grain size must be positive ∗/

ConsoleOutput.negativeMinGrainSize();

System.exit(0); //The result would be meaningless

} else if (parameters[2] == 0) {

/∗ The falloff grain size cannot be zero ∗/

ConsoleOutput.zeroFalloffGrainSize();

System.exit(0); //Would include a division by zero.

} else if (parameters[2] < 0) {

/∗ The falloff grain size must be positive ∗/

ConsoleOutput.negativeFalloffGrainSize();

System.exit(0); //The integral would diverge
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} else if (parameters[0] > parameters[2]) {

/∗ The falloff grain size has to be larger than the minimum

∗ grain size.

∗/

ConsoleOutput.falloffLessThanMin();

System.exit(0); //The result would be meaningless

} else {

return; //Everything is fine in this case

}

}

}

}

A.1.8 Function.java

/∗

∗ To change this template, choose Tools | Templates

∗ and open the template in the editor.

∗/

package edu.missouri.stardust.absscat;

interface Function {

double evaluate(double x);
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/∗ Because the KMH integral has limits from r min to infinity, it

∗ is necessassary to do a change of variables on the integral

∗ in order to obtain an integral of finite limits. This is done

∗ by replacing r with 1/t => dr = −(1/tˆ2), and the limits change

∗ into 1/r min and 0. This can be integrated using Simpson’s

∗ method. The next three classes reflect this.

∗/

/∗ Inner class representing the normalization integrand for a KMH

∗ distribution.

∗/

class f KMH norm implements Function {

private final double q;

/∗ The falloff size parameter ∗/

private final double r 0;

f KMH norm(double q, double r 0){

this.q = q;

this.r 0 = r 0;

}

public double evaluate(double x){

return Math.pow(x, q) ∗ Math.pow(Math.E, −(1.0/(x∗r 0)));

}

}
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/∗ Inner class representing the r−term function to be integrated for a KMH

∗ distribution, in the case of absorption.

∗/

class f KMH abs implements Function {

private final double q;

/∗ The falloff size parameter ∗/

private final double r 0;

f KMH abs(double q, double r 0){

this.q = q;

this.r 0 = r 0;

}

public double evaluate(double x){

/∗ This function is straightforward when parameters[1] >= power,

∗ because in this case f(0) = 0. In the case where parameters[2]

∗ is less than the power, the first term has a negative exponent

∗ and the numerical integration fails when x = 0 because

∗ f(0) has an indeterminant form. However, because the limit of

∗ f(x) as x−>0 from the right is 0, we can set f(0) = 0 in this

∗ case as well, giving us an accurate result when used as part

∗ of the numerical integration.
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∗/

if (x == 0){

return 0;

} else {

return Math.pow(x, (q − 3.0)) ∗

Math.pow(Math.E, −(1.0/(x∗r 0)));

}

}

}

/∗ Inner class representing the r−term function to be integrated for a KMH

∗ distribution, in the case of scattering.

∗/

class f KMH sca implements Function{

private final double q;

/∗ The falloff size parameter ∗/

private final double r 0;

f KMH sca(double q, double r 0){

this.q = q;

this.r 0 = r 0;

}
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public double evaluate(double x){

/∗ This function is straightforward when parameters[1] >= power,

∗ because in this case f(0) = 0. In the case where parameters[2]

∗ is less than the power, the first term has a negative exponent

∗ and the numerical integration fails when x = 0 because

∗ f(0) has an indeterminant form. However, because the limit of

∗ f(x) as x−>0 from the right is 0, we can set f(0) = 0 in this

∗ case as well, giving us an accurate result when used as part

∗ of the numerical integration.

∗/

if (x == 0){

return 0;

} else {

return Math.pow(x, (q − 6.0)) ∗

Math.pow(Math.E, −(1.0/(x∗r 0)));

}

}

}

/∗ Inner class representing the DHS scattering function that must be

∗ integrated (i.e. |alpha|ˆ2.

∗/
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class f DHS sca implements Function {

private final Complex m;

/∗ The only constructor for this class, initializes it for a given

∗ Complex object m.

∗/

f DHS sca(Complex m){

this.m = m;

}

public double evaluate(double x){

Complex numerator =

(m.squared().minus(1.0)).times(m.squared().times(2.0).plus(1.0));

Complex denominatorOne =

(m.squared().plus(2.0)).times(m.squared().times(2.0).plus(1.0));

Complex denominatorTwo =

(m.squared().minus(1.0)).squared().times(2.0).times(x);

Complex alpha =

numerator.divide(denominatorOne.minus(denominatorTwo));

return alpha.absSquared();

}

}

}
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A.1.9 IterativeSimpsons

/∗

∗ IterativeSimpsons

∗

∗ Version 1.0

∗

∗ 02/08/10

∗

∗/

package edu.missouri.stardust.absscat;

import java.util.ArrayDeque;

/∗∗

∗ IterativeSimpsons performs an adaptive Simpson’s method itegration on a

∗ given function between given limits. The algorithm used is iterative, rather

∗ than the more common recursive technique; this helps prevent runaway

∗ memory problems.

∗

∗ @author Adrian Corman

∗ @version 1.0

∗/

public class IterativeSimpsons {
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/∗ The upper limit of the integration ∗/

private final double upperLimit;

/∗ The lower limit of the integration ∗/

private final double lowerLimit;

/∗ The desired error bound for this numerical integration ∗/

private final double errorBound;

/∗∗

∗ The only constructor for this class. Initializes with the upper and

∗ lower limits to the numerical integration, and a desired error bound.

∗

∗ @param upperLimit the upper limit of the integration

∗ @param lowerLimit the lower limit of the integration

∗ @param errorBound the desired error bound for this integration

∗/

public IterativeSimpsons(double upperLimit,

double lowerLimit, double errorBound){

this.upperLimit = upperLimit;

this.lowerLimit = lowerLimit;

this.errorBound = errorBound;

}
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/∗ Calculates the numerical integration, using an iterative form of the

∗ adaptive Simpson’s method.

∗

∗ Classically, the adaptive Simpson’s method has been presented in a

∗ recursive form; however, the recursive form can have

∗ serious memory issues in the Java Virtual Machine’s stack if the

∗ integration does not quickly converge. If this happens, the

∗ program will crash. Though this iterative method also uses a stack,

∗ each element of the stack only contains 4 double values instead of the

∗ entire memory footprint of the method, and so this danger is decreased.

∗/

double integrate(Function f) {

/∗ The methodology behind this particular iterative (not recursive)

∗ implementation of the adaptive Simpson’s method is as follows.

∗ An ArrayDeque is used as a stack to hold a series of arrays,

∗ each representing one division of the integration interval. As long

∗ as there is an element inside the stack, there is at least one

∗ division of the interval that has not yet been evaluated. So,

∗ a while loop checks if the stack is empty or not, and if not

∗ it performs a loop (and the integration is finished when the

∗ stack is empty). Inside the loop, the top element of the stack

∗ is removed for processing. Simpson’s rule is used to evaluate

∗ both sides of this interval, and then the error bound is checked.

∗ If the error check passes, then the sum of the two calls to

∗ Simpson’s rule over this interval are added to the integration

361



∗ sum, and then the next element of the stack is processed. If the

∗ error check does not pass, then further subdivision is needed

∗ and the loop adds two more elements into the stack, each representing

∗ half of the previous subdivision. This process continues until all

∗ the elements are processed, and the final sum is the value of the

∗ integral to within the specified error bound.

∗/

/∗ The stack ∗/

ArrayDeque <double[]> stack = new ArrayDeque();

/∗ The next series of variables are used as placeholders for values

∗ in each iteration of the loop over the stack. They are defined

∗ here because to define them inside the loop would create redundant

∗ object creation calls.

∗/

double error; //The error, which is divided by two in each subdivision

double difference; //

double midpoint; //The middle of the subdivision

double left; //The minimum value of the subdivision

double right; //The maximum value of the dubdivision

double[] old = new double[5]; //Holds the stack arrays as removed

/∗ The initial values needed to begin the integration ∗/

double[] initialCalcs = new double[5];

initialCalcs[0] = simpsonsRule(f,lowerLimit,upperLimit);
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initialCalcs[1] = lowerLimit;

initialCalcs[2] = upperLimit;

initialCalcs[3] = errorBound;

stack.push(initialCalcs); //Push these values onto the stack

double integralSum = 0; //Holds the value of the integral as we sum

while (!stack.isEmpty()){

old = stack.pop(); //Pop the top subdivision from the stack

midpoint = (old[1] + old[2])/2.0;

error = old[3];

left = simpsonsRule(f,old[1],midpoint);

right = simpsonsRule(f,midpoint,old[2]);

difference = left + right − old[0];

if (Math.abs(difference) <= 15.0 ∗ error){

/∗ Executes when a subdivision is within the error bound ∗/

integralSum += left + right + (difference / 15.0);

} else {

/∗ The new left hand subdivision ∗/

double[] newLeft = new double[5];

newLeft[0] = left;

newLeft[1] = old[1];

newLeft[2] = midpoint;

newLeft[3] = error/2.0;
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stack.push(newLeft); //Push it to the stack

/∗ The new right hand subdivision ∗/

double[] newRight = new double[5];

newRight[0] = right;

newRight[1] = midpoint;

newRight[2] = old[2];

newRight[3] = error/2.0;

stack.push(newRight); //Push it to the stack

}

}

return integralSum;

}

/∗ Calculates the Simpson’s rule value for a given minimum and

∗ maximum, with power representing the term in f that varies

∗ over absorption and scattering.

∗/

private double simpsonsRule(Function f, double min, double max) {

double midpoint = (max + min) / 2.0;

double height = (max − min);

return (height/6.0) ∗ (f.evaluate(min) + 4.0 ∗ f.evaluate(midpoint) +

f.evaluate(max));

}
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}

A.1.10 FileOutput.java

/∗

∗ FileOutput

∗

∗ Version 2.2

∗

∗ 01/30/10

∗

∗/

package edu.missouri.stardust.absscat;

import java.io.∗;

/∗∗

∗ FileOutput outputs an array of data into a three column file of the

∗ specified filename.

∗

∗ @author Adrian Corman

∗ @version 2.2

∗/
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class FileOutput {

/∗ The file name to save this data to ∗/

private final String fileName;

/∗ The data to be saved ∗/

private final double[][] dataArray;

/∗ Flag indicating if an already existing file should be overwritten ∗/

private final boolean overwrite;

/∗ The File object that will be manipulated ∗/

private File outputFile;

/∗ The BufferedWriter that writes the file ∗/

private BufferedWriter bufferedOutput;

/∗ The only constructor for this class ∗/

FileOutput(String fileName, double[][] dataArray, boolean overwrite){

this.fileName = fileName;

this.dataArray = dataArray;

this.overwrite = overwrite;

}

/∗ Attempts to create and open fileName. If the file already exists, it

∗ will output an error message and exit if the overwrite flag is set to
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∗ false, or delete the old file and create a new one of the same name

∗ if it is set to true.

∗/

private void createFile() {

outputFile = new File(fileName);

try {

if (outputFile.createNewFile()) {

/∗ This block executes if the file did not already exist and

∗ the system was able to create it.

∗/

bufferedOutput = new BufferedWriter(new FileWriter(outputFile));

} else {

if (overwrite) {

if (outputFile.delete()) {

outputFile.createNewFile();

/∗ This block executes if the file already exists,

∗ the overwrite flag is set to true, and the

∗ system was successfully able to delete the file.

∗/

bufferedOutput =

new BufferedWriter(new FileWriter(outputFile));

} else {

/∗ This block executes if the file already exists,

∗ the overwrite flag is set to true, but the system
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∗ was unable to delete the file (usually indicating

∗ a permissions error).

∗/

ConsoleOutput.unableToDelete(fileName);

System.exit(0); //Exit so the user can make changes

}

} else {

/∗ This block executes if the file already exists, but

∗ the overwrite flag is set to false (so the program

∗ won’t delete it and will exit.

∗/

ConsoleOutput.fileExistsNoOverwrite(fileName);

System.exit(0);

}

}

} catch (IOException e) {

/∗ This means there was an error trying to create and/or open the

∗ file.

∗/

ConsoleOutput.unknownOutputError(fileName);

System.exit(0);

}
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}

/∗ Writes lines to the output file through bufferedOutput ∗/

private void lineWriter() {

for (int i = 0; i < dataArray.length; i++){

try {

for (int j = 0; j < 3; j++){

String output = String.format(”%.” + Main.precision + ”E”,

dataArray[i][j]);

bufferedOutput.write(output);

if (j != 2) {

bufferedOutput.write(” ”);

} else {

bufferedOutput.newLine();

}

}

} catch (IOException e) {

/∗ This block executes if there has been an error writing to

∗ the file.

∗/

ConsoleOutput.writingError(fileName);

System.exit(0);

}

}

}
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/∗ Closes bufferedOutput ∗/

private void closeFile() {

try {

bufferedOutput.close();

} catch (IOException e) {

/∗ This block executes if the system is unable to close the file,

∗ which will happen if there is another Java program running

∗ at the same time with this file open (for example, another

∗ instance of absscat).

∗/

ConsoleOutput.closeError(fileName);

System.exit(0);

}

}

/∗ Activates the actual outputting process ∗/

void output() {

this.createFile();

this.lineWriter();

this.closeFile();

}

}
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A.1.11 ConsoleOutput.java

/∗

∗ ConsoleOutput

∗

∗ Version 2.3

∗

∗ 01/30/10

∗

∗/

package edu.missouri.stardust.absscat;

/∗∗

∗ ConsoleOutput contains the various messages that can be passed to the

∗ console, both for ordinary operation and in the case of an error.

∗

∗ @author Adrian Corman

∗ @version 2.3

∗/

class ConsoleOutput {

/∗ The message to be displayed if more than one nk data file is present but

∗ the files do not all use the same wavelength grid, and interpolation

∗ has not been selected in the input file.

∗/
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static void needsInterpolation() {

System.out.println();

System.out.println(”The specified nk data files do not all have the ” +

”same wavelength grids. Please correct this,”);

System.out.println(”or if interpolation by absscat is desired, ” +

”please specify yes for interpolation in the input”);

System.out.println(”file and also provide a wavelength grid to ” +

”interpolate to. Exiting.”);

}

/∗ The file not found error message ∗/

static void fileNotFound(String filename) {

System.out.println();

System.out.println(”File ” + filename + ”cannot be located. Please ” +

”check that the input file contains the”);

System.out.print(”proper path to this file and the correct filename. ” +

”Exiting.”);

}

/∗ The message displayed when the −help argument is given when absscat is

∗ called.

∗/

static void helpMessage() {

System.out.println();

System.out.println(”Usage: java −j absscat −inputfile [filename] ” +

”<optional flags>”);
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System.out.println();

System.out.println(”absscat is a program designed to convert a set” +

” of n and k optical constants into a single”);

System.out.println(”file containing absorption and scattering ” +

”coefficients, with the grain shape distribution and”);

System.out.println(”size distribution specified for each n and k data ” +

”set. Please consult the readme file distributed”);

System.out.println(”with this program for additional instructions. ” +

”absscat accepts the following command line”);

System.out.println(”parameters: ”);

System.out.println();

System.out.println(” −inputfile [filename] (specifies which input ” +

”file absscat should use for processing, the”);

System.out.println(” only required parameter. Consult the readme ” +

”file for the format of this file.)”);

System.out.println();

System.out.println(” −verbose (outputs a series of messages ” +

”indicating the status of various operations as”);

System.out.println(” absscat operates, primarily intended for ” +

”resolving errors.)”);

System.out.println();

System.out.println(” −silent (suppresses all non−error messages” +

” generated by absscat, intended for batch”);

System.out.println(” processing.)”);

System.out.println();

System.out.println(” −overwrite (if this flag is enabled, ” +
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”absscat will overwrite any existing file with”);

System.out.println(” the same name as the output file it generates”+

” Otherwise, absscat will display an error”);

System.out.println(” message and not produce output in order to ” +

”prevent accidental overwrites.)”);

System.out.println();

System.out.println(” −outputfile [filename](optionally specifies ” +

”an output file. If not specified, absscat”);

System.out.println(” will generate an outputfile that follows the” +

” format [inputfilename] output.dat.)”);

System.out.println();

System.out.println(” −epsilon (optionally supplies a value for the” +

”desired error bound for the numerical integration”);

System.out.println(” which occurs if a KMH grain size” +

”distribution is selected.”);

System.out.println();

System.out.println(” −outputinterpolation (when selected, absscat” +

” will, in addition to outputting the final result,”);

System.out.println(” output the interpolated nk data files it” +

” used for the calculations. The interpolated”);

System.out.println(” files are named [nkdatafilename] interp.dat.” +

” Please note that if this option is selected,”);

System.out.println(” the interpolation flag must be set as yes” +

” in the input file, and a wavelength grid to”);

System.out.println(” be interpolated to must also be provided in” +

” that file. If not, the program will output an”);
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System.out.println(” error and exit. See the readme file for more” +

”information.”);

System.out.println();

System.out.println(” −onlyinterpolate (when selected, absscat will” +

” perform interpolation, but instead of continuing”);

System.out.println( ”the calculations will output the ” +

”interpolated nk data files and quit processing.”);

System.out.println(” See the −outputinterpolation option or the” +

”readme file for more information.”);

System.out.println();

System.out.println(” −help (displays this help message.)”);

}

/∗ The error message displayed when the −inputfile argument is not

∗ given when absscat is called.

∗/

static void noArguments() {

System.out.println();

System.out.println(”The input file absscat is to process has not” +

” been specified. Please use the”);

System.out.println(”−inputfile [filename] option when calling absscat.”+

” Additional instructions are available by”);

System.out.println(”calling absscat with the −help flag or in the ” +

”readme file distributed with this program.”);

}
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/∗ The message displayed when absscat starts to read in the input file,

∗ if −verbose has been selected.

∗/

static void beginWorking() {

if (Main.outputLevel != 2) {

return; //This message is only for verbose mode

}

System.out.println();

System.out.println(”absscat initializing using input file ”

+ Main.inputFilename + ”.”);

}

/∗ The message displayed when absscat reads in a file (for example, a

∗ nk data file) if −verbose has been selected.

∗/

static void fileInputMessage(String fileName) {

if(Main.outputLevel != 2) {

return; //This message is only for verbose mode

}

System.out.println();

System.out.println(”Reading in ” + fileName + ”.”);

}

/∗ Outputs an error if the interpolation line in the input file is either

∗ missing or incorrectly formatted.

∗/
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static void interpolationFlagError() {

System.out.println(”The line in the input file indicating if ” +

”interpolation is desired is either missing”);

System.out.println(”or has not been set correctly to yes or no. ” +

”Exiting.”);

}

/∗ Outputs a verbose version of the finishing message, including the

∗ runtime of the program.

∗/

static void verboseFinish(double time) {

System.out.println();

System.out.println(”absscat has successfully outputted the scattering” +

” and absorption coefficients to”);

System.out.println(Main.outputFilename + ”. Approximate run time: ” +

String.format(”%.3G”, time) + ” seconds. Exiting.”);

}

/∗ Outputs the standard version of the finishing message if the default

∗ output level is selected, no message if −silent was selected, and

∗ calls on verboseFinish if −verbose was selected.

∗/

static void nonVerboseFinish(double time) {

if (Main.outputLevel == 0) {

return; //No non−error output is desired at this output level

} else if (Main.outputLevel == 1) {
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System.out.println();

System.out.println(”absscat has successfully outputted the ” +

”scattering and absorption coefficients to ”

+ Main.outputFilename + ”.”);

} else {

verboseFinish(time); //Call on the more verbose message

}

}

/∗ Outputs an error if a line specifying the shape distribution was

∗ incorrectly formatted.

∗/

static void incorrectShape() {

System.out.println();

System.out.println(”The shape distribution specified must be one of” +

” spherical, CDE, CDS, or DHS. Exiting.”);

}

/∗ Outputs an error message if the size given for a single grain size

∗ ’distribution’ is zero.

∗/

static void zeroGrainSize() {

System.out.println();

System.out.println(”The grain size specified for a distribution of” +

” grains of a single size cannot be zero. Exiting.”);

}
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/∗ Outputs an error message if the size given for a single grain size

∗ ’distribution’ is negative.

∗/

static void negativeGrainSize() {

System.out.println();

System.out.println(”The grain size specified for a distribution of ” +

”grains of a single size cannot be negative. Exiting.”);

}

/∗ Outputs an error message if the minimum grain size specified for a MRN

∗ or KMH grain size distribution is negative.

∗/

static void negativeMinGrainSize() {

System.out.println();

System.out.println(”The minimum grain size specified for a grain size” +

” distribution cannot be negative. Exiting.”);

}

/∗ Outputs an error message if the maximum grain size specified for a MRN

∗ grain size distribution is negative.

∗/

static void negativeMaxGrainSize() {

System.out.println();

System.out.println(”The maximum grain size specified for a grain size” +

” distribution cannot be negative. Exiting.”);
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}

/∗ Outputs an error message if the maximum grain size specified for a MRN

∗ distribution is zero.

∗/

static void zeroMaxGrainSize() {

System.out.println();

System.out.println(”The maximum grain size specified for a grain size” +

” distribution cannot be zero. Exiting.”);

}

/∗ Outputs an error message if the falloff grain size specified for a KMH

∗ grain size distribution is zero.

∗/

static void zeroFalloffGrainSize() {

System.out.println();

System.out.println(”The exponential falloff size specified for a MRN” +

” grain size distribution cannot be zero. Exiting.”);

}

/∗ Outputs an error message if the falloff grain size specified for a KMH

∗ grain size distribution is negative.

∗/

static void negativeFalloffGrainSize() {

System.out.println();

System.out.println(”The exponential falloff size specified for a MRN” +
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” grain size distribution cannot be negative. Exiting.”);

}

/∗ Outputs an error message if the minimum grain size specified for a MRN

∗ grain size distribution is larger than the maximum grain size specified

∗ for that distribution.

∗/

static void minMoreThanMax() {

System.out.println();

System.out.println(”The maximum grain size specified for a grain size” +

” distribution cannot be less than the minimum”);

System.out.println(”grain size specified for that distribution. ” +

”Exiting.”);

}

/∗ Outputs an error message if the falloff grain size specified for a KMH

∗ grain size distribution is smaller than the minimum grain size

∗ specified for that distribution.

∗/

static void falloffLessThanMin() {

System.out.println();

System.out.println(”The falloff grain size specified for a MRN grain” +

” size distribution cannot be smaller than the”);

System.out.println(”minimum grain specified for that distribution.” +

” Exiting.”);

}
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/∗ Outputs an error message if absscat attempts to delete a file

∗ but is unable to.

∗/

static void unableToDelete(String fileName) {

System.out.println();

System.out.println(”The system was unable to delete ” + fileName +

” to prepare for new output. Please check the”);

System.out.println(”permissions for this file. Exiting.”);

}

/∗ Outputs an error message if an output file absscat is trying to make

∗ already exists, but the −overwrite argument was not specified when

∗ absscat was called.

∗/

static void fileExistsNoOverwrite(String fileName) {

System.out.println();

System.out.println(”The output file ” + fileName + ” already exists,” +

” but the −overwrite flag was not specified.”);

System.out.println(”Please either select a new file name using the” +

” −outputfile flag, or else select the −overwrite”);

System.out.println(”flag if overwriting is desired. Exiting.”);

}

/∗ Outputs an error if some unknown error happens during the output of

∗ a file.
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∗/

static void unknownOutputError(String fileName) {

System.out.println();

System.out.println(”absscat encountered an unknown error while trying” +

”to output to ” + fileName + ”. Please check the”);

System.out.println(”directory permissions for the working directory” +

”in which abscat is running.”);

}

/∗ Outputs an error if absscat was unable to write to a file ∗/

static void writingError(String fileName) {

System.out.println();

System.out.println(”absscat was able to open ” + fileName + ” but was” +

”unable to write to it. Exiting.”);

}

/∗ Outputs an error if absscat was unable to close a file ∗/

static void closeError(String fileName) {

System.out.println();

System.out.println(”absscat was unable to close ” +fileName+ ” after” +

” writing. Please check that no other instance of”);

System.out.println(”abscat is running, and that this file is not open” +

”in any other program. Exiting.”);

}

/∗ Outputs a message if −verbose was given ∗/
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static void verboseActivated() {

System.out.println();

System.out.println(”Verbose mode active.”);

}

/∗ Outputs a status message for verbose mode ∗/

static void verboseInterpolating(String wavelengthsFilename){

if (Main.outputLevel == 2) {

System.out.println();

System.out.println(”Beginning interpolation using ” +

wavelengthsFilename + ” as the new”);

System.out.println(”wavelength grid.”);

}

}

/∗ Outputs an error message if the number of n and k data file specified

∗ in the input file does not match up with the number of parameter

∗ blocks in that input file.

∗/

static void wrongNumberOfNKFiles(int numberOfNKFiles,

int parametersSpecified) {

System.out.println();

System.out.println(”The number of nk data files specified in ”

+ Main.inputFilename + ” does not correspond to the number of”);

System.out.println(”parameters specified in ” + Main.inputFilename +

”. The number of nk data files specified was ” + numberOfNKFiles
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+ ” but the”);

System.out.println(”number of files corresponding to the given ” +

”parameters is ” + parametersSpecified + ”.”);

System.out.println (”Please check that the number of nk data files ” +

”specified is correct, and if so that the”);

System.out.println(”correct number of parameters has been specified in ” +

”the rest of the file. See the readme file”);

System.out.println(”for further assistance. Exiting.”);

}

/∗ Outputs a message saying the output of the interpolated data files

∗ was selected.

∗/

static void outputInterpolation() {

if (Main.outputLevel == 0) {

/∗ Don’t output anytihing here when −silent is selected ∗/

return;

} else {

System.out.println();

System.out.println(”Output of interpolated nk data files ” +

”selected.”);

}

}

/∗ Outputs a message saying only the output of the interpolated data files
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∗ was selected.

∗/

static void onlyInterpolate() {

if (Main.outputLevel == 0) {

/∗ Don’t output anything here when −silent is selected ∗/

return;

} else {

System.out.println();

System.out.println(”Output of only the interpolated nk data files” +

”selected.”);

}

}

/∗ Outputs a message when an only interpolate run is finished ∗/

static void onlyInterpolateExit() {

if (Main.outputLevel == 0) {

/∗ Don’t output anything here when −silent is selected ∗/

return;

} else {

System.out.println();

System.out.println(”Interpolation of nk data files finished. The” +

” new interpolated nk data files have been”);

System.out.println(”output to [nkdatafilename] interp.dat. ” +

”Exiting.”);
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}

}

/∗ Outputs a message when a −outputinterpolation run has output the

∗ interpolated data files.

∗/

static void outputInterpolationFinished() {

if (Main.outputLevel == 0) {

/∗ Don’t output anything here when − silent is selected ∗/

return;

} else {

System.out.println();

System.out.println(”Interpolation of nk data files finished. The” +

” new interpolated nk data files have been”);

System.out.println(”output to [nkdatafilename] interp.dat. ” +

”Calculation of absorption and scattering”);

System.out.println(”coefficients continuing.”);

}

}

/∗Outputs an error message when either −outputinterpolation or

∗ −only interpolation was selected but interpolation was not selected

∗ in the specified input file.

∗/
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static void interpOptionsDontMatch() {

System.out.println();

System.out.println(”One of the command line arguments indicating that” +

” the interpolated nk data files should be”);

System.out.println(”output was selected, but in ” + Main.inputFilename +

” the flag for interpolation was set for no.”);

System.out.println(”Please either set this flag for yes and also ” +

”provide a wavelength grid to interpolate to,”);

System.out.println(”or do no select the output of interpolated files” +

” when calling absscat. Exiting.”);

}

/∗ Outputs an error message if an unrecognized argument is given to

∗ absscat when it is called.

∗/

static void unrecognizedArgument(String argument) {

System.out.println();

System.out.println(”Argument ” + argument + ” is not recognized. ” +

”Please check the command line arguments for”);

System.out.println(”errors. Exiting.”);

}

/∗ Outputs the specified precision for verbose mode ∗/

static void precisionSpecified() {

if (Main.outputLevel != 2){

return; //This message is only for verbose mode
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} else {

System.out.println();

System.out.println(”Output precision specified as ” + Main.precision

+ ”.”);

}

}

/∗ Outputs the given input filename for verbose mode ∗/

static void inputGiven() {

if (Main.outputLevel != 2){

return; //This message is only for verbose mode

} else {

System.out.println();

System.out.println(”Input filename given as ” + Main.inputFilename +

”.”);

}

}

/∗ Outputs the given output filename for verbose mode ∗/

static void outputGiven() {

if (Main.outputLevel != 2){

return; //This message is only for verbose mode

} else {

System.out.println();

System.out.println(”Output filename given as ” +
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Main.outputFilename + ”.”);

}

}

/∗ Deals with the case where both the −silent and −verbose flags were given.

∗ absscat will output this message and then continue as if only the

∗ −verbose flag had been given.

∗/

static void verboseSilent() {

System.out.println();

System.out.println(”Both the −silent and the −verbose flags were ” +

”given! absscat will assume −verbose was meant.”);

}

/∗ Indicates if overwrite mode is active for verbose mode ∗/

static void overwrite() {

if (Main.outputLevel !=2){

return; //This message is only for verbose mode

} else {

System.out.println();

System.out.println(”Output file overwrite mode activated.”);

}

}

/∗ Outputs the given epsilon for verbose mode ∗/

static void epsilonSpecified() {
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if (Main.outputLevel !=2){

return; //This message is only for verbose mode

} else {

System.out.println();

System.out.println(”Epsilon specified as ” + Main.epsilon + ”.”);

}

}

/∗ Outputs a status message for verbose mode ∗/

static void parsingParameters() {

if (Main.outputLevel !=2){

return; //This message is only for verbose mode

} else {

System.out.println();

System.out.println(”Parsing ” + Main.inputFilename + ”.”);

}

}

/∗ Outputs a status message for verbose mode ∗/

static void beginningCalculations() {

if (Main.outputLevel !=2){

return; //This message is only for verbose mode

} else {

System.out.println();

System.out.println(”Beginning to calculate the absorption” +

” and scattering coefficients.”);
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}

}

/∗ Outputs a status message for verbose mode ∗/

static void integrating(String size) {

if (Main.outputLevel !=2) {

return; //This message is only for verbose mode

} else if (size.equals(”single”)){

System.out.println();

System.out.println(”Integrating over a single grain size.”);

} else {

System.out.println();

System.out.println(”Integrating over the ” + size + ” grain size” +

” distribution.”);

}

}

/∗ Outputs a status message for verbose mode ∗/

static void nonRTerms(String shape) {

if (Main.outputLevel != 2) {

return; //This message is only for verbose mode

} else {

System.out.println();

System.out.println(”Calculating the non r−dependant terms for a ” +

shape + ” grain shape distribution.”);

}
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}

}

A.2 Supplementary material and examples

A.2.1 Readme file

absscat

Overview

absscat is a Java program that takes any number of data files, containing the

wavelength-dependent n and k optical constants for a particular grain species,

and combines them to produce the shape and size dependent absorption and

scattering coefficients.

absscat requires the Java runtime environment; this is already installed on many

systems, but if not it can be downloaded and installed from http://java.com/en/.

To call absscat, from the command line of your system:

java -jar absscat -inputfile [inputfilename] (optional arguments)

The only required argument is the -inputfile flag followed by the input

filename, but several other optional arguments are also available (described

below).
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The input file requires elements in a specified order, though it ignores any

comment lines indicated by starting with the # symbol and any lines not

containing an = sign.

The first line contains the number of nk files that will be processed, and the

second indicates if interpolation is desired. If interpolation is desired, the

next line gives the filename for the wavelength grid the data will be

interpolated to. Following this is a block of lines for each set of grain

parameters; the first is the name of the n and k data file, the second is the

desired grain shape distribution (spherical, CDE, CDS, or DHS - see below) to

be used for that set, the third is the desired grain size distribution (single,

MRN, or KMH - see below) to be used for that set. Next comes lines giving the

parameters of the grain size distribution - in the case of a single grain size

this is only one line giving the grain size, but for MRN it is three lines (the

minimum grain size, the exponent, and the maximum grain size) and for KMH it is

also three lines (the minimum grain size, the exponent, and the ’falloff’ grain

size). Finally, the final line in each set is the weighting factor to be used

when combining all the sets into a single set of coefficients. After this, for

each additional set of grain parameters the block repeats itself.

After absscat has calculated the absorption and scattering efficiencies for

each block, it will combine them into a single set of absorption and scattering

efficiencies through the use of a weighted average, with the weight given to

each block specified by the weighting factor that is given on the last line of

the block. The total weight is normalized (for example, if two blocks were

given with weights of 1 and 4, the first block would be 1/5 of the total and
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the second would be 4/5 of the total).

Two example configuration files are provided for reference, example1.inp and

example2.inp.

The supplied sets of n and k data should have three columns; the first column

is the wavelength (any units, but the units must be the same for all n and k

files to be used in that call of absscat), the second is the n data, and the

third is the k data. The columns may be delimited, by any of tab, space, or

comma. Additionally, the files are required to have the wavelengths in order

either from largest to smallest or smallest to largest. If interpolation is

desired, and the appropriate flag (on the second line of the input file) is

selected as ’yes’, then a file containing the wavelength grid it is desired to

interpolate to must be supplied and that file name must be given in the input

file. This file should have one column containing the wavelengths (of any

units), in order from largest to smallest or from smallest to largest. absscat

will perform a linear interpolation on the data files (and a linear

extrapolation for regions where the new wavelength grid goes beyond the

original) before performing the absorption and scattering calculations; if it

is desired to obtain these interpolated files, one of -outputinterpolation or

-onlyinterpolate can be given as command line arguments, as shown below. Note

that if the n and k data files have different wavelength grids, then

interpolation must be performed. If it is not selected, absscat will exit with

an error message.

The default output filename generated by absscat is
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[inputfilename - extension]˙output.dat . However, there is an optional command

line argument described below that can be used to specify the desired output

filename. If a file with the output filename already exists, then absscat will

display an error message and exit, not overwriting the file (unless this option

is selected when absscat with the -overwrite argument, described below). The

equations used in this program are based on theoretical work found in Min, M.,

Hovenier, J. W., and de Koter, A., Astronomy and Astrophysics, v. 404, p. 35-46,

2003.

Command Line Arguments

absscat may take any of the following command line arguments:

-inputfile [inputfilename]

Specifies the input file, as described above. If this is not provided, absscat

will exit displaying an error message.

-outputfile [outputfilename]

Optionally specifies the output filename desired. If not provided, absscat will

default to [inputfilename -extension]˙output.dat.

-overwrite

When absscat attempts to generate an output file, if that file already exists
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it will output an error message and exit without overwriting. If this argument

is selected, then absscat will automatically overwrite any pre-existing file

with the same name as the output file it is attempting to generate.

-outputinterpolation

If this argument is given, when absscat performs interpolation it will output

the interpolated versions of the n and k data files it generated internally, as

well as the output file. In order to select this argument, interpolation must

have been selected in the input file and a wavelength grid to interpolate to

must have also been provided.

-onlyinterpolate

Identical to -outputinterpolation, but does not generate the final absorption

and scattering coefficients (that is, absscat will only calculate the

interpolation, output the interpolated data files, and then exit without further

output.

-silent

If this argument is given, then absscat will suppress all console output except

for errors. If both -silent and -verbose are given, then absscat will assume

-verbose was meant.

-verbose
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If this argument is given, absscat will output additional console messages

indicating the progress of the program through the required operations. If both

-silent and -verbose are given, then absscat will assume -verbose was meant.

-epsilon [desired error bound for numerical integration]

In order to calculate values related to the MRN grain size distribution (used

only when MRN is selected in one of the sets of grain parameters) absscat uses

a numerical integration. The default value for the error bound is 1E-10, but if

a different error bound is desired it can be specified using this argument.

Larger values can make absscat take significantly longer to run.

-precision [desired precision of output]

If this argument is given, absscat will change the precision of the output

values (which in this case means the number of digits after the decimal) to the

desired value. The default value is 3. Note that this argument only affects the

output; internally absscat always uses the maximum possible precision.

-help

Displays a help message describing the usage of absscat and these arguments.
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A.2.2 Example configuration files

A.2.2.1 Example1.inp

This is an example of an input file for absscat. Any line not containing

an equal sign, or one starting with a #, will be ignored. Also, the only

thing absscat looks for is the value to the right of the equals sign; the

descriptions to the left of the sign are simply for convenience and can be

changed to anything. The case for parameters is also ignored, except for

file names.

Number of nk files = 2

Interpolation Desired = no

First nk file = example1.nk

Desired shape distribution = spherical

Desired size distribution = MRN

MRN minimum grain size = 0.1

MRN q value = 3.5

MRN maximum grain size = 1

Weighting Factor = 0.5

Second nk file = example2.nk

Desired shape distribution = DHS

Desired size distribution = single

Single grain size = 0.1

Weighting Factor = 0.5
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A.2.2.2 Example2.inp

This is a second example file to illustrate the usage of input files

with absscat. In this file, interpolation to the wavelength grid

found in wavelengths.example is selected.

Number of nk files = 2

Interpolation desired = yes

Interpolation wavelength grid = wavelengths.example

First nk file = example1.nk

Desired shape distribution = DHS

Desired size distribution = MRN

MRN minimum grain size = 0.1

MRN q value = 3.5

MRN maximum grain size = 1

Weighting factor = 0.5

Second nk file = example2.nk

Desired shape distribution = CDS

Desired size distribution = KMH

KMH minimum grain size = 0.1

KMH q value = 3.5

KMH falloff value = 1

Weighting factor = 0.6

This block has been commented out and won’t be read by absscat
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#Third nk file = example3.nk

#Desired shape distribution = CDE

#Desired size distribution = KMH

#KMH minimum grain size = 0.1

#KMH q value = 3.5

#KMH falloff value = 1

#Weighting factor = 0.3
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Lorenz-Martins, S., de Araújo, F. X., Codina Landaberry, S. J., de Almeida, W. G.,

& de Nader, R. V. 2001, Astronomy and Astrophysics, 367, 189

Lorenz-Martins, S., & Lefevre, J. 1993, Astronomy and Astrophysics, 280, 567

—. 1994, Astronomy and Astrophysics, 291, 831

Loup, C., Forveille, T., Omont, A., & Paul, J. F. 1993, Astronomy and Astrophysics

Suppliment Series, 99, 291

Lunttila, T., & Juvela, M. 2007, Astronomy and Astrophysics, 470, 259

Lynch, D. K., & Mazuk, S. 1999, Applied Optics, 38, 5229

Martin, P. G., & Rogers, C. 1987, Astrophysical Journal, 322, 374

410



Mathews, J. H., & Fink, K. D. 1999, Numerical methods using MATLAB, 3rd edn.

(Upper Saddle River, New Jersey: Prentice-Hall)

Mathis, J. S. 1996, Astrophysical Journal, 472, 643

Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, Astrophysical Journal, 217, 425

Matsuura, M., et al. 2005, Astronomy and Astrophysics, 434, 691

McKenna, L. W., & Hodges, K. V. 1988, American Mineralogist, 73, 1205

Meixner, M., Ueta, T., Bobrowsky, M., & Speck, A. 2002, Astrophysical Journal, 571,

936

Meixner, M., Zalucha, A., Ueta, T., Fong, D., & Justtanont, K. 2004, Astrophysical

Journal, 614, 371

Meixner, M., et al. 1999, Astrophysical Journal Suppliment Series, 122, 221

Min, M., Hovenier, J. W., & de Koter, A. 2003, Astronomy and Astrophysics, 404, 35

Mitra, S. S., Brafman, O., Daniels, W. B., & Crawford, R. K. 1969, Physical Review,

186, 942

Moissan, H. 1904, Comptes rendus hebdomadaires des séances de l’Académie des
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