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STATISTICAL INFERENCE IN WIRELESS

SENSOR AND MOBILE NETWORKS

Peng Zhuang

Dr. Yi Shang, Dissertation Supervisor

ABSTRACT

In recent years, wireless sensor networks have emerged as a cost effective

alternative to traditional wired sensor systems. Compared to wired sensors, wire-

less sensors are relatively small in size, operated on batteries, communicate using

wireless radios, and can last for years of operations. In the meantime, mobile

networks have also gained many momentums. With the popularity of modern

smart phones such as the Apple iPhone, we have witnessed a gold rush of mobile

applications and services. The two emerging networks share many common fea-

tures. Firstly, both networks consist of network nodes equipped with sensors that

monitor the physical environment. Secondly, they both have short-range wireless

communication (e.g., ZigBee, Bluetooth or WiFi). Finally, both network nodes

operate on batteries, which requires power efficient programs in order to extend

the length of operating time.

In this dissertation, we focus on four important problems in wireless sensor

and mobile networks: a) data authentication, b) faulty sensor detection, c) in-

door localization and tracking, and d) prediction. We formulate them as spa-

tial/temporal statistical inference problems and develop efficient centralized and

decentralized solution methods.
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In the problem of data authentication, we aim at providing an energy efficient

means for data authentication using spatial correlations. A centralized method

is proposed and is suitable for a wide range of sensor network applications that

emphasize data integrities, such as traffic monitoring and control. Compared to

three competing methods, it reduces the average data error by up to 60% and

reduces the security overhead by an order of one magnitude.

In the problem of faulty sensor detection, we introduce a new method for

detecting faulty sensor nodes without human or centralized interventions. The

proposed method is based on the principles of probabilistic collective theory. The

method consistently outperforms two competing methods with up to 50% higher

detection accuracy. It is suitable for decentralized sensor networks operated in

remote or harsh environments.

In the problem of indoor localization and tracking, we propose a new method

for simultaneously tracking a target and constructing an indoor logic map using

smart phones. The method is designed based on temporal inference and particle

filtering. Simulation results show the proposed method outperforms an existing

method by approximately 9 times in tracking accuracy and constructs maps of

89% accuracy on average. It can be used for location based services like a restau-

rant finder and for internet map services.

In the problem of prediction, we focus on the area of traffic sensor data pre-

diction and present an analytical method to derive the spatial correlation model.

We show that the analytical method acquires close estimation to the learned cor-

relation model without the need for extensive training sensor deployment.
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Chapter 1

Introduction

Wireless sensor networks consist of small battery-powered sensor nodes that mon-

itor the physical environment and report sensing data via low power and short

range radio. In order to achieve years of operation time without human inter-

vention, computation overhead and data load need to be kept to minimal. Small

wireless sensor devices are also prune to being faulty due to many reasons, such as

sensor aging, battery drain and environmental interference. Wireless communica-

tions are naturally vulnerable to malicious attacks, like packet fabrication, packet

modification and packet replay. When deployed in uncontrolled or hostile envi-

ronments, sensor nodes can be physical compromised and the encryption keys are

exposed to the adversary. The design of a sensor network requires a great amount

of consideration on both efficiency and robustness.

As another emerging network, mobile networks share many common charac-

teristics as wireless sensor networks. Modern smart phones such as the Apple
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iPhone and most Android phones carries an array of sensors, including micro-

phones, GPS sensors, accelerometers and digital compass. These sensors can

be used for ambient fingerprinting[4], where a smart phone tries to classify the

user’s surroundings into several categories (e.g., restaurant, pub, bookstore, etc.),

or traffic monitoring [40], where smart phones’ onboard GPS sensors are used

to predict traffic flow in urban settings. Another similarity between the mobile

network and the wireless sensor network lies on their communication approaches.

Wireless sensor devices usually are equipped with short range radio (e.g., IEEE

802.15.4 or ZigBee), and modern smart phones are also equipped with local com-

munication capabilities (e.g., WiFi, Bluetooth). As a result mobile phones can

be used as a media for RF-based localization/tracking [30], which is also a com-

mon technique used in the field of wireless sensor networks. Other similarities

include their power constraints (both devices are battery powered), computation

constraints (when compared to desktop class devices), and correlation between

sensor data. To some extent, mobile networks can be viewed as a more powerful

and mobile version of general wireless sensor networks.

In this dissertation, four important issues in wireless sensor networks and mo-

bile networks are identified and are addressed based on either spatial or temporal

inference. The three fields are 1) energy-efficient data authentication, 2) faulty

sensor detection, 3) indoor tracking and map construction, and 4) traffic sensor

data prediction and sensor placement. Next, we give a brief introduction to each

of the four problems.
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1.1 Energy-efficient data authentication

Many sensor network security protocols have been proposed based on cryptogra-

phy. The sensor readings are treated as independent data and are authenticated

separately. This is inefficient in many sensor network applications since sensor

readings are usually correlated [76, 39]. Several methods based on content anal-

ysis have been proposed to authenticate sensor readings using their correlations.

The protection level is usually low comparing to the cryptography based methods.

In this dissertation, we propose a new correlation model based method Co-

bra (Correlation based recovery and auto-detection) that takes advantage of both

cryptography and content analysis. Cobra is resilient to the following data in-

tegrity attacks: 1) packet fabrication, 2) packet modification, and 3) compromised

node. Compared with traditional cryptography based system, Cobra introduces

much less computation and communication overhead. Compared with other con-

tent analysis methods, it provides higher detection rate and more accurate data

recovery. Like other content analysis methods, Cobra does not aim at providing

absolute accuracy. It offers an energy efficient solution in applications where a

small error is allowed.

1.2 Faulty sensor detection

Common sensor faults include short fault – a single-sample spike in sensor read-

ings, random fault – a longer duration of noisy or random readings, constant fault

– anomalous constant offset readings, drift fault – sensor readings are linear func-
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tions of correct values, and loss of sensitivity – sensor readings’ variances are

reduced often due to the aging of the sensor. The faults may be transient or last

for a longer period of time. They have different characteristics that can be used

in fault detection. For example, drift faults result in the shifts of mean and/or

variance of the sensor readings and losses of sensitivity lead to the reduction of

sensor readings’ variance. To our best knowledge, most existing works assume a

particular fault type and propose detection methods accordingly.

In this dissertation, a general measurement mutual divergence is introduced

for detecting arbitrary types of sensor faults. Mutual divergence does not rely on

a particular fault type. We prove the correctness of mutual divergence and in-

troduce three detection methods in both centralized and distributed manner. We

argue that centralized methods are inferior to distributed methods due to their high

demand of network synchronization, long detection delay and large communica-

tion overhead. In our experiments, we have found that the search space for mutual

divergence has many local optimal and one of our proposed methods, the dis-

tributed collection detection, is more capable of finding global optimal than other

methods. In addition, it reports a sensor’s faulty probability. Such additional in-

formation can be utilized to achieve more functionalities in practical systems. For

example, the replacement of faulty sensors can be scheduled based on the order

of their faulty probabilities.
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1.3 Indoor tracking and map construction

Modern smart phones such as the Apple iPhone or Android powered phones use

a hybrid approach to acquire location [2]. The approach first acquires location

information based on the locations of the nearby cellular towers, then uses nearby

WiFi access points for finer localization, and finally utilizes the build-in GPS sig-

nal receiver (if available) for more accuracy. When a smart phone is used indoors,

GPS signal is usually not available and the approach can produce a localization

error as large as several hundred feet. Another approach is based on the idea of

dead reckoning and has been implemented in digital cameras for geo-tagging in-

door photos [34]. The approach uses last available GPS information, usually as

the location before a user enters a building, and build-in speed and heading sen-

sors to track user’s location. The speed sensor and the heading sensor are usually

implemented with accelerometers and magnetometers, respectively. The quality

of location estimates depends on the quality of the speed/heading estimations, and

the error propagates over the course of tracking.

Another line of localization research focuses on finding logical locations in-

stead of physical locations. Take context aware mobile advertising as an example.

It may be useful to know an user’s environment (e.g., grocery stores, bookstores,

or movie theaters) in order to deliver the most relevant ads. SurroundSense [4] is

an example of such systems. A smart phone’s build-in sensors are used to iden-

tify the ambient fingerprints, including the audio, acceleration and visual finger-

prints. Examples of the audio fingerprint are human voices, background music,
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and background noises (e.g., noise from coffee machines at Starbucks). Accel-

eration fingerprint reveals the subject’s moving pattern. One would expect the

moving patterns at hallways and meeting rooms to be different. Visual fingerprint

includes hue, saturation and lightness patterns. Floor tiles and carpet patterns have

been found as reliable indicators of different fingerprints [4]. Using the combina-

tion of various types of fingerprints, SurroundSense has achieved a classification

accuracy of 87% in a trial of 51 logic locations.

In location based applications, it is also critical to prepare a database of geo-

tagged information, such as points of interests (POI) and maps. Obtaining such

information is often difficult and involve tremendous amount of manual inputs. To

our best knowledge, existing global/national map services do not provide detailed

floorplans and their POI lists are far from sufficient. Figure 1.1(a) is the detailed

floorplan for Arnot mall, Horseheads, NY. Figure 1.1(b) shows the Google map

coverage at the same address. Information provided by Google map is not suf-

ficient for navigation or POI lookup in the mall. In addition, it is difficult to

promptly reflect floorplan or POI changes. For example, if a bookstore moves to

a different place at a strip mall, there is no efficient way to update a national POI

database unless a user reports the error.

This dissertation focus on a heterogenous mobile network consisting of mo-

bile phones and WiFi access points, and propose SMART (Simultaneous Map

Acquisition and Repeated Tracking). SMART is a system based on smart phones

and cloud servers. It comprises three components. Firstly, a particle filtering

based method is proposed to achieve location estimates of a mobile device uti-

6



(a)

(b)

Figure 1.1: (a) The detailed mall map of Arnot mall, Horseheads, NY. (b) Google
map at the same address.
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lizing WiFi signals and motion speed/heading. The method outperforms a dead

reckoning method by approximately 9 times in our experiments. Secondly, an

ambient fingerprinting method is described. It is based on the method of Sur-

roundSense [4]. Finally, the fingerprints and the location estimates are combined

to generate a fingerprint map.

1.4 Traffic sensor data prediction and sensor place-

ment

Measuring and reporting traffic counts in realtime provides a guidance for traffic

light controllers and in-vehicle navigation systems. Traffic statistics are also vital

in analyzing road usage and pavement wearing. In recent years, sensor networks

have been proved to be a low cost, reliable, and non-intrusive alternative to tradi-

tional traffic measuring systems such as inductive loops [17]. Usually, the sensor

nodes are placed every few hundred feets along the roads to acquire the complete

traffic information [15]. In a real street system, such networks require tens of

thousands of deployed sensors, which is neither practical nor cost effective.

To reduce the installation and maintenance cost of the network infrastructure,

we explore the spatial correlation between sensory readings. Figure 1.2 shows the

trace of traffic counts in every 50 cycles at two sensor locations from Green Light

District simulator [71]. It is evident that the data share a strong correlation. Using

a multivariate Gaussian distribution to model the correlation, and selecting the

most informative sensing locations based on variances/covariances, we acquire

8
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Figure 1.2: Trace of vehicle counts at two sensor locations at nearby places.

predictions to the complete information with an acceptable level of error. The

selected sensors are merely a small portion of all points of interest. Figure 1.3

shows a sensor network monitoring 20 locations in a city highway system, whose

measurements are used to predict the traffic at any points with an average error of

30%.

We define and analyze an optimization problem, whose goal is to minimize the

average prediction error. We propose an analytical method as an alternative to ma-

chine learning based methods in acquiring the correlation model. We demonstrate

its accuracy in modelling the correlation using simulation results, and discuss its

applications and advantages compared to machine learning based methods.
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Figure 1.3: A street system with 20 sensor nodes deployed.

1.5 Our contributions

We introduce a new energy-efficient method to authenticate sensor data. Com-

pared with existing methods, it achieves up to 60% higher detection rate for the

forged data and saves energy consumption by an order of one magnitude. It also

protects sensor networks from aggressive attacks by limiting the maximal damage

on data reliability.

In the problem of faulty sensor detection, we introduce mutual divergence as

a general measurement for sensors’ faulty likelihood. Mutual divergence does not

rely on assumptions of particular fault type and can be used to measure unknown

fault types. We also propose a distributed method utilizing mutual divergence

and it is shown to achieve detection accuracies close to 100% in most test cases,

outperforming competing methods by up to 50%.
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We propose a new system for tracking mobile subject and for constructing

logic maps. The tracking method outperforms an existing tracking method by

9 times. The map construction method constructs logic maps with up to 89%

accurate compared with the ground truth. We propose a system architecture to

implement such a system based on smart phones and cloud servers.

We propose a new analytical method to acquire spatial correlation model in the

area of traffic monitoring. During our simulation, the analytical models are shown

to closely estimate the models learned based on training data. The analytical

method eliminates the need for an extensive sensor deployment for collecting the

training data. We also study three algorithms for sensor deployment and find out

that a simple greedy algorithm outperforms a random-trial based method with

only little space for a local search algorithm to improve.

1.6 Dissertation organization

The dissertation is organized as follows. In the next chapter, we summarize related

works and describe theoretical backgrounds, including multivariate Gaussian dis-

tribution, probabilistic collective, and particle filtering. In chapter 3, we focus

on the problem of energy efficient sensor data authentication and in chapter 4 we

discuss solutions for distributed faulty sensor selection. The problem of simulta-

neous tracking and map construction is discussed in chapter 5 and the problem of

road traffic sensor data prediction and sensor placement if discussed in chapter 6.

Finally, we reach our conclusions in chapter 7.
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Chapter 2

Related Works and Theoretical

Background

2.1 Energy efficient wireless protocols

In battery powered wireless sensor networks and mobile networks, energy con-

servation is usually one of the foremost concerns for algorithm/protocol design.

The problem of reducing communication cost is commonly formulated as data ag-

gregation problems. Data aggregation occurs along the packet transmitting path

where internal nodes summarize the data and thus reduce the amount of trans-

mitted data [48, 49, 74, 19, 33, 53, 10, 19, 50, 24, 11]. Data aggregation can be

classified in two categories, tree based and multi-path based. Tree based meth-

ods assume a spinning tree routing pattern and data aggregation is performed at

intermediate nodes, such as [48, 49, 74]. Tree based methods achieve the highest

12



communication saving but is not robust against communication failure. Multi-

path aggregation methods have been proposed to address the problem [19, 53].

They solve the robustness issue at a cost of higher communication cost. Manjhi

et. al. have proposed a hybrid method [50] that promises to take the good of both

worlds. Chan et. al. address the problem of secure data aggregation [11], where

methods for obtain accurate results in the presence of adversaries are discussed.

Another common formulation for reducing communication cost is sensor se-

lection using correlation models. The solutions are based on either Bayesian the-

ory [20, 28], or Markov random field [68]. Krause et al. also study the prediction

problem using a correlation model based on multivariate Gaussian distribution

[39].

2.2 Data authentication in energy-constrained envi-

ronments

In wireless sensor networks, many data authentication protocols have been pro-

posed based on cryptography. Some commonly known protocols are MiniSec

[46], TinySec [35], and SNEP [57]. These protocols add 3 ∼ 8 extra bytes to the

12 bytes header in the standard TinyOS network stack. For energy consideration

the protocols are designed with short-keys or even shared keys, which are secure

only until 2012. The IEEE 802.15.4 based Zigbee standard provides a higher

level of data security at an expense of significantly higher communication over-

heads [3]. The cryptography-based protocols are shown to be energy consuming.
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In [12], Chang et. al. examine the energy consumption of several commonly used

hashing and symmetric-key encryption schemes on Crossbow and Ember sensor

motes. The tested security schemes consume 18∼134 times more energy in com-

putation and 2∼3.3 times more energy in communication.

Another family of security methods verifies sensor packets by analyzing their

contents. Most proposed methods use correlation models to solve the problem,

including CORA [67], ART [69] and Bayesian Selection [54]. CORA suffers

from very high false alarm rate. ART is not secure if an attacker modifies a large

fraction (> 10%) of the readings or compromises the sender node. Bayesian

Selection deals with compromised nodes but it relies on a strong assumption that

the bias introduced by the attacker is persistent. Otherwise the false alarm rate

can be as high as 50%. Other methods are proposed using the idea of random

sampling [60] or distribution-based deviation detection [56, 52]. Comparing to

the correlation-based methods, they produce less accurate detections and larger

errors on data recovery.

2.3 Faulty sensor detection

Most faulty sensor detection methods are based on correlation analysis between

neighboring sensors’ readings. The correlation models can be represented by joint

distributions [76, 67, 54, 26], by correlation coefficients [61, 69], or by some

arbitrary similarity measures, such as thresholding on sensor reading differences

[14] and event region based clustering [47, 41]. Methods based on data fusion [38]
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and outlier detection [21, 56] have also been proposed. In these works, a particular

type of faults is usually assumed and specialized methods are developed. It is

fairly easy to break a detection method by switching fault types.

2.4 Localization and tracking in wireless sensor and

mobile networks

Radio signal based localization is broadly used. RF Measurement techniques can

be classified into three categories. The first category is angle of arrival [37, 62,

6], where a device make use of its antenna’s receiving signal characteristics to

estimate the direction a message sender is located. The second category is distance

related measurements such as one-way propagation time, round-trip propagation

time, and time-difference-of-arrival [51, 25, 13]. The third category is RSS (radio

signal strength) profiling measurements [5, 58, 42, 65, 64], where RSS is mapped

to a distance measure.

RF based localization can be classified as infrastructure-based RF and infrastructure-

less RF approaches. infrastructure-based RF approach requires special hardware

(beacon) in the environment and a device localizes itself based on the beacon

messages. Cricket [59] and Pinpoint [75] are early examples of this approach.

Recently, Hay et. al. have proposed a method to localize smart phones us-

ing low level non-authorized Bluetooth connections to location beacons [30].

infrastructure-less RF approach does not require additional hardware. Instead it

utilizes signals already available in the environment, such as WiFi or GSM sig-
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nals. It is more cost effective and easy to scale. Chen et. al. have proposed a

method that combines the benefits of GSM and WiFi localization [16]. Active

campus [27] is a localization project on UCSD campus based on pre-known WiFi

hotspots. Bahl et. al. have proposed a localization method based on WiFi fin-

gerprinting that achieves localization accuracy of up to 5 meters [5]. However it

requires throughout fingerprint mapping in advance and is not scalable.

Adding mobility information to RF based methods has shown promising re-

sults in improving localization results. The combined methods usually lay their

grounds on the principals of particle filtering [70] [78] [36] [66] [31]. MCL [31]

utilizes maximal speed information in addition to radio proximity information.

MSL and MSL* have been proposed to improve MCL [66] by utilizing neigh-

boring nodes’ location estimates. MSL and MSL* converge faster and are more

robust against the decrease of location beacon density. Turgut et. al. further im-

prove the technique by automatically restarting the process of particle filtering if

the particle cloud diverges too much from the observations. Particle filtering based

localization have been applied to different scenarios. In [36], a human subject car-

ries a sensing device equipped with accelerometers (used as a pedometer), mag-

netometers and a radio receiver. The mobility information (steps/speed, heading)

and radio proximity information are used in combination with building floorplans

to perform indoor tracking. In [78], moving vehicles are equipped with receivers

that overhear location beacon broadcasted by in-pavement wireless traffic sensors.

The information are combined with road map and odometers for vehicle tracking.

It is worth mentioning that Kalman filter or its variants can be used to solve sim-
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ilar problems. It provides analytical solutions in contrast to the simulation based

solutions in particle filtering. However it is often difficult to derive a Kalman filter

in complex problems especially when the subject’s mobility model is non-linear.

Kusy et. al. have proposed a least-squares optimization based improvement that

achieves almost 50% higher accuracy than regular Kalman filter [43].

Context/environment sensing has also been an active research field [4] [22]

[63] [23] [18]. The goal of seeing, hearing, or feeling logical locations is intrigu-

ing and has motivated many researchers to find the proper set of sensors for their

applications. Cameras have been a popular choice to identifying stable scenes

[22] [63] [18], or floor patterns [4] [23]. Microphone is used in [4] and [18] and

accelerometer is used in [4]. SurroundSense [4] is a system that uses a combina-

tion of cameras, microphone and accelerometers. It has been prototyped on Nokia

N95 phones and properly identifies the fingerprints among 51 logic locations on

or around Duke University campus 87% of the time.

2.5 Traffic sensor data prediction and sensor place-

ment

The problem of using sensory data to guide traffic light controller is well studied.

Wiering et al. investigate different control policies in [71] using the traffic queue

length and vehicles’ waiting time. Chen et al. [15] propose a system that uses

the information exchanged between roadside and in-vehicle sensors. The Green

Light District (GLD) simulator [71] is a free and open source software served as a
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testbed for traffic control policies. We implement a sensor class in this simulator

that provides traffic information for traffic light controllers. The developments of

such systems are made possible by the advance in the field of sensor network.

Cheung et al. develop hardware that utilizes magnetic sensors and low power

radio communications [17], which is now manufactured and distributed by SenSys

Network, Inc.

The problem of sensory data prediction using correlation models has also been

an interesting topic for many years. The solutions are based on either Bayesian

theory [20] or Markov random field [68]. To our best knowledge, Guitton et al.

first introduce the concept of data prediction into the field of traffic measuring in

[29], where he explores the correlation coefficient between traffic counts. We have

shown in our previous study that the correlation coefficient based method is less

accurate in predicting sensor data than a Gaussian based method [76].

2.6 Theoretical Background

2.6.1 Spatial inference model based on multivariate Gaussian

distribution

Let V denote the set of all sensor nodes and let xV denote the random variables

corresponding to the sensor readings. A multivariate Gaussian distribution is used

to model the correlation among sensors in V . It has two parameters, a mean vector

µ = {µ1, µ2, ..., µV }, and a |V | × |V | covariance matrix. The parameters are pre-
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learned using training data collected from a temporary deployment of sensors at

all points of interest. Note that a model is only good for the data that are similar

to the training data. If the environment changes, new model needs to be learned to

account for the difference. We assume that the model used in this dissertation is

learned over an extensive period and can reflect all the conditions (though outliers

may still present).

We refer to this correlation model as the prior distribution. If we take the mean

µi corresponding to sensor i and the entry at the ith row and ith column from the

covariance matrix, we acquire the distribution for sensor i’s reading independent

of other sensors. Let X t
Q denote the readings of sensors in set Q (the observed

sensors) at time period t. A posterior distribution for unobserved sensors in U =

V −Q is given by

P (xU |X t
Q) =

P (xU , xQ = X t
Q)

P (xQ = X t
Q)

. (2.1)

Equation 2.1 is derived using Bayes’ rule. Given the probability density function

of multivariate Gaussian distribution of

P (xV ) =
1

(2π)|V |/2|COV |1/2
e−

1

2
(xV −µV )T COV −1(xV −µV ), (2.2)

we have the mean and covariance matrix of the conditional probability as

µxU |Xt
Q

= µU + COVY QCOV −1
QQ(X t

Q − µQ), (2.3)

COVxU |Q = COVUU − COVUQCOV −1
QQCOVQU . (2.4)
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Figure 2.1: The prior distribution of the readings at a sensor location, and its
posterior distribution given observations of 20 or 64 other sensors.

COVUQ is acquired by taking the rows in U and the columns in Q from the co-

variance matrix.

Equation. 2.3 can be used to predict U ’s readings, i.e., the predicted value is

the posterior mean. Eq. 2.4 measures the uncertainties of the prediction for each

sensor since COVxi|Q is the posterior variance for sensor i. Note that COVxU |Q

does not depend on the actual readings X t
Q. It is used in sensor selection. One

wants to select the set Q so that the average variance in COVxU |Q is minimized.

Figure 2.1 shows a prior distribution for a sensor learned from vehicle counts

collected at 84 sensor locations [76], and two posterior distributions when |Q| =

20 and |Q| = 64 (Q20 ⊂ Q64). Usually adding more observations leads to more

certain posterior distributions. However as shown in [77] the benefit of adding
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more sensors is diminishing as Q grows larger.

It is noted in the literature that in most correlation models nearby sensors carry

stronger correlation [76, 39]. We use this property to reduce the storage space at

each sensor, i.e., a sensor only stores the correlations with its neighbors.

2.6.2 Probabilistic collective theory

To perform spatial inference in a distributed manner, we adopt the theory of Prob-

abilistic Collectives (PC). PC theory is a new framework for distributed decision

making with probabilistic decisions [45, 72, 73]. In the PC theory, the optimiza-

tion objective is casted as minimization of a function of the variable distribu-

tions [45][73]. Powerful distributed optimization methods using second order

methods, difference utilities, annealing, data-aging, and supervised learning have

been developed in the PC framework and have been shown to outperform other

optimization techniques, including genetic algorithms and simulated annealing,

on numerical optimization benchmark problems and classical combinatorial opti-

mization problems, such as k-SAT, n-Queens, and bin packing [9][32]. For small-

scale real applications, the PC approach has been successfully applied to real-time

adaptive control of mini-flaps on trailing edges of airplane wings to minimize tur-

bulence [7][8].

Let fi denote the decision variable for sensor i (e.g., whether the sensor is

faulty). A PC theory based method looks at finding the probability distribution

for fi instead at finding the exact value. Each sensor’s decision variable fi is

21



considered independent from each other. We have

P (fV ) =
∏

i

P (fi). (2.5)

The objective is to minimize a goal function G(fV ). Given the probability distri-

bution P (fV ), the expected goal value is given by

E[G] =

∫
dfV P (fV )G(fV ) =

∫
dfV

∏

i∈V

P (fi)G(fV ). (2.6)

In a Nash equilibrium, every sensor adopts a mixed decision to optimize its ex-

pected goal function. However in a distributed system full rationality is absent

due to the lack of information. It is often hard to for a sensor to choose the ex-

act strategy. Shannon entropy is used to measure the uncertainty of a decision

distribution. We have

S(Pi) = −
∫

dfiP (fi)lnP (fi). (2.7)

A PC method is an iterative process. It usually starts with a uniform distribu-

tion. The updating rule in each iteration is given by

Pi(fi = x) = Pi(fi = x)− αPi(fi = x)×

{E[G|fi = x]− E[G]

T
+ S(Pi) + lnPi(fi = x)}, (2.8)

where α is the step size (usually set to 0.2), T is the temperature (usually starting
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with 0.1 and has a cooling rate of 1%), and E[G|fi = x] is the expected goal

value given decision x. Equation 2.8 guarantee that the probabilities always sum

to unity but does not prevent negative values. Negative values are set to a small

constant (1× 10−6) and the probabilities are then renormalized.

In Eq. 2.8, the part E[G|fi = x] − E[G] measures how good a strategy is.

If the expected goal value when x is adopted is smaller (better) than the average

goal value, the probability of fi = x becomes larger for the next iteration. It

helps to focus on the promising solutions but may lead to local optimal. The

part S(Pi) + lnPi(fi = x) compares the probability of fi = x to the average

probability. If x is less likely than average this part gets a negative value and x

will have a better chance being explored in the next iteration. This part helps to

avoid local optimal but may prevent the solution from converging. A temperature

T is used to balance the term. At first a higher temperature is used to avoid local

optimal. As the temperature cools down through iterations, the solution finally

converge to a few promising ones.

To compute the value for E[G|fi = x] and E[G] efficiently, a Monte Carlo

sampling method is used. In each iteration, each sensor draws m samples from

the current distribution P (fV ) and approximate the value of E[G|fi = x] and

E[G] as the average goal values.

A distributed implementation of a PC method requires designing a private goal

function, i.e., the goal function that can be computed based on each sensor’s avail-

able information. Each sensor has a ”neighborhood view” related to its neighbors

and itself only. It updates its own probability distribution based on Eq. 2.8 and the
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Figure 2.2: A graphic chain model for temporal inference.

private goal function, and then broadcasts its distribution to all neighbors for be-

ing used in the next iteration. Such a framework requires the message exchanges

between neighboring nodes only and is both scalable and efficient.

2.6.3 Temporal inference based on particle filtering

Some sensor data such as a smart phone’s location also carries strong temporal

correlation. A graphic chain model (figure 2.2) is used to represent the transition

over time. t1, t2, t3, t4 represent 4 time periods. Figure 2.3 gives an example of

possible states in each time period and the arrows represent the transition func-

tions.

In mobile target tracking, the states correspond to possible locations and the

transition functions correspond to motion dynamics, such as motion direction and

speed. The solution space for the locations is infinite and is usually represented

by a distribution. The problem can be simplified by reducing the state space to a

finite set of locations (particles), and the temporal inference is performed on the

particles using the transition functions.

In this dissertation, the theory of particle filtering is used for mobile target

tracking. The initial particles are randomly select from all possible locations,
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Figure 2.3: A graphic chain model representing state distributions with state tran-
sitions.
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and are updated iteratively based on measured motion direction and speed (both

subject to random noises). Observations such as RF proximity information are

used to filter out unlikely sample in order to get more precise location distribution

estimates.
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Chapter 3

Cobra - A New Method for Energy

Efficient Data Authentication

3.1 Problem formulation

In data collection tasks, a sensor network consists of a home server and a number

of sensor nodes. Several access points may be added to connect disconnected

sensor nodes. We assume the communication links between the access points and

the home server are secure.

The time is divided into a number of sampling periods. In each sampling

period, each sensor node transmits its current reading to a home server via multi-

hop communications. A sensor node has a pre-installed unique private key. The

home server has the corresponding public keys necessary to authenticate signature

from each sensor node.
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We assume the stealth attacker model in [60]. A stealth attacker only attacks

the system by trying to convince the home server to accept the malicious readings.

He does not drop a packet (denial-of-service) since it will be noticed by the home

server. We focus on the four specific attacks as follows:

• Packet Fabrication: The adversary forges the readings of legitimate sen-

sor nodes. In each sampling period, the home server may receive multiple

readings claiming the same sender ID.

• Packet Replay: The adversary replays a previously received packet. This

creates an effect on the home server similar to packet fabrication.

• Packet Modification: The adversary intercepts the packet from a legitimate

sensor node, and modifies the content before forwarding it.

• Compromised Node: The adversary physically compromises a legitimate

sensor node and reads the key. He can send forged readings with legitimate

signatures.

In order to to provide reliable data at the home server, a security method must

guarantee high detection rate on malicious readings that are significantly different

from the real readings [60]. To measure the difference between the malicious

readings and the real readings, we introduce a new metric attack aggressiveness.

Let X t
i
F denote the malicious reading claiming the ID of sensor i in sampling

period t and let X t
i
T denote the real reading. The bias introduced by the malicious

reading is given by

ε = X t
i
F −X t

i
T
. (3.1)
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The attack aggressiveness is defined as |ε|.

One performance metric is the detection accuracy given by

Sacc =

∑T
t=1(N

TN
t + NTP

t )

T × n
, (3.2)

where T is the number of sampling periods, n is the number of sensor nodes, N TN
t

is the number of detected malicious readings (true negative) in sampling period t,

and NTP
t is the number of accepted legitimate readings (true positive) in sampling

period t.

Another performance metric is the average deviation of the accepted readings

from the real readings, given by

∆RMSE =

√∑T
t=1

∑n
i=1 (X̂ t

i −X t
i )

2

T × n
, (3.3)

where X t
i is the real reading of sensor node i in sampling period t and X̂ t

i is the

accepted reading. ∆RMSE is also known as the root mean square error (RMSE).

The third performance metric is the security overhead measured in terms of

the communication overhead and the computation overhead. The communication

overhead is measured using the number of extra transmitted bytes, given by

Ccomm =
T∑

t=1

n∑

i=1

hi × bt
i, (3.4)

where hi is the hop distance of sensor i to the home server and bti is the extra bytes

introduced by the security protocol in sensor i’s packet during sampling period t.
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The computation overhead is measured using the extra energy cost at the sender

sensor node. For simplicity, we assume that the energy to generate a signature is

fixed and equals to 1 (the assumption is valid according to the results in [12]). The

overall computation overhead is

Ccomp =
T∑

t=1

n∑

i=1

ct
i, (3.5)

where ct
i is either 1 (authenticated) or 0 (un-authenticated).

3.2 An overview of Cobra: correlation based data

recovery and auto-detection

In Cobra, only a small fraction of sensor nodes operate in a protected mode (white

mode) in each sampling period. Their packets are protected with digital signatures

and counters (to prevent packet replay). A reading sent from a sensor node in the

white mode is referred to as a white reading. It is only vulnerable to compromised

node attacks. Other sensor nodes operate in an unprotected mode (gray mode) to

save energy. The corresponding readings are referred to as gray readings and are

vulnerable to all four mentioned attacks. Note that Cobra can be easily extended

to offer multiple levels of protection (e.g., different key lengths).

Cobra consists of the following three components:

• Auto-detection: The home server first authenticates the white readings us-

ing a pre-learned correlation model (as described in section 2.6.1) and gen-
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erates a set of trusted readings (proofs). Next it authenticates the gray read-

ings using the proofs and the same correlation model.

• Data recovery: The home server recovers the true values of the detected

malicious readings black readings using the proofs and the correlation model.

• Distributed sensor node scheduling: each sensor node decides whether it

will operate in white or gray mode based on its remaining energy or accord-

ing to a pre-installed schedule.

3.3 Cobra details and analysis

3.3.1 Against packet fabrication/replay

When the home server receives more than one readings with the same sender ID

i, the posterior probability distribution of the corresponding variable xi is derived

using the proofs (Eq. 2.3 and Eq. 2.4). The reading with the highest probability in

the posterior distribution is regarded as the legitimate reading. The other readings

are simply discarded.

Theorem 3.3.1 The expected detection rate of Cobra against packet fabrication/replay

attacks is a monotonically increasing function of the attack aggressiveness and a

monotonically decreasing function of the posterior variance.

Proof: Given the mean µ and variance σ2 in the posterior distribution
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P (xi), a malicious reading is detected if

|XF
i − µ| > |XT

i − µ|

⇒ (XT
i + ε− µ)2 − (XT

i − µ)2 > 0

⇒ (XT
i + ε)2 + µ2 − 2(XT

i + ε)µ− (XT
i )2 − µ2 + 2XT

i µ > 0

⇒ (XT
i )2 + ε2 + 2XT

i ε− 2XT
i µ− 2εµ− (XT

i )2 + 2XT
i µ > 0

⇒ ε2 + 2XT
i ε− 2εµ > 0

⇒ (2XT
i + ε− 2µ)ε > 0 (3.6)

Let Υ denote the solution interval of Eq. 3.6. The detection rate (true negative) is

given by

E(sTN) = P (xi ∈ Υ), (3.7)

where P is the posterior distribution derived from the proof. We have

Υ =





(2µ−ε
2

,∞) , ε > 0

(−∞, 2µ−ε
2

) , ε < 0
(3.8)

The expected detection rate is given by

E(sTN) =





1
2
[1 + erf( ε

σ2
√

2
)] , ε > 0

1
2
[1 + erf( −ε

σ2
√

2
)] , ε < 0

=
1

2
[1 + erf(

|ε|
σ2
√

2
)], ε 6= 0. (3.9)
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erf is the error function commonly used in the integration of Gaussian probability

density function. It is a monotonic function and erf(x) ∈ (−1, 1). As a result,

the expected detection rate is monotonically increasing with |ε|. In addition, the

expected detection rate increases when σ decreases. This usually happens when

more proofs are added.

3.3.2 Against packet modification

The home server derives the posterior distribution for each unique gray reading

using the proofs. A reading is declared a “black reading” and rejected if it does

not fall into a (1− α) confidence interval (α is a constant in interval (0, 1)).

Theorem 3.3.2 The expected detection rate of Cobra against packet modification

attacks is a monotonically increasing function of the attack aggressiveness |ε| and

α, and a monotonically decreasing function of the posterior variance.

Proof: The malicious readings are detected if

XF
i < µ− kσ, or XF

i > µ + kσ

⇒ XT
i + ε < µ− kσ, or XT

i + ε > µ + kσ

⇒ XT
i < µ− kσ − ε, or XT

i > µ + kσ − ε. (3.10)
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The expected detection rate is given by

E(sTN) = P (xi < µ− kσ − ε) + P (xi > µ + kσ − ε)

= P (xi < µ− kσ − ε) + 1− P (xi < µ + kσ − ε)

= 1 +
1

2
(erf(

−kσ − ε

σ
√

2
)− erf(

kσ − ε

σ
√

2
))

= 1− 1

2
erf(

kσ − ε

σ
√

2
)− erf(

kσ + ε

σ
√

2
). (3.11)

Take partial derivative by σ, ε, k and we have

∂

∂σ
E(sTN) =

1√
π

(−εσ−2

√
2

e
−( kσ−ε

σ
√

2
)2

+
εσ−2

√
2

e
−( kσ+ε

σ
√

2
)2

),

∂

∂ε
E(sTN) =

1√
π

(
1

σ
√

2
e
−( kσ−ε

σ
√

2
)2 − 1

σ
√

2
e
−( kσ+ε

σ
√

2
)2

).

We have
∂

∂σ
E(sTN) < 0 (3.12)

and 



∂
∂ε

E(sTN) > 0 , ε > 0,

∂
∂ε

E(sTN) < 0 , ε < 0.

The detection rate increases when the degree of attack |ε| increases, or when σ

decreases. i.e. more proofs are added.
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Figure 3.1: 4 posterior distributions are derived for “A”. If “A” is in the (1 − β)
confidence interval of a posterior distribution, it receives one vote.

3.3.3 Against Compromised Node

For each white reading Xi, the home server uses every other white reading to

derive a number of posterior distributions of xi. In each posterior distribution,

if Xi is in a pre-defined (1 − β) confidence interval, it receives one vote. If a

white reading receives at least a fraction of γ among all votes, it is accepted as a

proof. Otherwise, it is declared as a black reading. Note that to make the process

independent of the order of voting, the black readings can still involve in deriving

posterior distribution for other readings. Figure 3.1 illustrates the voting process.

Theorem 3.3.3 The detection rate of malicious readings sent by a compromised

node in Cobra is a monotonic function of the attack aggressiveness.

Proof: Let l denote the total number of legitimate nodes. Let θ denote

the percentage of legitimate readings voting for a malicious reading. Let y be

the random variable representing the number of legitimate nodes among nodes
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operate in the white mode. P (y) follows a hypergeometric distribution given by

P (y) =
C l

yC
n−l
np0−y

Cn
np0

. (3.13)

The expected detection rate is given by

E(STN)

= P ((1− θ)(y) ≥ (1− γ)(np0 − 1))

≈ 1− P (y ≤ (1− γ)np0

1− θ
). (3.14)

From theorem 3.3.2, (1− θ) is a monotonic function of |ε|. Therefore, E(STN) is

a monotonic function of |ε|.

The expected true positive rate is given by

E(STP ) ≈ 1− P (y ≤ γnp0

1− β
), (3.15)

and the overall accuracy is given by

E(Sacc) =
l

n
E(STP ) + (1− l

n
)E(STN). (3.16)

Take the partial derivative of Eq. 3.16 with respect to γ and set it to zero, we derive

the value of γ that maximizes the detection accuracy. The solution is relevant to

parameters l and θ that are not easy to estimate in real world applications. An

empirical model is used where l and θ are assumed to follow certain distributions.

36



Assume that l and θ us independent, the value of γ in the empirical model is given

by

γ =

∫ ∫
p(l)p(θ)γlθdldθ, (3.17)

where γlθ is the value computed using the analytical process given l, θ and p(l), p(θ)

are the probability distribution functions of l and θ, respectively. In Cobra, l is as-

sumed to follow a uniform distribution in interval [0.1, 0.9] and θ is assumed to

follow a uniform distribution in interval [0.05, 0.4]. The value of γ in the empirical

model is computed as 0.482.

3.3.4 Auto-detection against all four attacks

When the network is subject to all four attacks, the home server first adopts the

voting-based method to select proofs among the white readings. Next the home

server checks against the packet fabrication/replay attack, leaving one unique

reading for each sensor node operating in the gray mode. At last, the gray readings

are checked to detect the packet modification attack. The process is illustrated in

Fig. 3.2

3.3.5 Data Recovery

The real value of the black readings are estimated as the mean of their posterior

distribution derived using the proofs (Eq. 2.3).
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Figure 3.2: The process of auto-detection against all four attacks. Step 1: detect
white readings sent by the compromised nodes. Step 2: detect packet fabrica-
tion/replay attacks. Step 3: detect packet modification attacks.
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3.4 Experimental result

Cobra is evaluated using the 4 weeks’ traffic volumes collected at 100 locations in

Chicago highway system. The data of the first week was used to train the corre-

lation model. Two models were trained using the maximum likelihood estimator,

one for weekdays and one for weekends. The length of a sampling period was 5

minutes. The following parameters of Cobra:

• p0: the percentage of nodes operating in the white mode,

• (1 − α): the confidence interval used in detecting packet modification at-

tacks,

• (1 − β): the confidence interval used in detecting node compromisation

attacks,

were set to various values.

In the first set of experiments, one false reading was inserted for each real read-

ing. The fabricated readings magnified the real readings XT by 1.2 or 1.5 times.

Figure 3.3 shows the detection rate of fabricated readings against p0. Higher ag-

gressiveness results in higher detection rate. When p0 < 0.2, adding more white

readings significantly reduces the posterior variances and increases the detection

rate. When p0 > 0.2, adding more white readings produces only slight improve-

ments.

In the second set of experiments, 50% of the gray readings were randomly

chosen in each sampling period and magnified by 1.2 or 1.5 times. The confi-
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Figure 3.3: The detection rate of fabricated readings v.s. p0.

dence interval (1 − α) is set to 0.95 or 0.8. Figure 3.4 shows the detection rate

of modified readings against p0. Higher detection rate is associated with higher

aggressiveness, higher value of p0, and higher value of α. Similar to the previous

experiments, the detection rate starts to converge after p0 > 0.2. Note that the

detection rate is not always monotonically increasing in respect to p0. This is be-

cause the data have some outliers and the outliers being included in the proofs can

generate inaccurate posterior distributions. This is especially the case when p0 is

larger since it is more likely to have an outlier in the signed data packets.

In the third set of experiment, 20% of the sensor nodes were randomly chosen

as compromised nodes. The readings of the compromised nodes were magnified

by 1.1 ∼ 2 times. p0 is set to 0.1 and the confidence interval (1 − β) is set
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Figure 3.4: The detection rate of modified readings v.s. p0.

to 0.8. The detection rate and the detection accuracy (Eq. 5.1) were measured

among white readings only. Figure 3.5 shows that the detection rate increases

dramatically as the relative attack aggressiveness increases. The true positive rate

is always around 85% regardless of the attack aggressiveness. Since the number

of legitimate nodes are 4 times as many as the compromised nodes, the overall

detection accuracy only slightly increases as the attacks become more aggressive.

In the last set of experiments, Cobra was compared to CORA [67], MiniSec

[46], and Gaussian Estimation [76] (white readings were used to estimate the

values of gray readings). In Cobra, when a node operated in the white mode, it

used MiniSec protocol and 3 extra bytes were added to the packet headers. The

parameters were set as follows: p0 = 0.1, β = 0.2, α = 0.2. 30 networks were
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Figure 3.6: Under compromised node and packet modification attacks, Cobra’s
comparison to three other methods in terms of the RMSE of the accepted data.

simulated with 20% of the nodes randomly chosen as compromised nodes. The

compromised nodes magnified its own readings and the readings it received before

forwarding them. The packet fabrication/replay attacks were not included since

CORA could not handle these attacks. The sensor nodes were placed with their

real world coordinates from the Chicago data set. The communication range of a

sensor node was set to 4 miles since the sensor nodes were mostly far away from

each other.

Figure 3.6 shows that as the attacks become more aggressive, the RMSEs

(the average of 30 simulations) of all methods except Cobra increase linearly.

Cobra provides a very stable performance. Its RMSE converges when the rel-

ative aggressiveness |ε|/XT is around 0.4. When the attacker is not aggressive
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Figure 3.7: The communication overhead (number of extra transmitted bytes) of
Cobra comparing to three other methods.

(|ε|/XT < 0.4), MiniSec performs the best. This is because the biases introduced

by the attacker are usually smaller than the error introduced by the data recovery.

Figure 3.7 shows the communication overhead of the four methods (CORA’s

overhead is 0 since no cryptography is used). Cobra only costs 10% of MiniSec.

The computation overhead of Cobra is estimated at 10% of MiniSec since in each

sampling period only 10% of the sensor nodes operate in the white mode.
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Chapter 4

A New Distributed Method for

Faulty Sensor Detection

4.1 A new metric - mutual divergence

Using the correlation model described in section 2.6.1, we propose a new metric

divergence to measure how much the readings diverge from prior knowledge. In-

tuitively, if none of the sensors are faulty, all readings should fit neatly into the

prior correlation model. Given two (possibly overlapping) sets of sensors L1, L2,

their jth readings’ divergence is given by

δ(X t
L2

, X t
L1

) =
∑

i∈L2

(µi|Xt
L1\i
−X t

i )
2

|L2| • COVi|L1\i
. (4.1)
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The divergence measures how much (on average) the readings of sensor nodes

L2 diverge from their posterior means derived from the readings of the reference

sensor set L1. The divergence value of one sensor’s reading is normalized using

its posterior standard deviation and squared in account for negative biases.

Mutual divergence is used to evaluate how good a selection of F is given the

most current k readings. We have

∆(V, F ) =
∑

t=1,2,...,k

δ(X t
V −F , X t

V −F )−
∑

t=1,2,...,k

δ(Y t
F , Y t

V −F ). (4.2)

The objective is to minimize ∆(V, F ). In other words, the objective is to mini-

mize the divergence among non-faulty sensor nodes V − F and to maximize the

divergence between non-faulty sensor nodes V − F and faulty sensor nodes F .

Note that for generality we do not assume that the faulty sensors’ readings are

uncorrelated. If such an assumption is valid in particular applications [67, 69, 61],

a third term −
∑

j=1,2,...,k δ(Y t
F , Y t

F ) can be added.

We have the objective for the problem of faulty sensor detection as

argmin
F

∆(V, F ). (4.3)

Faulty sensors’ readings will be predicted based on Eq. 2.3. Since the expected

root mean square error is fixed regardless of the actual readings (Eq. 2.4), the

faulty sensor detection accuracy reflects the average data reliability of the final

data set. In the following text we prove that mutual divergence is accurate in
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terms of estimating faulty sensor detection accuracy.

4.2 Theoretical analysis

Let i0, i1, i2 denote three correlated sensor nodes with i0 being the only faulty

one. A correlation mode P (i0, i1, i2) is learned before i0 becomes faulty. Let

εt
i0
, (t = 1, 2, ..., k) denote the biases of i0 in each of the k recent readings caused

by its fault. From Eq. 4.1, we have

δ(X t
i0
, X t

i1,i2
, P (i0, i1, i2))

=
(µi0|Xt

i1,i2

−X t
i )

2

Σi0|i1,i2

=
(µi0|Xt

i1,i2

− (X t
i0 + εt

i0))
2

Σi0|i1,i2

(4.4)

Its expected value is given by

E(δ(X t
i0
, X t

i1,i2
, P (i0, i1, i2)))

= E(
(µi0|Xt

i1,i2

− (X t
i0

+ εt
i0
))2

Σi0|i1,i2

)

=
∑

P (X t
i0|X t

i1,i2) •
(µi0|Xt

i1,i2

− (X t
i0 + εt

i0))
2

Σi0|i1,i2

(4.5)

For simplicity, let µ denote the posterior mean µi0|Xt
i1,i2

, X denote the true
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reading X t
i0

, ε denote the bias εt
i0

, and σ2 denote Σi0 |i1,i2 . We have

E(δ(X t
i0
, X t

i1,i2
, P (i0, i1, i2)))

=
∑

P (X) • (µ− (X + ε))2

σ2

= 1/σ2 • [
∑

P (X) • µ2 −
∑

P (X) • µ(X + ε) +

∑
P (X)(X + ε)2]

=
µ2 − 2µ

∑
P (X)(X + ε) + E(X + ε)2 + V ar(X + ε)

σ2

=
µ2 − 2µ2 − 2µε + (µ + ε)2 + σ2

σ2

=
σ2 + ε2

σ2
= 1 +

ε2

σ2
(4.6)

For given i0, i1, i2, σ2 is fixed and can be viewed as a constant. Now let us

consider the divergence of an arbitrary faulty set L1 and an arbitrary non-faulty

set L2. We have

1

|L2|
∑

i∈L2

E(δ(X t
i , X

t
L1

, P (L2, L1)))

=
1

|L2|
∑

i∈L2

P (X t
i |X t

L1
) •

(µi|Y t
L1\i
− (X t

i + εt
i))

2

Σi|L1\i
.

=
1

|L2|
∑

i∈L2

(1 +
εt
i

Σi|L1

). (4.7)

Equation 4.7 leads to the following theorem:

Theorem: The expected divergence of a sensor set L2 in reference to another

set L1 is a monotonically increasing function of the biases in sensor set L2 and a
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monotonically decreasing function of L2’s posterior variance.

The theorem guarantees the correctness of the objective function defined in

Eq. 4.2. Between non-faulty sensor nodes, the expected divergence is 1 (ε = 0)

according to Eq. 4.6. Between faulty and non-faulty sensor nodes, the expected

divergence reflects the amount of bias. The sensitivity of the divergence function

can be increased by introducing smaller posterior variance. This can be achieved

by including more reference sensor nodes and/or by selecting more correlated

sensor nodes as references.

4.3 A distributed detection algorithm

Using PC theory, the objective function Eq. 4.3 is rewritten as

argmin
F

∑
P (F )∆(V, F ). (4.8)

The private goal function for a sensor i is defined as

∆(N(i), F (i)), (4.9)

where N(i) is i’s neighboring node and itself, and F (i) is the faulty sensor nodes

among i’s neighbors and itself. Usually nearby sensor nodes are more correlated.

Such a locality feature helps to increase the detection rate even if only the neigh-

boring sensor nodes are used as references.
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The probability updating rule is given by

Pi(fi) = Pi(fi)− α× Pi(fi)×

{(E(∆(N(i), F (i))|fi)− E(∆(N(i), F (i))))/T +

S(Pi) + lnPi(fi)}, (4.10)

Figure 4.1 describes the details of the distributed collective detection algo-

rithm.

At the end of the algorithm, if a sensor node’s faulty probability is higher than

a certain threshold, it is regarded as faulty. Decreasing this threshold increase

detection rate (true negative) but also produces more false alarms. In our experi-

ments we have found that 0.95 is a sufficiently high threshold. Note that even if a

sensor node is marked as faulty, it still participates in the future decision making

process. This gives the sensor node a chance to recover if the faults disappear.

4.4 Experimental result

For comparison purpose, two base-line algorithms are implemented in both cen-

tralized and distributed manners.

4.4.1 A centralized detection method

In the centralized detection method, the base-station handles the detection process.

In each decision cycle, the base-station makes decision about the faulty sensors
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Distributed collective detection
(decision 1: non-faulty, 0: faulty)

for each sensor i
//set initial decision as a uniform distribution
pi(0)← 0.5;
pi(1)← 0.5;

end
loop

for each sensor i
pN(i)\i ← neighbors′ faulty probabilities;
s← n samples from pN(i);
E[∆]← 0;
E[∆|0]← 0;
E[∆|1]← 0;
h← 0; //number of samples where i is faulty
for each sample r

gr ← ∆(N(i), F(i)); //Eq. 4.2
E[∆]← E[∆] + gr;
if(fi = 1)

E[∆|1]← E[∆|1] + gr;
h + +;

else
E[∆|0]← E[∆|0] + gr;

end
end
E[∆]← E[∆]/n ;
E[∆|1]← E[∆|1]/h ;
E[∆|0]← E[∆|0]/(n− h) ;
update pi(0), pi(1) based on E[∆], E[∆|1], E[∆|0]; //Eq. 4.10
inform neighbors about the updated pi(0), pi(1);

end
terminate after a certain number of iterations;

end

Figure 4.1: Algorithm of distributed collective detection algorithm.
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solely based on the k most recent readings received from each sensor node. In

this paper, we implemented a simple random sampling method for comparison

purpose. A based-station randomly draws m samples. In each sample a sensor

is either faulty or non-faulty. The base-station computes the mutual divergence

value (Eq. 4.2) for each sample and chooses the sample with the minimal mutual

divergence.

4.4.2 Distributed simultaneous detection with pure decision

A sensor node receives broadcasts from its neighbors consisting their most re-

cent k readings. It also receives the current decision (faulty/non-faulty) of each

neighboring sensor node. A sensor node decides that it is either faulty or non-

faulty based on which one yields smaller mutual divergence in the neighborhood

(Eq. 4.9).

The iterative detection method starts with a random assignment of each sensor

node being faulty or non-faulty. In each iteration, if a sensor node has changed its

decision in the last iteration, it broadcasts the new decision to the neighbors. After

a sensor node receives updated decision from one of the neighbors, it recomputes

its mutual divergence and may choose to change its decision accordingly. The

search process terminates if no more change is made.
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radius are 2 and the links represent the communication links.

4.4.3 Comparison result

We have conducted three sets of experiments in MATLAB to evaluate the three

detection methods. 30 sensors are randomly deployed in a 6×3 field. An example

of such sensor network is shown in figure 4.2. The background data was simu-

lated as temperature influenced by a 6 randomly placed heat sources. A random

Gaussian noise is added to all data. The mean of the noises was set to zero and

the standard deviation was set to 10% of the real readings’ standard deviation. A

set of data was used to train the joint distribution and another set of similar data is

used for testing. Note that the noises were presented in both the training set and

the test set. Therefore the trained correlation model already reflects the noises.
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The communication radius of a sensor was set to 2. In the distributed detection

methods, a sensor node makes decision based on readings received from neigh-

bors within the communication radius. In the distributed collective method, the

initial decision distribution of each sensor is set to a uniform distribution. In each

iteration, 25 samples are drawn at each sensor to evaluate the distribution.

In the centralized random sampling method, 300 samples are randomly drawn

from a uniform distribution and the one with the smallest mutual divergence value

is used as the detection result.

In the first set of experiments, we test the three proposed detection methods

with the random fault type. A fraction of the sensor nodes are randomly selected

as faulty sensors. We vary the number of faulty sensors from 1 to 9. The broad-

casted reading of each faulty sensor is replaced by a random number indepen-

dently drawn from a uniform distribution in region (0, 300). Such a fault model is

selected since it yields uncorrelated data in the same magnitude as the real read-

ings.

Figure 4.3(a) shows the mutual divergence achieved by different methods.

Out of the three proposed methods, the distributed collective method achieves the

smallest value, followed by the centralized random sampling method and then the

distributed simultaneous method. The distributed simultaneous method performs

poorly since the search space is filled with local optimal. The random sampling

can usually find better results. In addition, the mutual divergence found by the

distributed simultaneous is unpredictable at best. The method may fall into dif-

ferent local optimal given different random starting points. The algorithm of the
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Figure 4.3: (a) Mutual divergence achieved by three proposed detection methods
when random faults present. (b) The detection accuracy of the three methods
when random faults present.
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centralized random sampling suffers from the same problem.

Figure 4.3(b) show the detection accuracy computed as

accuracy =
true positive + true negative

all
. (4.11)

The distributed collective method achieves a constant detection accuracy of 100%,

outperforming the other two methods in all test cases. As the number of faulty

sensor nodes increases, the problem becomes harder. Yet the distributed collec-

tive method is still able to find the true faulty sensor set even when 30% of the

sensors are faulty. Note that when the number of faulty sensors is 7, the central-

ized random sampling method achieves higher detection accuracy than the dis-

tributed simultaneous method despite have higher mutual divergence value. This

is because mutual divergence does not directly measure the number of faulty sen-

sors. It instead measures how much the faults diverge from the real value. It is

not uncommon that a faulty sensor exhibits larger divergence than the average

divergence of several other faulty sensors.

In the second set of experiments, we test the detection methods with drift fault

type. 1 ∼ 9 sensor nodes are randomly picked as faulty sensors and their readings

X are altered by a linear function f(X) = aX + b. We set a to 1.5 and b to

-40. Such a fault model is selected to post probably the hardest challenge for the

detection methods – the faulty sensors are correlated. This is likely to happen in

the case of malicious attacks where the attacker somehow acquires the network

correlation model and introduces correlated faults to avoid detection.
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Figure 4.4: (a) Mutual divergence achieved by three proposed detection methods
when drift faults present. (b) The detection accuracy of the three methods when
drift faults present.
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Figure 4.4(a) and figure 4.4(b) show the mutual divergence and detection accu-

racy achieved by the three methods. Despite facing a more challenging problem,

the distributed collective method still achieves very high detection accuracy. It

only misses one faulty sensor node when as many as 30% sensors are faulty. In

that case, the faulty sensor node is surrounded by other faulty sensor nodes whose

readings can actually validate the its faulty readings. To improve detection rate

in such cases one may have to increase the neighborhood size, either by increas-

ing communication radius or by including 2-hop neighbors. Note that this also

considerably increases the communication and computation overhead. In practi-

cal system it is unlikely that 30% sensor nodes becomes faulty simultaneously. A

faulty sensor node can be detected as soon as it becomes faulty and the percentage

of active faulty sensor node can be limited to a small number.
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Chapter 5

SMART - A New System for

Simultaneous Indoor Localization

and Map Construction

5.1 Problem formulation

A logical map is represented by a W × H matrix where each entry represents a

square patch of unit width/height. Each patch is labelled with a logical location

fingerprint (e.g., restaurant, pub, bookstore, etc.). Figure 5.1 illustrates a logical

map with 5 different fingerprints. Each of the four shaded rectangles represents

a distinct logical location (a shop) and the white area represents the hallway. k

WiFi access points are placed at either random locations or pre-selected points.

Note that in reality WiFi access points are usually placed in a systematic manner
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Figure 5.1: A sample field with 5 logical locations: 4 shaded areas as 4 stores
and white region is the hallway. 12 access points are placed as a grid with their
communication range shown by the circles.

to maximize coverage. A mobile subject moves at random speed and random

directions. Let r denote the maximal communication range of an access point. For

simplicity, we assume a mobile subject can hear the access point if their distance

is shorter than r. In figure 5.1, access points are represented by small dots and

their range are marked with the large circles.

For simplicity, time is also divided into unity length time steps.

There are m mobile subjects carrying smart phones and randomly walking

within the field. The motion dynamics are given by

• Speed: the distance a subject moves in one time step is uniformly distributed

in an interval (vmin, vmax);

• Heading: each subject starts with a random heading and randomly chooses
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a turning angle from a uniformly distribution in an interval (−ρ, ρ). For

simplicity we assume a subject maintain its heading in one time step.

A mobile subject has the ability to estimate its initial location, speed and head-

ing, with random Gaussian noise. On a smart phone, these are likely to be acquired

by assisted GPS [44], accelerometers [55] and magnetometers, respectively. We

also assume a mobile subject can identify the fingerprint of the patch containing

its current location using methods such as SurroundSense [4].

Let M ′ denote the estimated logical map (a W ×H matrix) and let M denote

the ground truth. Our goal is to minimize the difference between M and M ′. The

estimation accuracy is defined as the percentage of correctly estimated patches,

given by ∑W
x=1

∑H
y=1 1|M(x,y)=M ′(x,y)

W ×H
, (5.1)

where 1|L = 1 if L is true, and equals to 0 otherwise.

5.2 System overview

SMART consists of three components, localization, ambient fingerprinting, and

map construction. Figure 5.2 shows the system architecture.

Localization: sensor inputs are feed into the localization component to gen-

erate location estimates. First, raw inputs are converted to meaningful measure-

ments, such as from 3-axis acceleration to speed and from magnetometer readings

to motion directions. Next, speed, heading and WiFi proximity information are
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Figure 5.2: SMART architecture: fingerprint extraction and localization are per-
formed on a mobile device. Fingerprint matching and map construction are con-
ducted on servers.
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combined in a particle filter to generate location estimates. The above procedure

is fully implemented on the mobile device without the need of service side com-

puting.

Ambient fingerprinting: it includes two sub-components. First, fingerprint

features are extracted from sensor raw inputs on mobile devices. The features

are transmitted to a fingerprinting server to match with entries from a fingerprint

database.

Map construction: it takes inputs from both the localization component and

the fingerprinting component. It also combines the inputs from multiple users to

generate a new logical location map. During map construction, an incremental

update approach is adopted, i.e., a new map will be integrated into the existing

map rather than replaces the existing map.

5.3 Simultaneous localization and map construction

5.3.1 Particle filtering based localization

The basic idea of particle filtering is to draw N samples around an initial estimate,

and update each sample according to the motion dynamics (e.g., the measured

speed and heading). A sample is commonly referred to as a particle. Observations

(e.g., WiFi proximity information) are used to filter out unlikely particles and

likely particles are usually duplicated several times through a resampling process.

The particles represent the location distribution and their centroid can be used as
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a point estimate.

Initialization: we assume that each subject holds an initial location estimate.

It is acquired as the last available GPS reading before the subject enters the field.

A random Gaussian error is added to the estimate to represent the error of the

GPS reading. N initial samples (x0
i , y

0
i ), i = 1, 2, ..., N (x, y are coordinates)are

drawn from a Gaussian distribution whose mean is the initial location estimate

and whose variance is the variance of the Gaussian error. A weight w0
i is assigned

to each sample. For simplicity, we assume all sample carries equal weights, i.e.,

w0
i = 1

N
.

Update the samples: let v denote the measured motion speed and δ denote

the measured motion direction. v and δ are subject to random zero-mean Gaussian

errors whose variances are σ2
v and σ2

δ , respectively. A sample (xt
i, y

t
i) at time step

t is updated as

xt+1
i = xt

i + (v + εv)× cos(δ + εδ), (5.2)

yt+1
i = yt

i + (v + εv)× sin(δ + εδ), (5.3)

where εv and εδ are artificial measurement variances drawn from Gaussian dis-

tribution N(0, σ2
v) and N(0, σ2

δ ), respectively. The purpose of adding these two

variances are two-fold. First, it accounts for the measurement errors. Second, it

significantly reduces the probability of updating two samples to the same location.

Update the sample weights: the sample weights are updated according to the

following rules
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• If a sample falls outside the boundary, its weight is set to 0;

• Compare the access point proximity of a sample to the measured access

point proximity. If they do not match, set the sample weight to 0. The

proximity of the sample is estimated according to the access point locations

and their communication range;

• For all other conditions, maintain the sample weight at the last time step.

In other words, the sample weight update is to filter out unlikely samples and keep

the likely ones.

Resample: N samples are selected from the samples from the last time step

based on their updated weights. Samples with zero weights are guaranteed to be

left behind and other samples may be duplicated. In cases where all samples have

zero weights, N new samples are uniformly drawn from the region covered by all

heard access points, or from the region with no WiFi coverage if the subject does

not hear any access point.

Figure 5.3 describes the detailed algorithm.

5.3.2 Ambient fingerprinting

Azizyan et. al. have introduced a ambient fingerprinting system SurroundSense

[4]. The fingerprints include acceleration, audio and visual fingerprints. Figure 5.4

shows an iPhone application we used to collect sensor data, and the accelerometer

readings at a hallway, a Starbucks, and a local Bestbuy’s laptop section. The

difference can be easily identified. Two states ”stay” and ”motion” are defined
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Localize(x0, y0)
//x0 = (x0

1, x
0
2, ..., x

0
N ), y0 = (y0

1, y
0
2, ..., y

0
N)

for t← 1, 2, ..., T
v ← measured speed; δ ← measured heading;
for i← 1, 2, ..., N

v′ ← v + εv; δ′ ← δ + εδ;
xt

i ← xt−1
i + v′ × cos(δ′);

yt
i ← yt−1

i + v′ × sin(δ′);
if (xi, yi) contradict to observations

wi ← 0;
else

wi ← 1
N

;
end

end
(xt, yt)← resample(xt, yt, N);
end

Figure 5.3: Algorithm of particle filtering based localization.

based on the variations of readings (over a window size of 8). The acceleration

fingerprints are defined as the percentage of ”stay”, the percentage of ”motion”,

and the number of state switches. Audio fingerprint is based on the amplitude

frequency and visual fingerprint is based on the hue, saturation and lightness of

the scene. Readers are encouraged to read [4] for additional details about ambient

fingerprinting.

5.3.3 Construct probability map

Derive a probability map based on the particles: given N location particles

(x1, y1), (x2, y2), ..., (xN , yN), a Gaussian kernel is used to derive the location dis-
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Figure 5.4: (a) An iPhone application that collects accelerometer, magnetometer,
and microphone readings. (b) Accelerometer readings collected when the test
subject was walking at a hallway. (c) Accelerometer readings collected when
the test subject was using the cell phone at a coffee table at a Starbucks. (d)
Accelerometer readings collected when the test subject was shopping at a local
Bestbuy’s laptop section.
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tribution. The probability function f̂(x, y) of a point (x, y) is given by

f̂(x, y) =
1

Nh

N∑

i=1

K(xi − x, yi − y, h), (5.4)

where

K(xi − x, yi − y, h) =
1√
2π

exp(−(xi − x)2 + (yi − y)2

2h2
), (5.5)

and h is the bandwidth of the kernel. Figure 5.5 shows an example of location

distribution when h = 20.

Let j denote the fingerprint sensed by a subject i’s mobile phone. Its proba-

bility map f j
i is set to the values of f̂ .

Update the probability map: for each f j
i , update the probability map of

fingerprint j as

M j = M j + α× f j
i , (5.6)

where α is the step size. After all signatures have been updated, the probabilities

are re-normalized. Next, each patch in the map is assigned with the most likely

fingerprint. The resulting map is the fingerprint map M ′. Note that if two or more

fingerprints have the same probability at a patch, we set a tie breaker to always

prefer the hallway’s fingerprint, or randomly pick a fingerprint if the hallway is

not among the candidates.
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Figure 5.5: The location distribution derived from the location particles.

5.4 Experimental result

The simulations were conducted using MATLAB with test fields similar to Fig-

ure 5.1. The test parameters are listed in Figure 5.6. We ran each set of experi-

ments for 30 random trials and presented the average results.

We first evaluated the localization accuracy over trials of 1000 time steps. For

comparison purposes, we implemented a dead reckoning method where each sub-

ject used measured speed and heading, and its initial location estimate to track

its physical location. The measurement errors were the same as those listed in

Figure 5.6. The localization error, was defined as the distance from the estimated

location to the true location. In the particle filtering based method, the centroid

of all particles was used as the location estimate. Two access point placements
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parameter name value
width (W ) 100
height (H) 60

number of access points 12
number of subjects (m) 6
number of fingerprints 5

minimal moving speed (vmin) 0
maximal moving speed (vmax) 3

turning angle ((−ρ, ρ)) (−0.25π, 0.25π)
initial location est. err. std. 1

speed est. err. std. 0.05
turning angle est. err. std. 0.05
number of particles (N ) 50

kernel bandwidth (h) 20
probability update step size (α) 0.5

Figure 5.6: Simulation parameters.
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Figure 5.7: Location estimation error of dead reckoning, and particle filtering with
different access point placements.
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were tested, grid placement, where all access points were placed at manually se-

lected grid points (e.g., figure 5.1), and random placement, where access points

were placed randomly. In the trials of random placements, we have noticed that

it was not uncommon that two access points were placed very close (distance less

than 20% of the communication range) and complete WiFi coverage was diffi-

cult to achieve. In reality, the scenario of manually selected placement is usually

preferred in order to maximize coverage and access point usage.

Figure 5.7 plots the location estimation error. Dead reckoning method pre-

formed poorly and the errors propagated over the course of tracking. After 1000

time steps, the average error became stable since it reached the maximal average

error bounded by the field. The particle filtering based method with random ac-

cess point placement came in second, with a stable performance but larger errors

in early time steps. This is because the first particle cloud was created around

a flawed initial measurement. The variance of all particles was larger than the

variance of the initial measurements. This can be proved by the theorem that the

variance of two Gaussian random variables summed together is larger than the

variance of each variable. The particle filtering based method with grid access

point placement demonstrated consistently lower error than both methods. This

is because the fields were fully covered by WiFi signals and the particle cloud

always found observations to refine its range.

Next, we evaluated the results of logical map construction. Figure 5.8(a)

shows a logical map and figure 5.8(b)∼5.8(e) are the estimation results after the

1st, 10th, 50th, and 2000th time steps. After the first time step, in addition to iden-
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Figure 5.8: (a) The fingerprint map (ground truth). (b) The estimated fingerprint
map after the first time step. (c) The estimated fingerprint map after time step 10.
(d) The estimated fingerprint map after time step 50. (e) The estimated fingerprint
map after time step 2000.
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Figure 5.9: Percentage of estimation errors for kernel based method and access
point based method.
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Figure 5.10: When fingerprint sensing carries 20% error, the percentage of esti-
mation errors for kernel based method.

tifying a portion of the hallway, the kernel based method was able to find regions

containing 3 out of 4 shops. The last shop was not identified because no mobile

subject had visited it. It remained undiscovered until the 50th time step. After-

wards the fingerprint map continued to improve but with diminishing returns. In

fact after about 1500 time steps the results tended to be stable and was less than

12% different than the ground truth.

We compared the kernel based method to a WiFi access point based method,

where the fingerprints at each access point was registered and within its coverage

we assumed the same fingerprint. If one patch was covered by multiple access

points, a fingerprint was randomly chosen with equal probabilities. The access

points were placed in a grid manner for both the kernel based method and the
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Figure 5.11: At time step 500, the floor plans are changed. This is the percentage
of estimation error before and after the changes.
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Figure 5.12: Percentage of estimation errors when there are 1, 2, 4, 6, 8 and 10
mobile subjects.

error of kernel method after error of access point
# of shops 2000 time steps (v1) method (v2) v2/v1

4 10.8% 34.2% 3.2
7 16.8% 50% 3.0

10 22.2% 61.2% 2.8

Figure 5.13: Fingerprint map estimation errors when there are 4, 7, and 10 shops.
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access point based method. Figure 5.9 plots the comparison results. The access

point based method resulted in 34.2% error on average whereas the kernel based

method achieved an average error as low as 10.8%.

The kernel based method is also robust against sensing errors. We set 20%

of the fingerprint readings to be faulty, and re-ran the experiments with the same

setups. Figure 5.10 plots the estimation errors, which is almost identical to the

experiments without sensing errors. During the 20% time when fingerprint read-

ings were faulty, the faulty readings had equal probability to be one of the 4 other

fingerprints (5% each). Therefore, the correct fingerprint (80% chance) still dom-

inated the sensing results and its influence significantly outweighted those of the

faulty readings. To prove this, we have pushed the error rate to 50% and the

performance penalty remained minimal.

In reality, the floorplans may change over time. In the next set of experiments,

the floorplans were changed at time step 500 without alerting the kernel based

method. Figure 5.11 plots the average estimation error of 30 runs. The kernel

based method automatically detected the change and makes adjustments to the

fingerprint map. After 2000 time steps, the average estimation error converged

around 12%.

To understand how the number of mobile subjects affects the estimation accu-

racy, we varied the number of subjects (m = 1, 2, 4, 6, 8, 10). Figure 5.12 plots

the average estimation errors. As we expected, less subjects led to slower conver-

gence. When there were only 1 mobile subject, the result did not converge until

the 5000th time step. However, regardless of the subject numbers, when the curves
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did converge, the average estimation errors were always around 11%∼12%. This

leads to the conclusion that as long as the field is fully discovered by the subject(s),

the system should reach a stable and accurate fingerprint map.

We also challenged the kernel based method by introducing more fingerprints.

Figure 5.13 lists the estimation errors of the kernel based method and the access

point based methods when 4, 7 and 10 shops are presented (5, 8 and 11 total

fingerprints, respectively). As the problem became more difficult, the estimation

error of the kernel method increased almost linearly. When there were 10 shops,

the average estimation error converged around 22.2%, which was still 2.8 times

lower than the average error of the access point based method.

5.5 Discussion

The logical map may be further fine-tuned to suit the needs of applications. For

example, the center of an estimated region can be used as a point estimate for

POI lookup services. Alternatively, each region can also be fit into a bounding

box or a polygon for display purposes. We also envision the development of

automatic map matching, where a precise floorplan is matched to a particular

region of local/national fingerprint map. This is useful if the owner of a building

wants to represent his/her properties in more details.
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Chapter 6

A New Method for Sensor Data

Prediction

6.1 Problem formulation

In chapter 3 and chapter 4, the correlation models are pre-learned using machine

learning based methods. In this chapter, we focus on the application of urban

traffic measuring based on the sensor network system manufactured by SenSys

Network, Inc. [1]. A traffic monitoring sensor network consists of three compo-

nents, sensor nodes, access points, and relay nodes. Sensor nodes are equipped

with magnetometers and low-power radio modules. When mounted to the pave-

ment, it counts the number of vehicles passing by. The traffic counts are collected

at access points via multi-hop communications and then sent to the traffic control

system. Relay nodes are added between access points and disconnected sensor
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nodes. We present an analytical method for acquiring the correlation model as

an alternative to machine learning based methods described in chapter 2.6. The

analytical method is based on origin-destination matrix commonly used in traffic

flow analysis.

A directed graph
−→
G = (A,

−→
E ) is used to represent the road map, where ver-

tices in A stand for intersections or entrances/exits, and an edge e = (−−−→u1, u2) in
−→
E

stands for the directional road segment from intersection u1 to u2. For simplicity,

we only consider the total traffic count of all lanes.

Among all vertices in A, let As denote the set of traffic sources and Ad denote

the set of traffic destinations. Vehicles enter the road system
−→
G through sources

and leave through destinations. An example is the entrances/exits of a metropoli-

tan highway system like Fig. 6.1.

We divide the time into N sampling periods, and each period consists of T

equal-length cycles. A typical daily traffic report has N = 24× 60, T = 60, and

a cycle length of 1 second.

Let I(e) denote all points of interest at road segment e. Let V =
⋃

e∈−→E I(e)

denote the collection of all such points.

Let Q ⊆ V denote the set of points where we deploy sensor nodes and U =

V −Q denote the points where we do not. We also refer to Q as measured points

and U as unmeasured points. The values at points i ∈ U are acquired through

prediction. The prediction error is defined as the average root mean square (RMS)
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Figure 6.1: A street system with 20 sensor nodes deployed.

error of all N predictions. We have

∆(Q) =

∑
i∈U

√∑
t=1...N (xt

i|Xt
Q

−Xt
i )

2

N

|U | , (6.1)

where X t
i is the measured value at point i in sampling period t, and xt

i|Xt
Q

is

the predicted value at point i given the measured values at all locations in Q in

sampling period t. Our objective is to minimize ∆(Q) with a cost η, formally

written as

argmin
Q

∆(Q), s.t. |Q| = η. (6.2)
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6.2 Prediction using machine learning based method

The general procedure of constructing a prediction-enabled traffic measuring sys-

tem is as follows. First, a set of temporary sensors are deployed at all points in

V . During the phase of initialization, a central data server collects training data

and train the correlation model. Next, the measured points O are chosen and get

long-term deployment. The network starts to fully function. As the data server

acquires readings from the measured points, it performs prediction using the cor-

relation model and the observations (Eq. 2.3 and Eq. 2.4).

When the environment changes, such as with a road closing or a new road

opening, the correlation model needs to be updated. The updating procedure is the

same as the construction procedure, which involves a costly initialization phase

with a complete temporary sensor placement.

6.3 An analytical method for traffic prediction

Correlation models acquired through machine learning based methods only work

well for the same environment in which they are learned. When the environment

changes, the pre-learned correlation model needs to be updated. It is not feasible

to initiate the learning procedure whenever a change happens. In this section, we

derive a theoretical traffic model that serves as a more cost effective alternative.
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6.3.1 Traffic model

Recall that we have defined the set of traffic sources As and traffic destinations

Ad. Let θ−→
l,k

denote the percentage of vehicles originated at source l and ended at

k. It is referred to as the destination frequency and is acquired through previous

machine learning or other sources of knowledge. Assume the majority of vehicles

travel from l to k follow the shortest path. The traffic counts at any points on

edge e are the summation of all traffics travelling through e. Given the random

variables of all traffic sources Zl, l ∈ As, the random variable representing a point

at edge e is formally written as

∀x ∈ I(e), x =
∑

l∈As

(
∑

k∈Ad(l,e)

θ−→
l,k

) • Zl, (6.3)

where I(e) is previously defined as the points of interest at edge e, and Ad(l, e)

is a subset of Ad representing the destinations whose shortest pathes from source

l contain e. The distribution of Zl is also acquired through prior knowledge. x

follows a Gaussian distribution since the distributions of all Zl are also Gaussian.

Assuming all sources are mutually exclusive, we have the expected value as

E(x) =
∑

l∈As

λ(x, l) • E(Zl) (6.4)

where

∀x ∈ I(e), λ(x, l) =
∑

k∈Ad(l,e)

θ−→
l,k

. (6.5)
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To understand it better, readers may consider λ(x, l) as the percentage of ve-

hicles that are originated at source l and travel through point x.

We also derive the covariance as

Cov(x, y) =
∑

l∈As

λ(x, l)λ(y, l) • V ar(Zl). (6.6)

The sample mean vector µ is estimated using E(V ), and the sample covariance

matrix COV is filled using Cov(V, V ).

6.3.2 Model Refinement

Through experiments, we verified that this model is accurate in estimating the

sample mean. However, its estimation on the covariance matrix carries large er-

rors, since it omits two important factors in any traffic systems, the traffic light and

the road length. Traffic lights add more uncertainty to traffic counts and thus result

in higher variance than the derived values. The road lengths make the covariances

smaller, because travelling from points to points usually takes a non-neglectable

amount of time. In the following text, we propose two refinement methods to

solve these problems.

1. Variance Correction

For any edge e ∈ −→E , let
−→
Ce denote the set of edges satisfying ∀f ∈ −→Ce, f =

−−−−→
(uk, u) ⇔ e =

−−−−→
(u, uj). In other words, the common end point of all edges in

−→
Ce is the starting point of e, or the road segments in

−→
Ce have direct flows to the

road segment e. Assume e has a probability of ω−→
f,e

to accept a vehicle from road
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f at each cycle. The number of vehicles it accepts from f after a given number

of cycles follows a Binomial distribution. Recall that we have defined T as the

number of cycles in each sampling period. Using the Gaussian approximation

for Binomial distribution, the incoming flow from an edge f in
−→
Ce results in an

expected traffic count of

∀y ∈ I(e), E−→
f,y

(y) = T • ω−→
f,e

. (6.7)

For simplicity, assume all ω−→
f,e

carry the same value ωe for edge e, and flows

from all f ∈ −→Ce are independent. The expected total traffic count is the summation

of every individual expected count at Eq. 6.7, which is

∀y ∈ I(e), E(y) =
∑

f∈−→Ce

E−→
f,y

(y) = |−→Ce| • T • ωe. (6.8)

Since we already have a good approximation to the expected values using the

previous model, we estimate ωe as the value of E(y)/(|−→Ce| • t) with confidence.

We further approximate the variances as

∀y ∈ I(e), V ar(y) = |−→Ce| • Tωe(1− ωe) = E(y) • (1− E(y)

|−→Ce| • T
). (6.9)

In other words, the variance at a road segment is estimated using the expected

value, the length of a sampling period, and the number of incoming road segments.

2. Covariance Correction

We first consider a simple case of two points x, y on the same edge e, y being
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the down flow point of x. Their distance is defined using term D(−→x, y). Assume

all vehicles travel at a constant speed v and reach y from x in at most two sampling

periods. The traffic count at y during period t is given by the summation of two

parts. One is the number of vehicles leaving x in period t and arriving at y.

Another is the number of vehicles leaving x in period t− 1 but arriving in period

t. The value of traffic count is formally written as

X t =
T −D(−→x, y)/v

T
•X t +

D(−→x, y)/v

T
•X t−1. (6.10)

Let x′ be the random variable representing the previous sampling period of

x. Random variables x, x′ follow the same distribution but are assumed mutually

exclusive. The covariance of y and x is given by

Cov(y, x) = Cov(
T −D(−→x, y)/v

T
• x +

D(−→x, y)/v

T
• x′, x)

=
T −D(−→x, y)/v

T
• Cov(x, x). (6.11)

Since Cov(y, x) = Cov(x, y), we omit the arrow in D(−→x, y) and use the absolute

distance D(x, y).

The generalization of Eq. 6.11 to any two points is given by

Cov(y, x) =
T −D(x, y)/vx,y

T
• Cov′(y, x), (6.12)

where vx,y is the average speed between x and y, D(x, y) is the length of the short-

est path between x and y, and Cov′(y, x) is the covariance computed by Eq. 6.6.
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In a real street system, we recommend to use the speed limits to approximate vx,y.

6.4 Optimal Sensor Placement

Guitton et al. tackle this problem by formulating it as a dominating set problem

[29]. The scope of this method is limited because it does not utilize 1-to-n corre-

lations. Instead, we define a heuristic function and propose three algorithms for

minimization.

It is not possible to obtain the exact value of the objective function, since

computing ∆(Q) (Eq. 6.1) requires the complete sample set not available in the

sensor selection phase. We use the marginal covariance matrix COVU |Q defined

by Eq. 2.4 to approximate ∆(Q). Let function diag(M) denote the diagonal ele-

ments of matrix M . We have

∆(Q) ≈ h(Q) =
√

diag(COVU |Q), (6.13)

that is, ∆(Q) is approximately the average of the square roots of the diagonal ele-

ments in COVU |Q. Function h(Q) is the heuristic function. We use three methods,

greedy, m-random trial, and local search to minimize h(Q). As an example, we

discuss the algorithm using Eq. 6.2.

1. Greedy Algorithm

Start with an empty set Q. In every iteration, choose a point b ∈ V − Q such

that h(Q + {b}) is minimal. Terminate the process when reaching the desired
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number of sensor nodes η.

2. m-Random Trial Algorithm

For each of m trials, randomly generate a placement Q with η sensor nodes.

Select the placement with the lowest h(Q) value.

3. Local Search Algorithm

Start with a valid placement achieved by the previous methods. In each iter-

ation, select a neighborhood of new placements that exchange any pair of points

in Q and Y . Choose the neighbor resulting in the maximal reduction in h(Q) and

use it as the inputting solution for the next iteration. Terminate the process when

no more improvement is possible or reaching a given number of iterations.

6.5 Experimental Result

We conduct the experiments in the GLD simulator [71]. It uses block as the unit

for distance and assumes all vehicles travel at a constant speed of 2 blocks per

cycle. Vehicles are generated at traffic sources. Each traffic source l is associated

with a spawning frequency of pl, which is the probability of generating a vehicle

in each cycle. The distribution of traffic counts at the sources in each sampling

period (T cycles) is approximately Gaussian. We have

∀l ∈ As, Zl ∼ N(Tpl, T pl(1− pl)). (6.14)
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Figure 6.2: A test map with 72 points of interest distributed at each end of a road
segment. The numbers in the map show the point id.

During our simulation, we set T = 50 and vary the spawning frequencies in

[0.1, 0.4] at different sources.

Each source is also associated with a set of destination frequencies, which is

defined as the percentage of vehicles travelling to each destination. We use them

as the value for q−→
l,k

in Eq. 6.3 and Eq. 6.5 for deriving the traffic model. For each

road segment e, we select its two ends as the points of interest I(e). A sample

setup is shown in Fig. 6.2.

We conducted simulations in each map and collect 3000 samples. We ran-

domly choose 70% of the samples as the training set and use the remaining 30%

as the test data set.

We first compare the prediction accuracy of the Gaussian model based method
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Figure 6.3: The average RMS prediction error of the Gaussian based and coeffi-
cient based methods. The average number of vehicles is 15.1 per 50 cycles.
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to the coefficient based method introduced in [29]. The models were acquired

based on machine learning methods. The experiments were conducted in a road

map with 72 points of interest (Fig. 6.2). For each method, we systematically

test different number of deployed sensors, i.e., |Q| = 1...64. We randomly pick

30 measured points for each number and show the average prediction error on

the unmeasured points in Fig. 6.3. In general, the prediction error reduces as

we add more measured points. The error is around 25% when we deploy one

sensor, and reduces to 13% when we deploy 64 sensors. We have two further

observations. 1) When the size of Q is small, some unmeasured points do not

have any strongly correlated observations. Adding measured points usually results

in a dramatic improvement in the accuracy of coefficient based method. When

the size of Q is large, such improvement is getting small since most unmeasured

points already carry strong correlations to some points in Q. 2) The Gaussian

method outperforms the coefficient based method in all test cases, with a linearly

decreasing curve as the size of Q increases. This shows that the average variance

of the posterior distribution reduces at an almost constant step as we add more

points of observation to Q.

Next, we compare the model acquired through the analytical method to the

model trained by the machine learning based method, and study the prediction re-

sults of the analytical model. In the same maps, we compare the analytical model

to the model acquired through maximal likelihood learning. We first examine

them in a simple map with 16 points of interest. The analytical model is a close

approximation to the learned model, and achieves predictions with similar level
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Figure 6.4: The expected values of random variables acquired through the ana-
lytical method (approach a) and the machine learning based method (approach
b).
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of accuracy. We further conduct the comparison in a large map with 84 points of

interest (Fig. 1.3). Figure 6.4∼6.6 compare the resulting means, standard devi-

ations, and covariance matrix of the analytical model and the learned model. In

general, the estimations are close. Most problems occur in the approximations of

covariances with underestimations. They are however not significant threats to the

prediction accuracy, because 1) the number of occurrences is small, 2) the largest

errors are only around half of the variances, and 3) the underestimated points au-

tomatically get lower weights in the prediction formula (Eq. 2.3), reducing the

effects of underestimations. Figure 6.7 shows that using the analytical model and

the Gaussian based method, we achieve prediction accuracy close to the Gaussian

based method with learned models, and higher than the coefficient based method

with learned models when the size of Q is small or large.

In the last set of experiments, we compare the greedy, m-random trial and the

local search methods for sensor placement. m is set to 100 in the m-random trial

method. The results are summarized in figure 6.8. The greedy algorithm out-

performs the 100-random trial method, only leaving small spaces for local search

algorithm to improve. We have also noticed in the experiments that good place-

ments are usually sparsely distributed (e.g., Fig. 6.1). This is because nearby

points usually share high covariances.
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Chapter 7

Conclusion

Leveraging the spatial/temporal correlation between sensor data in wireless sen-

sor and mobile networks provides new means to protect data integrity, to detect

faulty sensor node, to track a subject, and to reduce sensor operating deployment

cost. Statistical inference plays an important roles in the design of algorithms in

wireless sensor and mobile networks.

We have introduced Cobra as a new energy-efficient means to authenticate sen-

sor data, with energy savings of up to one magnitude lower than existing methods.

It also protects sensor networks from aggressive attacks by limiting the maximal

damage on data reliability. It is suitable for data collection sensor networks op-

erated in centralized manners. Most sensor network applications require only

approximated results and can be well-protected by Cobra. It is important to note

that Cobra is not designed for systems that require zero error. As an inference

based method Cobra inevitably introduces small error even when the attacks are
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not aggressive.

Based on a new proposed measurement mutual divergence, we have proposed

a method for distributed faulty sensor detection. The method is shown to achieve

detection accuracies close to 100% in most test cases. In addition, it does not

assume particular type of fault and can be used as a general measure for a number

of know fault types. It is also recommended for the systems where the type of fault

is unknown. As a fully distributed method, it significantly reduces communication

cost since the message exchange only happened between neighboring nodes and

detected faulty sensor’s readings do not need to be forwarded.

We have proposed SMART, a new system for simultaneously track mobile

subjects and acquire logic maps. SMART is shown to outperforms a competing

tracking method by 9 times and constructs logic maps up to 89% accurate simulta-

neously. SMART is also robust against sensing errors and automatically adapts to

floorplan changes. We believe SMART could extend the scope of location based

services from outdoor to indoor, and reduce the need for tedious manual data col-

lection in map construction.

We also study the statistical inference problems in traffic monitoring sensor

networks, where we derives analytical correlation models instead of relying on

machine learning based models. We show that the models are close estimations

to the learned models and also investigate a number of sensor placement methods.

The model derivation is based on original-destination matrix, which is available

and constantly updated in major U.S. urban areas. Out proposed method could

aid in reducing sensor placement costs and the cost in collecting training data
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necessary for the machine learning based models.
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