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EXAMINING THE PEDAGOGICAL CONTENT KNOWLEDGE AND PRACTICE OF 

EXPERIENCED SECONDARY BIOLOGY TEACHERS                                                       

FOR TEACHING DIFFUSION AND OSMOSIS  

Deanna M. Lankford 

Dr. Patricia M. Friedrichsen, Dissertation Supervisor 

ABSTRACT 

Teachers are the most important factor in student learning (National Research 

Council, 1996); yet little is known about the specialized knowledge held by experienced 

teachers. The purpose of this study was twofold: first, to make explicit the pedagogical 

content knowledge (PCK) for teaching diffusion and osmosis held by experienced 

biology teachers and, second, to reveal how topic-specific PCK informs teacher practice. 

The Magnusson et al. (1999) PCK model served as the theoretical framework for the 

study. The overarching research question was: When teaching lessons on osmosis and 

diffusion, how do experienced biology teachers draw upon their topic-specific 

pedagogical content knowledge? Data sources included observations of two consecutive 

lessons, three semi-structured interviews, lesson plans, and student handouts.  

Data analysis indicated five of the six teachers held a constructivist orientation to 

science teaching and engaged students in explorations of diffusion and osmosis prior to 

introducing the concepts to students. Explanations for diffusion and osmosis were based 

upon students’ observations and experiences during explorations. All six teachers used 

representations at the molecular, cellular, and plant organ levels to serve as foci for 

explorations of diffusion and osmosis. Three potential learning difficulties identified by 

the teachers included: (a) understanding vocabulary terms, (b) predicting the direction of 



xxii 

osmosis, and (c) identifying random molecular motion as the driving force for diffusion 

and osmosis. Participants used student predictions as formative assessments to reveal 

misconceptions before instruction and evaluate conceptual understanding during 

instruction. This study includes implications for teacher preparation, research, and policy. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 

CHAPTER ONE: INTRODUCTION 

 
Achieving scientific literacy became a major goal in science education with the 

launch of Sputnik in 1957 (Bybee, 1997; DeBoer, 2000; Hurd, 1998). In the 1990s, 

“scientific literacy was the single term expressing the purposes of science education” 

(Bybee, 1997, p. 64). DeBoer (2000) noted the importance of science education for the 

general population in the United States in terms of “the public’s attitude toward science 

and their ability to serve as thoughtful critics of the role of science in society” (p. 584). 

Thus, as the world becomes increasingly reliant upon science, mathematics, and 

technology, there is genuine concern about the quality and effectiveness of science 

education in the U.S. (American Association for the Advancement of Science, 1993; 

Bybee, 1997; Hurd, 1998; Phillips, 2007).  

When students fail to develop a basic understanding of scientific concepts and the 

processes and methods of science, they perceive science as separate from their lives. This 

is especially troubling in a world increasingly reliant upon science and technology; thus, 

the scientific literacy of the American populace is of great concern. According to the 

National Science Board (2004), the average citizen in the United States understands very 

little about science. The United States must significantly increase the scientific and 

mathematical competency among K-12 students to ensure an adult population able to 

understand and reach consensus on policies addressing the world’s most pressing 

problems (National Science Board [NSB], 2004; Phillips, 2007).  

Concerns about the quality and effectiveness of science education in the United 

States are mounting as American youth fall behind their international peers in other 

nations in terms of knowledge of science and technology (Bybee, 1997; DeBoer, 1991; 
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DeBoer, 2000; NSB, 2004; Phillips, 2007). There is a significant body of evidence 

indicating American youth are ranked well below the highest achieving countries 

(Phillips, 2007; Trends in International Mathematics and Science Study (TIMSS), 2003, 

2007). International data on students’ knowledge of science collected from Trends in 

International Mathematics and Science Study (TIMSS) indicates that U.S. eighth-grade 

students’ performance (see Table 1) was above the international average for both the 

2003 and 2007 TIMSS (National Center for Educational Statistics [NCES] 2003; 2007); 

however, this picture is not as bright as it seems.  

Table 11, 2. U.S. fourth and eighth graders performance in science on the 2003 and 2007 
TIMSS 
 

2003 Results  2007 Results 
Eighth grade Eighth grade 

U.S. eighth grade students scored 527, on average, 
exceeding the international average of 473. 

U.S. eighth-graders scored 520, on average, in 
science, which was higher than the TIMSS scale 
average of 500. 

The average eighth-grade science scores exceeded 
eighth-grade science scores in 32 countries, fell 
below that of 6 countries (Asian and European), and 
was not measurably different from scores in 5 
countries. 

The average U.S. eighth-grade science score 
exceeded that of science scores in 35 countries, was 
lower in 9 other countries (Asian and European) and 
not measurably different from 3 countries. 
 

 
It is important to note that in 2003, eighth graders in the United States scored 

above the international average in science achievement by an average of 54 points 

(NCES, 2003); while in 2007 eighth graders in the United States were only able to 

maintain an average lead of 20 points above the international average score for science 

(NCES, 2007). Another concerning statistic is that U.S. eighth graders were out 

performed by their peers in five other countries in 2003; while in 2007, U.S. eighth  

 

 

_________________________ 

 

1Note: From “Highlights from the Trends in International Mathematics and Science Study (TIMSS) 2003.”                    
By National center for Educational Statistics (2005). Washington D.C.: Retrieved on August 10, 2009 from 
http://nces.ed.gov/pubs2005/timss03/science1.asp  
 
2Note: From “Highlights from TIMSS 2007: Mathematics and Science Achievement of U.S. Fourth- and                 
Eighth-Grade Students in an International Context.” By National Center for Educational Statistics. Washington D.C.: 
Retrieved on August 10, 2009 from http://nces.ed.gov/pubs2005/timss03/science1/asp  

http://nces.ed.gov/pubs2005/timss03/science1.asp�
http://nces.ed.gov/pubs2005/timss03/science1/asp�
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graders fell below nine other countries (NCES, 2003, 2007). Overall, the U.S. 

performance in science was significantly lower than that of many Asian and European 

countries including Singapore, Republic of Korea, Hong Kong, Taipei, Japan, 

Netherlands, Hungary, and the Flemish portion of Belgium.  

Another significant concern is the low number of U.S. youth preparing for careers 

in science, technology, engineering, and mathematics (STEM); only 16 percent of all 

postsecondary degrees in the United States are related to STEM fields and many of these 

postsecondary degrees are awarded to foreign students (Phillips, 2007). Linda 

Froschauer, former president of the National Science Teachers Association (NSTA), 

reported the number of engineering degrees awarded in the United States has decreased 

by 20 percent from 1985. South Korea, a nation with approximately one-sixth of the U.S. 

population, graduates as many engineers as the United States. This is a disturbing trend as 

15 of the 20 fastest growing occupations projected for 2014 require significant science 

and mathematics knowledge (Froschauer, 2006).  

Students develop their attitudes toward science and their understanding of science 

throughout their K-12 educational experiences. Therefore, teachers are a critical factor in 

student learning (Committee on Science and Mathematics Teacher Preparation [CSMTP], 

2001; King & Newman, 2000). Teachers control the learning environment and ultimately 

determine what is taught, when it is taught, and how it is taught (Abell, 2007; CSMTP, 

2001; King & Newman, 2000). To be successful, teachers must have strong subject 

matter knowledge, understand the nature of science, be able to translate scientific 

concepts into meaningful learning experiences for their students, and highlight 
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applications for science within society and in the lives of students (Gess-Newsome, 

1999).   

The National Science Education Standards (NRC, 1996) describes effective 

science learning as occurring when learners are actively engaged in science; making 

connections between scientific concepts; applying their knowledge of science to problem 

solving; supporting claims with evidence; and reflecting upon their methods, processes, 

and conclusions. This description of science learning requires that science teachers have a 

deep and flexible understanding of science subject matter and scientific concepts, as well 

as an understanding of students as learners, knowledge of instructional strategies, 

representations, assessment strategies, and curricular resources (Darling-Hammond, 

2008).  

Schwab (1971) described teacher knowledge in practical terms as the wisdom of 

practice developed through classroom experience. Feiman-Nemser (2001) notes that 

knowledge for teaching develops with experience as teachers learn to blend their 

knowledge of students as learners with their knowledge of content to make concepts 

understandable. Verloop, Van Driel, and Meijers (2001) posit teacher knowledge is 

closely related to individual experiences and contexts and, therefore, unique to the 

individual. Successful teachers are able to transform their knowledge of scientific 

concepts into a form of knowledge that can be understood by learners by integrating their 

knowledge of learners, representations, instructional strategies, assessments, and 

curricular resources to create meaningful learning opportunities that make connections 

between lesson content and students’ experiences (Shulman, 1987). To be effective, 

teachers need to (a) activate prior knowledge, (b) predict student difficulty with content, 
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(c) adjust teaching approaches and strategies to better address diverse student learning 

needs, (e) make connections between concepts, (f) identify relevant connections between 

content and student lives, (g) provide opportunities for students to assess their learning, 

(h) use feedback on formative assessments to inform instruction, and (i) align 

instructional goals and methods with the topics being taught (Barnett & Hodson, 2001; 

Doyle, 1985; Lee, Brown, Luft, & Roehrig, 2007; Lee & Luft, 2006; Magnusson et al. 

1999; Treagust, 1987; van Driel, Verloop, & de Vos, 1998).  

Shulman (1987) identified pedagogical content knowledge (PCK) as a unique 

form of knowledge expressly for teaching. He described PCK as including subject matter 

knowledge, knowledge of potential student learning difficulties and students’ prior 

knowledge for specific concepts, as well as the most effective models, analogies, 

illustrations, explanations, and investigations to make the concept understandable for 

students. “In a word, the ways of representing and formulating the subject that make it 

comprehensible to others” (Shulman, 1986, p. 9).  

Grossman (1990) expanded upon Shulman’s (1986) ideas to emphasize four 

general areas of teacher knowledge including: subject matter knowledge; general 

pedagogical knowledge; knowledge of context; and the core of Grossman’s model, 

pedagogical content knowledge (PCK). Grossman (1990) defined PCK as consisting of 

four components: (1) knowledge and beliefs about the purposes and goals for teaching 

science, (2) knowledge of students’ understanding of science, (3) knowledge of science 

curricula and curricular resources, and (4) knowledge of representations and instructional 

strategies.  
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 Magnusson, Krajcik, and Borko (1999) build upon the work of Grossman (1990) 

to conceptualize pedagogical content knowledge (PCK) as consisting of five components:            

(1) teacher orientation for science teaching, (2) knowledge of students understanding of 

science, (3) knowledge of representations and instructional strategies, (4) knowledge of 

assessment, and (5) knowledge of curriculum (p. 96). Topic-specific PCK is described by 

Magnusson et al. (1999) as the knowledge representations and instructional strategies 

useful for teaching a specific topic in science, the knowledge of potential student learning 

difficulties and prior knowledge associated with the topic, knowledge of the most 

effective assessment strategies to reveal students’ understanding of the topic, as well as 

knowledge of the science curriculum and curricular resources. Thus, PCK necessary for 

teaching specific topics in science would be unique to that topic.  

Abell (2008) conceptualizes PCK to include four important characteristics: (1) 

PCK includes discrete categories of knowledge applied synergistically during teaching, 

(2) PCK is dynamic and continually changing as teachers gain teaching experience, (3) 

knowledge of subject matter is central to PCK, and (4) PCK supports the transformation 

of subject matter knowledge into a form of knowledge understandable for students. PCK 

is not only about knowledge the teacher possesses it is also highly reflective of the 

quality of teacher knowledge, teaching experience, and the manner in which the 

components of PCK are integrated to create effective learning experiences (Abell, 2008).  

Rationale for the Study 

Reform-minded science teachers actively engage students in a way that prepares 

students to: apply scientific principles and processes to decision making; understand the 

natural world; and consider careers in science, technology, engineering, or mathematics 
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(NRC, 1996; Texley & Wild, 2004). In her chapter on science teacher knowledge, Abell 

(2006) noted that “understanding the development of teacher subject matter knowledge 

and PCK is critical for our success in science teacher education” (p. 1133). Historically, it 

has been the role of science teacher educators to provide insight into the what, why, and 

how of teaching for prospective and novice teachers (DeBoer, 2000). In order to 

understand the knowledge needed for teaching, it is important to investigate the nature of 

PCK held by experienced teachers and how that knowledge informs their teaching.   

What is largely missing from the literature is research into the knowledge and 

beliefs held by experienced teachers and how their beliefs about teaching and learning, 

and their knowledge of learners, instructional strategies and representations, curriculum, 

and assessment are drawn upon during teaching and reflecting. Examining experienced 

teachers’ knowledge for teaching can inform the design of teacher education programs. A 

deeper understanding of the knowledge experienced teachers draw upon when teaching 

and planning provides important insight for science teacher educators as they define goals 

and design programs and coursework for prospective teachers (Abell, 2008).  Learning to 

teach does not mean learning to survive within the classroom; it means learning to 

systematically organize knowledge so that it can be drawn upon and applied to new 

situations (Berliner, 2001). Unfortunately, experienced teacher knowledge is not well 

documented. Loughran, Berry and Mulhall (2006) noted: “A real and serious issue in 

teaching is the ability to capture, portray and share knowledge of practice in ways that are 

articulable and meaningful to others” (p. 15).  

Capturing and portraying the PCK of experienced science teachers takes on 

greater urgency due to the current shortage of qualified and certified science teachers. In 
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response to this shortage, many colleges and universities have established alternative 

certification programs (ACP) designed to prepare post baccalaureate individuals for a 

career as science teachers (Feistritzer, 2005; Ingersoll, 2006; Johnson, Birkeland, & 

Peske, 2003). Research on alternative teacher certification programs (ACP) identifies the 

internship and mentor teacher as one of the most influential and meaningful aspects of 

teacher preparation (Darling-Hammond, 2000). The mentor teacher plays a key role by 

modeling accurate and effective representations and instructional strategies, providing 

opportunities for the prospective teacher to engage students in learning activities, and 

socializing the prospective teacher within the professional teaching community (Darling-

Hammond, 2000). Therefore, it is critical to understand the knowledge for teaching held 

by experienced teachers serving as mentors.  

Teaching is a complex and uncertain enterprise; teachers are required to 

continually adjust their instructional strategies and representations to ensure student 

learning and effectively meet student needs (Barnett, & Hodson, 2001; Park & Oliver, 

2008b). Clearly, no simple set of instructions exists to inform and prepare prospective 

teachers for the challenges of planning and teaching (Barnett, & Hodson, 2001). Models 

of successful teaching practice have the greatest potential to inform teacher preparation 

programs; such models can be developed by investigating and analyzing the practice of 

experienced teachers (Barnett, & Hodson, 2001; NRC, 1997; Sternberg & Horvath, 

1995). Constructing an understanding of the nature of teacher knowledge and how 

components of teacher knowledge are drawn upon when teaching can only be 

accomplished through an investigation of experienced teachers (Westerman, 1991; 

Berliner, 1986; Shulman, 1986).  
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Prospective teachers lack specialized knowledge for teaching (Grossman, 1990; 

Magnusson, Krajcik, & Borko, 1999; Shulman, 1987) and, as a result, rely upon their 

own experiences as learners during planning and teaching. The role of the mentor teacher 

is to reveal prospective teacher’s thinking and stimulate critical analysis of their ideas 

about teaching, learning, and learners; ultimately making connections between lesson 

content, appropriate representations, instructional strategies, curricular sequence, and 

assessment (Siebert, Clark, Kilbridge, & Peterson, 2006; Stanulis & Russell, 2000). 

Siebert et al. (2006) posit effective mentor teachers implement strategies to reveal 

prospective teacher’s conceptions of teaching, learning, and learners and to identify and 

address potential difficulties with learning to teach.  

The overarching goal of this study is to investigate the topic-specific PCK held by 

experienced biology teachers serving as mentors for prospective teachers in an 

Alternative Certification Program (ACP) during a year-long mentored internship. I 

selected osmosis and diffusion as the lesson topic for all study participants for several 

reasons. First, diffusion and osmosis are key concepts within biology and essential 

processes within all living cells. Second, high school students often find diffusion and 

osmosis to be challenging concepts because an understanding of these concepts requires a 

basic understanding and application of concepts in physics, chemistry, and biology 

(Odom & Barrow, 2007). To develop a conceptual understanding of diffusion and 

osmosis, students must visualize the movement of individual particles and predict the 

direction of movement at the cellular level (Friedrichsen & Pallant, 2007). Third, 

diffusion and osmosis are challenging topics for high school students; therefore, these 

concepts will also be challenging topics for teachers. Examining the practice of 
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experienced teachers while teaching diffusion and osmosis will reveal the nature of 

teacher topic-specific PCK and how their PCK informs their teaching.  

Research Questions 

This study addressed the central research question: “When teaching lessons on 

osmosis and diffusion, how do experienced biology teachers draw upon their topic-

specific pedagogical content knowledge?” 

Sub-Research Questions 

There are a number of sub-questions that arise from the central research question. 

The sub-questions which guided the study are:  

1. What are the nature and sources of the experienced biology teachers’ orientation 

to science teaching?  

2. What is the nature of experienced biology teachers’ knowledge of representations 

and instructional strategies and how does this knowledge inform their teaching 

practice?  

3. What is the nature of experienced biology teachers’ knowledge of students’ 

understanding of science and how does this knowledge of science learners inform 

their teaching practice?  

4. What is the nature of experienced biology teachers’ knowledge of formative 

assessment strategies and how does this knowledge inform their teaching 

practice?  

5. What is the nature of experienced biology teachers’ knowledge of biology 

curriculum and how does this knowledge inform their teaching practice?  
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6. In what ways do experienced teachers integrate the topic-specific components of 

their pedagogical content knowledge when teaching osmosis and diffusion? 

Theoretical Framework 

Teachers differ from content experts, such as scientists, not in terms of their 

content knowledge but by the way in which teachers transform their content knowledge 

to support their teaching and make complex and abstract concepts understandable for 

students (Cochran, 1997). This transformation of knowledge results from the integration 

of the various components of PCK to generate representations and design instructional 

strategies to engage students and make concepts understandable for students. Teachers 

must also implement assessment strategies that will effectively gauge students’ 

understanding, encourage students’ reflection, and inform next steps in teaching. When 

teaching concepts such as osmosis and diffusion the representations, instructional 

strategies, and assessments are designed specifically for that content and are, therefore, 

topic-specific. However, the knowledge required to teach these concepts relies upon more 

than knowledge of content and topic-specific representations, instructional strategies, and 

assessments; teachers must also understand students as learners and be aware of students’ 

misconceptions and potential learning difficulties associated with content. Thus, PCK is a 

necessary knowledge base for effective teaching (Park & Oliver, 2007). The National 

Board for Professional Teaching Standards (NBPTS) stresses the importance of PCK 

within the five core propositions defining what teachers should know and be able to do 

(NBTS, 2004). Teaching for understanding is enhanced with classroom experience and 

displayed through connections made by the teacher between the prior knowledge, 

experience of learners, and lesson content (Berliner, 1988). PCK is not easily revealed it 
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is an internal construct through which teachers codify their knowledge of content, 

students, instructional strategies, assessment, and curriculum into a retrievable form of 

knowledge for application to new challenges (Loughran, Mulhall, & Berry, 2004). In the 

following section I describe the components of teacher knowledge and concepts related to 

osmosis and diffusion.   

Knowledge for Teaching Held by Experienced Teachers 

A recurrent theme in education literature is that the specialized knowledge 

teachers acquire through classroom practice is similar to the unique knowledge acquired 

through other practice driven professions such as medicine or law (Lee & Luft, 2007). 

The unique knowledge base that teachers possess is developed through classroom 

experience and allows teachers to engage in pedagogical reasoning and decision making 

during planning and instruction to promote and support student learning (Lee, Brown, 

Luft, & Roehrig, 2007; Lee & Luft, 2006; Shkedi & Laron, 2004; Van Driel, et al. 1998). 

Barnett and Hodson (2001) characterize teacher knowledge as originating from both 

internal and external sources: internal sources include reflections upon experiences with 

students, parents, and colleagues; external sources include subject matter knowledge and 

contextual knowledge of the district, school, as well as, state and national standards.  

Teacher knowledge is not a solitary construct which resides only within the 

individual but tends to be acquired and developed through professional socialization 

(Barnett & Hodson, 2001; Loughran et al. 2006). In essence, teachers form a ‘collective 

knowledge’ developed through discussions of experiences, problems, and solutions 

taking place during professional development opportunities, at teacher meetings, in the 

plan room, and in the hallway (Barnett & Hodson, 2001). Shubert (1992) described this 
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collective knowledge of teaching as teacher lore. Teachers construct new knowledge that 

is based upon their understanding of teaching, experiences in the classroom, and identify 

what does and does not work (Schwarz & Alberts, 1998).  Good teachers have a strong 

subject matter knowledge coupled with an understanding of their students and effective 

representations and instructional strategies. Schwarz and Alberts (1998) posit that 

teachers continue to learn on the job with their knowledge grounded in daily experience. 

Collaboration with peers motivates teacher growth by maintaining a focus on teaching 

practice, students’ learning, and content knowledge as experiences are shared with 

colleagues (Schwarz & Alberts, 1998).  

Teacher education programs such as Teach for America (TFA) maintain that 

individuals who are well prepared in content knowledge can move into the classroom 

with minimal training and be effective teachers (Costigan, 2005). Ball (1990) posits that 

without a deep understanding of subject matter content, teachers would be unable to 

generate accurate explanations or representations on the fly in response to student 

questions. Subject matter knowledge is critical to good teaching; teachers must be able to 

identify learner misconceptions and without a strong knowledge base, identifying and 

addressing learner misconceptions would not be possible (Magnusson, et al. 1999; van 

Driel, Verloop, & de Vos, 1998; Veal & MaKinster, 1999).  However, Zeidler (2002) 

suggests that subject matter knowledge alone is insufficient for good teaching and that 

experience in the classroom greatly influences teachers’ ability to transform their subject 

matter knowledge into a form of knowledge more likely to be understood by learners. 

Cochran, King, and DeRuiter (1991) noted clear distinctions between a science teacher 

and a science content specialist or scientist: 
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Teachers are different from biologists, historians, writers or educational 
researchers, not necessarily in the quality or quantity of their subject matter 
knowledge, but in how that knowledge is organized and used. For example, 
experienced science teachers’ knowledge of science is structured from a teaching 
perspective and is used as a basis for helping students to understand scientific 
concepts. A scientist’s knowledge, on the other hand, is structured from the 
research perspective and is used as a basis for the construction of new knowledge 
in the field (p. 5).  
 

Darling-Hammond (2000) described an effective teacher as one who learns from teaching 

rather than one who has finished learning how to teach. Bond, Smith, Baker, and Hattie 

(2000) asserted that experienced teachers hold extensive knowledge of teaching, learners, 

and learning including deep knowledge of subject matter and effective representations; a 

greater repertoire of instructional strategies; and strong ability to read cues from learners. 

Berliner (2001) noted that the time required for the development of expertise differs 

within each field but estimated that a reasonable time for expertise to develop in teaching 

appears to be 5 years or more. Therefore, all of the teacher participants in this study have 

taught for a minimum of five years with an overall average teaching experience of 13 

years.   

Models of Teacher Knowledge 

Shulman (1986) introduced a model of teacher knowledge which identified a 

specialized form of knowledge unique to teachers and teaching, distinguishing teachers 

from subject matter specialists. Shulman’s (1986) model identified three general domains 

of teacher knowledge as content knowledge, pedagogical content knowledge (PCK), and 

curricular knowledge. Content knowledge includes knowledge of substantive structures, 

the organization of basic principles, laws, and concepts within the discipline, and 

knowledge of syntactic structures, the process through which new knowledge is 

generated and validated (Schwab, 1978; Shulman, 1986). Pedagogical content knowledge 
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(PCK), the second domain of teacher knowledge in Shulman’s (1986) model, exists at the 

intersection of content knowledge and pedagogy. Shulman (1986) noted that as PCK 

develops, teachers transform their subject matter knowledge to enhance students’ 

understanding through the most powerful analogies, accurate representations, and 

effective instructional strategies. Shulman (1986) posited, “If teachers were to be 

successful they would have to confront both issues (of content and pedagogy) 

simultaneously, by embodying “the aspects of content most germane to its teachability” 

(Shulman, 1986, p. 9). Curricular knowledge, the third aspect of teacher knowledge, 

includes knowledge of programs, resources, and instructional materials designed for 

teaching specific topics (Shulman, 1986). Curricular knowledge supports the formulation 

of connections between topics to build upon students’ prior knowledge and provide 

necessary scaffolding for future learning.  

Shulman (1987) posited that “PCK blends content and pedagogy into an 

understanding of how particular topics, problems, or issues are organized for instruction, 

represented, and adapted to a diverse student audience” (p. 8). Knowledge of subject 

matter was perceived by Shulman (1986) as critical to teaching because teachers must 

have a deep understanding of content including both substantive and syntactic structures 

to formulate accurate explanations and identify students’ misconceptions. But Shulman 

(1986) noted that knowledge of teaching included more than subject matter knowledge. 

He laid the foundation for the concept of a professional knowledge base for teaching by 

identifying multiple components beyond subject matter knowledge. Shulman (1987) 

posited that the development of teacher knowledge involves a dramatic shift in teacher 

thinking from a professional understanding of science content to an awareness of new 
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ways in which to organize, represent, and engage students in learning science. This 

professional knowledge of teaching informed the transformation of content knowledge 

into a form of knowledge that could be understood by students.  

Grossman’s (1990) model of teacher knowledge (see Figure 1) expands upon 

Shulman’s ideas and includes additional detail. Grossman’s (1990) model emphasizes 

four general areas of teacher knowledge: (1) knowledge of subject matter (including 

syntactic and substantive structures), (2) general pedagogical knowledge, (3) knowledge 

of context, with the centerpiece identified as (4) pedagogical content knowledge (PCK).  

Grossman’s (1990) model of teacher knowledge is shown below in Figure 1. 

Subject Matter Knowledge  General Pedagogical Knowledge 
Syntactic 
Structures 

 

Content 
 
 

Substantive 
Structures 

 

 Learners & 
Learning 

 

Classroom 
Management 

Curriculum 
& Instruction 

 

 

 

 
A description of the knowledge domains within the Grossman (1990) model follows: 

• General pedagogical knowledge: This general form of teacher knowledge references 
the knowledge related to the organization of the classroom, curriculum, students, and 
materials. Classroom management is a key focus of this form of knowledge. 

 
 
 
 
 

 

PCK 
Conceptions of Purposes for Teaching Subject Matter 

Knowledge of Student’s 
Understanding 

Curricular Knowledge Knowledge of 
Instructional Strategies 

      KNOWLEDGE OF CONTEXT 
         Students 

Community District School 

Figure 1: Grossman (1990) model for pedagogical content knowledge1 

 

____________________ 
 
1Note: From The making of a teacher: Teacher knowledge and teacher education by P.L.Grossman, 1990, p. 5.           
New York: The Teachers College Press. 
 
 



17 

• Subject matter knowledge: Subject matter knowledge for science teaching includes 
knowledge of content and knowledge of both syntactic and substantive structures. 
This form of knowledge has the potential to strongly influence how teachers represent 
content to students and design learning experiences and strategies to support students’ 
learning. 

 
• PCK: Grossman (1990) identifies three components of knowledge as PCK including 

conceptions of purposes for teaching subject matter, knowledge of students, 
instructional strategies, and curriculum, thus, expanding Shulman’s (1986) concept of 
PCK.  

 
• Knowledge of context: Grossman (1990) identifies knowledge of educational context 

as the knowledge of the community, district, school, students, expectations, and 
constraints.  Teachers draw upon their contextual knowledge to adapt general content 
to their students and to the demands of the school. 

 
The Grossman (1990) model incorporates conceptions of purposes for teaching 

subject matter, knowledge of students as learners, knowledge of curriculum, and 

knowledge of instructional strategies as PCK and identifies knowledge of context, 

content, and general pedagogical knowledge as components of the model which 

contribute to and influence teachers’ PCK. It is important to note that the arrows between 

the domains of teacher knowledge in the Grossman (1990) model indicate the reciprocal 

nature of the model in that these knowledge domains influence one another and create a 

complex and interactive form of knowledge unique to teaching. Sources of teacher 

knowledge identified by the Grossman (1990) model include    (a) observation of 

experienced teachers, (b) education within the context of a specific discipline (e.g., 

biology, chemistry, etc.), (c) methods courses during teacher education, and (d) 

classroom teaching experience.  

The models of teacher knowledge proposed by Magnusson, Krajcik, and Borko 

(1999) expanded upon the earlier models of teacher knowledge proposed by Shulman 

(1987) and Grossman (1990). The first model of teacher knowledge proposed by 
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Magnusson et al. (1999) identifies the relationships among the domains of teacher 

knowledge which include: (1) subject matter knowledge (both substantive and syntactic 

structures), (2) general pedagogical knowledge, and (3) knowledge of context, and the 

centerpiece of teacher knowledge (4) pedagogical content knowledge (PCK). Magnusson 

et al. (1999) argue that subject matter knowledge, pedagogical knowledge, and 

knowledge of context strongly influence the pedagogical content knowledge held by the 

teacher. Thus, the model indicates the important influence of subject matter knowledge, 

pedagogical knowledge, and knowledge of context in shaping teacher PCK. The 

Magnusson et al. (1999) model of PCK is shown in Figure 2. 
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____________________ 
 
2Note: From Nature, sources, and development of pedagogical content knowledge for science teaching (p.99), by S. 
Magnusson, J. Krajcik, & H. Borko, 1999. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining Pedagogical 
Content Knowledge. Boston, MA: Kluwer. 
 

Figure 2: Magnusson et al. (1999) model of teacher knowledge 
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The model of teacher knowledge shown in Figure 2 indicates PCK is influenced 

by the knowledge and beliefs about subject matter, general pedagogy, and context. Next, 

Magnusson et al. (1999) elaborate on the central components and further delineate 

categories within PCK as shown in Figure 3. 

 

The Magnusson et al. (1999) model of PCK (see Figure 3) is similar to the 

Grossman (1990) model with two modifications: (1) conception of purposes has been 

changed to orientation toward science teaching; and (2) knowledge of assessment has 

been added as a component of PCK. Thus, Magnusson et al. (1999) incorporate “five  
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3Note: From “Nature, sources, and development of PCK for science teaching.” By S. Magnusson, J. Krajacik, 
& H. Borko, 1999, p.99. In J. Gess-Newsome & N.G. Lederman (Eds.). Examining PCK: The construct and 
its implications for science education. Boston, MA: Kluwer Academic Press. 
 
 

Figure 3: Magnusson et al. (1999) model of PCK 
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components into their PCK model including: (a) orientations toward science teaching, (b) 

knowledge and beliefs about science curriculum, (c) knowledge and beliefs about 

assessment in science, (d) knowledge and beliefs about students’ understanding of 

specific science topics, and (e) knowledge and beliefs about instructional strategies for 

teaching science” (p. 97). 

Magnusson et al. (1999) posited the orientation to teaching science is central to 

PCK as the lens through which all components of PCK are understood, interpreted, and 

integrated resulting in a unique form of knowledge held by teachers. The model depicts 

PCK as the result of “transformation of knowledge of content, pedagogy, and context” 

and indicates the resulting knowledge can spur development of the other components of 

PCK in turn (Magnusson et al. 1999, p.96). An explanation of the PCK components 

included in the Magnusson et al. (1999) model of teacher knowledge follows: 

• Orientation to teaching:  Magnusson et al. (1999) describe orientation to teaching 
science as “the knowledge and beliefs possessed by teachers about the purposes and 
goals for teaching science at a particular grade level” (p. 97). The orientation that the 
teacher has for teaching science is a way of conceptualizing science teaching and 
learning. Teacher orientation acts as a “conceptual map” guiding decisions about 
learning objectives, implementation of curricular materials, and evaluation of 
students’ learning (Magnusson et al. 1999, p. 97)  

 
• Knowledge of science curricula: Curricular knowledge references teacher 

understanding of the goals and objectives for student learning and the scope and 
sequence of the scientific concepts to be taught. Teacher knowledge of curriculum 
consists of two categories: (a) the mandated goals and objectives and (b) specific 
curricular programs, resources, and materials (Magnusson et al. 1999). 

 
• Knowledge of students’ understanding of science: This component of PCK includes 

teacher knowledge of the requirements for student learning of specific scientific 
concepts and potential learning difficulties student may encounter when learning the 
concept(s).  

 
• Knowledge of instructional strategies: General teaching strategies such as the 

learning cycle, which have broad application in teaching within a scientific discipline 
(e.g., biology, chemistry, physics, etc.) are included in this component of PCK, as 
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well as topic-specific strategies including ways to represent concepts (models, 
diagrams, pictures, tables, and/or graphs) and engage students with instructional 
strategies (investigations, experiments, demonstrations, simulations, problems or 
examples) to facilitate student learning of specific concepts in science (Magnusson et 
al. 1999).  

 
• Knowledge of assessment:  This component of PCK consists of (a) knowledge of the 

dimensions of science learning important to assess and (b) knowledge of assessment 
strategies and methods through which students’ learning can be assessed (Magnusson 
et al. 1999). Methods of effective assessment include informal, formative, and 
summative evaluations implemented to reveal student understanding implemented to 
assess students’ understanding of scientific concepts.   

 
The Magnusson et al. (1999) model of PCK underscores the centrality of 

teachers’ orientations to science teaching. The orientation to science teaching is identified 

as the lens through which the other components (knowledge of students as learners, 

representations and instructional strategies, assessment, and curriculum) are interpreted 

and integrated to guide instructional decisions during teaching and planning. All five 

components of the Magnusson et al. (1999) model are influenced by teacher subject 

matter knowledge and the context in which teaching is taking place.  

The Magnusson et al. (1999) model of PCK for science teaching provided the 

conceptual framework for my study. For my research, I identified PCK as the 

transformation of subject matter knowledge, pedagogical knowledge, and contextual 

knowledge into a form of knowledge unique for teaching a specific topic. My description 

of PCK is in alignment with Shulman’s (1986) definition of PCK and the PCK models 

proposed by Grossman (1990) and Magnusson et al (1999).  

This study investigated the PCK held by experienced biology teachers for 

teaching a specific topic, osmosis and diffusion, to 10th grade high school biology 

students. I modified the Magnusson et al. (1999) description of orientations for science 

teaching based upon the mathematics education literature (Ernst, 1989; Handal, 2003) 
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and the science education literature (Koballa, Glynn, Upson, & Coleman, 2005). Science 

and mathematics education literature identifies sub-categories within teacher orientations 

to address perceptions of the teacher and student roles in teaching and learning, as well as 

ideal images of teaching (Ernst, 1989; Handal, 2003; Koballa et al., 2005). I describe 

orientation for science teaching to include five sub-categories: (1) goals and purposes for 

teaching; (2) perception of teacher role; (3) perception of student role; (4) ideal images of 

teaching; and (5) perception of science as a discipline. The expansion of the dimensions 

of the orientation to teaching science is based upon the work of Brown, Abell, and 

Friedrichsen (2008). By expanding the definition of teacher orientation to science 

teaching and focusing on the topic-specific nature of PCK held by experienced teachers, I 

believe that I can better understand the role of orientations to science teaching and the 

other components of PCK within the context of experienced teachers’ PCK for teaching 

osmosis and diffusion.  

Orientations to Science Teaching 

 The orientation toward science teaching represents the way in which the teacher 

conceptualizes science teaching (Magnusson et al. 1999). Hence, the orientation to 

science teaching serves as a conceptual map that guides instructional decisions during 

planning and teaching (Borko & Putnam, 1996).  

Constructivist orientation to science teaching. Constructivist perceptions of 

teaching and learning have had a strong influence on science education during recent 

years (Mayer, 2000). Driver, Asoko, Leach, Mortimer, and Scott (1994) describe the 

constructivist perception of teaching as engaging students as active participants in 

learning and supporting students as they make sense of new ideas by reflecting upon their 
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experiences with the phenomenon. The constructivist view of learning recognizes that 

students bring their knowledge of the world and how the world works into the classroom 

(Bybee,1997; Driver et al. 1994). To make sense of new ideas, students use their prior 

knowledge and experiences as well as the first-hand knowledge gained from explorations 

of phenomena. Teachers holding a constructivist orientation perceive students as active 

participants in learning and teachers as facilitators of learning (Fosnot, 1996). Through a 

constructivist lens, learning opportunities are designed to engage students first in 

explorations and, second, to construct knowledge from their experiences. Glynn, Yeany, 

and Britton (1991) describe the constructivist orientation to science teaching and learning 

as an active interaction between teachers and learners. It is through this interaction that 

students begin to make sense of their experiences with phenomena. Teachers with a 

constructivist orientation engage students in explorations of phenomena prior to 

introducing and explaining the phenomena to students. 

 Knowledge-transmission orientation to science teaching. Teachers with a 

knowledge-transmission orientation to science teaching maintain a teacher-centered focus 

in their instruction. Kember (1998) identified a teacher-centered orientation as focused on 

transmitting knowledge to students through lecture. Teachers holding a knowledge-

transmission orientation to science teaching implement instructional strategies focused on 

teacher-centered strategies, (e.g., lecture) with the teacher as leader and director of 

learning (Kember (1998).  

Taxonomy of PCK 

 Veal and MaKinster (1999) proposed a taxonomy of PCK (see Figure 3) to 

provide a categorization scheme for future studies of PCK development in teacher 



24 

education. The General Taxonomy of PCK (Veal & MaKinster, 1999) addresses the 

hierarchical relationships of three levels of teacher knowledge: (a) discipline-specific 

PCK (e.g., English, math, history, or science), (b) domain-specific PCK (e.g., physics, 

chemistry, geology, or biology), and (c) topic-specific PCK (e.g., genetics or evolution).  

Veal and MaKinster (1999) argue the General Taxonomy of PCK provides a 

classification system to more accurately identify and address distinctions among 

knowledge bases required for teaching content in each of the three levels acknowledged 

within the model. Thus, the model indicates PCK is unique to different levels of 

specificity. For instance PCK necessary for teaching science is different from that 

necessary for teaching mathematics. The nature of PCK for teaching biology is different 

from that necessary for teaching physics. The Veal and MaKinster (1999) taxonomy of 

PCK is shown below in Figure 4. 
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Teaching specific topics within a domain of science necessitates PCK which 

includes knowledge of potential student learning difficulties as well as knowledge of the 

most effective representations, instructional strategies, curricular resources, and 

assessments for teaching a specific topic. A discussion of the categories within the 

General PCK Taxonomy follows: 

• General PCK. The first level within this taxonomy is General PCK, identified as 
knowledge necessary for teaching disciplines or subject areas such as science. This 
level of PCK employs the processes, purposes, and content specific for teaching 
science. The learning cycle would be an example of general PCK.  
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Figure 4: Veal and MaKinster (1999) hierarchical model of teacher knowledge4. 

____________________________ 
 

4Note: From “PCK taxonomies” by W.R.Veal and J.G. MaKinster, 2001, Electronic Journal of Science  
Education, 3 (4) (Retrieved on August 12, 2009, from http://wolfweb.unr.edu/homepage/crowther/ejse/svec.html.  
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• Domain specific PCK. The next level of PCK is defined as the knowledge required 
for teaching a specific domain within science, such as biology or chemistry. Each 
domain or subject area of science is associated with a unique set of concepts, laws, 
theories, terms, and topics. Teacher knowledge for biology is unique from that for 
teaching other domains in science. The distinction between teacher knowledge 
required to teach within a discipline of science requires knowledge, tools, and 
purposes specific to that domain of science. For example, teacher knowledge for 
teaching dissection labs is specific to teaching biology. 

 
• Topic-specific PCK. The most specific level of the taxonomy is identified as topic-

specific PCK. Teacher knowledge at this level consists of a repertoire of knowledge, 
skills, methods, and abilities of all three levels of the taxonomy as well as knowledge 
of specific terms, concepts, and processes within the topic. Topic-specific PCK 
includes teacher knowledge of content, representations (analogies, models, pictures, 
etc.) instructional strategies (demonstrations, investigations, experiments, etc.), 
assessments, and curriculum focused on a specific topic within a domain of science. 
For example, the teacher knowledge required to teach cell biology includes 
knowledge of students’ misconceptions and learning difficulties specific for cell 
biology as well as knowledge of examples, diagrams, analogies, demonstrations, and 
laboratory investigations specific for teaching cell biology and not applicable to other 
topics in biology.   

 
It is important to note the taxonomy does not suggest that the acquisition of 

teacher knowledge is linear, but instead delineates between general PCK for teaching 

science, domain-specific PCK, and knowledge required for teaching specific topics (e.g., 

photosynthesis, cellular respiration, diffusion, and osmosis) within a scientific domain.  

The Veal and MaKinster (1999) model provides additional insight into the nature 

of PCK due to the emphasis placed upon teacher knowledge for teaching specific topics 

in biology. The topic-specific PCK necessary for teaching osmosis and diffusion would 

be very different from that for teaching genetic inheritance. Both topics are likely to be 

taught in a high school general biology course to the same students; however, each topic 

would require an understanding of specific potential learner difficulties, preconceptions 

and misconceptions associated with the topic, specific knowledge of representations, 
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instructional strategies, assessments, and curricular resources necessary to create 

meaningful learning opportunities within that specific topic.  

5E Instructional Model 

The NRC (1999) posits effective learning takes place when students’ are active 

participants in learning, challenged to make and test predictions, and support 

explanations with evidence. Hence, “ideas are best introduced when students see a need 

or a reason for their use; this helps them see relevant uses of the knowledge to make 

sense of what they are learning” (NRC, 1999, p. 127). Historically, science educators 

have explained learning within the context of three categories: transmission, maturation, 

and construction (Bybee, 1997). Only the constructivist perspective assumes students to 

be active participants in learning (Bybee, 1997; Bybee, Taylor, Gardner, Van Scotter, 

Powell, Westbrook, & Landes, 2006). In contrast, the transmission perspective assumes 

students to be empty vessels with the teacher as teller, while the maturation perspective 

assumes students will open to new knowledge as they mature (Bybee, 1997). Dewey 

(1933) noted an effective instructional sequence followed the scientific process and 

provided students with an opportunity to formulate and test hypotheses. In the 1960s, the 

Atkin and Karplus (1962) learning cycle incorporated a student-centered theme of 

exploration prior to the introduction of the concept. 

  A contemporary version of the Atkin/Karplus (1962) learning cycle, the 5E 

instructional model has constructivism as the theoretical foundation and assumes that 

students bring their own ideas, experiences, and prior knowledge into the classroom and 

learn as active participants (Bybee, 1997). The 5E instructional model includes five 

phases: Engage, Explore, Explain, Elaborate, Evaluate (Bybee, 1997; Bybee et al. 2006). 
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Actively engaged in learning science, students “redefine, replace, and reorganize their 

initial explanations, attitudes, and skills” (Bybee, 1997, p. 167). The teachers facilitates 

learning through explorations of phenomena during which students formulate and test 

predictions, reflect upon observations and experiences with the phenomena to develop 

explanations and apply new knowledge to novel scenarios (Bybee, 1997; Bybee et al. 

2006; DeBoer, 1991; Dewey, 1933; Herbart, 1901). I describe the five phases of the 5E 

instructional model within the following sections. 

 Engagement. During the first phase, the teacher engages students through brief 

activities that focus students’ attention on the phenomenon, stimulate curiosity, and 

reveal prior knowledge. The teacher makes connections between a new concept and 

students’ prior knowledge and experience, making the concept relevant to students 

(Bybee, 1997). Thus, by focusing students’ attention and making relevant connections, 

the teacher initiates the learning task.  

 Exploration. Before introducing the concept, the teacher challenges students to 

conduct an exploration and formulate and test predictions, make observations, record 

data, and collaborate with peers to develop and test alternative solutions (Bybee, 1997). 

This phase of the model engages students in a common experience, emphasizing 

scientific knowledge, processes, and skills.  

 Explanation. Following the exploration, students review, analyze, and interpret 

their observations and data. During this phase, the teacher “focuses students’ attention on 

particular aspects of their engagement and exploration experiences and provides 

opportunities to demonstrate their conceptual understanding, process skills, or behaviors” 

(Bybee, 1997, p. 178). Hence, students may realize their prior ideas provide limited 
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explanations at best and seek new ways to explain their observations. The teacher uses 

representations (e.g., models, analogies, metaphors, computer animations) to enhance 

students’ conceptual understanding. New scientific vocabulary, unique to the concept, is 

introduced at this time to expand students’ knowledge. The teacher facilitates whole class 

discussions and encourages students to share their ideas, experiences and observations 

developing explanations supported with evidence (Bybee, 1997).  

 Elaboration. During the elaboration phase, students are challenged to apply their 

knowledge of the concept to novel situations. Through new experiences with the concept, 

students draw upon knowledge gleaned from the engage, explore, and explain phases to 

deepen their conceptual understanding, enhance their skills, and broaden their 

understanding of science (Bybee, 1997).  

 Evaluation. The evaluation phase of the model encourages students to reflect 

upon their knowledge and assess their own learning learning. This phase of the model 

also provides opportunities for teachers to assess student learning and the effectiveness of 

their instruction (Bybee, 1997). Evaluation of students’ conceptual understanding of 

phenomena through formative assessment has the potential to inform instructional 

decisions throughout the phases of the instructional model. 

Content Representation (CoRe) 

Descriptions of teacher knowledge can be found throughout education literature, 

however, specific examples of teacher knowledge that actually inform instructional 

decisions during planning and teaching are more difficult to identify. Loughran et al. 

(2004) and Loughran et al. (2006) suggest that the knowledge of teaching possessed by 

teachers can only be clarified when teacher thinking can be revealed and understood. 
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Loughran et al. (2006) have developed a means of documenting concrete examples of 

teacher knowledge. The Content Representation (CoRe) is used to assess multiple aspects 

of teacher knowledge including content knowledge, the goals and purposes of the lesson, 

the instructional strategies and representations to be implemented within the lesson, and 

the means of assessing student understanding during the lesson (Loughran et al. 2006; 

Loughran et al. 2004). Thus, a window can be opened into teacher thinking to investigate 

how the components of teacher knowledge are drawn upon when teachers make 

instructional decisions during planning and teaching. 

Content representations for this study were created by reviewing teacher 

interviews, videotapes of lessons, and lesson artifacts. The goal was to create an accurate 

depiction of lesson content as well as the representations, instructional strategies, 

curricular sequence, and assessments implemented by each participant.   

Diffusion and Osmosis 

 All experienced teacher participants in this study were 10th grade biology teachers 

and each was observed teaching two consecutive lessons on osmosis and diffusion. By 

observing teachers teaching the same concept, I gained greater insight into the nature of 

the topic-specific PCK held by experienced teachers.  

Three considerations informed my choice of diffusion and osmosis as the lesson 

topic for my research. First, diffusion and osmosis are key concepts in biology and form 

the basis for understanding life processes. The National Science Education Standards 

(NSES) (NRC, 1996) and American Association for the Advancement of Science 

(AAAS) Benchmarks for Scientific Literacy (1993) identify osmosis and diffusion as 

concepts critical for students’ understanding of homeostasis within living systems and the 
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diffusion of water across a cell membrane. Second, the phenomena require students to 

integrate their knowledge of: (a) biology, in terms of cell membrane structure and 

function; (b) chemistry, regarding the particulate nature of matter and relative 

concentrations of solutes and solvents; and (c) physics, in terms of random molecular 

motion and collisions as the driving force for both diffusion and osmosis. Because of the 

integrated nature of diffusion and osmosis, the concepts are challenging for students to 

comprehend and difficult for teachers to teach. Third, state curricular guidelines mandate 

the inclusion of diffusion and osmosis through the Course Level Expectations (DESE, 

2009); all tenth grade biology teachers include diffusion and osmosis in their tenth grade 

biology curriculum (DESE, 2009).  

The Department of Elementary and Secondary Education (DESE) identifies the 

following course level expectations for teaching osmosis and diffusion: 

• Strand 3: Characteristic and Interactions of Living Organisms;  
o Level 2: Living organisms carry out life processes in order to survive;  
 Concept F: Cellular activities and responses can maintain stability 

internally while external conditions are changing (homeostasis);  
• Biology I: a: Explain the significance of the selectively permeable 

membrane to the transport of molecules. b: predict the movement 
of molecules across a selectively permeable membrane (i.e., 
diffusion, osmosis, active transport) needed for a cell to maintain 
homeostasis given concentration gradients and different sizes of 
molecules (DESE, 2009).  

 
Diffusion and osmosis are topics critical to students’ comprehension of important 

life processes. Examples of passive transport, these processes explain homeostasis, water 

intake by plants, transport of water and nutrients in living systems, and turgor pressure in 

plants (Christianson & Fisher, 1999; Friedrichsen, & Pallant, 2007; Johnstone & 

Mahmond, 1980; Odom & Barrow, 1995; Zuckerman, 1993). Diffusion is referenced in 

high school biology textbooks as the tendency for molecules of any substance to spread 



32 

out into surrounding available space, driven by random molecular motion, and moving 

from higher to lower concentrations (Campbell & Reese, 2002; Christianson & Fisher, 

1999; Johnstone & Mahmond, 1980; Miller & Levine, 2002; Odom & Barrow, 1995). 

Osmosis is specifically defined as the diffusion of water from higher to lower 

concentrations across a semipermeable membrane (Campbell & Reese, 2002; 

Christianson & Fisher, 1999; Johnstone & Mahmond, 1980; Miller & Levine, 2002; 

Odom & Barrow, 1995). Both processes are driven by molecular kinetic energy or energy 

of motion and as a result of this continuous and random molecular motion, molecules 

tend to move from areas of higher concentration into areas of lower concentration 

(Campbell & Reese, 2002; Miller & Levine, 2002; Odom & Barrow, 1995; Tekkaya, 

2003; Zuckerman, 1993).  

Key vocabulary terms associated with osmosis and diffusion include: (1) 

hypertonic - when comparing two solutions, the solution with the greatest concentration 

of dissolved solid and the least concentration of solvent, (2) hypotonic - when comparing 

two solutions, the solution with the least concentration of dissolved solid and the greatest 

concentration of solvent, (3) isotonic - when the concentration of dissolved solid and 

solvent in two solutions is equal, (4) concentration gradient - the difference in the 

concentration of dissolved solid within two solutions separated by a semipermeable or 

selectively permeable membrane, and (5) semipermeable membrane - a membrane which 

will only allow certain substances the passage of certain substances (typically determined 

by molecular size). 
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Significance of the Study 

 Data collected from the 2003 TIMSS indicated that eighth graders in five Asian 

and European countries outperformed eighth graders in the U.S. in science and 

mathematics (TIMSS, 2003). U.S. eighth graders failed to improve their performance on 

the 2007 TIMSS and fell below their peers in nine Asian and European countries 

(TIMSS, 2007).  

Students in the U.S. are also falling far below their international peers in terms of 

earning college degrees in science, technology, engineering, and mathematics (STEM) 

fields; the highest performing countries also grant the largest proportion of college STEM 

degrees (TIMSS, 2003, 2007). According to a recent report by the United States General 

Accounting Office (GAO), enrollment in postsecondary education has increased over the 

past decade; however, the percentage of U.S. students earning degrees in STEM fields 

has declined (GAO, 2006). These trends are alarming since the workforce of the future 

must have greater knowledge of science and mathematics along with problem-solving 

and critical thinking skills to compete in an increasingly technologically sophisticated 

global environment (Phillips, 2007).  

 The ability to resolve this issue is further complicated by a projected teacher 

shortage (Ingersol, 2001, 2006).  The National Commission on Teaching and America’s 

Future predicts that approximately 1.7 million teachers in the U.S. are approaching 

retirement age and likely to retire and leave the profession during the next decade 

(National Commission on Teaching and America’s Future, 2002). When coupled with 

beginning teacher attrition rates, rising steadily over the past decade, and the projected 

increase in student enrollment, there is genuine concern about placing qualified and 
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certified teachers in American classrooms (Ingersol, 2006). The No Child Left Behind 

(NCLB) Act of 2001 must be considered when new teachers are hired. NCLB mandates 

that highly qualified teachers be placed in each classroom; attributes for highly qualified 

teachers include: a baccalaureate degree and state certification in the subject area to be 

taught and, for middle and secondary teachers, there must be evidence of knowledge of 

content to be taught via a state test, an academic major, or National Board Certification.    

 In response to the projected teacher shortage, colleges and universities have 

developed alternate certification programs (ACP) to provide an alternate pathway to 

teacher certification for post-baccalaureate candidates (Cochran-Smith, & Fries, 2006; 

Wilson, Floden, & Ferrini-Mundy, 2001). Mentor teachers play a key role in teacher 

preparation through ACPs as they provide guidance for prospective teachers during 

internships. Ninety-six percent of ACPs report that prospective teachers in their programs 

receive support from mentor teachers (Feistritzer, 2005). The goal is to provide prospective 

teachers with critical guidance from an experienced mentor during the transition from 

student to teacher.   

Understanding the practice of experienced teachers serving as mentors for 

prospective teachers has the potential to provide important insights for teacher educators. 

The nature of teacher knowledge held by experienced biology teachers and how that 

knowledge guides their teaching can inform science teacher preparation (Aikenhead, 

1984). ACP and traditional teacher preparation programs will benefit from insights into 

the knowledge and practice of experienced teachers because this knowledge can be used 

to inform instruction within science teacher preparation programs and provide clearer 

target for the knowledge and practices of prospective teachers. Westerman (1991) reports 
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that pre-service teachers can benefit from a focus on the practice of experienced teachers 

and the knowledge that guides their instructional actions and decisions. Such a focus will 

support a greater awareness of the components of teacher knowledge and the integration 

of these components during planning and instruction (Aikenhead, 1984; Westerman, 

1991). The results from this study contribute to what is known about the PCK of 

experienced secondary teachers for teaching a specific topic in a general high school 

biology course.  

Organization of the Dissertation 

This study is divided into six chapters. Chapter One provides an overview of the 

study including the rationale, research questions, conceptual framework, and study 

significance.  The conceptual framework for the study includes Pedagogical Content 

Knowledge, the taxonomy of PCK, osmosis and diffusion, and content representation. In 

Chapter Two, I review the mathematics and science education literature for both 

prospective teachers and experienced teachers. 

Chapter Three outlines the qualitative approaches used in this study. This includes 

a description of the research tradition, research methodology, and the design of the study. 

I included details of the context of the study including a brief explanation of the design of 

the ACP and demographic data for high schools of the study participants. I also describe 

data collection strategies and data analysis methods.  The chapter concludes with a 

description of the trustworthiness of the design and implementation of the study. 

Chapter Four and Five describe the findings of the study.  In Chapter Four I 

provide six case profiles, one for each of the participants. The purpose of Chapter Four is 

to provide evidence for the assertions made in Chapter Five.          
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In Chapter Five I provide a cross-case analysis and assertions that emerged from 

the data.  Throughout this chapter I reference the profiles presented in Chapter Four.  

Additionally, I synthesized data from Chapter Four into tables that are representative of 

the knowledge of PCK components held by the research participants.    

Chapter Six is the final chapter.  This chapter includes a summary of the findings 

in relation to the research questions and a discussion of the findings relative to the 

research literature.  The chapter concludes with implications for practice and 

recommendations for future research.   
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CHAPTER TWO: REVIEW OF LITERATURE 

 In Chapter Two, I review the literature related to my study. The areas of research 

addressed include (1) the nature teacher of knowledge held by prospective mathematics 

and science teachers, (2) the nature of content knowledge for teaching mathematics held 

by experienced mathematics teachers, (3) the nature of pedagogical content knowledge 

held by experienced science teachers, (4) topic-specific PCK for teaching osmosis and 

diffusion, and   (5) how this study addresses the gaps in the literature. This chapter 

addresses the nature of teacher knowledge held by both prospective and experienced 

teachers of mathematics and science. I included mathematics education research 

examining both prospective and experienced teachers of mathematics to add an important 

perspective. Research examining teacher knowledge for teaching mathematics provides a 

new perspective for understanding the nature of teacher knowledge for teaching concepts 

in science. Mathematics education literature addresses the packaging of teacher 

knowledge into discrete units which include conceptual understanding of mathematics as 

well as knowledge of learners and instructional strategies for making concepts in 

mathematics understandable for students. Hence, a review of prospective teacher learner 

and the knowledge held by experienced teachers provides another perspective on the 

knowledge for teaching mathematics as well as insight into the integration of knowledge 

of content, students, instructional strategies, and assessments for effective mathematics 

teaching.  

Science education research investigating pedagogical content knowledge for 

teaching science largely addresses the development of teacher knowledge in prospective 

teachers rather than the knowledge held by experienced science teachers. To understand 
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the nature of knowledge for teaching mathematics and science among experienced 

teachers, it is important to first consider the manner in which the knowledge for teaching 

mathematics and science develops among prospective teachers. The goal for this review 

of education literature is to address the following questions: (a) How does pedagogical 

content knowledge develop among prospective teachers of mathematics and science? (b) 

What is known about the knowledge for teaching held by experienced mathematics 

teachers? (c) What is known, in general, about the components of pedagogical content 

knowledge (PCK) held by experienced science teachers? and (d) What is known about 

experienced science teachers’ PCK for teaching diffusion and osmosis? 

The Nature of PCK 

The concept of pedagogical content knowledge (PCK), first proposed by Shulman 

(1987), identifies a form of knowledge unique to teachers, teaching and students’ 

learning. Hassard (2005) described PCK as the knowledge possessed by teachers which 

allows them to teach effectively within a discipline as opposed to the knowledge of the 

discipline itself. Berliner (2001) noted education research has demonstrated qualitative 

differences between the nature of knowledge held by novice teachers and that held by 

experienced teachers. To understand the nature of pedagogical content knowledge (PCK) 

held by experienced mathematics and science teachers it is necessary to note how this 

knowledge develops among prospective teachers. Hence, the following sections address 

the development of PCK among prospective teachers of mathematics and science.  
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Teacher Knowledge Held by Prospective Teachers of Mathematics and Science 

Prospective Mathematics Teachers 

Borko and Livingston (1989) investigated prospective mathematics teachers and 

their mentor teachers during a field experience and found the experienced mentor 

teachers have developed more extensive, better-integrated stores of subject-matter 

knowledge, knowledge for teaching mathematics, and teaching experience upon which to 

draw during planning and reflection. As a result, the experienced teachers demonstrated 

greater flexibility in their teaching, were able to respond quickly and effectively to 

students’ learning difficulties, and were able to present concepts to students in different 

ways. This degree of interconnected subject-matter knowledge and knowledge for 

teaching mathematics was non-existent among prospective teachers who demonstrated 

minimal flexibility in their teaching and were not able to predict nor respond effectively 

to students’ learning difficulties (Borko & Livingston, 1989).  

Archer (2000) compared beliefs about the nature of mathematics and its place in 

the curriculum between ten prospective secondary mathematics teachers and seventeen 

prospective primary teachers. The views of the secondary teachers were consistent with 

the curricular organization of mathematics at the secondary level and reflective of the 

organization experienced by the prospective teachers as students in high school 

mathematics. The primary teachers had a more holistic view of mathematics similar to 

their experiences as elementary mathematics students (Archer, 2000). Hence, prospective 

teachers explained their conceptions of mathematics were largely shaped by their 

experiences as students; the researchers noted both groups of prospective teachers were 
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inclined to teach mathematics in the manner in which they were taught as students 

(Archer, 2000).  

Nathan and Petrosino (2003) examined the relationship between the subject 

matter expertise of forty-eight prospective secondary mathematics teachers and their 

ability to predict students’ learning difficulties associated with solving algebra problems. 

The researchers posit subject matter expertise alone is insufficient for predicting students’ 

difficulties as learners and to understand how students learn content (Nathan & Petrosino, 

2003). Hence, the prospective teacher participants are well versed in mathematics content 

but not sure of how to most effectively represent content for students to facilitate student 

learning.  

Ball (2001), Ball, Bass and Hill (2004), and Leinhardt and Smith (1985) 

conceptualize content knowledge for teaching mathematics as common and specialized 

knowledge. The researchers describe common knowledge as the essential algorithmic and 

procedural knowledge for problem solving, whereas, specialized knowledge was defined 

as including the knowledge of skills, representations, and strategies for teaching 

mathematics (Ball, 2001; Ball et al. 2004; Leinhardt & Smith, 1985). Hence, common 

mathematical knowledge, while necessary for effective teaching, is insufficient without 

the specialized knowledge of how to make concepts in mathematics understandable for 

students (Ball, 2001; Ball et al. 2004; Leinhardt & Smith, 1985). 

The importance of teacher understanding of students as learners of mathematics is 

underscored by the findings of Putnam and Borko (2000), Brown, McNamara, Hanley, 

and Jones, (1999) and Cady, Meier, Meier, & Lubinski, (2006). These studies suggest 

that an understanding of students as learners and a strong emphasis on potential learning 
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difficulties enhances the development of content knowledge for teaching mathematics 

among prospective and novice teachers of mathematics. The emphasis on learner 

difficulty stimulates consideration of other components of teacher knowledge including 

instructional strategies, as well as representations, examples, and manipulatives that 

clarify concepts for learners. Cady et al. (2006) posit that prospective mathematics 

teachers must construct their own knowledge about teaching, learning, and learners. 

Hence, reflection upon teaching in conjunction with a focus on students as learners, and 

potential learning difficulties informs prospective teachers’ instructional decisions during 

planning and teaching. The development of an internal locus of authority is perceived by 

Brown et al. (1999) as an indicator of prospective teachers’ ability to develop teacher 

knowledge necessary for successful teaching of mathematics. Prospective mathematics 

teachers who maintain the view that their instructors, mentor teacher and others in 

authority possess all of the answers are far more likely to rely upon and accept guidance 

of others rather then constructing their own knowledge of teaching (Brown et al.1999). 

Whereas, prospective teachers maintaining an internal locus of authority are more likely 

to construct knowledge for teaching mathematics through their classroom experience and 

teaching practice.  

Prospective Science Teachers 

Sarason (1990) and Adams and Krockover (1997) noted prospective teachers 

construct knowledge for teaching from their experiences as learners and their prior 

conceptions about science teaching. Sarason (1990) posits the development of PCK 

among prospective teachers is largely influenced by individual and contextual factors and 

prospective teachers tend to teach in the manner in which they were taught. Lederman, 
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Gess-Newsome, and Latz (1994) found that as prospective teachers move through teacher 

preparation programs, their knowledge becomes interconnected. Investigating reflective 

practice among prospective teachers Loughran (2002) found professional knowledge 

developed through an effective reflective practice offers important insights into teaching 

practice focused on the views of the teacher and the student. Developing an 

understanding of how teacher actions affect students’ thinking and learning enhances 

prospective teachers’ perception of the learning environment. Hence, a reflective practice 

encourages prospective teachers to consider their actions as teachers from the perspective 

of students’ thinking and learning (Loughran, 2002). 

Friedrichsen, Abell, Paraja, Brown, Lankford, and Volkmann (2009) investigated 

the influence of prior teaching experience upon prospective and novice biology teachers’ 

knowledge for teaching upon entry into an alternative certification program. Both 

prospective and novice teachers demonstrated an information-transition approach to 

science teaching as evidenced by the sequence of instruction which followed an inform-

verify-practice sequence and perceived learning as memorizing information (Friedrichsen 

et al. 2002). Study findings suggest effective teacher preparation programs must include 

effective mentoring with a strong emphasis upon reflection as well as collaboration 

among interns “to assess student work, reflect on practice, challenge common myths of 

teaching, and share best practices” to support the development of discipline and topic-

specific PCK (p. 376).  

A study by Davis (2003) investigated the development of PCK among prospective 

teachers through the lens of knowledge integration. Davis (2003) defined knowledge 

integration as the process of adding new ideas and understandings of scientific concepts 
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while making connections between the concepts and appropriate real-world experiences. 

Hence, prospective teachers develop PCK as they blend their content knowledge of 

scientific concepts with their developing knowledge of appropriate representations and 

instructional strategies to make science content more understandable for students. Davis 

(2003) posits the knowledge integration perspective analyzes the development of teacher 

knowledge from the perspective of the teachers’ ability to integrate content knowledge 

with pedagogical knowledge.  

Studies conducted by Van Driel, De Jong, and Verloop, (2002) and De Jong and 

Van Driel (2005) investigated the development of PCK among prospective teachers 

within the context of a post-graduate alternative teacher certification program in the 

Netherlands. Concerns about switching from macroperspectives to microperspectives 

during chemistry lessons were rarely identified by the prospective teachers as potential 

learning difficulties for students. However, after teaching the concepts, all prospective 

teachers noted students experienced difficulty following teachers’ mental jumps from 

macroscopic to microscopic perspectives (De Jong & Van Driel, 2005). In interviews, 

prospective teachers reflected on learning difficulties experienced by the students. The 

authors suggested the development of prospective teachers’ PCK was associated with an 

understanding of students as learners. As prospective teachers’ understanding of students 

as learners developed, the teachers began to consider other ways in which the topic could 

be represented and taught to address students’ difficulties and enhance understanding (De 

Jong & Van Driel, 2005; Van Driel et al., 2002). As a result of prospective teachers’ 

emerging awareness of the potential for learner difficulties associated with specific 

content, study findings suggest that a relationship exists between the development of 
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teachers’ PCK with respect to knowledge of difficulties in student learning; indicating a 

possible starting point for the development of PCK in prospective teachers (De Jong & 

Van Driel, 2005; Van Driel et al., 2002).  

Zembal-Saul, Blumenfeld, and Krajcik (2000) examined changes in the science 

content representations of two prospective elementary teachers and suggested that there 

are two components of teacher knowledge involved with knowledge of representations: 

the knowledge of instructional strategies and the knowledge of learners. The study was 

organized around two cycles of teaching during which prospective teachers included 

several representations of concepts within their lesson plans. Each cycle was followed by 

in-depth reflection through which prospective teachers analyzed their lessons, their 

teaching, and learner response. Reflection was found to be critical for improvement in 

planning and teaching; through reflection prospective teachers were able to examine their 

teaching, representations of content, and response of learners (Zembal-Saul et al. 2000).  

Lee, Brown, Luft, and Roehrig (2007) investigated the development of PCK 

among novice secondary science teachers and found the development of PCK to be 

driven by teaching experience coupled with reflection. Researchers noted that novice 

teacher participants held low levels of PCK even though each had a relatively strong 

background in science suggesting that PCK did not result from knowledge of subject 

matter alone, but rather from teaching experience coupled with teacher knowledge of 

subject matter and learners. Carlson (1993) investigated four prospective secondary 

biology teachers and found when the teachers taught topics for which their knowledge 

was greater, the teachers asked more demanding questions and engaged students in 

discussions, providing more opportunities for students to share their ideas. Hence, 
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Carlson (1993) noted prospective teachers with stronger content knowledge were likely 

to implement more sophisticated teaching practices. Luft, Roehrig, and Patterson (2003) 

investigated the development of PCK among novice biology teachers with a focus on two 

categories: knowledge of student learning and knowledge of instructional strategies. 

Study participants were in their first year of science teaching and supported with different 

induction programs. Findings indicated the teachers in the science-focused induction 

program held more constructivist beliefs and, as a result, enacted more inquiry-oriented 

lessons than their peers. The researchers emphasize the importance of science-focused 

induction programs for beginning teachers and suggest teacher knowledge develops 

through experience in the classroom in which the teacher is responsible for making 

instructional decisions based upon students’ learning as well as state, district, and school 

guidelines (Luft et al. 2003). Luft et al. (2003) posit subject matter knowledge alone is 

insufficient for the development of PCK, knowledge of student learning and instructional 

strategies are critical for tailoring lesson materials and activities to the needs of students 

and monitoring students’ learning (Luft et al. 2003). Changing the beliefs about science 

teaching and learning were found to be an important consideration in a study 

investigating a prospective biology teacher conducted by (Crawford, 1999). Findings 

revealed the secondary teacher was able to change her beliefs about science learning and 

transform her teaching approach to include additional student-centered strategies. Hence, 

the teacher’s lessons progressed from an information-transmission approach to science 

teaching to a more student-centered approach focused on inquiry-oriented strategies with 

the teacher role as facilitator (Crawford, 1999).  
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Prospective and novice teachers often cite adherence to curricular guidelines and 

addressing course content as an explanation for implementing an information-

transmission approach to science teaching. A study of four prospective secondary 

teachers by Haney and McArthur (2002) found teachers’ concern about adhering to the 

district science curriculum influenced instructional decisions. As a result, the prospective 

teachers relied upon traditional lectures to transmit information, placing students in the 

role of passive learners (Haney & McAthur, 2002). Similar findings were reported by 

Tabachnick and Zeichner (1999) resulting from a study of 22 prospective elementary and 

secondary teachers. The researchers found all of the prospective teachers were reluctant 

to implement student-centered learning activities. Secondary teachers noted concerns 

about covering curricular content as a constraint for the inclusion of student-centered 

learning activities, both groups of teachers noted concerns about classroom management 

(Tabachnick & Zeichner, 1999).  

A common theme through the studies discussed within this section is the 

importance of teaching experience for the development of PCK. The studies stress that 

content knowledge along is insufficient for the development of PCK among prospective 

teachers. Studies by De Jong and Van Driel (2005), Friedrichsen et al. (2009), Lee et al. 

(2007); Loughran (2002), Luft et al. (2007), Van Driel et al. (2002), Zembal-Saul et al. 

(2000) noted the importance of reflection on practice, consideration of students as science 

learners, and collaboration among prospective teachers to identify best practices. PCK is 

complex and gradually knowledge components are integrated resulting in a form of 

knowledge which supports teachers in the design of activities, investigations, and 

materials to enhance and monitor student learning. In the absence of teaching experience 
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and knowledge of students as learners, instructional decisions are informed by external 

forces such as state and district guidelines and the science curriculum (Haney & 

McArthur, 2002; Tabachnick & Zeichner, 1999). Hence, novice teachers perceive an 

information-transmission approach to science teaching as an efficient means of covering 

science content rather than a focus on students’ learning and understanding of science 

content. 

Knowledge for Teaching held by Experienced Teachers 

 The following sections address the nature of teacher knowledge held by 

experienced mathematics and science teachers.  

Experienced Mathematics Teachers 

Marks (1990) investigated fifth grade mathematics teachers’ teaching of 

equivalence of fractions and identified four components of teacher knowledge: (1) 

knowledge of students’ understanding of fractions, (2) subject matter knowledge for 

teaching fractions, (3) materials and manipulatives for instruction, and (4) instructional 

processes. Hence, Marks (1990) elaborated upon Shulman’s (1987) initial work to 

expand the knowledge of subject matter for teaching and emphasize the importance of 

teachers’ knowledge of students’ understanding of mathematical concepts, 

misconceptions held by students about these concepts, and instructional strategies and 

materials used by teachers to teach these concepts.  

 An investigation of prospective teachers and their mentors conducted by Borko, 

Bellamy, and Sanders (1992) examined the knowledge, thinking, and actions of 

prospective teachers in comparison to their teacher mentors during a field experience. 

Borko et al. (1992) identified patterns evident in the practice of mentor teachers 
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including: (a) drawing upon their subject matter knowledge, PCK, and teaching 

experience to represent lesson content in several ways, (b) making connections between 

classroom activities and students’ lives, (c) understanding of potential student learning 

difficulties, and (d) monitoring student learning through questioning and observations 

during lessons. These components of teacher knowledge were not observed in the 

practice of the prospective teachers. Hence, experienced mentor teachers possessed in-

depth understanding of fundamental concepts in mathematics, knowledge of students as 

learners, and knowledge of instructional strategies. These components of teacher 

knowledge made it possible for the mentor teachers to present concepts to students in 

multiple ways, monitor students’ learning, and address students’ difficulty with content 

more effectively (Borko et al. 1992). 

Ma (1999) compared the knowledge possessed by elementary teachers in 

mainland China and the United States. She noted the most accomplished teachers in 

China held a form of PCK described as a profound understanding of fundamental 

mathematics, while teachers in the U.S. did not hold this depth of knowledge of 

mathematics. This depth of fundamental knowledge of mathematics possessed by 

Chinese teachers was noted by Ma (1999) as a critical factor in teachers’ understanding 

of concepts and the difficulties students were likely to have with the concepts. Described 

as knowledge packages, this form of teacher knowledge includes a sophisticated 

understanding of the mathematical concepts in terms of important ideas, organization of 

concepts, as well as the processes and strategies for making these concepts 

understandable for students (Ma, 1999). Hence, Ma (1999) suggests effective teaching 

results from the integration of knowledge of mathematics as a domain with the 
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knowledge of learners’ potential learning difficulties, and strategies to support students’ 

conceptual understanding of the concepts to enhance students’ learning and achievement 

in mathematics. Ball and Bass (2000) noted the importance of deep conceptual 

knowledge for teaching mathematics and found that teachers with deep conceptual 

understanding of mathematics were able to present content knowledge to their students in 

different ways. Ball and Bass (2000) described pedagogical content knowledge for 

mathematics as a special form of knowledge that “bundles mathematical knowledge with 

knowledge of learners, learning, and pedagogy” (p. 88).  

Following a year-long study of teacher work, Ball and Bass (2003) introduced the 

construct of mathematical content knowledge for teaching. This construct has resulted in 

a new understanding of the knowledge required for teaching. Similar to PCK, 

mathematical content knowledge for teaching is defined as knowledge unique to teaching 

which intertwines content knowledge with an understanding of teaching and learning; 

hence, knowing mathematics alone is not sufficient, teachers must be able to anticipate 

and address students’ learning difficulties with concepts in mathematics (Ball & Bass, 

2003).  

The importance of integrating content knowledge for teaching mathematics with 

knowledge of students as learners was emphasized in a study conducted by Hristovitch 

and Mitcheltree (2004). The researchers investigated the nature of mathematics teaching 

and found concepts were often taught as discrete clusters of information failing to build 

upon students’ understanding or make connections between the concepts (Hristovitch & 

Mitcheltree, 2004). Lacking an understanding of potential learning difficulties, teacher 

participants experienced difficulty in organizing, sequencing, and identifying conceptual 
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mathematical prerequisites to engage students with the concepts in a way which 

supported conceptual understanding (Hristovitch & Mitcheltree, 2004). Findings from the 

study completed by Hristovitch and Mitcheltree (2004) supported the findings of Ma 

(1999).  

A study conducted by Sherin and Han  (2004) investigated mathematics teacher 

learning through observations, discussions, and reflections upon videotaped lessons. 

Sherin and Han (2004) posit before student learning improves, teachers learning must 

occur, and include a blend of mathematics content and pedagogical content knowledge. 

Sherin and Han (2004) argue teacher learning occurs most effectively when teachers have 

the opportunity to examine teaching and learning in new ways; hence, video clubs were 

studied in which members provided videotaped lessons to be observed and discussed by 

the group. A shift in teachers’ thinking occurred as teachers met and discussed 

videotaped lessons. During earlier meetings, teacher discussions centered on how the 

lesson was implemented with little attention paid to students’ comments and questions 

during the lesson; however, during the later meetings, teachers analyzed students’ 

questions and answers and compared students’ ideas with the learning goals the teacher 

had hoped to accomplish (Sherin & Han, 2004). Hence, there was greater emphasis 

placed upon teacher action in relation to students’ thinking and comprehension. As 

teachers participated in critiques of videotaped lessons, they began to focus on different 

aspects of student-teacher and student-student interactions; as a result, teachers generated 

new approaches for analyzing student conceptions and teacher actions (Sherin & Han, 

2004).  
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The concept of specialized knowledge for teaching (Shulman, 1987) is clearly 

addressed in the mathematics education literature. The knowledge for teaching 

mathematics includes an in-depth understanding of mathematical concepts as well as an 

understanding of students as learners. Hence, content knowledge for teaching 

mathematics (Ball, 2001) is representative of Shulman’s (1986) description of 

pedagogical content knowledge. Ma (1999) described the knowledge for teaching 

mathematics as profound understanding of fundamental mathematics and noted concepts 

in mathematics were packaged with knowledge of learners, representations, and 

instructional strategies to make concepts understandable for students. Effective teachers 

will be able to unpack mathematical concepts, predict learner difficulties, identify 

effective instructional strategies, and present these concepts to students in ways which are 

understandable for students (Ball, 2001; Ball & Bass, 2003; Ball et al. 2004; Borko et al. 

1992; Hristovitch & Mitcheltree, 2004; Ma, 1999; Marks, 1990; Sherin & Han, 2004).  

Experienced Science Teachers 

 Magnusson et al. (1999) described PCK as “the transformation of several types of 

knowledge for teaching” (p. 95). The Magnusson et al. (1999) model of PCK identifies 

five components integrated during planning and teaching including: knowledge of 

students’ understanding of science, knowledge of representations and instructional 

strategies, knowledge of assessment, and knowledge of curriculum. Shulman (1987) 

posits the development of PCK results from a change in teacher perspective “from being 

able to comprehend subject matter for themselves, to becoming able to elucidate subject 

matter in new ways, reorganize and partition it, clothe it in activities and emotions, in 

metaphors and exercises, and in examples and demonstrations, so that it can be grasped 
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by students” (p. 13). Hence, the knowledge for teaching is unique in that it results from a 

transformation of the knowledge of content and pedagogy possessed by the teacher into a 

form of knowledge understandable for learners (Shulman, 1986; Magnusson et al. 1999). 

Park and Oliver (2008) posit PCK can only be expressed during teaching when 

teachers transform subject matter to make content more understandable for students. The 

researchers examined the practice of three experienced teachers petitioning for National 

Board Certification (NBC) in Adolescent and Young Adult Science. Findings indicate 

study participants focused on five areas of their teaching practice including: (a) reflection 

on teaching practices and students’ learning, (b) implementation of inquiry-based 

instructional strategies, (c) assessment of students learning, (d) understanding of potential 

student learning difficulties, and (e) implementation of new instructional strategies (Park 

& Oliver, 2008). As the teacher participants progressed through the certification process, 

they became more reflective and analytical about their teaching processes, questioned the 

effect their teaching processes had upon students’ learning, and considered new teaching 

approaches; in essence, the teachers expanded their existing PCK through the NBC 

process (Park & Oliver, 2008). The findings of the Park and Oliver (2008) study were in 

alignment with work by Fernandez-Balboa and Steihl (1995) who posited the 

development of PCK results from integration of different knowledge components 

including knowledge of science as well as knowledge of science curriculum, learners, 

representations, instructional strategies, and assessment. Hence, during the NBC process, 

teachers expanded and integrated their PCK to develop a more sophisticated form of 

teacher knowledge. 
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Baxter and Lederman (1999) posit that pedagogical content knowledge (PCK) 

consists of an external and internal construct and is “constituted by what a teacher knows, 

what a teacher does, and the reasons for the teacher action” (p. 158). This finding was 

supported by studies conducted by Cohen and Yarden (2009) and Hashwey (1985, 2005) 

which examined the practice of experienced science teachers and concluded PCK 

resulted from both internal and external factors. Internal factors, described as originating 

within the teachers themselves, resulted from reflection on their practice as classroom 

science teachers, and revealed beliefs about teaching, learning, and learners held by the 

teacher (Cohen & Yarden; 2009; Hashweh, 1985, 2005).  External factors result from the 

educational system within the school and/or district including the district curriculum, 

professional development opportunities, and the context in which the teachers conduct 

their practice (Cohen & Yarden, 2009). The researchers posit experienced teachers 

develop an integrated set of knowledge and beliefs about teaching, learning, and learners 

which informs their instruction and guides their instructional actions during teaching 

(Cohen & Yarden, 2009; Hashweh, 1985, 2005). A discussion of the nature of 

experienced teacher knowledge of the components of PCK as identified by Magnusson et 

al. (1999) follows. 

 Orientation to science teaching. Grossman (1990) expanded upon Shulman’s 

(1987) description of PCK to include teachers’ goals and purposes for teaching, defined 

as their conceptions of teaching which are “reflected in their goals for teaching particular 

subject matter” (p. 8). Anderson and Smith (1987) labeled general views about teaching, 

learning, and learners, as “orientations towards science teaching” (p.99); four orientations 

were identified to describe different approaches to science teaching including:               
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(1) science-driven, (2) didactic, (3) discovery, and (4) conceptual change. Nespor (1987) 

found teacher experiences as a student and as a practitioner resulted in “critical episodes 

or experiences gained earlier in teaching careers and important to present practices” (p. 

320). Thus, two teachers with similar subject matter knowledge of science may teach in 

very different ways; their beliefs play a greater role in shaping the way in which they 

teach than their knowledge of subject matter (Nespor, 1987). Hence, teacher beliefs about 

teaching, learning, and learners inform instructional decisions and influence the teaching 

approach taken by the teacher. Magnusson et al. (1999) described the orientation for 

science teaching as “the knowledge and beliefs about the purposes and goals for teaching 

science at a particular grade level” (p. 97). They researched education literature to 

identify nine specific orientations for science teaching including: (1) process, (2) 

academic rigor, (3) didactic, (4) conceptual change, (5) activity-driven, (6) discovery, (7) 

project-based science, (8) inquiry, and (9) guided inquiry (Magnusson et al 1999, p. 100-

101).  

 A card sorting task, developed by Friedrichsen and Dana (2003), elicited and 

clarified teacher orientations and beliefs regarding science teaching. Teacher orientations 

were found to be complex, including both central and peripheral goals. Furthermore, the 

goals for teaching science shifted with the course, the topic taught, and the grade level of 

the students (Friedrichsen & Dana, 2003). Friedrichsen (2002) described teacher 

orientations as influenced by teachers’ beliefs about teaching and learning, students’ 

attitudes toward science, and readiness for college.  

Friedrichsen and Dana (2005) examined the nature and sources of orientations to science 

teaching among four experienced and highly regarded secondary biology teachers. They 
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found teachers’ orientations to be complex with multiple purposes for teaching biology 

which included three categories of goals: (1) affective domain goals,  (2) general 

schooling goals, and (3) subject matter goals. Teachers achieved their goals through 

different means (e.g., stories, field trips, investigations, demonstrations, science 

competitions) which varied with the beliefs about learners and learning held by the 

teacher. Differences in course content and student abilities were found to result in 

variations within the orientation to science teaching; hence, teacher orientation for 

teaching an advanced or upper level biology course may differ from that held by the same 

teacher when teaching an introductory biology course. Teacher beliefs and assumptions 

about teaching, learning, and learners influence how the teachers think about teaching 

and respond to particular situations (Calderhead, 1996; Friedrichsen & Dana, 2003, 

2005). Volkmann and Zgagacz (2004) posited teachers’ orientation to science teaching is 

based upon core beliefs and identity as a teacher and learner.   

Lotter, Harwood, and Bonner (2007) investigated teacher conceptions and 

implementation of inquiry-based instructional strategies of three secondary science 

teachers. The researchers found that the implementation of inquiry-based instructional 

strategies may be “constrained by teachers’ core conceptions and beliefs about inquiry-

based instruction and other reform-based instructional strategies” (p. 1341). Teachers’ 

conceptions of science, students, effective teaching practices, and the purpose of 

education were noted by the researchers to influence the degree of implementation of 

inquiry-based instructional practices into their instruction (Lotter et al. 2007).  

 Studies conducted by Ames and Ames (1984), Meece (1991), and Maehr and 

Midgley (1996) proposed that schools have a unique and individual culture based upon 
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shared norms, beliefs, and purposes. Opportunities for teacher learning within schools 

with an orientation supporting students’ mastery included opportunities for teachers to 

learn, support for instructional innovation, and access to resources; whereas, schools with 

a performance-orientation focus provided selective access to resources and encouraged 

competition among teachers (Ames & Ames, 1984; Meece, 1991; and Maehr & Midgley, 

1996). Hence, the goals and purposes for instruction emphasized by the school have 

strong influence on the orientation to science teaching held by the teacher. A study by 

Deemer (2004) examined relationships among teacher beliefs, instructional practices and 

classroom goal orientations in high science teaching. Findings indicate school culture, 

described as an external influence, was an important factor in determining teachers’ goals 

for teaching as well as the nature of their instructional practices (Deemer, 2004).  

 Samuelowicz and Bain (2001) investigated conceptions of teaching science and 

identified teacher beliefs as critical factors. Teachers with the goal of facilitating 

students’ understanding of concepts were focused on teacher-centered strategies, 

however, teachers identifying their purpose as supporting students’ development of 

expertise with content implemented student-centered strategies (Samuelowicz & Bain, 

2001). Hence, teacher beliefs about the goals and purposes for teaching and learning 

exerted a strong influence on their instructional approach. Samuelowicz and Bain (1992) 

found that teachers may hold both ideal and working conceptions for teaching science. 

Ideal conceptions are those which the teachers aspired to in their practice, whereas, 

working conceptions reflected the reality of the context in which the teaching occurred. A 

study investigating the conception for teaching science among three novice teachers 

conducted by Koballa, Glynn, Upson, and Coleman (2005) found that the goals and 
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purposes for teaching science were complex and supported Samuelowicz and Bain’s 

(1992) finding that teachers may hold conflicting goals for teaching science.  

  Multiple sources for science teachers’ orientation to science teaching included 

prior experiences as a teacher and as a student (Calderhead, 1996; Friedrichsen & Dana, 

2005; Nespor, 1987), as well as professional development experiences (Friedrichsen & 

Dana, 2005). The studies by Friedrichsen and Dana (2003, 2005) investigated the 

orientations of experienced science teachers and found orientations to be a messy 

construct. This finding is reflected in the study conducted by Koballa et al. (2005); study 

findings indicate the goals and purposes for teaching science as complex, consisting of 

multiple purposes. However, there are few studies in science education literature 

investigating the nature of experienced teachers’ orientation to science teaching in terms 

of: goals and purposes for teaching science, perception of teacher and students’ roles, and 

ideal images of teaching. Hence, there is a gap in the literature addressing the nature of 

the orientation to science teaching held by experienced teachers and how their orientation 

influences their instructional decisions.  

 Knowledge of representations. Magnusson et al. (1999) define this category of 

teacher knowledge as referencing specific representations (e.g., models, illustrations, 

analogies, metaphors, computer animations, diagrams, or examples) to facilitate students’ 

understanding of specific science concepts. Representations are designed to enhance 

students’ understanding of abstract phenomena, test student predictions, or make 

connections between phenomena and student prior knowledge and experience. 

Magnusson et al. (1999) posit that effective teachers will judge the effectiveness of a 

representation and decide the most opportune time to use the representation to extend 
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students’ understanding. Abell (2007) noted that research investigating teacher 

representations of science content is not well represented in science education literature. 

 A study by Mastrilli (1997) investigated the use of analogies among eight in-

service biology teachers and noted teacher participants implemented 151 analogies during 

the 40 class periods observed. Mastrilli (1997) separated analogies into five categories: 

(1) simple or descriptive, (2) compound, (3) spontaneous, (4) example, and (5) visual. 

Teacher participants most commonly implemented simple/descriptive analogies 

described by the researcher as either simile (72/151) or metaphor (66/151) (Mastrilli, 

1997). Most teachers reported using analogies spontaneously as representations of 

concepts during teaching to maintain student interest or make connections between 

content and students’ experience.  

Several studies investigated science teachers’ use of models in teaching high 

school chemistry. Harrison and Treagust (2000) described models implemented by 

teachers as a simplified representation of an abstract concept making the central features 

of the concept explicit and visible for students rather than using models as a means of 

generating explanations and testing predictions. A study by Van Der Valk, Van Driel, and 

De Vos, (2007) investigated common characteristics of models used in current scientific 

research to develop recommendations for the implementation of models in science 

curricula. The researchers posit teacher conceptions of models and modeling be 

broadened to perceive models as problem solving and decision making tools rather than 

as simplified representations of abstract concepts (Van Der Valk et al. 2007). Two studies 

conducted by Justi and Gilbert (2002a, 2002b) investigated the use of models for teaching 

science among elementary and secondary students in Brazil and the UK. Students’ 
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understanding of models was divided into three categories: (1) understanding of major 

scientific and historical models as well as the scope and limitations of the models,         

(2) understanding of the nature and role of models in scientific inquiry, and                   

(3) understanding of how to create and test their own models. The researchers noted 90 

percent of teacher participants categorized the purpose for models within their teaching in 

the first category, as a teaching tool representing abstract concepts for students (Justi & 

Gilbert, 2002b). Few teachers recognized the importance of models as a learning tool 

through which students are able to engage in constructing models to illustrate concepts or 

test predictions about concepts represented by the models (Justi & Gilbert, 2002a, 

2002b). Two studies conducted by Van Driel and Verloop (1999,  2002) investigated 

science teacher knowledge of models and modeling and found knowledge of models and 

modeling as a learning tool for students was noted to be low among the participants. 

Teachers placed greater emphasis on the content of models as a concrete representation 

of an abstract concept rather than model construction as a powerful learning activity for 

students indicating limited knowledge of students’ conceptions of models (Van Driel & 

Verloop, 1999; Van Driel & Verloop, 2002). Overall, studies investigating teacher use of 

models and modeling indicated teachers perceived models as simple, concrete 

representations rather than as student generated tools for making and testing predictions 

of scientific concepts.  

 Knowledge of instructional strategies. Magnusson et al. (1999) defines two sub-

categories for science teacher knowledge of instructional strategies: (a) subject-specific 

knowledge, addressing the knowledge of strategies including investigations and 

demonstrations appropriate for teaching a subject in science (e.g., biology, chemistry, or 
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physics); and (b) topic-specific knowledge appropriate for teaching a specific topic in 

science (e.g., genetics, cell biology, diffusion, osmosis). Topic-specific PCK references 

the knowledge necessary for integrating topic-specific content knowledge with teacher 

knowledge of learners, likely misconceptions and appropriate representations and 

instructional strategies to make the knowledge understandable for students.  

A study by Trigwell, Prosser, and Waterhouse (1999) investigated the relationship 

between experienced teachers’ approach to teaching and students’ approach to learning. 

They found a teacher-centered, information-transmission approach to teaching was 

strongly associated with a surface approach to learning among students. In contrast, a 

student-centered, conceptual change approach to teaching stimulated the use of deeper 

learning strategies among students (Trigwell et al. 1999). Hence, the researchers posit a 

relationship exists between the nature of instructional strategies implemented by the 

teacher and the depth of students’ learning (Trigwell et al. 1999). Investigating a 

constructivist approach to teaching, Borko and Putnam (1996) found teacher support to 

be critical for students’ learning through constructivist, student-centered instructional 

strategies. The perception of the role of the teacher must be that of a facilitator for 

students’ knowledge rather than that of a transmitter of knowledge. Hence, teachers must 

be aware of instructional strategies that actively engage students and promote higher 

order thinking and cognitive processing (Borko & Putnam, 1996).  

Taraban, Box, Meyers, Pollard, and Bowen (2007) investigated the effectiveness 

of active-learning laboratory investigations for topics in high school biology developed 

through collaboration between high school biology teachers and university faculty. The 

researchers compared teacher learning with student achievement. The program involved 
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six high school biology teachers engaged in a partnership with a university to incorporate 

an inquiry-oriented, student-centered instructional approach focused on laboratory 

investigations. Study findings indicate teachers engaged in the program: (a) enhanced 

knowledge of learners, (b) expanded knowledge of instructional strategies, (c) increased 

the implementation of inquiry-oriented instruction, and (d) reduced worksheets and 

cookbook investigations. The teachers participating in the study significantly reduced 

reliance upon traditional instruction, largely focused on the transmission of information 

through lecture (Taraban et al. 2007). A student questionnaire data indicated a significant 

increase in students’ content knowledge and knowledge of science process skills resulting 

from the expansion of teacher knowledge.  

 Van Driel, Verloop, & de Vos (1998) investigated experienced chemistry 

teachers’ PCK for teaching chemical equilibrium. Initially, researchers focused on 

teachers’ PCK for teaching chemical equilibrium by engaging teachers with 

investigations, representations, and assignments associated with teaching the topic and 

discussions of authentic students’ responses to assignments (Van Driel et al. (1998). 

During the study, teachers promoted conceptual change among students by discussing 

results of reversible chemical reactions and challenging students’ conceptions of 

chemical reactions through small group discussions. Van Driel et al. (1998) encouraged 

teachers to evaluate analogies and metaphors used in the past to explain chemical 

equilibrium and evaluate these representations in light of students’ ideas and responses to 

investigations, activities, and assignments focused on stimulating conceptual change. 

Questionnaire responses at the close of the study indicated a deepening of teachers’ 

knowledge of learners, representations, and instructional strategies, as well as teacher 
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gains in terms of content knowledge for teaching chemical equilibrium (Van Driel et al. 

1998).  

 Science education literature indicates the development of teachers’ PCK in terms 

of knowledge of representations and instructional strategies results from teaching 

experience (Justi & Gilbert, 2002a, 2002b; Taraban et al. 2007; Van Der Valk et al. 2007; 

Van Driel et al. 1998; Van Driel & Verloop, 1999, 2002). However, teaching experience 

alone cannot account for this aspect of teacher knowledge. A common theme within the 

studies cited in this section is the importance of expanding teacher knowledge through 

professional development to support the implementation of new instructional strategies 

and representations (Schwarz et al. 2009; Taraban et al. 2007; Van Der Valk et al. 2007; 

Van Driel & Verloop, 1999, 2002; Van Driel et al. 1998).  

 There is a notable gap within science education research among the studies 

discussed within this section. For instance, studies investigating representations such as 

analogies (Mastrilli, 1997) and teacher use of models (Harrison & Treagust, 2000a; Justi 

and Gilbert 2002a, 2002b; Van Der Valk et al. 2007; Van Driel & Verloop, 1999, 2002) 

investigated teacher implementation of analogies and models in general terms; these 

studies did not investigate teachers’ use of analogies and models for teaching specific 

topics in science.  

The Van Driel et al. (1998) is the only study to investigate the topic-specific 

nature of teacher knowledge by examining experienced chemistry teacher knowledge for 

teaching chemical equilibrium. Hence, little is known about the nature of experienced 

teacher knowledge of representations and instructional strategies for teaching a specific 

topic in science. Taraban et al. 2007 investigated teacher knowledge of inquiry-oriented 



63 

instructional strategies in general terms, not focusing on any one topic in science. The 

general focus of the overwhelming majority of these studies ignores the nature of 

experienced teacher PCK or how the teachers drew upon their knowledge to engage 

students with representations and instructional strategies for teaching a specific topic in 

science. Understanding the nature of topic-specific teacher knowledge of representations 

and instructional strategies provides greater insight into an understanding of how teachers 

draw upon their knowledge, integrate knowledge of content with their pedagogical 

content knowledge, and the knowledge of learners, representations, strategies, 

assessments, and curricula to make specific topics understandable to students.     

 Knowledge of students’ understanding of science. Magnusson et al. (1999) 

defined this component of PCK as pertaining to requirements for learning, potential 

learning difficulties associated with content, and prior knowledge or misconceptions 

about content held by students. Abell (2007) reported research in the area of students’ 

understanding of science was concentrated on teacher knowledge of alternate conceptions 

of science, teacher images of ideal science students, and general views of science 

learning (p. 1127).  

A critical aspect of science teacher PCK is the ability to predict potential student 

learning difficulties with content. Driver, Squires, Rushworth, and Wood-Robinson 

(2003) posit students develop conceptions of the natural world through their experiences, 

observations, and interactions with peers. Hence, students are not blank slates, instead, 

they bring into the classroom their prior knowledge and experiences which may be 

inaccurate perceptions of the natural world and interfere with learning (Driver et al. 

2003). Leach and Scott (2003) reported that it is necessary for teachers to understand the 
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knowledge students bring into the classroom to accurately predict potential learning 

difficulty with content.  

Wallace and Kang (2004) investigated teacher beliefs in relation to the 

implementation of inquiry-based instruction and found teacher beliefs about students’ 

limitations, maturity, or learning difficulties with content influence the implementation of 

inquiry-based instruction. In addition, Wallace and Kang (2004) noted teachers held 

competing belief sets; belief sets which constrained inquiry-based teaching were 

identified as beliefs about students, while beliefs about quality instruction supported the 

inclusion of inquiry-based instruction. Cohen and Yarden (2009) investigated 59 Israeli 

science and technology teachers’ PCK with regards to the topic of the living cell. The 

study investigated teachers’ PCK in light of a curricular change mandating that the cell 

topic be taught longitudinally, integrating the concept with students’ understanding of 

multicellular organisms as consisting of single cells functioning as tissues, organs, or 

organ systems to maintain life. Study participants noted even though students were 

familiar with the concept of cells as microscopic and living entities, they were likely to 

describe the cell as flat or two-dimensional and experience difficulties perceiving the cell 

as a three-dimensional structure (Cohen & Yarden, 2009). One of the teachers noted her 

students thought cells had lungs, a misconception previously reported by Dreyfus and 

Jungwirth (1988). Cohen and Yarden (2009) note teachers experienced conflicts between 

their beliefs about the importance of the cell topic and the actual integration of the topics 

related to the cell in classroom practice. Teachers were very concerned about students’ 

perception of the cell as a three-dimensional entity and were found to have no PCK for 

the integration of biological phenomena at the macro-level with their explanations of the 
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cell at the micro-level (Cohen & Yarden, 2009). Teachers also failed to make connections 

between various organizational levels (e.g., molecular, cellular, tissue, organ, organ 

system, organism) when teaching the concept of cells. Hence, the teachers’ concerns 

about potential students’ learning difficulties associated with the cell resulted in the 

teachers dedicating less time to teaching the cell at the macro-level (e.g., the function of 

cells within tissues, organs, organ systems, and organisms) and more time to teaching the 

cell topic at the micro-level. Thus, teacher beliefs resulted on a focus for teaching the cell 

at the micro-level and acted as a constraint for teaching the cell concept at the macro-

level and making relevant connections between the nature and function of the cell and 

macroscopic examples of the cell. A study by Cronin-Jones (1991) investigated the 

implementation of changes in curriculum by experienced teachers and identified the 

perception held by the teacher about how students learn, students’ learning abilities, and 

the perception of the role of the teacher to be major factors in the implementation of the 

curriculum. Hence, teacher beliefs about students as science learners are important 

factors in determining teacher actions in the classroom (Cronin-Jones, 1991).  

Jones, Carter, and Rua (1999) investigated the roles that students’ conceptual 

understanding of science play in promoting the development of teacher knowledge. Study 

findings indicated teachers did not take steps to reveal students’ understanding of science 

concepts and were shocked by the misconceptions students held. After investigating 

student learning, teachers reported greater motivation to enhance their understanding of 

science content, reconsider their teaching practices to include inquiry-based instructional 

strategies, and place greater emphasis upon students’ prior knowledge of science 

concepts (Jones et al. 1999).  
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Athanassios and Komis (2003) posit that students possess an incoherent system of 

beliefs and intuitions about the physical world which are incompatible with scientific 

theories and derived from their everyday experience. In a study investigating the 

inclusion of inquiry-based instruction within the Greek Science Curriculum, researchers 

investigated the effectiveness of a constructivist approach to teaching physics in terms of 

students’ understanding of Newton’s Laws. Findings indicated an improvement in 

students understanding of Newton’s Laws when teachers demonstrated greater 

understanding of students as science learners. Teacher ability to interpret students’ 

statements and actions and respond by adapting teaching to meet students’ needs was an 

important factor in teachers’ progression from a teacher-centered to a student-centered 

teaching approach.  

Abell (2007) noted that research investigating teacher knowledge of science 

learning “employed a wide range of methods and lacked cohesion in terms of the research 

questions addressed” (p. 1128). The studies indicate teachers are often unaware of the 

prior knowledge held by their students or place minimal importance on students’ 

inaccurate conceptions of scientific principles. Students’ ideas are important 

considerations when teachers consider the teaching approach for a specific scientific 

concept. Students bring prior experiences, knowledge, and habits of mind into the 

classroom which influence how they interpret, understand, and respond to teacher 

actions. Teacher understanding of students as learners is critical for effective teaching 

and learning (Ball & Cohen, 1999). Few studies dealt with teacher knowledge of students 

as learners. Most of the studies reviewed for this section focused on the influence of 

instructional strategies initiated by the teacher upon students’ learning. However, the 
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studies did not focus on the nature of teacher knowledge of students as learners and how 

that knowledge was drawn upon for teaching a specific concept in biology. Hence, there 

is a significant gap in the science education literature in this regard. 

Knowledge of science assessment. Magnusson et al. (1999) describe the 

knowledge of assessment in science as conceptualizing the scientific literacy of their 

students to “inform their decision-making relative to classroom assessment of science 

learning for specific topics” (p. 108). Teachers must know what to assess and the 

assessment methods to employ to measure the knowledge of that topic held by students 

(Magnusson et al. 1999). Summative assessments evaluate the knowledge held by 

students on a specific topic and measure student learning following the completion of a 

unit in science. Formative assessments occur during instruction and provide the teacher 

with insight into students’ prior knowledge before instruction or conceptual 

understanding of a topic in science during instruction. Through formative assessment 

practices, teachers provide feedback to students in an effort to redirect their thinking 

and/or stimulate self-assessment of their own work. 

 Atkin, Black, and Coffey, (2002) identify a framework for formative assessment 

guided by three considerations: (1) identification of the learning and performance goals, 

(2) assessment of students’ current level of understanding or students’ self-evaluation of 

their work, (3) assisting students with the development of strategies and skills to help 

them reach their goals (NRC, 2002).  

Abell (2007) posits “knowing what assessment methods teachers use does not 

provide insight into how assessment is enacted” (p. 1132). To gain insight into formative 

assessment and how it is enacted in the science classroom, Cowie and Bell (1999) and 
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Bell and Cowie (2001) conducted a two-year study investigating formative assessment 

practices among ten New Zealand science teachers. Cowie and Bell (1999) noted teacher 

participants utilized two forms of formative assessment: (1) planned or formal formative 

assessment and (2) interactive or informal formative assessment. Planned formative 

assessment was described by researchers as a planned event (e.g., brainstorming, survey, 

pretest) to assess understanding among the entire class often at the beginning of a unit; 

teachers used feedback from this assessment to inform their teaching during the unit 

(Cowie & Bell, 1999). Interactive formative assessment took place during the lesson, 

involved teacher-student interactions, observations of student-student interactions, was 

not planned, occurred during instruction, and embedded within teaching and learning 

activities (Cowie & Bell, 1999). Hence, interactive formative assessment was predicated 

upon teacher observations, interactions with students, students’ questions, and other 

observations of students made during teaching. Teaching experience was identified as a 

major factor in terms of teachers’ ability to accurately observe and interpret students’ 

behaviors, interactions, and questions to assess students’ understanding of concepts 

during teaching (Cowie & Bell, 1999). Existing and developing assessment practices 

among the teacher participants were investigated during a two-year research project (Bell 

& Cowie, 2001). Researchers described formative assessment as “the process used by 

teachers and students to recognize and respond to student learning in order to enhance 

learning during the learning” (Bell & Cowie, 2001, p. 536). Working with teacher 

participants, researchers identified nine characteristics of formative assessment:            

(1) responsive to students’ learning needs, (2) identifies sources of evidence for students’ 

understanding, (3) described as a tacit process, (4) uses professional knowledge and 
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experiences, (5) functions as an integral part of teaching and learning, (6) implemented 

by both teachers and students, (7) driven by the goals and purposes for instruction,        

(8) results in changes in teaching and learning strategies, and (9) identifies dilemmas 

faced by teachers in accurately interpreting students’ responses. The researchers posit the 

value in documenting the characteristics of formative assessment lies in making the 

nature of a largely tacit process more visible and explicit for teachers (Bell & Cowie, 

2001). The studies by Cowie and Bell (1999) and Bell and Cowie (2001) underscore the 

importance of continuous assessment for learning rather than assessment of learning.  

Liew and Treagust (1998) used action research conducted by the first author to 

investigate the use of the Predict-Observe-Explain (POE) instructional strategy for 

assessing Australian students’ knowledge of physics concepts in terms of: (a) prior 

knowledge of concepts in physics before instruction, (b) conceptual understanding during 

instruction, and (c) learning progress during instruction. Study findings indicate the POE 

strategy is effective in determining students’ knowledge of concepts prior to instruction 

and using students’ feedback to identify potential learning difficulties and adjust 

instruction (Liew & Treagust, 1998). By implementing the POE strategy with each 

investigation, teachers are able to assess students’ conceptual understanding of physics 

concepts, align instruction to student needs, and monitor students’ progress throughout 

the course.  

Ruiz-Primo and Furtak (2006) investigated formative assessment within the 

context of scientific inquiry and within classrooms of four middle school physical science 

teachers. The goal of the study was to capture the nature of informal formative 

assessment to assist other teachers with assessment practices through prospective teacher 
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preparation and professional develop for inservice teachers. The researchers investigated 

informal formative assessments including student-teacher interactions, whole class 

discussions, small group interactions, or student-student interactions which were 

implemented by teachers during instruction; next, informal assessments were compared 

to student learning. Researchers found students performance on embedded assessments 

within lessons was enhanced when teachers implemented formative assessment 

techniques consisting of four steps: (1) the teacher poses a question, (2) the student 

responds, (3) the teacher recognizes the student response, and (4) the teacher uses the 

information to support student learning (Ruiz-Primo & Furtak, 2006, p. 207). In contrast, 

students of teachers who implemented a three-step cycle, (a) the teacher poses a question, 

(b) the student responds, and (c) the teacher evaluates the student’s response, performed 

at a lower level on embedded assessments (Ruiz-Primo & Furtak, 2006, p. 207). The 

study underscores the importance of formative assessment during the lesson as a means 

for teachers to adjust instruction, address students’ learning difficulties with content, and 

support students’ learning. The use of formative assessment to assess student knowledge 

before instruction and monitor students’ progress during instruction was a common 

theme throughout these studies.  

Morrison and Lederman (2003) investigated classroom routines of four exemplary 

science teachers to determine whether any diagnosis of students’ prior knowledge or 

analysis of students’ written work occurred before or during the teaching of a specific 

science concept. Although teacher participants noted the importance of identifying 

students’ prior knowledge before teaching, even the most experienced of the participants 

indicated he experienced difficulty when pre-assessing students’ ideas. Hence, 
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participants did not engage in pretesting, interviewing, or pre-writing to reveal students’ 

prior knowledge of concepts (Morrison & Lederman, 2003). Participants used informal 

questioning to reveal students’ thinking prior to teaching. However, researchers noted the 

questions were largely recall in nature and did not reveal students’ understanding and 

personal beliefs about the concept; only the most experience teacher used probing 

questions to reveal students’ thinking (Morrison & Lederman, 2003). Bol and Strage 

(1996) investigated the connection between the learning goals for students and teacher 

assessment practices among ten high school biology teachers. During the study, the 

teachers emphasized their desire for students to develop an interest in biology, to 

understand real-world applications for biology, to develop higher order study skills, and 

to employ critical thinking skills (Bol & Strage, 1996). However, teacher assessment 

practices revealed that 52% of test questions and 53% of practice assessments required 

only basic knowledge, while only 5 % of test questions and 4% of practice assessments 

required students to apply their knowledge (Bol & Strage, 1996). Researchers noted that 

teacher interviews revealed a lack of awareness regarding the disparity between the goals 

for students’ learning and the formative assessments implemented during teaching.  

The studies cited within this section reveal a lack of teacher understanding of 

formative assessment as a means of informing instruction and meeting learning goals for 

students. The studies investigated the implementation of formative assessments in general 

and do not focus on teacher use of formative assessments for teaching specific concepts 

in science. Ongoing assessment of students’ conceptual understanding during teaching is 

an important aspect of effective instruction as indicated in the studies reviewed for this 

section. However, the nature of experienced teachers’ knowledge of formative 
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assessments designed to reveal students’ prior knowledge before instruction and 

conceptual understanding during instruction is absent from the literature. There are 

important benefits for experienced and prospective teachers resulting from investigating 

the design, implementation, and interpretation of formative assessments to evaluate 

student learning and inform teaching of specific topics in science. There is little research 

examining teachers’ knowledge of assessment strategies in general.  

Knowledge of science curriculum. Magnusson et al. (1999) identified two types of 

curricular knowledge as: (1) the knowledge of mandated goals and objectives (e.g., 

district, state and national standards) and (2) knowledge of specific curricular programs 

and materials. Abell (2007) reported curricular studies typically ask teachers to rank 

curricular goals from most to least important rather than investigate the knowledge of 

curriculum held by the teachers. 

Avery and Carlsen (2001) investigated the roles of curriculum makers and 

curriculum users by engaging science teachers in the formation of a professional learning 

and teaching community through which the development and implementation of their 

Environmental Inquiry project was realized. During the design of the project, teachers 

were curriculum makers; however, with the implementation of the curriculum, the 

teachers became curriculum users. Avery and Carlsen (2001) noted that as curriculum 

users, the teachers negotiated the meaning and purpose of innovations within the 

curriculum and adapted the curriculum to address the curricular mandates within their 

schools. Researchers found by engaging teachers with both the development and 

implementation of curriculum, teachers gained a better understanding of the goals of the 
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curriculum and the new teaching practices or instructional models necessary to support 

student learning within the context of the curriculum.  

Schneider and Krajcik (2000) investigated the implementation of inquiry-based 

science instruction into eighth grade physical science within the context of a large urban 

public school district. The researchers posit teachers’ ability to enact inquiry-based 

instruction successfully ultimately depends upon supporting teachers’ understanding and 

implementation of new instructional practices which support student learning through 

inquiry; hence, teacher participants were supported with a two-week summer institute, 

three Saturday sessions, and a weekly in-class support program provided by university 

and district personnel (Schneider & Krajcik, 2000). Study findings indicate the support 

provided to teachers to implement inquiry-based instructional strategies into their 

curriculum enhanced teachers’ understanding of topic-specific ideas within the lesson and 

the strategies (PCK) necessary to engage students with learning the concepts (Magnusson 

et al. 1999; Schneider & Krajcik, 2000).  

Jones and Eick (2007) investigated the changes in PCK of two middle school 

science teachers as they implemented a kit-based inquiry curricular reform program. Both 

teachers made changes in their teaching approach; one moved away from using only 

open-ended inquiry and engaged students with journaling and performance assessments. 

The other teacher moved from a teacher-centered to a student-centered instructional 

approach and engaged students with cooperative learning and guided inquiry (Jones & 

Eick, 2007). The successful implementation of the kit-based inquiry program by the 

teacher participants resulted from ongoing professional development providing both 

training and support for the teachers.   
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Furio, Vilches, Guisasola, and Romo, (2002) investigated the views of the goals 

of secondary science education held by Spanish teachers. Changes in curricular trends in 

the Spanish science education placed greater emphasis upon scientific literacy for all 

students rather than focusing upon students’ formal knowledge of chemistry and physics. 

Furio et al. (2002) used questionnaires to reveal teacher perception of the goals and 

purposes for teaching science, curricular knowledge, concerns about implementing 

changes within the science curriculum, and necessary support for teacher implementation 

of curricular changes. Teachers’ responses indicated the science curriculum should focus 

on the laws and principles of science with the goal of preparing students for higher 

education rather than motivating students’ interest in science and achieving scientific 

literacy for all students. The researchers noted significant support and training would be 

necessary to prepare teachers to implement the new curriculum. Hence, the findings of 

Furio et al. (2002) are in line with those of Schneider and Krajcik (2000) in emphasizing 

the importance of teacher preparation and support for the implementation of curricular 

changes. 

Kesidou and Roseman (2002) examined middle school curricular programs to 

determine if programs supported ideals identified in the National Science Education 

Standards and to identify the strengths and weaknesses within each of the nine programs 

examined. Findings were organized into three categories. First, reviewers determined the 

middle school curricular programs exhibited a lack of focus and did not make 

connections between key ideas found in multiple units (Kesidou & Roseman, 2002). 

Second, the instructional design did not focus on identification of students’ prior 

knowledge, and did not suggest strategies for teachers to address student misconceptions 
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(Kesidou & Roseman, 2002). Third, teachers’ guides were insufficient in suggesting 

instructional strategies to scaffold students’ learning and interpreting students’ responses 

(Kesidou & Roseman, 2002). The study indicates there is little emphasis on teacher 

knowledge or support for teacher learning in the curricular program which is a serious 

flaw undermining effective science teaching and learning (Furio et al. 2002; Jones & 

Eick, 2007; Kesidou & Roseman, 2002; Schneider and Krajcik, 2000).  

The theme emerging from these studies is the importance placed by researchers 

on teacher perceptions of the goals and purposes of the science curriculum. However, 

little emphasis was placed upon the knowledge of curriculum held by teachers and how 

that knowledge was drawn upon when teaching specific topics in science. For example, 

the studies did not investigate teacher knowledge of the horizontal and vertical curricula 

in terms of teaching a specific topic in science. Teacher knowledge of curriculum was not 

clarified in the studies and the manner in which teachers drew upon their knowledge of 

curriculum and integrated that knowledge with other components of PCK was missing 

from the literature.  

Knowledge integration. In a study of prospective science teachers, Davis (2003) 

investigated the development of PCK through the perspective of knowledge integration 

described as a means of “differentiating, integrating, and restructuring ideas” (p.21). 

Davis (2003) suggests prospective teachers enhance their knowledge of teaching and 

develop PCK through teaching experience and reflection upon their practice. As 

prospective teachers gain teaching experience and reflect upon their practice, they are 

able to identify weaknesses and teaching and consider new understandings of learners, 

representations, instructional strategies and assessments. Prospective teachers integrate 
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new knowledge of learners, representations, instructional strategies, and assessment with 

their existing knowledge to develop a unique form of knowledge (PCK) for teaching 

science.  

In terms of the PCK of experienced teachers, Hashweh (1985) conceptualized 

PCK as topic-specific knowledge developed by teachers with experience in teaching 

specific topics. This conceptualized knowledge results from the integration of knowledge 

of students as learners, their prior knowledge, potential learning difficulties associated 

with specific content, and appropriate representations and instructional strategies to 

effectively engage students and enhance their conceptual understanding of the concept 

(Hashweh, 1985). Fernandez-Balboa and Stehl (1995) asserted PCK results from the 

integration of different components of teacher knowledge. Van Driel et al. (1998) posited 

PCK is topic-specific and includes knowledge of subject matter, learners, representations, 

instructional strategies and assessments for teaching specific topics in science. 

Calderhead (1996) noted teacher knowledge has several origins including teaching 

experiences, formal teacher preparation, and ongoing professional development. 

Loughran, Mulhall, and Berry (2004) support the description of PCK as highly integrated 

knowledge and described teacher PCK as the “teachers’ grasp of, and response to, the 

relationships between knowledge of content, teaching, and learning in ways that attest to 

notions of practice as being complex and interwoven” (p. 370).  

Park and Oliver (2008) expanded upon the theme of knowledge integration to 

investigate the continued development and integration of the components of PCK among 

experienced teachers seeking National Board Certification. Findings indicated teachers 

continually integrate new knowledge for teaching science into their existing PCK. New 
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knowledge, developed through reflection on classroom experiences with learners, 

professional development, and collaboration with colleagues, is added and integrated into 

existing knowledge (Loughran et al. 2004). Verloop, Van Driel, and Meijer (2001) 

identify teacher practical knowledge as all of the knowledge, beliefs, and intuitions held 

by the teacher resulting from teaching experience, formal preparation, and ongoing 

professional development and describes this knowledge as “inextricably intertwined” (p. 

446). As new ideas are added and reconciled with existing ideas, teacher knowledge 

becomes increasingly integrated and develops into a specialized and sophisticated form 

of knowledge for teaching (Davis, 2000, 2003; Fernandez-Balboa and Stehl (1995); 

Hashweh, 1985; Loughran et al. 2004; Park & Oliver, 2008; Shulman, 1986; Verloop et 

al. 2001).  

 Studies investigating the nature of knowledge held by experienced teachers for 

teaching specific topics in science is largely absent from the literature. The highly 

integrated nature of the PCK of experienced teachers and the manner in which they draw 

upon this knowledge to reveal students’ prior knowledge of topics, address students’ 

misconceptions, engage students with representations and instructional strategies, and 

monitor students conceptual understanding of topics can only be observed in teacher 

practice. The studies cited in this section posit the development of PCK among 

prospective and experienced teachers is predicated upon their integration of knowledge 

for teaching. However, the studies do not investigate topic-specific PCK held by 

experienced science teachers for teaching a specific topic. The goal of my study is to 

better understand the knowledge integration of the experienced teachers’ PCK for 

teaching for teaching a specific topic in science.  



78 

Topic-specific PCK for Teaching Diffusion and Osmosis 

 Shymansky, Woodworth, Norman, Dunkase, Matthews, and Liu (1993) note that 

teacher PCK in terms of knowledge of students as learners can be improved by studying the 

structure and evolution of students’ ideas about specific topics in science. Van Driel et al. 

(1998) note science education research on science teachers’ PCK has focused on the 

nature and development of PCK rather than on the PCK necessary for teaching specific 

topics in science. Hence, the purpose of this section is to focus upon the nature of PCK 

held by experienced biology teachers for teaching diffusion and osmosis. The section is 

divided into two sections: (1) a review of the literature investigating practitioner 

knowledge for teaching osmosis and diffusion and (2) a review science education 

literature examining teacher PCK for teaching diffusion and osmosis. 

Review of Practitioner Literature for Teaching Osmosis and Diffusion  

Friedrichsen and Pallant (2007), Marek, Cowan, and Cavallo (1994), Marvel and 

Kepler (2009), Odom (1995), Villani, Dunlop, and Damitz (2007), Zrelak, and 

McCallister, (2009), and Zuckerman (1993) identify the importance of students’ 

conceptual understanding of diffusion and osmosis and note these concepts form the basis 

for students’ understanding of biological processes. Hence, conceptual understanding of 

diffusion and osmosis provides the foundation for understanding complex processes such 

as: photosynthesis, cellular respiration, and the maintenance of homeostasis in living cells 

and systems. The authors also note the complex and integrated nature of diffusion and 

osmosis which draws from chemistry (e.g., relative concentrations dissolved solids), 

physics (e.g., the particulate nature of matter and random molecular motion), and biology 

(e.g., the nature of semipermeable cell membranes). Friedrichsen and Pallant (2007), 

Marek et al. (1994), Odom (1995), and Zuckerman (1993) identified common 
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misconceptions held by high school and college students regarding diffusion and 

osmosis. The authors provide teachers with an awareness of students’ misconceptions and 

explanations of how that prior knowledge, if not addressed, can constrain learning. Thus, 

practitioner journals provide an exceptional source of knowledge of learners, content, 

representations, and instructional strategies for teachers.  

In general, this literature noted students often struggle with understanding 

diffusion and osmosis because they do not perceive random molecular motion as the 

driving force for the processes or understand the importance of the relative concentrations 

of dissolve solids within two solutions separated by a semipermeable membrane. 

Suggestions for supporting the development of students’ conceptual understanding of 

diffusion and osmosis are provided by several of the authors.  

Friedrichsen and Pallant (2007), Marvel and Kepler (2009), Villani, Dunlop, and 

Damitz (2007), and Zrelak and McCallister (2009) suggest the implementation of a 5E 

instructional sequence (Bybee, 1997), for teaching osmosis and diffusion. The authors 

suggest teachers challenge students with an exploration of concepts prior to generating an 

explanation and extend knowledge by challenging students to apply their knowledge to 

novel scenarios. As students investigate the nature of membranes and the direction of 

osmosis, they begin to make sense of the processes and understand the development of a 

concentration gradient and the forces which determine the direction of osmosis. These 

articles provide an important knowledge source for prospective and experienced teachers. 

The authors are typically high school teachers sharing their ideas and experiences with 

fellow practitioners. The articles represent important insight into the knowledge and 

practice of secondary teachers by defining concepts as well as identifying and describing 
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representations, demonstrations, investigations, and experiments investigating specific 

topics in science.  

 Review of Science Education Research Literature Examining Teaching and Learning 

Related to Diffusion and Osmosis . 

Magnusson et al. (1999) posit PCK is the understanding held by the teacher of 

how particular subject matter topics, problems and issues should be organized, 

represented, and adapted and taught to make specific topics in science understandable for 

students. Diffusion and osmosis are critical concepts in biology and are implicated in 

explaining biological concepts associated with the movement of substances along a 

concentration gradient, the maintenance of homeostasis in cells, and the movement of 

water and dissolved materials across a semipermeable cell membrane (Christianson, & 

Fisher, 1999; Odom, & Barrow, 2007; Odom & Barrow, 1995; Odom & Kelly, 2001; 

Tekkaya, 2003; Zuckerman, 1993).  

A study by Zuckerman (1993) investigated problem-solving within the context of 

concepts related to osmosis among secondary students excelling in science.  Findings 

indicated many study participants held misconceptions about osmosis. Only six 

participants were able to solve the problem correctly; however, during interviews, several 

students revealed misconceptions about osmosis even though they were able to solve the 

problem correctly (Zuckerman, 1993). The eight misconceptions made explicit by the 

study included: (1) water anthropomorphically osmoses to equalize either the amount or 

relative concentration, (2) different amounts of water rather than different concentrations 

drive osmosis, (3) water cannot osmose against a pressure gradient, (4) the rate of 

osmosis is constant, (5) water molecules cease moving across a membrane at osmotic 
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equilibrium, (6) the hydrostatic pressures across the membrane must be equal as osmotic 

equilibrium, (7) the amounts of water across the membrane must be equal at osmotic 

equilibrium, and (8) the concentrations of water across the membrane must be equal at 

osmotic equilibrium (Zuckerman, 1993). Study findings indicate misconceptions four and 

eight (the rate of osmosis is constant, and the concentrations of water across the 

membrane must be equal at osmotic equilibrium) effectively blocked students from 

solving the problem accurately (Zuckerman, 1993). This study emphasizes the 

importance of students’ prior knowledge and encourages opportunities for students to 

explain the direction of water movement during osmosis to make students’ conceptual 

understanding explicit. Hence, Zuckerman (1993) suggests that teachers evaluate 

students’ prior conceptions of osmosis before teaching the concepts. 

Odom and Barrow (1995) and Odom and Barrow (2007) investigated students’ 

misconceptions about diffusion and osmosis through the Diffusion and Osmosis 

Diagnostic Test (DODT). The DODT was administered to high school and college 

biology students as a pre-test to make misconceptions explicit and as a post-test to reveal 

students’ conceptual understanding of the phenomena (Odom & Barrow, 1995; Odom & 

Barrow, 2007). Study findings identified 20 misconceptions held by both high school and 

college biology students related to tonicity, membrane function, particulate nature of 

matter, random molecular motion, diffusion as a process, osmosis as a process, and the 

influence of life processes on diffusion and osmosis (Odom & Barrow, 1995). Therefore, 

the study illustrates the conceptual difficulty of the topic and the need to better 

understand the processes of diffusion and osmosis and how these processes influence the 

maintenance of homeostasis and the production of cellular energy among all life forms.  
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Christianson and Fisher (1999) investigated students’ learning related to diffusion 

and osmosis within the context of a college biology course; students were taught with 

three different instructional approaches including: (1) traditional instruction,                  

(2) traditional instruction and a laboratory/discussion group, and (3) student-centered 

instruction in which constructivist instructional strategies were implemented. The DODT 

(Odom & Barrow, 1995) was implemented as a pre and post test. Students in the student-

centered constructivist group out-performed the other two groups indicating a strong 

conceptual understanding of osmosis and diffusion. 

 Odom and Kelly (2001) investigated students’ learning via traditional instruction 

of concepts related to diffusion and osmosis within the context of three forms of student-

centered instruction including: concept mapping, the learning cycle, and an integration of 

concept mapping and the learning cycle. The researchers implemented the DODT (Odom 

& Barrow, 1995) as a pre and post test; study findings indicated students taught through 

the learning cycle and concept mapping out performed students exposed only to 

traditional instruction (Odom & Kelly, 2001). However, students showing the most 

significant gains on the DODT (Odom & Barrow, 1995) were students taught with a 

combination of concept mapping and the learning cycle (Odom & Kelly, 2001). Similar 

results were noted by  Takkaya (2003) in a study examining the effectiveness of 

combining conceptual change and concept mapping strategies on students understanding 

of diffusion and osmosis. Forty-four ninth grade students in two separate classes within 

the same urban high school were involved in the study; one class received traditional, 

teacher-centered instruction while the other class received student-centered instruction 

addressing students’ misconceptions and engaging students with conceptual change and 
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concept mapping strategies (Takkaya, 2003). The DODT (Odom & Barrow, 1995) served 

as a pre and post test; findings identified misconceptions similar to those noted by the 

Odom and Barrow (1995, 2007) studies (Takkaya, 2003). Study findings indicated the 

difficulty involved in eliminating students’ misconceptions associated with diffusion and 

osmosis; the average percentage of students in the control group showed gains in 

understanding on the DODT of 19.1% whereas, in the experimental group the average 

percent of students showing increased comprehension was 31.6% (Takkaya, 2003). The 

interdisciplinary nature of the concept was given as the reason for the difficulty involved 

in eliminating students’ misconceptions. Diffusion and osmosis integrate concepts related 

to physics, chemistry, and biology and understanding these concepts involves an 

understanding of the nature of solutions, random molecular motion, membrane 

permeability, relative concentrations of dissolved solids, and concentration gradients 

(Odom & Barrow, 1995, 2007; Takkaya, 2003).  

 There are several themes noted which emerged from these studies. First, diffusion 

and osmosis were selected as the concepts to be taught in each of the studies for four 

reasons: (1) the interdisciplinary nature of the concepts requires students to integrate 

knowledge of physics, chemistry, and biology; (2) the concepts were challenging for 

students to learn; (3) the concepts are challenging for teachers to teach; and (4) the 

concepts form a basis for understanding the nature of the cell, the maintenance of 

homeostasis, and energy production in the cell. Second, high school and college students 

held similar misconceptions related to diffusion and osmosis. Third, the DODT (Odom & 

Barrow, 1995) was used to evaluate student learning in all of the studies with the 

exception of Zuckerman (1993). Fourth, the most effective forms of instruction were 
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student-centered and involved constructivist strategies including the learning cycle, 

making and testing predictions, and concept mapping.  

Another important theme noted among these studies is the focus on student 

learning rather than teacher knowledge. Teacher knowledge is only addressed indirectly 

in terms of knowledge of potential misconceptions, representations, and instructional 

strategies; there were no teacher interviews or evaluations of teacher content knowledge, 

pedagogical knowledge, or pedagogical content knowledge. Hence, there is a significant 

gap in the literature in terms of the knowledge of experienced teachers for teaching 

specific concepts such as diffusion and osmosis.  

Gaps within the Literature 

 The studies I reviewed for this literature review revealed the majority of studies 

investigating PCK were concerned with the development of PCK among prospective 

teachers within the context of an alternative certification program. A limited number of 

studies did focus on the general nature of PCK among experienced teachers. Several 

studies were reviewed which described the nature of knowledge for teaching specific 

topics in mathematics as packaged. The packaged knowledge for teaching specific topics 

included: content knowledge as well as the knowledge of learners, representations, 

instructional strategies and assessments for teaching specific mathematical concepts. 

These studies underscored the integrated nature of knowledge held by experienced 

mathematics teachers. However, only one study was found in the science education 

literature which focused on the nature of PCK held by experienced teachers for teaching 

specific concepts in science. Most of the studies reviewed in science education literature 
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were general in nature and did not focus on characteristics of topic-specific PCK 

necessary for teaching specific concepts in science.  

The literature reviewed for this section revealed a lack of research focused on the 

PCK held by experienced teachers for teaching a specific topic in science. For example, 

few studies were found investigating the orientation of experienced science teachers for 

teaching science and how goals and purposes, perceptions of teacher and students’ roles, 

and ideal images of teaching informed instructional decisions and teaching practice. Few 

studies were found which examined the nature of PCK held by experienced science 

teachers for teaching a specific topic in science and how their knowledge informed their 

teaching in terms of: (a) use of representations and instructional strategies,                      

(b) understanding of learners and potential difficulties, (c) implementation of formative 

assessments to reveal students’ prior knowledge and conceptual understanding, and      

(d) selection of lesson content and sequence of instruction. This study will address these 

gaps. 

The majority of studies were focused on prospective teachers. Few studies have 

been conducted which investigate the knowledge and practice of experienced teachers. 

Even fewer studies are focused on the PCK held by experienced teachers for teaching 

specific concepts or topics in science. A number of researchers have asserted that teacher 

PCK develops as a result of teaching experience (Van Der Valk et al. 2007; Van Driel et 

al. 1998; Van Driel & Verloop, 1999, 2002). Van Driel and Verloop (2002) note the need 

for additional studies investigating the integration of teacher knowledge of 

representations and instructional strategies with knowledge of students’ conceptions of 

science.  
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 In reviewing the science education literature, there is little emphasis on the 

knowledge and practice of experienced teachers. Little work has been devoted to 

investigating the PCK of experienced teachers and how that knowledge influences their 

instructional decisions and teaching practice. For instance, studies conducted by 

Christianson and Fisher (1999), Johnstone and Mahmond (1980), Odom and Barrow 

(1995), Odom and Barrow (2007), Odom and Kelly (2001), and Zuckerman (1993) 

examined students’ conceptual understanding of osmosis and diffusion. However, the 

studies did not examine the topic-specific PCK held by the teachers; hence, there is little 

known about the nature of teacher PCK for teaching the diffusion and osmosis. This 

study addresses the gap in the literature by examining the PCK and practice of high 

school biology teachers for teaching the phenomena to high school biology students.  

Recognizing common themes and gaps in understanding of the nature of PCK 

held by experienced teachers and how that knowledge is drawn upon when teaching 

specific scientific topics provides important insight into teaching and learning. The 

importance of mentor teachers stimulating reflection of prospective teachers upon their 

teaching practice was a major theme in science and mathematics education literature. It is 

important to note that before we can understand how prospective and novice teachers 

learn to teach we must first understand the nature of PCK held by experienced teachers. 

How experienced teachers draw upon that knowledge when teaching specific topics in 

science provides important insight into the integration of knowledge during teaching. By 

understanding the knowledge and practice of experienced teachers for teaching specific 

topics in science, teacher educators can unpack teacher knowledge and identify the 

knowledge of learners, representations, instructional strategies, and assessments 
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necessary for effective teaching and learning. The knowledge of teacher PCK gained by 

investigating the nature of PCK among experienced teachers can inform the design and 

content of teacher professional development. I strongly believe the next logical step in 

science education research is to investigate the PCK held by experienced teachers for 

teaching specific topics in science. 
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CHAPTER THREE: THE RESEARCH PROCESS 

Research Questions and Tradition 

The purpose of this study was twofold: (a) to investigate the nature of knowledge 

for teaching concepts related to osmosis and diffusion held by experienced biology 

teachers serving as mentors for prospective teachers enrolled in an alternative 

certification program (ACP), and (b) to investigate how the components of topic-specific 

teacher knowledge are drawn upon by experienced biology teachers when teaching 

diffusion and osmosis to tenth grade biology students. The Magnusson et al. (1999) 

model defines teacher knowledge as pedagogical content knowledge which includes 

orientations to science teaching, as well as knowledge of learners, instructional strategies 

and representations, assessment, and curriculum. The overarching research question 

guiding this study was: When teaching lessons on osmosis and diffusion, how do 

experienced biology teachers draw upon their topic-specific pedagogical content 

knowledge? 

To answer this question, I developed the following sub-questions: 

1. What are the nature and sources of experienced biology teachers’ orientations to 

science teaching?  

2. What is the nature of experienced biology teachers’ knowledge of representations 

and instructional strategies and how does this knowledge inform their teaching 

practice?  

3. What is the nature of experienced biology teachers’ knowledge of students’ 

understanding of science and how does this knowledge of science learners inform 

their teaching practice? 
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4. What is the nature of experienced biology teachers’ knowledge of formative 

assessment strategies and how does this knowledge inform their teaching 

practice?  

5. What is the nature of experienced biology teachers’ knowledge of biology 

curriculum and how does this knowledge inform their teaching practice?  

6. In what ways do experienced teachers integrate the topic-specific components of 

their pedagogical content knowledge when teaching osmosis and diffusion?  

These questions focus on the nature of knowledge held by experienced biology teachers 

and my interpretation of how they draw upon and utilize their knowledge within the 

context of their practice. 

Constructivism 

Constructivism is an important theoretical paradigm in science education research 

and involves the construction of individual meanings; thus, teachers observed in the field 

are constructing teacher knowledge through their interpretation of the events taking place 

in the classroom (Carlson, 2007). Constructivism holds the view that “all knowledge, and 

therefore all meaningful reality as such, is contingent upon human practices, being 

constructed in and out of interaction between human beings and their world” (Crotty, 

2003, p.42). Therefore, the constructivist perspective is best suited for investigating how 

individuals incorporate new knowledge into their existing knowledge and then make 

sense of this new construct (Ferguson, 2007). Participants in this study are constructing 

their knowledge of teaching through the prism of their classroom experience and 

knowledge for teaching biology.  
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Stake (1995) posits that the majority of contemporary qualitative researchers 

perceive knowledge as being constructed rather than discovered (p. 99). The 

constructivist perspective addresses the unique experiences of the individual and 

investigates how the individual makes sense of his/her experiences to construct an 

understanding of the world. In terms of qualitative research, the constructivist perspective 

suggests that knowledge is co-constructed between the study participant and the 

researcher (Stake, 1995); hence, making meaning out of the life experiences of study 

participants results in knowledge that is constructed rather than discovered (Crotty, 

2003).  A constructivist perspective informed the research tradition employed within this 

study; the knowledge and experiences of each study participant are considered to be 

unique.  

Guba and Lincoln (1989) posit that the constructivist perspective is most 

appropriate when an inquiry into the human experience is conducted. The assumptions 

which define the constructivist paradigm are defined by Lincoln and Guba (1985) and 

include: “the construction of multiple realities which can only be studied holistically; the 

researcher and participant interact with and influence one another; and knower and 

known are inseparable” (pp. 37-38). Crotty (1998) reported that constructivist research 

requires openness to new interpretations and the utilization of interpretivist strategies to 

construct meaning, and to make sense of data and researcher experiences in the field.  

Hatch (2002) posits the naturalistic inquiry is a prototype for constructive 

qualitative research and notes that the researcher “captures naturally occurring activities 

in a natural setting” (p. 27). Teachers’ experiences within the context of the classroom 

and interactions with students will ultimately shape their teacher knowledge. Carlson 
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(2007) posits each teacher constructs a unique lens through which experiences are 

interpreted and meaning is constructed.  

Teachers integrate the components of their knowledge of teaching to create 

meaningful learning opportunities for their students. Beliefs about science teaching and 

learning are constructed from experiences with students and are formulated within the 

context of the classroom to influence instructional decisions and subsequent actions 

during teaching (Magnusson et al. 1999). Participants in this study were observed 

constructing their knowledge of teaching through the prism of their classroom 

experiences and perspectives of their role as teacher and the role of students as learners. 

Because knowledge held by each study participant is unique, a constructivist qualitative 

research tradition and case study methodology informed the design, implementation, and 

analysis within this study. As the researcher, I assumed a subjectivist epistemology in 

which I constructed a unique understanding of the data with the participant and an 

ontological relativity, in that I understand that multiple realities exist within the context 

of the participants. Because I observed teachers interacting with students within their 

classrooms and captured teachers’ activities within their natural setting, I assumed 

naturalistic methodological procedures (Denzin & Lincoln, 1985; Hatch, 2002; Patton, 

2002).  

Epistemological Assumptions 

 Epistemology is the branch of philosophy that is concerned with how knowledge 

is developed (Patton, 2002). Within the context of the constructivist paradigm there is an 

assumption that the meaning of the data will be shaped by the intersection of the 

perceptions of the researcher and the study participants (Patton, 2002; Merriam et al. 
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2002). Magolda (2004) posits that individuals actively engage in construction of meaning 

from their experiences; they interpret, evaluate, and draw conclusions based upon their 

unique perspective, experiences and assumptions. Hence, teachers construct their 

knowledge of teaching largely through their experiences in the classroom; their unique 

perceptions of teaching, learning, and learners influence the nature of their knowledge. 

There are important implications for data interpretation and analysis in that the 

experiences and perceptions of the researcher play an important role in constructing the 

meaning from the data. Patton (2002) posits researchers continually “work back and forth 

between the evidence and his or her own perspective and understanding to make sense of 

the evidence” (p. 477).  

Hatch (2002) posits that making meaning from the large data set gathered through 

interviews, observations, field notes, and artifacts is well suited for the inductive model. 

Inductive analysis begins with complex data taken from a variety of sources and 

continues as patterns, themes and categories are detected within the data, and findings 

emerge as the data is analyzed (Patton, 2002). Meaning is made from the data by both the 

researcher and study participants; because each has a unique interpretation, there is the 

potential for multiple meanings to be derived from the same data (Patton, 2002). As the 

researcher, studying the knowledge of teaching held by the participants in this study, I 

understand that the constructivist tradition assumes that knowledge is individually 

constructed and ultimately filtered through life experiences and personal beliefs (Denzin 

& Lincoln, 2005; Hatch, 2002; Patton, 2002). In this study, I focused on the topic-

specific pedagogical content knowledge held by experienced biology teachers for 

teaching diffusion and osmosis. I observed each participant teaching two consecutive 
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lessons on diffusion and osmosis. Data was collected from multiple sources including: 

lesson plans, classroom observations, three semi-structured (Patton, 2002) interviews, 

and lesson artifacts. To clarify my perception and interpretation of teachers’ knowledge, 

instruction, and interactions with students, I asked questions during semi-structured 

interviews (Patton, 2002).  

Ontological Assumptions 

Ontology is the branch of philosophy concerned with the beliefs about the status 

of knowledge. Guba and Lincoln (1989) posited that truth is a matter of consensus among 

individuals. Within the context of education research, each teacher uses a unique lens to 

construct meaning (Magnusson, et al. 1999), hence, the nature of teacher knowledge is 

unique to the individual teacher (Carlson, 2007). The basic ontological assumption of 

constructivism is that individuals construct their knowledge of reality and this knowledge 

is independent of a basic foundational reality (Patton, 2002). Each individual constructs 

his or her knowledge of the world through an interpretation of external stimuli ultimately 

integrating those interpretations to create an individual perception of the world (Stake, 

1995). The constructivist perspective in education research provides a means of gaining 

insight into the nature of knowledge for teaching possessed by individual teachers. The 

participants in this study were all experienced tenth grade biology teachers; however, 

their backgrounds, experiences, and the context in which they taught differed 

significantly. By maintaining a constructivist perspective, I was able to make sense of 

each participants’ topic-specific knowledge for teaching within the context of their 

beliefs and experiences. The knowledge held by these participants is unique and cannot 

be generalized to other teachers.  
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Context of the Study 

The study was conducted within partner high schools associated with an 

alternative certification program (ACP), the “Alternative Science Teacher Education 

Program” (ASTEP)  . Experienced teachers selected to participate in this study were 

teaching at partner schools and selected to serve as mentor teachers for interns enrolled in 

the ASTEP alternative certification program.  

Overview of ASTEP 

Because ASTEP has been designed to meet the needs of a wide range of students, 

it offers two distinct tracks: the Accelerated Post Baccalaureate program (APB) and the 

Alternative Certification program (ALT). The timeline for APB prospective teachers is 

shown in Table 2. 

Table 2. Timeline of APB teacher certification program 

Summer-Year 1 Fall-Year 1 Winter-Year 1 Summer-Year 2 
Advanced Educational 
Foundations of Teacher 
Preparation (8 credits) 

Teaching, Learning, and 
Research in Secondary 
School Science II (3 
credits) 

Teaching, Learning, and 
Research in Secondary 
School Science III (3 
credits) 

Integrating Mathematics 
and Science Instruction 
(2 credits) 

Teaching, Learning, and 
Research in Secondary 
School Science I (3 
credits) 

Reading in the Content 
Areas (2 credits) 

 Complete Portfolio and 
Action Research 

  
Mentored Internship 
completed during the fall and spring semesters 
(20 hours per week) (8credits) 

 

 
Interns in the APB track are full-time students, they enter the program during the 

summer and complete intensive coursework designed to prepare them for a 32-week 

mentored internship at a partner school. APB interns earning middle school or secondary 

certification spend 32 weeks completing a mentored internship at either a middle school 

or high school. APB interns opting for dual certification in both middle school and high 

school science teaching spend the first 10-weeks at a middle school working with a 
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middle school mentor teacher and the remaining 22-weeks at a high school working with 

a high school mentor teacher. Interns continue taking methods classes throughout both 

semesters of the internship. 

Selection of mentor teachers. The selection of mentors is informed initially by 

recommendations from school principals. Feedback regarding mentor effectiveness is 

derived from two sources including: a survey on mentor effectiveness completed by 

interns and observations of mentor teachers made by the university supervisor for the 

ASTEP alternative certification program. This feedback provides key indicators for the 

selection and/or retention of mentor teachers. 

ASTEP Research Project 

This study was conducted within the context of a larger, NSF funded study 

entitled: Alternative Science Teacher Education Program Research Project (ASTEP-RP). 

ASTEP-RP examines science and mathematics teacher learning within the context of an 

ACP (i.e., ASTEP).  

ASTEP-RP is a longitudinal study and follows intern participants enrolled in the 

APB track over a two year period beginning the summer they enter the program, 

continuing during their one-year mentored internship, and ending with the completion of 

their first year of full-time teaching. The participants in my study were selected from the 

experienced biology teachers serving as mentor teachers during the 32-week mentored 

internship completed by APB interns. 

ASTEP-RP research has four major goals: (1) to advance the knowledge base 

related to teacher preparation within the context of an ACP; (2) to advance the knowledge 

base regarding teacher learning within the context of a clinical field experience; (3) to 
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understand the factors that facilitate and constrain teacher learning; and (4) to prepare a 

new generation of researchers in teacher knowledge research. Thus, ASTEP-RP 

researchers are engaged in an investigation into teacher learning taking place within two 

distinct tracks (APB and ALT) within an ACP. 

As a longitudinal study, ASTEP-RP involves data gathering from 5 cohorts of 

science teachers at 7 checkpoints during the mentored ACP internship and throughout the 

first year of full-time teaching. The data gathering points include lesson plans gathered 

during entry and exit tasks as well as during each of the observation cycles during Year 1 

and 2 of the study. A full description of all data collection points is shown in Table 3. 

Table 3. ASTEP-RP data collection points 

Data Collection 
Checkpoint 

Lesson Plan Interviews Written Reflection 

Entry Task Planning for 2 consecutive 
days of instruction 

Entry task interview about 
entry task planning 

 

End of Summer  End of Summer Interview  
Fall Observation Cycle-
Year 1 

Planning for two days of 
actual instruction 

Pre-Observation 
Simulated Recall-1 
Stimulated Recall-2 
Mentor teacher interview 

Response to reflective 
prompts about lesson 

Winter Observation Cycle-
Year 1 

Planning for two days of 
actual instruction 

Pre-Observation 
Simulated Recall-1 
Stimulated Recall-2 
Mentor teacher interview 

Response to reflective 
prompts about lesson 

Fall Observation Cycle-
Year 2 

Planning for two days of 
actual instruction 

Pre-Observation 
Simulated Recall-1 
Stimulated Recall-2 

Response to reflective 
prompts about lesson 

Winter Observation Cycle-
Year 2 

Planning for two days of 
actual instruction 

Pre-Observation 
Simulated Recall-1 
Stimulated Recall-2 

Response to reflective 
prompts about lesson 

Exit Lesson Planning Task Planning for two days of 
lessons – exit task prompts 
are identical to entry task 

Exit task interview about 
exit task planning 
 

 

 
My study implemented observation and interview protocols very similar to the 

protocols used within the ASTEP-RP study. Teachers participating in my study submitted 

two consecutive lesson plans for teaching the concepts diffusion and osmosis to tenth 

grade biology students. A pre-observation interview provided insight into teacher subject 

matter knowledge, topic-specific PCK, and lesson planning. Next, the teachers were 
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observed and videotaped teaching the lessons. As the researcher, I identified specific 

occurrences within the lessons to stimulate participant recall and discussion during 

stimulated recall interviews following each observation. Participants were asked 

questions designed to probe deeper into their knowledge of the components of 

Magnussen et al.’s (1999) PCK model (e.g., orientation to science teaching, knowledge 

of representations, instructional strategies, students, assessment, curriculum). The 

interview protocols for my study are found in Appendix A.  

My Role in ASTEP-RP 

I served as a graduate research assistant (GRA) with the ASTEP-RP team from 

the September of 2006 through September of 2009. Throughout my assistantship I 

participated in all aspects of research design, data collection, development of analysis 

tools, and initial data analysis. I have coded a significant portion of the data and 

contributed to two conference presentations and two journal manuscripts generated by the 

project. 

Because of my extensive experience as a high school biology teacher, I am very 

interested in the topic-specific knowledge of teaching held by experienced high school 

biology teachers. While working as a GRA with ASTEP-RP, I began to wonder how 

lessons would be different if taught by an experienced teacher. By placing all of the 

emphasis on pre-service teachers and novice teachers, a picture of teacher knowledge 

possessed by experienced teachers was not developed within the study. An understanding 

of the knowledge of teaching and the practice of experienced teachers would provide 

important insights into teacher preparation and qualifications critical to success in 

twenty-first century science education (Zeichner, 2005).  Therefore, I chose to investigate 
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the knowledge of teaching held by experienced biology teachers selected to serve as 

mentors for the ASTEP program and how they draw upon that knowledge when teaching 

concepts directly related to osmosis and diffusion to a tenth grade biology class. 

Study Participants 

The participants in this study were six experienced high school biology teachers 

serving as full time mentor teachers in partner schools for the ASTEP program. 

Participants will be referred to by pseudonyms Emma, Janis, Kasey, Jason, Lana, and 

Cathy. Personal participant data can be found in Table 4. 

Table 4. Participants’ Personal Data 

 Personal Data 
Pseudonym Teaching Experience Gender Ethnicity 
Janis 15 Female White (Non-Hispanic) 
Emma   8 Female White (Non-Hispanic) 
Jason 15 Male White (Non-Hispanic) 
Kay   7 Female White (Non-Hispanic) 
Cathy 15 Female White (Non-Hispanic) 
Lana 19 Female White (Non-Hispanic) 
 
Purposeful Sampling 

Several criteria guided my selection of study participants. I purposefully selected 

all six participants from secondary science teachers serving as mentor teachers for 

ASTEP interns. Schulman (1986) noted that PCK is a form of teacher knowledge which 

draws heavily upon individual’s knowledge of content, hence researcher knowledge of 

content is important. Because of my extensive experience as a secondary biology teacher, 

I selected only secondary biology teachers based upon my experience as a biology 

teacher and as a researcher.  

My goal was to identify experienced teachers who were highly thought of by their 

building principals. Selection to serve as a mentor teacher for ASTEP interns is 

predicated initially upon recommendation by the building principal. This is an important 



99 

indication that teachers are highly regarded by building administrators and likely to 

possess the knowledge and expertise to mentor interns. Berliner (2001) identified 

nomination by school administration to serve as a mentor for interns as a criterion for 

identifying expert teachers. Teaching experience is also an important factor; I only 

selected biology teachers with a minimum of five years of teaching experience.  

Participants’ teaching experience ranged from a minimum of seven years to a maximum 

of nineteen years. All participants are certified biology teachers and were currently 

teaching tenth grade high school biology. Four of the teachers, Cathy, Janis, Emma, and 

Lana participate in the Partnership for Research and Education in Plants (PREP) 

professional development program which I coordinate through the University Science 

Outreach Office. Through this program mutant and wild-type Arabidopsis seeds provided 

by plant research scientists, serve as the foci for student driven research. Students 

investigate seed germination and plant growth among wild-type and mutant seeds to find 

clues to the function of uncharacterized Arabidopsis genes. Hence, I was aware of that 

these teachers were highly regarded teachers who held strong knowledge of subject 

matter as well as well developed PCK. 

Participant Schools/Districts 

The six teacher participants are full time high school biology teachers in high 

schools within six different school districts located within a mid-western state. All district 

and high school names are pseudonyms. Demographic information about each 

community in which the partner school districts are located is shown in Table 5.   

 

 



100 

Table 55: Comparison of Societal Factors between Participant’s School Districts 

 Community Societal Factors – 2000 Census Information 
Participant 
 

School District Population Served Average Household Income 

Janis Bannister 66,059 $68,601.00 
Emma Bing 10,931 $42,136.00 
Jason Carlville 6,849 $45,489.00 
Cathy Fender 17,827 $44,374.00 
Lana Miller 15,615 $42,805.00 
Kay Rollins 112,803 $49,576.00 
 

All demographic information has been retrieved from the Department of 

Elementary and Secondary Education (DESE) website. The communities served by the 

school districts have populations ranging between 6,849 and 70,000 (2000 U.S. Census). 

The most affluent population with an average household income of $68,601.00 is found 

in the Bannister school district. The average household incomes of the remaining 

communities are similar, ranging from $42,136.00 to $49,576.00 (2000 U.S. Census). 

There is greater variation found within the demographic information for the high 

schools related to student enrollment and graduation rates. All demographic information 

related to students and schools was taken from the DESE website. An overview of the 

enrollment, graduation rate, eligibility for reduced/free lunch, and the student to staff 

ration is shown in Table 6. 

Table 66. Contextual Factors in Participants’ School 

 Contextual Factors 
 High School Demographic Information 
High 
School 

Enrollment Graduation Rate 
(%) 

Free/Reduced 
Lunch (FRL) (%) 

Student to 
Staff Ratio 

Bannister 1,430 94.4 9.50 23/1 
Bing 617 92.1 40.50 18/1 
Carlville 395 85.6 24.40 18/1 
Fender 762 79.7 28.30 19/1 
Miller 769 82.2 35.30 20/1 
Rollins 1,716 92.0 12.10 23/1 
State 894,609 85.2 42.1 18/1 
 ____________________ 

5,6Note: From “School Data and Statistics,” 2000 Census demographics, Department of Elementary and 
Secondary Education, http://dese.mo.gov/planning/profile/048068.html 

http://dese.mo.gov/planning/profile/048068.html�
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The staff to student ratios range from 18 students per teacher to 23 students per 

teacher for all schools included in the study. The highest graduation rate is held by 

Bannister High School; the affluence of this community is reflected in the low percentage 

of students eligible for free/reduced lunch. Interestingly, the second highest student 

graduation rates are held by Bing and Rollins High Schools. These schools differ 

markedly in terms of the total enrollment and the average household income. Patron 

families for Bing High School earn an average income approximately $7,000.00 less than 

that of patron families for Rollins High School. Thus, a major difference between Bing 

and Rollins schools is the percentage of students eligible for free/reduced lunch. Bing 

High School has the greatest percentage of students eligible for free/reduced lunch.  

The level of ethnic diversity differed among partner schools (see Table 6). 

Carlville High School had the least ethnic diversity among participants’ schools with only 

1.5% of the student body identified as minority students. Bannister and Rollins High 

Schools had the greatest percentage of minority students at 18.8% and 19% respectively. 

Variations in ethnic diversity among the schools are shown in Table 7. 

Table 77. Comparison of Ethnic Diversity 
 

 Comparison of Ethnic Diversity  
 School Demographic Information 
High School White (%) Black (%) Hispanic (%) Asian (%) Indian (%) 
Bannister 81.20 12.20 3.60 2.40 0.60 
Bing 84.30 11.70 1.90 2.00 0.10 
Carlville 98.50 1.00 0.00 0.30 0.30 
Fender 87.90 11.00 0.70 0.30 0.10 
Miller 86.60 10.50 2.20 0.40 0.30 
Rollins 81.10 11.90 2.10 4.50 0.50 
State 76.2 18.0 3.6 1.8 0.4 

 
 

 

____________________ 

7Note: From “School Data and Statistics,” 2000 Census demographics, Department of Elementary and Secondary 
Education, http://dese.mo.gov/planning/profile/048068.html 

http://dese.mo.gov/planning/profile/048068.html�
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An analysis of the graduating seniors at each of the participants’ school districts 

indicates varying career paths among the school districts’ students. The analysis indicates 

the majority of graduating students in each district attend a four-year college/university. 

However, there is a notable difference in the percentage of students within each district 

electing to attend a four year college/university. Carlville and Miller were the only 

districts to fall below the state average for the percentage of students electing to attend a 

four-year college/university (see Table 8). The percentage of students from Bannister, 

Bing, Fender, and Rollins High Schools electing to attend a four-year college or 

university ranged from a high of 62.6% to a low of 44.3%. 

Table 88. Analysis of Graduates in Participants’ School Districts 

 Analysis of Graduating Seniors 
High 
School 

4 year 
College 
University 

2 year 
College 

Post 
Secondary 
Noncollege 
Institution 

Work 
Force 

Military Some 
other field 

Status 
unknown 

Bannister 62.60 19.00 0.20 12.80 4.00 1.50 0.00 
Bing 44.30 27.0 1.60 20.50 2.50 4.10 0.00 
Carlville 35.30 21.20 2.40 31.80 7.10 0.00 2.40 
Fender 45.60 16.30 3.80 28.10 1.90 3.80 0.60 
Miller 38.70 14.90 8.30 24.40 3.00 4.20 6.50 
Rollins 55.50 19.50 2.00 21.70 1.10 0.10 0.10 
State 39.9 26.8 3.5 18.9 3.1 2.4 5.5 

 
The schools in which participants taught ranged from rural to suburban with 

significant differences within the affluence of patron families, minority enrollment, 

graduation rates, and college attendance. However, a common thread for all schools lies 

within the district and state (e.g., End of Course Exam) guidelines from which the 

biology curriculum is formulated. 

____________________ 

8Note: From “School Data and Statistics,” 2000 Census demographics, Department of Elementary and 
Secondary Education, http://dese.mo.gov/planning/profile/048068.html 
 

http://dese.mo.gov/planning/profile/048068.html�
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Design of the Study 

Case Study Approach 

Case studies are detailed investigations of individuals, groups, or institutions 

within their own unique context (Patton, 2002). Yin (2003) described the case study 

through the lens of the research process as “an empirical inquiry that investigates a 

contemporary phenomenon within its real-life context when the boundaries between 

phenomenon and context are not clearly evident” (p. 13). Stake (1995) described a case 

study as the study of the unique nature and complexity of a single unit or entity (e.g., 

a child, a teacher, a school) in which the researcher comes to understand the 

experiences of that entity within a specific context. Merriam (1998) defined the case 

study as an “intensive, holistic description and analysis of a single instance, phenomenon, 

or social unit” (p. 27). Creswell (1998) perceived the case study as an exploration of a 

“bounded system” over time and involving detailed and in-depth data collection from 

multiple sources (e.g., interviews, documents, observations, field notes, etc.). A bounded 

system constitutes an assemblage of interacting factors or parts which form a functioning 

whole (Stake, 1995). Thus, the nature of the case study is to conduct an in-depth 

investigation of the unit of study (individual, group, or institution) within the context or 

environment unique to that unit of study. This research presents an in-depth perspective 

of the knowledge for teaching held by experienced biology teachers and how the teachers 

draw upon that knowledge when teaching content directly related to osmosis and 

diffusion.  

A bounded system describes specific parameters for the study (Creswell, 1998). 

Smith (1978) introduced the concept of the case as a bounded system; he noted there 
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must be specific limitations on the scope of the case. Thus, a case must have boundaries, 

therefore, a teacher, a child, or a school could be identified as a case; however, when the 

focus of study becomes too broad or lacks boundaries, the distinction of a case study no 

longer applies. Merriam (1998) described the case as a single entity to be studied around 

which there exist boundaries enabling the researcher to focus his or her research. A 

bounded system identifies limitations; in this study, research was focused on topic-

specific teacher knowledge drawn upon by six experienced 10th grade biology teachers 

when teaching two consecutive lessons on osmosis and diffusion.  

Case studies can be designed as single or multiple cases. Thus, a study may 

contain more than a single case and when this occurs, the study is noted to be a multiple 

case study (Yin, 2003). This study is focused on six participants; each participant 

constitutes an individual case; hence, this study constitutes a multiple-case design (Yin, 

2003). Merriam (1998) noted the inclusion of multiple cases within a case study is a 

means by which the external validity or generalizability of study findings can be 

enhanced (p. 40).  

  The case study approach was selected because it was the best fit for data 

collection and analysis for this study for several reasons. First, the case study has a 

distinctive advantage over other research designs because “the strategy employed is to 

investigate ‘how’ or ‘why’ questions asked about a contemporary set of events over 

which the researcher has no control” (Yin, 2003, p. 9). Second, a case study design is also 

favored when there are multiple forms of data (Miriam, 1998; Yin, 2003). Yin (2003) and 

Patton (2002) identify the reliance upon multiple sources of evidence as a unique strength 

of the case study research approach. Multiple forms of data were collected for this study 
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including observations in the field during which teacher participants were observed and 

videotaped teaching specific content related to the topic of osmosis and diffusion. Data 

collection protocols were designed to provide a holistic view of teacher knowledge. Thus, 

primary data collection protocols consisted of field observations and semi-structured 

interviews (Patton, 2002) conducted prior to and following field observations. Secondary 

data sources consisted of teacher materials including lesson plans and other lesson 

materials and artifacts. All data was gathered within a real-life context as teacher 

participants were observed teaching the same content specifically related to tenth grade 

biology Course Level Expectation (CLE) for osmosis and diffusion. Third, the case study 

has the potential to provide specific insight into how individuals confront and solve 

problems. The case study is described by Merriam (1998) as “being particularistic, 

descriptive, and heuristic” (p. 29), indicating the case study is focused on a specific event 

and has the potential to provide significant insight into how individuals confront 

problems through a holistic view of the situation. 

  Each of the six mentor teacher participants constitutes a unique case influenced by 

their past experiences, their perspectives of teaching, learning, and learners, and the 

context in which they are teaching. My goal was to understand the nature of topic-

specific pedagogical content knowledge (PCK) draw upon by experienced high school 

biology teachers when teaching osmosis and diffusion to tenth grade biology students. 

Teacher knowledge was conceptualized by Magnusson et al. (1999) as pedagogical 

content knowledge (PCK) and included the following: (1) the orientation to science 

teaching held by the participant; (2) knowledge of instructional strategies and 

representations; (3) knowledge of potential student difficulties with content;                  
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(4) knowledge of assessment strategies; and (5) knowledge of curriculum and curricular 

resources. Yin (2003) explains that a single case design and a multiple cases design are 

considered to be variants within the same methodological framework. Because of the six 

participants included in the study, Yin (2003) would likely identify this study as a 

multiple case design.   

Methodological assumptions. One of the most important assumptions associated 

with this research is that the actions of the participants cannot be controlled in any way 

by the researcher. The researcher functions only in the role of an observer and is, 

therefore, unable to affect the actions of study participants. The value of a case study 

methodology is that the researcher is able to observe participants within the context of the 

classroom and school while utilizing multiple data sources to understand their knowledge 

and practice for teaching osmosis and diffusion. Stake (1995) posits that as a researcher, 

one is an interpreter placed in the field to observe the “workings of a case” (p. 8).  

Limitations of case study research. As a researcher it is critical for me to identify 

the limitations of this study and acknowledge the limitations of the research strategy. 

Limitations are factors that that have the potential to constrain the study and are generally 

out of the control of the researcher. The researcher must decide how much data is 

necessary to answer study questions within the timeline of the study.  

In this study, I chose to observe six teacher participants for two consecutive 

lessons focused on osmosis and diffusion. My goal was to gain an understanding of the 

nature of the topic-specific pedagogical content knowledge held by experienced biology 

teachers. My research protocol consisted of a single observation cycle of two lessons 

beginning with a pre-observation interview after the submission of lesson plans followed 
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by two stimulated recall interviews following the observation of each lesson. The 

protocol was designed to capture teacher topic-specific pedagogical content knowledge. 

The first limitation noted is that only two lessons were observed rather than the entire 

unit. I made the decision to follow the observation protocol of the ASTEP-RP research 

study to allow for future studies in which comparisons between the pedagogical content 

knowledge of ASTEP interns and experience mentor teachers could be made.  

The second limitation of the study is related to the selection of teacher 

participants. Participant selection was limited to experienced tenth grade biology teachers 

selected to serve as mentors for interns enrolled in ASTEP Program. There may have 

been other experienced teachers who might contribute a great deal to the study but did 

not fit the selection criterion. The sampling strategy implemented in this study was 

designed to fit the purpose of the study (Patton, 2002) which was to investigate the nature 

of topic-specific pedagogical content knowledge held by experienced biology teachers. 

Therefore, teachers selected for the study were highly thought of and recommended to 

serve as mentors by the building principal, taught for a minimum of five years, were 

certified to teach biology at the high school level, and also were teaching tenth grade high 

school biology at the time of the study. 

The third limitation references documents, materials, and artifacts gathered during 

the study (e.g., lesson plans, PowerPoints, student handouts, etc.) Documents collected 

during the study can be a limiting factor because such documents may be incomplete 

(Patton, 2002) and only reflect limited aspects of teacher knowledge. Therefore, multiple 

data sources were utilized for this study including direct observation, semi-structured 

interviews (Patton, 2002) prior to and following field observations, researcher field notes, 
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and lesson artifacts (lesson plans, student handouts, and other artifacts). Patton (2002) 

notes that taken together diverse data sources provide a more complete picture of study 

participants.  

Role of the Researcher 

My role as researcher was influenced by my experience as a high school biology 

teacher. I entered graduate school after a twenty-three year career as a secondary biology 

teacher. My experience in secondary education was truly exceptional; I earned National 

Board Certification in Adolescent and Young Adult Science in 1998 and won the 

Presidential Award for Excellence in Science Teaching in 2000. As a graduate student, I 

initially served as a university supervisor for interns in an Alternate Certification Program 

(ACP) for secondary science teachers. After two years of intern supervision, I became a 

graduate research assistant (GRA) and examined the development of PCK among interns 

within an ACP. My role consisted of observing and videotaping ACP interns teaching 

lessons as well as conducting interviews with interns prior to and following observations 

of each lesson of the research observation cycle. Hence, as a GRA, I gained insight into 

the development of teacher knowledge among prospective teachers. As I observed interns 

teaching topics in biology, I reflected upon my own experiences as a secondary biology 

teacher and wondered how the lessons would look if taught by an experienced teacher.  

As a secondary biology teacher, my overarching goal in teaching biology was to 

stimulate students’ interest in biology, make concepts relevant, and encourage students to 

think critically. In my practice as a teacher, I consistently designed lessons to engage 

students with hands-on and minds-on exploration of concepts. I believed students learned 

most effectively when engaged as active participants in learning. Conceptual 
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understanding of diffusion, osmosis, and the nature and function of cellular membranes 

are critical to understanding other concepts in biology (e.g., photosynthesis, water 

movement in plants, and cellular respiration). When teaching diffusion and osmosis, I 

initially engaged students with food dye and water as representations of diffusion. I used 

water at temperature extremes (e.g., water heated to nearly 100oC and water chilled to 

nearly 0oC) to emphasize kinetic energy and molecular motion in diffusion. I challenged 

students to predict changes within the food coloring within each temperature and test 

their predictions by observing changes in drops of food dye placed in water at each 

temperature. When asked to explain their observations, students noted the temperature of 

the water as the only difference between the representations of diffusion. I encouraged 

students to reflect upon their knowledge of matter and energy addressed in ninth grade 

physical science. Hence, my goal was to support students’ understanding of molecular 

motion as the driving force for diffusion. When investigating osmosis, I used dialysis 

tubing and decalcified eggs as representations of cells and the foci for student 

explorations of osmosis. Students’ reflected upon their observations of changes within the 

dialysis tubing or decalcified egg to explain the direction of osmosis. I required students 

to support claims with evidence (e.g., mass of dialysis tubing and decalcified egg and the 

color of the starch solution within the tubing) and encouraged students to reflect upon 

their observations of diffusion when developing explanations for the net direction of 

water movement during osmosis. My experience indicated the focus on molecular motion 

as the driving force for diffusion helped students understand osmosis as the diffusion of 

water also driven by random molecular motion.  
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I had two reasons for selecting diffusion and osmosis as lesson topics. First, the 

concepts require students to integrate knowledge of cell membrane structure and 

function, relative solute and solvent concentrations, the particulate and random nature of 

matter, and dynamic equilibrium (Odom & Barrow, 1995; Tekkaya, 2003). As a result, 

diffusion and osmosis are challenging concepts for both students and teachers. Second, 

diffusion and osmosis are among Missouri Course Level Expectations and included 

within the End of Course Exam for tenth grade biology. Hence, the concepts are part of 

the curriculum in all tenth grade biology courses.     

During my career as a high school biology teacher I taught with one of the 

teachers participating in my study. I acknowledge that my knowledge of this individual 

prior to the onset of my research could be a potential source of bias. When interviewing 

teacher participants, I relied upon experienced gained as a graduate research assistant 

with data collection procedures and interview protocols of ASTEP-RP research to remain 

focused on the questions guiding the study. I was never a participant in any of the lessons 

observed and did not interact with students or the teacher in any way until I conducted the 

interviews at a prearranged time prior to and following lesson observations.  

Institutional Review Board  

This study was conducted through the larger NSF funded ASTEP-RP study in that 

my focus was on the mentor teachers in the study. Therefore, I submitted an amendment 

to the ASTEP-RP for approval by the Institutional Review Board (IRB) to gain 

permission to conduct research with the mentor teachers engaged within the ASTEP-RP 

project to investigate their pedagogical content knowledge for teaching specific biology 

content related to osmosis and diffusion. IRB approval was granted on August 14, 2008. 
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Letters explaining my research, participant involvement, and the videotaping of 

participant teachers’ classrooms were sent to building principals. Following letters to the 

principals, I contacted each principal by phone to explain my research and answer 

questions and respond to concerns. Written consent was received from the principals of 

all schools participating in the study. Permission to videotape Janis while teaching at 

Bannister High School was denied, therefore, Janis was observed teaching two lessons 

but not videotaped.  

Written consent to participate in my research was obtained from all teacher 

participants. Because teacher participants were videotaped teaching lessons within their 

classrooms, parents of students in participants’ classrooms were informed of the 

videotaping and their written consent was also requested. Students whose parents 

requested that they not be taped or those who did not return the consent forms were 

located within the classroom where they would not be captured on video. During 

videotaping, I was very careful to focus on the teacher participant and interactions 

between the teacher and those students who had parental permission to be videotaped. 

The consent forms for my study are found in Appendices B, C, and D. 

All consent forms, audiotapes, and video cassettes generated during my data 

collection will be stored in a locked file cabinet for a minimum of three years following 

the completion of data collection. 

Data Collection 

  Data collection was taken from multiple sources and included videotaped field 

observations of two consecutive days of teaching, researcher field notes, three audio-

recorded, semi-structured interviews (Patton, 2002), and the collection of lesson artifacts 
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(e.g., lesson plans, hand-outs, PowerPoints, worksheets, etc.) from teacher participants. 

One of the strengths of the case study design is that many sources of evidence can 

contribute to the data for case studies (Merriam, 1998; Yin 2003). Patton (2002) notes 

data gathered from multiple sources is a form of triangulation; one can compare the 

“consistency of findings generated from different data sources within the same method” 

(p. 556). Yin (1994) describes the use of multiple sources of evidence as a strength of the 

case study because multiple sources of evidence allow for triangulation of the data 

sources. Sources of evidence used in this study included: observations, semi-structured 

interviews (Patton, 2002), researcher notes, videotapes, lesson plans, and lesson artifacts. 

I compared observations of the participants with their explanations during interviews to 

gain insight into their knowledge and beliefs about teaching and learning. The data 

collection protocol for study participants in this study follows the protocol similar to that 

developed by the ASTEP-RP team. A description of the data collection protocol follows. 

Lesson plans. Lesson plans for two days of consecutive days of instruction 

focused on the topic of osmosis and diffusion and were submitted by each participant 

prior to the field observations. All participants were observed teaching the same lesson 

topic to provide a more accurate basis for cross-case comparisons (Yin, 2003). Within the 

context of the lesson plan, study participants were asked to describe their plans for the 

beginning, middle, and end of each lesson. All teacher artifacts, including handouts, 

worksheets, PowerPoint notes, laboratory investigations, etc. were collected from teacher 

participants as part of their lesson plans. The lesson plan request can be found in 

Appendix E. 
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Pre-observation interview. Following the submission of lesson plans and prior to 

the field observation, a pre-observation, semi-structured interview (Patton, 2002) was 

conducted. The purpose of the pre-observation interview was to explore the nature of 

teacher knowledge held by the teacher concerning learners, curriculum, instruction, and 

assessment strategies related to the topic of osmosis and diffusion, as well as, the 

participants’ orientation to science teaching. The interview was conducted within the high 

school of each participant prior to the observation and took between 60 to 80 minutes. 

During the pre-observation interview, participants were asked to reflect upon their 

planning and explain their decisions to include specific strategies, representations, 

assessments, etc. in the lessons. Minor modifications were made to the pre-observation 

interview protocol to reveal the pedagogical content knowledge of experienced teacher 

participants. I transcribed all of the interviews in preparation for coding. The pre-

observation interview can be found in Appendix A. 

Field observations. Following the pre-observation interview, the participants were 

observed and videotaped teaching their lesson plans. During the observation, I made 

researcher field notes to describe instruction, make theoretical memos, and note 

occurrences of interest which took place during the lesson. Interesting occurrences were 

played back for participants during the stimulated recall interviews to stimulate 

participant reflection and subsequent explanations about his/her teaching. Field notes 

were utilized as an important tool to further delineate the manner in which the 

participants articulated their knowledge of learners, curriculum, instruction and 

assessment.  
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Stimulated recall interview. Each lesson observation was followed with a 

stimulated recall interview (See Appendix A). The interviews were conducted in the high 

schools of each of the participants; interviews took between 60 and 80 minutes. The 

participants were asked to reflect upon the lesson and explain: (a) their concerns for 

student comprehension of content, (b) their choice of instructional strategies and 

representations, and (c) their use of formative assessment strategies to gauge students’ 

learning. Participants were also asked how they modified their instruction to address 

student learning difficulties during the lesson. Each lesson was videotaped to provide a 

record of the lesson for future reference and specifically to stimulate participant reflection 

during the stimulated recall interview. A data collection matrix identifying the data 

sources for each research sub-question is shown in Table 9. 

Table 9. Data Collection Matrix 

Research Questions Data Sources Interview Questions 
1.  What are the nature and sources of 
experienced biology teachers’ 
orientation to science teaching?  
 

Lesson plans submitted by teacher 
 
Pre-observation interview 
 
Stimulated-recall interviews 

 
 
#1b, 1c, 1d, 1e 
 
#22a, 22b, 22a, 22b, 22c, 
22d, 22e, 22f 

2. What is the nature of experienced 
biology teachers’ knowledge of 
representations and instructional 
strategies and how does this knowledge 
inform their teaching practice?  
 

Student handouts,  
 
Pre-observation interview 
 
 
Stimulated-recall interviews 

 
 
#11, 12a, 12b, 12c, 12e, 
13,  
 
Videotape,  #20 

3. What is the nature of experienced 
biology teachers’ knowledge of students’ 
understanding of science and how does 
this knowledge of science learners 
inform their teaching practice? 

Lesson plans submitted by teacher 
 
Pre-observation interview 
 
Stimulated-recall interviews 

 
 
#6a-e, 7, 8a, 8b, 9 
 
Videotape, #18, 19, 20 

4.  What is the nature of experienced 
biology teachers’ knowledge of 
formative assessment strategies and how 
does this knowledge inform their 
teaching practice?  
 

Lesson plans submitted by teacher 
 
Pre-observation interview 
 
 
Stimulated-recall interviews 

 
 
#16a, 16b, 16c, 16d, 16d, 
17a, 17b 
 
Videotape, #18, 19, 20 
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5.  What is the nature of experienced 
biology teachers’ knowledge of biology 
curriculum and how does this knowledge 
inform their teaching practice?  
 

Lesson plans submitted by teacher 
 
Pre-observation interview 
 
Stimulated-recall interviews 

 
 
#14a, 15a, 15b, 15c, 15d,  
 
Videotape,  #18, 19, 20 

6.  In what ways do experienced teachers 
integrate the topic-specific components 
of their pedagogical content knowledge 
when teaching osmosis and diffusion?  

Pre-observation interview 
 
 
Stimulated-recall interviews 

#1f, 1g, 2, 11,  
 
 
Videotape, #18, 19, 20  

 
Data Analysis 

Data analysis began with the transcription of the interviews immediately 

following the observation cycle for each participant. I personally transcribed all 

interviews to gain greater understanding of the participants and the data. All transcribed 

interviews were carefully reviewed for accuracy. Videotapes were viewed to make sure 

that important aspects of participants’ practice was not missed.  

Development of Codes 

When developing codes for teacher orientation to science teaching, I drew upon 

the work of Brown (2008) and Brown et al. (2008) and developed codes within five 

dimensions of teacher orientation to science teaching including: (1) goals and purposes, 

(2) perception of teacher role, (3) perception of students’ role, (4) ideal images of 

teaching science, and (5) perception of science as a discipline. I used the Magnusson et 

al. (1999) PCK model and drew upon codes from the ASTEP-RP study to develop codes 

for data analysis within the following dimensions of teacher knowledge including: (1) 

knowledge of representations and instructional strategies,  (2) knowledge of students’ 

understanding of science, (3) knowledge of assessment, and (4) knowledge of curriculum. 

Coding was both deductive and inductive. Codes developed from the five dimensions of 

teacher orientation (Brown, 2008; Brown et al. 2008) and the four components of the 

Magnusson et al. (1999) were deductive codes. Inductive codes emerged from the 
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categories as the transcripts were analyzed. An example of an inductive code would be 

codes for topic-specific representations used by the teacher for teaching diffusion and 

osmosis (e.g., the teacher uses a decalcified egg as a representation of a living cell). I 

used the codes to analyze the data gathered during the study. 

Case Profiles 

The creation of the case profiles was a multiple step process. First, I combined the 

data from multiple sources gathered during my research. Second, I analyzed the data 

using the codes described in the previous section. From the coded data, I constructed a 

case profile for each participant beginning with their orientation to science teaching 

within the context of the five dimensions identified by Brown (2008) and Brown et al. 

(2008) and continuing with an analysis of the components of teacher knowledge 

identified by the Magnusson et al. (1999) PCK model. I used verbatim data excerpts to 

tell the story of each participant and to support my interpretation of the teacher’s 

orientation to science teaching and their topic-specific PCK for teaching diffusion and 

osmosis. I developed a vignette for each participant, situated as an introduction to the 

case profile, to characterize participants’ teaching and introduce the participant to the 

reader.  

I continually referenced the data to find additional evidence; hence, I continually 

referenced the data throughout the construction of the case profiles to test claims and find 

supporting evidence. This within-case analysis allowed me to develop specific assertions 

about each participant in terms of their orientation to science teaching and topic-specific 

knowledge of teaching osmosis and diffusion (Stake, 1995; Yin, 1994).  
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Each of the case profiles concluded with a Content Representation (CoRe) 

(Loughran, Mulhall, & Berry,  2004). The CoRe (Loughran et al. 2004) identifies the 

important scientific concepts to be taught within the lesson and unpacks the learning 

goals for students for the lessons as well as teacher knowledge for teaching these 

concepts to reveal representations, instructional strategies and assessments used during 

the lessons. My goal in creating a CoRe for each participant was to portray how the 

teacher conceptualizes lesson content and the topic-specific nature of PCK held by each 

teacher for teaching diffusion and osmosis (Loughran, Berry, & Mulhall, 2006; 

Loughran, Mulhall, & Berry,  2004). Hence, the creation of the CoRe enhanced my 

understanding of the data. 

Cross-case Comparison 

A cross-case comparison of participants was conducted to make comparisons 

between the individual case profiles. Patton (2002) posits “understanding unique cases 

can be deepened by comparative analysis” (p. 56). The process of comparing the 

orientations and topic-specific PCK across the case profiles allowed me to gain a deeper 

understanding of the data. Yin (1994) posits that multiple case studies provide the 

researcher with greater opportunities to explore patterns and themes within the data. I 

used a cross-case comparison to identify similarities and differences within the 

orientation and topic-specific PCK of the participants in this study.  

Trustworthiness 

Trustworthiness is a critical aspect of any research. There must be confidence in 

the validity and transferability of study results (Merriam, 1998). The ethical 

considerations of the researcher are critical to ensuring credibility, confirmability, and 
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transferability in qualitative studies (Merriam, 1998). Credibility, transferability, 

dependability, and confirmability are the naturalistic criteria for trusworthiness (Lincoln 

& Guba, 1985, p. 219).  

Patton (2003) reports that the credibility of a qualitative study is based upon three 

distinct elements: (1) rigorous methods to yield high quality fieldwork, (2) the credibility 

of the researcher which results from the level of training and experience held by the 

researcher, and (3) the belief in the value of qualitative inquiry held by the researcher. I 

took several steps to increase the credibility of my findings during data analysis 

including: triangulation, and peer debriefing.  

Triangulation 

 As a qualitative researcher, it is my responsibility to ensure that credibility of the 

research is maintained for the naturalistic methods employed during data gathering and 

data analysis within this qualitative study (Merriam, 1998; Patton, 2002). Because each 

researcher brings his/her unique views and interpretations into their research, 

observations and interpretations made by the researcher must be checked by triangulation 

(reliance upon multiple data sources), member checks, and collaboration with others 

(Merriam, 1998). I worked to attain confirmability in my research by referring back to 

multiple data sources to check and recheck the data to find support for my interpretations. 

The earlier stages of my fieldwork were generative while the later stages of my work 

involved analyzing the data to develop deeper insights to identify and confirm patterns.  

First, I gathered data from multiple sources including field observations, field notes, 

semi-structured interviews, and teacher artifacts. Thus, the consistency of data sources 

can be checked through a comparative analysis (Patton, 2002) as case profiles are 
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developed. Second, during data analysis I triangulated from data gathered from multiple 

sources during the study to identify patterns and construct explanations (Yin, 1994).  

Member Checking 

 I implemented member checking to establish credibility (Lincoln & Guba, 1985). 

Completed case profiles were sent to all participants for their feedback. The feedback I 

received was very positive. However, there were requests for minor changes within the 

profiles. Jason noted he coached track instead of wrestling. Cathy explained the dialysis 

tubing contained a glucose and starch solution; hence, initially, glucose was placed within 

the dialysis tubing rather than within the beaker solution of distilled water and iodine. 

Janis explained she emphasized the nature and structure of the cell membrane along with 

osmosis during the Elodea investigation conducted on Day 1 of the observation cycle. 

Lana reminded me she intended to have students conduct an inquiry-based investigation 

during the week following the research observation cycle. She explained that her students 

would create their own experimental designs for the investigation. Emma and Kacy 

approved of their case profiles as written. Upon receiving feedback from the participants, 

I implemented their corrections to more accurately reflect the orientation to science 

teaching and the topic-specific PCK held by each participant.  

Peer Debriefing 

Lincoln and Guba (1985) identify four purposes for peer debriefing including:   

(1) to align the research and researcher with the research questions, (2) to test working 

hypotheses, (3) to develop and test the next steps in the emerging methodogical design, 

and (4) to provide the researcher with an opportunity for catharsis. I shared my findings 

with two of my colleagues to access their ideas and views concerning my research. 
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Feedback from peers enabled me to revisit the data and review my assertions and 

consider my bias when analyzing the data. I also met with my dissertation advisor weekly 

to discuss my research and share my findings, assertions, and writing.  
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CHAPTER FOUR: CASE PROFILES 

In Chapter Four, I provide case profiles for each of the study participants. The 

purpose of the cases is to provide an in-depth profile of study participants’ topic specific 

pedagogical content knowledge (PCK) for osmosis and diffusion and their integration of 

the components of Magnusson et al. (1999) PCK model.  

Each of the case profiles is organized in a manner reflective of the Magnusson et 

al. (1999) PCK model of teacher knowledge. The case profiles presented here are based 

upon multiple data sources including observations of participants teaching lessons on 

osmosis and diffusion, semi-structured interviews (Patton, 2002) conducted prior to and 

following observations, researcher field notes, and teacher lesson plans and other 

classroom artifacts associated with the lessons. The cases are based upon my 

interpretation of the participants’ PCK for teaching lessons on osmosis and diffusion.  

Each case profile begins with a vignette in which an overview of the participant’s 

PCK for teaching osmosis and diffusion is presented in story form. In the vignette I 

attempted to capture the essential elements of the participant’s practice and interaction 

with his/her students.  

Each case profile includes the following sections reflective of the Magnusson et 

al. (1999) PCK model. The case begins with a vignette and continues with participant’s 

orientation to science teaching, an overview of lesson plans for two consecutive days of 

instruction followed by participant knowledge of representations and instructional 

strategies, knowledge of students understanding of science, knowledge of assessment, 

and knowledge of curriculum.   
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        Emma’s Case Profile 

Emma’s Vignette: Make a Prediction 

Emily directs her students, “Okay, I would like each lab group to pick up the eggs 

you placed in vinegar on Friday. Make sure you have your lab notebooks and something 

to write with, we are going to start the decalcified egg lab today.” 

After moving into the laboratory the students are seated in their lab groups with 

decalcified eggs still in beakers of vinegar. Emma states, “Take a few moments to look at 

your egg and think about how the egg has changed since Friday.” 

“Okay, just to review, tell me what you did with the eggs on Friday?” Emma asks 

as the study their eggs. 

“We found the mass of each egg and then we placed them in vinegar,” a student 

tells Emma. 

“Is there anything else that you did other than mass the eggs and place them in 

vinegar?” Emma asks. 

A student in the back of the room says, “We predicted how they would look today 

after being in the vinegar over the weekend.” 

“Good. Look at the prediction you made about the eggs on Friday and look at the 

eggs today; think about your prediction and then think about how the eggs are now” 

Emma stated as the students studied their eggs. 

“The eggs do not have a shell anymore,” a student states. “Hey the eggs are 

bigger,” another student responds. “Whoa! My egg broke! Like I was really careful but 

when I held the egg under water to rinse it off it broke,” a student in the back shouts as he 

begins to clean the yolk off of the lab table. 
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Emma calls for students’ attention: “Hey guys, why do you think the egg broke 

when he picked it up?” A student raises her hand and responds, “The eggs got really big 

when we soaked them in vinegar. They are all stretched out like balloons.” Other 

members of her lab group agree with her. 

“So why do you think the eggs got bigger?” 

“Some of the vinegar moved into the egg and made it bigger and I bet it is 

heavier, too,” a student in the back of the room replies. 

“So tell me, what kind of data are you going to be gathering today when you 

observe and describe the changes in your eggs?” Emma asks as the students study their 

eggs.  

A student, sitting at the back left lab table, responds, “We will use qualitative 

data.”  

Emma smiles and says “Good. So what will you write in your notebook if you are 

using qualitative data?”  

After conferring with her lab group, a student jumps up and raises her hand, “I 

know this! We are going to write words, like descriptions of what the eggs look like and 

feel like and stuff like that.” Her lab partners nod in unison. 

“Good, your data will be describing what you see,” Emma responds. “But you are 

also going to mass the eggs again today, what kind of data will you record when you do 

that?” Emma asks as she moves through the room watching the students work with their 

eggs. 

Another student responds, “We will record numbers and that data is quantitative.” 

Emma responds by complementing the student, “Good job.” 
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“Have the masses of your eggs changed after soaking in vinegar?” Emma asks. 

“How would you explain a change in the mass of the eggs?” 

Students are massing their eggs on the balances in the back of the room. A student 

explains, “The mass of the eggs has increased and the eggs are bigger, like swollen but 

the shell looks like it is mostly gone.” 

“Okay, so why do you think the eggs got bigger in the vinegar?” Emma asks. 

When there is no response, she direct students, “Talk to your lab partners.”  The students 

discuss Emma’s question in their lab groups. Then the group at the center lab table says, 

“Well, we are not sure but we think that some of the vinegar must have gone into the egg 

and that is why the eggs are bigger.” 

“That is very interesting” Emma comments. Emma then asks the students, “Well, 

if the egg became larger in vinegar, what do you think will happen to the egg when your 

lab group puts it into a beaker of corn syrup or a beaker of distilled water?”  When the 

students do not respond, Emma states, “I want you to talk to your lab groups and come up 

with a prediction of what you think is going to happen to the egg you place in distilled 

water and the egg that you place in corn syrup. Remember to write your prediction in 

your notebook.” 

Emma reminds her students, “We will test your predictions for the eggs tomorrow 

after the eggs have been in either distilled water or corn syrup.”   Emma goes on to tell 

the students, “That is when we will know how the eggs have been altered by their 

environments.” 
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Background and Context  

Emma, a woman in her thirties, genuinely enjoys teaching biology and working 

with high school students. She holds an undergraduate degree in biology and a master’s 

degree in education. She is currently teaching tenth grade biology at Bing High School. 

Emma’s teaching experience spans a total of eight years, five years as a part time high 

school biology teacher and, for the past three years, she has been a full time biology 

teacher at Bing High School. 

Bing is small, rural mid-state community with a population of approximately 

11,000 residents. The majority of the student population at Bing High School is White, 

with a minority population of approximately 16 percent (Department of Elementary and 

Secondary Education (DESE), 2009). Emma’s classes consist of 18 to 22 students; this is 

consistent with the student/teacher ratio for the district (DESE, 2009). Emma’s teaching 

facility consists of a traditional classroom and a separate room with a laboratory 

connected by a teacher preparation room. The traditional classroom contains five rows of 

student desks with a chalkboard in the front of the room. One computer located on 

Emma’s desk. A data projector extends from the ceiling and is used for PowerPoint notes. 

There is limited storage within the classroom with cabinets located on the walls on both 

sides of the room. A teacher preparation room connects Emma’s classroom to a 

laboratory room. In the laboratory there are six complete laboratory stations with sinks, 

running water, and gas jets. Emma is the only teacher assigned to this facility; therefore, 

the lab is open for use at any time. She is also the only teacher assigned to teach tenth 

grade biology at Bing High School. 
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Orientation to Science Teaching 
 

Kagan (1992) posited that teachers’ orientations act much like a filter through 

which teachers view and interpret teaching, learning, and learners. Thus, one’s 

orientation to science teaching influences instructional decisions made during planning 

and teaching and references one’s perceptions of the roles of teachers and learners as well 

as the purposes and goals for science teaching (Abell, 2007; Grossman, 1990; Handal, 

2003; Magnusson et al 1999; Park & Oliver, 2006). I describe Emma’s orientation to 

science teaching in terms of her: (a) goals and purposes of science education, (b) 

interpretation of teacher role, (c) interpretation of student role, (d) ideal images of 

teaching, and (e) view of science as a discipline. 

Goals and purposes of instruction. Emma identified her overarching goal for 

teaching tenth grade biology as teaching students how to think. She consistently 

described her purpose in teaching as providing learning opportunities for students 

through which they can learn to think independently, explore biological concepts, 

construct knowledge of biology, and apply their knowledge to find answers to new 

questions. She explained, “I am really trying to teach them to think” (stimulated recall 

interview, Day2).  

Emma’s goal to teach her students to think; to achieve her overarching goal, 

Emma is focus on challenging her students to make and test predictions. On Day 1, 

Emma began the lesson by asking the students to predict what would happen to drops of 

food dye placed in a beaker of cool water. Emma told the students they would observe 

the beaker at the end of the lesson to test their predictions. On the previous Friday, 

Emma’s students predicted potential changes in chicken eggs students massed and placed 
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in vinegar over the weekend. On the following Monday (Day 1), students observed the 

eggs and tested their predictions. They noted that the eggs had lost their shells, gained 

mass, and were notably larger in size. In each instance, Emma insisted that her students 

think about what they were about to do, predict what they thought would occur, and test 

their predictions by observing the outcome.  

Emma designed her lessons to teach osmosis and diffusion by challenging 

students to apply their conceptions of osmosis and diffusion to develop a prediction for 

the decalcified chicken eggs placed in corn syrup or distilled water. Students tested their 

predictions through their observations of changes in the eggs, and data (change in egg 

mass and size) gathered during the investigation. Through this approach, Emma planned 

to teach her students to be independent thinkers. She then asked students to evaluate their 

predictions in terms of evidence gathered through observing and massing the eggs, and 

from that evidence develop an explanation of the outcome. Her overarching purpose was 

evident throughout both lessons. Emma explained her purpose by stating: 

I want my kids to be independent thinkers. I want them to be able to think. I do 
not want them to just parrot what is on some lab sheet. . . .With every lab there is 
usually a dual purpose. Yes, I want them to learn about experimental design. Yes, 
I want them to record their data. Yes, I would really like it if they would get this 
[an accurate or expected result]. But I want them to realize that there is more than 
one way to get somewhere and I want them to think independently. (stimulated 
recall interview, Day 1) 

 
 Ultimately, Emma’s goal was to support students as they constructed their 

knowledge of science. She challenged her students to construct their knowledge of 

osmosis their by making and testing predictions by noting and explaining changes in eggs 

placed within the two environments. She noted: 

I thought that everyone was in a position to look at the egg and describe it and 
how it had changed. So I had hoped to get everyone on the same page and from 
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their descriptions try to figure out what is happening. Then the next piece would 
be to figure out which way the water was moving and then from there I wanted 
them to figure out why. But I was just trying to establish that this was the 
evidence that we had to work with and everybody’s eggs are essentially the same 
so this is the place that we can begin to establish an explanation. They may use 
different words but essentially everybody’s eggs looked the same. (stimulated 
recall interview, Day 2) 
 
Emma was not focused on memorizing terms and definitions but rather 

consistently asked students to think about the rationale for their predictions and how their 

predictions would be tested. She focused on developing students’ conceptual 

understanding of osmosis and diffusion.  

Perception of teacher role. Emma’s perception of her role as a teacher was to 

design instruction which challenges students to become “independent thinkers” 

(stimulated recall interview, Day 1). She wanted her students to think critically, answer 

questions, and apply their knowledge. This is a theme noted throughout both lessons. 

During each day of the observation four of Emma’s lessons were observed. Thus, 

Emma was observed teaching the same concepts to four different consecutive classes of 

tenth grade biology students. Clearly, in each class, even though there were differences in 

student ability levels and slight modifications in her instruction, Emma consistently 

exemplified the same focus for her teaching by asking students in each class to predict 

what would happen in terms of changes noted in decalcified chicken eggs related to the 

processes of osmosis and/or diffusion. Emma explained: 

In each class there was a group struggling with their predictions. I just tell myself 
that I just need to walk away and let them puzzle it out. If I make that for them, 
they learn nothing. I might just as well have told them during a lecture what 
would happen and tell them to memorize that. I just have to remind myself not to 
do that and remind myself that we will figure it out tomorrow. (stimulated recall 
interview, Day 2) 
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On Day 1, Emma asked her students to predict changes in a beaker of water when 

several drops of food dye were added. Students were asked to record their prediction in 

their notebooks before Emma placed the food dye in the water. Students noted that that 

the beaker which initially contained several drops of concentrated food dye and clear 

water was now a uniform color. Emma explained her focus on critical thinking by stating: 

In my mind I am not teaching 150 biologists. These kids are going to be bankers, 
chefs, clerks and I want them to be able to think on their own in novel situations. I 
am trying to get them to think. (stimulated recall interview, Day 2) 

 
Emma’s perception of her role as a science teacher is to design lessons that challenge her 

students to think and apply their knowledge of biology to novel situations. 

Perception of student role. Emma described her students’ role as “being prepared 

to learn” (stimulated recall interview, Day 2). She believes that effective learning requires 

students to be active participants rather than passive entities taking notes and listening to 

explanations provided by the teacher. By designing lessons that require students to take 

on an active role, Emma indicated that she expects students to take responsibility for their 

own learning. Students should be prepared for class, maintain a science notebook, 

contribute to class discussions, make and test predictions for demonstrations or 

investigations, and collaborate effectively with their peers. For the lessons observed, 

students developed and tested predictions for a class demonstration and for the 

decalcified egg laboratory investigation. Prior to beginning the decalcified egg lab, 

students were responsible for developing a protocol from the laboratory handout provided 

the previous week. Students were not allowed to bring the handouts into class; they could 

only bring their notebooks to class to use as a guide for the investigation. Emma 

described the students’ role: 
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Students must be active participants. They do not always choose to participate. I 
do not think that all of them are going to be highly successful as far as a letter 
grade assigned in my class. But I would like them all to do the activity, read the 
notes, and be an active participant in the class. I would like them to participate, to 
be responsible for their own learning, to try to grow for themselves. Other kids 
may grow more and other kids may grow less. But I want them all to take an 
active role. (stimulated recall interview, Day 2) 
 
Clearly, Emma perceived the students’ role in her classroom to be one of active 

participation. She consistently challenged her students to make and test predictions for 

phenomena observed during teacher demonstrations and student investigations. Emma 

believes that students must take responsibility for their own learning. 

Ideal images of teaching. Emma’s ideal image of teaching involves engaging her 

students through investigations that are both interesting and important in terms of 

teaching content. In her ideal lesson she imagines her students as actively engaged and 

excited about learning. Emma described her students’ behavior during her ideal lesson as 

being actively engaged in learning, asking questions, collaborating with peers to find 

answers for questions, and developing new questions for future investigations. 

You know in a perfect day, it is something that they are interested in and that they 
are excited about and they got to see the concept either in a demonstration or in a 
lab that they got to do themselves. Everything made crystal clear sense. We talked 
about it and we talked about the concepts and they understood and you know, so I 
do not know if I have an exact method but in an ideal world they are seeing or 
doing something and they are able to understand it and apply it to a novel 
situation. (stimulated recall interview, Day 2) 

 
Emma explained that it is easier to teach through a traditional, teacher-directed format 

that is focused on lectures and PowerPoint notes. However, she noted that even though 

lesson preparation might be easier, it is not necessarily the best way for students to learn. 

Emma explained: 

You know I like labs; it is way easier to prepare a lecture. I mean I can type out 
PowerPoint at the speed of light and I can make diagrams. That is definitely 



131 

easier. I might think that it works but I do not think that it is the best way for the 
students to learn. So lectures are the easier way to teach but it is not the best way 
for them [the students]. Lecture does have value but they really must be doing to 
be learning. (stimulated recall interview, Day 2) 

 
Emma’s ideal images of teaching involves engaging students in activities which 

challenge them to think critically, make and test predictions, and identify evidence that 

can be used to support explanations. Emma’s vision of effective teaching guides her 

thinking during planning and teaching. 

View of science as a discipline. Emma perceives science as a way of knowing 

rather than a body of related and unrelated facts about living things. She explained that 

she wants her students to understand that science is based empirical evidence gathered 

through investigations designed to find answers to questions about the natural world. To 

accomplish her purpose, she developed learning opportunities for her students to make 

and test predictions, gather and interpret data, use evidence to defend or refute 

predictions, and provide explanations based upon evidence gathered during their 

investigation. Emma explained: 

I think that it is valuable for them to know that science is really based upon 
investigation and you can make two kinds of observations. You can base your 
observations on what you see and use words to describe your observations or you 
can get some really nice concrete data. You can use numbers if you are making 
measurements or use color changes. (stimulated recall interview, Day 1) 

 
Emma’s focus on qualitative and quantitative data indicates that she clearly understands 

the importance of evidence within the context of science. She explained: “I pull it out 

because I think that it is really important and they use it [qualitative data and quantitative 

data] in every day life” (stimulated recall interview, Day 1). 

Emma’s perception of scientific knowledge as knowledge gained through 

investigations and conclusions supported with evidence is underscored by her 
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involvement with Partnership for Research and Education in Plants (PREP). Through this 

program Emma challenges her students to design their own experiments using wild type 

and genetically altered Arabidopsis thaliana seeds provided by a partner plant scientist 

from the university. The goal for student research is to characterize the function of the 

mutated gene by noting differences between the mutant and wild type plants grown under 

identical environmental conditions. Emma noted: 

They need to be able to do those things and mainly do a performance event. I 
have been trying especially after the conference that we went to with PREP which 
Christine came to. I got two really big things out of that conference. One was how 
to design experiments in your classroom. Teaching experimental design was 
another. There are graphs that I am trying to focus on like making really nice 
graphs. I thought that this was a nice time to make graphs and they [the students] 
obviously needed a review. (stimulated recall interview, Day 1) 
 
Emma views science as a discipline that demands evidence and consistently 

challenged her students to support their explanations with evidence gathered during the 

investigation with decalcified eggs. She believes when students identify and gather 

evidence to support their explanations the evidence becomes personal and enhances their 

understanding of the concepts taught through the investigation. 

It is really important because it is their evidence. It becomes personal for them 
and they will say ‘My egg did this.’ I think that it gives them something concrete 
to latch on to that will hopefully help them to remember rather than just 
remembering an experiment they did. So I think that providing evidence is very 
important. (stimulated recall interview, Day 2) 
 
Emma’s views of science are reflected in her teaching. She emphasized the 

importance of evidence to her students by challenging them to support their claims and 

assertions with evidence gathered during investigations. By doing so, she has created a 

learning environment which encourages questioning, investigating, and explaining ideas 

with supporting evidence. 
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Summary of Emma’s orientation to science teaching. Emma identified her 

experience teaching high school biology in a small, rural community; completing a 

Master’s Degree in Science Education; and working with a university sponsored program 

supporting student-driven research with plants as important sources of her goals and 

purposes for teaching science. She explained, teaching in a small community increased 

her interaction with parents and district administrators; however, because she is the only 

tenth grade biology teacher, she described herself as an “island” (pre-observation 

interview). Emma explained she found a community of professional teachers within the 

context of a university program, Partnership for Research and Education with Plants 

(PREP). She noted her collaboration with other teachers through PREP changed her 

beliefs about teaching and learning. Emma noted she engages students in explorations of 

phenomena to make them active participants in the learning process and support the 

construction of a framework to make sense of new concepts. Explanations are developed 

from students’ ideas, observations, and data from explorations. Figure 5 illustrates the 

sources informing Emma’s orientation to science teaching. 

 

Figure 5: Sources of Emma’s orientation to science teaching 
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I describe Emma as having a constructivist orientation to science teaching for the 

following reasons. First, Emma designed lessons with an implicit 5E instructional 

sequence and initially engaged students in explorations of phenomena in which students 

made observations and recorded data. Second, she challenged students to predict 

outcomes and test their predictions with their observations and data. Emma challenged 

students to support their claims with evidence taken from the exploration. Third, Emma 

drew upon students’ explanations and observations to support the construction of new 

knowledge and helped students make connections between their prior ideas and new 

ideas and explanations. In sum, Emma engaged actively engaged students in explorations 

of phenomena and supported them as they made sense of new ideas by reflecting on their 

experiences with the phenomenon. 

Lesson Plan 

In this section, I provide a detailed overview of Emma’s lesson plans for the two 

consecutive days of classroom observation. On Day 1 of Emma’s lesson (see Table 10), 

she began with a brief review of the structure of the cell membrane. She engaged students 

by calling them to the board to draw and label diagrams of the cell membrane and note 

the polar and nonpolar regions of the membrane. The lesson continued with a 

demonstration illustrating diffusion; Emma placed several drops of food dye into a beaker 

of cold water and challenged students to predict the condition of the beaker contents at 

the end of the lesson. Next, the students move into the laboratory where they set up an 

investigation examining the changes in decalcified eggs placed in corn syrup and distilled 

water. 
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Table 10. Emma’s lesson plan for Day 1  

 Activity Description 
Day 

1 
Review Engage Teacher: 

• Initiates the lesson with a brief review of the cell membrane  
• Four key terms are emphasized: solute, solvent, concentration, 

and plasma membrane 
 Diffusion 

demonstration - drops 
of food dye are added 
to a beaker of water 

Explain Teacher: 
• Challenged to predict changes likely to be observed after food dye 

is added to the water 
Students: 
• Explain the rationale behind their predictions 

 Laboratory 
investigation -        
•  removed decalcified 

eggs from vinegar, 
observed, and massed      

• placed in corn  
   syrup or water 

Elaborate Students: 
• Removed decalcified eggs from vinegar 
• Observe decalcified eggs  
• Mass eggs, and record data in laboratory notebooks 
• Draw upon their knowledge of osmosis and diffusion to predict 

changes in the egg resulting from reversing placement of the eggs 
into distilled water or corn syrup  

 Observation -   
Diffusion 
demonstration  

Explain Teacher 
• Challenges students to explain their observations of food dye and 

water 
Students 
• Observe food dye in water to test their predictions 
• Explain observations in terms of diffusion  

 
 
A similar instructional sequence was observed during Day 2 (see Table 11) of the 

observation. Emma began the lesson by asking students to observe the eggs after students 

had placed them in distilled water or corn syrup on Day 1. She encouraged her students to 

think about the changes observed in the eggs in light of their predictions made the 

previous day. She challenged them to explain the outcome of the investigation through 

the movement of water into or out of the eggs within this model of osmosis. 

 
 
 
 
 
 
 
 
 
 



136 

Table 11. Emma’s lesson plan for Day 2  
 

 Activity Description 
Day 

2 
Students collect and 
observe decalcified 
placed in distilled 
water and corn syrup 
on previous day 

Engage Teacher: 
• Engages students in observation of eggs 
Students: 
• Observe eggs, test predictions with quantitative and 

qualitative observations 

Recording data Explore Teacher: 
• Guides students in development of data table 
Students: 
• Record ending masses of decalcified eggs 
• Develop table designed for recording qualitative 

observations 
Testing predictions  Explain Students: 

• Compare egg masses and observations to test 
predictions  

• Develop explanations for changes observed in 
decalcified eggs 

• Share predictions and explain observed results in 
light of osmosis and diffusion 

 
Emma’s lesson plans indicate her strategy was to engage students with a 

demonstration illustrating diffusion on Day 1 and in an investigation into osmosis in 

which decalcified eggs placed in two unique environments [distilled water and corn 

syrup] either gained or lost water. On Day 2, Emma challenged students to observe 

changes in the decalcified eggs and test their predictions from Day 1. Students applied 

knowledge of diffusion and osmosis to explain changes observed in the decalcified eggs. 

Emma also stressed that students’ explanations be supported by evidence gathered on 

Day 1 and Day 2 of the investigation.  

In the following sections, I describe Emma’s knowledge for teaching diffusion 

and osmosis in terms of the Magnusson et al. (1999) components of PCK including: 

knowledge of representations and instructional strategies, knowledge of students as 

learners, knowledge of curriculum, and knowledge of assessment. 
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Knowledge of Representations and Instructional Strategies 

During the pre-observation interview Emma was asked about the representations 

and instructional strategies she planned to implement to teach the concepts of osmosis 

and diffusion. Emma planned to implement several representations of diffusion, osmosis, 

a living cell, and semipermeable membranes into the lessons on Days 1 and 2 including: 

(1) drops of food dye placed in water to represent diffusion, (2) an acrylic model of the 

semipermeable cell membrane, and (4) decalcified eggs as a model of a living cell 

surrounded by a semipermeable membrane. The instructional strategies Emma intended 

to implement include: (1) teacher demonstrations, (2) laboratory investigation as a means 

of discovery in which students would make and test predictions of the outcome, and            

(3) whole class discussions. Emma noted her preference for laboratory investigations to 

help students learn but time was often a serious constraint.   

On Day 1, Emma introduced diffusion through a demonstration in which she 

placed a drop of food dye into a beaker of cold water; she directed students to predict 

changes likely to take place within the beaker of food dye and water during the class 

period. Emma explained that she chose this representation because it focused students on 

the movement of substances along a concentration gradient [from higher to lower 

concentrations], thus, setting the foundation for an investigation into osmosis.  

A plastic model was introduced as a representation of a semi-permeable cell 

membrane. The model consisted of a clear plastic box in which larger red beads and 

smaller white beads were housed. The box was divided diagonally by a plastic divider 

with holes large enough for the white beads to move through but too small for the red 

beads. Thus, the white beads could move from one side of the model to the other while 
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the red beads were contained in only one side of the model. Emma used this model to 

reinforce student comprehension of the concept of semi-permeable membranes.  

The third representation consisted of decalcified chicken eggs which were the 

focus of the laboratory investigation conducted on Days 1 and 2 of the observation.  

Decalcified eggs were implemented as representations of a living cell and a 

semipermeable cell membrane. The egg shells had been dissolved through exposure to 

vinegar, leaving the eggs surrounded only by a semipermeable membrane. Before placing 

the eggs in beakers of distilled water or corn syrup, students massed and predicted 

changes in the decalcified eggs within each environment. Students tested their predictions 

by observing changes in the decalcified eggs on Day 2 of the observation.  The egg 

placed in corn syrup had lost mass; the shriveled appearance indicated significant water 

loss. Water diffused out of the egg into the highly concentrated corn syrup environment 

in the beaker, leaving the egg shriveled. In contrast, the egg in distilled water doubled in 

size as water diffused into the solute rich environment within the decalcified egg. Aware 

of the importance of representations illustrating scientific processes, Emma questioned 

the need for additional models of osmosis as concrete representatives of osmosis. Emma 

explained: 

I think that the model from the egg lab is good; I mean I think that it is really 
clear. I think that [the egg lab] is one example. Is one example enough? If it is a 
new concept, one example is not enough. Obviously it is not sufficient; they need 
more concrete examples. They need more things that they can manipulate and see 
or whatever. (stimulated recall interview, Day 2) 

 
During Day 2, several students struggled to develop an explanation for the 

changes observed in the decalcified eggs. They did not seem to understand why the eggs 

changed so drastically after being placed in the corn syrup or distilled water. Emma 
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responded by using the chalkboard to draw diagrams of decalcified eggs in two beakers, 

one containing corn syrup and the other containing distilled water. Emma’s diagram is 

show below in Figure 6. 

 

 

 

 
To enhance student understanding of relative concentrations, Emma assigned  

 

Emma estimated percentages of dissolved solid within the egg and the corn syrup 

solution and distilled water within the diagram (see Figure 6). Students subtracted the 

percentage of dissolved solid from 100, to determine the relative percentage of water 

within each solution [the solution in the decalcified egg and the solution within each 

beaker]. Next, Emma challenged the students to use the relative percentages of water to 

draw arrows indicating the direction of osmosis in the diagram. Emma explained: “They 

[students] will be able to say that it is all relative and it depends upon the concentration of 

the cell relative to the concentration of the environment” (stimulated recall interview, 

Day 2). By using the chalkboard, she was able to progress from students collaboration 

with lab partners to a whole class discussion focused on the direction of osmosis in 

different environments. When asked why she decided to use the chalkboard, she 

explained that she was trying to give the students a different perspective of the 

investigation to enhance their understanding. Emma noted: 

I was trying to give them something else to look at. Like I said before, the models 
would be better but at least it was something else to look at besides a fat egg and a 

 
Egg:  
5% dissolved 
solid-95% water 
Solution: 
0% dissolved 
solid-100% water 

 A  B 

Egg:  
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solid-95% 
water 
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solid-80% 
water 
 

Figure 6: Diagram of decalcified eggs in distilled water (A) and in corn syrup (B) 

Direction 
of osmosis 
in distilled 
water and 
a saline 
solution 
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deflated egg. I was trying to get them to think and to make some comparisons. 
(stimulated recall interview, day 2, page 16) 
 
Other topic-specific representations Emma implemented included analogies to 

provide students with representations that connected the concepts of osmosis and 

diffusion to students’ prior knowledge and experience. Emma made connections between 

fresh water and ocean water by using what she referenced as an ocean analogy. Students’ 

knowledge of ocean water was revealed when Emma asked students if ocean water could 

be consumed instead of fresh water. Several students responded that ocean water could 

not be consumed because of its high salt content. To explain why ocean water would be 

detrimental to cells, Emma used an example of a single cell placed in a beaker of ocean 

water. She identified relative concentrations of dissolved solids (e.g., Epsom salts, 

potassium salts, and iodine salts) found in ocean water and within the cytoplasm within 

the cell. She reminded students the concentration of water could be extrapolated from the 

concentration of dissolved solid within each solution; higher concentrations of dissolved 

solids indicated lower concentrations of water and lower concentrations of dissolved 

solids indicated higher concentrations of water. Next Emma challenged students to 

predict the direction of water movement. Students, reflecting upon the earlier discussion, 

indicated that water would likely leave the cell and move into the ocean water within the 

beaker. Emma explained that even though the cell was in water, the cell would become 

dehydrated due to the highly saline environment within ocean water; thus, water would 

move from higher to lower concentrations across the plasma membrane. Emma believed 

the ocean water analogy made important connections between students’ prior knowledge 

and experiences and supported students’ comprehension of the decalcified egg laboratory 

investigation. She explained: 



141 

I ask them what their skin feels like when they get out of the ocean and they tell 
me that their skin feels dry and itchy and their lips are chapped. They tell me to 
feel better after they rinse off with plain water and get a drink. We talked about 
where the water from your cells goes. If your cells are dehydrated from drinking 
ocean water or just from being in the ocean where did that water go? They then 
tell me that the water from their cells went into the ocean. They then begin to 
think about the water from their cells going into the ocean. The notion that water 
will be lost from cells when the cells are placed in a hypertonic solution is what I 
want them to see and to do that I use the analogy about the ocean. Then they can 
relate to it. (pre-observation interview) 

 
Emma explained that she is continually searching for representations and 

laboratory investigations to implement into her instruction. She explained, “I think I am 

like the students or most of my students are like this. I want some sort of manipulative; it 

might be a model or it might be something that I can actually do or whatever” (stimulated 

recall interview, Day 2).  

Emma implemented multiple instructional strategies into her instruction. She 

initially relied upon a brief discussion emphasizing four key terms: solute, solvent, 

concentration, and solution. Emma noted the terms, related to osmosis and diffusion, 

prepared students for the laboratory investigation. Emma explained: 

To understand what we are going to be talking about there are four words that are 
a review from physical science, that you will need to understand and those words 
are solute, solvent, concentration, and solution.’ So when I talked about that we 
talked about concentration expressed as a percent. (stimulated recall interview, 
Day 2)  
 
She implemented a cooperative laboratory investigation into osmosis and 

diffusion. Within the context of the investigation, Emma required students to make and 

test predictions forecasting changes in the eggs resulting from placement in a specific 

environment [distilled water or corn syrup]. Emma explained: 

I am going to give them time to look at their eggs and make some observations. 
They will have a chance to look at their eggs and we will talk about why that 
happened [the eggs decalcified in a vinegar solution]. And then they should take 
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some quantitative measurements and actually weigh their egg and record that, 
they have a lab notebook that they are keeping and they will record that. (pre-
observation interview) 
 
When students made and recorded observations, Emma required students to 

distinguish between qualitative and quantitative data and design tables or charts to record 

each in their laboratory notebooks. She believes that when students carefully record their 

observations, the data takes on greater meaning and becomes their data rather than an 

activity completed in class. She explained: 

It is really important because it is their evidence. It becomes personal for them 
and they will say, “My egg did this”. I think that it gives them something concrete 
to latch on to that will hopefully help them to remember rather than just 
remembering an experiment they did. So I think that providing evidence is very 
important. (stimulated recall interview, Day 1) 
 
Emma relied heavily upon representations to illustrate osmosis and diffusion in 

each of her lessons. When students experienced difficulty understanding the direction of 

water movement into or out of the eggs, she used the chalkboard to develop a new 

representation. Emma relied upon a cooperative laboratory investigation to challenge 

students to think about osmosis and diffusion in living systems and share their thoughts 

with members of their team. Students were challenged to make and test predictions while 

whole class discussions provided students with a means of sharing ideas between lab 

groups. Students’ claims and conclusions were to be supported with evidence.  

Knowledge of Students’ Understanding of Science 

Emma explained students learn best when they are actively engaged in learning. 

She noted, “I would like them to participate, to be responsible for their own learning, to 

try to grow for themselves.” (stimulated recall interview, Day 2) 
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In the pre-observation interview, Emma’s predicted students would have 

difficulty making the connection between the relative concentration of dissolved solids 

within the egg and that of the surrounding environment to accurately predict the direction 

of osmosis. Emma believed if students were confused about relative concentrations of 

dissolved solid and water within solutions they would not be able to accurately predict 

the direction of water movement during osmosis. Emma was concerned that vocabulary 

terms associated with osmosis and diffusion (hypertonic, hypotonic, and isotonic) were 

foreign and might present difficulty for her students, creating more confusion than 

meaning. She explained: 

I think that they might struggle with this particular concept [tonicity], the 
surrounding solution. Is it hypertonic, hypotonic, or isotonic? Once they figure it 
out, they can predict which way it will go. It is hard to predict, I do not know how 
it will go with this group. We have just kind of started. But that is one area 
[vocabulary] where I think that they might struggle. (pre-observation interview) 
 

Emma introduced vocabulary terms during discussions of students’ observations, relating 

terminology to students’ experiences with osmosis. 

 Explaining students often hold misconceptions about forces determining the 

direction of osmosis, Emma noted students made inaccurate predictions of the direction 

of osmosis when asked how the eggs would respond if the placement were reversed. She 

explained, “I was very surprised to hear some groups predict that the same thing would 

happen to both eggs even though they were placed in very different solutions” 

(stimulated recall interview, Day 1). To address this misconception, Emma directed the 

students to reverse the placement of the eggs and make and test predictions of how the 

eggs would change. 
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  Emma judged the success of her lesson upon the degree to which her students 

were engaged in learning. During the first day of observation, students predicted the 

outcome of a diffusion demonstration and followed the protocols they had written in their 

lab books to set up an experiment in which decalcified eggs would be placed in two 

different solutions (distilled water and corn syrup). After massing the eggs, students 

predicted the impact of each environment on the decalcified eggs. One aspect of Emma’s 

response to student learning is that she did not focus upon the accuracy of their 

predictions but rather on the level of their engagement in thinking about what would 

happen as the eggs remained in each solution overnight and on explaining their ideas. So 

her focus was more on the processes of science rather than on the accuracy of students’ 

predictions. Emma explained: 

I think that it went pretty good, I mean students, they were involved, they were 
engaged in what they were doing. They were asking questions, answering 
questions, they were recording results. They were taking notes. They were making 
predictions; some of the predictions were accurate and some were not. But that is 
not the point. So I think it went pretty well. (stimulated recall interview, Day 1) 

 
When asked about her reasoning for having students make predictions about water 

movement into or out of the decalcified eggs, Emma explained that making predictions 

captured student interest and made the outcome of the investigation a more important 

aspect of their learning. She noted: 

I do not know if they will understand by tomorrow what was wrong with their 
prediction but I think that they will clearly see what did happen and I think that 
they will at least begin to put together that the movement of the molecules is 
determined by the relative concentrations of the solution outside of the cell. 
(stimulated recall interview, Day1) 

 
Emma noted that students may experience difficulty with vocabulary terms and 

taught the concepts before introducing vocabulary. She noted students experienced less 
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difficulty with vocabulary when students explored the phenomena first. Emma believed 

her students demonstrated greater understanding of the concepts and the meaning of 

vocabulary. Emma noted: 

In the past, I went to vocabulary terms and then tried to apply those terms to the 
eggs. Today, I went from students’ descriptions of their eggs, to diagrams of the 
eggs, and then I went from the eggs to terms [hypertonic, hypotonic, isotonic]. I 
think today was better. (stimulated recall interview, Day 2) 
 

Emma believed that she could enhance students’ understanding by implementing another 

representation to illustrate the importance of relative concentrations of dissolved solid 

within the decalcified egg and the surrounding environment to determine the direction of 

water movement. She explained: 

It is the concentration gradient that will determine what direction the water will 
move [into the cell in a hypotonic environment and out of the cell in a hypertonic 
environment]. Then maybe that would help them make that connection. So then 
maybe I need to give them a new situation they would be more likely to get the 
idea and understand direction of movement. (stimulated recall interview, Day 2) 
 
Emma wanted students to perceive molecular motion as the driving force for 

osmosis and diffusion. On the following day, she intended to implement a different 

version of the diffusion demonstration. The new diffusion demonstration would identify 

the temperature of the water as a factor in the rate of diffusion. Emma believed she could 

focus students’ thinking on the concept of molecular motion as the driving force for 

diffusion and osmosis. She noted:  

I think that tomorrow I think that I am going to try the food coloring 
demonstration in water with different temperatures to investigate molecular 
movement. An investigation in which lettuce would be used in distilled water and 
in salt water and then tomorrow, I thought we would switch the eggs and place the 
egg that was in corn syrup in distilled water and the egg that was in distilled water 
in corn syrup. (stimulated recall interview, Day 2) 
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Emma believed students learn most effectively when they are actively engaged in 

the learning process and noted that students may struggle with vocabulary terms such as 

hypertonic, hypotonic, and isotonic. To avoid this confusion, she focused on students’ 

conceptual understanding rather than comprehension and retention of vocabulary terms 

and definitions. Emma believes that students will develop a conceptual understanding of 

biological concepts if they are engaged as active participants in doing science and 

applying their knowledge to novel investigations or problems. 

Knowledge of Assessment 
 

Emma explained her plans to elicit student thinking about osmosis and diffusion 

by challenging students to make and test predictions, asking students questions, and 

monitoring students’ questions and answers to determine conceptual understanding. 

During both lessons, she relied upon questioning as a means of a formative assessment 

when students were working in collaborative teams and during whole class discussions. 

When asked how she would use that information, she explained that if students’ answers 

indicated a lack of conceptual understanding she would focus on the more basic aspects 

of the concept to find a baseline for student understanding. Emma explained: 

I think that I will go backwards in my questioning and try to pull out basic stuff 
first. Like go back to last week and pull out some learning from last week like 
vocabulary and basic concepts first. Once I make sure that those [concepts related 
to the tonicity of solutions] are in place then go back and ask the questions. Today 
I do not know if they will be able to piece it all together because they will not be 
able to see. The egg will be swollen because it has been in a vinegar solution but 
it will not be as dramatic as it will be tomorrow after the eggs have been in 
distilled water and corn syrup. I do not know how far we will get but I will try to 
use some questions and go backwards until they can apply their understanding of 
osmosis and diffusion to the lab. (pre-observation interview) 

 
Emma relied upon feedback from formative assessments to inform her teaching. 

For instance, she used student predictions to evaluate understanding of key concepts. 
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Emma assessed students’ understanding of diffusion and movement of a substance along 

a concentration gradient by asking them to predict how drops of food dye would behave 

in a beaker of cold water. A similar formative assessment strategy was implemented 

when students were asked to predict the movement of water when decalcified eggs were 

placed in corn syrup or distilled water. 

Emma noted that during Day 2 of the observation, students in her fifth hour class 

made incorrect predictions indicating that they did not understand the direction of water 

movement into or out of the decalcified egg in distilled water or corn syrup. Emma 

explained: 

I was very surprised to hear some groups predict that the same thing would 
happen to both eggs even though they [the eggs] were placed in very different 
solutions. It is like they are predicting that tomorrow whatever they will see in the 
egg that is in distilled water they will see the same thing in the egg that is in corn 
syrup. (stimulated recall interview, Day 2) 

 
Surprised by students’ incorrect predictions, Emma took action to resolve student 

confusion by drawing a diagram of the decalcified eggs in two different solutions on the 

whiteboard and reviewing the meaning of the terms solute and solvent (see Figure 6). She 

used solute concentration to determine the relative concentration of water within the eggs 

and the surrounding environments. Emma asked students to consider the relative 

concentrations of dissolved solid in each environment and predict the direction of 

osmosis. Without using the term “concentration gradient” Emma used the percentage of 

water in the egg and the surrounding environment to lead students to accurately predict 

water movement. She often asked students questions to gain greater insight into their 

thinking and used that knowledge to craft meaningful and effective explanations. She 

explained, “I definitely think that I was using formative assessments. I was either asking 
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for them to raise their hand if they saw it a certain way so I got a picture of what they 

thought” (stimulated recall interview, Day 2). 

After noting student confusion about the direction of water movement, Emma 

decided to have students in her fifth hour class reverse the placement of the eggs. She 

explained that when students saw the changes in the eggs they would have a better 

understanding of the movement of water along the concentration gradient even if the 

explicit term had not been used. Emma explained: 

I am hoping that they [the students] will look at today’s results versus tomorrow’s 
results and they will be able to make a comparison and think about what 
happened. They will be able to say that it is all relative and it depends upon the 
concentration of the cell relative to the concentration of the environment. 
(stimulated recall interview, Day 2) 
 
Emma utilized laboratory notebooks as a tool for students to record their 

predictions, observations, and data from the decalcified egg investigation. She believes 

students can use notebooks to help them think about the investigation protocol and how 

the changes in the decalcified egg reflected the direction of osmosis. Emma explained 

students’ lab notebooks were helpful as a formative assessment tool and noted she could 

assess students’ conceptual understanding of the phenomena by reading their 

explanations and ideas. She explained: 

I think that it helps them to think about what they are doing and why they are 
doing it instead of thinking in terms of step 1 and step 2. They did get a prepared 
lab for the decalcified egg investigation and they just rewrote it in their own 
words. (pre-observation interview) 

 
The actions Emma took to resolve student confusion indicated her ability to use 

feedback from formative assessment to inform her instruction. Emma used formative 

assessments embedded in her teaching to guide the next steps in her instruction. For 

example, when Emma noted that students were confused about the direction of water 
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movement following the investigation, she decided to have students reverse the 

placement of the decalcified eggs. Thus, she was able to assess student comprehension 

during instruction and take corrective steps when necessary. 

Knowledge of Curriculum 
 

When asked how the topics of osmosis and diffusion fit into the curriculum, 

Emma responded with an overview of her tenth grade biology curriculum. She related the 

concepts of osmosis and diffusion to cells and cellular function investigated earlier during 

the fall semester. She explained that water balance in all organisms is regulated by solute 

concentration and osmosis: 

It [osmosis and diffusion] fits in because our previous learning was on cells. Cells 
are the basic structural and functional units of life. How will those cells carry out 
the functions of life unless they can get raw materials into the cell to work with 
and unless they can get rid of waste? Also how will the cells get their products out 
to go elsewhere into the body? So it fits in with past learning there. (pre-
observation interview) 

 
Emma noted that osmosis and diffusion form a conceptual basis for students’ 

understanding of photosynthesis and cellular respiration taught during the winter 

semester. Emma explained that osmosis and diffusion is typically covered during the fall 

semester: 

So it fits in with future learning, this as far as we will get before Christmas, but 
after we get back we will kind of review and go on into photosynthesis and 
cellular respiration. Of course, osmosis and diffusion will be important for those 
topics. So then we will be working with our plants at the same time and then that 
will lead into genetics which is kind of where we finish before the test. (pre-
observation interview) 
 

Emma noted the importance of lesson sequence and explained she engages students with 

an exploration of phenomena prior to generating explanations. Students’ explanations 
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resulted from observations made during investigations and supported with evidence taken 

from the investigations.  

Emma explained that her biology curriculum is largely determined by the state 

and the school district. The Missouri Course Level Expectations (CLEs) and End of 

Course Exam would determine the content students would be expected to know. The 

school district science curriculum, shaped by the state CLEs, also has a significant 

influence on the biology curriculum because students will enroll in other science courses 

in which specific content knowledge would be expected. For example, when students 

enrolled in Advanced Placement Biology they would be expected to know basic cell 

structure and function. Emma emphasized the importance of state standards and district 

curriculum when developing her syllabus. She explained that daily lesson planning 

emphasized content knowledge stressed by state CLEs and the district curriculum. 

Emma’s PCK for Teaching Osmosis and Diffusion    

There are two models for Emma’s PCK addressed in this section. First, the 

Magnusson et al. (1999) model of PCK has been adapted to illustrate the nature of 

Emma’s PCK for teaching osmosis. Emma’s PCK for teaching osmosis and diffusion is 

shown in Figure 7.  Emma’s PCK model notes the relationship between her orientation to 

science teaching and the components of her PCK.  

Emma’s overarching goal for teaching science is to teach her students how to 

think independently. She believes that effective learning takes place when students are 

active participants engaged in asking questions and finding answers and that her role as 

the teacher is to plan lessons that actively engage students in learning science. Emma has 
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a constructivist orientation to science teaching. A model of Emma’s PCK for teaching 

diffusion and osmosis is shown in Figure 7. 

 

 

Emma’s beliefs about teaching and learning acted as a filter in shaping the nature 

of representations, instructional strategies and sequence of instruction implemented 

within her lessons. Her sequence of instruction was reflective of the 5E instructional 

model (Bybee, 1997) in that she initially engaged students with an exploration of the  
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7Note. Modified from Nature, sources, and development of pedagogical content knowledge for science teaching (p.99),  
by S. Magnusson, J. Krajcik, & H. Borko, 1999. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining 
pedagogical content knowledge. Boston, MA: Kluwer. 

Figure 7: Emma’s topic-specific PCK7 
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topic prior to an explanation. Hence, Emma’s beliefs about learners and knowledge of 

potential student learning difficulties associated with osmosis and diffusion informed the 

sequence of introduction of concepts, vocabulary terms, and definitions. Emma noted 

vocabulary terms such as hypertonic, hypertonic, isotonic, and concentration gradient 

would be difficult for students and interfere with conceptual understanding of the 

processes of osmosis and diffusion. Thus, she introduced the concepts of diffusion and 

osmosis prior to introducing vocabulary.  

A second model of Emma’s PCK represents the integration of the components of 

her PCK embedded within Emma’s orientation to science teaching. Emma’s PCK for 

teaching diffusion and osmosis, shown in Figure 8 and represents the integration of the 

components of teacher knowledge specific for teaching diffusion and osmosis. There are 

four important features to note within this representation. First, Emma’s orientation to 

science teaching is placed within the center of the model indicating the centrality of her 

orientation for the integration of PCK components during planning and teaching. Second, 

connecting arrows between components indicate connections between components 

creating knowledge specific for teaching diffusion and osmosis. Third, brief descriptions 

of Emma’s knowledge of the components of her PCK provide insight into her knowledge 

of teaching, learners, and learning. Fourth, brief connecting statements between 

components demonstrate Emma’s integration of knowledge for teaching diffusion and 

osmosis.  
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Figure 8: Integration of Emma’s topic-specific PCK  

Because she believed students would have difficulty predicting the direction of 

water movement during osmosis, Emma drew upon her knowledge of representations and 

instructional strategies to identify decalcified chicken eggs as a representative of a living 

cell and the focus of an osmosis laboratory investigation. To gauge students’ 

comprehension, Emma challenged students to make and test predictions; she posed 
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questions during the investigation and subsequent class discussions as formative 

assessments of students’ conceptual understanding. Emma’s knowledge of curriculum 

guided her decision to introduce the phenomena first. Her understanding of the vertical 

and horizontal curricula informed her understanding of students’ prior knowledge based 

upon district science curriculum and the availability of curricular resources. Connecting 

arrows between the components of Emma’s PCK indicate the highly integrated nature of 

Emma’s knowledge. Emma’s constructivist orientation for teaching biology informed the 

implementation of an implicit 5E instructional model (Bybee, 1997). She drew upon all 

four components to create learning experiences to support students as they constructed 

their knowledge of osmosis and diffusion.  

Content Representation 

Descriptions of teacher knowledge can be found throughout education literature; 

however, specific examples of teacher knowledge that actually inform instructional 

decisions during planning and teaching are more difficult to identify. Loughran et al. 

(2004) and Loughran et al. (2006) suggest that the knowledge of teaching possessed by 

teachers can only be clarified when teacher thinking can be revealed and understood. 

Loughran et al. (2006) have developed a means of documenting concrete examples of 

teacher knowledge. The Content Representation (CoRe) is used to assess multiple aspects 

of teacher knowledge including content knowledge, the goals and purposes of the lesson, 

the instructional strategies and representations to be implemented within the lesson, and 

the means of assessing student understanding during the lesson (Loughran et al. 2006; 

Loughran et al. 2004). Thus, a window can be opened into teacher thinking to investigate 
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how the components of teacher knowledge are drawn upon when teachers make 

instructional decisions during planning and teaching. 

In Table 12, a CoRe illustrates Emma’s knowledge of teaching osmosis and 

diffusion. The components of PCK are represented within the context of the CoRe and 

specific examples of instructional strategies and representations, assessments, potential 

student difficulties, and curricular considerations are included. When reading the CoRe, it 

is important to read individual columns (e.g. Big Idea A) from the top to the bottom 

vertically. The columns extend beyond a single page. 

Table 12: Content representation for Emma12 

Content Representation (CoRe) 
Considerations Big Idea A Big Idea B Big Idea C 
 Plasma membranes are 

semi-permeable 
barriers. 

Substances will diffuse 
along the concentration 
gradient. 

During osmosis, water 
diffuses across a 
semipermeable membrane 
from high to low 
concentrations. 

Identify the learning 
goals for students 
within this lesson. 
 

Students should 
understand the nature of 
the cell membrane: 
• a lipid-rich structure.  
• surrounds the cell and 

creates a unique 
internal environment. 

• allows for the 
selective passage of 
materials into or out 
of the cell. 

 

Students should 
understand the concept of 
a concentration gradient: 
• relative concentrations of 

substances will 
determine the direction 
of osmosis or diffusion.  

• substances will diffuse 
from high to lower 
concentrations. 

• random molecular 
motion and collisions 
drive both diffusion and 
osmosis.  

Students should 
understand the function of 
a semipermeable 
membrane: 
• cell membrane maintains 

a unique environment 
within the cell 

• osmosis is the diffusion 
of water across a 
semipermeable 
membrane. 

• the direction of osmosis 
is results from a 
concentration gradient 
between cellular 
contents and the 
surrounding 
environment. 
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Why is it important 
for students to know 
this content? 
[Knowledge of 
curriculum] 

Plasma membranes are 
critical to life and life 
processes: 
• maintaining the 

integrity of the cell. 
• photosynthesis and 

the generation of 
energy within the cell. 

• cellular respiration 
and the generation of 
energy to support 
cellular functions. 

 
Plasma membranes 
maintain a unique 
environment within the 
cell: 
• maintenance of 

homeostasis . 
 

Concentration gradients: 
• dictate the direction of 

osmosis and diffusion. 
• critical for understanding 

energy production (ATP) 
within the cell. 

• result in passive 
transport of materials 
through diffusion or 
osmosis into the cell. 

• substances diffuse from 
high to low 
concentrations. 

• random molecular 
motion drives diffusion. 

 
 

Understanding of osmosis: 
• supports students’ 

understanding of the 
direction of water 
movement during 
osmosis. 

• supports understanding 
of relative 
concentrations of water 
on either side of a 
semipermeable 
membrane in terms of 
predicting direction of 
osmosis. 

• explains why water 
enters or leaves cells. 

• perception of osmosis 
and diffusion as 
overarching concepts in 
biology. 

Identify potential 
student difficulties 
and limitations 
associated with 
teaching this idea. 
[Knowledge of 
students as 
learners] 

Cell membrane: 
• structure of the 

membrane which 
results in semi-
permeable nature. 

• the importance of the 
cell membrane in 
creating a unique 
environment within 
the cell. 

Concept of concentration 
gradient: 
• concentration of water 

can be determined from 
relative concentration of 
dissolved solid within a 
solution.  

Direction of osmosis: 
• determined by relative 

concentration of water 
within the cell and the 
surrounding 
environment. 

• osmosis references only 
diffusion of water 
through a cell 
membrane. 

• unique vocabulary 
important for associated 
with osmosis.  
o the terms: 

hypotonic, isotonic, 
and hypertonic can 
be confusing for 
students. 

Identify knowledge 
of students’ thinking 
which influenced 
the teaching of this 
idea. 
[Knowledge of 
students as 
learners] 

• Importance of making 
connection between 
students’ 
understanding of oil 
as hydrophobic 
(repels water) and cell 
membrane as a lipid-
based structure.  

• Cell membrane is 
semipermeable. 

• Make connections 
between concepts and 
students prior knowledge 
and life experiences: 
o use food dye and 

water as model for 
diffusion.  

o concentration 
gradient in food dye 
and water is easy 
for students to see 
and understand. 

 
 
 
 

• Use whiteboard models 
of beakers containing 
corn syrup or distilled 
water with each 
containing an egg.  

• Ask students to draw 
arrows predicting 
direction of osmosis 
water in each diagram 
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Teaching strategies 
and representations 
implemented and 
particular reasons 
for using these 
strategies to engage 
students with this 
idea. 
[Knowledge of 
instructional 
strategies and 
representations] 

• Review the structure 
of the plasma 
membrane - have 
students draw and 
label the structure in 
their notebooks.  

• Use a model of a cell 
with an internal 
membrane divided 
into two parts by a 
diagonal insert with 
small holes. 
o smaller white 

balls pass 
through diagonal 
membrane 

o larger red balls 
can not pass 
through the 
diagonal 
membrane.    

 
 
 

Food Dye Diffusion 
• Use food dye and water 

as a model for diffusion. 
• Place drops of food 

coloring into a beaker 
of cold water; students 
note changes occurring 
in model over time. 

 
Decalcified Eggs 

• Explain water movement 
observed in the 
decalcified eggs placed 
in distilled water or corn 
syrup environments.  

Decalcified Egg Lab 
Students: 
1. Students make 

predictions about the 
direction of osmosis. 

1. Mass eggs before 
placing eggs in corn 
syrup or distilled 
water. 

2. Place decalcified eggs 
in distilled water or in 
corn syrup. 

3. Make observations of 
decalcified eggs and 
note changes. 

4. Use observations and 
data to test  
predictions. 

5. Draw model to 
explain water 
movement. 

6. Students share 
explanations and 
receive feedback from 
peers and teacher. 

Identify ways of 
ascertaining that 
students  concepts 
taught. 
[Knowledge of 
Assessment] 

Questioning students:  
• ask students explain 

the importance semi-
permeable membrane 
in cell life. 

 
 
 

Assess accuracy of student 
explanations:  
• students’ explanations 

about direction of 
diffusion in food dye and 
water demonstration.  

• the direction of osmosis 
indicated with arrows in 
diagrams of decalcified 
eggs in beakers of corn 
syrup or distilled water.  

 

Assess accuracy of student 
predictions to determine 
student comprehension: 
• predictions of direction 

of diffusion in food dye. 
and water demonstration 

• predictions of direction 
of osmosis in decalcified 
egg investigation.  

 

 
 Loughran, Berry, and Mulhall (2006) posit that “teaching requires considerably 

more than delivering subject content knowledge to students, and that student learning is 

considerably more than absorbing information for later accurate regurgitation” (p. 9). 

Thus, Emma’s PCK is an amalgamation of all components of PCK filtered by her 

orientation to science teaching, resulting in the transformation of content knowledge into 

a form understood by students. 

 
 

 

_________________ 
 
12Note: Modified from Understanding and developing science teachers’ pedagogical content 
knowledge, by J. Loughran, A. Berry, and P. Mulhall, 2006, p. 28. Rotterdam: Sense Publishers. 
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Cathy’s Case Profile 
 

Cathy’s Vignette: The Power of a Story 
 
 “Well, today we are going to make a story board” Cathy informs the class. “Does 

anyone know what a story board is?” she asks as she looks around the room at her 

students. There is a murmur of conversation in response to Cathy’s question. 

 “Hey, isn’t that what they do in Hollywood when they make movies?” a student 

asks.  

 Another student explains: “Yeah, they draw all of the action that will take place 

during a scene in the movie; it is kind of like a comic book.”  

 “Right” Cathy responds. “Well, today you guys are going to design a story board 

for Mr. Stink.” 

 The students look confused for a moment; a student in the back of the room asks: 

“So who is Mr. Stink?” Several students laugh as they wait for Cathy to provide a more 

detailed explanation. 

 “Okay, so you are in class and a kid walks in and he seems to be covered with this 

super powerful cologne. I mean, he really does smell; in fact, you could say he stinks” 

Cathy explains. “We will call this guy, Mr. Stink.” 

 “No joke, there was a guy like that in my dentist’s office last week” a student 

exclaims. “And he really did stink!” 

 “I am sure that we all have had experiences with Mr. Stink in one form or 

another” Cathy explains. “Today, we are going to turn the whiteboards into story boards,” 

Cathy tells her students. “I want you to divide the whiteboard into four panels and just 

like the comics and tell a story about Mr. Stink” she explains. “Your story about Mr. 
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Stink will address the molecules of that powerful cologne he is wearing and show what 

happens to those molecules of cologne as he enters the room at the beginning of class, 

during class, and then at the end of the class” Cathy explains. 

 “Okay, so you want us to tell the story in four steps” a student states.  

 “Do we use pictures and dialogue, like they do in the comics?” another student 

asks.  

 “Yes, that is right. I want you to start in panel number 1 with Mr. Stink, and you 

can use little dots to represent the molecules of cologne and show at least 20 cologne 

molecules. In each panel show what happens to those cologne molecules as Mr. Stink 

remains in the room” Cathy explains.  

 “Aren’t those molecules what everyone around Mr. Stink actually smells?” 

another student asks. 

 “Well, what do you think the dots represent?” Cathy responds. “In each panel, 

show what happens to the dots around Mr. Stink over time and then, on a separate piece 

of paper, your team will write a brief description of your story to share with the class.”  

 “So we work with our teams?” a student asks. 

 “Yes, you will!” Cathy responds. Cathy has implemented cooperative learning 

into her teaching and organizing students into pods; the pods are numbered and students 

within each team have specific responsibilities.  

 “Well, does everyone understand the assignment?” Cathy asked. The students nod 

quietly, waiting for further direction. “Okay, I would like each team to send your 

equipment manager to pick up the whiteboards, dry erase markers, and an eraser. You 

will have 15 minutes to complete the assignment” Cathy explains.  
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 There is a flurry of activity as students move to pick up whiteboards, markers, and 

erasers for their respective teams. Gradually the students settle in to work and begin to 

focus on the assignment. While students are working, Cathy moves throughout the room 

and peers over students’ shoulders. The students appear to be engaged in the activity, 

sitting with their heads together and working quietly. As student teams complete the 

assignment, Cathy invites three teams to share their ideas with the class. Cathy takes a 

seat waiting for the first group to begin their presentation. 

Background and Context 

 Cathy is a veteran teacher with over 15 years of classroom experience teaching 

10th grade General Biology at Fender High School. Currently, Cathy teaches 10th grade 

biology, dual credit biology, and genetics. Fender High School is the only high school 

within a small, rural, community. The 2000 Census identifies the population to be 

approximately17,827 (U.S. Census, 2000). Fender High School has a population of 762 

students with a minority student population of 12.1 percent, below the state average 

(DESE, 2008). The free/reduced lunch eligibility is 11.3 percent, significantly below the 

state average of 42.1 percent (DESE, 2008). The student to teacher ratio is 19/1, slightly 

above the state student to teacher ratio of 18/1 (DESE, 2008). The graduation rate at 

Fender High School is 79.7 percent and falls below the state average of 85.2 percent 

(DESE, 2008). Approximately 61.3 percent of Fender High School graduates attend a 

four-year or two-year college or university (DESE, 2008).  

 Cathy’s classroom is divided into a traditional classroom area with student tables 

arranged in six pods consisting of two tables each, creating collaborative space for six 

teams of four students each. The other side of the classroom consists of a laboratory area 
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with six complete lab stations which include water, sink, electrical outlets, and gas jets. 

Cathy’s room is part of a new addition to the school which was completed in 2007.  

 Cathy has implemented student driven research into her teaching through the 

Partnership for Research and Education with Plants (PREP); her students design their 

own research projects with wild type and mutant Arabidopsis thaliana seeds provided by 

plant science researchers from a research extensive university. Cathy has served as 

Fellow during two consecutive summers through an NSF program supporting the 

inclusion of teachers in formal laboratory research. As a Fellow, she worked in a plant 

research lab conducting research with wild type and mutant Arabidopsis and developed 

activities, investigations, and laboratory protocols for high school students.   

Orientation to Science Teaching 

 I describe Cathy’s orientation to science teaching within the following 

dimensions: (a) goals and purposes for science teaching; (b) interpretation of teacher role; 

(c) interpretation of student role; (d) ideal images of teaching; and (e) view of science as 

a discipline.  

Goals and purposes of instruction. Cathy’s overarching purpose is to actively 

engage students in learning and challenge them to think critically while constructing their 

knowledge of biological concepts. Cathy explained she initiated the osmosis and 

diffusion unit (the lesson prior to Day 1 of the observation) by engaging her students in 

an investigation which challenged them to identify the most absorbent layer of a 

disposable diaper. Her goal was to focus students on the characteristics of water and the 

diffusion of water into a diaper before addressing osmosis and diffusion within living 



162 

systems. She believed the activity stimulated student thinking about water in their daily 

lives. She explained the nature of the introductory lesson: 

We did an introductory activity yesterday where we are just trying to get them 
into thinking about how things work. So we had them dissect a diaper to 
determine which layer of the diaper was most absorbent (pre-observation 
interview).  

 
Cathy’s purpose was to assess students’ prior knowledge of water and diffusion to inform 

her next steps in the osmosis and diffusion unit. She explained: “The purpose today was 

to get them thinking about it so that when we talk about it in class they could put it all 

together” (stimulated recall interview, Day 2). Following the introductory investigation 

into water, Cathy’s goal was to make connections between water and the cell. She 

explained: “So then we will begin talking about water and how important it is in the cells 

and that water balance in cells is very important” (pre-observation interview).  

One of Cathy’s goals in teaching biology is to make connections between biology 

and students’ lives; she relied upon stories related to water loss and dehydration within 

the body. As a former coach, Cathy’s experience with athlete performance, dehydration, 

and water intake provides fertile ground for stories, analogies, and metaphors related to 

the role of water in living systems. She explained her implementation of stories: 

We talk about athletes and when they get to 2 percent or 3 percent dehydration, 
their performance begins to fail. We talk about football teams and volleyball 
teams and how they are always going to get a drink and how water is so important 
in maintaining body functions. (pre-observation interview) 

 
Cathy noted she works with two other teachers in her department. Most of her 

planning is completed within the context of this group of teachers. She did not reference 

the teachers as a professional learning tea; however, she did note the goals and plans for 

teaching were developed through collaboration with colleagues. Cathy explained: 
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 When you work with other people there is more flexibility involved. You may 
have a way you want to do it but it may not work for them, they may not have the 
experience to know. In some ways I never really thought about how flexible I try 
to be sometimes and how other times you cannot be. (pre-observation interview) 

 
 Cathy actively engages her students in learning through investigations in which 

students conduct explorations of content prior to explanations; she appeared to intuitively 

follow the sequence of the 5E instructional model (Bybee, 1997).  Cathy relied upon 

investigations, analogies, and metaphors to make concepts clear to students. She 

challenged students to think critically and apply their knowledge to realistic problems 

and, by doing so, encouraged students to construct their knowledge of osmosis and 

diffusion. Cathy’s planning and teaching clearly reflect her goals of actively engaging 

students in critical thinking and problem solving while constructing their knowledge of 

biology.   

Perception of teacher role. Cathy explained that she perceives her role as a 

teacher to be continually shifting with the learning needs of her students. She posits the 

teacher’s role may shift from a guide or facilitator for inquiry to a more structured, 

traditional role through which the teacher acts as a resource providing students with 

explanations and background information to enhance comprehension. Cathy noted 

students may have difficulty understanding content information from the textbook and 

considers other ways to make complex concepts more understandable for students. She 

noted, “I think that kids really do have problems understanding the molecular world. But 

hopefully using the models will help them get more of a visual perspective” (pre-

observation interview). When acting as a resource, Cathy provides the information for her 

students often in the form of a PowerPoint lecture/discussion or worksheet. She 

explained: 
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This is one of those things that is hard for them to get it out of a book and read it 
on their own. So I am going to transfer the information to them by giving them 
some definitions and I also have a worksheet that we do (pre-observation 
interview).  

 
Cathy stressed as a teacher, she must know students’ strengths and weaknesses 

and rely upon feedback from students to determine next steps in the lesson. She noted, “I 

place a lot of what I do on feedback from the kids. If I see the kids are not understanding; 

I will make a change” (stimulated recall interview, Day 2).  Cathy explained she uses her 

knowledge of her students to design learning opportunities tailored to students’ needs and 

this sensitivity to students’ learning needs is one of the most important aspects of the 

teacher role. Cathy explained: 

You have to look at the capabilities of the kids and what their prior knowledge 
about the concepts is, what their past experiences are, how the kids are doing and 
then from that you have to decide how you can best introduce the activity or this 
knowledge. (stimulated recall interview, Day 2) 
 
Challenging students to conduct investigations to find answers may be the most 

effective approach. If the content is challenging, students may need additional guidance 

and less of an inquiry approach. She explained:  

The role changes; you can be a totally inquiry based teacher in which you are 
challenging students to find ways to answer a question. But I do not think that full 
inquiry works very well in a high school setting. Kids need more guidance in 
some areas and it changes with the chapter. . . . Something that is at a deep 
enough level or a high enough thinking level that the kids would have trouble 
with it; they would have trouble on their own trying to figure it out. So in that 
kind of chapter I am going to be more of the knowledge giver in some ways. 
(stimulated recall interview, Day 2) 

 
Cathy identified motivating students as a key aspect of her role as a teacher. A 

former athletic coach, Cathy explained she relied on her coaching experiences for insight 

into student motivation and noted her teacher role often shifted into that of a coach. She 

explained, “Another role of the teacher is to be a coach. . . . So my thought was to 
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challenge the kids. . . . Students are a lot like athletes in some ways” (stimulated recall 

interview, Day 2). Cathy explained she strives to create a learning environment within 

her classroom in which students are engaged with content, motivated to learn, and 

challenged to think critically. She noted students must be actively engaged in learning. 

Cathy explained: 

I think that the kids have to take part in some way whether it is something simple 
like getting up and becoming part of a demonstration or body modeling or a cook 
book lab or maybe an inquiry lab but the kids have to be active participants. 
(stimulated recall interview, Day 2) 

 
 Cathy explained science has its own language and if students are to become fluent 

in science, they must speak the language. Thus, Cathy noted her teacher role includes 

reliance upon creativity in terms of creating games to support student learning of 

vocabulary terms and definitions. Students are responsible for generating flash cards for 

each chapter. Once the cards are completed, Cathy designs simple games to engage 

students in learning vocabulary. She explained: 

So we do organelle flash cards with the organelle on one side and the function of 
the organelle on the other side. We talk about the organelles and what they do. 
We also play some games with the flash cards. We play one game called ‘Quiz, 
Quiz, Trade’. In this game, I will take one of my cards and partner with you and 
we quiz each other over the function of that one organelle that we picked out of 
our cards. . . . So this is just a little reinforcement. (pre-observation interview) 
 
She perceives her role as a teacher is continually changing with the learning needs 

of her students and, therefore, demands flexibility and creativity. Cathy noted, “So I think 

that the role of the teacher varies with what you are teaching, how you want to teach it 

and who you are teaching it to” (stimulated recall interview, Day 2). Cathy described the 

role of the teacher to be a learner, a resource, a coach, and a facilitator. She explained a 

constant within her teacher role is creating a learning environment in her classroom in 
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which students feel safe, engaged as active participants in learning, motivated to ask 

questions and find answers, and challenged to think critically.   

Perception of student role. Cathy explained that students play an integral role in 

their own learning. She believes that students cannot learn effectively as passive 

participants because in that role there is no real motivation to learn. She noted the 

students’ role in the classroom shifts very much like the role of the teacher, in that 

students must be prepared to implement different learning strategies to develop a better 

understanding of concepts. She explained, “Sometimes the kids can sit and listen to me 

talk and sometimes they need to do that, but other times they should do some learning 

and digging on their own” (stimulated recall interview, Day 2). She believes students 

must learn how to read to gain insight and understanding. She explained, “They 

[students] need to learn how to read and pick out important information because the book 

is there to help them and it is just one resource for them to use (stimulated recall 

interview, Day 2). 

Cathy reported in her classroom the students’ role is that of an active learner and 

involves thinking critically, sharing ideas through collaboration with classmates, asking 

questions, and finding answers. She noted students must be prepared to meet learning 

challenges, however, Cathy also explained students’ role may involve being an attentive 

listener and taking notes. The most important role of the student is to be prepared to 

learn. 

Ideal images of teaching. Cathy’s ideal images of teaching are clearly focused on 

students learning by doing. Because her classes are 90 minutes in length, she plans to 

engage her students with a variety of activities. Cathy explained, in an ideal lesson, she 
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would engage students in a discussion then shift gears and involve them in an activity 

that challenged them to collaborate with teammates and use their knowledge to solve 

problems. Cathy believes that students learn science most effectively by being actively 

engaged in learning and envisions her ideal lesson as one in which students are engaged 

in a variety of learning activities. She explained: 

The kids have to see themselves as active participants in constructing their 
knowledge and I think because of the way that some teachers might teach that the 
kids are used to being passive receivers. (stimulated recall interview, Day 2) 
 

Cathy believes learning is most effective when students are actively engaged and noted 

she strives to implement varied instructional strategies in her teaching. Her goal is to 

provide learning experiences which encourage students to think about the concept from 

different perspectives. She explained: 

Well I try to plan as we go through the year. We may start out taking more notes 
but then we throw in the activities, the body modeling, the labs, cooperative 
activities. Knowing that kids have different ways of learning I try to present and 
implement different kinds of activities throughout the year. (stimulated recall 
interview, Day 2) 

 
Cathy’s ideal images of teaching include her image of the teacher as a life-long 

learner. She stresses the importance continual learning for teachers as well as their 

students. She demonstrated the importance of reflecting on her teaching and revising her 

plans to address student learning needs. Cathy also explained that she continually reviews 

student work to gain insight into student learning and use that feedback to redesign her 

lesson. Her ideal image of teaching is through inquiry-based investigations; however, she 

noted that time is often a major constraint for the inclusion of inquiry in the biology 

curriculum. 
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View of science as a discipline. The investigations Cathy implements into her 

teaching suggest she perceives science as a way of knowing which demands evidence. As 

a Research Fellow, she conducted research with Arabidopsis thaliana with plant science 

researchers at a research extensive university. Cathy believes her work as a Fellow has 

prepared her to implement student-driven research into her biology curriculum. Cathy’s 

students design their own experiments with mutant and wild type Arabidopsis thaliana 

seeds provided by university researchers and share their conclusions and data with 

university researchers in an effort to provide additional insight into Arabidopsis gene 

function.  

Cathy continually stresses the importance of evidence to her students by 

challenging them to make and test predictions during investigations. Her goal is to 

provide a learning environment in which students are encouraged to find answers to 

questions posed within laboratory exercises. She explained: 

I think that students learn best when they construct their own knowledge and 
assimilate new knowledge into their knowledge base; they have got to do it you 
cannot just pour it into their heads. . . . they need some experience, you have to 
give them more guidance, but once you have done it you can ask them to think 
about it and design their own lab. (pre-observation interview) 
 
Cathy explained she designs laboratory analysis questions challenging students to 

explain how they know claims in their conclusion are accurate. Therefore, she demands 

students support their explanations with evidence gathered during the investigation. 

Cathy explained: 

But to answer the questions they are going to have to begin to think “How am I 
supposed to know this?” If they ask me I might tell them to look back at their 
notebooks; so I might redirect them in that way. It is not my job to remind them of 
every little thing. They need to be independent thinkers and remember those 
things. (pre-observation interview) 
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She believes by demanding supporting evidence for students’ claims she is teaching them 

to think critically and independently.  

 Cathy believes science must be taught in a way which underscores the importance 

of supporting evidence. She noted students do not automatically think about evidence to 

support their claims, but require guidance; however, once guidance is provided, her 

students are fully capable of designing their own laboratory investigations to find 

answers. A hallmark of Cathy’s teaching is the requirement that students support claims, 

explanations, and conclusions with evidence gathered during their investigation. 

Summary of Cathy’s orientation to science teaching. Cathy explained her 

experiences as a tenth grade biology teacher, as an athletic coach, and as a member of 

professional learning team of biology teachers at her school informed her orientation to 

teaching science. Cathy’s perceived her role to be a facilitator of students’ learning and 

engaged students in explorations of phenomena through laboratory investigations and 

problem-solving. Cathy engaged students in generating explantions predicated upon 

students’ observations from laboratory investigations. Figure 9 shows the sources which 

informed Cathy’s orientation to science teaching. 

  

 

Figure 9: Sources of Cathy’s orientation to science teaching 
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 Cathy’s experience with student-driven research has colored her view of science 

as a way of knowing that demands supporting evidence gathered through investigations. 

She understands the importance of evidence in science. Cathy challenges students to 

design investigations with Arabidopsis thaliana to make and test predictions, find 

answers to their questions, and to support their conclusions with evidence.  

 Based upon the following observations, I describe Cathy as having a 

constructivist orientation to science teaching. First, Cathy engaged students in an 

exploration of phenomena prior to introducing phenomena to students. On Day 1, she 

challenged students to create a storyboard explaining the diffusion of particles from Mr. 

Stink into the classroom. On Day 2, she challenged students to predict the direction of 

osmosis in dialysis tubing and potato slices and develop explanations based upon 

observations. Second, in each lesson, Cathy drew upon students’ experiences to develop 

explanations. She used interactive lectures to draw out students’ ideas, predictions, 

observations, and potential explanations. Interactive lectures are whole class discussions 

during which the teacher uses representations including: computer animations, diagrams, 

tables, charts, and pictures to make concepts understandable for students. This interaction 

between Cathy and her students supported students as they reflected upon their 

experiences to make sense of new ideas.  

Lesson Plan 
 
 On Days 1 and 2, Cathy continued to build upon two investigations completed 

during an introduction into osmosis and diffusion during the previous lesson. The goal 

was to focus students on the nature of water and the relationship between temperature and 
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the rate of diffusion. Overviews of Cathy’s lesson plans for Days 1 and 2 are found in 

Tables 13 and 14. 

Table 13. Cathy’s lesson plan for Day 1  

 Activity Description 
Day 

1 
Diffusion 

Demonstration 
Engage Teacher: 

• Challenges students to predict outcome of diffusion 
demonstration 

• Uses drops of food dye in water as representation of diffusion 
Storyboard Explore Teacher: 

• Challenges students to develop cartoon storyboard to illustrate 
and explain diffusion (reveal misconceptions) 

• Builds upon students’ prior knowledge of diffusion  
Students: 
• Apply current understanding of diffusion to story board activity 
• Explain story to class 

Interactive 
Lecture 

 

Explain Teacher: 
• Implements an interactive lecture to introduce concepts and 

terminology  
• Representations of diffusion and osmosis [Internet animations 

and graphics] are implemented in interactive lecture 
Students: 
• Respond to teacher questions 

 Story Writing Evaluate Teacher: 
• Challenges students to identify factors that may influence 

diffusion 
• Relates diffusion to molecular motion 
Students: 
• Explain ideas 
• Write a story to illustrate diffusion 

 
During Day 1, the lesson began with a teacher demonstration focused on the 

diffusion of food dye particles in water. Cathy asks students to predict changes in a 

beaker of water after drops of food dye were added. She referenced a demonstration 

involving India ink and water completed with microscope slides during the previous 

lesson; she explained: “You could heat up the microscope slide and watch the ink move 

to see if the change in temperature makes a difference in the way in which the ink 

behaves. You just see those particles going crazy” (pre-observation interview). Her goal 
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with the India ink and food dye observations was to identify random molecular motion as 

the driving force for diffusion.  

Cathy challenged student teams to develop a cartoon storyboard representation of 

Mr. Stink, a character wearing powerful cologne to illustrate diffusion. While students 

were working, Cathy moved around the room listening to students’ ideas and responded 

to students’ questions by posing new questions to guide their thinking. Student teams 

briefly shared their storyboards with the class and explained how and why diffusion 

occurred. Student practice consisted of a homework assignment in which they were asked 

to write their own story about diffusion. Cathy explained that she would read the stories 

to evaluate students’ understanding of diffusion. 

 Cathy’s plan for Day 2 of the observation began with an activity during which she 

engaged students with a story while slicing the potatoes in preparation for a laboratory 

investigation into osmosis and living tissues. The overview of the lesson plan for Day 2 

of the observation is shown in Table 14. 

Table 14. Cathy’s lesson plan for Day 2  

 Activity Description 
Day 

2 
Dialysis 
tubing 

investigation 
 

Engage 
Explore 

Teacher: 
• Facilitator for dialysis tubing investigation 
Students: 
• Set up dialysis tubing investigation   
• Make and test predictions of diffusion and osmosis 

Potato slice 
investigation 

Explore 
Extrapolate 

Teacher: 
• Facilitates potato slice investigation 
Students: 
• Make and test predictions for the direction of osmosis in potato slices  

Discussion Explore Teacher: 
• Uses questioning to reveal student comprehension  
• Require students to support conclusions with evidence 
Students: 
• Record results and collaborate with peers to explain observations  
• Identify supporting evidence for claims; share explanations with class 
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 On Day 2 of the observation, students were challenged to predict the direction of 

osmosis and diffusion within dialysis tubing.  Students filled dialysis tubing with a starch 

and glucose solution and placed the bag in a beaker containing iodine and distilled water. 

Next students were challenged to predict the direction of diffusion and osmosis before 

placing the dialysis tubing in the beaker.  

After setting up the dialysis tubing investigation and predicting the direction of 

diffusion of glucose and iodine, students began Part 2 of the investigation and were 

challenged to predict changes to the potato slices prior to placing the potato slices in 

distilled water and a concentrated saline solution. At the close of the lesson, students 

observed the dialysis tubing and potato slices, developed data tables, recorded data from 

each part of the investigation, and used data from the investigation to test their pre-lab 

predictions. Student teams collaborated to respond to analysis questions and shared their 

explanations during a class discussion.  

 The lesson on Day 1 was designed to reveal student thinking about diffusion by 

engaging students with a storyboard activity and a teacher demonstration of diffusion 

incorporating food dye and water. On Day 2, students were engaged in two investigations 

into osmosis and diffusion. During the dialysis tubing investigation iodine and water 

diffused into the tubing and glucose diffused out of the tubing into the beaker solution. 

Starch molecules, too large to diffuse through the dialysis membrane, remained within 

the tubing and changed in color as iodine diffused into the dialysis tube. Changes in 

potato slices placed in distilled water or saline served as a model for osmosis. Students 

made and tested predictions for each investigation. Challenging students to make and test 

predictions was a common theme throughout Cathy’s teaching on both Days 1 and 2. 
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The following sections address the other components of Cathy’s topic-specific 

pedagogical content knowledge (PCK) for teaching osmosis and diffusion, including her 

knowledge of instructional strategies and representations, students as learners, assessment 

and curriculum. 

Knowledge of Representations and Instructional Strategies 
 

Cathy engaged students in a storyboard exercise to explain diffusion. She 

challenged student teams to create a story and sequential diagrams of explaining the 

diffusion of cologne in the air. Additional representations of diffusion and/or osmosis 

included drops of food dye placed in water to model diffusion, dialysis tubing as a 

representation of diffusion and osmosis within a cell, and potato slices as a representation 

of osmosis in living tissues.  

Cathy embellished representations with story telling. She believes telling stories 

allows her to expand upon representations implemented into her instruction. She 

implemented a story about diffusion during Day 1 related to perfume brought home from 

Iraq by her brother. She explained that she used the story of the smelly perfume to 

provide students with a meaningful representation of diffusion. Cathy explained: 

Then we start into talking diffusion and so I am going to talk to the kids and relay 
some stories about perfume. My brother bought me some perfume when he was in 
Abudabi during the first Gulf War. It is really stinky so I use it for 
demonstrations. (pre-observation interview) 
 

She explained that through stories she is able to connect scientific concepts to real world 

experience for her students. She explained that biology is not a collection of facts but 

rather an understanding of how life works and, therefore, relevant for all students.  

Cathy challenged her students to use story telling as a means of explaining 

diffusion. She used cooperative teams of four students each to design a storyboard 
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consisting of six panels to explain the diffusion of the scent of cologne from the 

character, Mr. Stink.  She explained the purpose for the storyboard activity on Day 1 by 

stating: 

Basically I am eliciting prior knowledge. Basically what happens to the smell and 
how is it that it gets to you? To see what these kids already know about it 
[diffusion], even if they have no formal prior knowledge they have experiential 
knowledge. They may have never thought that these stink molecules move. They 
may never have thought about stink molecules. So first we get them to draw it on 
the whiteboard and show the stink molecules in the air. (pre-observation 
interview)  

 
She noted she planned to introduce the concept of diffusion through the storyboard 

activity prior to introducing vocabulary terms and planned for students to develop a 

definition for diffusion. Cathy planned to place drops of food dye into beakers of water as 

an example of diffusion. Her goal was to scaffold students’ understanding of two key 

concepts: (1) random molecular motion as the driving force for diffusion and (2) 

diffusion occurs when substances move from high to low concentrations. She explained: 

I will get some beakers and put them on the overhead and they can either see it 
from the side with the light coming up through the beaker or they can see it on the 
overhead. And so then I will ask the students to describe what is happening and to 
develop a definition for what is happening (pre-observation interview).  
 
Cathy noted students may not identify the random motion of molecules from high 

to low concentrations as diffusion, however, they could explain what is occurring when 

cologne diffuses from Mr. Stink into the classroom. She explained: “I might not even use 

the term diffusion yet. But it is the idea of getting to what happens when the stinky 

person walks into the room; we can smell him eventually” (pre-observation interview).  

Cathy emphasized the importance of making connections between vocabulary and 

students’ prior knowledge and experience. She used an analogy between the term 
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hypertonic and a concentrated sugar solution; explaining if the solution were consumed 

would the individual could become hyper or hyper-active. She explained: 

When we talk about tonicity I do not begin by giving a definition but I start out 
with a little skit or story. . . . I will find someone else who has been falling asleep 
in class. “Wow, listen you really need a pick me up and I will pour gobs and gobs 
of sugar into a third beaker and mix it up. So the kids will be grossed out and say 
“Yuck, who would want to drink that.” You know you do those extreme things 
and the kids will remember it more; you know that. So then I will talk about it and 
ask the students, “If George actually drank all of that sugar, what would it do to 
him?” They typically say that it would make him hyper. Now whether or not you 
agree that sugar makes kids hyper, here they have an idea that, wow there is a 
whole bunch of stuff in there [the solution], hyper, then they make that 
connection. (pre-observation interview) 
 
Following the storyboard activity, Cathy engaged students in an interactive 

PowerPoint lecture and implemented animations taken from Internet sites to represent 

random molecular motion as the driving force for the diffusion. She explained: 

Well, the animation shows the molecules of water and how they are moving and 
randomly. It is the same thing in the air. If the stink particles are out in the air then 
they are bumping into things. So I am trying to give the kids the idea that there are 
these particles in the air that take up space and these particles bump into each 
other and into things like stink particles in the air. (stimulated recall interview, 
Day 1)  
 
Cathy made a connection between temperature and the rate of diffusion during 

Day 1 relying upon Internet animations to illustrate the relationship between changes in 

the rate of diffusion resulting from changes in the temperature of the system. She 

explained: 

We might discuss kinetic energy and determine the amount of prior knowledge 
they have. We will look at energy and molecular motion. We might look at kinetic 
energy and temperature and the energy of molecules and what that means. We 
will talk about temperature and what temperature is actually measuring. We have 
one of the MoLo (Molecular Logic) animations to show this. (pre-observation 
interview) 
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Cathy noted the importance of instructional sequence and explained: “You can 

either talk about the content first, and then do a lab to confirm it, or you can do the lab 

first and then talk about it to help them understand what they saw” (stimulated recall 

interview, Day 2). She planning to scaffold students’ conceptual understanding of 

diffusion through the storyboard activity, the food dye diffusion demonstration, and the 

PowerPoint lecture prior to the dialysis tubing and potato slice investigations. She 

explained: “For this particular lab [dialysis tubing investigation], they need some 

background knowledge of diffusion and going from high to low concentrations and they 

have some knowledge but I do not know if they have put it together and understand 

diffusion across a membrane” (stimulated recall interview, Day 2). 

On Day 2, Cathy planned to engage the students with two representations; each 

would be the focal point of laboratory investigations into diffusion and osmosis. Dialysis 

tubing containing a starch and glucose solution, was used to show diffusion and osmosis 

investigation within the context of a cell. The second representation, potato slices were 

used to represent osmosis in plant tissues and were placed in distilled water and a 

concentrated saline solution. Cathy challenged students to make and test predictions of 

outcomes for both investigations. She explained: 

We usually stick to glucose and starch to start with and we usually stick with the 
dipstick test for glucose and the iodine test for starch. Those are pretty simple and 
pretty straight forward. But then when we do the extension lab we ask them to 
determine if water is moving in and how would they figure that out. That is where 
you leave it up to the kids and you basically tell them some things, like here is the 
glucose test and here is the starch test. (stimulated recall interview, Day 2) 

 
She believed students constructed their understanding of osmosis and diffusion by 

making and testing predictions for the dialysis tubing and potato investigations.  
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Cathy planned to build upon students’ understanding of osmosis with a 

demonstration and investigation during the following week. She planned to build upon 

students’ understanding of osmosis in plant cells by placing a balloon, representing the 

central vacuole of a plant cell, in a box. Cathy noted the box would become rigid and 

resistant to pressure after inflating the balloon, illustrating changes in a plant cell after 

water entered the cell via osmosis. She explained: 

I will use a balloon and a box to show them what happens when you blow up a 
balloon and place it in a box. So if the balloon represents the cytoplasm of a cell, I 
place the balloon in a box and blow the balloon up and then you can push on the 
box to demonstrate how with air in the balloon and with water in the cell, you 
have a crispy cell and with the air out of the balloon, you can easily mash the box 
in. so tomorrow I will do that demonstration. (stimulated recall interview, Day 2) 
 
Cathy planned a follow-up investigation into osmosis in which red blood cells and 

red onion cells would be observed under a microscope when flooding a slide with a 

concentrated saline solution. She noted the cells would shrink due to water loss after 

exposure to a concentrated saline solution. Cathy explained: 

There is another lab that we are going to do where we will plasmolyze cells 
[cause severe water loss by flooding cells with saline solution] under the 
microscope. We will use red onion cells and dog blood. We can watch the 
changes in the cells as they are exposed to hypertonic [highly concentrated] 
solutions. (pre-observation interview) 
 

She noted a final connection between content and students’ lives would be made at the 

close of the unit when students would make beef jerky in class. Cathy explained: 

So the very last day of this chapter we talk about making beef jerky and we talk 
about putting the beef in salt water. So even though the beef is in water it is in salt 
water and it will lose water to the surrounding salt solution. (stimulated recall 
interview, Day 2) 
 
On Day 1, Cathy challenged students to create their own representations of 

diffusion through an illustrated storyboard for Mr. Stink and his powerful cologne. 
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Following Mr. Stink, Cathy challenged students to explain diffusion observed within 

beakers of water into which drops of food dye had been placed. Cathy believed students 

made important connections between their storyboard explanation of Mr. Stink and the 

diffusion of food dye demonstration when students developed their own definition of 

diffusion. On Day 2, potato slices and dialysis tubing served as representations for tissues 

and cells for two investigations. Students applied their knowledge of diffusion and 

osmosis to make and test predictions of changes within the potato slices and dialysis 

tubing, building upon their knowledge of diffusion and osmosis. 

Knowledge of Students’ Understanding of Science 

 Cathy implemented the storyboard activity, on Day 1, as an introduction to the 

concept of diffusion and as a means of assessing students’ prior knowledge and 

misconceptions. Through the creation of the storyboard, students collaborated on an 

explanation for the diffusion of cologne from Mr. Stink throughout the classroom and 

used their drawings to illustrate changes in the position of cologne particles around Mr. 

Stink. Cathy explained: 

I kind of modeled Mr. Stink particles; I asked the one kid if he minded being Mr. 
Stink then I decided that he could be Mr. Smell Nice. If I am the particle I can 
begin next to you and where do I end up and some kids said that you moved 
away, someone else (another particle) could take your place. . . . I could have 
taken the MoLo and asked them if molecules have to be equally spaced or do they 
continuously move. (stimulated recall interview, Day 1)  

 
Through the storyboard activity, Cathy was able to reveal a misconception held by 

students about diffusion. She noted one student team had arranged all of the particles of 

cologne along the edges of the final panel of their story board. The students explained 

their belief that the particles would move away from Mr. Stink into the surrounding 

classroom. However, Cathy was concerned students did not perceive random molecular 
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motion as the driving force for diffusion resulting in equilibrium of particles within Mr. 

Stink’s surroundings rather than all particles simply moving away from Mr. Stink at a 

constant rate. She addressed this misconception with a story about blindfolded students 

moving randomly within a classroom and colliding with one another and gradually 

moving into less crowded regions of the room. By relating the story, Cathy’s goal was to 

provide students with a concrete example of random molecular motion and collisions 

between molecules as the driving force for diffusion and osmosis.  

Cathy believes students must be able to visualize abstract concepts; she included 

graphics and animations in the interactive PowerPoint lectures on Days 1 and 2. The 

animations were taken from the Molecular Logic (Concord Consortium, 2009) Internet 

site. Cathy’s purpose in including the animations was twofold: first, she wanted to focus 

students’ attention on random molecular motion as the driving force for diffusion and 

second, she planned to use the animations to illustrate changes in molecular motion 

brought about by changes in temperature. Cathy noted: 

We will look at energy and molecular motion. We might look at kinetic energy 
and temperature and the energy of molecules and what that means. We will talk 
about temperature and what temperature is actually measuring. We have one of 
the MoLo (Molecular Logic) animations . . . . It is a computer animation. There 
are several different windows that you work through and one of them you have 
this box and you can place however many atoms you want in the box and the 
amount of available energy within the box. With a certain number, the movement 
may look random, but actually you can predict where the atoms will go. . . . It is 
not so much that the molecules think ‘Oh it is too crowded here I have to go 
somewhere else.’ When you have a high concentration of material in one place, 
the collisions occur at a greater rate resulting in the movement of particles from 
an area of higher concentration to areas of lower concentration. (pre-observation 
interview)  
 
Cathy explained she knew of other strategies which could be implemented to 

illustrate the effect of kinetic energy on molecular motion. She explained, “You can take 
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a crystal under low or medium power on a microscope and just put a crystal of salt under 

there then focus the camera and then add water” (pre-observation interview). During Day 

1, Cathy placed drops of food dye in beakers of water on an overhead projector to model 

diffusion for students and challenge students to predict changes in the water and food dye 

over time by drawing pictures of how they thought the mixture would change over time.  

She noted:  

I put twenty drops of food coloring in a beaker and then have them draw a picture 
of what the contents of the beaker would look like at specific times. So what 
would the beaker look like after ten minutes, or after twenty minutes and so on. 
Actually this is a test item it is just to show what would happen over time. (pre-
observation interview)  
 
Cathy reported that she used a different introduction with the previous class and 

placed drops of India ink in water on microscope slides as representations of diffusion. 

Students watched the ink diffuse into the water through microscopes and noted the ink 

moved more rapidly as the slide was warmed by the microscope light. She explained: 

We could use the microscope to watch the ink blots. . . . You could heat up the 
microscope slide and watch the ink move to see if the change in temperature 
makes a difference in the way in which the ink behaves. You just see those 
particles going crazy. We will stop here to see what their background is in 
physical science in terms of solids, liquids, and gases and the distance between 
the particles and the amount of kinetic energy they have. (stimulated recall 
interview, Day 1) 
 

In each representation, Cathy identified random motion influenced by heat energy as the 

force for diffusion. She noted the importance of implementing demonstrations which 

made connections between students’ knowledge and prior experience and content.  

Concerned about students’ inability to visualize osmosis, Cathy explained she 

often used a balloon to represent a cell placed in hypotonic environment, such as distilled 

water and a hypertonic environment, such as a saline solution. She explained: 
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First we will take the balloon and I blow it up and then ask what will happen if 
you put it in a hypotonic solution [e.g., distilled water]. The kids say that water 
will enter the cell. So I blow and blow and water keeps on moving into the cell. I 
ask them what will happen if water keeps entering the cell so I keep on blowing 
into the balloon and finally the balloon blows up. But plasmolysis is the fun one 
because you have your balloon and you ask the kids if I put this in a hypertonic 
solution [e.g., a highly concentrated solution] what will happen and they tell you 
that water will leave the cell. So I let the balloon go and the air rushes out and 
makes the sound ‘PPPPPPPPT’ I ask the kids to make that sound and they all go 
‘PPPPPPPPPPT’ and then I will ask them to say the word plamolysis and then I 
will ask them to put the sound of the balloon together with the word plasmolysis 
so the kids then say PPPPPPLASMOLYSIS. (stimulated recall interview, Day 2) 
 
Cathy believes lesson content should be sequenced to support students’ 

construction of knowledge. Initially, she began the unit by focusing students on water 

through an investigation into the relative water absorbance of various layers within a 

diaper. Next students generated a storyboard to explain the diffusion of cologne particles 

from Mr. Stink into the classroom followed by students’ explanation of diffusion based 

up their observation of food dye in water. She explained that she did not include 

vocabulary terms until students had developed a definition of diffusion based upon the 

Mr. Stink storyboard, and the explanation of diffusion following an observation of food 

dye in water. Students were engaged in developing an explanation for diffusion on Day 1.  

On Day 2, Cathy continued to build upon students’ knowledge with investigations 

into osmosis involving potato slices and dialysis tubing. She introduced students to 

diffusion initially and expanded her focus to include osmosis and focus on students’ 

ability to accurately predict the direction of osmosis. Cathy engages students with an 

investigation into potato slices and dialysis tubing. She plans to continue with a cytolysis 

lab following Day 2 to continue to build upon students’ knowledge of osmosis and 

diffusion. She explained: 
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That is what we wanted to focus on today in the first part of the lab with the 
potato slices, and then the glucose and the starch in the second part of the lab. 
And then we will reinforce it again with the plasmolysis and cytolysis lab we will 
look at the cells under the microscope. This lab leaves some questions in their 
minds. It is OK to leave questions in kids’ minds which might be a little confusing 
for them because they are still putting the pieces together. You cannot construct 
knowledge in just one day. You have to give them a little exposure here and then I 
can take them to the next step and talk more about water then do experiments 
which demonstrate for them what is happening to the water. (stimulated recall 
interview, Day 2) 
 
Cathy emphasized the importance of engaging students with representations, 

demonstrations, and investigations to build upon students’ comprehension of osmosis and 

diffusion. She explained that the effect is to divide content into smaller packets, allowing 

students to explore or consider one idea at a time. She explained her purpose for using 

iodine in the dialysis investigation on Day 2: 

When they see that the dialysis tubing is turning purple. When they read their 
questions and think back to the demonstration I gave, students ask, “why is it 
turning purple?” Well iodine must be getting into the bag. So I ask them why is it 
turning purple and then ask them to think back. That is the fun part of the lab. 
They will be talking about that next time. (stimulated recall interview, Day 2) 
 

Her goal is to challenge students to think about the direction of osmosis when the dialysis 

tubing and potato slices are placed in the distilled water and iodine solution. The iodine 

served as a marker, diffusing into the dialysis tubing with water and causing a color 

change within the tubing as it reacts with starch.   

Cathy clearly understands that students are not blank slates, but bring their prior 

knowledge, experiences, and misconceptions into the classroom. She is aware of the 

importance of revealing and addressing student thinking, prior knowledge, and 

misconceptions to make learning more effective and meaningful for students. She 

demonstrated her knowledge of learners by initially accessing students’ thinking about 

diffusion through the Mr. Stink storyboard activity, the India ink investigation, and the 
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food dye in water demonstration.  She implemented laboratory investigations focused on 

osmosis and diffusion in which students were challenged to make and test predictions and 

explore the concepts while constructing their knowledge of osmosis and diffusion.  

Knowledge of Assessment 
 

Cathy noted the majority of assessments implemented in her lessons can be 

categorized as formative assessments. She explained that these assessments are very 

important because they provide a clear picture of students’ prior knowledge and 

misconceptions as well as insight into students’ learning within the context of a lesson. 

She explained that the storyboard activity on Day 1 was a pre-assessment designed to 

reveal what students knew about diffusion before introducing the concept. She explained 

how she uses the storyboard activity: “I use the storyboard with the stinky people. That is 

a pre-assessment to determine what students know and understand about diffusion before 

teaching the concept” (pre-observation interview). Cathy reported she routinely elicits 

student prior knowledge and experiences concerning lesson topics before teaching. Her 

purpose in revealing students’ prior knowledge is to develop a clearer image of her 

students’ ideas, understanding, and general knowledge about the concepts to be taught 

during the lesson. Cathy explained: 

Basically I am eliciting prior knowledge. Basically what happens to the smell and 
how is it that it gets to them, and to see what these kids already know about it. 
Even if they have no formal prior knowledge they have experiential knowledge. 
(pre-observation interview) 
 
Cathy explained that she relied upon student feedback during lessons to gain 

insight into student thinking and comprehension. She described her formative assessment 

of student understanding as resulting from observations of students’ facial expressions 

and body language as well as her interactions with students. Cathy asked students to 
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consider what the molecules of cologne worn by Mr. Stink would look like, in terms of 

the distance between molecules indicated by the students. She asked students to illustrate 

the location of the molecules at different times to better indicate how students perceived 

diffusion occurring in the Mr. Stink storyboard. Cathy explained: 

As I am watching students draw Mr. Stink, I am asking questions of the kids to 
make them to think more deeply. Like I had one group that from picture 1 and 
picture 2 all of the stink molecules were already spread out and I wanted it to be 
more gradually spreading out. So I asked them a question “What would it look 
like after one minute?” Since I wanted them to understand what was happening I 
wanted them to show the molecules more gradually spread out.  I should have 
given them a time frame at first. But individually I can do that. So I asked “After 
one minute what would it look like and after 20 minutes what would it look like?”  
(stimulated recall interview, Day 1) 
 
While students collaborated on the storyboard activity on Day 1 and during 

investigations on Day 2, Cathy moved through the classroom and continually questioned 

students to assess their understanding and to formulate a clearer picture of what students 

understood about diffusion and osmosis.  She noted: “I felt that by the students talking to 

each other and by walking around and listening to the kids I noted that they all 

remembered concentration gradient, diffusion and equilibrium” (stimulated recall 

interview, Day 2). She explained that she evaluated the level of knowledge students held 

about diffusion and osmosis and took advantage of the opportunity to redirect students 

whose knowledge of diffusion may have been lacking. She explained: 

So I am trying to evaluate what the kids are doing and determine if they are right 
and to redirect their thinking. So I am basically doing some assessment. For 
instance for Mr. Stink, what do they already know? Based upon what they knew I 
could see that the kids already knew diffusion but the kids were not using the 
word yet. So I am trying to evaluate what the kids are doing and I may try to 
redirect them if they are not where I want them to be or ask them some questions 
to see what they mean. (stimulated recall interview, Day 1) 
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On Day 2, students were challenged to write a story about diffusion in which vocabulary 

terms concentration gradient, diffusion, and kinetic energy were to be used. Her goal was 

to reveal student understanding of concepts related to diffusion and osmosis through their 

implementation of vocabulary terms.  

 Following the Mr. Stink activity, Cathy wanted students to apply their knowledge 

of diffusion of gases to diffusion of liquids. She asked students to predict changes when 

drops of food dye were added to tap water on an overhead projector. She explained, “I 

went with Mr. Stink so we did diffusion in a gaseous state. What would happen? Then I 

switched to you know, what would happen in a liquid and they were able to make some 

predictions” (stimulated recall interview, Day 1). Cathy planned to have students make 

and test predictions about the direction of osmosis and diffusion in the dialysis tubing and 

potato investigations. She planned to have students set up the dialysis investigation and 

answer questions to identify the highest concentration of each of the dissolved solids 

(starch, iodine, and glucose) and predict the direction of osmosis and diffusion of 

dissolved solids. Cathy explained, “Some of the questions I am asking, some of them are 

very basic like, Where is there a high concentration of starch, in the bag or in the 

beaker?” (pre-observation interview). 

After completing the dialysis tubing investigation, she planned to have students 

redesign the investigation to change the direction of water movement through osmosis or 

the direction of diffusion of glucose and iodine. She wanted students to apply their 

knowledge of diffusion and osmosis to the design of a new investigation in which the 

direction of diffusion and osmosis would be different from the original. She believed this 
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challenge would reveal the conceptual understanding of diffusion and osmosis held by 

the students. Cathy explained: 

What I will typically do is have them redo the dialysis tubing part of the lab but I 
will say OK, that time we made glucose move in. How could you set up the same 
sort of deal and have water move in or water move out or glucose move in or 
glucose move out and measure it. And then have the teams come up with the set 
up for the lab. The teams would draw a picture of their lab. What will they put in 
their beaker and what will they put in the hot dog (dialysis tubing), what do they 
expect to happen and how will they measure it and explain how it happens? (pre-
observation interview) 
 

 Cathy embedded formative assessments, such as the storyboard activity, to assess 

students’ prior knowledge and identify misconceptions before introducing the concept of 

diffusion to students. She explained her rationale was to reveal students’ prior knowledge 

and misconceptions about diffusion and consider adaptations to make learning 

experiences more effective. When students collaborated on the storyboard activity about 

Mr. Stink, Cathy moved through the classroom as students worked asking questions and 

redirecting students’ thinking when necessary. She also implemented formative 

assessments in the form of writing assignments through which students were directed to 

write a short story about diffusion in which specific terms were to be used. Cathy 

explained the formative assessments provided valuable insight into student thinking and 

informed her next steps during the lesson. 

Knowledge of Curriculum 
 
 Cathy noted the importance of vertical alignment within the science curriculum; 

on Day 1 she implemented the storyboard activity and diffusion demonstration to reveal 

students’ prior knowledge of atoms and molecules as well as molecular motion and noted 

the concept of kinetic energy is included within the ninth grade physical science 
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curriculum. She stressed the importance of students’ conceptual understanding of kinetic 

energy as the driving force for diffusion and osmosis. She explained:  

So basically the idea was so kids understand what atoms and molecules are, that is 
what it boils down to. They should have had this in their background with 
physical science. Like you could tell when they were talking about kinetic energy 
and solids, liquids, and gases and the distance apart or between the atoms and 
molecules. They knew that solids, liquids, and gases had different amounts of 
motion and different amounts of distance apart. (stimulated recall interview, Day 
1) 
 
Cathy sequenced the introduction of the concepts of diffusion and osmosis to 

support students’ construction of knowledge. Students were initially engaged in an 

exploration of phenomena prior to generating an explanation. Students shared 

observations of the phenomena during investigations to develop explanations during 

interactive lectures during which Cathy supported students in the construction of their 

knowledge with computer animations and analogies. Hence, explanations of phenomena 

were derived through students’ explanations supported by recorded data from and 

observations made during investigations.  

Cathy noted the biology textbook is a basis for curriculum design at her high 

school. She believes students benefit from explorations of osmosis and diffusion. Cathy 

noted her plan to engage students in an exploration of osmosis with the potato and 

dialysis tubing investigations before providing an explanation of osmosis. She explained: 

“We have not even talked about osmosis even though they saw it today. So what we will 

have to do is we will have to try in the next lesson to tie it all together for them” 

(stimulated recall interview, Day 2).Cathy believed the sequence of learning 

opportunities on Days 1 and 2 supported students’ construction of knowledge of diffusion 

and osmosis. Osmosis was introduced through an exploration with the the dialysis tubing 
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investigation and reinforced with the potato investigation. During the lesson following 

Day 2, Cathy planned to make connections between students’ understanding of osmosis 

and their lives by observing microscopic changes in red blood cells and red onion cell 

following exposure to a concentrated saline solution. She explained:   

That is what we wanted to focus on today in the first part of the lab with the 
potato slices, and then the glucose and the starch in the second part of the lab. 
And then we will reinforce it again with the plasmolysis and cytolysis lab we will 
look at the cells [red onion cells] under the microscope. (stimulated recall 
interview, Day 2) 
 

 Cathy believes the vertical alignment of the curriculum is critical because students 

must possess specific knowledge to be successful in future courses within the district 

curriculum. She explained her reliance upon multiple resources such as the textbook, 

textbook support materials, Internet resources, and colleagues when designing 

instruction. She noted the importance of flexibility in making adjustments when time 

constraints interfered with curricular planning and noted reliance upon her teaching 

experience when designing curriculum.  

Cathy’s PCK for Teaching Diffusion and Osmosis 
 

Evidence of Cathy’s knowledge of subject matter, representations, instructional 

strategies, learners, assessment and curriculum are shown in Magnusson et al. (1999) 

model for PCK which has been modified to reflect Cathy’s PCK for teaching osmosis and 

diffusion.   

The modified Magnusson et al. (1999) model of Cathy’s PCK has been designed to 

identify and provide support for Cathy’s constructivist orientation to science teaching. 

The influence of  Cathy’s orientation on the components of her PCK is indicated by the 

solid arrows leading from her orientation to the PCK components. Cathy’s constructivist 
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orientation to science teaching is best represented by her approach to teaching science; 

she engaged students with explorations prior to generating explanations supported with 

evidence taken from students’ observations. Cathy’s PCK for teaching diffusion and 

osmosis is shown in Figure 10. 

 

 

On Day 1, students collaborated to create their own definition for diffusion when 

Cathy implemented the storyboard activity to reveal students’ thinking about diffusion  
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10Note: Modified from Nature, sources and development of pedagogical content knowledge for science teaching by S. 
Magnusson, J. Krajcik, and H. Borko, (p. 99). In J. Gess-Newsome and N. Lederman (Eds.) Examining Pedagogical 
Content Knowledge. Boston, MA: Kluwer Academic Publishers 
 

Figure 1010: Cathy’s topic-specific PCK  
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and the food dye diffusion demonstration to reinforce the notion of random molecular 

motion resulting in the movement of materials from high to lower concentrations.  

Thus, she focused students thinking on molecular motion and relative 

concentrations as they developed their own explanation for diffusion before formally 

being introduced to the concept. On Day 2, Cathy reinforced students’ knowledge of 

diffusion and introduced the concept of osmosis through the potato and dialysis  

tubing investigations. In each investigation, students were asked to apply their knowledge 

of diffusion and expand their thinking to include osmosis when making and test 

predictions; she noted that the nature of students’ predictions provided insight into their 

comprehension of random molecular motion as the driving force for diffusion and 

osmosis. The integration of the components of her PCK is shown in Figure 11.  
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Figure 11: Integration of Cathy’s topic-specific PCK  

This model represents the integration of the components of Cathy’s PCK to create 

a form of teacher knowledge specific for teaching diffusion and osmosis. There are four 

important features to note within this representation. First, Cathy’s orientation forms the 

centerpiece of the model, indicating the importance of her orientation as a lens through 

which other components are interpreted and integrated. Second, two components are 
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within bolded boxes: knowledge of students’ understanding of science and knowledge of 

representations and instructional strategies. These components are critical to Cathy’s 

teaching; she relied upon her knowledge of students as learners and potential learning 

difficulties to design representations and instructional strategies implemented into her 

lessons. Hence, bolded boxes and arrows indicate these two components of teacher 

knowledge were highly integrated and determined how assessments and curricular 

decisions were made during the lessons. Third, connecting arrows indicate relationships 

between the Cathy’s orientation for science teaching and other PCK components and also 

relationships between the knowledge components of her PCK. Bolded arrows between 

components indicate Cathy relied heavily upon her knowledge of students, 

representations, and instructional strategies to create the most effective learning 

opportunities for teaching osmosis and diffusion. She relied upon her knowledge of 

assessment to design formative assessments to reveal prior knowledge and gauge 

conceptual understanding. The sequence of her lessons derived from her curricular 

knowledge, in that she implemented an implicit 5E instructional model into her teaching. 

Fourth, connecting statements between components provide insight into Cathy’s rationale 

for her integration of knowledge for teaching diffusion and osmosis.  

Cathy drew heavily upon her knowledge of students as learners when designing 

and teaching lessons; she believed students were capable of conducting inquiry based 

investigations and modified lessons to compensate for potential learning difficulties. The 

representations, instructional strategies, and assessments implemented in the lessons were 

reflective of Cathy’s goals for student learning and her knowledge of potential learning 

difficulties. She embedded formative assessments into her lessons, using students’ 
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predictions and explanations to inform next steps in her lessons. Cathy’s knowledge of 

curriculum and curricular resources informed her implementation of the potato and 

dialysis tubing investigations as well as the implicit 5E instructional model. Cathy 

integrated all PCK components when teaching diffusion and osmosis.  

Content Representation  

In Table 15, a Content Representation (CoRe) illustrates Cathy’s knowledge for 

teaching osmosis and diffusion. The components of PCK are represented within the 

context of the CoRe and specific examples of instructional strategies and representations, 

assessments, potential student difficulties, and curricular considerations are include 

within the CoRe. When reading the CoRe, it is important to read individual columns 

(e.g., Big Idea A) from the top to the bottom vertically. The columns extend beyond a 

single page 

Table 15. Content representation for Cathy 

Content Representation (CoRe) 
Considerations Big Idea A Big Idea B Big Idea C 
 Diffusion occurs in 

gases, liquids, and 
solids and is driven by 
molecular motion  

The concentration gradient 
determines the direction of 
diffusion/osmosis and heat 
energy will influence the 
rate of diffusion 

Osmosis is the diffusion of 
water through a semi-
permeable membrane 
following the 
concentration gradient 

Identify the  
learning goals for 
students within this 
lesson. 
 

Students will be able to:  
• explain diffusion 

within gases and 
liquids.  

• relate direction of 
diffusion to 
concentration 
gradients.  

• explain the influence 
of heat energy on the 
rate of diffusion.  

Students will be able to: 
• accurately predict the 

direction of diffusion or 
osmosis.  

• explain the concept of 
concentration gradient. 

• random molecular 
motion is the driving 
force for both diffusion 
and osmosis. 

Students will be able to:  
• accurately describe the 

structure of the cell 
membrane the semi-
permeable nature of the 
membrane.  

• understand the direction 
of osmosis is determined 
by the relative 
concentration of water in 
two solutions separated 
by a semipermeable 
membrane. 

 
 
 
 



195 

Why is it important 
for students to know 
this content? 
[Knowledge of 
curriculum] 

Key content knowledge: 
• diffusion and osmosis 

are core concepts in 
biology. 

• diffusion is driven by 
molecular motion and 
the kinetic energy 
within the system. 

Ability to predict direction 
of diffusion and osmosis: 
• predictions of diffusion 

based upon concentration 
gradient.  

• predictions of direction 
of osmosis based upon 
relative concentrations of 
water in two solutions 
separated by a semi-
permeable membrane. 

Understanding of the 
function and structure of 
the cell membrane: 
• all cells have a semi-

permeable cell 
membrane.  

• only certain substances 
can pass through a 
semipermeable 
membrane.  

  
Identify potential 
student difficulties 
and limitations 
associated with 
teaching this idea. 
[Knowledge of 
students as 
learners] 

Diffusion: 
• perception of random 

molecular motion as 
driving force. 

• difficulty with 
vocabulary terms and 
definitions:  
o hypotonic, 

hypertonic, 
isotonic, and 
concentration 
gradient 

 

Osmosis and diffusion in 
relation to the 
concentration gradient: 
• diffusion follows a 

concentration gradient - 
particles move from 
greater to lesser 
concentrations 

• osmosis follows the 
concentration gradient of 
water – water molecules 
move from greater to 
lesser concentrations  

 

Factors explaining the 
direction of osmosis: 
• direction and rate of 

osmosis is influenced by 
relative concentrations 
of water within the cell 
and within  the 
environment. 

• random molecular 
motion as the driving 
force for osmosis. 

• vocabulary associated 
with osmosis is unique 
and challenging for 
students. 

Teaching strategies 
and representations 
implemented and 
particular reasons 
for using these 
strategies to engage 
students with this 
idea. 
[Knowledge of 
instructional 
strategies and 
representations] 

• Use analogies to 
explain relate random 
molecular motion to 
diffusion. 

• Story-board activity to 
challenge students to 
create a model for 
diffusion.  

• Demonstrate diffusion 
with food dye in 
water. 

• Use computer 
animations to  
illustrate diffusion.  

• Students write a story 
in which they explain 
diffusion 
implementing three 
terms related to 
diffusion: 
concentration 
gradient, molecular 
motion, and kinetic 
energy. 

• Use a representation of a 
cell (dialysis tubing) as 
the focus of an 
investigation into  the 
direction of diffusion 
(iodine and glucose) and 
osmosis. 

• Use potato slices as 
representations of plant 
tissues to investigate the 
direction of osmosis. 

• Students make and test 
predictions for the 
direction of diffusion and 
osmosis in each 
investigation. 

• Support claims and 
explanations with 
evidence (observations) 
from the investigations.  

 

• Students make and test 
predictions of changes in 
the starch and glucose 
solution within dialysis 
tubing placed in a beaker 
containing distilled 
water and iodine. 

• Students explain the 
increase in the volume 
and color change within 
dialysis tubing before 
and after placing the bag 
in the beaker solution. 

• Students explain 
diffusion of glucose into 
the beaker solution from 
dialysis tubing solution. 

• Introduce concepts prior 
to vocabulary terms 
later. 
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Identify ways of 
ascertaining that 
students understand 
the concepts taught. 
[Knowledge of 
Assessment] 

• Assess student prior 
knowledge of 
diffusion through the 
storyboard activity.  

• Assess accuracy of 
student story about 
diffusion in which 
concentration 
gradient, molecular 
motion, and kinetic 
energy. 

• Assess students’ prior 
knowledge through 
accuracy of 
predictions. 

• Assess accuracy of 
student predictions of the 
direction of osmosis 
before students begin the 
potato investigation. 

• Assess students’ answers 
to the potato lab analysis 
questions. 

• Use predictions during 
investigation to assess 
students’ conceptual 
knowledge. 

• Assess accuracy of 
student predictions for 
the direction of osmosis 
and diffusion prior to 
dialysis tubing 
investigation as a pre-
assessment and during 
investigation to reveal 
students’ conceptual 
knowledge of osmosis. 

• Use questioning during 
the dialysis tubing 
investigation to evaluate 
student comprehension. 
of osmosis and diffusion. 

 
The CoRe (Loughran et al. (2004) documents the topic-specific PCK Cathy holds 

for teaching diffusion and osmosis. Cathy’s knowledge and practice are aligned with the 

big ideas or objectives of her lessons.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
_________________________ 
 
13Note: Modified from Understanding and developing science teachers’ pedagogical content knowledge, 
by J. Loughran, A. Berry, and P. Mulhall, 2006, p. 28. Rotterdam: Sense Publishers. 
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Janis’s Case Profile 
 

Janis’s Vignette: Effective Analogies 
 
 “Okay, so we have been talking about cellular organelles over the past few days,” 

said Janis. “Yesterday, we looked at Elodea leaf cells and saw how the cells responded 

when we flooded the leaves with distilled water” she noted. “What changes did you see in 

the cells of the Elodea leaf when you put distilled water on the leaf? Janis asked her 

students. 

 “Well, when we added distilled water, the central vacuole inside the cells seemed 

to get bigger” a student responds. 

 “Yeah, the cellular organelles got squeezed together as the vacuole got bigger,” 

another student explained. 

 “Why do you think the central vacuole got bigger? What was happening when 

distilled water was placed on the Elodea leaf?” Janis asks. She directs the students, “Take 

the next two minutes to talk to your partner and generate an explanation you can support 

with your observations,” Janis asks. There is a muffled buzz in the classroom while 

students collaborate. 

  “Okay guys, your time is up. Who would like to share their ideas with the class?” 

Janis moves between the lab tables when two students suddenly raise their hands. “All 

right, James and Adam tell us what you think” Janis responds. 

 “We think the distilled water went into the cell and then went into the central 

vacuole” Adam responds. “Yeah, the central vacuole is where plant cells store water; and 

when water moved into the vacuole, it got bigger and squished the cytoplasm and 

organelles up against the inside of the cell membrane” James adds. 
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 “What about everyone else, do you agree with this explanation” Janis asks as she 

looks around the room.  

 “We think Adam and James are right, the water moved into the cell” a student 

responds referencing herself and her lab partner. 

 “How did this happen? How did water get into or out of the Elodea cells?”  Janis 

asks. 

“Like, it went through the cell membrane right?” a student in the back of the room 

asks. 

“Okay Julie, I think you are on to something there,” Janis replied. “What did we 

say makes up the cell membrane?” Janis asks the students. 

“I know,” a student in the back of the room states raising her hand. “It’s made up 

of fats or um, lipids, right?” 

“Good, lipids would make a good membrane, but I thought lipids were not soluble 

in water, don’t you put wax on your car to protect the paint?” Janis asks. 

“Hey, stuff has got to be able to get into and out of the cell, so the membranes 

have to let some stuff pass through to get in or out,” a student responds. 

“Okay, but do you think there is anything that cannot move through the 

membrane?” Janis asks the students. 

“Well duh, not everything can enter or leave the cell. I mean the cell has to keep 

certain things in that it needs for life and it has to keep other things out, so not everything 

can pass through the membrane,” the student responds. 

“Hey, this is a semipermeable membrane, we talked about this at the end of class 

yesterday” a student notes. 
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“Good!” Janis states. “So the membrane will allow only some substances to pass 

through it? Josh, are compounds other than lipids associated with cell membranes?” Janis 

asks. 

Josh blushed and stammered “Well my notes say that its phospholipids, proteins 

and carbohydrates. I think you called them glycoproteins and lipoproteins, right, Mrs. 

B?” 

“Good job, Josh,” Janis states. “Carbohydrates attached to proteins within the cell 

membrane are called glycoproteins and carbohydrates attached to the lipids in the 

membrane are called glycolipids,” Janis stopped and looked out over the class before 

asking her next question. “So, tell me why are glycoproteins and lipoproteins important 

for your cells?” She asked. Students pondered the question but no one responded.  

“Well, yesterday, we said that proteins could form channels, kind of like doors in 

the membrane,” a student responds. 

“If we think about water moving through protein channels into the cell, we have a 

way for water to enter the cell. This is good. But why does water enter the cell? What is 

driving this movement?” Janis asks as she looks over the class. Students sit silently, not 

sure of how to respond to Janis’ question. 

“Okay, I want you to create this picture in your mind. Imagine this room is filled 

with students who are blindfolded and cannot see anything and the students are in 

constant motion moving around and colliding with one another,” Janis explains.  

“Now imagine that a door is opened between my room and Ms. C’s room next 

door. What do you think will happen to the students over time?” Janis asks.  
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“Well, I think that some of the students would find the opening by chance, you 

know, just sort of bump into it,” a student responds. 

“Yeah, some of the students would move into Ms. C’s room,” another student 

adds. 

“So you are telling me that students would randomly move from a crowded space 

into a less crowded space. Is that right?” Janis asks. 

 “Well, yeah, that makes sense to us,” a student responds and several students 

seated nearby nod in agreement.    

 “So what do you think is driving the movement of water into the Elodea cells? 

Janis asks. 

 “Like, could it be the same thing. I mean, the Elodea leaves were in distilled water 

and that is like pure water with nothing else in it, right? A student asks. 

 “Well, I think you are on to something, the blindfolded students in our little 

scenario are like water molecules in that they cannot see all movement is random and 

collisions are occurring everywhere,” Janis explains.  

 “So, you mean that the water molecules are going from more crowded to less 

crowded conditions, kind of like the students we talked about?” a student asks. 

 “Yes, I want you to think about this scenario as you continue with the Elodea 

investigation and predict what you think will happen when the leaves are exposed to a 

saline solution,” Janis explains. The students nod in agreement. 

Janis directs students’ attention to the microscopes and the lesson continues as 

students continue to observe the Elodea cells as the leaves are flooded with a 

concentrated saline solution. Janis plans to continue the discussion and elicit students’ 
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explanations for the driving forces osmosis following their observation of Elodea leaf 

cells.  

Background and Context: 
 

Janis is a veteran biology teacher. She has taught high school biology for 15 years 

at Silver Springs High School. The Silver Springs School District is within an affluent 

community with a population of approximately 70,000. The average class size within the 

high school is 16 students, which is below the state average of 18 and approximately 70 

percent of Silver Springs High School graduates go on to attend a four year university or 

college (DESE, 2008). 

In 2008, Janis earned National Board Certification in Adolescent and Young 

Adult Science. She served as the Science Department Chairperson for the past five years, 

guiding the development of biology curriculum and common assessments. 

Orientation to Science Teaching 
 

I describe Janis’ orientation to science teaching in terms of: goals and purposes 

for science teaching, perception of teacher role, perception of student role, ideal images 

of teaching, and view of science as a discipline. 

Goals and purposes of instruction. Janis’ overarching purpose of instruction is to 

engage students in the construction of their knowledge of biology through investigations 

into biological concepts. She explained:  

You know I have a tremendous respect for their ability to learn and for their 
enthusiasm for learning. But I do not think it is recognized and appreciated. There 
is too much of here is the assignment, sit down and do it and we will have a test 
on it. This does not allow students the opportunity to explore and engage their 
minds and to actually construct knowledge. I am a little but of a constructivist in 
terms that I think that students should construct their own knowledge. (pre-
observation interview) 
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She believes students construct their knowledge of science by making connections 

between concepts and developing a perception of biological concepts as interconnected 

knowledge explaining the nature of life rather than as disparate clusters of facts about 

plants, animals, and the environment. Her purpose is to scaffold student learning so that 

students create a schema or framework in which to organize and integrate new 

knowledge. Janis explained: 

No piece of knowledge exists independent of other pieces of knowledge; you have 
to be able to fit new knowledge into what you already know. And you have to 
have that framework but it has to be a piece, it just can not exist independently, 
you have got to make connections. So if I am going to talk about cell membranes, 
which we will do today, and if I am going to talk about how that cell membrane 
works, then I cannot talk about that without also talking about phospholipid 
molecules. (Stimulated recall, Day 1) 

 
Janis’ believes making connections between students’ current knowledge of 

biology and new concepts is critical for effective learning and an important aspect of her 

instruction: “The more connections we make, the better we understand” (stimulated 

recall, Day 2). She noted, “If you teach them biology as disparate pieces of information, 

it is kind of like, okay I finished the cell cycle now lets go on to the next thing and I do 

not have to think about this any more (stimulated recall interview, Day 2). She 

continually spirals back to previous lessons with the goal of building connections 

between concepts, lessons, and units. She explained: 

If you keep bringing it into things like cancer and mutation and evolution and 
when you do those things go back and say Hey do you remember when we talked 
about the structure of DNA? Hey do you remember when we talked about this? 
Then they start to make connections and things start to make more sense. 
(stimulated recall interview, Day 2) 

 
Janis’ goal in teaching involves providing students with opportunities to construct 

their knowledge of biology by making connections between concepts and actual 
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experiences. She explains: “Everything is connected in biology; nothing stands by itself” 

(stimulated recall interview, Day 2). She identified a goal for teaching biology is to assist 

students with the construction of a schema in which to articulate and coordinate new 

knowledge. Janis believes knowledge cannot exist as separate bits but must be placed 

within a larger context to make sense to students. Thus, her purpose in teaching is to 

assist her students in making connections and constructing an accurate picture conception 

of life and how life works. 

Perception of teacher role. Janis identified her teacher role as continually shifting 

throughout the lesson. She made important connections between investigations, activities, 

and students’ knowledge and experience. Janis noted a key aspect of her role as a teacher 

is to identify and implement representations to make abstract concepts understandable for 

students. Janis noted the power of animations, videos, and graphics as tools for enhancing 

students’ comprehension. She explained: 

Long ago, I went to putting in pictures and animations, whatever I could in the 
notes. These are places where I try to translate the words on the paper into 
something that they [students] can really grab a hold of better. . . .  I just think that 
students need something to work with so that they can translate something that to 
most of them is very conceptual and put it into action. (pre-observation interview) 

 
Janis believed animations provide concrete images of abstract structures within the cell. 

Hence, animations supported students’ construction of knowledge of cellular structures 

and functions. She explained: “The more times that you can have the students think about 

and process information, the better they will be at understanding and internalizing that 

information” (stimulated recall interview, Day 1).  

She implemented Wisconsin Fast Plants into her curriculum to stimulate students’ 

thinking about plants as organisms and the requirements for life from germination 
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through growth and reproduction. Students make and record observations of Fast Plant 

growth and reproduction as the plants progress from seed to seed in approximately 45 

days. She explained: “Well, we grow Fast Plants and there are a few reasons why we do 

that; one reason is that they get into the habit of making observations” (stimulated recall 

interview, Day 1). Students will pollinate the plants and gather seeds to be germinated 

and grown for a genetics investigation during the spring semester when students will 

plant the seeds and observe the F2 generation of Fast Plant offspring. She explained: 

So the Fast Plants are this great big longitudinal thing that has lots and lots of 
applications, it is observational, it is genetic, and it is plant physiology and 
anatomy. . . . it provides an ongoing project in which the students have ownership. 
(stimulated recall interview, Day 1) 
 

Janis related osmosis and diffusion to Fast Plants by focusing on the mechanism of water 

movement through plants and plant wilting in a water deficient environment. She 

consistently asked students to reflect on their experiences with the Fast Plants when 

discussing the role of water in living things. By observing the plants over time, students 

had living examples of many of the concepts studied in class and as a result, Janis 

believed her students developed a deeper understanding of content.  

Janis implemented potato slices as representatives of plant tissues and designed 

the potato slice investigation as an opportunity for students to explore cell membranes 

and osmosis. She explained: “You know this is part of the reason you do a lab. It is to 

solidify. These labs are not experimental labs. These labs are to help them [students] take 

what they know and really apply it” (stimulated recall interview, Day 1). 

Janis believes her role as a teacher is never static but shifts with the needs of the 

students; she varies instructional strategies in her lessons. She explained: “I will try to 

come at it from three or four different ways to help students” (stimulated recall interview, 
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Day 2). Janis believes that an important aspect of her role as a teacher is to be aware of 

teachable moments. She understands that something which occurs unexpectedly may be a 

windfall in terms of helping students understand and process new knowledge. She 

explained: “there are also unexpected things that happen, you know, we may have really 

strange things turn up in the slides and this is an opportunity to learn and observe” 

(stimulated recall interview, Day 1). Janis made a connection between student 

observation of cells within Elodea leaves on Day 1 and a creek lab designed as an 

introduction to one-celled organisms, completed earlier in the semester. When a student 

found Protists on his Elodea leaf; Janis’ response was to stop the lab and invite all of the 

students to observe the slide. She referenced student observations of Protists during the 

creek lab to provide a frame of reference for students’ observation of Protists on the 

Elodea leaf. Janis explained: “Of course, all of the kids were crowding around because 

they wanted to see the Protists moving around all over the place. That is not something 

that I anticipated but it is a great learning experience” (stimulated recall interview, Day 

1). 

Janis also collaborates with other biology teachers within her high school, her 

school district, and professional organizations. Through professional interactions with 

school and district Professional Learning Teams (PLT), Janis reflects upon her teaching 

practice and considers her goals in terms of students learning. Janis explained she 

collaborates with her PLT to develop learning goals, biology curriculum, and common 

assessments to clarify perceptions of teacher’s and students’ roles in teaching and 

learning. She noted: 

Discussions with other teachers, I do a lot of NSTA conferences, I have a good 
community of biology teachers here [in her school and school district] who share 
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ideas. I have a wider community of teachers within the NSTA list serve and then 
classes and professional development opportunities. (pre-observation interview) 

 
Janis is a participant in a university program, Partnership for Research and 

Education with Plants (PREP). She noted she works with plant research scientists to 

implement student driven research into her Advanced Placement Biology Curriculum. 

Janis explained she uses PREP as a model for student-driven research with Wisconsin 

Fast Plants in her tenth grade biology classes. She challenges students to make 

observations and record observations as the plants grow, pollinate the plants, and collect 

the seeds. During the spring semester, her students will plant the seeds and compare the 

characteristics of the offspring to the parents during an investigation into genetic 

inheritance in plants. 

Janis is highly reflective about her teaching practice and noted her experience 

with earning National Board Certification strongly supported reflection on her practice in 

terms of students’ learning. Clearly, Janis perceives the role of the teacher as one which 

is continually shifting to meet the learning needs of her students. She builds opportunities 

for students to explore, construct, and apply knowledge through laboratory investigations. 

She noted the value of PowerPoint lectures and discussions with connections to Internet 

animations and graphics to provide students with greater insight into diffusion and 

osmosis. She implemented representations for cell membranes, osmosis, and diffusion 

including: potato slices, cells observed within the Elodea leaves, Wisconsin Fast Plants, 

graphics, animations, analogies, and diagrams. Janis’ goal is to actively engage students 

in learning and implement multiple opportunities to make connections between lessons, 

units, and real-world situations. 
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Perception of student role. Janis’ perception of the student role is that students 

must take responsibility for their learning. She believes that students will not be able to 

progress with their education and meaningful learning without assuming personal 

responsibility as a learner. She explained: 

Students have to take responsibility for their education, they really do. . . . I have 
this very strong belief that you have to take responsibility. These kids cannot 
progress to junior college or college unless they are going to take responsibility 
for their own work. (stimulated recall interview, Day 2) 

 
Janis is always considering new ways to engage her students in learning. She 

noted as she gained teaching experience, she placed increasing importance on 

investigations. She encourages students to find ways to apply their understanding of 

biological concepts by challenging them to “translate something that is very conceptual 

and put it into action” (pre-observation interview). 

Janis perceives her role and the role of her students as influencing one another. 

She is consistently searching for ways to challenge her students to apply their knowledge 

of biological concepts to real-world issues through laboratory investigations. By taking 

this approach, she is placing more responsibility on her students to think deeply about 

their knowledge of biological concepts as they apply their ideas to develop explanations 

for laboratory investigations.  

Ideal images of teaching. Janis explained she perceives her role as teacher to be 

continually changing as she adjusts her practice to meet the needs of her students as 

learners. She noted, “I think that the role of the teacher shifts” (stimulated recall 

interview, Day 2). At times, she perceives herself to be the teller, providing her students 

with information through interactive lectures and discussions. She explained: “I think that 

there are times when the teacher is the deliverer of information” (stimulated recall 
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interview, Day 2). Janis described her ideal image of teaching by describing herself “as 

someone who excites curiosity so that students would be interested enough to pursue and 

investigate on their own and that happens” (stimulated recall interview, Day 2). She 

described golden teaching moments as times when she stimulates curiosity among her 

students and she and her students are able to learn together by posing questions and 

investigating ways to find answers. She explained: 

My preferred mode would be that I am up here as a colleague and we are learning 
together, that is the ideal. Sometimes that happens but it does not often happen, 
but those are the golden moments. Those are the moments when a student will ask 
me a question and we will Google it or they will go home and investigate it. 
Those are great moments for teachers and for students. The students become the 
teacher in those moments and you always learn better as the teacher. (stimulated 
recall, Day 2) 

 
Janis perceives herself to be a facilitator and in some ways a colleague, actively 

engaged in learning with her students. She explained that engaging students as partners in 

learning is what she strives to accomplish in her teaching; her goal and ideal image of 

teaching. She explained that when students perceive themselves to be responsible for 

finding the answers to questions they have posed, learning is much more effective. By 

viewing herself as a fellow learner, Janis encourages students to take greater 

responsibility for their own learning, search for evidence, and develop relevant 

explanations and applications for their knowledge. 

View of science as a discipline. Janis explained that she views of science as a way 

of knowing which demands evidence and implements a Wisconsin Fast Plants 

investigation during the first semester to engage students with growing and observing 

plants throughout their life cycle. Janis identified two reasons for including Fast Plants in 
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her biology curriculum. First, students are able to conduct a long term investigation into 

plant growth. She explained: 

They are supposed to be making observations about how fast the plants grow, 
what they look like, what do the first leaves look like, what do the second set of 
leaves look like. Because they are looking at something that is growing, because 
they planted them, they are really invested in the plants. (stimulated recall 
interview, Day 1) 
 

Second, Fast Plants serve as a model for investigating plant anatomy and physiology, life 

cycles, pollination, and seed production. Janis noted: 

They are observing plant anatomy, they do not see the germination, but they are 
observing plant growth, they are looking independently at stems and leaves. So 
when we talk about plant organs later on, it is real easy to talk about roots, stems, 
and leaves. They will be pollinating them, so when we do that we will talk about 
the difference between pollination and fertilization and they will harvest the 
seeds. As we do genetics and we start talking about predicting the outcome of 
crosses we will go strait to our fast plants. They will do an exercise or two where 
they work through Punnett squares and investigate data statistically to determine 
phenotypic ratios.  (stimulated recall interview, Day 1) 
 
Janis emphasizes the tentative nature of scientific knowledge by engaging 

students in investigations designed to find answers to questions about life. Students are 

expected to conduct investigations, gather and organize their data, draw conclusions from 

their observations and support conclusions with evidence taken from their data.  

Summary of Janis’ orientation to science teaching. Janis noted her experience 

with teaching tenth grade biology, serving as a member of a professional development 

team, conducting laboratory investigations with Wisconsin Fast Plants, and achieving 

National Board Certification informed her goals and purpose for teaching biology as well 

as her perceptions of her role as a teacher and the role of students as learners. She noted 

the importance of conducting explorations of phenomena, making connections between 

biological concepts and students’ prior knowledge and experience, and generating 
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explanations predicated upon students’ observations and ideas. By making connections 

between content and students’ prior knowledge and experience, Janis believes she is 

providing opportunities for students to construct their knowledge of biology and create a 

schema to make sense of new knowledge. Hence, she believed students’ learning is based 

upon understanding biology by connecting concepts and building a framework explaining 

how living systems function. Figure 12 shows the sources which influenced Janis’ 

orientation to science teaching. 

 

Figure 12: Sources of Janis’ orientation to science teaching 
 
I describe Janis’ orientation to science teaching as constructivist as a result of the 

following observations. First, Janis implemented an implicit 5E instructional sequence 

and engaged students with explorations of concepts prior to explanations. Second, Janis 

perceives science as a means of answering questions through investigations and requires 

students to support claims with evidence. Janis noted she designed and conducted 

investigations with her students when questions arose in class. Third, Janis challenged 

students to make and test predictions during investigations and reflect upon their 

experiences with the concept to support their conclusions. Janis made connections 

between osmosis and students’ prior knowledge and experiences to make lesson content 
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relevant for students. Hence, her instruction incorporated a constructivist approach to 

teaching and learning.  

Lesson Plan 

Day 1 of the observation began with students observing plant and animal cells. An 

overview of Janis’ Day 1 lesson plan is shown in Table 16. 

Table 16. Janis’ lesson plan for Day 1  

 Activity Description 
Day 

1 
Observation of 
Elodea leaves 
following 
exposure to 
distilled water 
and saline 

Engage Teacher: 
• Challenges students to predict changes in Elodea leaf cells 
• Observes students’ work during Elodea investigation and 

redirects students’ thinking with questions 
Students: 
• Predict changes in Elodea resulting from exposure to distilled 

water or saline solution 
• Observe aquatic plant, Elodea, leaves placed in distilled water 

or a saline solution  
• Test predictions 

PowerPoint 
lecture and 
discussion 

Explain Teacher: 
• Conducts lecture/discussion focused on cell membrane 

structure 
• Implements representations of cell membranes, osmosis, and 

diffusion  
Students:  
• Explain predictions and support claims with observations 

Discussion of 
Elodea leaf 
observation 

Explain Students:  
• Explain their observations of Elodea leaves; note change in 

vacuole size and the environment in which the leaf or cheek 
cell was placed  

 
Leaves of the aquatic plant, Elodea, served as representations of plant cells. 

Students were challenged to note changes in cells within Elodea leaves after exposure to 

distilled water or a saline solution. Students were instructed to note differences in the size 

of the central vacuole and the condition of chloroplasts within Elodea leaf cells upon 

exposure to each environment. Janis moved through the classroom to observe students’ 

work and question students about their observations and explanations. Students 
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participated in an interactive PowerPoint lecture following observations of Elodea during 

which the structure and function of the cell membrane were discussed.  

On Day 2, students continued to investigate osmosis and diffusion through a 

potato stick investigation. An overview of Janis’ Day 2 lesson is shown in Table 17.  

Table 17. Janis’ lesson plan for Day 2  

 Activity Description 
Day 

2 
Investigation 
focused on 
osmosis in 
potato slices 

Engage 
Explore  

Students: 
• Students set up a potato slice investigation in which potato 

slices are observed before placing the sticks in distilled water 
or a concentrated saline solution 

• Predict changes in potato slices  
PowerPoint 
lecture and 
discussion 

Explain Teacher: 
• Conducts class discussion on membrane permeability and 

diffusion along a concentration gradient (from high to lower 
concentrations)  

Students: 
• Provide rationale for predictions 

Students 
observe and 
explain 
changes in 
potato slices 

Explain Students: 
• Potato slices are observed and students test predictions  
• Develop explanations for changes observed in potato sticks 
Teacher:  
• Challenges students to support claims with evidence  

  
Students were challenged to make and test predictions of changes within potato 

slices placed in two different environments: distilled water and a saline solution. Students 

collaborated with lab partners to develop predictions and determine how their predictions 

would be tested. Next, students placed potato slices in beakers containing distilled water 

or saline. After setting up the investigation, students engaged in an interactive lecture 

discussion when students shared their predictions with the class and focused on the 

diffusion of water during osmosis.  

 I describe the components of Janis’ pedagogical content knowledge including 

knowledge of instructional strategies and representations, students understanding of 
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science, assessment and science curriculum specific for teaching osmosis and diffusion in 

the following section of the case study.  

Knowledge of Representations and Instructional Strategies  

Janis implemented representations of living cells and tissues to enhance students’ 

comprehension of osmosis and diffusion. On Day 1, Janis engaged students with a 

microscopic investigation of cells within Elodea leaves. Elodea cells were the focal point 

of an investigation into the direction of osmosis following exposure to environments of 

distilled water or a concentrated saline solution. Janis challenged students to make and 

test predictions about the direction of osmosis before exposing leaves to each 

environment. Janis explained, “They will start out by observing cells Elodea leaves and 

then put the leaves into a hypertonic solution and then into a hypotonic solution and 

watch them respond to those environments” (stimulated recall interview, Day 2). By 

observing living cells in different environments, students were able to observe osmosis 

and relate the direction of osmosis to the relative concentrations of solutes within the cell 

and the environment. During the investigations, Janis emphasized vocabulary: 

hypertonic, hypotonic, isotonic, and concentration gradient to her students and made 

connections between the terms and changes within the plant cells. She explained:   

They will remember what happens to cells in a hypertonic [highly saturated 
solute] environment because they have held it in their hands and they have seen 
and thought about what happened to it better than they will remember a picture 
that I put up on the board of a cell with Xs and Os on it. So I guess that I am 
hoping to establish some kind of a framework into which they can fit the 
information that comes on the following day about diffusion and osmosis. Even if 
the only thing that we do is raise questions, I am OK with that, because that 
produces some kind of disequilibrium into which some of those answers will 
filter. (pre-observation interview) 
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Janis believes that even though students “learn best by doing. . . .  you have to have a 

lecture component” (pre-observation interview). Janis believes the knowledge students 

attain through interactive lectures allows for an exchange of ideas and provides a 

framework for students to make sense of the new knowledge gained through 

investigations and activities. She explained: 

I cannot talk about the nature of how the cell membrane works without talking 
hydrophobic and hydrophilic. We have already covered that and they already 
know why those molecules are hydrophobic and hydrophilic. So if I am going to 
say that water cannot get through the cell membrane because of this hydrophobic 
layer in the membrane. . . . Then they have made that connection and they are 
reinforcing previous knowledge and they are taking that previous instruction 
which may not have had context earlier and they are placing it in a meaningful 
context. They are placing it in context that becomes more meaningful. (stimulated 
recall interview, Day 1) 
 

Janis explained students would apply their understanding of cell membrane structure to 

explain the diffusion of water through cell membranes during the microscopic 

observations of Elodea cells on Day 1. She noted the importance of spiraling back to 

access content information covered earlier in the course to increase relevance for 

students. She explained: 

So hopefully we will go back, of course, with the cell membrane we will go back 
over and over again. I am just trying to get them to access prior knowledge and 
put it to use rather than allow that knowledge to be compartmentalized. 
(stimulated recall interview, Day 1) 
 
On Day 2, Janis engaged students with a potato slice investigation as a discrepant 

event in which students placed potato slice, a representation for plant tissue, in distilled 

water or a concentrated saline solution. Students were challenged to make and test 

predictions of potential changes in the potato slices before the slices were placed in 

distilled water or saline. Janis encouraged students to reflect upon their observations of 
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osmosis at the cellular level during the Elodea investigation to help them predict changes 

in plant tissues during the potato slice investigation. Janis explained: 

I just think that students need something to work with so that they can translate 
something that to most of them is very conceptual and put it into action. The 
potato slice is something that we have done for years and years as part of our 
diffusion and osmosis lab. But it was more of a cook book lab; here is what you 
do and here is what you should find, now answer these questions about them.  I 
am trying to use that differently. I am trying to use it more as a discrepant event. 
This is an experiment. We will see what happens. (pre-observation interview) 

 
Janis emphasized the importance of students’ observations. She explained. “If I can get 

them to start to pull out ideas about something going in and something going out. These 

potato slices that we put into the salt solution look different than those potato slices that 

we put into the distilled water” (pre-observation interview). Janis believes that by 

challenging students to explain their observations during investigations, she is helping 

them to make connections between investigations and their conceptual understanding of 

osmosis.  

Technology was an important aspect of Janis’ teaching. She relied upon computer 

graphics and animations to provide students with models of osmosis and diffusion. 

Animations from Molecular Logic (Concord Consortium, 2009) website provided an 

animation of diffusion and osmosis. Janis explained that she relied upon websites and 

computer software programs to access animated images making abstract concepts like 

diffusion and osmosis understandable for students. She explained: 

We have gotten hold of some really great chemistry computer software programs 
which has some really good illustrations of diffusion. I have also pulled a couple 
off of the Internet for diffusion and osmosis. I think it really helps them to see 
random collisions. (stimulated recall interview, Day 2) 

 
Janis implemented a graphic of a protein channel molecule to help students understand 

how water actually enters the cell. She emphasized that the function of the protein 
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channel as a portal for water to enter the cell and, in doing so, provided students with an 

accurate explanation of how water molecules actually enter the cell. Janis explained: 

I have a picture of an aquaporin, a protein data base picture. It is beautiful and you 
can see the channel right through it. So what I will probably do is to say, “OK, 
you remember when we talked about how water gets into and out of the cell, it is 
through an aquaporin.” (stimulated recall interview, Day 2) 

 
Janis described herself as a ‘story teller’ and often used analogies in the form of a 

story to make a point and provide students with concrete examples of abstract ideas. To 

explain random molecular motion as the driving force for diffusion, she related a story 

about 400 blindfolded students moving randomly in classroom. After presenting the 

scenario, Janis drew upon student predictions and explanations to identify random motion 

as the driving force for diffusion. She explained: 

If I put 400 blindfolded students wondering around in the room and cut a hole in 
the wall is it likely that some of them will go over to Ms. C’s room or will all of 
them stay in here? We kind of set that up as diffusion is due to the random motion 
of dumb, stupid, blind molecules type of thing. (stimulated recall interview, Day 
2) 

 
Janis provided insight into her implementation of instructional strategies by identifying 

the importance of students making connections between scientific concepts and their 

prior knowledge and experience. She explained that the Wisconsin Fast Plants were an 

excellent way to make connections between the role of water in living systems and 

plants. She explained: 

We certainly made the connection between the Wisconsin Fast Plants and the 
water vacuoles because we came in on Monday morning and a couple of the kids 
had not given their plants sufficient water so they came back to wilted plants. So 
we started the day out by talking about why those plants are wilted and what is 
different. (stimulated recall interview, Day 2) 

 
When Janis explained the structure of the cell membrane to her students, she used an 

analogy of  hollow plastic balls floating on the surface of a tub of water. This analogy 
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created an image of the cell membrane as a structure made up of discrete lipid molecules 

forming a barrier between the inside and outside of the cell. Janis explained that by 

creating this image, she was able to make a connection between the cell membrane as a 

fluid barrier between the interior of the cell and the environment. She explained: 

Like we talked about the bath tub today, that is the fluid mosaic model for cell 
membranes. . . . If I drop the balls on the surface of the water in the bathtub, what 
happens do they stay in a pile, the answer is no they spread out. (stimulated recall 
interview, Day 2) 

 
Janis engaged students with microscopic and macroscopic representations which 

served as the focus for investigations into osmosis in plant cells and tissues. She 

challenged students to make and test predictions for each investigation. By challenging 

students to make and test predictions, Janis was able to reveal students’ thinking as well 

as challenge students to apply their understanding of cell membranes, diffusion, and 

osmosis to new scenarios. Janis believed that, as a result, students would develop a 

clearer understanding of how and why water would enter and leave cells; thus, enhancing 

their understanding of osmosis and diffusion. She selected representations carefully and 

implemented those most likely to resonate with her students. 

Knowledge of Students’ Understanding of Science 

Janis designed her lessons to engage students with representations of cells, 

tissues, and osmosis; she implemented laboratory investigations for students to explore 

osmosis, construct their knowledge passive movement of materials into or out of the cell. 

She noted many of her students “do not understand what is driving the movement of 

molecules during osmosis and diffusion” (stimulated recall interview, Day 2). She 

reported that models and analogies provide representations of abstract concepts which are 

understandable for students. Janis explained effective representations are critical for 
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student learning and support students’ construction of a framework in which to integrate 

new knowledge. Janis implemented strategies including the observation of cells in Elodea 

leaves and potato sticks to engage students with concrete examples of osmosis within 

living tissues.  In each case, students predicted changes then tested their predictions by 

observing osmosis on cellular and tissue levels in Elodea cells and potato tissues. Janis 

explained: 

These potato sticks that we put into the salt solution look different than those 
potato sticks that we put into the distilled water. Why do they look different? 
Hopefully I can get them to establish some kind of a schema within which they 
can actually fit the facts of diffusion and osmosis. (stimulated recall interview, 
Day 2) 

 
Janis is also well aware of misconceptions that students may hold about osmosis 

and diffusion. She identified the belief that salt is able to absorb water as a common 

misconception held by her students. On Day 2, Janis revealed this misconception when 

she challenged students to predict changes in potato slices placed in a saline solution or 

distilled water prior to the investigation. When several students explained that salt had the 

ability to absorb water and would actually absorb water from cells within the potato 

slices, she challenged them to try adding water to a pile of salt at home and report their 

observations on the following day. She explained: 

They were really stuck on that misconception that salt sucks up water. I actually 
have four or five students who told me that if I took a pile of salt and put water on 
top of it, the water would disappear because the salt would suck it up. (stimulated 
recall interview, Day 2) 

 
Janis planned to discuss students’ perception of salt absorbing water on the following day 

and noted she would implement a demonstration with potassium polyacrylate, the 

absorbent polymer used in baby diapers, and compare the absorption of water by the 
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polymer to the interaction between salt and water to dispel the notion that salt is able to 

absorb water.   

Janis believes she is a constructivist and designs learning experience to support 

and encourage students to construct their own knowledge. Her perception is that 

interactive lectures are beneficial, but have limitations as teaching tools and believes that 

students must be actively engaged in learning and processing new knowledge. On Day 1, 

Janis initially engaged students by investigating changes within cells of Elodea leaves 

when exposed to solutions of varying concentrations of dissolved solid. This simple 

investigation bypassed abstract notions of cell membranes, osmosis, and diffusion and 

allowed students to directly observe water movement in living cells within different 

environments. She explained:  

We will put Elodea cells into different solutions, they will start out by observing 
and then put them into a hypertonic environment and then into a hypotonic 
environment and watch the Elodea cells respond to those environments. 
(stimulated recall interview, Day 1)  
 

Janis noted students’ process new knowledge by integrating new ideas and explanations 

into an existing schema. Hence, Janis made connections between students’ observations 

and vocabulary terms. She knows that students are most effectively engaged with content 

when they can relate new knowledge to their lives and past experiences. She explained: 

I can say you remember what happened to the potato slice in the salt water. They 
have an experience that they can refer back to. I am setting up a real life example 
for them to refer to I guess as much as anything else. I find that tremendously 
helpful. I can draw pictures forever on the board, but they will remember it if they 
hold that potato stick in their hands and if they have to think about what 
happened. They will remember what happens to cells in a hypertonic environment 
because they have held it in their hands and they have seen and thought about 
what happened to it better than they will remember a picture that I put up on the 
board of a cell with Xs and Os on it. So I guess that I am hoping to establish some 
kind of a framework into which they can fit the information that comes on the 
following day about diffusion and osmosis. (pre-observation interview) 
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Janis explained that she draws upon content taught earlier in the year to help students 

make connections between concepts, reinforce prior knowledge, and place new 

understanding into a more meaningful context. She introduced the concept of osmosis to 

students, engaging them with investigations into osmosis and asking them to make 

predictions about the direction of osmosis prior to introducing and explaining vocabulary 

terms. Janis planned to first engage with the concept to create a format in which to place 

new knowledge, such as vocabulary terms. Janis explained:  

Hopefully I can get them to establish some kind of a schema within which they 
can actually fit the facts of diffusion and osmosis. Also allows what I think is an 
opportunity to ferret out glaring misconceptions that might be out there. Because 
there are always those and hopefully because we will be talking about membranes 
in the middle of this, we just talked about central vacuoles, hopefully we can pull 
the information from the organelles and talk about membranes together with 
organelles. Hopefully they will mesh together better. (pre-observation interview) 
 

This comment underscores Janis’ knowledge of learners. She noted when students fit new 

knowledge into existing knowledge, their understanding becomes more relevant and 

meaningful underscoring the importance of scaffolding student knowledge and 

encouraging students to construct a framework for their existing knowledge and as a 

format for new knowledge.  

Janis noted students must make connections between their knowledge and 

experiences and new concepts. She notes this is critical in categorizing and integrating 

new knowledge into their ideas about the natural world. She noted students have diverse 

learning preferences and, to be effective, lessons must include a variety of representations 

(e.g., models, analogies, metaphors, examples) and engage students in investigations that 

challenge them to apply their knowledge to make and test predictions and use their 

evidence to provide explanations. Janis focuses on making connections between lesson 
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content and student prior knowledge and experience; her representations are designed to 

engage students with realistic examples, analogies, and metaphors common to students’ 

lives. 

Knowledge of Assessment  

Janis embedded formative assessments into her teaching. She relies upon pre-

assessments, such as student predictions. Prior to beginning the potato slice investigation, 

students predicted changes in the potato slices placed in distilled water or a saline 

solution. The predictions provided insight into students’ thinking and prior knowledge of 

diffusion and osmosis. Janis believed student feedback provided important insight and 

informed her next steps in the lesson. She explained: 

The potato slices, the idea for that is to actually fulfill a lot of purposes. One is 
pre-assessment, I am trying to get them to think and predict what will happen 
next. If I can get them to start to pull out ideas about something is going in and 
something is going out. These potato sticks that we put into the salt solution look 
different than those potato slices that we put into the distilled water. Why do they 
look different? (pre-observation interview) 
 
Janis implemented stories into her teaching and asked students to predict what 

they believed would happen next in the story to reveal students’ conceptual knowledge of 

diffusion and osmosis. She explained: 

I get to be a story teller and talk about blind, stupid, molecules. I use the 3 blind 
mice on the PowerPoint to represent molecules. I will talk to them about that and 
we will set up the scenario. I am going to set it up so the whole discussion is 
focused on what will happen next and why do you think that will happen. So I am 
going to do that and you could call it a formative assessment. (pre-observation 
interview) 
 

Janis developed a second scenario in which she described 400 blindfolded students 

moving randomly in her classroom. She explained 

This is not just me telling a story it is me setting up a scenario and then asking 
them to predict what is going to happen next. I do not tell them and I do not know 
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of a good one for diffusion and osmosis other then the 400 blindfolded kids in the 
room. I ask the kids with all of the blindfolded students in the room, many of 
them will be up against the wall, what if I cut a hole in the wall.  I will ask them 
what will happen next and then they will tell me that some of the students will go 
through that opening into the other room. Will they know that there is a hole in 
the wall?  The kids will say no, some of them will just bump into the opening and 
go through it. (stimulated recall interview, Day 2) 
 

She began asking students what guided the movement of the blindfolded students. 

Students responded by stating the movement was random and not guided by sight. In the 

scenario, the blindfolded students represented the random movement of molecules 

colliding with one another and diffusing from higher to lower concentrations. She 

explained:  

Of course, I am setting up an analogy of how molecules move. Any time they get 
off with what is causing diffusion all I have to do is say “Go back to the room 
with 400 kids in it, what would happen if you are looking at the 400 kids and the 
protein channel is the door between my room and Ms. C’s room?” Then they are 
back to something that they have a good understanding for and they can connect 
that knowledge. Yeah, I am a story teller and I like telling stories. (stimulated 
recall interview, Day 2) 
 
Janis described her utilization of formative assessment during investigations, 

while students were working. She moved through the classroom, observing what students 

were doing during the potato stick investigation; asking questions to challenge their 

thinking. She explained:  

So how did the water pass through the membrane and what caused it to move out 
of the potato stick that was in the salt water and yet, how is it that there was not 
much change in the potato stick in the distilled water? If anything the potato stick 
in distilled water got crisper it did not get limp. I am trying to elicit from them at 
least questions about what is going on. (pre-observation interview)  
 

Questioning students and carefully noting their responses is an important aspect of Janis’ 

formative assessment. She questions students to gain insight into their thinking and 
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comprehension. Next, Janis utilizes feedback from students to inform her teaching. Janis 

explained: 

I will have to go back to eliciting responses from them again until they get to the 
point where they recognize that there has to be a passage way for the water. There 
were still convinced in 6th hour that water was diffusing through the lipid bilayer. 
They have to see that, no, it can not do that. You know, this is not an essential 
piece; you can talk to them about diffusion and osmosis without that piece, but I 
think that it helps them to understand the mechanism. (stimulated recall interview, 
Day 1)  
 
Janis combines questioning with analogies to guide students’ thinking. She 

implemented an analogy focused on changes in Elodea cells resulting from osmosis when 

the Elodea leaf was placed in distilled water. In the analogy, she represents the cell as a 

block of jello and the central vacuole, within the jello block, as a water balloon. Next, 

Janis asked students to explain how the jello cell would change if additional water was 

placed in the balloon. Her goals were to elicit student thinking and support students as 

they construct their knowledge of osmosis. Janis explained: 

When I talked to them about central vacuoles, I set up this little scenario of a soft, 
floppy cube that is filled with jello. I asked them what would happen if you put a 
water balloon inside the jello and filled it up, what would happen to the jello. So 
we keep going back to the jello. The Elodea and potato stick labs are to help them 
take what they know and really apply it (stimulated recall interview, Day 1).  
 
Janis utilizes formative assessments to determine students’ understanding. She 

explained that she relies upon feedback from these assessments to guide her decisions 

during a lesson. During the cell observation lab on Day 1 and the potato stick lab on Day 

2, Janis relied upon student predictions to assess students’ understanding and determine 

next steps in the lesson. Students shared their ideas to make sense of their observations 

during class discussions and interactive lectures. This strategy provided Janis with 
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valuable information about students’ thinking in regard to their understanding of osmosis 

and diffusion.  

Knowledge of Curriculum 

Janis noted osmosis, diffusion, and the maintenance of homeostasis are identified 

by state Course Level Examinations (CLEs) and the district curriculum as key content for 

10th grade general biology. Janis believes students learn most effectively when 

connections are made between students’ prior knowledge and new content. Janis 

explained: 

We have a lot of stuff to refer back to now. We can say “How did your potato feel 
when it was in the water. They did make connections with the central vacuole. All 
three classes made connections with the central vacuole. (stimulated recall 
interview, Day 2) 
 
Janis’ conception of curriculum is clearly focused on creating a big picture and 

making connections between concepts, lessons, and units. Her goal is to emphasize the 

connected nature of biological concepts. Janis reported “everything in biology is 

connected and nothing stands by itself” (stimulated recall interview, Day 2). She 

explained that she consistently focuses on relating concepts to student prior knowledge 

and life experiences. She consistently referred students back to graphics and animations 

of a cell membrane from PowerPoint lectures, and integrated these common threads into 

discussions of concepts related to the phospholipid bilayer (cell membrane), the relative 

concentrations of solutions, and the movement of water from high to lower 

concentrations. Janis explained: 

Like the phospholipid molecule that I showed them today; they had seen a picture 
of a phospholipid molecule, we talked about phosphate heads and hydrophobic 
and hydrophilic sections. That was a one-time thing but if I were refer back to it 
over and over again. . . . It is just making multiple connections for them which 
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maximizes, I think, their ability to make some internal sense of the information. 
(stimulated recall interview, Day 2) 

 
Janis explained students are able to envision the ‘big picture’ when they begin to make 

connections between concepts and gain insight into how living systems function. She 

explained: 

What I want them to do is to think about the fact that something is leaving the 
potato stick that gets really limp and then I hope that somebody will ask what 
substance that was leaving the potato stick. I am hoping that after we talked a few 
days ago when we talked about the central vacuoles in plant cells and we talked 
about the fact that plants will wilt when their central vacuole looses water and 
starts to empty out; I hope that that connection will be made. I hope that 
somebody will make that connection. (pre-observation interview) 
 

 Janis explained that she designed her curriculum to move from “the bottom up” 

(pre-observation interview). Initially, Janis focused on the chemistry of water. She then 

expanded her focus to include cellular organelles and the role of water within the cell. 

She expanded the on cellular structures to include the diffusion of water into and out of 

the cell via osmosis through the cell membrane. She explained:  

When we talk about diffusion and osmosis, we talk about what is going on with 
water so we are in that structure and we have gone from chemistry into the parts 
of the cells and now to diffusion and osmosis. (pre-observation interview) 

 
When discussing tonicity [relative concentrations of dissolved solid in solutions] she 

planned to spiral back to the representations and investigations conducted by students 

during Days 1 and 2 of the observation. Janis explained her plans: 

When we start talking about the tonicity of environments - hypotonic and 
hypertonic environments they have a reference. We can say “OK now you 
remember the potato slice in the salt water, what happened to the potato in the salt 
water? What happened to the potato slice in the distilled water?” That instead of 
my just drawing a picture on the board and saying this is what will happen if you 
place a cell in a hypertonic environment. I can say you remember what happened 
to the potato stick in the salt water. (pre-observation interview) 
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During the observation, Janis engaged students in explorations of osmosis through 

investigations into cells within Elodea leaves exposed to distilled water or saline and 

osmosis within plant organs (potato slices). In each instance, the exploration of osmosis 

preceded the explanation. Explanations generated through discussions in which students 

shared their predictions and observations of osmosis in cells or plant organs were 

supported by evidence collected during investigations. Hence, students were consistently 

challenged to make and test predictions of phenomena before explanations were 

generated. 

Janis relies upon a significant array of curricular resources as evidenced by the 

Internet resources included in her PowerPoint, the investigations implemented into her 

lessons, and her future plans for teaching tonicity and other concepts related to osmosis 

and diffusion. She explained that even though her curriculum is largely guided by state 

CLEs and the district curriculum, she is continually searching for new investigations, 

activities, models, and manipulatives to enhance students’ learning. Janis believes that 

concepts in biology do not and can not stand alone but are part of a much larger picture 

explaining the nature of life and living organisms. She noted by introducing the 

phenomenon first, prior to an explanation, she engaged students in exploring osmosis, 

making connections between their observations and existing knowledge, and constructing 

their knowledge of osmosis as a biological process important in maintaining homeostasis. 

By making connections between concepts, lessons, and units, Janis supports students as 

they construct a coherent understanding of life. 
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Janis’ PCK for Teaching Diffusion and Osmosis 
 

Janis demonstrated the ability to create teachable moments during which she 

integrated her subject matter knowledge, representations, instructional strategies, 

learners, curriculum and assessment to support students’ construction of knowledge of 

osmosis and diffusion. A modified Magnusson et al. (1999) model of Janis’ PCK  for 

teaching osmosis and diffusion is shown in Figure 13. 
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Figure 13: Janis’ topic-specific PCK13 

 
 

________________________ 
 

13Note: Modified from Nature, sources, and development of pedagogical content knowledge for science teaching (p. 
99), by S. Magnusson, J. Krajcik, & H. Borko, 1999. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining 
pedagogical content knowledge: The construct and its implications for science education (pp. 95-132). Boston, MA: 
Kluwer. 
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The modified Magnusson et al. (1999) model identifies the nature of teacher 

knowledge Janis holds for teaching osmosis and diffusion. Janis describes her role as a 

facilitator and her overarching goal for teaching science as scaffolding student learning 

by making connections between prior knowledge and experience and the concept of 

osmosis. Janis implemented investigations in which students observed osmosis in Elodea 

cells, potato sticks, and Wisconsin Fast Plants. She implemented interactive lectures to 

draw out students’ ideas, and explanations to make sense of students’ experiences and 

construct their knowledge of osmosis; hence, Janis holds a constructivist orientation to 

science teaching.   

Janis’ beliefs about teaching and learning act as a filter, shaping the nature of 

representations, instructional strategies, assessments, and curricular sequence 

implemented into her lessons. She implemented analogies to assist students with their 

understanding of the cell membrane and random molecular motion as the driving force 

for osmosis and diffusion. Investigations into osmosis within plant cells and tissues 

provided insight into students’ ongoing experience with Wisconsin Fast Plants and the 

role of water in living organisms. Janis introduced the concepts of diffusion and osmosis 

through investigations and implemented vocabulary terms (e.g., hypertonic, hypotonic, 

isotonic, and concentration gradient) as a means of explaining the movement of water 

from greater to lesser concentrations. Janis noted her goal in the Elodea and potato stick 

investigations was to prepare students for a more challenging investigation into osmosis 

and diffusion involving dialysis tubing as a representation of a cell during the following 

week.  
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Janis’ integration of PCK components for teaching osmosis and diffusion is 

shown in Figure 14.  
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Janis’ integration of the components of her PCK for teaching diffusion and 

osmosis resulted in the creation of teacher knowledge specific for teaching diffusion and 

osmosis. There are four important features to note within this representation. First, Janis’ 

orientation to science teaching is placed within center of the model. Her orientation to 

teaching science (described as her goals and purposes,  perceptions of teacher and student 

roles, images of ideal teaching, and her view of science as a discipline) acts as a filter, 

influencing the integration of the components of her PCK. Second, connecting arrows 

indicate components of Janis’ PCK are highly integrated and have a notable influence 

upon one another and her teaching. Each of the components influences the others as well 

as Janis’ orientation. Third, examples taken from Janis’ lessons included within the 

context of each component provides insight into her teaching. Fourth, brief connecting 

statements between components provide insight into Janis’ integration of knowledge for 

teaching osmosis.  

Because she believed students might have misconceptions about the direction of 

osmosis within living tissues, Janis implemented the potato slice investigation to elicit 

student ideas about the direction of osmosis within plant organs. She challenged students 

to make and test predictions and posed questions during the investigation and subsequent 

class discussions as formative assessments of students’ conceptual understanding of 

osmosis. Janis relied upon student feedback to determine next steps in her lessons; she 

challenged students to test their belief that salt absorbs water and report their findings to 

the class. On the day following the observation cycle, Janis planned to illustrate water 

absorption with an investigation of water absorption by layers of material in baby diapers 

to address students’ misconceptions about salt absorbing water. During the following 
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week, Janis planned to challenge students with an investigation into osmosis and 

diffusion in which a segment of dialysis tubing is a representation for a cell. Janis’ 

knowledge of curriculum and curricular resources informed her understanding of 

students’ prior knowledge based upon district science curriculum, the instructional 

sequence implemented during her lessons, and the availability of curricular resources.  

Janis integrated all components of her PCK to inform her teaching. 

Content Representation  
 

In Table 18, a Content Representation (CoRe) has been developed from Janis’ 

observations and interviews to illustrate her topic-specific PCK for teaching diffusion and 

osmosis. The components of PCK are represented within the context of the CoRe and 

specific examples of instructional strategies and representations, assessments, potential 

student difficulties, and curricular considerations are included. When reading the CoRe, it 

is important to read individual columns (e.g. Big Idea A) from the top to the bottom 

vertically. The columns extend beyond a single page. 

Table 18. Content Representation for Janis16 

Content Representation (CoRe) 
Considerations Big Idea A Big Idea B Big Idea C 

 Plasma membranes 
surround multiple 
cellular structures and 
are made up of a 
phospholipid bilayer. 

Substances will diffuse 
along the concentration 
gradient from high to low 
concentrations. 

Osmosis involves the 
diffusion of water across a 
semi-permeable 
membrane through 
specific protein channels. 

Identify the 
learning goals for 
students within this 
lesson? 

Students should 
understand: 
• many cellular 

organelles are encased 
in a membrane that is 
identical to the 
membrane 
surrounding the entire 
cell. 

• membranes are lipid-
based, semipermeable 
structures. 

Students should be able to 
explain: 
• the diffusion of all 

substances including 
water is dependent upon 
random molecular motion 
and collisions. 

• the more concentrated a 
substance is, the greater 
the likelihood of 
molecular collisions and 
the movement of 

Students should be able to 
explain: 
• water does not simply 

diffuse through a cell 
membrane. The 
hydrophobic nature of 
the membrane prevents 
random movement of 
water across the 
membrane. Protein 
channels [aquaporins] 
allow water to pass 
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• membranes are 
selectively permeable. 

 
 

substances from areas of 
higher concentration to 
areas of lower 
concentration. 

through the membrane 
into the cell. 

• osmosis is driven by 
random molecular 
motion. 

• the diffusion of water 
from areas of higher 
concentration to areas of 
lower concentration. 

Why is it important 
for students to 
know this content? 
[Knowledge of 
Curriculum] 

Membranes are found 
in all living cells and 
share the following 
characteristics: 
• membranes are 

semipermeable and 
surround cells to 
create a unique 
environment within 
cells. 

• membranes surround 
many, but not all, 
cellular organelles.  

• membranes are 
involved in biological 
processes: cellular 
respiration and 
photosynthesis. 

 
 

Diffusion is critical for life 
and occurs in all life forms. 
Diffusion is characterized 
by:  
• random motion and 

molecular collisions 
which drive movement of 
molecules from higher to 
lower concentrations. 

• substances enter and leave 
the cell through diffusion 
or osmosis. 

Membranes have specific 
characteristics critical to 
their function: 
• membranes have both 

hydrophobic and 
hydrophilic regions. 

• water diffuses through 
protein channels 
embedded within the 
membrane.  

• osmosis is the diffusion 
of water into or out of 
the cell through protein 
channels. 

• the direction of osmosis 
is dependent upon the 
concentration gradient 
of water within the cell 
and surrounding 
environment. 

Identify the 
difficulties and 
limitations 
associated with 
teaching this idea? 
[Knowledge of 
students as 
Learners] 

Students may 
experience difficulty: 
• understanding the 

movement of 
materials through a 
plasma membrane. 

• accurately predicting 
direction of osmosis. 

• in their perception of 
random molecular 
motion as the driving 
force for osmosis and 
diffusion. 

• in their understanding 
that membranes are 
semipermeable. 

Students may not grasp the 
importance of relative 
concentrations in 
determining the direction of 
osmosis: 
• understanding that 

substances diffuse from 
high to lower 
concentrations. 

 
Students may find 
vocabulary challenging: 
• vocabulary is unique: 

o hypertonic, 
hypotonic, and 
isotonic. 

Students may not grasp 
the role of water in living 
organisms: 
• all forms of life require 

water. 
• osmosis occurs in all 

living organisms 
regardless of the 
complexity or size of the 
organism. 

 

Identify knowledge 
of students’ 
thinking which 
influenced the 
teaching of this 
idea. 
[Knowledge of 
Students as 
Learners] 
 

• Students not likely to 
envision random 
molecular movement 
as driving force for 
diffusion and 
osmosis. 

• Students’ thinking is not 
clear in terms of why 
water moves from area of 
high to low concentration.  

 

• Students prior 
knowledge of the 
relationship between salt 
and water might indicate 
that salt absorbs water 
from other substances.  
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Teaching strategies 
and representations 
implemented and 
particular reasons 
for using these 
strategies to engage 
students with this 
idea. 
[Knowledge of 
instructional 
strategies and 
representations] 

Representations: 
• Computer animations 

of diffusion and 
osmosis provide 
students with concrete 
examples of abstract 
concepts. 

• Students can predict 
changes in the 
direction of osmosis 
when changes in 
relative 
concentrations are 
made within the 
computer animation. 

• Floating ball analogy: 
Balls placed in a 
bathtub of water float 
on water surface to 
create a floating 
membrane separating 
the water from the air.   

• Computer 
representations of cell 
membrane in the 
PowerPoint clarified 
membrane structure 
and function. 

Diffusion analogy: 
• Blindfolded students 

moving randomly result in 
collisions and gradual 
movement from areas of 
greater congestion to areas 
of lesser congestion.    

Representations: 
• Direction of osmosis is 

evident in Elodea cells. 
• Direction of osmosis is 

evident in potato slices. 
Potato slices investigation: 
• Students make and test 

predictions of direction of 
osmosis within potato 
slices placed in distilled 
water and a concentrated 
saline solution. 

 

Elodea investigation: 
• Students observed  

osmosis at the cellular 
levels through 
microscopic observation 
of Elodea leaf cells in 
distilled water or a 
saline solution. 

Potato slice observation:  
• Students observe 

changes in potato slices 
placed in saline and 
distilled water- used as a 
discrepant event. 

Wisconsin Fast Plants 
(Fast Plants): 
• Students observe 

changes in Fast Plants 
and explain wilting of 
plants in water deficient 
environment. 

 
 

Identify ways of 
ascertaining that 
students understand 
concepts taught. 
[Knowledge of 
Assessment] 

• Student predictions of 
direction of osmosis 
in cells and tissues 
reveal knowledge of 
cell membranes as 
semipermeable. 

• Student responses to 
questions about the 
direction of osmosis into 
or out of cells.  

• Students explain the role 
of water in plants in terms 
of Wisconsin Fast Plants. 
Student explanations of 
Fast Plant wilting reveals 
understanding of the 
movement of water 
through osmosis out of 
plant cells. 

• Teacher questions 
during investigations 
revealed students’ 
understanding of 
concepts. 

• Students’ predictions of 
direction of osmosis in 
potato slice 
investigation revealed 
students’ thinking and 
conceptual 
understanding of 
phenomena. 

 
 

 
The CoRe (Loughran et al. 2006) is an overview of Janis’ PCK for teaching 

diffusion and osmosis. The description is reflective of her constructivist teaching 

practice.  

____________________ 

16Note: Modified from Understanding and developing science teachers’ pedagogical content 
knowledge, by J. Loughran, A. Berry, and P. Mulhall, 2006, p. 28. Rotterdam: Sense Publishers. 
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Jason’s Case Profile 

Jason’s Vignette: Talk Like a Scientist 

“Okay guys, the list of lab partners is on the whiteboard; check to see who you are 

working with today. Also remember to pick up your lab handouts before you sit down,” 

Jason explains as students enter his classroom.   

It is October 28th, and the spirit of Halloween is alive and well in Jason’s 

classroom. Refrains of Monster Mash echo through the room as students quickly enter 

from the hallway. The Smart Board, in the front of the room is decorated for Halloween 

with a bright orange background, black text identifying the plans for the day beginning 

with an investigation into osmosis and diffusion. There are images of a waving mummy, 

a smiling skull, and flying bats on the Smart Board to capture the essence of the season.  

“Wow, this is cool!” a student comments as he moves to his seat.  

“Yeah, like what is going on today?” a student asks as she opens her notebook. 

“Hey, it is my Halloween theme,” Jason explains as he greets students entering 

the room. Jason has an imposing presence; he is a large man with a booming voice. 

Clearly, he cannot be ignored. The tardy bell rings and students are seated. 

“Okay, listen up, we are going to go over a few things before we begin our 

investigation today” Jason tells the students. “Take out your highlighters so that you can 

highlight important steps on your lab handout. Today we are going to investigate osmosis 

and diffusion and we are going to use dialysis tubing to represent a cell,” Jason explains. 

He looks around the classroom and asks, “What is the first thing you will do during the 

investigation?” 
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“I know,” a student raises his hand. He explains, “First we are going to make a 

cell by tying off one end of the dialysis tubing.” 

“Yeah, then it says we are going to pour a solution of water, starch, and glucose 

into the tubing,” the student comments as the other students follow along on their lab 

handouts.  

“Then what will you do?” Jason asks. 

“Okay, we are going to tie off the other end of the tubing and put the tubing into a 

beaker of water and iodine,” a student responds. 

“Okay, take a minute to remember the terms solute and solvent; we have talked 

about these terms before. What do the terms mean?” Jason asks as he looks around the 

room. 

“A solute is something dissolved in a solution,” one student answers.  

“Yeah, and a solvent is what the solute is dissolved in; like water in a sugar and 

water solution,” another student answers. 

“Good job, remember to use these terms when you are answering your lab 

questions or explaining something to the class. Remember, I want you to use these terms 

and talk like a scientist,” Jason explains. 

“Look at your lab sheet; do you see other words that are confusing for you?” 

Jason asks.  

“Yeah, like what is a permeable membrane?” asks a student in the back of the 

room. 
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 “Good one, Jill. Okay, what does permeable mean?” Jason asks as he writes the 

term on the Smart board. 

 “It means that things can pass through the membrane” a student responds. 

“Great,” Jason exclaims as he writes the definition on the board. “So, if permeable 

means that things can pass through, what does semipermeable mean?”  

Several students raise their hands and Jason calls upon a student in the front row. 

The student explains, “Semipermeable means that only some things can pass through and 

other things cannot.” 

“Super, so let’s say that you go to a club and there is a bouncer standing at the 

doorway; he will determine who gets in and who does not, so not everyone can get in,” 

Jason explains as he writes the definition on the board. 

“Now, what if a membrane was freely permeable?” Jason asks. 

A student explains “That means that anything can pass through it.” 

“Okay, good. But what if a membrane is nonpermeable?” Jason asks. 

Another student explains, “That means that nothing can pass through it.” 

“Now, when we talk about this lab or when you write answers on a test. I want 

you to use the words solute, solvent, solution, permeable, semi-permeable or 

impermeable,” Jason explains. “I want you to talk like a scientist and that means that you 

will use the appropriate terms when we talk about this.” 

“All right, take your lab sheets and move to your lab stations, check the 

whiteboard if you are not sure who you will be working with today,” Jason states as he 

directs the students. The students quickly move to the lab stations and the lab begins as 

Jason demonstrates how to tie off the dialysis tubing.  
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“Now, remember what we said earlier, we are going to place the dialysis tubing 

you and your partner have prepared into a beaker containing a solution of iodine and 

water,” Jason explains.  

The students work quickly to tie off the dialysis tubing and fill the tubes with a 

starch and glucose solution and tie off the opposite end. 

“Do we use the glucose testing strips now?” a student asks. 

“Yes, I want you to test the solution in the beaker and the solution you placed in 

your dialysis tubing” Jason explains. “Remember, the glucose testing strips will change 

colors if glucose is present.” 

“Hey, Mr. L., only the solution we put into the dialysis tubing has glucose; the 

other one does not,” a student comments as lab groups quickly test both solutions for the 

presence of glucose. 

“Okay, I need everyone’s attention,” Jason tells the students as he prepares to add 

several drops of iodine to a beaker of starch. After he adds several drops of iodine to the 

starch solution there is a dramatic change as the starch solution turns from an opaque 

white to a black color. 

“That is way cool!” a student claims.  

“Iodine is an indicator because it will react with the starch to create a dark blue or 

black color change” Jason explains. 

“Cool, we are using two indicators then, one for glucose and another for starch,” a 

student notes. 
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“That is right, Chris, now you will be able to see if either solution changes during 

our investigation,” Jason explains. Students place the dialysis tubes into beakers of 

distilled water and iodine. 

“Now, I want you to predict what is going to happen to both solutions, the 

solution of iodine and water in the beaker and the starch and glucose solution in the 

dialysis tube bag,” Jason directs the students. The room fills with a low level buzz of 

conversation as lab groups discuss predictions. 

“When you have made and recorded your predictions, move back to your seats 

and we will talk about the topic for the day, osmosis and diffusion,” Jason explains. 

Suddenly, the melodic sounds of Monster Mash fill the room as students collaborate with 

peers to make their predictions.  As students complete the task, they gradually return to 

their seats. 

Background and Context 
 

Jason is a veteran biology teacher. He has been teaching general biology and dual 

credit biology at Carlville High School for the past 15 years. Carlville High School is the 

only high school in a small Midwestern community. According to the 2000 Census, 

Carlville is a rural community with a population of approximately 25,000 residents (U.S. 

Census, 2000). School statistics from the Department of Elementary and Secondary 

Education (DESE) indicate Carlville High School includes grades 9 through 12 with ratio 

of 18 students per teacher, consistent with the state average for the ratio of students per 

teacher (DESE, 2008). Carlville High School is on a block schedule which includes 90 

minute class periods with classes meeting every other day. 

Jason’s classroom is part of a new addition to the high school completed in 2005. 
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The room is partitioned into a traditional classroom and a laboratory area. The traditional 

classroom contains five rows of student desks with five desks in each row. The laboratory 

area consists of six laboratory stations complete with running water, sinks, and electrical 

outlets. A Smart Board used for PowerPoint notes, investigation protocols, seasonal 

images, and music is on the wall in the front of the room; a traditional whiteboard lines 

the wall on the right side of the room. 

Jason is also a veteran coach and is currently an integral member of the coaching 

staff for three sports including: football, basketball, and track. He believes coaching 

creates an opportunity to interact with students outside of the academic realm. He 

explained: 

I coach three sports and I have contact with all of these kids as a coach, a 
spectator, or a fan. One of the things I like about a small community is that the 
rapport with the students is phenomenal. . . . I know all of these kids and their 
parents personally. I could call and talk to their parents and they may not want to 
talk to me but I could call them by their first name and they would know exactly 
who I was when I talked to them. This is one of the things that make me a better 
teacher because I know the kids and their families. (stimulated recall interview, 
Day 1) 
 

 Jason believes the small community in which he teaches and coaches offers a 

significant advantage in terms of the contact he has with students and their families and a 

major asset for his effectiveness as a teacher. By knowing his students and their families, 

Jason believes he has a better understanding of his students as individuals and this 

knowledge makes him a better teacher. Jason believes he can work closely with students 

and their families to affect change in students’ behavior and performance in his classes.   

Orientation to science teaching 
 

Jason’s orientation to science teaching is described by addressing aspects of his 

instructional practice in terms of his: (a) goals and purposes of science education,                      
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(b) interpretation of teacher role, (c) interpretation of student role, (d) ideal images of 

teaching, and (e) view of science as a discipline. 

Goals and purposes of instruction. Jason identified three overarching goals for his 

teaching. His first goal is to challenge his students with explorations of scientific 

concepts and encourage students to ask and answer questions while constructing their 

knowledge of biology. Jason’s second goal is to engage his students in explorations of 

phenomena with technology and challenge them to solve realistic problems in the form of 

computer-based challenges. He noted students are comfortable with technology and 

become active participants in learning opportunities which challenge them to apply their 

knowledge to solve problems posed by computer software programs. He explained, “I 

explore new ways to teach and I spend more time on my teaching process then content. In 

the future I cannot see technology going away, I just see it getting better and better,” 

(stimulated recall interview, Day 2). Jason believes that students are easily engaged with 

technology which provides them with a “performance enhancement type thing in that 

they [the students] will actually have to use what they learned” (stimulated recall 

interview, Day 2). His third goal is to act as a resource and provide content knowledge 

for his students through PowerPoint notes, lectures, class discussions, informational 

handouts, and handouts for laboratory investigations. Jason explained that he does not use 

a textbook; therefore, his PowerPoint notes and informational handouts are designed as a 

source of current content knowledge. He explained “I am acting like a resource for my 

students” (pre-observation interview).  

On Day 1 of the observation, Jason provided students with an opportunity to 

explore osmosis and diffusion through a laboratory investigation. A dialysis bag, 
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representing a semipermeable membrane, was filled with a glucose and starch solution 

and placed in a beaker containing distilled water and iodine. Jason implemented the 

laboratory investigation as an exploration of osmosis, diffusion, and membrane 

permeability prior to introducing the concepts. Jason explained his reasoning for 

implementing the laboratory investigation: 

My class is just getting ready to start cells. When we start cells, we start with the 
cell membrane. So what we are going to do today is that we start cells today we 
will begin with a lab. A typical lab of osmosis and diffusion through the cell 
membrane with iodine and starch, as the iodine passes through the membrane it 
turns the starch solution black. (Pre-observation interview) 

 
Jason explained he included analysis questions following the investigation to 

challenge students to integrate their observations from the investigation with their 

understanding of key concepts related to membrane permeability, diffusion, and osmosis. 

Through this approach, Jason believed that students would develop a clear understanding 

of how and why diffusion and osmosis occur in living cells. He stated: 

After we finish that [the osmosis and diffusion lab] we will come back and I will 
give them a homework assignment on homeostasis on why plants and animals 
have to do osmosis and diffusion. From the homework they will have to use the 
information they got from the lab and the information they got from the notes on 
homeostasis. (pre-observation interview) 
 
On Day 2, students were challenged to apply their knowledge of osmosis and 

diffusion to predict the direction of osmosis in scenarios presented by the Osmobeaker 

computer program (Meir et al. 2004).   Jason identified three purposes for implementing 

the Osmobeaker program (Meir et al. 2004) into his lessons. First, he explained that the 

program allowed his students to actually “see how many molecules there were in each 

compartment [within the cell and the bloodstream]” (stimulated recall interview, Day 2). 

Hence, students were able to observe osmosis at the molecular level. Second, Jason 
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wanted his students to use vocabulary terms in their writing. He explained, “I want them 

to use the terms that we were talking about during the lecture in explanations such as 

hypertonic, hypotonic, and isotonic” (stimulated recall interview, Day 2). Third, Jason 

wanted his students to understand the relationship between solute and solvent in two 

different solutions could be expressed mathematically. He noted that he wanted his 

students to understand “the math part and how to figure concentrations and how to figure 

percentages, ratios and stuff like that” (stimulated recall interview, Day 2). 

Jason’s goals and purposes for instruction indicate an approach to science 

teaching in which students are initially engaged in an exploration of osmosis and 

diffusion prior to an explanation of the concepts. Jason supported students’ understanding 

of diffusion and osmosis by reviewing key vocabulary terms (e.g., hypertonic, hypotonic, 

isotonic, concentration gradient) following the osmosis and diffusion investigation on 

Day 1. He encouraged students to use the terms in their responses to analysis questions 

following investigation. Thus, his purpose during Day 1 was to provide students with 

content knowledge and challenge them with a laboratory investigation during which both 

osmosis and diffusion were clearly observable. On Day 2, Jason challenged his students 

to apply their understanding of osmosis and diffusion to a problem-based scenario posed 

in the Osmobeaker computer program (Meir, Stal, & Maruca, 2004). Hence, Jason’s 

purpose was to provide scaffolding for student learning on Day 1 and on Day 2 challenge 

students to apply their understanding to solve problems related to osmosis. 

Perception of teacher role. Jason’s perception of his role as a science teacher is to 

be a concerned adult first and an educator second. He explained that by being a caring 
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adult, he was able to engage more of his students to take an active role in learning about 

science. He noted: 

Well, I think educator is pretty important but I think before educator you have to 
be a caring adult. . . . I feel that I have accomplished more with a student at the 
end of the class period not if he has comprehended all of my lesson content but if 
he has tried to comprehend all of my lesson content.” (stimulated recall interview, 
Day 2) 

 
Jason perceives his role as capturing students’ interest, engaging students in learning, 

and, ultimately, turning students on to science. He explained: “I think as long as they still 

have interest in the content and in school you have succeeded. When you lose their 

interest, you are going to lose them” (stimulated recall interview, Day 2). 

Jason believes his role is defined by his goals for student learning and noted his 

role shifts throughout the lesson to support the learning goals for his students. When 

Jason challenged his students to apply their knowledge within the context of a laboratory 

investigation, he took on the role of a facilitator. He reported: “I think my role changes as 

the lesson goes on. . . . As you can see in the first part of the lab I am the resource and in 

the second part of the lab they are on their own” (stimulated recall interview, Day 2). As 

he moved around the room during the lessons on Days 1 and 2, Jason’s role was that of a 

facilitator answering students’ questions with new questions to guide their thinking. He 

encouraged students to collaborate with peers, collect data, and develop conclusions 

supported with evidence from the investigation. Jason perceives his teacher role as 

changing within the context of the lesson along with the learning needs and learning 

difficulties of his students.  

 Perception of student role. Jason described the role of students as being open to 

learning new concepts, ideas, and explanations. He further described students’ role as 
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being prepared to apply knowledge to solve unique problems in novel situations and 

taking an active role in learning. Jason explained: 

I think they [students] have to be sponges. I think that they have to take whatever 
information you give them and expand upon it and search for more information 
on that content. I think that when I am done with them I just do not want them to 
know what osmosis and diffusion are; I want them to be able to solve problems 
with that very process. (stimulated recall interview, Day 2) 

 
Jason believes students’ learning is enhanced and they develop a clearer 

understanding of how scientific concepts relate to their lives when challenged with real-

world problem-based scenarios. He related a story about one of his students and how the 

student applied his understanding of osmosis, diffusion, tonicity (amount of dissolved 

solid with solutions) to his mother’s IV solution during her recent hospitalization. He 

explained “I like to use past experiences and experiences that they have had in this 

community. That is the good thing about being in a small school; you kind of know what 

is going on” (stimulated recall interview, Day 1). 

Jason’s perception of the student role is multifaceted. He stressed that students 

must be prepared to learn, prepared to work collaboratively to answer questions and 

develop explanations, to learn from one another, and ultimately to apply their knowledge 

to solve realistic problems. He believes that realistic challenges engage students in 

learning and encourages them to take a more active role in their own learning. 

Ideal images of teaching. When asked how he preferred to teach, Jason indicated 

that his preference was to provide learning experiences for his students through problem 

solving, laboratory investigations, and technology in the form of computer software 

packages that challenge students to apply their understanding to real-world problems. 
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Jason explained that his ideal images of teaching biology emerged from his 

experiences as a college student. He noted that as a college student his involvement with 

research conducted by his professors provided the most meaningful learning experiences. 

Jason believed that being engaged in doing science is critical to effective teaching and 

learning. He explained his views on teaching by stating: 

In college I found that it was not the lecture that got me going in science. It was 
the stuff I was doing outside of class. It was capturing and banding birds and 
marking quadrants. Those are the things and in microbiology growing stuff on 
agars. Those are the things that were important to me and those are the things that 
got me interested in what I am doing. (stimulated recall interview, Day 2) 

 
Jason explained that the dialysis bag laboratory investigation on Day 1 provided 

students with an initial exploration of diffusion and osmosis. Later in the lesson, the 

interactive lecture and discussion provided an introduction to membrane structure, 

function, and permeability. Jason planned to scaffold students’ understanding of concepts 

related to osmosis and diffusion (e.g., membrane permeability and the diffusion of 

substances from high to low concentrations) during Day 1 to support problem-solving 

challenges during Day 2 through the Osmobeaker computer software (Meir et al. 2004).   

During Day 2 students worked with the Osmobeaker software (Meir et al. 2004) 

to manipulate an IV solution and investigate osmosis or the diffusion of water into or out 

of the red blood cell based upon changes made in the IV solution entering the 

bloodstream. Thus, students had the opportunity to conduct an investigation of osmosis 

and diffusion in which the diffusion of individual molecules were represented and 

observed. He explained his ideal lesson: 

I try to incorporate three things into every lesson; I try to incorporate some type of 
lecture, some type of thing in which I am presenting information, it may not be a 
traditional lecture but some way that I am presenting information. I try to 
incorporate some type of hands on activity like a lab, and I try to incorporate 
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technology. So I try to incorporate those three things into every lesson. (pre-
observation interview) 

 
Jason consistently referenced his goal of implementing technology into his teaching. He 

explained: 

The district just went through a big technology push about two years ago and it 
finally came through this year with the Mac-carts. We have Mac-carts and I have 
microscopes that connect to the Macs. I have a Smart Board. We have Lab Quest, 
little Palm Pilots that we use to record our data. I try to incorporate as much 
technology as I can now because the kids respond more to technology; they are all 
computer and cell phone oriented. (pre-observation interview) 
 

Jason estimated the percentage of time within the context of each lesson dedicated to 

laboratory investigations, lecture/discussion, and virtual investigations. Jason explained: 

I use a lot of technology and I like hands on. I do a lot of hands on. My lessons 
are about 25% lecture and that is me being the resource and that is because I do 
not use a book. I would rather act as the resource because then they [kids] know 
what I want. About 75% of them using that to solve problems; so probably 25% 
lecture and 75% experiments. (stimulated recall interview, Day 2) 
 

 Jason’s goal is to design a learning environment in which students are challenged 

to solve problems and find answers through laboratory investigations and technology in 

the form of computer software. Jason explained the inclusion of technology in his lessons 

was based upon his belief that students are readily engaged with technology and, as a 

result, learn more effectively. 

View of science as a discipline. Jason views of science as a discipline demonstrate 

his belief that evidence is critical in science. He explained: 

I am incorporating their experiences and I expect them to use that when they 
explain something to me. If I want them to think like a scientist then they have to 
draw upon their experiences they had to write like a scientist by using their 
experiences as evidence to support their ideas. (stimulated recall interview, Day 
1) 
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Jason required students to make and test predictions through the laboratory 

investigation on Day 1 and the computer challenge on Day 2. He consistently challenged 

students to support their explanations with evidence. He defined science as having a 

unique language and emphasized vocabulary. Jason expected his students to “talk like 

scientists” (stimulated recall interview, Day 1) by using vocabulary appropriately in their 

explanations. He explained: 

I really press my students that I want them to start talking like a scientist. Like we 
did a lab on cohesion and the kids kept on telling me that the molecules were 
‘sticking’ together. Well “sticking together” is a term that I used in third and 
fourth grade, I want to hear about hydrogen bonds and oxygen bonds. I want you 
to talk like a scientist. (pre-observation interview) 

 
He believed the accurate implementation of vocabulary terms in students’ explanations 

enhanced their understanding of the concepts under study. 

Jason views science as a way of knowing based upon evidence. He challenged 

students to make predictions prior to beginning the investigations on Day 1 and 2. Next, 

students used their observations to test their predictions. Jason required students to 

explain their observations when responding to laboratory analysis questions using 

evidence gathered during the investigations to support or refute their prediction. He 

explained: “I have a critical thinking section where they [students] have to use what they 

have learned in the notes and so forth” (pre-observation interview). Throughout both 

lessons, he insisted that his students support their ideas about diffusion and osmosis with 

evidence gathered during the investigation. 

Summary of Jason’s orientation to science teaching. Jason’s orientation was 

informed by his experiences as a student and as a teacher. First, his experience as a 

student researcher in college encouraged an interest in scientific investigations. Second, 
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his experience with teaching high school biology resulted in exploring ways to actively 

engage students in learning. This exploration led to the inclusion of technology to 

challenge students to apply their knowledge to solve real-world problems. Teaching tenth 

grade biology and coaching three sports within the context of a small, rural community 

informed his goals and purposes for teaching biology as well as his perception of student 

and teacher roles. Sources which influenced Jason’s orientation to science teaching are 

shown in Figure 15. 

 

Figure 15: Sources of Jason’s orientation to science teaching 

I describe Jason’s orientation to science teaching as constructivist for several 

reasons. First, he followed a 5E instructional sequence. Jason initially engaged students 

with explorations of osmosis prior to introducing the concept. Before beginning the 

exploration, students predicted the direction of osmosis and tested their predictions by 

observing evidence of the direction of osmosis within the model. Second, Jason drew 

upon students’ experiences when developing explanations for osmosis. He asked students 

to share the rationale for their predictions and reflect upon their observations to explain 

the direction of osmosis. Third, Jason structured his lessons to build upon students’ 

experiences with the concepts to construct their knowledge of osmosis. On Day 2, Jason 

drew upon students’ experiences with osmosis on Day 1 to predict changes in a virtual 
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red blood cell when the concentration of water in the virtual IV solution was increased. 

Jason designed lessons to support students with the construction of their knowledge of 

osmosis.  

Lesson Plan 

 Day 1 of the observation began with Jason reviewing the laboratory investigation 

for osmosis and diffusion. The investigation involved placing a starch and glucose 

solution in dialysis tubing which represented a cell, and next, placing the dialysis tubing 

in a beaker of distilled water and iodine. An overview of Jason’s lesson for Day 1 of the 

observation is shown in Table 19. 

Table 19. Jason’s lesson plan for Day 1  

 Activity Description 

Day  
1 

Introduce protocol for 
dialysis tubing 
investigation 
 
Student predict changes 
in dialysis tubing and 
beaker solutions  

Engage Teacher: 
• Reviews protocol for osmosis and diffusion laboratory 

investigation 
Students: 
• Highlight key terms as Jason reviews the procedure 
• Make predictions of changes in the dialysis bag and 

beaker solutions  
Students set up dialysis 
tubing investigation  

Explore Students: 
• Pour the starch/glucose solution into the dialysis tubing 
• Test for the presence of glucose  
• Place dialysis tube in beaker containing an iodine solution 
• Predict changes in beaker and dialysis tubing solutions 

Students observe 
changes in dialysis 
tubing and beaker 
solutions to test their 
predictions  

Explore Students: 
• Test for the presence of glucose in tubing and beaker 
• Note changes in color and volume 
• Collaborate to answer lab analysis questions  
• Present answers to class 

Whole class discussion 
and PowerPoint lecture 
in which students share 
predictions, 
observations, and 
explanations 

Explain Students: 
• Share predictions and investigation outcomes 
• Construct explanations using supporting evidence from 

investigation 
Teacher: 
• Introduces vocabulary  

 
After completing the set up for the investigation, students predicted the direction 

of osmosis. Next, Jason engaged students with a discussion focused on the structure of 
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the cell membrane, membrane permeability, solubility, and solutions. Students shared 

their predictions for the dialysis investigation and answered questions posed during the 

lecture. Following the discussion, students returned to their laboratory investigations and 

noted changes within the dialysis bag and the solution in the beaker. Students noted the 

solution within the dialysis bag increased in volume and underwent a color change from 

opaque white to dark blue/black indicating that distilled water and iodine diffused into 

the dialysis bag from the solution in the beaker. The solution within the beaker tested 

positive for glucose indicating that glucose diffused out of the dialysis bag and into the 

solution within the beaker. Thus, students were able to observe two distinct changes 

related to diffusion and osmosis within the dialysis bag and beaker solutions.  

During an interactive PowerPoint lecture, student teams shared the results of their 

dialysis tubing investigation with the class. Jason asked students to explain the presence 

of glucose in the beaker solution and the increased volume and darkened color of the 

starch solution within the dialysis tubing. Students noted the dialysis tubing membrane 

was not permeable to starch but was permeable to water and iodine and supported their 

claim by noting an increase in the volume of the dialysis bag contents and the color 

change indicating starch remained inside the tubing, however, water and iodine were able 

to diffuse through the membrane into the tubing. Students explained the dialysis 

membrane was also permeable to glucose by noting the presence of glucose in the beaker 

solution and in the dialysis tubing solution. They concluded the dialysis membrane was 

semipermeable allowing smaller molecules such as, water, glucose, and iodine to diffuse 

into the tubing; however, starch, a larger molecule, remained within the tubing. Jason 

identified key vocabulary terms including hypertonic, hypotonic, isotonic, and 
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concentration gradient. He related the terms to students’ observations and encouraged 

student to integrate the vocabulary into their explanations.  

 An overview of Jason’s lesson for Day 2 of the observation is shown in Table 20. 

Table 20. Jason’s lesson plan for Day 2  

 Activity Description 
Day  

2 
Overview of 
Osmobeaker 
software 
Review of basic 
mathematics 

Engage  
 

Teacher: 
• Explanation of Osmobeaker computer software  
• Review calculation of percentages and ratios 
• Review vocabulary terms (hypertonic, hypotonic, isotonic, 

semipermeable, concentration gradient, diffusion, and osmosis) 
Investigate 
osmosis through 
computer 
software 

Explore 
Extend 

Students: 
• Apply knowledge of osmosis to the Osmobeaker computer 

program 
• Follow the guidelines on the handout to manipulate the program 
• Answer questions about the direction of osmosis-water 

movement into or out of the red blood cell 
• Calculate percentages of dissolved solid and water in the red 

blood cell and the IV 
• Use ratios to identify relative concentrations of water within the 

IV and the red blood cell 
• Test predictions with each step in the program 

Students discuss 
analysis 
questions and 
explain findings 

Explain Students: 
• Complete analysis questions  
• Explain and justify answers to questions 

 
The lesson on Day 2 was very different from that on Day 1 in that students were 

expected to successfully apply their knowledge of cell membranes, relative 

concentrations, vocabulary terms (hypertonic, hypotonic, isotonic, and concentration 

gradient) and osmosis and diffusion to a realistic, virtual model of a red blood cell. 

Students were asked to predict changes in the direction of water movement between the 

virtual red blood cell and a virtual intravenous (IV) solution while manipulating 

concentrations of dissolved solids in the IV solution. Jason challenged students to 

calculate relative concentrations of dissolved solids within the cell and the IV solution in 

an effort to build connections between mathematics, the relative concentrations of 

dissolved solids, and the direction of osmosis. Jason’s goal was to help students employ 
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mathematics to predict the direction of water movement along a concentration gradient 

while gaining a micro view of osmosis based upon relative concentrations of dissolved 

solid identified within the program. Jason designed the lesson on Day 1 to support 

students’ understanding of osmosis and diffusion and to prepare students to apply their 

knowledge when working with the Osmobeaker computer program (Meir, Stal, & 

Maruca, 2004) on Day 2.  

In the following sections, I describe the knowledge components of Jason’s PCK 

including his knowledge of: representations and instructional strategies, students’ 

understanding of science, assessment, and curriculum.  

Knowledge of Representations and Instructional Strategies 

 The lesson on Day 1 engaged students with an exploration of osmosis and 

diffusion through the dialysis tubing investigation before introducing diffusion and 

osmosis through a PowerPoint lecture. Jason explained: 

They will start the lab not knowing what they are doing. . . . They have talked 
about diffusion a little bit. That lab takes a little while to transpire and while the 
lab is transpiring we will go back to the smart board and we are going take a little 
bit of notes on what makes up the cell membrane . . . .When we get done we will 
go back and get the results and from the results then I give them post lab 
questions where they have to describe what happened. (pre-observation interview) 
 

After students set up the osmosis and diffusion investigation and predicted changes in the 

solutions within the dialysis tubing and beaker, Jason transitioned to a discussion for 

which he identified three goals including: (1) sharing predictions for the outcome of the 

investigation, (2) identifying Brownian motion (random molecular motion) as the driving 

force for diffusion and osmosis, and (3) clarifying the semipermeable nature of the cell 

membrane. During the discussion, Jason implemented an analogy to explain the nature of 

a cell membrane. He noted: “Think about a club with a bouncer. It is the bouncer who 
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determines who gets into a club just as the cell membrane determines what is able to 

enter or leave the cell” (Jason, Day 1). He identified the dialysis tubing membrane as 

semipermeable and explained the direction of diffusion and osmosis as a consequence of 

the relative concentrations of tubing contents and the iodine solution in the beaker. Jason 

explained: 

Well like I said before, this is a lab that we are doing without a lecture or prior 
knowledge or instruction to it. So I wanted to get some understanding down about 
permeability and things that can pass and things that cannot pass and then when I 
get the lab results I am going to expect that the students will use the word 
nonpermeable if things cannot pass through the membrane. (stimulated recall 
interview, Day 1) 

 
Following the discussion, students observed the dialysis bag for changes in color, 

measured the amount of liquid to determine if water entered or left the bag, and used a 

glucose strip test to determine if glucose diffused out of the dialysis bag into the iodine 

solution in the beaker. Jason challenged students to explain their observations in analysis 

questions: “In one of the post lab questions students are asked if glucose passed through 

the dialysis tube membrane and how do they know that this happened?” (stimulated recall 

interview, Day 1). Jason drew a diagram of the dialysis tubing in a beaker (see Figure 16) 

on the Smart Board and asked students to indicate the direction of movement of glucose, 

water and iodine. 

 

 

Jason explained his rationale for drawing the diagram by stating: 

Dialysis tubing containing  
starch, glucose, and water  

Beaker containing 
iodine and water 

 

Glucose diffuses out of tubing Iodine and water diffuse into tubing 

Figure 16: Whiteboard  diagram of dialysis investigation 
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By drawing the picture we could easily show what was going in which direction. 
When it comes to diffusion and osmosis, they tend to think that everything just 
leaves. So if glucose diffuses out of the dialysis bag, they think that there is no 
more glucose left within the dialysis bag. (stimulated recall interview, Day 1)  

 
Jason challenged students to rely upon their observations to explain the movement of 

water, glucose, and iodine. During the lab discussion, he continually asked students to go 

back to their observations and find evidence to support their claims and identify 

molecular motion as the driving force for diffusion and osmosis. He asked “How do you 

know?” (Jason, Day 1). Next, Jason introduced the terms hypertonic, hypotonic, isotonic, 

and concentration gradient. He linked the terms to students’ observations of osmosis and 

diffusion during the investigation. 

On Day 2, Jason implemented the Osmobeaker computer program (Meir, Stal, & 

Maruca, 2004) to challenge students to apply their knowledge of osmosis and diffusion 

and solve a realistic problem involving the maintenance of homeostasis between virtual 

representations of a red blood cell and an IV solution. Jason explained: 

This will be a performance enhancement type thing in that they will actually have 
to use what they learned. You have cells with IV fluids and they have to 
manipulate the amount of dissolved solids in IV fluids so they do not damage the 
cell and so forth. They have to do percentages and they have to evaluate how 
many molecules are going inside the cell. Then there is a mystery at the end 
where they have to determine what the IV solution has to be in order to keep the 
cell alive. (stimulated recall interview, Day 2) 
 

Jason explained that the Osmobeaker computer program (Meir, Stal, & Maruca, 2004) 

provided a clear representation of osmosis for the students by stating: 

I like this lesson because you can actually see the water molecules moving 
through the cell membrane. The lab we did earlier you cannot see the movement 
of water molecules across the membrane but in this computer program lesson you 
can. (stimulated recall interview, Day 2) 
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Jason described the lesson on Day 2 as inquiry, explaining that students were to 

change the concentration of dissolved solid in the IV solution and predict the outcome in 

terms of the direction of osmosis. He explained: 

The lab itself is conducive to inquiry because it has a couple of things where you 
have to figure out what is actually the concentration of dissolved solids inside the 
red blood cell and in the IV solution. So there is inquiry there and there is a lot of 
inquiry in figuring out what I have to have in the IV solution to keep the cell 
isotonic. There is a trial and error process there. So it inside the cell it puts 
hemoglobin and sugar and all of those things in there correctly to make sure that 
the cell does not get too big or too small. So they have to maintain the right 
concentrations inside the cell. (stimulated recall interview, Day 2)   
 

Jason believes making connections between content and student experiences has the 

potential to enhance student learning and noted when talking about osmosis and 

diffusion, he often referenced laxatives and diarrhea to define relationships between 

content and human physiology. He noted: 

We talk about diarrhea and about osmosis occurring in the intestine and stuff like 
that. A lot of the kids tell me that they never thought about anything like that 
occurring. I try to find experiences that students have experiences with whether it 
be something gross like diarrhea or something else. (pre-observation interview) 

 
Jason was the only study participant to integrate mathematics into his teaching of 

osmosis and diffusion. Jason noted that his goal was for students to understand how to 

calculate ratios to determine the relative concentrations of dissolved solids and water in 

each solution. Jason challenged his students to use their calculations to predict the 

direction of osmosis when working with the Osmobeaker program (Meir, Stal, & Maruca, 

2004). He explained: 

Today was easy because it just so happened that both sides of the membrane had 
250 molecules [molecules of dissolved solid]. But tomorrow one side will have 
250 molecules and the other side will have 150 molecules so that will not be as 
easy to see. So they will actually have to figure ratios and not just go by the 
number of molecules. (stimulated recall interview, Day 2) 
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Once students can visualize what is actually occurring during osmosis and 

diffusion “then doing the manipulatives and the math and percentages is easier” 

(stimulated recall interview, Day 2). Jason implemented two strategies for teaching 

osmosis and diffusion. First, the dialysis bag lab provided an opportunity for students to 

explore the concepts. Second, Jason challenged students with maintaining homeostasis 

within a virtual red blood cell with the Osmobeaker computer program (Meir, Stal, & 

Maruca, 2004). Jason explained his purpose was to scaffold student learning beginning 

with the diffusion and osmosis lab on Day 1 and challenging students to apply their 

knowledge to solve realistic problems through the Osmobeaker investigation on Day 2.  

Knowledge of Students’ Understanding of Science 

 Jason identified three overarching learning goals for the dialysis tubing 

investigation. First, he wanted students to understand the nature of a semipermeable; the 

dialysis tubing membrane was semipermeable and only allowed water, iodine, and 

glucose to pass through it, starch molecules were too large to pass through the tubing. 

Second, he wanted students to understand that glucose diffused out of the tubing 

achieving equilibrium between the tubing and beaker solutions. Third, Jason wanted 

students to accurately predict the direction of osmosis. Jason noted: 

I want them to understand that Brownian motion results in osmosis and diffusion. 
. . . I want them to learn that substances are diffusing through a membrane 
because of their size. I want them to learn that when we start talking about a 
membrane it has actual holes but the cell membrane does not have holes but 
proteins that act as holes. Membranes are all semipermeable so when I start and 
all of this is really just resource. We will begin to draw upon it later when they 
begin putting together their own thoughts. (stimulated recall interview, Day 1) 
 
Jason noted students can and do learn from one another and implemented 

cooperative learning into his lessons on both days. He explained that teaching and 
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learning go together and when one student teaches a concept to another, both learn from 

the experience. Jason explained: 

When they use the glucose test strip, they are conversing and talking about what 
is going on in the lab. When I am walking around I want to see them both 
involved in a scientific conversation or talking about what is going on. I want to 
see them both involved. . . . So I am getting people to help each other. I need 
involvement when I walk around I want to see kids involved with each other and 
learning from each other. (stimulated recall interview, Day 1) 

 
 Vocabulary terms were a concern for Jason throughout lessons on Days 1 and 2; 

he noted students might experience difficulty connecting vocabulary with concepts. The 

terms he referenced as concerning included: hypertonic, hypotonic, isotonic, and 

concentration gradient. He explained he continually searched for examples, metaphors, 

and analogies that would make relevant connections between vocabulary and concepts. 

He noted: 

The kids I have struggle with the large words and complex concepts. I will say 
osmotic pressure and three or four of them will not even be able to spell it so they 
will be turned off right away. So I have to put things in a way that they can 
comprehend it or do the lab and so forth. (pre-observation interview)  

 
 Jason associated four potential learning difficulties with the Osmobeaker 

computer investigation including: (a) comprehension of vocabulary terms, (b) prediction 

of the direction of osmosis, (c) navigation of the computer program, and (d) confusion 

with mathematical calculations of ratios and percentages. To address his concerns, Jason 

engaged students with a brief review of relevant vocabulary terms from Day 1. A list of 

key terms and definitions (hypertonic, hypotonic, isotonic, and concentration gradient) 

were written on the whiteboard as a ready reference for students. Next, Jason discussed 

the direction of osmosis students observed during the dialysis tubing investigation to 

make a clear connection between the tonicity of the environment and direction of 
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osmosis. Jason familiarized students with the program, and provided a step-by-step 

explanation of the mathematics to assist students with calculations of ratios and 

percentages. He explained: 

Well, first I wanted the students to understand how to use the control buttons on 
the computer so that they could click on permeable to see how many molecules 
there were in each compartment. The second thing is I wanted to make sure that 
they understood how to use the terms that we were talking about in explanations 
such as hypertonic, hypotonic, and isotonic. The third thing is that I wanted to 
make sure that they understood the math part and how to figure concentrations 
and how to figure percentages, ratios and stuff like that. (stimulated recall 
interview, Day 2) 
 
Concerns for student learning resulted from Jason’s struggles with dyslexia. He 

modeled effective learning strategies for his students and viewed lessons from students’ 

perspective, Jason explained, “Usually my strategies come about from thinking about the 

student first” (stimulated recall interview, Day 2).  He considered three factors when 

designing lessons: (1) investigations preceded lectures to scaffold student learning,       

(2) lectures are interactive and engaged students in explanations and provided examples, 

metaphors, computer animations, and analogies to enhance comprehension, and            

(3) students are challenged to draw upon their knowledge to find answers and solve 

problems.  

Knowledge of Assessment 

Jason believes that formative assessments provide important insight into student 

thinking and prior knowledge. He noted the importance of students’ predictions in 

revealing their understanding of the direction of diffusion of glucose and iodine as well as 

the direction of osmosis for the dialysis tubing investigation. Jason challenged his 

students to predict outcomes for the dialysis tubing investigation and provide a rationale 

for their predictions. By challenging students to make and explain predictions, Jason 



259 

revealed students’ prior knowledge of diffusion and osmosis and focuses students’ 

thinking during investigations. Jason explained: 

If students do not make a prediction it is harder for them to think through the 
process and understand what happened and what is going on. But if students made 
a prediction they are saying “OK I think osmosis will be in this direction. If water 
does move in this direction, then why does this happen?” So I think it puts 
students into a more analytical mind. (stimulated recall interview, Day 2) 

 
Jason noted something as simple as student answers to questions posed during a 

class discussion on osmosis and diffusion can reveal students’ conceptual understanding. 

He believes that feedback from formative assessments can effectively inform his next 

steps in a lesson. Jason explained: 

I may ask about why water is the universal solvent because of its polarity or I 
might ask how water moves up through plants. Both of those questions require the 
kids to explain the situation through the polarity of water. (stimulated recall 
interview, Day 2) 
. 

Jason noted the importance of assessing student preconceptions and misconceptions prior 

to the start of the lesson. He initially questioned students to reveal their knowledge of 

osmosis and diffusion from the lab completed during the previous lesson and had planned 

to review the concepts of diffusion and osmosis if students’ answers indicated a lack of 

understanding of diffusion and osmosis. Jason explained: 

I was asking questions to make sure that we [the students] understood osmosis 
and diffusion before we started the software. If they had not done well with that I 
would have had to explain those two processes so that they could get it. I would 
have said OK, we have too much indigestible stuff in the intestine that means that 
water will enter the intestine. (stimulated recall interview, Day 2) 
 
Jason noted the importance of lab analysis questions to gain insight into student 

thinking. He explained that the questions he asks challenge students to apply their 

knowledge of content. Student responses to the lab questions provided insight into 
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students’ understanding and ability to apply their knowledge to solve novel problems 

related to the laboratory investigation. He explained: 

When I ask post lab questions I want them to take what happened and then take it 
to the next level. . . . For instance, one of my post lab questions was: Why do 
humans have to do osmosis? What is so important about that? or Why can’t the 
skin do osmosis freely like most cells? So they have to kind of use what we did 
and apply it to a different situation so they can see what is going on. (pre-
observation interview)  

 
Another means of assessing students’ understanding lies within the nature of 

student work. Jason explained that he expected his students to show their work when 

calculating percentages and ratios and not simply post an answer. He indicated that he 

implemented this rule to gain insight into students’ thinking by noting the manner in 

which they solved problems.     

The Osmobeaker lab itself is conducive to inquiry because it has a couple of 
things where you have to figure out what is actually the concentration of 
dissolved solids inside the red blood cell and in the IV solution. So there is 
inquiry there and there is a lot of inquiry in figuring out what I have to have in the 
IV solution to keep the cell isotonic. There is a trial and error process there. So it 
inside the cell it puts hemoglobin and sugar and all of those things in there 
correctly to make sure that the cell does not get too big or too small. So they have 
to maintain the right concentrations inside the cell by manipulating the 
concentration of dissolved solids in the IV solution. (stimulated recall interview, 
Day 2) 
 
Jason incorporated informal formative assessments into his teaching. He used 

students’ predictions to reveal prior knowledge and students’ conceptual understanding of 

phenomena. On Day 2, he challenged students to complete calculations determining the 

relative concentrations of dissolved solid within the cell and the IV solution. Jason moved 

through the classroom and interacted with the students to assess their understanding and 

determine if students were able to accurately implement mathematics. Jason explained: 

I was hoping that they would get the concept of pressure and that they would 
know that by adding or subtracting more molecules from the IV solution that 
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there would be more collisions with the membrane and that could increase or 
decrease it [pressure within the cell]. Then in the next question, I made them 
actually increase the cell [water moves into the cell]. (stimulated recall interview, 
Day 2) 

 
As Jason moved through the room and looked over his students’ shoulders, he 

asked questions to determine if they understood the concepts. During the Osmobeaker 

(Meir, Stal, & Maruca, 2004) lab, Jason assessed students’ understanding of osmosis by 

asking students to predict concentrations of dissolved solid within the IV solution which 

would result in an increase or a decrease within cell volume. 

Jason noted formative assessments provide valuable insight into student thinking 

and understanding. He believes that feedback from formative assessments can effectively 

inform the next steps in his teaching. Jason challenged students to predict the direction of 

diffusion of dissolved solids (iodine and glucose) and the direction of osmosis (water 

movement) during the dialysis investigation and the direction of osmosis following each 

manipulation of dissolved solids within the virtual IV solution throughout the 

Osmobeaker computer software (Meir, Stal, & Maruca, 2004) investigation. Jason 

demonstrated careful observation of student work, noting students’ ability to apply their 

understanding of osmosis and diffusion to answer analysis questions, to solve problems 

determining solute ratios within solutions, and accurately predict the direction of osmosis 

and diffusion.   

Knowledge of Curriculum 

 Jason is well aware of curricular guidelines and noted the importance of state 

Course Level Expectations (CLEs) when developing curriculum and planning lessons. He 

explained that covering the content identified by CLEs guides his planning. 
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They have got to know the parts of the cell membrane, lipids, carbohydrates, and 
proteins. They have to know what these parts do and then how things cross the 
membrane. So all of the different type of membrane transport to cross the 
membrane and why is it important that substances are able to cross over the cell 
membrane. Why is it important, this is the most important of the objectives. It is 
hard to get to the fourth one before students get the first three. So I want them to 
know why do plants have to have water cross the cell membrane. Why do human 
beings and animal cells have to have water? (pre-observation interview) 

 
Students in Jason’s classes are not issued textbooks in the beginning of the school 

year; Jason noted students respond more positively when engaged with technology. 

Therefore, when given the choice of purchasing textbooks or lap top computers, Jason 

chose the computers. A set of older textbooks are in his room for students to check out if 

necessary. Jason believes his students are oriented toward learning with technology. He 

explained: 

Before I got this program we just drew pictures and it was more of a coloring type 
thing or picture drawing. We would do the lab. The dialysis tubing might be done 
later in the lesson and then ask the kids to draw what is occurring and draw the 
movement of water and so forth. This is much better because they can actually 
manipulate the numbers and see the changes and they can work their way through 
the process and see what has to be in the IV bag. (stimulated recall interview, Day 
2) 
 
Jason noted an understanding of osmosis and diffusion is critical for student 

comprehension of biological concepts taught later during the school year. When asked 

about the sequence of the dialysis lab and the Osmobeaker program (Meir, Stal, & 

Maruca, 2004), Jason explained that he put the dialysis tubing investigation first because 

he believed that students would develop a basic understanding of osmosis and diffusion 

and reflect upon the dialysis investigation to understand the computer lab on the 

following day. He explained:   

I put the dialysis bag lab first where they can actually know, basically what the 
dialysis bag does is that it lets you know that osmosis did occur here and diffusion 
did occur here. Then by doing this lab they can comprehend going back to the 
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dialysis lab we did they can understand that there were small holes in the 
membrane and things were diffusing. They have something that they can actually 
see, a visual of what is happening when osmosis and diffusion occur. Taking 
these things together, they have a visualization of what is occurring. (stimulated 
recall interview, Day 2) 
 

Once students can visualize what is actually occurring during osmosis and diffusion “then 

doing the manipulatives and the math and percentages is easier” (stimulated recall 

interview, Day 2).  

 Jason noted that students must understand the structure and function of the cell 

membrane and how materials enter and exit the cells to maintain homeostasis. He also 

explained that movement of water across a membrane was involved in other key 

processes essential to life on earth, such as photosynthesis and cellular respiration. Jason 

explained that in biology each lesson builds upon the concepts learned in previous 

lessons. He explained that in biology “the next lesson will build upon this one.” (pre-

observation interview) Jason also noted that future biology courses will require student 

knowledge of osmosis and diffusion in terms of percentages of dissolved solids and ratios 

of solute and solvent within the cell and the surrounding solutions. He explained, “So 

next year when these kids take Advanced Biology when we begin doing this with 

molarity they will have a much better understanding because we did this with percentages 

and ratios” (stimulated recall interview, Day 2). Jason noted that state and district 

guidelines for biology support the development of the general biology curriculum. His 

knowledge of curriculum extends well beyond standards imposed by the state and 

district; he is also very aware of the sequence of instruction necessary to scaffold student 

learning. 
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Jason’s PCK for Teaching Diffusion and Osmosis 

Throughout his teaching, Jason demonstrated an ability to integrate the 

components of his teacher knowledge to develop effective and relevant learning 

opportunities for students. The Magnusson et al. (1999) model of PCK has been modified 

to illustrate Jason’s PCK for teaching osmosis and diffusion (see Figure 17). 
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Figure 17:  Jason’s topic-specific PCK  
___________________ 
 
 
17Note: Modified from Nature, sources, and development of pedagogical content knowledge for science teaching (p.99), 
by S. Magnusson, J. Krajcik, & H. Borko, 1999. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical 
content knowledge: The construct and its implications for science education (pp. 95-132). Boston: Kluwer 
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Jason believes effective learning occurs when students are actively engaged in 

solving problems and investigating concepts. During each lesson of the observation, he 

engaged students in investigations of osmosis and diffusion, challenged them to make 

and test predictions, and required explanations to be supported with evidence. His 

orientation for science teaching is best described as constructivist. Jason’s beliefs about 

teaching and learning acted as a filter in shaping the nature of representations, 

instructional strategies, and sequence of instruction. Jason designed lessons to build upon 

students’ knowledge of osmosis and diffusion; he utilized the investigation as an 

introductory exploration of osmosis and diffusion, preparing students for the guided 

inquiry Osmobeaker (Meir, Stal, & Maruca, 2004) investigation to be completed on Day 

2. Jason used representations relevant to students’ prior knowledge and experience to 

make connections between osmosis, diffusion and students’ lives.   

A theme noted throughout Jason’s teaching was the emphasis he placed upon 

making and testing predictions and problem solving. Whether he was challenging 

students to predict the direction of movement of water, iodine, and glucose or to calculate 

relative concentrations of dissolved solid, Jason was challenging his students to think 

critically and use their knowledge to solve realistic problems. Throughout his lessons he 

also relied upon formative assessments to gain insight into students’ thinking and 

comprehension. This insight also informed his next steps within the lesson. 

 Jason understood the potential learning difficulties students were likely to face 

with this content and sequenced the lessons to support student learning. Students were 

challenged to apply the knowledge gained during the investigation and lecture/discussion 

on Day 1 to solve the problems posed by the Osmobeaker program (Meir, Stal, & 
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Maruca, 2004) on Day 2. By implementing the Osmobeaker program (Meir, Stal, & 

Maruca, 2004), he used a constructivist instructional approach to challenge his students to 

apply their knowledge of osmosis and diffusion to maintain homeostasis (equilibrium) 

between a red blood cell and an IV infusion. A model of Jason’s PCK for teaching 

diffusion and osmosis is shown in Figure 18. 
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Figure 18: Integration of the components of Jason’s PCK 
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Jason’s PCK for teaching diffusion and osmosis, shown in Figure 18, represents 

the integration of PCK components creating teacher knowledge specific for teaching 

diffusion and osmosis. There are four important features to note within this 

representation. First, Jason’s orientation to science teaching is placed within center of the 

model indicating his orientation acts as a lens through which the four components of 

Jason’s PCK were viewed. Second, Jason drew heavily upon all four components of his 

PCK to plan and teach his lessons. Third, connecting arrows between components 

indicate the highly integrated nature of this knowledge. It is difficult to distinguish 

between the components which Jason drew upon to design representations, instructional 

strategies, instructional sequences, and assessments most effective for teaching osmosis 

and diffusion. Fourth, connecting statements between components provide insight into 

Jason’s integration of knowledge for teaching diffusion and osmosis.  

Jason drew heavily upon his knowledge of students as learners when designing 

and teaching lessons. The representations, strategies, and assessments reflected his goals 

for student learning and his knowledge of potential learning difficulties. He embedded 

formative assessments into his lessons, using students’ predictions and analyses to inform 

next steps in his lessons. Jason’s knowledge of curriculum and curricular resources 

informed his implementation of the dialysis tubing and Osmobeaker (Meir, Stal, & 

Maruca, 2004) investigation. Jason integrated all PCK components when teaching 

diffusion and osmosis.  

Content Representation 

In Table 21, a Content Representation (CoRe) (Loughran, 2006) illustrates 

Jason’s knowledge of teaching. The components of PCK are represented within the 
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context of the CoRe and specific examples of instructional strategies and representations, 

assessments, potential student difficulties, and curricular considerations are included. 

When reading the CoRe, it is important to read individual columns (e.g. Big Idea A) from 

the top to the bottom vertically. The columns extend beyond a single page. 

Table 21. Content representation for Jason21 

Content Representation (CoRe) 
Considerations Big Idea A Big Idea B Big Idea C 
 Plasma membranes are 

semipermeable. 
Water will diffuse across a 
cell membrane from higher 
concentration to a lower 
concentration. 

Changes in the environ-
ment of a cell will result in 
changes in the direction of 
osmosis.  

Identify the  
learning goals for 
students within this 
lesson? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Plant and animal cells 
are surrounded by a 
semipermeable 
membrane which only 
allows some 
substances to enter the 
cell. 

• Cell membranes 
physically isolate the 
cell from the 
environment. 

• The membrane is 
constructed from a 
phospholipid bilayer. 

• Specialized proteins 
act as channels to 
allow water to enter 
and leave the cell. 

• Osmosis is the diffusion 
of water across a semi-
permeable membrane 

• The direction of osmosis 
is determined by the 
concentration gradient. 

• During osmosis, water 
will flow toward the 
solution with the highest 
concentration of 
dissolved solid or solute 
and the lowest 
concentration of water. 

• Percentages of dissolved 
solid or solute within a 
solution can be used to 
calculate the percentage 
of water within the 
solution. 

• Changes in the dissolved 
solid within an IV 
solution will change the 
direction of osmosis 
within body cells. 

Why is it important 
for students to know 
this content? 
[Knowledge of 
curriculum] 

• All cells have a cell 
membrane which acts 
as a barrier to the 
environment. 

 
• All living things 

require water and 
there must be a way 
for water to enter and 
leave the cell. 

• Osmosis is the diffusion 
of water across a cell 
membrane. 

 
• Cell membranes are 

hydrophobic with 
proteins acting as 
channels for the passage 
of water. 

 
• All substances will 

diffuse from areas of 
high concentration to 
areas of lower 
concentration. 

 
 

• Students can calculate 
the molarity of each 
solution to predict the 
direction of water 
movement. 

• All living cells must 
regulate the movement 
of water into and out of 
the cell. 

• Molecular motion is the 
driving force for 
diffusion and osmosis. 

• Osmosis is involved in 
other life processes such 
as photosynthesis and 
cellular respiration. 
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Identify potential 
student difficulties 
and limitations 
associated with 
teaching this idea. 
[Knowledge of 
students as 
learners] 

Students will have 
difficulty 
understanding: 
• vocabulary terms and 

definitions. 
• the function of  

channel proteins 
within the cell 
membrane. 

 

Students will have 
difficulty with: 
• predicting the direction 

of osmosis. 
• determining the direction 

of water movement 
during osmosis during 
laboratory investigations. 

• explaining the direction 
of diffusion. 

 

Students will have 
difficulty with: 
• calculating ratios to 

determine the relative 
concentration of solute 
in each solution. 

• using ratios of dissolved 
solid within two 
solutions separated by a 
semipermeable 
membrane to identify the 
relative concentration of 
water. 

• using ratios to identify 
the direction of osmosis. 

• calculating the 
percentage of water from 
the percentage of solute. 

• manipulating the 
Osmobeaker computer 
lab program. 

Identify knowledge 
of students’ thinking 
which influenced 
the teaching of this 
idea. 
[Knowledge of 
students as 
learners] 

• Students may have 
misconceptions 
concerning the 
structure and function 
of cell membranes. 

• Students may have 
difficulty understanding 
the complex concepts of 
diffusion and osmosis in 
terms of the particulate 
nature of mater and 
molecular motion.  

• Students learn 
effectively from other 
students through 
collaboration.  

• Models make complex 
concepts easier for 
students to understand.  

• Students can use models 
to make and test 
predictions.  

Teaching strategies 
and representations 
implemented and 
particular reasons 
for using these 
strategies to engage 
students with this 
idea. 
[Knowledge of 
instructional 
strategies and 
representations] 

• The dialysis tubing is 
an effective cell 
model and can be 
used by students to 
investigate the nature 
of a semipermeable 
membrane. 

• Computer graphics 
and animations can 
support students’ 
understanding of 
complex concepts.   

 
 

• Dialysis tubing can be 
used as a learning tool 
for students to make and 
test predictions of the 
direction of water 
movement during 
osmosis.  

• The diffusion of iodine 
into the dialysis bag is 
noted when the starch 
solution within the bag 
changes color from 
translucent white to dark 
blue or black 

• Students can test for the 
presence of glucose 
during the dialysis 
tubing investigation to 
emphasize the diffusion 
along a concentration 
gradient. 

• The Osmobeaker 
computer software 
provides an interactive 
example of osmosis.  

• Strong connections can 
be made between  
computer programs and 
real-world scenarios. 

Identify ways of 
ascertaining that 
students  concepts 
taught. 
[Knowledge of 
Assessment] 

• Student understanding 
can be determined by 
the nature of their 
responses to questions 
posed before and 
during investigations. 

• Student responses to 
questions about the 
dialysis laboratory 
investigation provide 
insight into student 
thinking. 

 
 
 

• Students’ predictions of 
changes before 
instruction reveal 
students’ prior 
knowledge of diffusion 
and osmosis. 
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• If student answers are 
assessed and returned by 
the following class 
period, discussions are 
more meaningful 
because the information 
is clearer in student 
minds 

• Critical thinking 
questions require 
students to think deeply 
about the laboratory 
investigation. Students’ 
answers reveal their 
conceptual 
understanding of 
phenomena. 

• Students use arrows to 
indicate the direction of 
osmosis and diffusion in 
diagrams included in the 
dialysis lab analysis 
questions reveals 
students’ thinking and 
conceptual 
understanding.  

 

• Students predictions 
during the Osmobeaker 
computer lab reveal 
students’ conceptual 
understanding of 
osmosis. 

• Student calculations of 
relative concentrations 
indicate understanding 
of mathematics and the 
movement of water 
along its concentration 
gradient. 

• Student responses to 
questions about the 
relative concentrations 
of dissolved solid with 
the IV solution and the 
human blood cell reveal 
student understanding 
about osmosis, diffusion, 
and concentration 
gradient. 

• The appropriate use of 
terms “talking like a 
scientist” indicates 
student understanding of 
vocabulary and concepts 
related to osmosis and 
diffusion. 

 
The content representation (CoRe) provides an overview of Jason’s teaching in terms of 

the implementation of each component of PCK and reveals important insight into his 

teaching.  

 

 

 

 

 

_________________________ 

21Note: Modified from Understanding and developing science teachers’ pedagogical content knowledge, 
by J. Loughran, A. Berry, and P. Mulhall, 2006, p. 28. Rotterdam: Sense Publishers. 
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Kacy’s Case Profile 
 

Kacy’s Vignette: Making and Testing Predictions 
 
 “Okay guys, today is going to be a very busy day. We have a lot to do and I want 

everyone to be focused!” Kacy stated as students walked into her classroom.  

 “So I guess we will be doing a lab today?” a student asks as she places her books 

under her desk. 

 “You bet! Be on your toes, we have a lot to do!” Kacy answers emphatically. 

 “Okay, first I want you to listen to directions for the lab we are going to set up 

today; this is the transport lab inquiry” Kacy informs her students as she passes out the 

lab sheets. “Follow along on your lab sheets as I review the directions,” she tells the 

students. 

 “Okay, Step 1: pick up the equipment from the equipment cart in the front of the 

room. Step 2: pour 300 ml of the iodine solution into the 750 ml beaker,” Kacy states. 

She holds up a small sandwich bag as she lists the next step, “Pour 50 ml of the starch 

solution into the baggie; the starch solution, baggie, and graduated cylinder are all at your 

lab stations,” Kacy states as she focuses on her students, making sure that they are 

listening to her instructions. 

 “Should we write down our observations?” a student asks. 

 “Good point, Grace, make careful observations and record your data during the 

investigation,” Kacy responds.  

 “Well, what are you going to do next?” Kacy asks the students as they pour over 

the directions for the lab. 

 “I think we should pour the iodine solution into the beaker,” a student responds. 
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 “Hey, when do we put the baggie in the beaker solution?” another student asks. 

 “We want to put the baggie with the starch solution in it into the beaker 

containing the iodine solution,” a student responds in the back of the room responds. 

 “You guys are great, that is what I want you to do” Kacy reminds her students. 

“But what are you going to do before you place your baggie in the beaker,” Kacy asks the 

students. 

 “I know! I know this!” shouts a student. “We predict what is going to happen to 

the solution in the beaker and the solution in the baggie,” she continues. 

 “Wow, I am impressed,” Kacy responds as she looks around the room. 
 
 “Oh yeah, like we never make predictions in this class!” a student states rolling 

his eyes. 

 “Hey, I like making predictions; it is fun to see how things turn out and look, we 

don’t have to make up a table for our observations, Ms. G. made it for us,” another 

student responds. 

 “Now, I want you to think about the baggie and remember there is a unique 

solution inside the baggie that is not found in the beaker, right?” Kacy asks the students. 

“Hey, the baggie kind of like a cell, isn’t it?” One student asks. 

“Yeah, and the baggie is like a cell membrane that contains a starch solution 

instead of, like a cell containing cytoplasm, right?” Another student states. 

“This is great, you guys get the idea that the baggie is like a cell in this lab. Good 

job!” Kacy adds. 

 “Hey guys, your lab team is going to predict what will happen to both solutions; 

the solution in the baggie and in the beaker,” Kacy tells the class. “I want you to think 
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about these solutions, but I want you to watch this first,” she tells the class. “Remember 

that iodine is an indicator for starch,” Kacy reminds the class. “When you add iodine to 

starch, there is a color change,” she tells the class as she pours a small quantity of iodine 

into test tube containing a starch solution. 

 “Wow, it changed. Like it changed from white to black,” a student comments as 

he watches Kacy. 

 “That is right, so I want you to think about this, the starch is in a baggie and the 

iodine is in the beaker, so talk to your row partner and make a prediction about what will 

happen when you place the baggie into the beaker of iodine and water,” Kacy states. 

There is a muted buzz in the room as students turn to talk to their row partners and decide 

on a prediction for the investigation. 

 “Okay guys, once you have settled on a prediction, what should you do?” Kacy 
asks the students. 
 
 “Well, I think we should write it down on our lab sheet,” a student responds. 
 
 “Good, after each team has made and recorded a prediction, how will you test 

your prediction?” Kacy asks the class.  

 “I know, I know!” A student responds waving her hand wildly. “Like, we to see 

what happens after the baggie is in the iodine solution in the beaker,” she tells the class. 

 “Yeah, then we can keep an eye on it and look for changes in the baggie and 

beaker,” another student tells the class. 

 “Okay, sounds good. Now go to your lab tables and get going. Remember we will 

be doing lots other things during class, so you must be quick,” Kacy reminds the students. 

 The students quickly move to their lab tables and for moment there is a flurry of 

activity. As students settle into their lab groups, Kacy moves around the room and stops 
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to talk with and ask questions of each lab group. After setting up the lab, students place 

the beakers in the middle of their lab tables and quickly return to their seats. 

  “I want you to go to your lab tables and look at your baggie lab set ups; look 

carefully and write your observations down and think about your prediction,” Kacy 

explains after a brief discussion during which students shared their predictions.  

“Hey, the solution in the baggie is like, dark,” a student proclaims as she studies 

the beaker with her lab group. 

“We were right,” another student claimed as he rotates the beaker in his fingers.  

“Well, what do you see?” Kacy asks. “How has your lab set up changed and why 

has it changed?” She asks. 

“It was the iodine,” a student shouts. “The iodine went into the baggie,” the 

student continues. 

“Well good,” Kacy responds. “What about the rest of you? Do you agree?” she 

asks as students continue to study their beakers. 

“Yeah, the iodine must have gone into the baggie,” another student states as she 

looks to her lab partners for their approval. 

“Well, I have a question for you, what happened to the iodine solution in the 

beaker?” Kacy asks. 

“It did not change,” several students respond in unison. 

“Okay, so what does that tell you?” Kacy asks. 

“I know, I know!” A student in the back shouts waving her hand in the air. “The 

iodine went into the baggie but the starch did not come out of the baggie,” she continued. 
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“Interesting, what evidence do you have to support that claim?” Kacy asks as she 

looks around the room. 

“Well, our group thinks iodine diffused into the baggie and made the starch turn 

black, the baggie looks bigger than it did when we put it into the beaker, the starch did 

not come out of the baggie because the only color change was inside the baggie,” the 

spokesman for the group tells the class. 

“Yeah, and our baggie looked bigger too, like water and iodine went into the 

baggie,” a student from another team observed. 

“Our baggie seemed to be bigger too,” another student claims. 
 
“Well good, now I would like you to think about this, why did the water and 

iodine enter the baggie?” Kacy asks the students. 

“To help you find an answer to that question, we are going to look at lettuce 

leaves,” Kacy tells the students.  

Background and Context 
 

Kacy is a veteran biology biology teacher with seven years of teaching experience 

at Rollins High School. Her teaching experience includes tenth grade general biology and 

honors biology. Rollins High School is located within a mid-westerns community with a 

population of approximately 75,000 and includes grades 10-12 with an average student to 

teacher ratio of 24/1, above the state student to teacher ratio of 18/1 (DESE, 2008). 

Rollins is on a block schedule with 90 minute classes meeting on alternate days.  

Kacy’s classroom is bright, clean with wooden cabinets lining the white walls. 

The center of the classroom contains a traditional arrangement of student desks in five 

rows of six desks each facing a whiteboard and Smart Board in the front of the 
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classroom. There are six laboratory tables the back and outside walls of the classroom. 

Each laboratory table includes seating for four students and is equipped with a sink, hot 

and cold water, and gas jets. During lessons, students transition from their desks 

following whole class lecture and discussion to the laboratory tables for the completion 

of investigations or activities during lessons.   

Kacy is the most senior member of a Biology Professional Learning Team (PLT) 

at Rollins High School. During weekly meetings, the PLT collaborates to develop 

learning objectives and curricular materials for each unit. Curricular materials include 

guided lecture notes, laboratory investigations, activities, worksheets, as well as 

formative and summative assessments all of which are aligned to the state Course Level 

Examination (CLE), and the district biology science curriculum.  

Orientation to science teaching 
 

I describe Kacy’s science teaching orientation in terms of these five dimensions: 

(a) goals and purposes of science education, (b) perception of teacher role, (c) perception 

of student role, (d) ideal images of teaching, and (e) view of science as a discipline. 

Goals and purposes of instruction. Kacy’s overarching goal for teaching biology 

is to actively engage students with explorations of phenomena and, through their 

experiences and observations, construct their knowledge of biology. She explained goals 

for student learning shape her lessons and she strives to align all demonstrations, 

activities, investigations, lectures, and discussions to the goals and make expectations for 

student learning crystal clear. She noted, “I like to run this classroom so that it is like a 

well oiled machine” (stimulated recall interview, Day 2). Kacy indicated she included 
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objectives for both lessons along with key vocabulary terms and guided note pages in 

student packets distributed on Day 1. She explained: 

When the kids come in we all know what we need to do. I do not want the 
learning process to be a mystery to them. . . . I want them to know what we are 
doing and why we are doing it. And from that point I like them to be engaged as 
much as possible. (stimulated recall interview, Day 2)  
 

Kacy identified five specific learning goals for lessons on Days 1 and 2. She noted a 

specific sequence for implementing the goals to scaffold students as they construct their 

knowledge of diffusion and osmosis during the lessons. She noted: 

There are five objectives that we are working on in our progression and those are: 
explain the purposes of cellular transport; define passive transport as a process; 
describe how diffusion occurs and its importance in cellular activities; describe 
how osmosis occurs and its importance in cellular activities; and predict the 
direction of diffusion through a membrane when given an example. (pre-
observation interview)  
 
The overarching goal for the lessons on Day 1 and 2 was to facilitate students’ 

conceptual understanding of the processes of osmosis and diffusion by investigating 

factors that drive osmosis and diffusion. One of the ways in which Kacy strives to 

achieve her goals for students’ learning is by incorporating cooperative learning into her 

teaching and clustering students who she believes will be supportive of one another and 

work well together. She explains: I have picked the student seating chart so that 

everybody has someone who can support them (stimulated recall interview, Day 2). 

She planned learning opportunities to engage students in the constructing their 

knowledge of diffusion and osmosis and how and why these processes occur in both 

living and nonliving systems. She explained, “What I mean is building a framework in 

which I create steps in the learning process for the students and that I do not expect 

students to be at “A” work immediately” (pre-observation interview). Kacy consistently 
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challenged students to apply their knowledge of osmosis and diffusion by making and 

testing predictions for outcomes of teacher demonstrations and student investigations. 

She explained: 

You just do not explain cellular transport, you have to scaffold their ability to 
explain cellular transport so by providing lots of different scenarios even though 
we are dealing with the same concept over and over and over again. What they are 
doing is practicing applying that to understand the concept better. (pre-
observation interview) 
 

She emphasized the sequence of demonstrations and investigations within the context of 

each lesson and noted her purpose was to support students’ learning and make smooth 

and logical transitions between concepts. She explained: 

I have to think about the order of activities. What order of these activities makes 
the most sense to get them from concept to concept as well as what transitions are 
going to make the most sense? So that everything moves smoothly and we can go 
from this activity to this activity and then go to our lab tables and then go back 
and sit down. (stimulated recall interview, Day 2) 
 
Kacy’s overarching purpose in science teaching is to actively engage students in 

learning about science and to make relevant connections between learning objectives and 

representations, demonstrations, activities, and investigations in her lessons. Kacy 

explained she wants her students to construct their knowledge of biology. She noted her 

colleagues within the context of a Professional Learning Team (PLT) support the goals 

and purposes for teaching biology.  

I am lucky enough to work with a professional learning team. There is a group of 
biology teachers and we all agree on common biology goals and objectives of 
what should be taught. . . . So those were the places that I started off with first. 
What were my objectives and what does that final assessment look like. (pre-
observation interview) 
 
Within the context of each lesson, Kacy included opportunities for students to 

practice applying their knowledge of osmosis and diffusion and make and test predictions 
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for each scenario. Her goal is to engage students in investigating concepts and 

constructing their knowledge of biology. 

Perception of teacher role. Kacy believes her teacher role is to act as a facilitator 

of student learning and reinforce students’ learning with demonstrations and 

investigations in which students practice applying their knowledge of osmosis and 

diffusion to different scenarios. She explained, “this is still reinforcement; they still need 

that practice, and is still important for them (pre-observation interview). She focuses on 

learning targets to guide the sequence of instruction, the choice of representations and 

instructional strategies, and the assessment of student progress. Kacy explained: 

I think that my role is to know what I am teaching, to know what my students are 
going to be able to do and what it is that they are supposed to know in the context 
of our content [biology curriculum]. So it is my job to know what those 
expectations are and then to provide the means for my students to meet those 
learning targets. (stimulated recall interview, Day 2)  
 

She noted her perception of her role as a teacher has changed over time as she gained 

teaching experience. She explained: 

My real learning began when I started teaching; I learned from colleagues, I have 
learned from education research, and I have learned from reading textbooks and 
then putting it in a way that I feel will make the most sense to my students. (pre-
observation interview)  
 
The question she continually asked herself to guide her thinking throughout this 

planning process is “What do I want my students to know and be able to do?” (stimulated 

recall interview, Day 2). Thus, instead of focusing on what she will do as the teacher, her 

focus is on the learning objectives for her students and what students will be doing to 

learn content. Kacy explained: 

Before I begin planning my unit I have my learning targets right there and I am 
thinking about what I am addressing each day. I go back and forth to decide the 
sequence of my instruction, what will my students do first and second each day. 
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First of all, I set my learning targets for each day. From there my big question is 
“What are my students going to do to learn this?” So rather than asking: “What 
am I going to do?” I ask what my students are going to do to learn this. 
(stimulated recall interview, Day 2)   
 

Because of her experience in the classroom, Kacy places a greater emphasis on student-

active strategies and a decreasing emphasis on teacher-active strategies; she understands 

the importance of actively engaging students with learning. She explained:  

I always ask myself when I am making a lesson, ‘What am I doing?’ and ‘What 
are the students doing?’ Because it has to be them doing it, it is not about me 
standing up there and delivering. It is about them grappling with it and can they 
make sense of it? (pre-observation interview)  
 
Kacy uses interactive lectures as a way to draw out students’ ideas. Kacy 

explained she initially engages students in explorations of phenomena, next she engages 

students with interactive lectures to share their predictions and develop explanations 

based upon students’ experience with the phenomena. Her goal is to draw students into a 

discussion of their experiences and guide students to “focus on what the concepts are and 

what they mean instead of just writing down everything that is said in class” (pre-

observation interview). Kacy’s goal is to increase student engagement with investigations 

as well as teacher and student demonstrations; thus, expanding opportunities for students 

to explore concepts and apply their knowledge to new challenges. She believes students 

should be active participants in learning and by designing learning opportunities in which 

students are engaged in doing science; she is addressing the wide range of learning 

preferences held by her students. She explained: 

The idea of it is that in the handling and the doing, the students learn through the 
actual physical activity. So I try to provide many avenues in different ways for 
them to learn so that I can hit some of those visual learners, so I can hit some of 
the listeners [auditory learners], so I can hit the kinesthetic learners and hopefully 
help them. (pre-observation interview)  
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Cooperative learning is a strategy Kacy has implemented into her teaching. She 

believes as students work together they will actually learn from one another. She 

carefully designs seating charts to cluster students she believes will work together 

effectively as row partners and lab groups to support collaboration. She explained: 

I also use that partnering so that I can interact with them and I can walk around 
and interact with the students to see how they are understanding the concepts. I 
can talk to that student one-on-one and I can talk to that student and check the 
understanding of that student or ask them where they are and what they 
understand and determine where I can clarify things for them. (stimulated recall 
interview, Day 2)  
 
Kacy emphasized the importance of the progression of student learning and 

explained she supports students by designing investigations which support learning by 

encouraging students to build upon their knowledge and construct understanding. 

Connections between lessons were identified as very important and Kacy noted “I wanted 

to string them [concepts] all together” (stimulated recall interview, Day 2). 

Beyond teaching content, Kacy believes she has a responsibility to be a role 

model for her students. Throughout her interactions with students, she consistently 

models what it means to be a good citizen, to be interested in learning, and to treat others 

with consideration and respect. She noted: “The other is to be a model of what a good 

citizen learner is so that they can see someone who cares about them and who cares about 

their learning and about them as individuals also” (stimulated recall interview, Day 2). 

Kacy noted that her role as a teacher is that of a facilitator focused on actively 

engaging her students in learning by with meaningful and relevant learning opportunities 

which support lesson learning objectives. Within the context of her lessons, she 

challenges students to think critically to make and test predictions about demonstrations 

and laboratory investigations and reference their observations as evidence in 
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explanations. She also models the attributes of a good citizen learner and caring adult for 

her students to support understanding of positive adult behaviors and the attributes of life 

long learning.   

Perception of student role. Kacy expects students to come to class prepared to 

learn. She indicated students should put forth their best effort and defined her perception 

of the students’ role in learning by stating, “The students’ role is to come to school and be 

ready to learn. . . . That is what their role is, to be open to the learning, to participate in 

their own learning, and to try their hardest” (stimulated recall interview, Day 2). She 

reported she expects students to be good citizen learners and show respect for the ideas of 

others when working together. She explained, “I want them to work with different 

students and I want to get them to know one other as a class. So I pick different ways to 

divide the students into groups” (stimulated recall interview, Day 2).  

Kacy designs her lessons to engage students with investigations and 

demonstrations and expects her students to transition smoothly and rapidly from one 

activity to another.  She continually reminds students of her expectation that they will be 

on task and transition quickly during the lesson. She explained: “I want to make sure that 

they flow with each other” (stimulated recall interview, Day 2).  

Kacy’s perception of the students’ role is that students must be active participants 

and take responsibility for their own learning. She identified three expectations for 

students: (1) students will do their best work, (2) students will come to class prepared to 

learn, and (3) students will be responsible citizen learners in her classroom. Kacy defined 

responsible citizen learners as students who are on task, working hard, and collaborating 

with peers in a respectful and responsible manner. 
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Ideal images of teaching. Kacy’ ideal image of teaching is focused on engaging 

students in learning. She noted to be effective, she must first identify the learning goals 

for the lesson and second ask herself what the students will do to learn the concepts. She 

did not perceive passive learning as an effective way to engage students because passive 

learners are sitting quietly in their seats listening rather than doing science. Kacy asks, 

“Are my students in their desks for the full ninety minutes or have I designed activities to 

engage the students and help them learn the concept?” (stimulated recall interview, Day 

2). She believes a dynamic and effective learning environment is created when students 

are active participants. Kacy explained: “It is important that I have varied the activities 

because no one can stay engaged if they are in their seats for a full ninety minutes. What 

am I going to do to make sure that that is not the case?” (stimulated recall interview, Day 

2).  

Kacy noted the sequence of learning opportunities is an important influence on 

students’ learning; she initially engages students in an exploration of a concept before 

focusing on an explanation. She explained learning opportunities should be designed to 

build upon one another, challenge students to apply their knowledge, and find answers to 

questions. Designing lessons to scaffold learning for students is a critical aspect for 

taking students’ understanding from concrete to abstract. Kacy explained: 

There are steps in that progression of learning so it is my job to figure out how to 
get students from point A to point B. So I need to build steps along the way to get 
them to step B. That is what I mean by scaffolding. (stimulated recall interview, 
Day 2) 
 

 Kacy’s ideal images of teaching involves creating a learning environment in 

which learning objectives are identified, expectations for students are clear, and learning 

is supported with demonstrations, activities, and investigations specifically designed to 
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scaffold students’ conceptual understanding as they move from a concrete to an abstract 

comprehension and apply their knowledge to find answers for new questions. When 

planning, Kacy’s focus is on what her students will be doing to learn new concepts and 

the sequence of instructional activities to best support students’ learning.   

View of science as a discipline. The instructional sequence implemented into 

Kacy’s lessons indicate her perception of science is as a way of knowing predicated upon 

knowledge gained through investigations into the natural world with claims and 

conclusions supported with evidence. During both days of the observation, students were 

challenged to make and test predictions about the direction of osmosis and/or diffusion in 

a series of demonstrations and investigations. Students were challenged to rely upon 

evidence from their investigation to support their explanations. Kacy explained: 

The use of predictions is helpful in that in that they have to grapple with that and 
make their predictions. You noticed that when they were asked about their 
predictions they continued to ask questions. I know that about them and I know 
that I am going to hook them in if I ask them questions and start them into 
thinking. (stimulated recall interview, Day 2) 
 
By consistently challenging students to make and test predictions, Kacy presented 

science as a means of finding answers to questions and supporting conclusions with 

evidence. She engaged students in investigations with uncertain outcomes rather than a 

body of certain knowledge presented as facts to be memorized. By challenging her 

students to make and test predictions she helped them to perceive scientific knowledge as 

uncertain, developed through investigation, and supported with evidence. Knowledge is 

presented at tentative in that students in Kacy’s class are continually challenged to reveal 

their thinking, support claims and conclusions with evidence, and consider the validity of 

alternative explanations. 
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Summary of Kacy’s orientation to science teaching. Kacy noted her experience 

teaching tenth grade biology in a large suburban high school, serving as a senior member 

of a professional learning team of biology teachers, and working with a professional 

development program focused on assessment for learning informed her orientation to 

science teaching. Kacy noted her collaboration with colleagues through the professional 

learning team stimulated reflection on her practice and the correlation between her 

teaching and students’ learning. She identified her role as that of a facilitator actively 

engaging students with explorations of phenomena and generating explanations based 

upon students’ observations and data from investigations. Figure 19 shows the sources of 

Kacy’s orientation to science teaching. 

 

Figure 19: Sources which informed Kacy’s orientation to science teaching 
 
I describe Kacy as demonstrating a constructivist orientation to science teaching. 

First, Kacy implemented an implicit the 5E instructional model (Bybee, 1997) 

instructional sequence. Students were challenged to explore diffusion and osmosis before 

the concepts were formally introduced or explained. Thus, Kacy presented science as a 

way of knowing in which knowledge is gained through investigations and validated with 

evidence. Second, students were challenged to make and test predictions with each 

investigation. Students were also given an opportunity to rethink their initial predictions 
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within the context of new knowledge. Through her instructional sequence, Kacy 

emphasized the importance of student investigations of phenomena, evidence to support 

explanations, and supported students as they drew upon their experiences to construct 

their knowledge of science from their experiences. Third, during interactive lectures, 

Kacy engaged students in a discussion of their observations to develop an explanation for 

the direction of osmosis supported with evidence. Hence, Kacy designed her instruction 

to engage students in explorations and interactive lectures during which they reflected 

upon their experiences to make sense of new ideas about osmosis in cells and tissues. 

Lesson Plan 

Kacy’s lesson plans were very thorough; in her plans, as in her teaching, she 

consistently made connections between lesson activities and one or more of the lesson 

objectives and estimated the length of time to be spent on each lesson activity. It is 

evident that she considers every aspect of the lesson carefully in terms of the learning 

goals addressed, instructional sequence, formative and formative assessments, student 

and teacher actions, and all within the context of the lesson time frame.  

On Day 1, Kacy’s lesson (See Table 22) began with an investigation into 

diffusion during which drops of food dye were placed in a beaker of water. Kacy asked 

students to predict changes likely to take place in the mixture; predictions would be tested 

48 hours later during the following lesson. Next, Kacy engaged students in an 

investigation of osmosis and diffusion involving a baggie containing a starch solution 

placed in a beaker containing iodine and distilled water and challenged students to predict 

potential changes in the baggie and beaker solutions. A discussion lasting approximately 

15 minutes followed during which students shared their predictions for both the diffusion 
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demonstration and the baggie investigation. Next students checked their baggie 

[transport] lab set ups to test their predictions. Kacy engaged students with an interactive 

PowerPoint lecture to discuss students’ predictions and observations to generate 

explanations. Students worked with lab partners to complete analysis questions discussed 

at the close of the lesson; Kacy moved through the classroom interacting with students to 

gauge their understanding and redirect their thinking. An overview of Kacy’s lesson 

plans for Day 1 is shown in Table 22. 

Table 22.  Kacy’s lesson plan for Day 1  

 Activity Description 
Day 

1 
Diffusion 
demonstration 

Engage Teacher: 
• Focuses students’ attention on a representation of diffusion 

(drops of food dye are placed in a beaker of water) 
Students: 
• Predict changes in food dye and water to be tested during 

the following lesson 
Passive transport lab-
investigating osmosis 
and diffusion 
 

Explore Teacher: 
• Facilitates baggie investigation into osmosis and 
  diffusion 
Students: 
• Baggie containing a starch solution is placed in a solution 

of iodine and distilled water 
• Make predictions concerning direction of osmosis and 

diffusion of iodine 
 Students share their 

predictions during a 
teacher led 
discussion 

Explore Teacher: 
• Conducts discussion focused on student predictions for 

osmosis and diffusion in baggie lab 
Students: 
• Share predictions and knowledge of diffusion and osmosis  

Students observe 
baggie and test 
predictions 

Explain Students: 
• Observe baggies to test predictions about direction of 

osmosis in baggie transport lab 
• Collaborate with team members to develop explanation for 

lab results 
• Complete lab analysis questions  

Students take guided 
notes during whole 
class discussion  

Explain Teacher: 
• Conducts whole class discussion  
• Uses PowerPoint with computer animations to illustrate 

osmosis and diffusion 
Students: 
• Share outcome of baggie lab in light of their predictions 
• Develop explanations for their observations 
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 An overview of Kacy’s lesson for Day 2 is shown in Table 23.  Day 2 of the 

observation followed a pattern similar to that of Day 1.  

Table 23.  Kacy’s lesson plan for Day 2  

 Activity Description 
Day 

2 
Students predict 
direction of 
osmosis in 
decalcified eggs  
 

Engage Teacher: 
• Challenged students to test predictions of diffusion [food dye 

and water observation] 
• Engages students with decalcified eggs placed in corn syrup 

for 24 hours   
Students: 
• Make and test predictions of changes in decalcified eggs 

placed in corn syrup  
 Whole class 

discussion   
Explain 

 
Teacher: 
• Leads class discussion 
Students: 
• Share predictions of decalcified eggs in corn syrup 
• Students use observations and knowledge of osmosis to 

explain changes observed in decalcified egg in corn syrup 
 Students observe 

lettuce leaves in 
three different 
environments 

Extend Teacher: 
• Facilitates observation of lettuce leaves placed in distilled 

water, a concentrated saline solution, or on in the air 
Students: 
• Make and test predictions for lettuce leaf within each 

environment  
• Apply knowledge of osmosis to explain changes in lettuce 

leaves 
 Students work 

independently on 
lettuce leaf 
analysis 
questions 

Evaluate Teacher: 
• Guide students’ thinking during completion of lab analysis 

questions 
Students: 
• Submit analysis questions for review 

 
  After observing changes in the food dye and water model from Day 1, Kacy 

challenged students to predict potential changes in decalcified eggs following placement 

in corn syrup for 24 hours. Predictions were tested when students observed the eggs as 

Kacy moved through the classroom. The egg demonstration was followed by a 15 minute 

interactive PowerPoint lecture. During the lecture, students drew upon their 

understanding of osmosis to draw arrows indicating the direction of water movement 
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within a diagram of a decalcified egg in different solutions. Students generated 

explanations for the direction of osmosis based upon their observations. Following the 

interactive lecture, students made and tested predictions of changes in lettuce leaves after 

remaining in distilled water, a saline solution, and on a paper towel in the air for 24 

hours. At the close of the lesson, students collaborated with peers to respond to analysis 

questions accompanying each investigation. While students worked, Kacy moved 

throughout the room and observed students’ progress. 

In the following section I describe the components of Kacy’s teacher knowledge 

including: knowledge of instructional strategies, knowledge of students as learners, 

knowledge of science curriculum, and knowledge of assessment. 

Knowledge of Representations and Instructional Strategies  

Kacy’s sequence of instruction in both lessons was similar to that of the 5E 

instructional model (Bybee 1997) in that students initially explored concepts. Kacy used 

interactive lectures in which students share their predictions and generated explanations 

from their observations. She explained: 

During the first day of lessons what the students will be doing is that they are 
going to participate in actually two demonstration labs. One will be a lab set up in 
the front of the room and one will be set up at the lab tables. And the one they are 
going to do that they will set up is what I always call my baggie lab. It is the good 
old iodine and corn starch lab. So before they know anything, they are going to 
set that lab up. They will make some predictions as to what they think will 
happen. (pre-observation interview, Day 1) 
 
In the baggie lab, the baggie served as a representation of the semipermeable cell 

membrane surrounding a starch and water solution. Water and iodine moved freely 

through the membrane, entering the baggie; but the starch, a much larger molecule 

remained in the baggie. Iodine, an indicator for starch, changed the white, cloudy starch 
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solution to a dark blue. Kacy identified the baggie lab as an exploration noting students 

will predict changes before the concepts of osmosis and diffusion are introduced. She 

explained: “They [students] will make some predictions as to what they think will 

happen. Then they will go back to their desks and we will discuss their predictions” (pre-

observation interview). Following the discussion, students tested their predictions by 

observing the baggie and beaker solutions and noting changes.  

Kacy incorporated graphics and animations depicting diffusion and osmosis in 

interactive PowerPoint lectures on Days 1 and 2. She believes animations and graphics 

are important because tenth grade biology students have a minimal understanding of 

chemistry and not likely to accurately envision molecular motion as the driving force for 

both processes.  She explained: 

I want them [students] to get the idea or the understanding is that diffusion is 
occurring because of the kinetic energy or the molecular movement and collisions 
and not because we are adding any outside energy or not because the cell is 
adding extra energy. . . . So with that website, I was hoping for them to see that 
molecules are moving and here are more of them and here are less of them and 
they [the molecules] are moving in this direction due to their relative 
concentrations. (stimulated recall interview, Day 2) 
 

Kacy utilized whole class discussions as a forum for students to share their ideas and 

consider alternative explanations for observations made during the investigation. When 

sharing their ideas, Kacy expected students to cite their observations as supporting 

evidence for their explanations.  

Kacy included two additional representations of osmosis during Day 2. First 

students observed two decalcified eggs, placed in corn syrup during the previous day and, 

second, students investigated osmosis in lettuce leaves. She explained: 

I have decalcified the eggs and placed them in corn syrup. So the first thing that 
they will see is the egg all deflated in corn syrup. Then I am going to ask them to 



291 

try to explain what has happened to the egg. We are going to use that as our 
introduction to osmosis. (pre-observation interview) 
 

Prior to observing the eggs, Kacy challenged students to explain how the eggs would 

change following placement in a highly concentrated solution (corn syrup). Kacy directed 

students to collaborate with row partners to make predictions which were shared with the 

class and recorded on the whiteboard. Next, Kacy walked through the classroom with the 

decalcified eggs, stopping at each desk and encouraging students to observe and touch the 

eggs to test their prediction. A discussion followed as students used their observations of 

the eggs and their knowledge of osmosis and diffusion to explain the direction of 

osmosis. Kacy explained: 

They were moving in that direction and were starting to make connections 
between what was happening with the egg. . . . when we talked about what 
osmosis is, they were able to make that leap pretty quickly and understand what 
was happening with the eggs. (stimulated recall interview, Day 2) 
 

Next, Kacy engaged students in an interactive PowerPoint lecture with guided notes; she 

included diagrams of decalcified eggs placed beakers containing solutions with different 

percentages of dissolved solids (see Figure 20). She emphasized the relative percentage 

of dissolved solid in the egg and the surrounding environment in the beaker and 

challenged students to determine the concentration of water in each solution, and draw 

arrows to show the direction of osmosis in each decalcified egg diagram. 

 

 

 

 
 
 

 

Arrow indicates 
direction of osmosis 
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direction of osmosis 
 

Beaker 
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Percentage 
of dissolved 
solid = 3% 
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Beaker 
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solid = 9% 
(water-91%) 

Figure 20: Representation of osmosis 
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The lettuce lab was the second representation of osmosis and diffusion 

implemented on Day 2. Once again, students made and tested predictions about the 

direction of osmosis within lettuce leaves placed in three unique environments. Kacy 

explained: 

We are going to practice again with the lettuce lab. So I will have a couple of 
stations around the room. In each station there will be lettuce in salt water, lettuce 
in fresh water, and lettuce on a paper towel. . . . From there then they have to try 
and explain what has happened to the lettuce within the context of osmosis at the 
cellular and tissue levels. (pre-observation interview) 
 

Kacy challenged students to think about osmosis and diffusion through a series of 

representations serving as foci for demonstrations, investigations, PowerPoint 

animations, and guided note sheets. Students were actively engaged in constructing their 

knowledge of osmosis and diffusion. Kacy explained: 

One of our objectives is “Students will be able to predict the direction of 
molecules”. So that is part of the reason for having students make multiple 
predictions. So much in this unit deals with predictions because that is one of their 
objectives. So ‘A’ even before they have the back ground knowledge, practicing 
and moving through the thought process to make predictions gives them that 
practice. And ‘B’ it allows me to see where they might be ahead of the game 
already and where they might not understand things. (stimulated recall interview, 
Day 2) 
 
Kacy implemented multiple representations for osmosis and diffusion including: 

corn syrup and food dye placed in water to represent diffusion, a baggie as a 

representative of a cell and a semipermeable cell membrane, decalcified eggs to represent 

living cells placed in corn syrup, and three lettuce leaves placed to represent the influence 

of various environments on plant organs. The representations served as focal points for 

demonstrations and investigations through which students were challenged to make and 

test predictions. The instructional strategies Kacy implemented in her teaching actively 

engaged students in demonstrations and explorations of diffusion and osmosis. The 
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overarching pattern in Kacy’s teaching is her focus on engaging students with 

demonstrations and investigations in which students were consistently challenged to 

make and test predictions.  

Knowledge of Students’ Understanding of Science 

Kacy believes vocabulary terms associated with osmosis have the potential to 

interfere with students’ conceptual understanding and the forces which drive both 

osmosis and diffusion. She addressed her concern by eliminating much of the vocabulary. 

Kacy did not implement the terms, hypertonic, hypotonic, and isotonic in her lessons. 

Instead, she focused student attention on the movement of substances from higher to 

lower concentrations driven by random molecular motion and kinetic energy. She 

explained, “The students get so caught up in the terms, hypotonic and hypertonic and 

which one is which, that they loose sight of what the actual concept is” (stimulated recall 

interview, Day 2). Kacy focused attention on students’ understanding the importance of 

relative concentrations of dissolved solids within solutions to explain the direction of 

diffusion and osmosis. She explained, “So I want to make sure that they understand the 

concept of where the concentration of water is greater, where is it less and therefore, be 

able to predict the direction in which water will move” (stimulated recall interview, Day 

2). Thus, she left vocabulary terms and definitions out of her explanations, handouts, and 

guided note sheets. Kacy explained, “Rather than getting them hung up on the terms, I 

wanted them to understand the concepts” (stimulated recall interview, Day 2). 

Kacy explained that students’ learning must be supported with learning 

opportunities that build upon one another and provide necessary scaffolding. She 

explained: 
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So the initial predictions on the very first day, I did not expect them to predict 
anything correctly. Then with the corn syrup and food dye we were moving in the 
direction of understanding what the concept is and so it really is a way for me to 
kind of build on these concepts and for me to assess where their understanding of 
diffusion and osmosis is and for them to practice what is happening with diffusion 
and osmosis, to practice that objective. They are able to practice using diffusion 
and osmosis and predicting what will happen when these processes occur. 
(stimulated recall interview, Day 2) 
 
Kacy expected students to draw upon previous representations of osmosis and 

diffusion observed in class to make and test their predictions concerning changes in 

lettuce leaves placed in three unique environments (distilled water, a saline solution, and 

on a paper towel in the air).  She explained her reasoning for including the lettuce lab 

during Day 2 by stating: 

So this idea of osmosis occurring and this idea of the direction of movement, I 
wanted them to practice that without me leading the whole group. The lettuce lab 
is a good little way to do it because lettuce is made up of a lot of water, it is 
familiar to the students, and they were hopefully able to make some connections 
between what was happening to the lettuce and what we had been talking about. 
So I wanted them to make a real life connection. (stimulated recall interview, Day 
2) 
 

Continuing to build upon connections between students’ lives and lesson content, Kacy 

noted the importance of maintaining equilibrium between an IV solution and human 

blood cells. When a student asked how diffusion and osmosis related to their lives, Kacy 

explained: 

I was able to use the idea of the importance of the concentration of the IV solution 
being the same as the concentration of solutes in the blood. It worked out 
beautifully because they were able to see how different concentrations of solutes 
in an IV drip solution can impact the body. (stimulated recall interview, Day 2) 
 
Kacy identified two key areas of student difficulty with the topic of osmosis and 

diffusion. The first was student difficulty with the vocabulary terms. She noted that 

students were often confused by the terms and not sure of when and how to use them in 
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their explanations. To avoid this confusion and focus students on the concepts and the 

forces that drive osmosis and diffusion, Kacy developed learning opportunities focused 

on the relative concentrations of dissolved solids and water. The second area of learning 

difficulty Kacy identified was predicting the direction of water movement. To address 

this concern, she challenged students with representations of osmosis as the focal point 

for student laboratory investigations. Thus, students were able to note the direction of 

water movement in the baggie transport lab, the lettuce leaf lab, and the decalcified egg 

demonstration.  

Knowledge of Assessment. 

Kacy noted she relied upon formative assessments including: student predictions, 

responses to analysis questions, and interaction with students during investigations, to 

assess comprehension and identify misconceptions. She noted when students made 

predictions, misconceptions about diffusion and osmosis and the forces which drive them 

were often revealed. She noted student predictions provided insight into their prior 

knowledge of diffusion and osmosis. Kacy explained: 

I was able to catch student misconceptions about diffusion at the beginning of the 
hour. I noticed quite a few misconceptions with their predictions about diffusion. . 
. . Students believed that diffusion could only occur if there was a membrane. . . . 
Students began the lesson by observing the food dye, corn syrup and water and 
determined if their predictions were correct and to make sure that we come back 
and look at it. (stimulated recall interview, Day 2) 
 
Kacy embeds formative assessment strategies into her teaching. Students 

developed written explanations for analysis questions following the lettuce investigation. 

Kacy reviewed students’ work and responded in writing offering suggestions for 

improvement to each student. She believes assessment provides important feedback about 

student learning and the effectiveness of instructional strategies and representations. 
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Kacy does not formally grade all student work; however, she reads their responses to 

analysis questions to gain insight into their thinking. Kacy explained: 

We practice giving that good explanation with the egg and with the lettuce and 
what not. All of these are going to be practice that I do not give them a grade on 
but I give them that scaffolding so that they are able to eventually understand and 
then demonstrate that they understand the concept. (pre-observation interview) 

 
Kacy described herself as a careful observer and noted she moves around the 

classroom when students are working individually or in teams, to monitor their ideas and 

explanations, to determine accuracy, and to identify misconceptions. She noted that 

initially students did not understand why diffusion takes place; this knowledge informed 

her next steps in the lesson. She explained: 

I used assessment throughout the lesson to show me where I needed to go next 
and where the students’ learning is at that point and what else we need to do to 
practice those concepts. For example, just doing the corn syrup demonstration that 
showed me that we really need to practice . . . . I asked them to get with their 
partner and check the definition of diffusion. That really spoke to me and made 
me realize that they really did not remember anything that we did during the last 
class period. So we needed to just go back and remind ourselves of what diffusion 
is and what concentration gradients are. (stimulated recall interview, Day 2) 
 

She assessed students’ progress during the lesson by listening to their discussions while 

constructing explanations for the analysis questions. She described her assessment during 

the baggie transport lab: 

With the baggie lab I am going to move around and I will be listening to what 
their answers are to determine if they are grappling with concepts. That will be a 
formative assessment for me to see where they are in their understanding of the 
concepts. (pre-observation interview) 
 

Kacy read and responded to student explanations for analysis questions and noted 

students were beginning to understand the connection between the relative concentrations 

of dissolved solids and the direction of osmosis in that water will diffuse from higher to 

lower concentrations. She noted: 
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I just went over them [lettuce lab-analysis questions] a little while ago and most 
of them understood that there was a higher concentration of water outside of the 
lettuce leaf than there was inside and therefore, the water would move into the 
lettuce leaf cells. That leaves us with osmosis as a type of diffusion and we are 
moving in that direction. (stimulated recall interview, Day 2) 
 
Kacy believes that assessment for learning does not necessarily result in a grade 

but rather provides formative feedback for students to use to review and revise their 

work. When Kacy responded to students’ lettuce lab analysis questions she provided 

comments and suggestions for improvement. She explained: 

 A lot of them drew the arrows but did not put in the high and lower 
concentrations of water so I put in the concentrations of water. So they got 
constructive feedback from me to help them continue to improve their answers. 
So that showed me where their understanding is and I would say that 95 percent 
of the students correctly predicted the direction of movement of the water. 
(stimulated recall interview, Day 2) 
     

 Kacy utilizes feedback from formative assessments to inform her teaching. She 

explained that by reviewing student work she can identify specific difficulties students 

are experiencing. She noted student progress as she moves through the room while 

students are working provides valuable insight into student comprehension. Kacy noted 

that misconceptions can be identified by carefully assessing students’ predictions, 

explanations, and conversations. Student feedback from formative assessments informs 

Kacy’s next steps in her lessons. She has the potential to make adjustments to her lessons 

to better meet the learning needs of her students. 

Knowledge of Curriculum 

 Kacy explained that biology curriculum development is carried out by the 

Professional Learning Team (PLT) team at her school and noted the PTL is guided by 

state Course Level Exams (CLE) as well as the district biology curriculum. The sequence 

of content along with curricular resources including: guided notes, laboratory 
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investigations, demonstrations, and summative evaluations, were largely developed 

through collaboration within the PLT. Kacy noted the sequence of instruction is 

important and explained she engages students with explorations of phenomena prior to 

generating explanations. Explanations are generated interactive lectures when students 

are sharing the accuracy of their predictions, their observations, and their explanations for 

changes observed during the investigation.  

Kacy believed students are confused by osmosis and diffusion and require 

multiple opportunities to refine their thinking to create a deeper and more accurate 

understanding of the concepts. She explained: 

I think one thing that I have had a revelation about over the last couple of years is 
that students need many different avenues to practice these concepts and they 
have to be able to. You just do not explain cellular transport, you have to scaffold 
their ability to explain cellular transport so by providing lots of different scenarios 
even though we are dealing with the same concept over and over and over again. 
(pre-observation interview) 
 
Kacy explained her students rely heavily upon the information provided in 

interactive lectures with guided notes sheets and animations of osmosis and diffusion. 

She believes animations depicting molecular motion during osmosis and diffusion 

enhance student comprehension of abstract concepts such as molecular motion and 

concentration gradients. Kacy explained, “I wanted them to start to see what is happening 

during osmosis. It is so hard for them [the students] to visualize and conceptualize what is 

happening because molecules are so abstract to them” (stimulated recall interview, Day 

2). She explained her implementation of animations: 

At this point, they have had no chemistry other than we had a mini-unit on what 
molecules and atoms are. So that is all they have had in terms of their chemistry. 
So when we start talking about the movement of molecules, it is such an abstract 
concept for them that anything that I can do to help them visualize it a little bit 
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will help the concepts to become less abstract for them. (stimulated recall 
interview, Day 2) 
 
Kacy believes analogies and metaphors strongly support student comprehension 

by creating a concrete image of an abstract concept. She noted, “We use analogies and 

metaphors all of the time and we talk a lot about moving from a higher concentration to a 

lower concentration and we talk about being in a big crowd of people and bouncing off of 

each other” (pre-observation interview).  

The biology curriculum results from a collaboration of the PLT which Kacy 

indicated is guided by the state CLEs along with the district curriculum. She explained 

that the PLT is responsible for the major curricular decisions, but she has autonomy in 

her classroom and implements learning opportunities taken from a wide range of 

curricular resources. The textbook is not a focus for Kacy’s teaching and noted curricular 

resources include the PTL, key websites, laboratory notebooks, textbooks, and her 

colleagues. She noted that osmosis and diffusion are important and link key concepts in 

chemistry and biology creating a bridge between molecular motion, cellular membranes, 

and homeostasis within living systems. 

Kacy’s PCK for Teaching Diffusion and Osmosis  

Kacy initially engaged students with explorations and followed a sequence of 

instruction similar to that of the 5E instructional model (Bybee, 1997). She consistently 

challenged students to make and test predictions and encouraged students to construct 

their understanding of osmosis and diffusion from their observations and experiences 

with the concepts. Therefore, I posit that Kacy holds a constructivist orientation to 

science teaching. Kacy’s knowledge for teaching osmosis and diffusion is shown within 

the context of the Magnusson et al. (1999) model of PCK is shown below in Figure 21. 
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Kacy demonstrated strong knowledge representations which served as focal 

points for investigations and demonstrations and made relevant connections to students’ 

prior knowledge and experiences. She believes students can learn from each other and 

encouraged cooperative learning through students’ collaboration with peers to make and 

test predictions, gather evidence, and respond to analysis questions. Kacy relied upon 

students’ predictions to gain insight into students’ thinking, identify misconceptions, and 
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Figure 21: Kacy’s topic-specific PCK21 

_____________________ 
 
21Note: Modified from Nature, sources, and development of pedagogical content knowledge for science teaching 
(p. 99), by S. Magnusson, J. Krajcik, & H. Borko, 1999. In Gess-Newsome & N. G. Lederman (Eds.), 
Examining Pedagogical Content Knowledge. Boston, MA: Kluwer. 
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inform the implementation and sequence of representations and instructional strategies 

within the lesson. Kacy’s knowledge of students as learners informed her perception of 

vocabulary (hypertonic, hypotonic, isotonic, and concentration gradient) as a potential 

constraint to student learning resulting in her decision to avoid vocabulary and focus on 

students’ conceptual understanding. Kacy’s integration of the components PCK 

components for teaching diffusion and osmosis is shown in Figure 22.  
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There are four important features to note within this representation. First, Kacy’s 

orientation to science teaching is central within the model indicating the importance of 

her constructivist orientation acting as a lens through which the components of PCK are 

integrated in the development and enactment of learning opportunities. Second, four 

boxes each representing the components of Kacy’s PCK are connected with reciprocating 

arrows to Kacy’s orientation to science teaching, indicating her orientation to science 

teaching influences each of the components of her PCK and is, in turn, influenced by the 

components of her PCK. Third, connecting arrow between the components of Kacy’s 

PCK indicate the highly integrated nature of Kacy’s knowledge. Fourth, connecting 

statements between components provide insight into Kacy’s rationale for the integration 

of knowledge for teaching diffusion and osmosis.  

Kacy drew heavily upon her knowledge of students as learners when designing 

and teaching lessons; she believed students were capable of learning through active 

engagement with content and designed lessons to include multiple opportunities for 

students to investigate osmosis and diffusion within representations of cells and tissues. 

Her knowledge of representations, strategies, students, and assessments implemented in 

the lessons were reflective of her goals for student learning and knowledge of potential 

learning difficulties. She embedded formative assessments into her lessons, relying upon 

the nature students’ predictions and explanations to inform next steps in her lessons. She 

used her curricular knowledge to sequence lesson content with explorations of concepts 

preceding explanations. Kacy integrated all four PCK components when teaching 

diffusion and osmosis.  
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Content representation  

In Table 24, a Content Representation (CoRe) illustrates Kacy’s knowledge of 

teaching. The components of PCK are represented within the context of the CoRe and 

specific examples of instructional strategies and representations, assessments, potential 

student difficulties, and curricular considerations are include. When reading the CoRe, it 

is important to read individual columns (e.g. Big Idea A) from the top to the bottom 

vertically. The columns extend beyond a single page. 

Table 24. Content representation for Kacy24 

Content Representation (CoRe) 
Considerations Big Idea A Big Idea B Big Idea C 
 Passive transport 

involves the movement 
of materials from areas 
of higher to lower 
concentration without 
the expenditure of 
energy.  

Osmosis and diffusion 
occur within living 
systems and allow cells to 
maintain a unique 
environment within the 
cell.  

Osmosis is defined as the 
diffusion of water through 
a semi-permeable 
membrane. The direction 
of osmosis is determined 
by the relative 
concentrations of 
dissolved solid; water will 
diffuse from higher 
concentration to an area of 
lower concentration. 

Identify the  
learning goals for 
students within this 
lesson? 
 

Define passive transport 
and explain the 
importance of passive 
transport in living 
systems. 

Explain how diffusion and 
osmosis occur within cells 
and why it is important for 
cells to undergo osmosis 
and diffusion. 

Given an example, be able 
to accurately predict the 
direction of diffusion. 

Why is it important 
for students to know 
this content? 
[Knowledge of 
curriculum] 

• Passive transport is 
one way that materials 
enter and leave the 
cells which does not 
require energy and 
follows the 
concentration 
gradient.  

• Kinetic energy and 
molecular motion are 
the driving forces for 
diffusion and osmosis. 

• Diffusion is one way in 
which materials 
necessary for life enter 
cells and some waste 
products leave the cells.  

• Diffusion is important in 
the passive transport of 
small, uncharged 
inorganic molecules such 
as H2O, O2, and CO2 into 
and out of the cell to 
maintain homeostasis. 

 
 
 
 
 
 

• Osmosis works through 
diffusion when water 
molecules diffuse from 
areas of higher 
concentrations to areas 
of lower concentration 
through a semi-
permeable membrane. 

• Water is necessary for 
life and osmosis is the 
means by which water 
enters and leaves the 
cell. 
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Identify potential 
student difficulties 
and limitations 
associated with 
teaching this idea. 
[Knowledge of 
students as 
learners] 

• Kinetic energy and 
molecular motion are 
abstract concepts and 
may be difficult for 
students to perceive as 
the driving force of 
passive transport 
[diffusion and 
osmosis].  

• An increase in kinetic 
energy results from an 
elevation in heat 
energy. An increase in 
kinetic energy 
increases the rate of 
diffusion.  

• Vocabulary terms can be 
confusing for students 
and inhibit their ability to 
understand the concepts 
of osmosis and diffusion. 

 
 
 
 
 
 
 

• Accurately predicting 
the direction of osmosis 
and diffusion may be 
difficult for students. 

• Understanding the 
connection between 
relative concentrations 
of dissolved solid within 
two solutions and the 
direction of osmosis may 
be difficult for students. 

• Explaining diffusion in 
living and non-living 
systems can be 
problematic for students 
because many believe 
diffusion only occurs in 
cells with membranes. 

Teaching strategies 
and representations 
implemented and 
particular reasons 
for using these 
strategies to engage 
students with this 
idea. 
[Knowledge of 
instructional 
strategies and 
representations] 

• Engaging students 
with demonstrations 
and investigations of 
diffusion and osmosis 
will provide the 
experience necessary 
to support their 
conceptual 
understanding of the 
phenomena. 

• Students will note the 
diffusion of iodine 
and distilled water 
into the baggie occurs 
as a result of the 
difference in the 
concentration of 
dissolved solid within 
each solution.  

 

• Introduce diffusion to 
students through a 
diffusion demonstration 
in which droplets of a 
concentrated solution of 
food dye and corn syrup 
are placed in distilled 
water. 

• Use students’ predictions 
to focus student thinking, 
reveal prior knowledge, 
and engage students in 
critical thinking. 

• Students predict the 
diffusion of iodine into a 
baggie containing a 
starch solution. Iodine 
will turn the starch 
solution from white to a 
dark blue or black color 
if it diffuses through the 
baggie. 

• Make and test 
predictions about 
changes: 
 In a baggie 

containing a starch 
solution placed in a 
beaker of distilled 
water and iodine. 

 In a decalcified egg 
after placement in 
corn syrup.  

 In lettuce leaves 
placed in three 
different 
environments: 
distilled water, 
saline solution, and 
on a paper towel in 
the air. 

 
 
 

Identify ways of 
ascertaining that 
students understand 
the concepts taught. 
[Knowledge of 
Assessment] 

Student responses to the 
analysis questions 
provide insight into 
their thinking about 
applications for osmosis 
and diffusion in living 
cells. 

Listening to students’ 
comments, questions, and 
conversations during 
collaboration is an 
effective way to gauge 
student comprehension. 

Students consistently 
make and test predictions 
for all demonstrations and 
investigations. The nature 
and accuracy of student 
predictions provides 
insight into student 
preconceptions and 
misconceptions. 

 
The CoRe provides an overview of Kacy’s topic-specific PCK and describes her teaching 

practice.   _________________________ 

24Note: Modified from Understanding and developing science teachers’ pedagogical content knowledge, by J. 
Loughran, A. Berry, and P. Mulhall, 2006, p. 28. Rotterdam: Sense Publishers. 
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Lana’s Case Profile 

Lana’s Vignette: Investigating Osmosis and Diffusion with Baggies 

“Okay everyone, I want you to listen carefully; today we are going to investigate 

osmosis and diffusion. Remember, yesterday we talked about how substances diffuse 

from higher to lower concentrations,” Lana explained. Students are placing their book 

bags on the floor and science notebooks on their desks. The room is small with lab tables 

arranged in a horseshoe pattern; in the center of the horseshoe there are three rows of lab 

tables. A combination of books and equipment is found on shelves lining the walls; 

making the room seem even smaller. Behind Lana, a PowerPoint slide with a single 

warm-up question is projected on a screen. 

“Are we going to do a lab today?” a student calls out from the back of the room. 

“Yes!” calls out another student; “I really like to do labs, we get to work together 

and it’s fun.” “Can we please do a lab today?” another student calls out. 

“Well you guys are ready to go, aren’t you” Lana comments. “While I take 

attendance today, I want you to respond to the warm-up question on the PowerPoint 

slide.” Lana reads the question on the screen: “The cell theory states that cells are the 

basic unit of structure and function in living things and all living things are made up of 

cells. What substances must enter cells to support life?” 

 “Write what you think those things are that cells must have to support life in your 

notebook,” Lana explains. Then I would like you to explain why cells need those things 

and how those things would get into the cell.” The students begin to write their responses 

to the question in their notebooks while Lana carefully takes attendance.  
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Three minutes later the room is quiet but some of the students are beginning to 

look around. Lana asks: “Well, how did it go, what are the things you chose to write in 

your notebooks. Let’s make a list on the board.” 

“Jeremy, tell us one thing on your list?” Lana asks Jeremy who is trying to 

capture the attention of someone on the other side of the room. “Jeremy, I am talking to 

you!” Lana raises her voice slightly. 

“Oh, sorry,” Jeremy responds and some of the students laugh as he blushes. “I 

think that cells would need some kind of food” Jeremy quickly states.  

“Mrs. M, all things need food, right?” Another student asks. 

“Right, so why do you think the cells will need food, Jeremy? Lana asks.  

“Because, cells have to be able to make energy and make stuff like organelles; we 

talked about last week” Jeremy responds. 

“Lisa, do you have anything else to add to Jeremy’s ideas?” Lana asks. 

“Well, I think that all living things need water; like how long would anything live 

it there was no water?” Lisa responds. 

“I’ve got one” a student in the back of the room calls out as he raises his hand. 

“Most things need oxygen to survive, right? The student calls out. 

“Good. You guys are really on top today!” Lana responds. 

“Mrs. M, I think that we have got the three things that really count.” Darius calls 

out from the back of the room. 

“How so, Darius?” Lana asks. 

“Hey, cells are alive so they need some kind of food to make energy, and nothing 

can live without water, and most everything needs oxygen, right?” Darius responds.  
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“Vitamins, hey, cells got to have vitamins,” another student comments. 

“Good one, you guys have it together” Lana proclaims as she adds to the list on 

the board. 

“Good job guys; so how do you think these things get into the cell?” Lana asks 

looking around the room. “What do these substances have to go through to get inside the 

cell?” 

“They have to go through the cell membrane, yeah, I remember this from 

yesterday” a student responds. 

“We talked about cell membranes in class yesterday. Remember, Ms. M. said that 

cell membranes were like race tracks because the lipids can move,” states a student. 

“Well, we are going to investigate how substances might get into cells by creating 

a model cell, yesterday we talked about water diffusing through a membrane” Lana 

explains. “Today, we are going to use a baggie to represent a cell and help us think about 

how a membrane might work.” 

“A baggie?” asks Jeremy. 

“Yes, Jeremy, a baggie,” Lana explained: “We can seal the baggie so that the only 

way for something to get inside the baggie is through the baggie itself.” 

“Look at the protocol on the screen” Lana directs as she transitions to the next 

PowerPoint slide. “This slide is actually the protocol for the baggie investigation lab.” 

“Okay, first, you and your lab partner will pour 100 milliliters of a corn starch and 

water solution into the baggie.” Lana holds up a beaker of the cloudy starch solution. 

“Second, you will then seal the baggie, mass it, and place the baggie in a beaker of 
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distilled water. Finally, you will add 10 drops of iodine to the water in the beaker,” Lana 

explains as she holds up an amber dropper bottle containing iodine. 

“So why do we need iodine?” Darius asks. 

“Ms. M., how can we tell if the iodine and water enter the tube by looking for a 

color change in the starch solution?” Jeremy asks.  

“Watch this,” Lana adds several drops of iodine to a test tube containing the 

starch solution. 

 “Far out!” several students call out as the starch solution in the test tube quickly 

turns from cloudy white to dark blue color with the addition of iodine. 

“Now, how would you answer Jeremy’s about iodine in this investigation?” Lana 

asks. 

“Like, iodine will cause the starch in the baggie solution to turn dark,” students 

respond. 

“Now, before you begin, talk with your lab partner and make a prediction about 

what you think will happen to the solution in the baggie and beaker,” Lana explains. For 

the next couple of minutes, students are discussing the lab and writing their predictions in 

their notebooks. 

“Okay, guys. The list of what you will need is on the slide along with the protocol 

for our investigation today. Get into your lab groups, follow the directions and we will 

see what happens” Lana calls out as she stands by lab desk in the front of the classroom, 

ready to help her students pick up materials. 

The students move around the room, getting into their lab groups, gathering 

materials, and setting up the baggie lab. 
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Background and Context 

A veteran science teacher, Lana taught general biology, earth science, and college 

biology at Miller High School for over 19 years. Miller High School is located within a 

small, rural, mid-western community and includes grades from 9 through 12 with an 

average class size of 24 students, above the state average of 18 (DESE, 2008). The only 

high school within the district, Miller High School is on a traditional schedule with 48 

minute class periods. 

Lana’s classroom is small with students seated at lab tables rather than individual 

student desks. Lab tables are arranged in a U-shape around the perimeter of the room; the 

center of the room consists of three rows of two lab tables each. Each table seats two 

students. The small size of Lana’s classroom places students within close proximity to 

one another and offers only limited lab space for laboratory investigations. Two partial 

lab stations are located in the front and back of the room; both stations consist only of a 

sink with running water, there are no gas jets in the room. Old textbooks, glassware, and 

equipment are stored on open shelves lining two walls of the room. Lana indicated that 

she has only limited access to the chemistry lab located down the hall and explained the 

lack of equipment, materials, and space continues to be a serious constraint to 

incorporating laboratory investigations into her curriculum. 

Orientation to science teaching 
 

Lana’s orientation to science teaching is best described by addressing aspects of 

her instructional practice in terms of her goals and purposes for science teaching, 

perception of the teacher role, perception of the student role, ideal images of teaching, 

and her view of science as a discipline. 
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Goals and purposes of instruction. Lana’s overarching purpose for teaching 

biology is to enhance students perception of biology and support students’ understanding 

“that science is not a collection of little bits of information, I mean everything is 

connected,” (pre-observation interview). The goals Lana emphasized for Days 1 and 2 are 

(a) to enhance students’ understanding of the nature and structure of the cell membrane 

and (b) to support students’ conceptual understanding of osmosis and diffusion. She also 

planned to spiral back to the cell theory to enhance students’ understanding of the cell as 

the smallest structural and functional unit in all living things. Lana explained:  

I have two purposes. One, I definitely want to engage them in this idea of how 
important the cell membrane is. Then from there, I want to get them into the 
complexity of it and how it functions with the phospholipids, how things move 
across that membrane. So we will talk about how things move in and out of the 
cell. Because it [the cell] is a living entity I am planning to make a reference back 
to the cell theory that we have addressed last week, so that they can relate to the 
cell as a living thing, the smallest living unit. (pre-observation interview) 
 

In essence, she wanted her students to understand the relevance of the cell membrane in 

terms of maintaining homeostasis within the living cell. Lana believed her students were 

not prepared to conduct an exploration of phenomena. She explained: 

The students at this level really do not have enough background knowledge to do 
that. Sometimes I think well maybe I am being too possessive but only, we are 
just beginning our second quarter and my students have not done very many labs 
even as freshmen.  (stimulated recall, Day 1) 
 

Hence, Lana’s goal is to support students with the laboratory investigation planned for 

Day 2 with a lecture explaining the process of diffusion and osmosis. 

The lesson on Day 1 was designed to serve as an introduction to the structure of 

the cell membrane. Lana noted: 

My number one goal was to introduce cell membranes and their complexity and 
for the kids to become aware of the parts of a cell membrane that was the big one 
for today; that would be my number one. (stimulated recall interview, Day 1) 
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Lana identified the purpose for Day 2 as the development of students’ conceptual 

understanding of the function of the cell membrane in terms of maintaining homeostasis 

through osmosis and diffusion. She explained: 

For tomorrow I want them to get into the function, why the membrane is 
important. For today [Day 1] it is just about the membranes. They are aware that 
cell membranes exist. And I was glad that they recognized because I mentioned it 
several times that there are cell walls and the cell membranes are inside the cell 
walls. (stimulated recall interview, Day 1) 
 
On Day 2, Lana planned to for students to apply the knowledge of diffusion and 

osmosis gained through the lecture on Day 1 to a baggie investigation. She planned for 

students to observe and measure the diffusion of small molecules (water and iodine) 

through a sealed baggie. Lab protocol required students to determine the mass of the 

baggie and starch solution before placing the baggie into a beaker of distilled water and 

iodine. Lana challenged the students to predict changes they would see in the baggie and 

beaker solutions on the following day when students would observe both solutions and 

mass the baggie again to test their predictions. Even though Lana described the 

investigation as student generated, the protocol was provided with students left to design 

a hypothesis and predict potential outcomes. She described her students as not quite ready 

to generate investigations as explorations. Lana addressed the structure of the membrane 

during a PowerPoint lecture on Day 1 during which she also introduced osmosis and 

diffusion as means by which materials enter the cell. Thus, she implemented the baggie 

investigation as a validation rather than an exploration of the osmosis and diffusion. She 

noted students would have difficulty conducting the investigation without guidance; thus, 

her instructional approach is traditional. She explained: “So even doing a lab where they 
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pick up the materials and the equipment and things seems like a big production” 

(stimulated recall interview, Day 1). 

Lana explained that she planned to focus students’ attention on the movement of 

iodine and water into the baggie, emphasizing osmosis and diffusion. She explained: “I 

am going to get into more of the osmosis because I am hoping that there will be water 

going into the baggies too.” (stimulated recall interview, Day 2) Thus, Lana planned to 

use the baggie investigation as an opportunity for students to observe and quantify 

evidence of osmosis and diffusion. She intended to use the baggie lab as springboard for 

students to design their own experiment during the following week when decalcified eggs 

serving as a cell models would be placed in environments of distilled water and corn 

syrup. She explained: 

It is another way for them to elaborate or expand upon what they have learned so 
that they get a better grasp. It is a great way for them to practice hypertonic and 
hypotonic solutions. . . . Then when they put the egg into Karo syrup, the water 
leaves the egg just as rapidly. It is just so visible that they cannot miss it. They 
will remember. (stimulated recall interview, Day 2) 
 
Lana noted her overarching purpose in teaching biology is to help students 

understand and appreciate life and life processes. She explained: 

I want them [students] to appreciate life and this whole complex entity of biology 
and how things fit together. . . . I want them [students] to be able to understand 
basic concepts in biology because I think if you are a voter or a consumer, those 
are so important. (pre-observation interview) 
 

Therefore, she believes the emphasis in high school biology should be to prepare students 

to be thoughtful consumers and citizens, relying upon a general understanding of 

biological concepts to make wise decisions as responsible consumers and citizens. Lana’s 

overall purpose is to instill within students an appreciation of life and basic principles of 

biology.  
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Perception of teacher role. Lana described the role of the teacher as that of a 

facilitator. She believes her role as a teacher is to engage students in science through 

activities and investigations that make biology content understandable. Lana explained: 

I feel very strongly that I am, and the word that comes to mind, is a facilitator. . . . 
I truthfully am not as comfortable being the lecturer or the guru on the stage 
saying, this is the information and please record it and put it down. I am much 
happier when these kids are doing things. (stimulated recall, Day 2) 
 

As a facilitator, Lana explained she tries to engage students in learning science through 

laboratory investigations as often as possible. Lana explained, “I truthfully try two or 

three times a week or more and I use labs as an engagement piece when we start a unit” 

(stimulated recall interview, Day 2). Lana was part of a university program, Partnership 

for Research and Education with Plants (PREP). The goal of the program is to support 

teachers with the implementation of student-driven research into high school biology. 

Lana expressed her desire to incorporate student-driven research into her curriculum but 

noted she had difficulty implementing PREP into her teaching. As a result, Lana has 

become inactive in the program, no longer attending workshops and sharing her teaching 

experiences with her peers. Lana’s places greater emphasis upon student retention of 

content knowledge and, even though she was enthusiastic about PREP, she was not able 

to implement learning through exploration into her teaching. 

Lana believes students often learn best when they are active participants; 

however, Lana noted that students may struggle with learning and benefit from a variety 

of strategies including lecture, discussion, demonstrations, and investigations. She 

explained: 

I just think that you need a variety of strategies with your kids and with their 
learning to enhance student learning. It changes from unit to unit; sometimes they 
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just nail it and understand the concepts right away and other times they need more 
experience with the concept. (stimulated recall interview, Day 2) 
 

Lana believes she is laying the groundwork for students’ knowledge of biology; she 

noted that one concept builds upon another and it is important to make connections to 

concepts taught earlier. She explained, “So you set the ground work and one thing builds 

upon another and you keep spiraling back and pulling it forward so hopefully by the time 

they exit in May, their depth of knowledge is broadened. It is expanded” (pre-observation 

interview). She noted the importance of analysis questions following a laboratory 

investigation. Lana explained: 

I decided that I need to do better, more in-depth questions so that they are not just 
writing, “It was a liquid.” Instead they have to provide a more complete answer to 
explain their observations. That is a challenge and it is one that I welcome 
because that is why we are here as teachers. It is not just to provide an opportunity 
to play at biology. I want them to make connections there is a reason that things 
worked that way it was not just a magical, one time thing. (pre-observation 
interview) 
 
Lana believes many of her students will not go on to college, emphasizing the 

importance of high school biology as a basis for decision making in life. She noted: 

I have always felt and I am not trying to create doctors or research people as much 
as I want them to ask questions and to appreciate life. Then if it goes on to those 
higher levels then that is wonderful but I want them to be the type of citizens that 
appreciate life and how all of these things fit together. I want them to think ‘Wow, 
this was neat.’ Also I want them to be able to understand basic concepts in 
biology because I think if you are a voter or a consumer, those are so important. 
(pre-observation interview)  

 
 Lana noted with classroom experience, her understanding of students’ learning 

needs increased resulting in the development of analogies to make connections between 

students’ experience and biological concepts more evident. She explained her repertoire 

of representations for biological concepts has grown with her experience in the 
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classroom. Lana reported using analogies to make concepts more understandable for 

students. She explained: 

I use and I like analogies and I started years ago to develop analogies for some 
units. Like I have some analogies for ecology and I love developing analogies, 
like this is to this as this is to this. We have had some real good discussions with 
this group because I told them that if they can justify how they could fit their 
ideas in their ideas [analogy] would be accepted. But it has to be justified. I went 
Oh, because I have some analogies that I have worked on for cell structures that 
will probably follow this membrane unit. I like analogies and I also have a project 
I do with cells and this is kind of a spin off. (pre-observation interview) 
 
Lana noted the importance of spiraling back to make connections between earlier 

concepts. She noted her goal in doing this is to provide students with an opportunity to 

see concepts in biology as connected. She noted: 

Oh, all year I spiral back. Whatever I teach it comes back around with references 
to what I taught because I feel that biology all fits together. I think that it is 
exciting and I get very excited about what I teach because there is so much to 
learn and it is an ongoing learning process and I want the kids to realize that it is 
manageable and it fits together. It is a big puzzle and we continue to find the 
pieces that fit together. (pre-observation interview) 
 
Lana hoped to facilitate students’ conceptual learning and noted “It is not about 

regurgitating the information, it is about applying it” (stimulated recall interview, Day 2). 

Lana noted that she wants students to perceive science as a way to understand the natural 

world and as a means through which answers can be found. Thus, she believes that by 

offering students a variety of experiences with content, she is making science more 

understandable and relevant for students. 

Perception of student role. Lana explained that to be successful, students must 

take responsibility for their own learning and when students do not accept this 

responsibility, learning is a struggle. She explained: 

I am hoping that they [students] are engaged and that they will be considerate and, 
in an ideal world, focused on what we are doing. I realize that we are in a world of 
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multi-tasking and we all do it. I realize that there are other things on their minds. 
But when I have an assignment for them to complete I think that their role 
[student role] is to complete that. (stimulated recall interview Day 2) 
 

She places significant importance on homework and identified homework as an 

opportunity for students practice and one of her students’ most important responsibilities. 

Lana believes after school employment, athletics and social activities must take second 

place to their learning. She explained: 

They have major responsibility. I feel really strongly that being a student is their 
number 1 job at this time. . . . Working a job should be second or third if at all. 
Their priority and their job should be to be a student. (stimulated recall interview, 
Day2) 
 
Lana strongly believes to be successful learners students must accept 

responsibility for learning. She expressed frustration when students are unprepared for 

class and have not completed assignments on time. Lana explained her major role as a 

teacher is to engage students in learning and stimulate their interest in science to make 

learning more interesting and engaging and the role of the student as taking full 

advantage of available learning opportunities.  

Ideal images of teaching. Lana described her idea images of teaching as engaging 

students with activity-based investigations and guided inquiries. When Lana talked about 

her practice as a teacher, she described herself as facilitator and explained that she 

perceives her role in the classroom as “one who has access to information and provides 

various ways for these students to understand and unlock meanings” (stimulated recall 

interview, Day2). Lana explained she works to construct connections between content to 

make biology relevant for students. She explained: 

Oh, all year I spiral back. Whatever I teach it comes back around with references 
to what I taught because I feel that biology all fits together. I think that it is 
exciting and I get very excited about what I teach because there is so much to 
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learn and it is an ongoing learning process and I want the kids to realize that it is 
manageable and it fits together. It is a big puzzle and we continue to find the 
pieces that fit together. (pre-observation interview) 
 

Lana engaged students with a warm-up question on both Days 1 and 2 and noted the 

questions were designed to stimulate students’ thinking about the lesson topic. She 

believes a warm-up is a means to make sure everyone is on the same page and focused on 

lesson content. She explained: 

Well traditionally that is how I do the warm-ups because I want the kids to be 
engaged. . . . . I wanted to make sure that we all had the same answers for the 
question. So I wrote it on the board and I also had it on the overhead. I wanted to 
make sure that we were all on the same page. I wanted to make sure that we were 
starting out together with the same ideas. (stimulated recall interview, Day 2) 
 
Following the warm-up question on Day 1, Lana implemented traditional 

instruction utilizing a PowerPoint lecture to introduce vocabulary terms and definitions. 

A discussion of the structure and function of the cell membrane followed the lecture. 

Lana noted this was not her preferred mode of teaching; her preference is to first engage 

students an investigation designed to focus students on an exploration of the concept. She 

explained:  

I am introducing concepts and doing the background and we will go from there. 
Normally I would do more of an engagement piece and we would go from there. 
Many times I do the activity and when they are into it that is when they really feel 
the need to know the terms and what they mean. Rather then attempting to learn 
them in advance, they don’t but they are exposed to them but may not actually 
learn them in advance.  (stimulated recall interview, Day 2) 
 
Lana described the manner in which she preferred to teach as actively engaging 

her students in doing science by conducting investigations and challenging students to 

think critically to answer questions. She believes that students learn most effectively 

when they are engaged in learning and challenged to apply their knowledge to answer 

questions or solve problems. She noted that when students engaged in doing science, they 
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are more likely to ask questions and search for answers. She explained that she finds 

collaboration to be an effective strategy to achieve her ideal: 

I prefer to have them do hands on and then to go on and explain the concepts. 
They are doing things and then they are back and they are asking questions. I love 
something were there are good strong questions. It takes a while to get those 
sometimes. When they are asking you “I did not understand” and maybe they are 
interacting within a small group. That is my preference. (stimulated recall 
interview, Day 2) 
 

She explained that even though teacher-centered instructional strategies (e.g., teacher-

directed lecture) may be the easiest to implement, passive learning is not effective 

learning for most students. Lana explained: 

The easiest way to teach and my least favorite and the one I hate to see is the 
notes and the kids copying that. I have tried to do better with printing off the 
PowerPoints with my kids like they do in college. But still it is not very good 
learning; it is basically information and when they are writing those notes all they 
are doing is transcribing. (stimulated recall interview, Day 2) 
 

However, Lana used teacher-directed lecture to initially engage students with diffusion 

and osmosis. During the lecture on Day 1, she explained the nature of a semipermeable 

membrane, as well as the processes of diffusion and osmosis to her students. Hence, even 

though Lana described her ideal image of teaching as developing community-based 

learning challenges for her students and envisioned her students investigating relevant 

problems within the community. She explained: 

I have this dream that I will come up with this idea, maybe a community service 
idea or something and we can wrap what we are studying around it. An 
environmental problem is very personal and we can do the chemistry and 
whatever. The kids are so engaged. Would that not be ideal? (stimulated recall 
interview, Day 2) 
 

Her actions indicated a strong reliance upon lecture and the transmission of knowledge 

within her teaching.  
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Lana’s ideal image of teaching involves engaging students with collaborative 

activities focused upon realistic and relevant issues, searching for new knowledge, and 

challenging students to apply their knowledge of biology to solve real-world problems. 

She explained that she believes that students learn most effectively when they are 

actually engaged in learning science and applying their knowledge to answer questions or 

solve problems. She noted that even though she relies upon knowledge-transmission 

strategies (e.g.,  traditional lecture), she prefers to teach by engaging students with 

activities. 

View of science as a discipline. Lana explained that she perceived science to be a 

way of knowing rather than clusters of facts about plants, animals, and the environment. 

Lana emphasized that science is a problem solving method that relies upon evidence 

rather than facts to be memorized about the natural world. She explained: 

I want the students to have an appreciation that science wants to understand 
things; that it is a whole process of acquiring information and knowledge and 
making those connections and trying to figure out how things work together. 
(stimulated recall interview Day 2) 
 
Lana emphasized the importance of engaging students with science as a way to 

understand how living and non-living things interact in the natural world. She explained 

that her focus was not on terminology but on conceptual understanding of scientific 

concepts and processes within the natural world. Lana explained that she wants her 

students to understand the importance of evidence and how new technologies can 

influence perceptions of scientific knowledge. Lana explained: 

I think that when it is all over it is not so much the mastery of terminology. I want 
them to get a feel for what science is and how science works. We ask questions 
and we look at things, we want statistics and data and it can change based upon 
addition data and new ways to look at things. But I really think that when they 
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leave I want them to have a feeling about what science is and how it works. 
(stimulated recall interview, Day 2) 
 
Lana emphasized that she perceives science not as terminology and clusters of 

facts related to plants, animals, and the environment but rather as a perception of how 

living and non-living things interact in the natural world. She perceives science as a way 

to understand the natural world by posing questions and seeking answers. She noted 

understanding interactions in the natural world is more important than understanding 

terminology and relied upon lecture and discussion to explain the interconnectedness of 

the natural world for her students. 

Summary of Lana’s orientation to science teaching.  Lana identified several 

experiences which informed her goals and purposes for teaching biology. She noted her 

experience teaching tenth grade biology in a small, rural community had an important 

influence upon her beliefs about teaching, learning, and learners as well as her practice as 

a biology teacher. She described her school and community as economically depressed 

and noted the lack of facilities made laboratory investigations difficult. Even though Lana 

was initially involved with a university sponsored program emphasizing student-driven 

research with plants, she did not implement the program at her school. Lana explained 

her decision not to implement student-driven research was predicated upon the demands 

of the current biology curriculum. Figure 23 shows the sources which informed Lana’s 

orientation to science teaching. 
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During interviews, Lana described her ideal images of teaching as teaching 

biology through the 5E instructional sequence (Bybee, 1997). However, Lana’s 

instructional sequence initially engaged students with a teacher-directed lecture focused 

on explanations of diffusion, osmosis, and the nature of cell membranes vocabulary. As a 

result, the exploration [baggie investigation] served as a validation of osmosis and 

diffusion rather than as an exploration. Observations of Lana’s teaching on Days 1 and 2 

indicated a greater reliance upon traditional strategies rather than inquiry-based 

instructional sequences.  

Lana’s orientation toward science teaching would be best described as 

knowledge-transmission. Teachers with a knowledge-transmission orientation to science 

teaching are described as relying heavily upon teacher-directed lecture as a means of 

explaining concepts to support student learning, rather than students learning through 

exploration of phenomena and actual experiences with science. Lana presented students 

with explanations of key terms and definitions on Day 1 during a traditional lecture. On 

Day 2, students completed an investigation of phenomena as a validation. 

 

Knowledge-
Transmission 
Orientation to 

Science Teaching 
 

Experience teaching tenth 
grade general biology 

 

Teaching within a small, 
economically depressed community 
 

Figure 23: Sources of Lana’s orientation to science teaching 
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Lesson Plan 

Day 1 of Lana’s lesson consisted of a knowledge-transmission instructional 

sequence during which the lesson was initiated with a warm-up question focused on the 

location of membranes within cellular organelles; the lesson continued with teacher-

directed explanations of phenomena and vocabulary terms. An overview of Lana’s lesson 

plan for Day 1 is shown in Table 25. 

Table 25. Lana’s lesson plan for Day 1  

 Activity Description 
 Warm-up 

question: Which 
one does not 
belong? 
 

Engage Teacher: 
• Facilitates whole class discussion focused on warm-up 

question-students encouraged to collaborate on list of 
structures and to identify the structure which does not 
belong  

• Identifies “nucleus” as correct response 
PowerPoint 
lecture 
emphasizing cell 
membrane 
structure as well 
as diffusion and 
osmosis 

Explain Teacher: 
• Leads PowerPoint lecture explaining the nature of the cell 

membrane, diffusion and osmosis, and vocabulary 
• Uses a racetrack analogy to represent a cell membrane 
Students: 
• Identify the polar and nonpolar regions of the cell 

membrane 
• Students take notes on diffusion and osmosis vocabulary 

Assessment – 
Identify five 
parts of the cell 
membrane 

Evaluate Students: 
• Respond to a simple assessment of their learning during 

the lesson –identify five parts of the cell membrane 

 
Students worked independently to answer the warm-up question and shared their 

answers with the class. Lana identifies the nucleus as the correct response because of the 

nuclear membrane. Following the warm-up, Lana transitioned the lesson into a 

PowerPoint lecture and discussion during which she focused student thinking on cellular 

structures emphasizing the structure of the cell membrane. During the discussion, one 

student drew the cell membrane on the whiteboard and another indicated polar and 

nonpolar regions of the membrane. Following the discussion of membrane structure, 

Lana focused on how different substances pass into the membrane introducing and 
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explaining osmosis and diffusion. Lana ended the lesson with an assessment focused on 

students’ retention of cell membrane structure rather than an understanding of the 

semipermeable nature of the membrane. Lana noted that she would read student 

responses but she did not intend to formally grade student work.  

The lesson on Day 2 was very different from the lesson taught on Day 1 in that 

students conducted an investigation into osmosis and diffusion. Initially, students were 

engaged with a warm-up question focused on the cell theory. The students shared 

answers for the warm-up question with the class, identifying water, nutrients, oxygen, 

and vitamins as substances necessary for life which enter the cell through the membrane. 

Following the warm-up question, students focused on a diffusion demonstration and next, 

conducted an investigation into osmosis and diffusion. An overview of Lana’s Day 2 

lesson is shown in Table 26. 

Table 26. Lana’s lesson plan for Day 2  

 Activity Description 
Day 

2 
Warm-up 
question: 
What must 
move in and 
out of a cell 
to support 
life? 

Engage Teacher: 
• Engages students in discussion of warm-up question 
Students:  
• Respond independently to the warm-up question and identify 

nutrients and water as substances passing through the cell 
membrane 

• Share responses related to the structure and function of the cell 
membrane 

PowerPoint 
lecture on 
diffusion and 
osmosis 

Explain • Teachers:  
• Leads discussion with a series of PowerPoint slides illustrating 

diffusion and osmosis 
• Students: 
• Take notes and respond to questions 

Balloon 
demonstration 
- diffusion 

Validate • Teacher: 
• Focuses on balloon and cologne as a model for diffusion 
• Questions students understanding of diffusion within the model 
• Students: 
• Use a balloon containing cologne to represent diffusion 

Baggie 
laboratory 
investigation 

Validate • Students: 
• Place starch solution in baggie, mass baggie, and place in 

iodine solution 
• Record prediction of changes in baggie and beaker solutions 
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Lana implemented two representations during the lesson on Day 2. The first 

representation consisted of a balloon into which cologne had been placed to model 

diffusion through the balloon membrane. As students passed the balloon around the class, 

they noted the scent of the cologne as it diffused out of the balloon.  Next, Lana engaged 

students in a discussion of diffusion focusing on the balloon and cologne. The second 

representation consisted of a small baggie used to represent the cell membrane and 

serving as the focus for an investigation into osmosis and diffusion. Students placed a 

starch solution in the baggie, massed the baggie and its contents, and placed the baggie in 

a beaker containing a distilled water and iodine solution.  

 A discussion of Lana’s knowledge of the components of pedagogical content 

knowledge follows and includes a discussion of Lana’s knowledge of instructional 

strategies, learners, curriculum, and assessment. 

Knowledge of Representations and Instructional Strategies 

Lana implemented several topic-specific representations into her teaching on 

Days 1 and 2 of the observation. On Day 1, to illustrate the nature of the cell membrane 

as a fluid mosaic model, she implemented an analogy of a race track as a representation 

for the cell membrane. Lana compared the fluidity of phospholipid molecules within the 

cell membrane to race cars moving around a race track. She noted that other molecules 

associated with the membrane such as, carbohydrate molecules, functioning as cell 

markers, and proteins, functioning as channels for passive and active transport, are 

located within the context of the membrane are also in motion within the phospholipid 

bilayer. Lana explained: 

I want to get them to think about cell membranes. . . . It looks like a race track 
when we draw the phospholipids and then we will move on into the proteins and 
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the cholesterol. With their large cell [guided notes] they will draw in those 
structures. So that is what we are going to do with this. (pre-observation 
interview) 
 
On Day 2, Lana implemented three representations into her lesson. First, a latex 

balloon was used as a representation of a semipermeable membrane. Lana explained the 

latex balloon represented a semipermeable membrane able to contain the air and remain 

inflated; however, cologne particles readily diffused through the membrane into the 

classroom. She explained “I usually put vanilla or cologne into a balloon and pass it 

around to see what happens when it is passed around the room. So there is another 

membrane” (stimulated recall interview, Day 1). Thus, the balloon served as both a 

representation of a semipermeable membrane allowing only certain substances to pass 

through it and as a model for diffusion in which cologne diffused out of the balloon and 

into the classroom to be detected by students.  

Lana wanted students to understand the importance of relative concentrations of 

substances and the direction of osmosis and diffusion. She implemented drawings of 

beakers containing cells and identified the percentage of dissolved solute within the 

beaker and cell solutions. Next, she engaged students in a discussion focused on the 

direction of water movement within the model based upon the relative concentrations of 

dissolved solids within the two solutions to provide a concrete model of osmosis 

emphasizing vocabulary terms hypertonic, hypotonic, and isotonic. She explained: 

I drew beakers on the board and I put cells in the beakers and I wrote hypertonic 
and hypotonic and isotonic and I put that the cell contained a 5 percent salt 
solution. So I said guys I am going to do the isotonic solution so I asked them if 
there were 5 percent salt then there would be 95 percent water. . . . I could come 
back and change the numbers and this helped them to see the difference between a 
hypotonic and hypertonic solutions. This really helped them to understand this 
concept. (pre-observation interview) 
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Lana drew a diagram of a cell membrane on the whiteboard to demonstrate that 

molecules of only certain sizes could pass through it. She explained that by creating a 

concrete image of a membrane she could assist students with the concept of membrane 

permeability. She explained: 

Yes, that there are openings or ways that things can move across a semi-
permeable membrane. I did not use that term and in retrospect, I wish I had. I 
showed them the drawing and I had small things that go through a membrane and 
large things that do not go through a membrane. (stimulated recall interview, Day 
1) 
 

Lana noted that through diagrams of the cell within a beaker and a cell membrane (see 

Figure 24), she was able to enhance student understanding of the concept of osmosis 

within the context of relative solute and solvent concentrations, the resulting 

concentration gradient, and membrane permeability.  

 
 

 

 

 

 

 

 

Lana implemented a baggie as a third representation on Day 2. Lab groups placed 

a starch solution in the baggie, massed the sealed baggie and its contents, and placed the 

baggie in a beaker containing distilled water and iodine. The baggie representation was 

an effective model of a cell and semipermeable membrane in that distilled water and 

iodine from the beaker solution diffused through the baggie membrane, however, starch 

 
Concentration of 
dissolved solid  in 
beaker = 9% (91% 
water in solution) 
 
Concentration of 
dissolved solid in 
cell = 5% (95% 
water in solution) 

Concentration of 
dissolved solid in 
beaker = 3% (97% 
water in solution) 
 
Concentration of 
dissolved solid in 
cell = 5% (95% 
water in solution) 

Figure 24: Diagram illustrating direction of osmosis  

Arrows show water 
diffusing out of the cell 

Arrows show water 
diffusing into the cell 
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molecules within the baggie solution were too large to pass through the baggie and into 

the iodine solution within the beaker. Thus, the iodine solution in the beaker retained its 

amber color, while iodine diffusing into the baggie reacted with starch resulting in a color 

change from cloudy white to black within the baggie.  

Before beginning the investigation, Lana challenged each lab group to develop a 

hypothesis and predict what they thought would happen to the iodine solution in the 

beaker and the starch solution within the baggie. She planned to discuss predictions 

during the following lesson and challenge students to explain their thinking. She 

explained: 

Putting starch into a plastic bag and dropping it into an iodine solution and leave 
it over night. But they would predict what they think is going to happen. Again 
they do not necessarily know what will happen when starch and iodine are mixed, 
although we could show them what happens when we put starch with iodine and 
then we could put a starch solution into a baggie and place the baggie into an 
iodine solution. They could predict what will happen and they will see a reaction 
within 15 minutes. (stimulated recall interview, Day 1) 
 
On the following day, Lana believed students would note a change in baggie mass 

and in the color of the starch solution within the baggie. She believed an increase in 

baggie mass, darkening of the baggie starch solution, and persistent amber coloration of 

the iodine solution in the beaker would be strong evidence for the direction of water and 

iodine movement within the model. She planned to have students draw a diagram of the 

baggie in the beaker using arrows to identify the direction of osmosis and diffusion. She 

explained: 

We will go back and fine tune and we will talk about osmosis. And I am hoping, 
fingers crossed, that their baggies will mass out a little bit bigger. We will draw a 
picture of the set up. I have kids ask why we draw. Ragen asked why we draw 
during first hour. I said, Randy, I draw a lot with this unit. The reason that I have 
them draw is to put arrows on it to show which way things move. (stimulated 
recall interview, Day 2) 
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Lana believed the model would support students’ understanding of the concept of 

a concentration gradient and the resulting direction of diffusion and osmosis based upon 

relative concentrations of solute and solvent within each solution. She explained: 

So they will be able, I am hoping that they will be able to see that water moves 
across a membrane so that will lead into osmosis which is a form of diffusion. I 
am hoping with this that they have got diffusion with the iodine and osmosis with 
the water moving. (stimulated recall interview, Day 2) 
 

Lana relied upon student generated representations to illustrate osmosis and diffusion. 

She explained “I ask them to draw a little model and put in little arrows which way things 

move and then go back to that idea” (stimulated recall interview, Day 1). She explained 

drawing is important because it helps students focus, process information, and develop a 

stronger understanding of membrane structure and function. 

  Lana reported her plan was to scaffold student knowledge of diffusion with the 

balloon demonstration, knowledge of osmosis with the cell in a beaker diagram, and the 

baggie lab, thus, preparing students for the decalcified egg laboratory investigation into 

osmosis during the following week.  She explained: 

Yes, they are devising their own lab investigation with their own hypothesis. If 
you place it [decalcified egg] in this solution, then the egg will get larger. 
Therefore, the solution is hypertonic or hypotonic. So that is the problem solving 
aspect of it for them. I would say that it is more of a lab activity. (stimulated recall 
interview, Day 2) 
 
Lana’s instructional strategies followed a traditional, teacher-centered approach. 

She relied upon a PowerPoint lecture during lessons on Days 1 and 2 to provide 

information about the structure and function of the cell membrane as well as key 

vocabulary terms including: phospholipid bilayer, polar, nonpolar, passive transport, 

hypertonic, hypotonic, isotonic, and concentration gradient. Exploration of concepts did 

not occur until Day 2 when students completed a baggie lab to investigate the diffusion of 
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water and iodine through the baggie membrane. However, the baggie lab followed a 

discussion of osmosis and diffusion in which students drew arrows on whiteboard 

diagrams of cells within beakers containing solutions of varying concentrations. Lana 

planned to build upon students’ knowledge of osmosis and diffusion with an inquiry-

based investigation of osmosis when decalcified chicken eggs are placed in corn syrup or 

distilled water.  

Knowledge of Students’ Understanding of Science 

 Lana identified students’ understanding of membrane structure as a concern for 

students’ conceptual understanding of osmosis. She explained students may have 

difficulty understanding the semipermeable nature of the membrane and that only small 

particles may pass through the membrane into the cell. Lana explained: 

Yes that there are openings or ways that things can move across a semipermeable 
membrane. I did not use that term and in retrospect, I wish I had. I showed them 
the drawing and I had small things that go through a membrane and large things 
that go through a membrane. (stimulated recall interview, Day 1) 
 

 To focus students’ thinking on membrane function, before beginning the baggie 

lab, Lana challenged students to predict potential changes within the baggie and beaker 

solutions, and identify the independent and dependent variables for the investigation. By 

challenging students with the baggie lab, she believed she was preparing students to draw 

upon their knowledge of osmosis and diffusion to generate an experimental design for a 

decalcified egg laboratory investigation planned for the following week. Lana began the 

osmosis and diffusion unit by emphasizing the importance of terminology, thus, students 

knowledge of vocabulary was emphasized prior to conceptual knowledge of the 

processes of osmosis and diffusion. Lana explained: 
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I am going to teach two lessons [Days 1 and 2] that relate to the cell membrane 
and the structure and a lead in to osmosis where the students will be doing a long 
term lab where they will work with eggs. We will remove the shells and put them 
in various solutions. I do this so that they can become familiar with the concepts 
of tonicity and hypertonic, isotonic, and hypotonic solutions. And this is an 
introduction unit. We have just completed cell structures and we are moving on to 
the cell membrane. (pre-observation interview) 

 
She challenged students to predict the outcome of the baggie investigation in terms of the 

direction of osmosis. She noted students’ ability to accurately predict the direction of 

osmosis was an indication of their conceptual understanding of osmosis. She explained: 

Yes, I want to fine-tune their predictions and that is how we will follow up 
tomorrow [following the research observation cycle]. And tomorrow I am going 
to get into more of osmosis because I am hoping that there will be water going 
into the baggies too. I do not know that for sure but I think that there might be a 
movement of water. (stimulated recall interview, Day 2)  
 
Lana also used diagrams and drawings to direct students’ thinking about the 

direction of osmosis. She explained students use arrows to identify the direction of 

osmosis : 

That is what I do quite a bit when we get into hypertonic and hypotonic. I want 
them to show which way the water is moving and also to show if something else 
is moving. I may have them use another color or label the arrows to show which 
way things are moving. I like to think that this helps. (stimulated recall interview, 
Day 2) 
 

Concerned about the knowledge of cell membranes students bring into the lesson, Lana 

explained many students do not understand cell membranes exist within all cells, even 

plant cells in which the cell membrane is surrounded by a cell wall. She noted: 

They are aware that cell membranes exist. And I was glad that they recognized 
that because I mentioned it several times that there are cell walls and the cell 
membranes are inside the cell walls. That is another misconception that kids have 
and I think that most of them have that idea. (stimulated recall interview, Day 1) 

 
Lana believes biology should be relevant to students’ lives to engage students and 

enhance their learning. She noted examples of biology are everywhere within the lives of 
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her students. By identifying connections between students’ experiences and biology, she 

is able to engage students more effectively. Lana explained: 

We do this cell lab which takes a good week and they do a lab write-up with it. 
But in between then I am going to relate to the grocery store and the water at the 
salad bar and the food they buy. This is probably as personal as anything. 
(stimulated recall interview, Day 1) 
 

 Lana explained the Day 1 lesson served as a review of membrane structure, 

introduction to terminology, and as a preparation for the baggie lab on Day 2. On Day 2 

Lana initially engaged students with a balloon demonstration and the baggie lab, 

providing representations of diffusion and osmosis. Students were challenged to make 

and test predictions for both. Lana believes effective learning requires students to 

construct their understanding of concepts. Thus, Lana structured her lessons to build upon 

one another preparing students for the inquiry-based decalcified egg lab planned for the 

following week. Lana explained: “The egg investigation is another opportunity for them 

to elaborate and expand upon the ideas what they learned so that they get a better grasp” 

(stimulated recall interview, Day 2).  She explained scaffolding students’ knowledge of 

osmosis and diffusion would better prepare students to understand photosynthesis and 

cellular respiration to be covered later in the semester.  

Knowledge of Assessment 

Lana indicated she relies upon formative assessments to evaluate students’ 

comprehension. She noted students’ predictions provide insight into their prior 

knowledge and thinking. Before beginning the diffusion demonstration and osmosis 

investigation on Day 2, Lana noted she planned to have her students predict outcomes. 

She explained, “I tell them that they have to make a prediction of the direction of osmosis 

and then decide how to test it” (stimulated recall interview, Day 2).  
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Lana explained she challenges students to identify sources of error within 

laboratory investigations to gain insight into students’ thinking. To identify potential 

sources of error, students must consider each step in the investigation and identify aspects 

of the protocol which could affect the results. She explained: 

What were possible sources of error in the baggie investigation? It could be, I 
have not looked at them, but it could even go as far as some of those we may have 
blue water in the beaker, the baggie could have a hole in it. (stimulated recall 
interview, Day 2)  
 

On Day 2, Lana drew a diagram of the a cell in a beaker of distilled water; after 

identifying the relative concentration of dissolved solid in the cell and the beaker, she 

challenged students to draw arrows to indicate the direction of osmosis. The nature of 

students’ responses, whether water would enter or leave the cell, provided Lana with 

insight into their understanding of osmosis and diffusion. From this insight, Lana 

believed she could select effective strategies and representations to make abstract 

concepts understandable for students. She described this type of assessment as problem 

solving and essentially a performance assessment. She explained: 

Yes, it will be problem solving; it is almost like a performance assessment I think. 
Then I have another drawing with a beaker and I might even say to them 
hypertonic, hypotonic, and isotonic which way would the water move? 
(stimulated recall interview, Day 2) 

 
While observing student to student interactions during lessons, Lana noted she is 

able to evaluate  understanding. Lana explained she puts students into collaborative teams 

of two and observes their work, listens to their explanations, questions, and comments to 

assess understanding. She noted: 

I may put them into groups of two because of the tables. I may do that but I am 
not going to move tables around. I have done some serious table moving over the 
past few weeks to get some things to work out and get them focused. I am 
thinking that it might be effective to explain diffusion and osmosis. . . . They 
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would have to explain it; they and their partner. I think that this would be a good 
plan when I do osmosis. It lends itself to other things. I ask them to draw and 
explain what is happening. (stimulated recall interview, Day 2) 

 
Lana indicated she would use student feedback from formative assessments as a 

barometer to determine students’ comprehension. She explained that if student feedback 

indicated that students did not grasp the concept she would present it to the students in a 

different way before moving on. Lana explained that she planed to implement a 

decalcified egg investigation during the following week involving in which students 

would place decalcified eggs in solutions of varying concentrations to investigate 

osmosis. She also hoped to use the investigation as an assessment of student ability to 

apply their knowledge of tonicity, osmosis, and diffusion. She explained: 

I am going to set up the egg lab for next week. So there might be some type of 
assessment while they are doing it [the egg lab]. Then while they are finishing the 
egg lab that will give me time to think about their understanding of these 
concepts. And then the final to the egg lab is usually a lab write up in which they 
are identifying variables and they talk about which way things moved and even 
develop a graph. (stimulated recall interview, Day 2) 
 
Lana used formative assessment throughout each lesson. She believed by asking 

students to apply their knowledge to answer simple questions or solve problems, she 

could continually assess students’ conceptual understanding and adapt her lesson to better 

meet students’ learning needs. When students were engaged in the baggie lab, Lana 

moved from lab group to lab group posing questions and noting student responses. She 

explained that she paid special attention to students who she knew would struggle with 

the material. 

Knowledge of Curriculum 
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 Lana noted membrane structure, osmosis, and diffusion are key concepts in 

biology and must be understood by the students before they can fully grasp complex 

processes such as photosynthesis and cellular respiration. She explained: 

When we get to photosynthesis and talk about the photon pump and how proteins 
and membranes are involved in that. . . . In cellular respiration there are proteins 
there too and hydrogen ions will diffuse through a membrane in the mitochondria 
and in the chloroplasts. The kids see the cell membranes again and again. Those 
are probably the two places right off hand that I can think of. (stimulated recall 
interview, Day 1) 
 
When planning lessons, Lana indicated that she tries to put herself into the 

mindset of her students and see the lesson through their eyes. She explained that this 

mindset helps her design engaging and meaningful lecture/discussions, activities, 

investigations, and experiments for students. Lana noted that everything in biology is 

related in some way to osmosis. She explained: 

I read an article once which explained that everything in life relates to osmosis. I 
am not sure that I buy into that but it is truly important for your health. It is why 
you gargle with saltwater when you have a sore throat. It is why you do not drink 
ocean water. It is why our ancestors cured hams. There are reasons that all of 
these things fit together. I am thinking that the whole osmosis thing I want them 
to see some connections with life and moving. Moving oxygen and moving other 
things across the membrane so the cells can maintain homeostasis. I want the kids 
to understand that osmosis is important for us to maintain our health. Everything 
is related to osmosis. (pre-observation interview) 
 
Lana explained that she uses the Internet and high school and collegiate texts in 

her planning. She explained: “I also look on line; there is a lot on line. There are 

suggestions from other teachers about what they are doing. You can Google ‘osmosis’ or 

‘diffusion’ on line and see what other teachers are doing” (pre-observation interview). 

Lana explained that she purposefully seeks out additional resources and does not limit 

herself to the textbook. She designed the lessons on Days 1 and 2 to support students’ 

construction of their knowledge of osmosis and diffusion. She explained: 
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I hope that they leave with this understanding that osmosis is important. The 
follow-up that you will not see is the lab that we do with the egg to show osmosis. 
We will take eggs, remove the shells, and place the eggs in a variety of solutions. 
But my students remember. They remember doing the lab and they also remember 
how it fits together. (pre-observation interview) 
 
Lana spoke of the importance of the 5E instructional model and explained she 

tried to implement the 5E model into her instruction. However, Lana engaged students 

with an explanation of diffusion and osmosis prior to an exploration of the phenomena on 

Day 2. Lana noted the Day 1 lesson was designed as an engagement with the goal of 

preparing students for the exploration of osmosis and diffusion during the baggie lab on 

Day 2. However, Lana did not include an activity in Day 1 and essentially engaged 

students with a traditional lecture and discussion to prepare them for the baggie 

investigation on Day 2. She explained:  

Tomorrow when we get to osmosis, we will circle back again and we will bring 
our discussion on osmosis and diffusion out again in view of what happened. So 
then we will elaborate on that. So they will be able, I am hoping that they will be 
able to see that water moves across a membrane so that will lead into osmosis 
which is a form of diffusion. I am hoping with this that they have got diffusion 
with the iodine and osmosis with the water moving. (stimulated recall interview, 
Day 2) 
 
Lana noted she drew upon student knowledge of concepts related to diffusion and 

osmosis taught earlier in the course to scaffold student learning and make the point that 

processes like osmosis and diffusion do not stand alone but are interwoven throughout 

the fabric of biology. She explained:  

I think that is the key thing with the cell membrane. It is that semipermeable 
barrier which allows certain things to pass and other cannot pass and we will build 
on that. It also ties into the cell theory and the reason I included the cell theory is 
because I wanted them to keep in mind that the cell is a living thing. (stimulated 
recall interview, Day 2) 
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In terms of Lana’s perception of curriculum, she noted the importance of osmosis 

and diffusion and explained as key concepts in biology which are integral to other 

processes such as homeostasis, cellular respiration, and photosynthesis. The sequence of 

instruction was not reflective of an inquiry-based approach; Lana believed students were 

not prepared to explore osmosis without a lecture focused on an explanation of the 

concepts. She explained that the balloon activity and baggie lab were specifically 

designed to provide students with opportunities for students to observe the phenomena 

following the explanation on Day 1. Lana planned to draw upon students’ understanding 

of osmosis during the week following the research observation cycle through an inquiry-

based investigation of osmosis in decalcified eggs. Lana planned for students to 

formulate an experimental design, predict an outcome, and identify dependent and 

independent variables for the decalcified egg investigation.  

Lana’s PCK for Teaching Diffusion and Osmosis 
 
 The Magnusson et al. (1999) model of pedagogical content knowledge has been 

modified to portray Lana’s knowledge for teaching (see Figure 25). As a veteran teacher, 

Lana’s knowledge and expertise are evidenced by her subject matter knowledge as well 

as her knowledge of students, instructional strategies and representations, and formative 

assessments. She sequenced students’ learning opportunities to first engage students with 

a lecture in which diffusion and osmosis were explained and second challenge students 

with a demonstration of diffusion followed by an investigation of osmosis and diffusion. 

Both activities served as validation of phenomena rather than explorations.  
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The lesson on Day 1 was designed to review students’ knowledge of cell membranes and 

introduce osmosis and diffusion through a PowerPoint lecture and discussion. On Day 2, 

students observed diffusion using drops of cologne within an inflated balloon and 

predicted the direction of osmosis and diffusion in the baggie lab. Lana explained the 

lessons on Days 1 and 2 were designed to prepare students for a decalcified egg in which 

students would be responsible for generating an experimental design, predicting 

outcomes, conducting the experiment, analyzing data, and developing a conclusion 

supported with evidence based upon their observations.  
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Figure 25: Lana’s topic-specific PCK25 

______________________ 
 

25Note: Modified from Nature, sources, and development of pedagogical content knowledge for science teaching (p.99), 
by S. Magnusson, J. Krajcik, & H. Borko, 1999. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical 
content knowledge: The construct and its implications for science education (pp. 95-132). Boston: Kluwer. 
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Lana designed representations to provide students with concrete examples of 

abstract concepts and incorporated them into her lessons. She noted her goal was to 

challenge students to apply their knowledge and explain their observations within the 

context of the diffusion of iodine and water along their concentration gradients in the 

baggie investigation. She explained: 

The iodine is going across one way, so you have diffusion and water is moving 
across so you have osmosis. I am going to have them weigh the bags so that they 
have osmosis and can measure the water intake. (stimulated recall interview, Day 
1) 
 
Lana’s PCK for teaching diffusion and osmosis, shown in Figure 26 represents 

the integration of the components of Lana’s knowledge to create a form of knowledge 

specific for teaching diffusion and osmosis. There are four important features to note 

within this representation. First, Lana’s orientation to science teaching is indicated in 

center of the model indicating the centrality of her orientation to her teaching. Lana’s 

orientation to teaching science, described as knowledge-transmission, acts as a filter 

influencing the interpretation and integration of the other components of Lana’s PCK. 

Second, reciprocating arrows between the components of PCK and Lana’s orientation 

indicate the influence these aspects of her PCK have upon one another. Her orientation to 

science teaching interprets the components of her PCK which, in turn, shape her 

orientation. Third, arrows connecting the components of Lana’s PCK components 

indicate the highly integrated nature of her PCK. The components of PCK inform and 

influence one another. Fourth, brief connecting statements between components provide 

insight into the rationale for Lana’s integration of components for teaching diffusion and 

osmosis.  
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Because Lana believed students would have difficulty predicting the direction of 

water movement during osmosis, she prepared students for the baggie investigation on 

Day 2 with a lecture focused on membrane structure and diffusion of substances across 

the membrane from high to lower concentrations. To gauge students’ comprehension, 

Lana challenged student to make and test predictions and draw arrows to identify the 

direction of osmosis in representations of cells within solutions of varying concentrations. 
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Lana believed students were not prepared to carry out investigations without preparation. 

Hence, she provided support and guidance for students through a PowerPoint lecture on 

Day 1 to prepare them for an exploration of osmosis and diffusion on Day 2. Lana 

integrated all PCK components during planning and teaching, however, Lana believes her 

students are not ready for inquiry, hence, she placed greater emphasis upon explanations 

through lecture and discussion rather than student exploration of concepts. 

Content Representation  

 In Table 27, a Content Representation (CoRe) illustrates Lana’s knowledge of 

teaching. The components of PCK are represented within the context of the CoRe and 

specific examples of instructional strategies and representations, assessments, potential 

student difficulties, and curricular considerations are included. When reading the CoRe, it 

is important to read individual columns (e.g. Big Idea A) from the top to the bottom 

vertically. The columns extend beyond a single page. 

Table 27. Content representation for Lana27 

Content Representation (CoRe) 
Considerations Big Idea A Big Idea B Big Idea C 
 Membranes are semi-

permeable and only 
allow certain substances 
to pass through into the 
cell. 

Diffusion occurs when 
substances move from 
higher concentrations to 
lower concentrations. 

Semi-permeable membranes 
maintain stability inside cells 
while external conditions 
change. 

Identify the  
learning goals for 
students within this 
lesson? 
 

Plasma membranes are 
semi-permeable and 
allow only some things 
to enter the cell. All 
nutrients must pass 
through the membrane to 
enter the cell. 

Water is necessary for 
all life and must enter 
the cell through the 
semi-permeable cell 
membrane. Water 
diffuses through pores 
in the membrane from 
higher to lower 
concentrations. 
 
 
 
 
 

Only some materials will be 
able to pass through a 
membrane and enter the cell. 
Cellular contents are unique 
and different from the 
environment in which the cell 
is found.  
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Why is it important 
for students to 
know this content? 
[Knowledge of 
curriculum] 

• It is important for 
students to understand 
how things fit together 
in biology.  

• The concept of the cell 
membrane is an 
important because all 
cells have cell 
membranes.  

• Diffusion is a 
biological concept 
which is found 
throughout biology.   

• Substances diffuse 
from higher to lower 
concentrations. 

 
 

• The cell membrane 
supports life by limiting 
what can enter the cell and 
maintaining a unique 
internal cellular 
environment.  

• Diffusion and osmosis are 
key concepts in biology. 

Identify potential 
student difficulties 
and limitations 
associated with 
teaching this idea. 
[Knowledge of 
students as 
learners] 

Potential learning 
difficulties may be: 
• understanding the 

structure of the cell 
membrane. 

• understanding the 
nature of the cell 
membrane in terms of 
the life and function of 
he cell. 

• developing a prediction 
for the balloon 
demonstration and the 
baggie investigation. 

Potential learning 
difficulties may be: 
• explaining how 

substances necessary 
for life (water, 
carbohydrates, lipids, 
etc.) enter the cell 
through the cell 
membrane. 

• understanding the 
diffusion of 
substances from 
greater to lesser 
concentrations. 

Potential learning difficulties 
may be: 
• understanding terminology 

associated with osmosis: 
• hypertonic, hypotonic, 

and isotonic. 
• connecting the processes of 

osmosis and diffusion to 
living cells. 

• explaining the concept of a 
concentration gradient. 

• relating concentration 
gradient to direction of 
osmosis and/or diffusion. 

Teaching strategies 
and representations 
implemented and 
particular reasons 
for using these 
strategies to engage 
students with this 
idea. 
[Knowledge of 
instructional 
strategies and 
representations] 

Representations: 
• representation of the 

cell membrane as a 
race track. 

• cologne diffuses 
through latex 
membrane of balloon. 

• water and iodine 
diffuse through baggie 
membrane resulting in 
a color change of 
starch solution. 

Instructional strategies: 
• lecture/discussion, 
• questions, and  
• balloon demonstration. 
 

Representations: 
• the scent of cologne 

becomes apparent in 
classroom as it 
diffuses through the 
balloon latex 
membrane. 

• change in baggie mass 
as water and iodine 
diffuses into the bag. 

• iodine causes a color 
change in the baggie; 
there is no color 
change in the beaker 
solution. 

Instructional strategies: 
• students pass a 

balloon containing 
drops of cologne 
around the classroom 
and as the cologne 
diffuses through the 
latex wall of the 
balloon, the scent of 
the cologne is 
detected. 

• Students predict 
direction of osmosis 
and diffusion in 
baggie lab. 

• Students test 
predictions. 

Representations: 
• baggie membrane allows 

water and iodine to pass 
through it but does not 
allow starch to pass. 

• iodine acts as an indicator 
providing evidence of 
osmosis and diffusion as 
iodine and water diffuses 
into baggie.  

• iodine in the beaker 
solution retains amber color 
indicating the absence of 
starch outside of the 
baggie. 

Instructional strategies: 
• explanation of concepts 

through lecture and 
discussion prior to 
exploration. 

• students make and test 
predictions concerning the 
direction of diffusion 
and/or osmosis in baggie 
lab. 

• Students will conduct a 
decalcified egg 
investigation to investigate 
osmosis and diffusion 
occurring within the egg 
when placed in solutions of 
varying concentrations. 



342 

Identify ways of 
ascertaining that 
students  concepts 
taught. 
[Knowledge of 
Assessment] 

• As a warm-up activity, 
students are asked to 
identify five things 
required for cell life 
that pass through the 
cell membrane. 

• Students are asked to 
explain why they can 
detect an odor when a 
balloon containing 
cologne is passed 
around the class. 

• Exit slips are 
completed by 
students-identifying 
structure of the cell 
membrane. 

• Students predict changes 
within the baggie - nature 
of predictions provides 
insight into students’ 
comprehension. 

• Teacher questioning 
students to assess 
comprehension of key 
concepts. 

• Students record 
observations and data taken 
from laboratory 
investigations in their 
notebooks. The notebooks 
are graded on a regular 
basis to assess student 
comprehension. 

 
The CoRe captures Lana’s PCK for teaching diffusion and osmosis and also describes her 

teaching practice. Her reliance upon teacher-directed lecture as a means of transmitting 

knowledge to her students is evident.  

 

 

 

 

 

 

 

 

 

 

________________________ 

27Note: Modified from Understanding and developing science teachers’ pedagogical content knowledge, 
by J. Loughran, A. Berry, and P. Mulhall, 2006, p. 28. Rotterdam: Sense Publisher.   
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CHAPTER FIVE: CROSS-CASE ANALYSIS 

In this chapter, I present assertions based upon the full data set presented in the 

six case profiles in Chapter Four. The assertions describe major themes observed across 

the cases and are organized around the sub-research questions which guided this study. 

The overarching research question guiding this study was: When teaching lessons on 

osmosis and diffusion, how do experienced biology teachers draw upon their topic-

specific pedagogical content knowledge? 

Sub-Research Questions 

To answer this question, I developed the following sub-questions: 

1. What are the nature and sources of the experienced biology teachers’ orientation 

to science teaching? (Assertion 1) 

2. What is the nature of experienced biology teachers’ knowledge of 

representations and instructional strategies and how does this knowledge inform 

their teaching practice? (Assertion 2) 

3. What is the nature of experienced biology teachers’ knowledge of students’ 

understanding of science and how does this knowledge of science learners 

inform their teaching practice? (Assertion 3) 

4. What is the nature of experienced biology teachers’ knowledge of formative 

assessment strategies and how does this knowledge inform their teaching 

practice? (Assertion 4) 

5. What is the nature of experienced biology teachers’ knowledge of biology 

curriculum and how does this knowledge inform their teaching practice? 

(Assertion 5) 
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6. In what ways do experienced teachers integrate the topic-specific components 

of their pedagogical content knowledge when teaching osmosis and diffusion? 

(Assertion 6) 

When supporting each of the six assertions, I refer to the case profiles and 

reference relevant data from the interviews, classroom observations, and researcher field 

notes. This data was used to understand the nature of experienced biology teachers’ topic-

specific pedagogical content knowledge and how this knowledge influenced participants’ 

teaching of osmosis and diffusion. 

Assertions 

Assertion 1: The majority of the participants held constructivist orientations to teaching 
science. Reflection on their high school biology teaching experience and extensive 
knowledge of their students and specific school context were the primary sources of their 
science teaching orientations. 
 
Overview of Orientations for Teaching Biology 

Magnusson et al. (1999) define orientation to science teaching as representing “a 

general way of viewing or conceptualizing science teaching” (p. 97). Nine orientations to 

science teaching including: “process, academic rigor, didactic, conceptual change, 

activity-driven, discovery, project-based, inquiry, and guided inquiry” (p. 100-101) were 

proposed by Magnusson et al. (1999). When analyzing the data, I found Magnusson et 

al.’s (1999) nine orientations to be limiting in terms of understanding the nature and 

sources of the teachers’ orientation to science teaching. The descriptions for each 

orientation provided minimal insight into teacher thinking and beliefs about teaching, 

learning, and learners. To develop a better understanding of teacher orientations, I drew 

upon the work of Brown (2008) and Brown, Friedrichsen, and Abell (2008). These 

researchers described orientation to science teaching as complex and identified five 
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dimensions of teachers’ orientations to science teaching including: (1) goals and purposes 

for teaching biology, (2) perception of teacher role, (3) perception of students’ role,      

(4) ideal images of teaching, and (5) perception of science as a discipline.  

Nature of Teachers’ Orientation to Science Teaching 

A cross-case comparison of the participants in this study revealed five of the six 

teachers held a constructivist orientation to science teaching. These teachers emphasized 

the importance of an active role for students in learning and believed students learn most 

effectively through explorations of phenomena. The teachers supported students’ 

construction of a conceptual framework based upon the following foundational concepts: 

(a) the structure and function of semipermeable cell membranes, (b) the importance of 

water in living systems, (c) the nature of homeostasis, and (d) random molecular motion 

as the driving force for diffusion and osmosis. During interviews, these teachers 

explained the importance of constructing a framework of knowledge to help students 

make sense of new ideas, such as, the forces determining the direction of osmosis (e.g., 

molecular motion, tonicity, and concentration gradient). The teachers implemented 

representations and explorations to support the construction of this framework of 

knowledge among their students. The teachers actively engaged students in learning 

through explorations of diffusion and osmosis. The teachers supported students’ 

conceptual understanding of diffusion and osmosis by drawing upon students’ 

observations and experiences with the phenomena to construct explanations. Students 

were challenged to apply their knowledge of diffusion and osmosis to new scenarios and 

support their explanations with evidence. Hence, I describe Emma, Cathy, Janis, Jason, 

and Kacy as holding a constructivist orientation to science teaching.  
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I describe Lana’s orientation to science teaching as a knowledge-transmission 

orientation. Evidenced by a traditional approach to instruction, teachers holding a 

knowledge-transmission orientation to science teaching engage students with lecture and 

teacher explanations of phenomena and use laboratory investigations as validation rather 

than as explorations. Lana believed her students were unprepared to conduct explorations 

and used teacher-directed lectures to explain the nature of semipermeable membranes, the 

processes of diffusion and osmosis, as well as the importance of homeostasis in living 

systems. Lana’s instructional sequence differed from the other teacher in that she initially 

presented information to students through a teacher-directed lecture and used the 

laboratory investigation as a validation. In the following section, I delve more deeply in 

each of the dimensions of the orientation to science teaching. 

Dimensions of Teacher Orientation  

 Overview. The five dimensions of science teaching orientation included the 

following:   (1) goals and purposes for teaching science, (2) perception of teacher’s role 

in student learning, (3) perception of students’ role in learning, (4) ideal images of 

teaching science, and (5) perception of science as a discipline. Of the five dimensions, the 

least useful was the ideal images of science teaching. This dimension did little to enhance 

understanding of the orientation to science teaching held by the experienced teachers 

participating in this study.   

Goals and purposes for teaching science.  The goals and purposes for teaching 

biology informed the approach to science teaching implemented by the teacher. Emma, 

Janis, Jason, Cathy, and Kacy identified actively engaging students in explorations of 

phenomena and encouraging students construct their knowledge from experiences 
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phenomena as an overarching goal for teaching science. The teachers wanted their 

students to think critically, find answers to questions, and construct their knowledge of 

biology from their experiences. Lana identified her goal for teaching biology as 

enhancing students’ understanding of life and the realization that all concepts in biology 

are connected. Hence, there are important differences in the goals for teaching biology 

held by the participants in this study. For example, the goal for students to construct their 

knowledge of biology from their experiences with investigations of phenomena led the 

teachers to engage students initially with an exploration, focusing on students’ actions 

involved in the construction of their knowledge. In comparison, Lana’s goal emphasized 

students’ learning in terms of their understanding of content knowledge and their 

perception of biological concepts as interconnected. Hence, the goals for teaching 

biology identified by Emma, Cathy, Janis, Jason and Kacy are focused on students’ 

thinking and their approach to learning (e.g., actively constructing knowledge, asking and 

answering questions) whereas, the focus of Lana’s goals for teaching biology are focused 

on students’ knowledge of biological content rather than the pathway to achieve 

understanding (e.g., critical thinking, constructing knowledge) 

Perception of teacher role. Janis, Jason, Emma, Cathy, and Kacy reported that 

reflection on their experience with teaching general biology changed their perception of 

teacher and students’ roles in teaching and learning. They progressed from a teacher-

centered, knowledge-transmission approach early in their practice to a student-centered, 

constructivist instructional approach. The teachers believed students learned most 

effectively when actively engaged in explorations of phenomena. Their teaching focus 

was on stimulating students’ thinking about patterns in biology, asking and answering 



348 

questions, developing explanations based upon their experiences, and supporting claims 

with evidence. The teachers implemented an implicit 5E (Bybee, 1997) instructional 

model to support students’ learning through their experiences and explorations of 

scientific concepts. Next, the teachers challenged students to apply their knowledge to 

explain novel scenarios. Lana described her teacher role as a facilitator; however, during 

classroom observations her actions told a different story. She was focused on presenting 

content to students through teacher-directed lectures and used laboratory investigations as 

a validation rather than an exploration of concepts.  

Perception of student role. Noting their goal to support students’ construction of 

biological knowledge, Emma, Cathy, Janis, Jason, and Kacy held the belief that students 

learn most effectively from their experiences with the phenomena. The teachers described 

the student role as that of an active participant, constructing their knowledge of biology 

through explorations of phenomena, making and testing predictions, and generating 

explanations based upon their experience and observations. Lana believed students were 

not prepared to conduct explorations and engaged students with traditional lecture, 

providing explanations of the phenomena prior to explorations and used investigations as 

a validation of the concepts. Hence, Lana’s beliefs about students’ role in learning 

constrained her implementation of a 5E (Bybee, 1997) instructional model even though 

this was identified as one of her overarching goals for teaching biology.  

View of science as a discipline. The view of science as a discipline held by the 

teachers provided important insight into their overarching orientation to science teaching. 

Emma, Cathy, Jason, Janis, and Kacy perceived science as way of knowing that required 

empirical evidence. The teachers required students to use evidence to support claims and 
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conclusions. Hence, the teachers perception of science as a discipline is evidenced in 

their instructional approach and their constructivist orientation to science teaching.  

Lana perceived science to be more closely aligned to knowledge explaining the 

the natural world, instead of exploring the natural world to gain an understanding of life 

and supporting conclusions with evidence. An overview of participants’ orientation in 

terms of the five dimensions is shown in Table 28. 

Table 28: Dimensions of teachers’ orientation to science teaching 

Dimensions 
of Teacher 
Orientation 

Teachers  

Cathy Janis  Jason Emma Kay Lana 

Goals and 
purposes for 

teaching 
biology 

To construct 
knowledge 
of biology 
by 
investigating 
biological 
concepts.  

To construct 
knowledge of 
biology by 
investigating 
concepts in 
biology.  

To construct 
knowledge 
through 
investigation 
and 
problem-
solving.  

To construct 
knowledge of 
biology and 
support 
problem 
solving. 

To construct 
knowledge 
of biology 
by 
investigating 
biological 
concepts.  

To 
understand 
the 
relevance of 
biology to 
life. 

Perception 
of teacher 

role 

To be 
flexible, 
sensitive and 
responsive to 
students’ 
learning 
needs. 
 

To use 
effective 
representations 
and 
investigations 
to scaffold 
students’ 
learning. 

To be a 
caring adult 
and model 
effective 
learning 
strategies for 
students.  

To challenge 
students to 
think critically 
and solve real-
world 
problems.  

To challenge 
students to 
apply their 
knowledge 
to novel 
scenarios.  

To be a 
facilitate 
learning by  
engaging 
students in 
relevant 
activities.  

Perception 
of students’ 

role 

To be open 
to using 
different 
learning 
strategies.  

To assume 
personal 
responsibility 
for learning.  

To be open 
to new ideas 
and be 
prepared to 
learn. 

To be an 
active 
participant in 
learning. 

To be 
prepared to 
learn and to 
work hard. 

To be 
responsible 
for their 
own 
learning. 

Ideal images 
of science 
teaching 

Supporting 
students’ 
construction 
of science  
knowledge.   

Supporting 
students’ 
construction of 
science 
knowledge.   

Supporting 
students’ 
construction 
of science 
knowledge 
with 
technology. 

Engaging  
students with 
the 5E 
instructional 
model. 

Aligning 
instruction 
with 
learning 
targets.  

Engaging 
students 
with 
ecological, 
problem-
solving 
activities. 

View of 
science as a 
discipline 

Perceives 
science as 
relying upon 
investigation 
and 
empirical 
evidence. 

Perceives 
science as 
relying upon 
empirical 
evidence 
derived from 
investigation. 

Perceives 
science as 
relying upon 
empirical 
evidence 
derived from 
investigation
. 

Perceives 
science as 
relying upon 
empirical 
evidence 
derived from 
investigation. 

Perceives 
science as 
relying upon 
empirical 
evidence 
derived from 
investigation
. 

Perceives 
science as a 
way for 
students to 
understand 
the natural 
world. 
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 In summary, using five dimensions to analyze data and define teacher orientations 

enabled me to understand and explain the differences in orientations observed among the 

teachers from multiple perspectives. I was able to make connections between the 

orientation to science teaching held by the teachers and their beliefs about teaching, 

learning, and learners. It would be very difficult to explain Lana’s orientation in the 

absence of the dimensions.  

Sources of Teacher Orientation to Science Teaching 

 The sources of teacher orientation to science teaching include experiences which 

inform the teachers’ goals for science teaching, their perception of teacher’s and students’ 

roles in learning, and the perception of science as a discipline. In the following sections, I 

describe and explain the sources of participants’ orientation to science teaching.  

 Teaching experience. All six teachers were experienced in teaching general 

biology to tenth grade students. Teaching experience of the participants ranged from 

seven to nineteen years. Lana, Cathy, Emma, and Jason taught in small, rural high 

schools, whereas, Janis and Kacy taught in large suburban high schools. All six teachers 

identified their teaching experience and their reflection on that experience as having a 

strong influence on their goals and purposes for teaching biology, their perceptions of 

teacher and students’ roles in teaching and learning, and their views of science as a 

discipline. The teachers noted reflection on their practice and students’ learning played a 

major role in their approach to teaching biology. All six teachers identified both 

successes and failures in their teaching and students’ learning. During the stimulated 

recall interviews following each observation on Day 1 and 2, the teachers noted changes 
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they planned to make when teaching diffusion and osmosis in the future to better support 

students’ learning.  

 Professional Learning Teams.  Janis, Cathy, and Kacy identified professional 

interaction with colleagues through a Professional Learning Team (PLT) as having an 

important influence on their planning and teaching. The teachers noted their involvement 

with a PLT was critical for developing a common curriculum for tenth grade biology; 

generating common representations, investigations, and demonstrations; as well as 

designing common formative and summative assessments (e.g., rubrics, quizzes, chapter 

tests, semester exams) for each unit. The teachers noted the PLT analyzed common 

assessments to identify student learning difficulties with content and the most effective 

representations, demonstrations, and investigations. Emma did not have access to a PLT 

within her school but made connections with other teachers through PREP.  

 Partnership for Research and Education with Plants. Emma, Janis, Cathy, and 

Lana participated in a university program, Partnership for Research and Education with 

Plants (PREP). PREP supports partnerships between teachers and plant research scientists 

for the implementation of student-driven research into high school biology. Emma, Janis, 

and Cathy were actively engaged in PREP; the teachers attended three workshops per 

year and supported students with the development of independent research projects 

investigating environmental influences on plant growth. Students had access to wild-type 

and mutant Arabidopsis seeds through plant research scientists. Through the PREP 

program, teachers interacted with plant research scientists to support student driven 

research investigating the affect of environmenal conditions on the growth of wild-type 

and mutant Arabidopsis plants to gain insight into the role of previously uncharacterized 
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genes. Although, Jason and Kacy were not involved with PREP, each emphasized 

explorations of phenomena and students’ use of evidence to support explanations. 

Therefore, the PREP experience helped them view science the development of new 

scientific knowledge as claims based on empirical evidence. 

Summary 

This study examined teachers’ orientation to science teaching through the 

dimensions identified by Brown (2008) and Brown et al. (2008). The dimensions 

provided important insight into teacher thinking within the context of their goals and 

purposes, perception of teacher and students’ roles in learning, and their perception of 

science as a discipline. Janis, Cathy, Jason, Emma, and Kacy held constructivist 

orientations and believed students learn from their experiences during explorations of 

phenomena and engaged students with an implicit 5E (Bybee, 1997) instructional model, 

describing their role as facilitators. The teachers engaged students with explorations of 

phenomena and supported students’ construction of  biological knowledge. The teachers’ 

beliefs about teacher and students’ roles in learning informed their constructivist 

orientation to science teaching. Lana demonstrated a knowledge-transmission orientation 

to science teaching informed by her beliefs about teacher’s and students’ roles in 

learning. She placed students in the role of passive learners in a teacher-directed learning 

environment.  

The perception of science as a discipline was reflective of the teachers’ 

orientation to science teaching. Emma, Cathy, Jason, Janis, and Kacy perceived science 

as a discipline in which new knowledge was generated through scientific investigations 

and supported with empirical evidence. Their constructivist orientation is reflective of 
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their perception of science. Whereas, Lana’s knowledge-transmission orientation to 

science teaching is reflective of her perception of science as a body of interconnected 

knowledge explaining the nauture of life in the natural world.   

Assertion 2: The teachers used representations at the molecular, cellular and plant organ 
levels which served as the foci for demonstrations, analogies, and student investigations.  
The majority of the teachers sequenced their instruction to have students explore the 
phenomena of diffusion and osmosis prior to constructing explanations through teacher-
led interactive lectures. 
 

The case profiles show that all six teachers implemented topic-specific 

representations for osmosis and diffusion. All teachers engaged students with the 

phenomena of diffusion and/or osmosis using representations which included: balloons 

and cologne, food dye and water, dialysis tubing, baggies, potato slices, decalcified 

chicken eggs, Elodea leaf cells, lettuce leaves, and Fast Plants. The representations 

served as foci for demonstrations or investigations. Students made and tested predictions 

about the direction of diffusion and/or osmosis and drew upon their knowledge of 

osmosis and diffusion and observations to interpret and explain the outcomes of 

demonstrations and investigations. Emma, Janis, Cathy, Kacy, and Jason engaged 

students with the phenomenon of diffusion and/or osmosis through demonstrations or 

investigations prior to developing explanations based upon students’ observations during 

teacher-led interactive lectures. In the following sections I explain the nature of 

representations of cells including living, artificial, and virtual cells as well as plant organs 

including lettuce leaves, potato slices, and Wisconsin Fast Plants. Table 29 provides an 

overview of the representations and instructional strategies used by teachers for teaching 

osmosis and diffusion.  
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Table 29. Representations and instructional strategies implemented by participants 
 

 
D 
I 
F 
F 
U 
S 
I 
O 
N 

Representations Teachers 
 Emma Janis Cathy Kacy Jason Lana 

Predictions Yes  Yes Yes  Yes 

Food dye in water Demon-
stration 

 Demon-  
stration 

Demon- 
stration 

  

India ink in water   Demon- 
stration 

   

Cologne in balloon      Demon- 
stration 

 
 
 
 
 
O 
S 
M 
O 
S 
I 
S 
 
 
 
 
 
 
 
 
 

Predictions Yes Yes Yes Yes Yes Yes 

C 
E 
L 
L 
U 
L 
A 
R 

Elodea  Investi- 
gation 

    

Decalcified 
Egg 

Investi- 
gation 

 

  Demon-
stration 

 Investi- 
gation 

Dialysis 
tubing 

  Investigation  Investi- 
gation 

 

Baggie    Investi- 
gation 

 Investi-
gation 

M 
O 
L 
E 
C 
U 
L 
A 
R 

MoLo 
Animation 

 Demon-
stration 

Demon-
stration 

Demon-
stration 

Demon-
stration 

 

Analogy of 
Blind-
folded 
students 

 Yes Yes  
 
  

  

Osmo-
beaker 
computer 
program 

    Investi- 
gation 

 

P 
L 
A 
N 
T 

O 
R 
G 
A 
N 
S 

Lettuce 
leaves 

   Investi- 
gation 

  

Potato 
slices  

 Investi- 
gation 

Investi- 
gation 

   

Fast Plants  Investi- 
gation 

    

 

 The teachers implemented teacher demonstrations and laboratory investigations as 

instructional strategies to support students’ conceptual understanding of diffusion and 

osmosis. It is important to note the demonstrations were followed by investigations. 

Challenging students to make and test predictions was a persistent theme noted 

throughout the practice of all six teachers. 
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Diffusion  

Lana, Cathy, Kacy, and Emma introduced the concept of diffusion prior to 

osmosis. The teachers engaged students with demonstrations in which students were 

challenged to predict changes resulting from diffusion occurring within liquids and gases. 

Emma, Cathy, and Kacy used the diffusion of food dye in a beaker of water at room 

temperature. Prior to placing drops of food dye in water, Emma, Cathy, and Kacy 

challenged students to predict changes in the food dye and water over time. Next, 

students tested their predictions by observing changes in the solution. Cathy also 

referenced a representation involving a droplet of India ink placed in a drop of water on a 

microscope slide. She explained heat from the microscope bulb would increase the 

molecular motion of India ink and water causing diffusion to occur rapidly. Cathy and 

Janis implemented an analogy of blindfolded students moving randomly in the classroom 

as a representation of diffusion resulting from random molecular motion. Lana 

implemented a representation of the diffusion of gases in which several drops of cologne 

were placed in a balloon. Next, the balloon was inflated and students were challenged to 

make predictions about the diffusion of cologne through the latex balloon membrane 

before passing the balloon among the students. Later in the lesson, Lana drew upon 

students’ observations of the diffusion of the balloon membrane as a semipermeable 

membrane allowing the cologne scent to diffuse through the membrane while the balloon 

remained inflated. An overview of teacher representations for diffusion is shown in Table 

30.  
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Table 30. Representations of Diffusion. 

Representation: Diffusion  
 
Food Dye and 
Water 

Description Diffusion 
Several drops of food dye are placed in a 
beaker of water at room temperature. 

Food dye diffuses through the water forming a solution 
of uniform color; the process occurs slowly.  

India ink and 
water 

A single drop of India ink is place in 
several drops of water on a microscope 
slide. 

Heat from the bulb increases the kinetic energy of the 
system resulting in rapid molecular motion and 
diffusion of the ink in the water. 

Balloon and 
cologne 

Several drops of cologne are placed in a 
balloon which is then inflated by the 
teacher and passed among the students.  

Cologne diffuses through the balloon into the 
classroom, however, the balloon remains inflated. 
Students detect the scent while passing the balloon. 

Analogy  Blindfolded students crowded into a 
classroom, moving randomly and 
colliding with other students to move 
from areas of higher to lower congestion.  

This analogy focuses students upon the random 
molecular movement as the driving force for diffusion. 
Random motion and collisions result in the gradual 
movement from areas of higher congestion to areas of 
lower congestion.  

 
To understand diffusion and osmosis (the diffusion of water through a 

semipermeable membrane) all the teachers believed students must perceive random, 

molecular motion as the driving force for both diffusion and osmosis. Janis, Jason, Cathy, 

Kacy, and Emma used animations from Molecular Logic (Concord Consortium, 2009) as 

representations for diffusion. The animations illustrated random motion and collision of 

molecules as the driving force for diffusion. To underscore students’ understanding of the 

role of random molecular motion in both diffusion and osmosis, Cathy and Janis used an 

analogy of blindfolded high school students (see Table 30) moving randomly, colliding 

with one another, and gradually moving from areas of greater congestion to areas of 

lesser congestion within the classroom. Cathy and Janis used this analogy to make a 

connection between random motion and collisions among blindfolded students with 

random motion and collisions of molecules. Only Cathy referenced the effect of heat 

upon kinetic energy, molecular motion, and the rate of diffusion. 

Representations at the Cellular Level 

 The teachers used multiple representations of cells in which osmosis and/or 

diffusion were observed. Living representations of cells included microscopic 
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observations of cells within Elodea leaves and decalcified eggs. Non-living cellular 

representations included dialysis tubing and baggies. All six teachers used cellular 

representations as foci for demonstrations or investigations into osmosis and/or diffusion. 

In the following sections, I identify and explain the representations for teaching diffusion 

and osmosis implemented by the teachers.  

Plant cells within Elodea leaves. Janis used Elodea leaf cells as living 

representations for osmosis. Students used microscopes to observe changes in cells after 

placing drops of distilled water or a saline solution on Elodea leaves on microscope 

slides. An overview of the Elodea cell representation is shown in Table 31. 

Table 31. Living cells as representations for osmosis.   

Representation: Cells in Elodea Leaves  
External 
Environment 

Direction of Net Water Movement Evidence of Osmosis 

Distilled Water 
 

Water enters cells within Elodea leaf. 
 
 

Elodea cells swell; contractile vacuole 
enlarges.    

 
Saline Solution Water leaves cells within Elodea leaf. 

 
Elodea cells shrivel within cell wall; 
contractile vacuole shrinks and the plasma 
membrane pulls away from the cell wall.   

 
Janis noted her goal in using Elodea leaf cells was to emphasize the direction of osmosis 

within the cells resulting from exposure to distilled water or a concentrated saline 

solution. Students observed changes within the central vacuole of the cells with exposure 

to distilled water or saline.  

 Decalcified chicken eggs. Emma and Kacy used decalcified chicken eggs as 

representations for living cells undergoing osmosis. Egg shells were dissolved when eggs 

were placed in vinegar for a period of 24 hours, leaving the eggs surrounded by a 

semipermeable membrane allowing only water to enter or leave the cell. An overview of 

the decalcified egg representations is shown in Table 32. 
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Table 32. Decalcified chicken eggs as cell and membrane representations   

Representation: Decalcified Chicken Eggs as Representations of the Cell  
External  
Environment 

Direction of Osmosis Evidence of Osmosis 

 
Distilled Water 

Water enters egg 
Egg swells 
Egg gains mass 

Increase in mass of egg 
Increase in size of egg 
Membrane is stretched  

 
Corn Syrup 

Water leaves egg 
Egg shrivels 
Egg loses mass 

Decrease in mass of egg 
Decrease in size of egg 
Membrane shrived 

 
The teachers varied in their use of decalcified eggs ranging from a demonstration 

to a cookbook laboratory to an open-ended inquiry investigation. Kacy engaged students 

in a teacher demonstration of osmosis. First, Kacy challenged students to predict changes 

to the decalcified egg before placing the egg in corn syrup. Forty-eight hours later, during 

the following lesson, students observed and touched the egg to note changes and test their 

predictions. Emma engaged students with a cookbook investigation of osmosis in 

decalcified eggs. Student predicted the direction of osmosis for the eggs prior to massing 

and placing the eggs in distilled water or corn syrup. Students tested their predictions 24 

hours later, when observations of changes in the appearance and mass of the eggs were 

made. Lana planned to have students design their own inquiry-based investigations with 

decalcified chicken eggs during the week following the research observation cycle. She 

asked students to develop a hypothesis for their investigation, identify variables, predict 

changes within the eggs, and design an investigation protocol including the environments 

in which the eggs would be placed. 

Emma used the decalcified egg as a student investigation because she wanted 

students to conduct a hands-on investigation into osmosis. She did not plan for students 

to investigate osmosis within plant organs (e.g., potatoes or lettuce leaves). She used 

decalcified eggs because the eggs underwent dramatic changes in mass and appearance 
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after being placed in corn syrup or distilled water for 24 hours. Kacy utilized the 

decalcified egg representation as a teacher demonstration instead of a student 

investigation because of time constraints. She believed the demonstration provided 

supporting evidence for students’ understanding of the direction of osmosis from areas of 

higher to lower concentrations, and noted students were able to see dramatic changes in 

the egg after placement in corn syrup. When eggs were placed in corn syrup, water 

moved from an area of higher water concentration within the egg into an area of lower 

water concentration within the corn syrup. The reverse was true when the eggs were 

placed in distilled water. Emma, Kacy, and Lana noted decalcified eggs provided 

students with excellent representations of osmosis because of significant and obvious 

changes in the eggs’ mass and appearance.  

Artificial cell models. Jason and Cathy used dialysis tubing as a representation of 

the cell and cell membrane to investigate diffusion and osmosis. Both teachers directed 

students to fill the dialysis tubing with a starch and glucose solution and predict changes 

to the dialysis tubing solution following placement in a beaker containing water and 

iodine. Students tested predictions by observing color changes within the dialysis tubing 

and tested for the presence of glucose within the beaker solution. Both teachers noted that 

glucose diffused out of the tubing and into the solution in the beaker, while iodine and 

water diffused into the dialysis tubing. The dialysis tubing representation allowed 

students to observe the diffusion of substances along their concentration gradient both 

into and out of the artificial representation of a cell.  

Kacy and Lana used plastic baggies as a representation for a cell and 

semipermeable membrane. The teachers noted the baggie investigation provided obvious 
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results for the direction of osmosis and the diffusion of iodine. Both teachers noted cost 

as the major reason for using baggies rather than dialysis tubing as cellular 

representations. Both teachers indicated that inexpensive store brands of baggies are 

excellent replacements for dialysis tubing. An overview of the artificial cell models and 

semipermeable membrane representations is shown in Table 33. 

Table 33. Artificial cell models and semipermeable membrane representations 

Representation: Artificial cell and semipermeable membrane 
 
Dialysis 
tubing 

Contents External 
Environment 

Diffusion Osmosis Direction Evidence 

water, 
glucose, and 
starch 
solution 

iodine and 
distilled water 

Glucose  Out of 
cell 

Positive glucose 
test 

Iodine   Into cell Color change 
 Water Into cell Size/mass 

increase 
Baggie water and 

starch 
solution 

iodine and 
distilled water 

Iodine  Into cell Color change 

 Water Into cell Size/mass 
increase 

 
Dialysis tubing and baggies provided students with an opportunity to observe 

osmosis and diffusion within the context of an artificial cell and membrane and test 

predictions for the direction of osmosis and diffusion. The baggie and dialysis tubing 

models reduce teacher preparation time as the chicken eggs must be decalcified in 

vinegar 24-hours prior to use in student investigations or teacher demonstrations.  

Virtual cell models. Jason was the only participant to implement technology as a 

means for students to explore the concept of osmosis. The Osmobeaker computer 

program (Meir, Stal, & Maruca, 2004) allowed students to manipulate the concentration 

of dissolved solid within a virtual IV solution and predict resulting direction of osmosis 

in a virtual red blood cell. An overview of the virtual cell model is shown in Table 34. 
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Table 34. Virtual representations of a red blood cell and IV solution 

Representation: Virtual cell model for osmosis  
Representation Direction of Net Water Movement Evidence of Osmosis 
Virtual red 
blood cell 
(RBC) in IV 
solution with 
low salt content 
[hypotonic 
environment] 

Water from IV solution moves into 
the RBC. 
 
 
 
 
 

RBC enlarges as water enters from the 
environment and the RBC ultimately bursts. 

RBC in isotonic 
IV solution 
with equal 

concentration of 
salt  

The movement of water into and out 
of the cell is equal and the RBC is 
said to be in equilibrium with its 
environment. 

There is no change in the size of the RBC. 
 
 
 

RBC in a 
concentrated 
salt solution 
[hypertonic 
environment 

Water moves out of the cell into the 
surrounding saline solution. 

The RBC shrivels as it looses water to the 
environment. 
 
 

 
Jason used the Osmobeaker computer program (Meir, Stal, & Maruca, 2004) on 

Day 2 to build upon students’ initial exploration of osmosis with dialysis tubing 

investigation on Day 1. The program engaged students with a scenario in which an 

emergency room patient, bleeding heavily from a serious wound, requires an intravenous 

infusion (IV infusion). Students were challenged to make predictions of changes in the 

red blood cell when the concentration of water within the IV solution was increased. 

Predictions were tested by running the program and noting changes. Jason noted three 

reasons for using the virtual investigation of osmosis: (1) animated representations of 

osmosis were observed at the molecular level, (2) the program allows students to 

manipulate variables and test predictions for each change, (3) calculating relative 

percentages of dissolved solids within each solution (within the virtual cell and the IV 

solution) challenged students to explain the direction of osmosis from greater to lesser 

concentrations mathematically. The virtual cell model offers an opportunity for students 

to observe osmosis at the molecular level and manipulate variables to immediately test 
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predictions; this would not be possible with the baggie, dialysis tubing or decalcified egg 

investigations.   

Representations of Osmosis in Plant Organs 

 Teachers used potato slices, lettuce leaves, and the leaves and stems of Wisconsin 

Fast Plants as foci for investigations into osmosis.  

Lettuce leaves. Kacy used lettuce leaves as a representation of a plant organ for 

the final osmosis investigation on Day 2. The lettuce leaves were placed in three different 

environments: distilled water, saline solution, and on a paper towel in the air. The goal of 

the investigation was to challenge students to think about osmosis as a ubiquitous process 

taking place in all living things. An overview of the lettuce leaf representation is shown 

in Table 35. 

Table 35. Lettuce leaves as representations for osmosis   

Representation: Lettuce Leaves  
External 

Environment 
  

Direction of Net Water Movement Evidence of Osmosis 

Distilled water 
 

Water enters lettuce leaf and leaf. 
 

Lettuce leaf becomes rigid. 
 

Saline Solution Water leaves lettuce leaf. Lettuce leaf becomes flaccid. 

Paper Towel Extreme water loss from lettuce leaf. Lettuce leaf becomes flaccid, edges are dry. 

 
Kacy’s intention was to support students as they constructed their knowledge of osmosis 

with a representation common to all students’ prior knowledge and experience.  

 Potato slices. Janis and Cathy used potato slices as representations for plant 

organs. The potato slices became rigid when placed in distilled water and flaccid when 

placed in a concentrated saline solution. First, Janis engaged students with an 

investigation into the direction of osmosis within Elodea leaf cells. Students observed 

changes at the cellular level when the leaves were exposed to distilled water and a 
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concentrated saline solution. Next, Janis engaged students with an investigation of 

osmosis in potato slices. She explained her goal was to engage students with an 

investigation into osmosis within plant organs; illustrating changes when multicellular 

structures undergo osmosis following placement in distilled water and a saline solution. 

Janis also challenged students to consider Wisconsin Fast Plants as representatives of 

osmosis within the context of observable changes within plant stems and leaves resulting 

from water loss. Janis noted that water uptake in the Fast Plants was an example of 

osmosis in complex plant organs (plant leaves and stems). Cathy sequenced her lessons 

to, first, investigate diffusion and osmosis in a dialysis tubing cell and, second, to 

investigate osmosis within potato slices as representations of plant organs. Students made 

and tested predictions by observing changes within the potato slices after exposure to 

each environment. An overview of the potato slice representation for plant tissues is 

shown in Table 36. 

Table 36. Potato slices as representations for osmosis.   

Representation: Potato slices  
External 
Environment 
 

Direction of Net Water Movement Evidence of Osmosis 

Distilled water Water enters potato slice. 
 

Potato slice swells and becomes rigid. 
 

Saline Solution Water leaves potato slice. 
 

Potato slice becomes flaccid. 

 
Cathy and Janis explained students were familiar with potatoes and the commonality of 

students’ experience served to engage students in constructing their knowledge of 

osmosis related to the diffusion of water from higher to lower concentrations within plant 

organs.  
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Interactive Lectures 

 All teachers used lectures as a format to provide students with information and to 

provide a format for students to share their observations, questions, and explanations. The 

teachers sequenced lecture and discussion to follow students’ exploration of phenomena. 

In the lectures were teacher directed but included whole class discussions in which the 

teachers drew upon students’ experiences, observations, and explanations.  

Interactive lecture format. All six teachers engaged students with interactive 

lectures; teacher driven discussions during which PowerPoint presentations were used to 

provide computer graphics and animations of osmosis and diffusion. Emma, Janis, Jason, 

and Kacy used interactive lectures to engage students in constructing explanations for 

osmosis and diffusion following exploration of phenomena. The teachers explained their 

lesson sequence was designed to support the development of students’ process skills 

including critical thinking, questioning, collaborating with peers, and evidence gathering. 

The lectures also served as a venue for teachers to present content to students including 

concepts related to membrane permeability, random molecular motion, and factors 

determining the direction of osmosis. However, Lana sequenced her lessons to began 

with a lecture focused on membrane permeability and terminology before investigating 

diffusion and osmosis and used the balloon demonstration and baggie investigation as 

validation for content presented during interactive lectures. 

Instructional Sequence 

Five of the six teachers used the following instructional sequence: (a) pre-

assessed students’ prior knowledge of diffusion and/or osmosis through predictions of 

demonstration or investigation outcomes, (b) engaged students with an exploration of the 
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phenomena, and (c) drew upon students’ observations during interactive lectures to 

generate explanations for phenomena, and (d) challenged students to make and test 

predictions for new investigations. Teachers built upon students’ knowledge of diffusion 

and osmosis from initial demonstrations and investigations to expand students’ 

conceptual understanding to include random molecular motion as the driving force for the 

phenomena observed at the cellular level and within plant organs. Table 37 shows the 

sequence of concept introduction during the observed lessons. 

Table 37. Sequence of concept introduction during lesson 

                                                                                                               Teachers              
 

Concept 
Emma Janis Cathy Kay Jason Lana 

Lesson Sequence 
Diffusion occurs in liquids and in gases  1 

food dye 
in water 

 1 
food dye 
in water 

1 
food dye 
in water 

 1 
cologne 

in 
balloon 

Osmosis and diffusion occur at the cellular 
level  

2 
Egg 

1 
Elodea 
Leaf 
cells 

2 
Dialysis 
tubing 

2 
Baggie 

3 
Egg 

1 
Dialysis 
Tubing 

2 
Osmo-
beaker 

2 
Baggie 

3 
Egg 

Osmosis occurs within plant tissues, 
organs, and organisms 

 2 
Potato 
slice 

3 
Fast 

Plants 

3 
Potato 
slice 

4 
Lettuce 

leaf 

  

 
Exploration of phenomena. Emma, Cathy, Kacy, and Lana initially engaged 

students with diffusion demonstrations (Emma, Cathy, and Kacy used demonstrations of 

diffusion in liquids and Lana used a demonstration of diffusion in gases) during which 

the diffusion of liquids and gases were observed. Students were challenged to make and 

test predictions of diffusion in each of the demonstrations.  

Janis used an investigation of osmosis in cells within Elodea leaves to introduce 

students to osmosis, challenging students to make and test predictions of the direction of 
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osmosis. Jason initially engaged students with an investigation of osmosis and diffusion 

in artificial cells (dialysis tubing) students made and tested predictions for the direction of 

osmosis and diffusion of iodine and glucose. The teachers built upon students’ initial 

observations of diffusion and osmosis to expand their understanding of random molecular 

motion and collisions as the driving force for diffusion and osmosis. To support students’ 

understanding of random molecular motion, Cathy, Janis, Jason, and Kacy used computer 

animations to illustrate molecular motion driving osmosis. Emma and Lana used 

whiteboard diagrams with molecules of dissolved solid and water represented with 

contrasting symbols to illustrate molecular motion as the driving force for the 

phenomena.  

Explanation. The teachers relied upon students’ observations during 

demonstrations and/or investigations to generate explanations during interactive lectures. 

All six teachers used interactive lectures during which teachers: (a) asked students to 

share their observations with the class, (b) relied upon student ideas, observations, and 

experiences to generate explanations for the phenomena, and (c) used computer 

animations to provide engage students in explanations for diffusion and osmosis at the 

molecular level. 

Elaboration. The sequence of demonstrations and investigations was designed to 

build upon students’ initial understanding to construct a conceptual understanding of the 

phenomena as a result of random molecular motion and collisions. During the lessons, 

teachers challenged students to apply their understanding of diffusion and osmosis to new 

investigations or demonstrations for which the outcome was not known. All six teachers 

challenged students to predict the direction of osmosis and/or diffusion within the context 
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of new investigations or posed unique problems within existing investigations. Emma, 

Cathy, Lana, and Kacy initially challenged students to predict changes resulting from 

diffusion and progressed to challenging students to predict the direction of osmosis 

within cellular representatives. Janis and Jason initially challenged students to predict the 

direction of osmosis during investigations at the cellular level. Janis’ lesson progressed to 

an investigation of osmosis at the level of plant organs (e.g., potato slices and Wisconsin 

Fast Plants). Jason challenged students to manipulate the concentration of dissolved solid 

within a virtual IV solution and predict the direction of osmosis following changes in the 

IV solution. Each of the teachers challenged students to build upon their understanding of 

osmosis and diffusion by predicting the direction of osmosis within new scenarios. An 

overview of the implicit 5E instructional sequence used by five of the six teachers during 

the research observation cycle is shown in Table 41.  

Table 38. Implicit 5E instructional sequence  

Teacher Engage Explore Explain Elaborate 
Emma Food dye and water 

diffusion 
demonstration 

Decalcified egg 
investigation  

Explanations developed 
from students’ 
observations. 

Students reverse eggs 
in distilled water and 
corn syrup 

Cathy Storyboard activity 
– Diffusion 
demonstration 

Osmosis:  
• Dialysis tubing 
• Potato slices 

Students build upon 
knowledge of diffusion 
to formulate 
explanations of osmosis 
from observations. 

Students predict and 
explain changes in 
potato slices placed in 
distilled water and 
saline. 

Kacy Food dye and water 
diffusion 
demonstration 

Osmosis:  
• Baggie 

investigation 
• Decalcified egg 

investigation 

Students use test their 
predictions and use 
observations to explain 
the direction of osmosis. 

Students predict and 
explain changes in 
lettuce leaves placed 
in distilled water, 
saline, and in the air 

Jason Review nature of 
plasma membrane 

Osmosis: 
Dialysis tubing 
investigation 

Explanations developed 
from students’ 
observations. 

Students make and 
test predictions of 
changes to virtual cell 
when water is added 
to virtual IV solution.  

Janis Observations of 
Elodea leaf cells  

Osmosis: 
• Potato slice 

investigation 

Students’ observations of 
osmosis in Elodea cells 
used to explain changes 
in potato slices. 

Students will conduct 
an investigation of 
osmosis with dialysis 
tubing. 
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Practical applications 

 Practical applications were also important aspects of teachers’ curricular 

knowledge and emphasized during instruction. All six teachers made connections 

between students’ prior knowledge and experiences and osmosis and diffusion. Emma 

guided students to make connections between the nature of ocean water and fresh water 

and explain how drinking ocean water would result in dehydration. Jason, Kacy, and 

Janis made connections between osmosis and the importance of relative concentrations of 

dissolved solids within cellular contents and an IV solution. Cathy related her concern as 

a coach for student athletes’ level of hydration, relating the important role of water in cell 

function and maintaining homeostasis.   

Summary 

 Teachers sequenced lessons to initially engage students with demonstrations of 

diffusion or investigations into osmosis and diffusion at the cellular level and progressed 

to investigations of more complex plant structures (e.g., potato slices, lettuce leaves, and 

Fast Plants). Thus, a progression from simple to complex was observed among all 

teachers. Teachers explained the instructional sequence served to support student learning 

as they constructed their knowledge of diffusion and osmosis. Students were initially 

introduced to osmosis and/or diffusion at the cellular level. The teachers challenged 

students to build upon their understanding of osmosis at the cellular level to explain the 

changes observed in plant organs.  

All teachers used representations of diffusion and osmosis to serve as foci for 

investigations and/or demonstrations. The teachers asked students to make and test 

predictions of changes resulting from diffusion and/or osmosis during demonstrations and 
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investigations. Five of the six teachers followed an implicit 5E instructional sequence. 

The teachers engaged students with explorations prior to formulating explanations and 

used students’ experiences with the phenomena to develop explanations for their 

observations.  

Teachers demonstrated knowledge of representations for diffusion and osmosis 

within non-living and living systems. The representations were selected because changes 

resulting from diffusion and/or osmosis were obvious for students. Several teachers 

implemented analogies to support students’ learning by making connections between 

molecular motion and diffusion and osmosis. Representations served as a focus for 

demonstrations and/or investigations into diffusion and osmosis.  

Assertion 3: The teachers identified three major areas of potential learning difficulties 
associated with students’ conceptual understanding of diffusion and osmosis: (a) 
comprehension of vocabulary terms (hypertonic, hypotonic, isotonic, concentration 
gradient) and students ability to use vocabulary appropriately, (b) accurate prediction of 
the direction of net water movement during osmosis, and (c) difficulty visualizing and 
understanding osmosis and diffusion at the molecular level. 
 
 All six teachers identified two potential learning difficulties associated with 

students’ conceptual understanding of osmosis and diffusion. First, all teachers noted that 

science has a unique language which can be confusing for students. Teachers noted 

students may not make connections between vocabulary terms (e.g., hypertonic, 

hypotonic, isotonic, concentration gradient, and permeable, semipermeable, and 

nonpermeable membranes) and observations of osmosis made during teacher 

demonstrations and laboratory investigations. Second, teachers believed students would 

have difficulty predicting the direction of osmosis during demonstrations and laboratory 

investigations. Third, teachers believed students would have difficulty visualizing 

osmosis and diffusion on a molecular level. Table 39, shown below, illustrates overview 
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of teacher knowledge of potential students’ learning difficulties for diffusion and 

osmosis.   

Table 39. Overview of teacher knowledge of students’ understanding of science 

 
Student Learning Difficulties 

Teachers 

Emma Janis  Cathy Kacy Jason Lana 
Connecting vocabulary: hypertonic, hypotonic, isotonic, 
concentration gradient, and permeable, semipermeable, and 
nonpermeable membranes to the concept of osmosis. 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

Accurately predicting the direction of osmosis. X X X X X X 
Visualizing osmosis and diffusion at the molecular level X X X X X X 
 
Vocabulary as a Potential Learning Difficulty for Students 

 Students’ understanding of osmosis relies upon comparing relative concentrations 

of dissolved solids within two solutions separated by a semipermeable membrane. 

Vocabulary terms describing the relative concentration of dissolved solid include: 

hypertonic, hypotonic, and isotonic. The terms semipermeable and concentration gradient 

describe the nature of cell membranes and the direction of osmosis based upon relative 

concentrations of water in two solutions. These terms are unique to the concept of 

osmosis and not commonly used with other concepts within tenth grade biology.  

All six teachers expected students to have difficulty understanding vocabulary 

terms and definitions and noted that student difficulty with vocabulary could detract from 

conceptual understanding of osmosis. Kacy, Cathy, Emma, Janis, and Jason introduced 

the concept of osmosis prior to introducing vocabulary terms. Thus, vocabulary terms 

were introduced within the context of students’ observations during demonstrations 

and/or investigations following students’ exploration of phenomena. 

Kacy was the only teacher who avoided any reference to the terms hypertonic, 

hypotonic, and isotonic and taught osmosis conceptually without referencing vocabulary 

terms. Basing her decision on prior teaching experience, Kacy noted vocabulary terms 



371 

would be difficult for students and ultimately distract students from achieving a 

conceptual understanding of osmosis. Janis introduced and established the concepts of 

membrane permeability and osmosis before introducing vocabulary terms. She noted her 

goal was to create a conceptual framework in which students could place new facts about 

osmosis including terminology. Emma, Cathy, and Jason introduced the terms 

hypertonic, hypotonic, isotonic, and concentration gradient during discussions of baggie, 

dialysis tubing, or decalcified egg investigations and taught vocabulary within the context 

of students’ observations of osmosis. Lana introduced the terms during an initial lecture 

and emphasized the terms during discussions of students’ observations. 

Predicting the Direction of Osmosis  

 A major concern for the teachers was students’ ability to accurately predict the  

direction of osmosis within a given scenario. Teachers explained tenth grade students 

have only a minimal understanding of chemistry and noted their limited knowledge of 

chemistry would make understanding abstract concepts related to the diffusion of water 

from greater to lesser concentrations difficult to accurately predict. All teachers used 

computer graphic or whiteboard diagrams of cells within beakers to support student 

understanding of the direction of osmosis. Assigning percentages of dissolved solid to the 

solutions within the cell and the beaker, the teachers challenged students to use the 

percentage of dissolved solid to calculate the percentage of water within each solution. 

Next, teachers challenged students to use this information to predict the direction of 

osmosis. Teachers used the relative percentages of dissolved solid and water within each 

solution to support students’ understanding of a concentration gradient to predict the 

direction of osmosis. 



372 

Visualizing Random Molecular Motion as the Driving Force for Diffusion and Osmosis 

 Teachers noted tenth grade students lack a strong background in chemistry and 

were unlikely to perceive kinetic energy, random molecular motion, and molecular 

collisions as the driving force for osmosis and diffusion. All teachers believed students 

must be able to explain the driving force for both processes as kinetic energy, random 

molecular motion, and molecular collisions. To support students’ understanding of 

diffusion and osmosis at the molecular level, Kacy, Janis, Cathy, and Jason relied upon 

computer animations of molecules to illustrate osmosis and diffusion in terms of the 

random motion and collision of molecules. Emma relied upon whiteboard diagrams of a 

cell placed in a solution within a beaker and used two different markings to represent 

molecules of water and dissolved solid within the beaker and cell solutions. She 

explained the marks represented molecules within each solution which were in constant 

and random motion, continually colliding with one another and gradually moving from 

greater to lesser concentrations. Emma’s example was not a computer animation; 

however, she did address kinetic energy, random molecular motion, and molecular 

collisions as the driving force for osmosis. Lana also used a drawing of a cell within a 

beaker solution to represent osmosis and diffusion and used arrows to represent the 

direction of osmosis, relating the direction of water movement to the relative 

concentrations of water within each solution. Lana planned to engage students with an 

inquiry-based investigation of osmosis using decalcified chicken eggs following the 

research observation cycle. An explanation of osmosis at the molecular level may have 

been planned for that time.  
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Summary 

 Teachers identified students’ understanding of vocabulary terms, students’ ability 

to accurately predict the direction of osmosis, and visualizing random molecular motion 

and collisions as the driving force for osmosis as major student learning difficulties 

associated with the phenomena. All teachers noted the unique nature of the vocabulary 

and students’ minimal knowledge of chemistry as underlying causes for students’ 

learning difficulties. Teachers explained their concerns for students’ learning difficulties 

were based upon past experiences with teaching osmosis and diffusion to tenth grade 

biology students and noted the use of animations and whiteboard diagrams illustrating 

osmosis were helpful in supporting students’ conceptual understanding of the direction of 

osmosis. Teachers identified students’ visualization of random molecular motion and 

collisions as the most abstract concept associated with osmosis and diffusion. Computer 

animations and whiteboard diagrams were used to support students’ visualization of 

osmosis at the molecular level. Cathy and Janis used analogies of blindfolded students 

moving randomly and colliding within the classroom to make direct connections with 

students’ prior knowledge and experience and to illustrate molecular motion as the 

driving force for diffusion and made.  

Assertion 4: All teachers relied upon students’ predictions to: (a) reveal students’ prior 
knowledge, (b) assess students’ current conceptual understanding, and (c) inform 
instructional decisions while teaching. 

 
Formative Assessments 

 
Pre-assessments are defined as tools or techniques used by the teachers in this 

study to reveal students’ prior knowledge of diffusion and osmosis. Formative 

assessments are defined in this study as assessment tools used by teachers to reveal 
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students’ current conceptual understanding of osmosis and diffusion. Formative 

assessments encompass multiple tools and include: teacher observations, classroom 

discussions, analysis of students’ work, and making and testing predictions during 

investigations. Formative assessments were implemented by the teachers during 

investigations and instruction to reveal students’ current conceptual understanding of the 

phenomena. An overview of pre-assessments and formative assessments used by teachers 

is shown in Table 40. 

Table 40. Pre-assessment and formative assessments for osmosis and diffusion 

                                                                                                                      Teachers  
                Making Predictions Emma Janis Cathy  Kacy  Jason  Lana 

 
P 
R 
E 
A 
S 
S 
E 
S 
S 
M 
E 
N 
T 

Pre-assessment of Diffusion  
 

X 

 
 
 

 
 

X 

 
 

X 

 
 
 

 
 

X 
Prior to teaching the concept 
of diffusion, students made 
predictions of changes 
resulting from diffusion.  

Pre-assessment of Osmosis  
 

X 

 
 

X 

 
 

X 

 
 

X 

 
 

X 

 
 

X 
Prior to teaching the concept 
of osmosis, students made 
predictions of changes in 
living or artificial 
representations of cells. 

 
 
 
 
F 
O 
R 
M 
A 
T 
I 
V 
E 
 

 
 
 
A 
S 
S 
E 
S 
S 
M 
E 
N 
T 
S 

Predicting Outcomes During 
Instruction 

 
 
 

X 
 
 

 
 
 

X 
 

 
 
 

X 

 
 
 

X 
 

 
 
 

X 

 
 
 

X 
Teachers assessed students’ 
conceptual knowledge 
through predictions of 
outcomes during instruction. 
 

Testing Predictions  
 

X 

 
 

X 

 
 

X 

 
 

X 

 
 

X 

 
 

X 
Students tested their 
predictions using 
observations and evidence 
gathered during 
investigations or 
demonstrations. 

Explanation of Results  
 

X 

 
 

X 

 
 

X 

 
 

X 

 
 

X 

 
 

X 
Students’ observations and 
explanations of results from 
investigations. 
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Assessments are considered to be formative when student feedback informs the teachers’ 

instruction to better meet students’ learning needs and encourages students to self-

evaluate the quality of their work. All six teachers used student predictions as a pre-

assessment to reveal students’ prior knowledge of diffusion and/or osmosis.  

Pre-assessment of Diffusion 

Emma, Kacy, Cathy, and Lana used student predictions as a pre-assessment to 

reveal students’ prior knowledge of diffusion. Emma, Kacy, and Cathy challenged 

students to predict changes in a beaker of water when drops of food dye were added. 

Lana challenged students to predict the diffusion of molecules of cologne through the 

latex membrane of an inflated balloon. Emma, Kacy, and Cathy used predictions to focus 

students on the diffusion of liquids, whereas, Lana used predictions to focus students on 

the diffusion of gases through a latex balloon membrane (e.g., a semipermeable 

membrane). All four teachers used predictions to assess students’ prior knowledge of 

diffusion prior to teaching the concept. 

Pre-assessment of Osmosis  

Janis used predictions of changes within cells of Elodea leaves to gain insight into 

students’ prior knowledge of osmosis. Cathy and Jason challenged students to predict 

changes in dialysis tubing after placement in a solution of iodine and water prior to 

teaching osmosis. Kacy and Lana challenged students to predict changes in baggies 

containing a starch solution and placed in iodine and water. Before placing decalcified 

eggs in distilled water or corn syrup, Emma and Kacy challenged students to predict 

changes in the eggs. All six teachers noted they used student predictions to reveal 

students’ prior knowledge of the phenomena.  
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Making and Testing Predictions during Instruction 

 All six teachers challenged students to predict the direction of osmosis and/or 

diffusion during investigations in which living (e.g., decalcified eggs) or artificial 

representations of cells (e.g., baggies or dialysis tubing) were placed in environments of 

greater or lesser concentrations of dissolved solids. Janis, Cathy, and Kacy challenged 

students to predict the direction of osmosis when plant organs (e.g., potato slices and 

lettuce leaves) were placed in solutions of varying concentrations. The teachers believed 

student predictions provided important insight into students’ conceptual understanding 

during the lesson. All teachers implemented more than one investigation or 

demonstration, providing additional opportunities for students to predict the direction of 

osmosis and/or diffusion. Kacy used decalcified eggs placed in corn syrup as a 

demonstration of osmosis. Before showing the egg to students, Kacy challenged students 

to predict how the egg would change after placement in corn syrup. Jason repeatedly 

challenged students to predict changes following manipulations of the IV solution during 

the Osmobeaker (Meir, Stal, & Maruca, 2004) investigation. Emma challenged students 

to predict changes in decalcified eggs during the investigation before reversing the eggs 

within the distilled water and corn syrup environments. Lana planned to challenge 

students to predict changes in decalcified eggs during an inquiry-based investigation 

scheduled to take place during the following week. The teachers used students’ 

predictions of changes in cells and plant organs to reveal students’ conceptual 

understanding of osmosis and diffusion.  

All six teachers challenged students to test their predictions by making careful 

observations of changes during demonstrations and investigations. The teachers noted 
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predictions focused students’ thinking and stimulated students to self-assess their 

explanations of osmosis and diffusion. By challenging students to test their predictions, 

the teachers engaged students in assessing their own thinking and evaluating their ideas 

in light of the demonstration or investigation outcome. All teachers noted the importance 

of providing multiple opportunities for students to practice making and testing 

predictions and believed they were able to gain greater insight into student thinking by 

challenging students with multiple scenarios.  

Student Explanations 

 All six teachers prompted discussions of osmosis by asking students to explain 

their observations. Students’ explanations about the direction of osmosis and/or diffusion 

provided important insight into their understanding of how and why osmosis occurred. 

Jason, Kacy, Lana, and Cathy required students to provide written answers for analysis 

questions following investigations. Lana, Cathy, Jason, and Kacy read and responded to 

student explanations as formative assessments of students’ conceptual understanding of 

the phenomenon. All four teachers noted students’ written explanations provided 

important insights into their understanding. Jason required students to respond to analysis 

questions during the Osmobeaker (Meir, Stal, & Maruca, 2004) computer investigation; 

he collected student work and planned to provide written responses for the following 

lesson. Janis and Emma required students to record observations and measurements in 

data tables, evaluate predictions for accuracy, and write explanations for the outcome of 

investigations in laboratory notebooks which would be reviewed by the teacher to assess 

students’ comprehension.  
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Teacher Observations  

All six teachers interacted with students during the lessons to listen to students’ 

comments during collaboration and to ask questions and evaluate student responses. The 

teachers explained by listening to students’ comments during collaboration and 

questioning students about their ideas, they were able to better assess students’ 

understanding during instruction.  

Instructional Responses to Formative Assessments 

 All teachers relied upon formative assessments to inform their teaching. Teacher 

responses to formative assessments are organized into three major categories:                

(1) animations to provide students with concrete examples of osmosis and diffusion at the 

molecular and cellular levels, (2) virtual or whiteboard diagrams of cells, and (3) teacher-

directed analogies connecting diffusion and osmosis to common students’ experiences. 

Interactive computer programs used by the teachers included computer programs such as 

Osmobeaker (Meir et al. 2004) and interactive websites such as Molecular Logic 

(Concord Consortium, 2009). Table 41 illustrates teachers’ response to pre-assessments 

and formative assessments during the observations.  
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Table 41. Teacher response to pre-assessments and formative assessments 

                                                                                 Formative Assessments Inform Teaching 
Instructional Adjustments Emma Janis Cathy  Kacy  Jason  Lana 

A 
N 
I 

M 
A 
T 
I 
O 
N 
S 

Animations   
 

X 

 
 

X 

 
 

X 

 
 

X 

 
Teacher uses MoLo 
animations showing 
random molecular motion 
and membrane 
permeability during 
osmosis and diffusion.   

 
D 
I 
A 
G 
R 
A 
M 
S 

Direction of Osmosis  
 
 

X 
whiteboard 

 

 
 
 

X 
virtual 

 
 
 

X 
virtual 

 
 
 

X 
virtual 

 

 
 
 

X 
virtual 

 

 
 
 

X 
whiteboard 

Teachers drew or used 
virtual diagrams of cells in 
beakers containing 
solutions of varying 
concentrations of dissolved 
solids. Students draw or 
described the orientation of 
arrows to indicate direction 
of osmosis into or out of 
the cell. 

A 
N 
A 
L 
O 
G 
I 
E 
S 

Analogies  
 
 

X 
 

 
 
 

X 

 
 
 

X 

 
 
 

X 
 

 
 
 

X 

 
 
 

X 

Teacher uses analogies 
designed to be common to 
students’ prior experience 
and knowledge to explain 
membrane permeability, 
diffusion, and osmosis. 
 
 

 
 Computer animations. Teachers noted students’ explanations did not include 

kinetic energy and the resulting random molecular motion. Janis, Cathy, Kacy, and Jason 

implemented computer animations from Molecular Logic (MoLo) (Concord Consortium, 

2009) to support students’ understanding of random molecular motion and collisions as 

the driving force for osmosis and diffusion. The teachers also included animations of cell 

membranes to emphasize the semipermeable nature of the membrane. By including 

animations at the molecular and cellular levels, Janis, Cathy, Kacy, and Jason addressed 

the gap in students’ understanding of the role of molecular motion within the phenomena.   
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Diagrams. All teachers responded to students’ confusion about the direction of 

osmosis by drawing diagrams or using virtual representations of cells. Because Lana and 

Emma did not use MoLo (Concord Consortium, 2009) animations, they relied upon 

whiteboard drawings of cells placed within beakers containing a solution in which the 

percentage of dissolved solid was identified. All six teachers noted that identifying 

percentages of dissolved solid enabled students to calculate the percentage of water in 

each solution, focusing students on water molecules moving from greater to lesser 

concentrations.  

Analogies. When students appeared confused about the driving force for osmosis 

and diffusion, Cathy and Janis used an analogy of students as molecules. Students were 

described as blindfolded and moving randomly, colliding with one another within a 

crowded classroom. Cathy and Janis asked students to explain what would happen to the 

randomly moving students if a door were to be opened into the hallway. Cathy and Janis’ 

goal was to stimulate students’ thinking about diffusion and osmosis at the molecular 

level as driven by random molecular motion. To clarify the semipermeable nature of the 

dialysis tubing membrane for students, Jason used an analogy of a bouncer determining 

admission to a club. Jason used this analogy to help students understand osmosis at the 

molecular level. Smaller molecules (e.g., water, glucose, and iodine) were able to pass 

freely through the membrane but larger molecules (e.g., starch) remained within the 

tubing. In an effort to clarify students’ comprehension of membrane structure, Janis and 

Lana used analogies emphasizing the fluid nature of the cell membrane. Janis described 

the membrane as consisting of floating plastic balls and rubber duckies within a bathtub; 

plastic balls represented the phospholipid molecules and the rubber duckies represented 
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proteins interspersed throughout the membrane. Lana described the fluid nature of the 

phospholipid molecules within the cell membrane as a race track in which phosphlipid 

molecules were able to move freely, much like cars around a race track. Kacy used 

interactions between intravenous solutions (IV solutions) and body cells as an analogy for 

the interaction between demonstrations and investigations in which cells and plant organs 

were placed in solutions of varying concentrations. Kacy believed the analogy made the 

concept of osmosis relevant to students’ lives.   

Summary  

In each case, teachers’ inclusion of animations, diagrams, and analogies to 

redirect students’ thinking was largely determined by the nature of feedback from their 

students. Student feedback took multiple forms including: making predictions, testing 

predictions, and explanations of observations during discussions, in notebooks, or in 

response to laboratory analysis questions. Responding to formative assessments, the 

teachers used representations to build connections between students’ conceptual 

understanding of the phenomena and the concepts. All teachers implemented analogies, 

computer animations, and/or whiteboard diagrams to support students’ construction of 

their conceptual understanding of the phenomena.  

Assertion 5: Teachers relied upon state guidelines to identify learning goals related to 
diffusion and osmosis. They met or exceeded state guidelines by teaching random 
molecular motion as the driving force for the phenomena and included practical 
applications. The teachers made explicit connections across the horizontal curriculum.  
 
General Biology Curriculum for Teaching Osmosis and Diffusion 

 The tenth grade biology curriculum is strongly influenced by Course Level 

Expectations (CLEs) and the End-of-Course exam (ECE) for tenth grade biology. The 

CLEs for tenth grade biology are organized to provide the framework and identify state 
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expectations for tenth grade biology students’ learning. The End-of-Course (EOC) exams 

provide a uniform method for assessing students’ knowledge of biology content of the 

specific learning targets identified by the CLEs. Student scores on the EOC exam provide 

teachers and administrators with a tool to evaluate the success of curricular programs, 

assess student learning, and compare student progress with districts throughout the state 

and are used to evaluate school and district success. Hence, both the CLEs and the EOC 

exams inform the development of general biology curriculum. The CLE which guided 

this study was taken from Strand 3 (see Chapter One) and identified learning 

requirements for osmosis and diffusion. 

All six teachers met and exceeded the goals for teaching the concepts of diffusion 

and osmosis within curricular guidelines established within the tenth grade biology 

curriculum. All teachers used living or artificial representations of cells to illustrate the 

semipermeable nature of the cell membrane as well as diffusion and osmosis at the 

cellular level. The teachers went beyond curricular requirements by identifying random 

molecular motion and molecular collisions as the driving force for osmosis at the 

molecular level. Using computer animations or whiteboard diagrams to represent 

diffusion and/or osmosis, teachers modeled random molecular motion, concentration 

gradient, and relative tonicity as driving forces for osmosis and diffusion.   

Horizontal Curricular Connections 

  All six teachers exceeded standards identified within the CLEs by making 

horizontal connections within the tenth grade biology curriculum to identify random 

molecular motion and collisions as the driving force for the phenomena, reminding 
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students of the semipermeable nature of the cell membrane as a factor in osmosis, and by 

including practical applications of osmosis and diffusion in students’ lives.  

 All teachers addressed Strand 2 (kinetic energy and random molecular motion as 

important aspects of the tenth grade biology curriculum) earlier during the fall semester; 

the teachers referenced the concept of random molecular motion as the driving force for 

osmosis and diffusion during the observation cycle.  

Summary  

The teachers met and exceeded state guidelines by emphasizing random 

molecular motion and collisions as the driving force for both diffusion and osmosis. The 

teachers supported students’ construction of their knowledge of the phenomena with 

computer animations of molecular motion across semipermeable cell membranes during 

osmosis. All of the teachers emphasized practical applications for osmosis by making 

connections between the direction of osmosis and concentrations of dissolved solid in IV 

solutions which are isotonic to human blood. The teachers also made connections 

between diffusion and osmosis and other concepts addressed in general biology. The 

teachers explained students’ understanding of diffusion and osmosis are critical for 

understanding other life processes including: photosynthesis and cellular respiration. 

Hence, students were able to apply their understanding of osmosis at the molecular level 

to observations of osmosis to virtual cells and plant organs. 

Assertion 6: Teachers drew on their highly integrated PCK to create learning 
opportunities designed to scaffold students’ learning of osmosis and diffusion, 
progressing from concrete to abstract representations. 
 

The components of the teachers’ PCK do not function as separate entities, instead 

teachers integrate the components of their PCK to design and execute lessons which are 
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reflective of their goals and purposes for teaching biology. The lessons designed and 

carried out by all six teachers were strongly influenced by three factors. First, the 

teacher’s orientation for science teaching identified the goals and purposes of the lesson 

as well as the perception of teacher and student roles, and, by doing so, informed every 

aspect of the lesson. Second, the highly integrated components of teacher knowledge 

(e.g., knowledge of representations, instructional strategies, students as learners, 

assessment, and curriculum) informed the choice of representations, demonstrations, and 

investigations for the lesson. The instructional sequence of the lesson was reflective of 

the teachers’ perception of students as learners as well as their knowledge of 

representations and instruction strategies for osmosis and diffusion. For instance, Lana 

elected to engage students in a lecture prior to conducting an investigation into osmosis 

and diffusion. She believed students would have difficulty conducting an investigation as 

an exploration of the phenomena. Hence, the sequence of instruction was influenced by 

the perception of students as learners held by the teacher and beliefs about what the 

students would be able to do and understand within the context of the lesson. Third, 

teacher planning was influenced by past experiences with teaching osmosis and diffusion 

to tenth grade biology students. These three factors influenced the integration of the 

components of PCK resulting in a reform-based or traditional instructional sequence, the 

selection of representations, instructional strategies, assessments, and curricular resources 

to support students’ conceptual understanding of the concepts.  

During teaching, the teachers applied previously designed lesson plans to the 

realities within the context of the classroom. Figure 27 illustrates the integration of the 

components of PCK during planning and teaching.  
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All teachers drew upon their components of teacher knowledge to inform their 

practice. They used pre-planned representations to served as foci for demonstrations and 

investigations into diffusion and osmosis at the cellular or plan organ levels. All teachers 

created lesson plans to guide their teaching during both days of the observation. 

However, each teacher responded to student difficulties within the context of the lesson 

and the current realities of the classroom. The teachers implemented pre-assessments and 

results in 
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Figure 27: Integration of teacher knowledge for teaching osmosis and diffusion 
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formative assessments to reveal students’ prior knowledge or conceptual understanding 

of the phenomena. The knowledge gained informed instructional decisions made during 

the lesson. 

Lesson Progression from Concrete to Abstract Representations 

The teachers were aware students often have difficulty understanding the 

fundamental concepts of diffusion and osmosis. To address their concerns for students’ 

learning, all teachers designed lessons to initially engage students with demonstrations of 

diffusion or laboratory investigations of osmosis and diffusion at the cellular level. 

Demonstration and investigation outcomes resulted in obvious evidence of diffusion 

and/or osmosis, providing concrete representations of the phenomena. To encourage 

students to build upon their initial understanding of the phenomena, teachers engaged 

students with investigations focused on increasingly complex representations of 

semipermeable membranes, diffusion, and osmosis. Kacy and Lana progressed from an 

initial diffusion demonstration to a baggie investigation in which students investigated 

diffusion and osmosis between a baggie solution containing starch placed in an 

environment of distilled water and iodine. Changes in baggie volume and color served as 

evidence for the direction of osmosis and diffusion of iodine into the starch solution 

within the baggie. Emma followed an initial diffusion demonstration with an 

investigation into osmosis focused on changes in decalcified eggs placed in corn syrup or 

water. During the investigation, Emma challenged students to reverse the eggs and 

predict changes when placed in the opposite environment. Following an initial dialysis 

tubing investigation, Jason challenged students to predict the direction of osmosis in a 

virtual cell within an environment in which students manipulated the concentration of 
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dissolved solid. Janis, Cathy, and Kacy progressed to investigations into osmosis within 

plant tissues (e.g., potato slices and lettuce leaves). 

The sequence of instruction was informed by teachers’ experience with teaching 

diffusion and osmosis as well as their knowledge of students as learners, knowledge of 

curricular resources, and representations and instructional strategies. The integration of 

PCK components with prior experience with teaching osmosis and diffusion resulted in 

lessons which engaged students with clear, concrete representations and moved to more 

abstract representations in which the effect of osmosis was not as easily observed.  

Student predictions as a formative assessment 

A major concern for all teachers was students’ ability to accurately predict the 

direction of osmosis during investigations at the cellular and plant organ level. All 

teachers utilized student predictions of demonstration or investigation outcomes as a pre-

assessment of students’ understanding of the phenomena prior to instruction and to assess 

students’ conceptual understanding of the phenomena during instruction.  

Students used their observations during demonstrations and investigations to test 

predictions and support explanations for the direction of osmosis. Students’ rationale for 

predictions and explanations of investigation outcomes during exploration of phenomena 

and explanation-building served as formative assessments. Knowledge of students’ 

conceptual understanding revealed through pre-assessments and formative assessments 

often resulted in corrective action taken by teachers to adjust their instruction including 

the implementation of computer animations, analogies, and diagrams to help students 

visualize the movement of water from areas of greater to lesser concentration.  
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Summary 

 The PCK held by these experienced teachers has been highly integrated through 

years of teaching experience and this integration of the components of teacher PCK and 

subject matter knowledge informed all aspects of their teaching. The orientation to 

science teaching served as a lens through which the teachers identified goals and 

purposes, student and teacher roles were viewed, informing all aspects of the lessons.  

Teachers relied upon their knowledge of students as science learners to predict potential 

difficulties and identify the most effective representations coupled with formative 

assessments to reveal students’ conceptual understanding. Teacher planning and teaching 

was reflective of past experience with teaching the phenomena. Hence, the teachers’ 

knowledge was informed by their experiences creating topic-specific knowledge for 

teaching diffusion and osmosis. Over time, experience with teaching, learning, and 

learners shapes teacher PCK to create knowledge for teaching which has been thoroughly 

integrated and reflective of their teaching practice. Thus, experienced teachers perceive 

their students as science learners and are able to relate potential learning difficulties to the 

nature of representations, instructional strategies, and formative assessments necessary to 

make concepts understandable for students and use feedback on assessments to adjust 

their teaching. Effective teaching is a complex interaction between the teacher and the 

students. Effective learning occurs only when teacher knowledge is highly integrated. 

This integrated knowledge supports effective lesson design which addresses the learning 

needs of the students with meaningful and relevant learning opportunities with students’ 

comprehension monitored through formative assessments. Hence, the integrated nature of 
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teacher PCK is characteristic of effective and experienced teachers and also necessary for 

student learning. 
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CHAPTER SIX: CONCLUSION AND IMPLICATIONS  
 

The purpose of this study was to investigate the nature of pedagogical content 

knowledge held by experienced biology teachers and how the teachers draw upon this 

knowledge when teaching lessons on diffusion and osmosis to tenth grade general 

biology students.  

Research Questions and Sub-questions 

Six research sub-questions guided the analysis, interpretation, and writing of this 

study. The research sub-questions were:  

1. What are the nature and sources of the experienced biology teachers’ 

orientations to science teaching?  

2. What is the nature of experienced biology teachers’ knowledge of 

representations and instructional strategies and how does this knowledge inform 

their teaching practice?  

3. What is the nature of experienced biology teachers’ knowledge of students’ 

understanding of science and how does this knowledge of science learners 

inform their teaching practice?  

4. What is the nature of experienced biology teachers’ knowledge of formative 

assessment strategies and how does this knowledge inform their teaching 

practice?  

5. What is the nature of experienced biology teachers’ knowledge of biology 

curriculum and how does this knowledge inform their teaching practice?  

6. In what ways do experienced teachers integrate the topic-specific components 

of their pedagogical content knowledge when teaching osmosis and diffusion?  
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This chapter includes the following sections: (a) a summary of research findings; 

(b) a comparison of the findings in relation to the education literature discussed in 

Chapter Two and a discussion of how this study contributes to an understanding of the 

topic-specific PCK of experienced teachers; (c) implications of this research for the 

preparation of prospective science teachers and professional development for experienced 

teachers, as well as for research and policy; and (d) conclusions.   

Summary of Research Findings 

Question One: The Nature and Sources of Teachers’ Orientation to Teaching Biology 

The focus of the first research question is to identify the nature and sources of 

orientations for teaching biology held by the participants. I assert that five of the six 

participants held a constructivist orientation to teaching biology, while the sixth 

participant held a knowledge-transmission orientation. The common theme for the 

constructivist teachers was the implementation of an implicit 5E (Bybee, 1997) 

instructional sequence. The teachers had students explore the phenomenon and drew 

upon students’ observations to construct explanations. They challenged students to 

extend their conceptual understanding by having them apply their knowledge to new 

scenarios. The teacher with the knowledge-transmission orientation engaged students 

with a teacher-directed lecture during which explanations of phenomena were provided 

prior to a validation laboratory activity. During interviews, this teacher noted her ideal 

image of teaching biology was to implement the 5E (Bybee, 1997) instructional model. 

However, her beliefs about learners and learning acted as a constraint to the 

implementation of the 5E (Bybee, 1997) model resulting in an knowledge-transmission 

instructional approach for teaching biology (see Assertion 1 in Chapter Five).  



392 

Question Two: Experienced Biology Teachers’ Knowledge of Representations and 

Instructional Strategies for Teaching Diffusion and Osmosis 

 The second question addresses the nature of experienced biology teachers’ 

knowledge of representations and instructional strategies for teaching diffusion and 

osmosis. There were common themes noted among the representations used by the 

teachers in their lessons. First, four of the teachers initially engaged students with 

observations of diffusion before progressing to investigations of osmosis. For example, 

one of the teachers challenged students to develop a series of drawings illustrating the 

process of diffusion. Second, all six teachers used artificial or living representations of 

cells to illustrate diffusion and osmosis. Third, progressing from living or artificial cell 

models to living plant tissues, all of the teachers challenged students with making and 

testing predictions of the outcome of demonstrations and laboratory investigations of 

diffusion and osmosis. Fourth, all six teachers used either virtual animations or 

whiteboard representations of osmosis and diffusion to emphasize random molecular 

motion and a concentration gradient as the driving force for diffusion and osmosis. In 

addition, all six teachers noted the importance of the instructional sequence within their 

lessons; five of the six teachers used an implicit 5E (Bybee, 1997) instructional model 

and one teacher relied upon a knowledge-transmission approach to teaching (e.g., lecture 

followed by a confirmation laboratory investigation).  

Question Three: Knowledge of Students as Learners 

 The third question addresses teachers’ knowledge of students as learners, 

students’ prior knowledge, requirements for students’ learning, and potential learning 

difficulties associated with diffusion and osmosis. The teachers held strong beliefs about 
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students as learners. First, all six teachers perceived vocabulary to be a potential learning 

difficulty for students. Second, the teachers used students’ predictions of outcomes of 

demonstrations and investigations to gain insight into students’ prior knowledge of 

diffusion and osmosis. Third, five of the six teachers believed students learned most 

effectively as active participants in learning and engaged students with laboratory 

investigations of diffusion and osmosis. The sixth teacher believed students were not 

prepared to conduct investigations and initially engaged students in a teacher-directed 

lecture with a focus on the transmission of knowledge about diffusion and osmosis. The 

teachers’ beliefs about students as learners were very powerful and informed their 

teaching.  

Question Four: Knowledge and Utilization of Formative Assessment  

 Question four addresses the knowledge of formative assessment strategies held by 

the teachers and the manner in which the teachers utilized students’ feedback on 

formative assessments to guide their teaching. Several themes emerged from the data. 

First, all six teachers utilized formative assessments during teaching. The teachers 

challenged students to predict the outcomes of demonstrations and investigations as a 

means of revealing students’ prior knowledge before teaching and to assess students’ 

conceptual understanding of phenomena during teaching. Second, the teachers interacted 

with students, listening to comments, explanations, and questions while students 

collaborated on making and testing predictions. All six teachers described the nature of 

students’ comments, questions, and conversations as good indicators of students’ prior 

knowledge and/or conceptual understanding of phenomena. Third, teachers utilized 

students’ responses to analysis questions associated with laboratory investigations to 
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gauge students’ conceptual understanding. The teachers understood the importance of 

revealing students’ prior knowledge and conceptual understanding. Relying upon their 

experience with teaching biology, the teachers implemented several different formative 

assessments to reveal students’ thinking, inform instructional decisions, and stimulate 

students’ reflection upon their own work. 

Question Five: Teacher Organization and Sequence of the Biology Curriculum 

 Question five addresses teacher organization and sequence of the biology 

curriculum to support students’ learning. The topics covered in the tenth grade biology 

curriculum are dictated by state and school district guidelines. Even though participants 

in this study taught at six different high schools ranging from small rural schools to large 

suburban schools, the organization and content of the biology curricula were very similar. 

All six teachers related the importance of diffusion and osmosis to both the vertical and 

horizontal curricula. The teachers made connections to concepts taught earlier in 

students’ educational experience emphasizing the importance of concepts taught within 

the vertical curriculum. The teachers identified cell biology, photosynthesis, cellular 

respiration, and homeostasis as concepts within the horizontal curriculum which build 

upon students’ understanding of a semipermeable cell membrane as well as diffusion and 

osmosis. The teachers perceived biology as a way of explaining life and the 

interconnected nature of life processes. Hence, teachers made connections between 

diffusion and osmosis, the semipermeable nature of cell membranes, and the maintenance 

of homeostasis within cells to stimulate an understanding of the ubiquitous nature of 

diffusion and osmosis among all living organisms. 
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Question Six: The Integration of PCK Components 

 All six teachers integrated the components of their pedagogical content 

knowledge (e.g., knowledge of representations and instructional strategies, knowledge of 

students’ understanding of science, knowledge of assessment, knowledge of curriculum) 

to create learning opportunities for their students. Teachers relied upon their knowledge 

of subject matter, representations, instructional strategies, assessment, and curriculum to 

create opportunities which engaged students in making and testing predictions as well as 

supporting claims and conclusions with evidence.  

Discussion 

 In this section, I revisit the literature review in Chapter Two, the case profiles in 

Chapter Four, and the in-case and cross-case analysis of findings in Chapter Five. My 

purpose in this chapter is to compare the findings of this study to the existing literature base 

and to highlight how this study contributes to the literature. The literature review revealed a 

significant gap in the literature examining the practice and pedagogical content knowledge 

held by experienced teachers for teaching specific topics in science. In the following, I 

discuss the similarities and differences between the reviewed literature and my research 

findings. This chapter is organized in a sequence similar to that of the assertions presented in 

Chapter 5. 

Orientation to Science Teaching 
 

 The orientation to teaching science acts as a lens through which the other 

components of pedagogical content knowledge (e.g., knowledge of representations, 

instructional strategies, students’ understanding of science, assessment, and curriculum) 

are interpreted, integrated, and enacted (Friedrichsen, & Dana, 2003, 2005; Grossman, 

1990; Magnusson et al. 1999). When designing the study, I initially drew upon the 
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orientations to science teaching proposed by Magnusson et al. (1999). Predicated upon 

Grossman’s (1990) conceptions of science teaching, Magnusson et al. (1999) reviewed 

science education literature and identified nine orientations to science teaching including: 

(1) process, (2) academic rigor, (3) didactic, (4) conceptual change, (5) activity-driven, 

(6) discovery, (7) project-based, (8) inquiry, and (9) guided inquiry. However, when 

analyzing the data from this study, I found teacher orientations to be a complex construct, 

not sufficiently explained by the nine orientations defined and described by Magnusson et 

al. (1999). To gain a better understanding of the orientations to science teaching held by 

participants in this study, I reviewed education research literature in both science and 

mathematics. Within science education literature I drew upon the work of Brown (2008), 

Brown, Abell, and Friedrichsen (2008), Friedrichsen (2002), and Friedrichsen and Dana 

(2003, 2005) to understand the complex nature of teacher orientations and better 

represent the complexity of the orientations to science teaching held by participants. 

Friedrichsen and Dana (2005) described teachers’ orientations as complex and driven by 

“aspects of two or three orientations described in the literature” (p. 221). Friedrichsen 

(2002) found teacher orientations to be strongly influenced by teacher beliefs about 

students’ attitudes toward science and readiness for college. Brown (2008) and Brown et 

al. (2008) expanded teacher orientations to include five dimensions: (1) goals and 

purposes for teaching science, (2) perception of teacher role, (3) perception of student 

role, (4) ideal images of teaching science, and (5) perception of science as a discipline. 

Hence, I drew upon the work of Brown (2008) and Brown et al. (2008) to gain important 

insight into the perceptions held by the teachers about their role as teachers and the role 

of their students in learning.   
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I drew upon mathematics education literature to expand my understanding of the 

influence of teacher orientation on teacher actions. Marks (1990), Ma (1999), and Ball 

and Bass (2000) stressed the importance of teachers’ beliefs about students’ roles as 

learners of mathematics and noted teachers’ beliefs informed teacher actions in the 

classroom. By relying upon a broad base of science and mathematics literature I was able 

to gain a deeper understanding of orientations to teaching, sources of teacher orientations, 

and how teacher orientations inform teacher actions. Both the mathematics and science 

education literatures emphasize the goals and purposes for teaching content as well as the 

perceptions of students as learners as important sources of teachers’ orientation to 

teaching mathematics or science. 

Building upon the work of Brown (2008) and Brown et al. (2008), I examined 

teachers’ orientations to teaching science through five dimensions to enhance my 

understanding of the nature of the orientations to science teaching held by participants 

and to explain the sources of teacher orientation through the lens of their goals and 

purposes for teaching science, their beliefs about the roles of teachers and students in 

learning, and their perception of science as a discipline. 

I assert five biology teachers in this study held constructivist beliefs about 

teaching and learning which supported their perception of effective science learning as 

students constructing their knowledge. Jason, Janis, Cathy, Emma, and Kay believed 

students learn most effectively as active participants in learning. The teachers engaged 

students in conducting investigations and drawing upon their experiences and 

observations during investigations of phenomena to construct their knowledge of biology. 

The teachers initially engaged students with explorations of diffusion and osmosis, 
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encouraging the construction of a conceptual framework prior to generating explanations 

supported with their observations. Students drew on their conceptual framework to make 

sense of new ideas about the nature of diffusion and osmosis. The teachers emphasized 

their goal of supporting students’ understanding of the processes and skills involved in 

biology by engaging students with explorations of phenomena, making and testing 

predictions, making observations, and supporting explanations with evidence. These 

findings are congruent with findings of Borko and Putnam (1996); the researchers 

investigated teachers with a constructive orientation for teaching science. The findings 

indicate an effective constructivist approach to teaching science relies heavily upon 

teachers supporting students’ learning by engaging students with scientific question and 

emphasizing the importance of evidence in developing and evaluating explanations and 

finding answers to scientifically oriented questions.   

 Lana’s orientation to science teaching differed markedly from the orientations 

held by other study participants. Lana identified laying the groundwork for students’ 

understanding of biological concepts as one of her purposes for teaching biology. She 

believed her students knew little of biology and, as a result, were not prepared to conduct 

and learn from explorations of phenomena. Hence, Lana initially engaged students with a 

teacher-directed lecture to explain phenomena and define vocabulary prior to introducing 

phenomena through an exploration. Lana identified teaching biology through the 5E 

(Bybee, 1997) instructional model as one of her goals for teaching biology, however, this 

goal was in conflict with the beliefs she held about how students learn best. Brown 

(2008) believed by investigating teacher orientations through five dimensions, he could 
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more accurately explain teacher actions. I found that the dimensions of teacher 

orientation were critical for understanding and explaining Lana’s actions during teaching.  

 The participants’ orientations to science teaching were driven by their beliefs 

about the roles of teachers and students in learning and how students learn most 

effectively. This finding is congruent with findings by Lotter, Harwood, and Bonner 

(2007), Deemer (2004), and Volkmann and Zgagacz (2004) who found teachers’ core 

beliefs about learning and teaching informed the implementation of inquiry-based 

instructional strategies. Thus, the orientation to science teaching held by the teacher 

informs instructional decisions made during planning and teaching. However, few studies 

were found which investigate the orientation to science teaching held by experienced 

teachers, indicating an important gap in the science education research literature. This 

study investigates the nature and source(s) of teachers’ orientation to teaching held by 

experienced biology teachers and addresses the gap in the literature. 

Teacher Knowledge of Representations and Instructional Strategies 

All six teachers implemented representations to illustrate diffusion and osmosis. 

Representations designed to support students’ conceptual understanding of phenomena at 

the molecular-level, the cellular-level, and the plant organ level and served as the foci for 

demonstrations and laboratory investigations. For example, Cathy and Janis relied upon 

an analogy of blindfolded students moving randomly and colliding with one another to 

identify random molecular motion as the driving force for diffusion and osmosis. 

Mastrilli (1997) would describe this as a simple, descriptive analogy. The teachers used 

the analogy to support students’ learning by making connections between the abstract 

concept of random molecular motion and the concrete example of random motion 
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experienced by blindfolded students as they moved from areas of greater to lesser 

concentrations.   

All six of the teachers implemented models to support students’ conceptual 

understanding of the particulate nature of matter (e.g., random molecular motion), the 

nature of semipermeable membranes, the direction of osmosis and diffusion in living and 

artificial representations of cells, as well as osmosis in plant organs. These models served 

as foci for laboratory investigations used by all of the teachers. All six teachers 

challenged students to make and test predictions of the direction of diffusion and/or 

osmosis when the cell or plant organ models were placed in solutions of varying 

concentrations of dissolved solids. Four of the six teachers expanded their use of models 

to include computer animations as interactive models. Again, the teachers challenged 

students to predict the direction or rate of osmosis when changes were made to the virtual 

model. The computer animations served as a basis for whole class discussions of factors 

which drive and influence the direction or rate of diffusion and osmosis. Emma and Lana 

did not implement computer animations; instead, the teachers relied upon whiteboard 

diagrams of two solutions separated by a semipermeable membrane. The teachers 

manipulated the whiteboard models, changing percentages of dissolved solid within the 

solution in which the cell was shown. Next, students predicted and explained resulting 

changes in the direction of osmosis within the whiteboard model. The literature indicates 

the majority teachers perceive models as concrete representations of abstract concepts 

rather than as learning tools manipulated by students (Justi & Gilbert, 2002a, 2002b; Van 

Der Valk et al. 2007; Van Driel and Verloop, 1999, 2002). However, the findings of this 

study indicate these experienced biology teachers recognized and used models as learning 
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tools and consistently challenged students to make and test predictions of the direction of 

osmosis.  

 Van Driel et al. (1998) described two key elements of PCK: (1) an integration of 

subject matter knowledge with knowledge of instructional strategies and representations 

and (2) knowledge of students’ learning difficulties with the content. The findings of this 

study support the findings of Van Driel et al. (1998) in that the teachers’ use of analogies 

and models indicates an integration of their knowledge of subject matter with their 

knowledge of representations, instructional strategies, and students as science learners. 

This study investigated the PCK of experienced teachers for teaching diffusion and 

osmosis, a specific topic in biology. Teacher observations and interviews indicated strong 

subject-matter knowledge as well as knowledge of representations and instructional 

strategies. This study adds to the literature by making experienced teachers’ use of 

representations as learning tools explicit. Much of the science education literature is 

focused on the practice of prospective and novice teachers, identifying their use of 

representations and instructional strategies. However, this study makes the practice of 

experienced teachers using models as learning tools in their teaching practice explicit. 

Such explicit descriptions of experienced teachers teaching specific topics are absent 

from science education literature. 

Five of the six participants used an implicit 5E instructional sequence (Bybee, 

1997) to engage students in explorations of phenomena before drawing upon students’ 

observations during interactive lectures to construct explanations. The instructional 

strategies implemented by the teachers supported students’ construction of knowledge of 

diffusion and osmosis. Findings of this study indicate the majority of teachers organized 
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their instruction in a 5E (Bybee, 1997) instructional sequence. Janis, Emma, and Cathy 

indicated they received formal training with the 5E (Bybee, 1997) model through 

Masters’ programs and professional development and chose to use this model in their 

teaching.  Jason and Kacy had not received formal training with the instructional model 

but had intuitively structured their instruction to reflect the 5E sequence.  

Prospective science teachers often complain classroom teachers do not implement 

inquiry into their teaching (Crawford, 2007). This study reports use of an implicit 5E 

(Bybee, 1997) instructional sequence by the majority of participants. The stages of the 5E 

(Bybee, 1997) model were not explicitly identified by participants nor did they use the 

terminology when reflecting upon their lessons. This study contributes an explicit 

description of lessons in which an implicit 5E (Bybee, 1997) instructional sequence was 

implemented by experienced biology teachers.  

Teacher Knowledge of Students’ Understanding of Science 

 Wallace and Kang (2004), Cohen and Yarden (2009), and Cronin-Jones (1991) 

investigated teacher beliefs about how students learn science. The researchers found 

teachers’ beliefs about students’ limitations, maturity, or learning difficulties with topics 

in science influenced the nature of instruction, the implementation of curriculum, and 

informed teacher actions in the classroom. In a study of middle school science teachers, 

Cronin-Jones (1991) found teachers’ beliefs about science learners were important factors 

in determining teacher actions. The findings of this study indicate teachers’ beliefs about 

how students learn science led them to engage students with an exploration of concepts 

prior to an explanation. The teachers believed students would learn effectively as active 

participants, exploring concepts, and developing explanations supported with their 
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observations; however, Lana believed her students were not ready to conduct 

explorations prior to explanations. The findings of this study indicate Lana’s beliefs 

about students as science learners acted as a constraint for engaging students to initially 

explore the phenomenon. Hence, the findings of this study confirm teacher beliefs about 

student learning are important factors and inform teacher actions and the nature of their 

instruction.  

All six teachers believed prior knowledge to be an important factor in students’ 

learning. The teachers revealed students’ thinking and prior knowledge by challenging 

students to make and test predictions. This finding is supported by studies investigating 

the influence of prior knowledge upon student learning conducted by Athanassios and 

Komis (2003) and Jones et al. (1999). Both studies investigated teacher exploration of 

students’ understanding of scientific concepts and found students’ conceptions resulted 

from their experiences and were often incompatible with scientific theories. Hence, 

findings from both studies emphasized the importance of revealing students’ prior 

knowledge to address students’ misconceptions prior to instruction. Few studies 

examined teacher beliefs about students’ understanding of science for specific topics. 

This study is important for two reasons. First, it addresses teachers’ understanding of 

science learners. All six of the participants demonstrated strong knowledge of students 

and the importance of students’ prior knowledge in learning science. Second, the 

participants in this study demonstrated the use of students’ predictions as a means of 

gaining insight into students’ thinking. Initially, the teachers used the nature of students’ 

predictions to reveal students’ prior knowledge. During instruction, the teachers used 

predictions to assess students’ conceptual understanding of phenomena.  
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All of the teachers in this study identified potential learning difficulties associated 

with diffusion and osmosis including: (a) vocabulary terms, (b) random molecular motion 

and collisions as the driving force for both phenomena, and (c) direction of osmosis 

relative to concentrations of dissolved solids between two solutions separated by a 

semipermeable membrane. Driver et al. (2003) identify the ability to predict potential 

student learning difficulties as a critical aspect of teacher PCK. Findings of earlier studies 

identified similar misconceptions among high school and collegiate students studying 

diffusion and osmosis (Christianson & Fisher, 1999; Odom & Barrow, 1995; Odom & 

Barrow, 2007; Odom & Kelly, 2001; Tekkaya, 2003; and Zuckerman, 1993). However, 

these studies focused on students’ conceptual understanding of diffusion and osmosis and 

did not investigate the PCK held by the teachers for teaching the phenomena. This study 

makes explicit the nature of experienced teachers’ PCK for learners. Hence, during 

observations the teachers demonstrated a strong awareness of potential student 

misconceptions and used students’ predictions to reveal prior knowledge. Students’ 

predictions provided important insights into students’ prior knowledge and conceptual 

understanding. Teachers also held specific beliefs about potential learning difficulties 

students would have with the phenomena and used this knowledge to inform their 

instruction and support students learning. First, the teachers believed students’ 

understanding of the unique vocabulary terms associated with diffusion and osmosis 

would constrain learning. Five of the six teachers engaged students with explorations of 

the concepts prior to introducing vocabulary terms, introducing concepts first. Second, 

the teachers believed students would have difficulty predicting the direction of osmosis. 

All six teachers engaged students with investigations of osmosis in cells and/or plant 
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organs and challenged students to make and test predictions of the direction of osmosis. 

Third, the teachers believed students would not identify random molecular motion as the 

driving force for diffusion and osmosis. The teachers used interactive computer 

animations or whiteboard diagrams to represent molecular movement during diffusion 

and osmosis. This study makes the PCK of experienced teachers explicit and shows how 

experienced biology teachers addressed students’ misconceptions and learning 

difficulties. Making the knowledge and practice of experienced teachers explicit for 

teaching a specific topic in science is important because it provides examples of topic-

specific case knowledge which can be used in teacher preparation and professional 

development programs (Shulman, 1988).  

Teacher Knowledge of Assessment in Science 

All six participants held strong beliefs about the nature and importance of 

assessment in terms of facilitating students’ learning. The teachers used similar forms of 

formative assessment to pre-assess students’ prior knowledge and reveal misconceptions 

including: (a) predictions of outcomes for demonstrations and laboratory investigations, 

(b) interactions between students during collaborative in-class work, (c) questions posed 

by students, (d) student responses to questions posed by the teacher, (e) written responses 

to analysis questions associated with demonstrations and investigation, and (f) students’ 

facial expressions and body language. These formative assessments were used in various 

combinations by all of the teachers to gain insight into students’ conceptual 

understanding of the phenomena. Earlier studies reported two categories of formative 

assessments implemented by New Zealand middle school and high school teachers 

including: (a) planned formative assessments and (b) interactive or informal formative 
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assessments (Cowie & Bell, 1999; Bell & Cowie, 2001). Participants in this study used 

students’ predictions as informal formative assessments prior to investigations to gain 

insight into students’ prior knowledge and identify misconceptions. During instruction, 

students’ predictions revealed students’ conceptual understanding of phenomena. Hence, 

the nature of students’ predictions informed teacher actions prior to and during 

instruction. The findings of this study made explicit experienced teachers’ use of 

informal formative assessments. Participants in this study demonstrated a strong 

understanding of potential learning difficulties and students’ misconceptions associated 

with diffusion and osmosis. Hence, this study reports topic-specific, informal formative 

assessments used by experienced high school biology teachers.   

Liew and Treagust (1998) and Ruiz-Primo and Furtak (2006) support the findings 

of this study in terms of the tacit application of informal formative assessments to reveal 

students’ conceptual understanding as pre-assessments and informal formative 

assessments embedded in instruction. All six teachers implemented formative 

assessments as a tacit process during teaching and utilized students’ feedback to guide 

next steps during the lesson.  

Morrison and Lederman (2003) reported few teachers used probing questions to 

reveal students’ prior knowledge before teaching. The teachers in this study were aware 

of potential misconceptions and utilized students’ predictions as a means of revealing 

prior knowledge before teaching. Unlike participants in the Morrison and Lederman 

(2003) study, Kacy and Emma, participants with the least teaching experience (seven and 

eight years of teaching experience respectively) noted the importance of revealing 
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students’ prior knowledge. These teachers used students’ predictions and probing 

questions to reveal students’ prior knowledge and conceptual understanding of concepts.  

The findings of this study contribute to the literature by making teachers’ 

knowledge of students as science learners and the use of informal formative assessments 

explicit. During observations and interviews, the teachers revealed the unique nature of 

students’ difficulties associated with diffusion and osmosis and explained how this 

knowledge informed their instruction. The teachers identified the informal formative 

assessments embedded within their instruction and noted how these assessments revealed 

students’ thinking and informed their instruction. The teachers used students’ predictions 

throughout their lessons; first to reveal students’ prior knowledge, and during instruction 

to assess students’ conceptual understanding. The nature of students’ predictions revealed 

their level of comprehension and provided insight into students’ thinking and informed 

the next steps in the lesson. Experienced teachers’ use of formative assessments needs to 

be made explicit to provide insight for prospective and novice teachers.   

Teacher Knowledge of Science Curriculum 

All six teachers noted the content of tenth grade biology is largely determined by 

state guidelines and the district curriculum. Avery and Carlsen (2001) investigated the 

implementation of curriculum by teachers and noted, as curriculum users, teachers 

adapted the curriculum to address curricular mandates and include instructional models to 

support students’ learning. My study confirmed the findings of Avery and Carlsen 

(2001). My study contributes to the literature by showing the teachers exceeded the 

curricular mandates set by the state and their schools by adding random molecular motion 

as the driving force for both diffusion and osmosis.  
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Knowledge Integration and Topic-specific PCK Model 

In the science education literature, Van Driel et al. (1998) identify two key 

elements of PCK integrated during teaching: (1) knowledge of instructional strategies 

which incorporate representations of subject matter and (2) knowledge of students’ 

learning difficulties. The components of PCK are not independent entities but thoroughly 

integrated, resulting in the unique form of knowledge for teaching specific concepts in 

science (Van Driel et al. 1998).  

A few researchers in mathematics education literature address the integration of 

teacher knowledge (Ma, 1999; Ball & Bass, 2003). The literature indicates teachers’ 

content knowledge for teaching mathematics is packaged or bundled with knowledge of 

learners, representations, instructional strategies, and assessments. Ma (1999) described 

Chinese teachers as holding a profound understanding of fundamental mathematics 

packaged with knowledge of learners, representations, and instructional strategies to 

effectively support students’ learning. Similar to Ma’s (1999) finding, Ball and Bass 

(2003) noted teacher content knowledge of mathematics is bundled with knowledge of 

potential learning difficulties, students’ misconceptions, as well as representations and 

instructional strategies to make the knowledge understandable for students. Ball and Bass 

(2003) would describe teachers focused on content alone as failing to consider teaching 

and learning from the perception of mathematics learners. Hristovitch and Mitcheltree 

(2004) found middle school mathematics teachers focused on content without considering 

learners’ needs and difficulties experienced difficulty in organizing, sequencing, and 

recognizing prerequisites for learning. Hence, the mathematics education literature 

emphasizes the importance of content knowledge but recognizes content knowledge 
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alone is not sufficient for effective teaching. The literature demonstrates a greater 

awareness of the importance of integrating content knowledge and pedagogy to support 

students’ learning.  

Science education literature also addresses the integrated nature of teacher 

knowledge. Investigating the knowledge for teaching chemistry among experienced 

teachers, Verloop et al. (2001) described the knowledge, beliefs, and experiences taken 

from teaching practice, formal teacher preparation, and professional development as 

intertwined. Hashweh (1985) posited that the PCK of experienced teachers resulted from 

the integration of subject matter knowledge with their knowledge of students as science 

learners. Hashweh’s (1985) and Verloop et al.’s (2001) descriptions of integrated teacher 

knowledge were supported by the findings of my study; participants reported varying 

their instruction to address differences in students’ abilities and maturity. The participants 

in my study were observed teaching the same content which made the integration of the 

components of their PCK explicit. Hence, the participants packaged their knowledge for 

teaching diffusion and osmosis to include subject matter knowledge, knowledge of 

learner difficulties, misconceptions, representations, instructional strategies, and 

assessment to engage students and support their construction of a conceptual framework 

for diffusion and osmosis.  

The Magnusson et al. (1999) PCK model shows the components of PCK as 

separate entities only interacting with teacher orientation and not informing one another. 

After analyzing data from the study, I developed a new model illustrating the integrated 

nature of PCK for teaching diffusion and osmosis. The model is shown in Figure 28. 
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I propose a topic-specific PCK model, drawn as a circle consisting of the four 

components of PCK. Within the circle, only dotted lines separate the four components of 
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strategies, assessments, and curriculum are included within each PCK component. PCK is 

embedded within teacher orientation to science teaching to identify the orientation to 

science teaching as “a conceptual map” (Magnusson et al. 1999, p.97) informing teacher 

planning and instruction. Subject matter knowledge, contextual knowledge, and 

pedagogical knowledge (PK) are shown as external influences, each informing teacher 

PCK for teaching specific topics in science. Hence, this model illustrates the packaging 

of teacher PCK for teaching diffusion and osmosis. 

Implications 

In this section I identify and explain the implications of my research. In the 

following, I explain implications for the preparation of prospective teachers, for 

professional development of experienced teachers, for research, and for policy.  

For Teacher Preparation 

One of the major implications for this study relates to the preparation of 

secondary science teachers. Abell (2007) posits that understanding the development and 

interaction of subject matter knowledge and PCK is critical for the success of science 

teacher education. Hence, teacher education must provide opportunities for prospective 

teachers to observe the practice of experienced teachers. However, knowledge for 

teaching is often tacit and not easily identified and explained by experienced teachers or 

understood by novices. Simply observing mentor teachers will not result in the 

development of PCK among prospective teachers and knowledge gained through 

methods courses is often viewed as separate from the teaching experience. The literature 

confirms that PCK develops with teaching experience. Freidrichsen et al. (2009) report 

effective teacher preparation must include strong mentoring, reflection upon practice, 
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collaboration among peers to share best practices, and careful consideration of students as 

science learners.  

There are several ways the knowledge gained from this study can inform the 

preparation of prospective teachers. First, case studies or video case studies of multiple 

teachers teaching the same topic can be used as teaching tools in methods courses. As 

prospective teachers analyze teacher and student interactions, matching the goals and 

purposes of the lesson with students’ responses, the tacit nature of teaching and learning 

is revealed. Prospective teachers must be encouraged to consider teacher cognition and 

students as science learners rather than focus only on teacher behaviors to explain how 

students are engaged in learning (Verloop et al. 2002). Second, Loughran, Milroy, Berry, 

Gunstone, and Mulhall (2001) utilized content representation (CoRe) as a means of 

capturing and articulating PCK. This approach focuses on the amalgam of content 

knowledge and teacher PCK to make scientific concepts understandable for students. 

This approach provides a window into teacher thinking, identifying the interplay between 

teacher content knowledge and knowledge for teaching. In this study, I used a modified 

CoRe to represent the experienced teachers’ PCK for teaching diffusion and osmosis. 

Third, it is critical to emphasize the importance of professional collaboration. Knowledge 

for teaching is not limited to the individual but flourishes with professional collaboration. 

In my study, professional learning teams were an important source for sharing knowledge 

and experience for three of the participants. The formation of Professional Learning 

Teams among prospective teachers within methods classes and continuing into 

internships fosters the creation of a community of prospective teachers investigating 

learners, learning, and teaching is critical to effective teacher preparation (Lee & Luft, 



413 

2007; Loughran et al. 2001). Fourth, a focus on lesson design (e.g., representations and 

instructional strategies) as well as learner difficulty provide an excellent vehicle for 

investigating teaching and learning (Hiebert, Gallimore, & Stigler, 2002; Loughran, 

Berry, & Mulhall, 2006). Prospective teachers within the context of a professional 

learning community can bring videos of their teaching to share with their peers. Through 

reflection upon videotaped lessons and analysis of teacher actions and students’ 

responses, prospective teachers unpack their knowledge and make tacit aspects of their 

practice more explicit (Loughran et al. 2006). Hence, when prospective teachers develop 

lessons to teach specific topics, research appropriate representations, demonstrations or 

laboratory investigations, and consider potential learner difficulties, prospective teachers 

begin to think about teaching and learning from the prospective of the learner. The 

findings of this study indicate teacher PCK is highly integrated for teaching specific 

topics in science. During interviews, study participants unpacked their knowledge for 

teaching diffusion and osmosis to make their knowledge of students, representations, 

instructional strategies, assessment, and curriculum explicit. To learn from the practice of 

experienced teachers, prospective teachers need to study the knowledge of experienced 

teachers by analyzing videotapes of teachers teaching lessons and developing a CoRe 

(Loughran et al. 2006) to identify the nature of teacher knowledge and better understand 

how the components of PCK are integrated during teaching. 

For Experienced Teachers 

This study examined the PCK of experienced biology teachers for teaching 

diffusion and osmosis. Experience does not always ensure the development of PCK for 

science teaching. In this section, I offer several suggestions for supporting the 
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development of teachers’ PCK. First, it is important to note that teaching should not be a 

solitary endeavor. Teachers’ knowledge and practice are enriched by the experience and 

knowledge of teaching held within a professional community. Three of the teachers in 

this study were members of Professional Learning Teams (PLT) at their schools and 

noted the importance of: (a) collaboration with colleagues in the development of 

curriculum and lesson planning, (b) generation and use of common assessments, and     

(c) reflection upon teacher’s practice and students’ learning. Loughran et al. (2001) notes 

the formulation of a CoRe through teacher collaboration strengthens subject matter 

knowledge and stimulates the capture, articulation, and sharing of topic-specific PCK 

among the teachers.  

The findings of this study strongly support professional interaction among 

teachers to promote reflection on teaching practice and student learning. As teachers 

share their knowledge with colleagues, they are able to identify ways to integrate new 

strategies and new knowledge of learners into their teaching practice. One 

recommendation is for teachers to serve as presenters to share their knowledge at 

professional teacher conferences. Teacher presenters must be encouraged to frame their 

sessions with a PCK framework. Typically when teachers present at science teacher 

workshops, the focus is on instructional strategies only. By using a PCK framework, the 

focus would become broader, to include topic-specific representations, strategies, 

learning difficulties, assessments, and horizontal curricular connections. By presenting a 

more integrated model of teacher knowledge, presenters can stimulate the development of 

topic-specific PCK and integration of teacher knowledge to create effective learning 

opportunities for students.   
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For Research 

There is a need for additional research on experienced teachers to gain insight into 

teacher PCK for teaching specific concepts in science. Only by studying reform-oriented 

experienced teachers can the goal of teaching be clearly articulated for prospective and 

novice teachers. I found few studies which examined the practice and knowledge of 

experienced teachers for teaching specific concepts in science. Studies examining 

specific topics in science education were typically focused on students’ learning rather 

than on teacher knowledge. Research examining the knowledge and practice of 

experienced teachers teaching specific topics in science would make the nature and 

integration of teacher PCK explicit. As stated earlier, studies examining the knowledge 

and practice of teachers for teaching specific topics in science could be used to support 

teacher learning in teacher preparation programs and in professional development 

opportunities for experienced teachers. Examining the practice of experienced teachers to 

capture and articulate their PCK will provide teacher preparation programs with critical 

knowledge about the nature and integration of the components of teachers knowledge 

making aspects of this tacit knowledge more explicit and accessible to prospective and 

novice teachers.  

Research which connects studies of teacher PCK to students’ learning and 

achievement would provide important insight into the nature of effective instructional 

practices. Such studies would be important sources of information for the preparation of 

prospective teachers and professional development for inservice teachers. This study 

would be strengthened by connecting teachers’ PCK to student achievement. Although 

this creates an additional burden to the researcher in gaining access to students’ test 
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scores, it would be worth the effort. We need to have topic-specific examples of 

experienced teachers’ PCK that demonstrate this level of PCK is linked to student 

achievement. 

This study does not investigate the development of PCK, instead, the study 

develops a target goal for teacher knowledge and practice. Research into the knowledge 

and practice of experienced teachers provides a clear target for the practice of prospective 

teachers. Hence, additional research linking the practice of novice teachers to 

experienced teachers would create a continuum of teacher knowledge and practice. By 

better understanding the continuum from novice to experienced teacher, we can better 

support the development of PCK among prospective and novice teachers. 

For Policy 

 One of the implications for this study is the necessity for professional 

development opportunities for teachers. District policy should be altered to support 

professional development programs for teachers, either through the district or in 

conjunction with a university. I identify and describe policy changes within school 

districts which would support teacher learning and, in turn, also enhance student learning 

and performance.  

First, district support of PLTs among teachers within each discipline is important 

in creating a collegial atmosphere focused on teacher learning and student progress. This 

study identified the value of PLTs as a means for teachers to develop a common 

curriculum as well as common formative and summative assessments within each 

discipline. Three participants in this study were members of a PLT. These teachers 

emphasized the value of collegial support in planning and teaching within the PLT. 
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Teachers analyzed summative assessments to reveal students’ learning difficulties with 

content. Hence, the interaction with colleagues within a PLT resulted in increased 

reflection on teacher practice, fostering PCK development.  

Second, school districts should encourage teachers to pursue National Board 

Certification. Park and Oliver (2008) noted individuals pursuing National Board 

Certification (NBC) examined and reflected upon their teaching practice in terms of their 

understanding of students’ learning, potential learning difficulties, assessment of 

students’ conceptual understanding, and inquiry-oriented teaching and learning. In my 

study, Janis identified NBC as an important source of her teacher orientation and PCK. 

Hence, National Board Certification has two very important benefits; first, it is an 

indication of teaching as a profession with a unique knowledge base, and second, it 

focuses teachers to reflect upon and analyze their teaching practice in terms of students’ 

learning (Park & Oliver, 2008).  

Third, school administrators must reduce the number of different courses assigned 

to each teacher. The construction of PCK takes time and requires teachers to focus on 

their knowledge and practice for teaching specific science content. Hence, teaching a 

large number of different courses each year hinders the development of PCK, frustrates 

teachers, and ultimately constrains teacher professional growth and effective teaching 

practice. 

 Fourth, school districts should encourage teachers to attend professional 

conferences by providing financial support for teachers to attend and serve as presenters 

at state and national professional conferences. By encouraging teachers to reflect on their 

teaching practice and the practice of other professionals, conferences stimulate the 
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development of PCK through teacher learning and reflection. Participants in this study 

identified publications from professional organizations as a source of their PCK for 

teaching diffusion and osmosis.  

Conclusion 

 In summary, my purpose in this study was to examine the practice and PCK of 

experienced biology teachers for teaching diffusion and osmosis. By observing the 

teachers teaching the same concepts, I was able to note differences in their orientations 

for teaching biology and explore how their orientation to teaching biology informed the 

teachers’ instructional approach and interaction with students. As a former biology 

teacher, I was able to view biology teachers through the eyes of a researcher rather than 

those of a practitioner. I found the view to be enlightening; by examining the practice of 

these six experienced teachers, I was able to gain a clearer understanding of the unique 

knowledge for teaching identified by Shulman (1987) and consider ways in which the 

findings of this study can inform teacher preparation and support for inservice teachers. 

In the following section, I summarize my findings within the perspective of the 

orientation to science teaching and the components of PCK. 

Orientation to Science Teaching 

 Five of the six participants demonstrated a constructivist orientation to science 

teaching. Their orientation was informed by their beliefs about learners and learning; 

hence, lesson design and enactment was informed by the beliefs held by the teacher. Lana 

believed students were not prepared to conduct explorations of phenomena prior to 

explanations; this belief resulted in a knowledge-transmission orientation. The findings of 
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this study emphasize the importance of teacher beliefs and the influence of those beliefs 

on the nature of instruction enacted by the teacher. 

Knowledge of Representations and Instructional Strategies  

This study made explicit the use of topic-specific representations for teaching 

diffusion and osmosis. The teachers used representations as foci for demonstrations and 

laboratory investigations. All participants challenged students to make and test 

predictions of the direction of osmosis and/or diffusion. By engaging students with 

making and testing predictions, the teachers were able to focus the students on specific 

learning goals for the lesson as well as assess their prior knowledge and conceptual 

understanding of the concepts.  

Five of the six participants in this study implemented an implicit 5E (Bybee, 

1997) instructional sequence. During interviews, the teachers explained they engaged 

students with explorations prior to generating explanations because they believed 

students would learn most effectively when this instructional sequence was implemented. 

The teachers drew upon student observations and experiences with the phenomena to 

develop explanations. This was one of the most unexpected findings within the study. As 

a former ASTEP supervisor, I often heard interns complain their mentor teachers did not 

implement inquiry-based instruction into their teaching. Interns may not have recognized 

the mentor teacher’s implicit 5E (Bybee, 1997) instructional sequence without the 

terminology or references to inquiry.  

Knowledge of Students Understanding of Science 

The participants identified several student learning difficulties with diffusion and 

osmosis. All participants identified the unique vocabulary (e.g., hypertonic, hypotonic, 
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isotonic, concentration gradient) as a significant learning difficulty. The teachers 

explained students would have difficulty making connections between the vocabulary 

terms and their observations of diffusion and osmosis. Several participants introduced the 

concepts prior to introducing the vocabulary terms. Students’ ability to accurately predict 

the direction of osmosis was cited by all participants as a potential learning difficulty. To 

address this concern, participants engaged students with multiple demonstrations and/or 

investigations in which students were challenged to make and test predictions of the 

direction of osmosis. Explanations for the direction of osmosis observed during 

investigations were generated from students’ observations. Identifying and explaining 

random molecular motion as the driving force for diffusion and osmosis was cited as a 

potential student learning difficulty cited by participants. Participants used computer 

animations or whiteboard diagrams illustrating molecular motion to support students’ 

understanding of the role of random molecular motion in diffusion and osmosis. Hence, 

participant use of representations and instructional strategies reflected their understanding 

of students as science learners. Adjustments made in their teaching were seamless and 

only revealed through teacher reflection during interviews.  

Knowledge of Assessment  

Participants demonstrated an extensive use of formative assessment. All six 

teachers used student predictions to reveal prior knowledge as well as potential 

misconceptions prior to teaching and to reveal students’ conceptual understanding of 

phenomena during teaching. Participants also noted the use of simple observations to 

assess students’ understanding and carefully observed facial expressions and body 

language as a measure of students’ understanding. The findings of this study support the 
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implementation of formative assessments as a means of revealing students’ learning 

difficulties and conceptual understanding of content.  

Knowledge of Curriculum 

 All six teachers exceeded state standards by emphasizing random molecular 

motion as the driving force for both diffusion and osmosis. The findings of this study 

support teachers’ use of representations which support students’ understanding of random 

molecular motion and collisions as the driving force for diffusion and osmosis. 

Knowledge Integration 

The knowledge for teaching held by the participants was highly integrated. All 

participants explained instructional decisions and actions within the context of addressing 

potential student learning difficulties and revealing misconceptions. Reflecting upon their 

practice during interviews, participants noted their knowledge of learners informed their 

use of specific representations and instructional strategies. The use of formative 

assessments revealed student’s prior knowledge and conceptual understanding during the 

lessons. It is important to note the highly integrated nature of teacher knowledge may not 

be explicit for prospective teachers. Teacher knowledge must made explicit for 

prospective teachers to understand that instructional choices are informed by the 

teacher’s knowledge of learners, potential learning difficulties and misconceptions. This 

knowledge of learners is then integrated with teacher knowledge of representations, 

instructional strategies, assessment, and curriculum to engage students with the most 

effective opportunities for learning.  
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In summary, I believe ongoing research into the knowledge and practice of 

experienced teachers for teaching specific topics in science is critical for understanding 

the development of teacher PCK.  
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Appendix A 

Observation Research Protocol 

Ph.D. Dissertation: Examining the Topic-Specific Pedagogical Content Knowledge of 
Experienced Biology Teachers for Teaching Diffusion and Osmosis 

Lessons are submitted by participants via email 48 hours prior to the pre-observation 
interview. 
 
Written plan (purpose: to provide a written guide for the observers) 

I would like to observe your teaching diffusion and osmosis over two class 
periods. Please send me your plan for these two class periods and answer the 
following: 

• What specifically do you want the students to learn about diffusion and 
osmosis? 

• Describe what will happen during the beginning, middle, and end of each 
class.  What will you do? What will the students do? 

• How will you know the students learned what you wanted them to learn? 
• Describe what will be needed for these two class periods (e.g., resources, 

materials, equipment, etc.) 
• Include copies of any handouts, overhead transparencies, assessments, etc. 

that you plan to use. 
 
Prior to first observation (Pre-observation interview): 
Researcher role:  My role is to assume a stance of empathic neutrality.  I am in the field 
only as an observer. My goal is to understand how participants draw upon their topic-
specific PCK when teaching lessons on osmosis and diffusion.  
 
Pre-Observation Interview The purpose of the pre-observation interview is to engage 
participants in a discussion of their lesson plans during which each participant will 
explain his/her plans and how the plans will be enacted during the lessons. A second 
purpose of the pre-observation interview is to explore participants’ subject matter 
knowledge and their topic-specific PCK for teaching diffusion and osmosis.  
 
Opening Questions 
1. Tell me what is going to occur over the next 2 days I will be observing you. 

a. What will I see in Day 1?  In Day 2? 
b. What will you be doing? 
c. What will the students be doing? 
d. What are your purposes and goals for these 2 days? 
e. How did you decide on the purposes and goals for these lessons?  
f. Tell me about your planning process. What do you do when you are 

planning what is most important in guiding your instructional decisions?  
• What do you know about your students which informs your planning 

process? 
g. Fast forward 2 days.  You have successfully taught these two lessons.  
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i. What would success look like? How would your students have 
responded? 

ii. How will you know you’ve been successful?  
 
 
Subject Matter Knowledge (SMK) 
Say to the participant: One area that I am interested in is your subject matter knowledge 
for teaching diffusion and osmosis. In the following, I will ask you to explain your own 
understandings of the content of the lessons you will be teaching. 
 
2. Tell me about your previous experiences teaching diffusion and osmosis. 

a. How has your approach to this topic changed over time? 
b. What would you identify as a major source of knowledge for diffusion and 

osmosis? 
c. Do you teach this topic independently or do you integrate it into other topics 

within your biology curriculum? 
 
3. What do you think is important for students to know about diffusion and osmosis? 

a. Why do you think that is important? 
b. What else do you know about diffusion and osmosis that students might not 

need to know? 
 
4. How does diffusion and osmosis relate to other science/mathematical ideas? 
 
5. What instructional decisions did you make when planning these lessons? What 

knowledge did you draw upon to make these decisions? 
 
  
Knowledge of Learners 
Say to the participant: The following questions are designed to probe what you know 
about how students might think about diffusion and osmosis. 
 
6. Tell me about the students in this class, in terms of science. 
 a.  Describe your students’ attitudes towards science. 
 b.  What do you know about your students’ science abilities that influenced you  
       planning and might also inform your instruction?  

c.  How do you think this particular group of students learn science best?  
• Why do you think that? 
• How do you use your knowledge of students when teaching? 

d. How have your experiences with students over the years influenced the way  
      you teach? 
e.  How do you motivate students to engage in learning? 
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7. What do you think students will already know about this topic?  
• Why do you think that they may know that? 
• Do you typically assess student learning at the beginning of a lesson? 

• How do you assess students’ misconceptions? 
• Where do you think they may have learned this? 

 
8. Do you expect students to have difficulty with anything that you have planned?  

a. Why do you think they will have difficulty with that?  
b. How do you plan to deal with student difficulty?  

     Direct students through algorithms: 
• Explicit guidance or instruction? 
• Guidance through a series of ‘directive’ questions? 

                      Challenge students’ thinking: 
• Guidance through a series of questions that lead to conflict and may 

force students to challenge their ideas? 
• Simply observe but not intervene and allow students to struggle with 

the uncertainty? 
  
9.  How do you believe that students learn best?  
 
10. What will you notice about your students’ responses during the lessons that might  
      lead you to alter your plan? 
 
 
Knowledge of Instructional Strategies 
Say to the participant: The next questions will help me to better understand your 
decisions about representations and instructional strategies you plan to use in your 
lessons. 
 
11. Tell me how you plan to help students learn the important concepts associated with  
      diffusion and osmosis.  

• What are some examples of teaching activities you have used in the 
past when teaching this concept? 

• Which of these did you find most effective?  Why? 
 

• Tell me about how you decided upon the instructional strategies you plan to use to 
teach these concepts during the lessons that I will be observing during your 
lessons. 

• Did you think of any alternative strategies that could be used during 
the lesson? If so what else did you consider and when would you 
decide to implement them into the lesson?  

• Do you consider a ‘plan B’ if your initial plans do not result in the 
level of student learning you anticipated? 
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12. Tell me about you plan to implement into your teaching of diffusion and osmosis. 
a. How do you plan to start the lessons on Day 1 and 2? 
b. Did you consider starting the class in a different way? Why/why not? 
c. Explain the body of the lessons, what will you be doing and what will your 

students be doing? 
d. Are there other factors which influenced your planning decisions?  
e. How do you plan to engage the students with lesson content? 

• How do you plan to draw out student ideas concerning observations of 
osmosis and diffusion? 

• How do you think you might change your plans if students do not 
respond well to your questions? 

• Do you often change your plans ‘on the fly’ in response to student 
responses? 

 
13. Tell me about the representations you decided to use in your lessons.  

a. How will you integrate the representations into your teaching? 
• What led you to use the representations in this way? 
• Have you used other representations in the past? Were they as 

successful? 
b. Did you consider representing the topic of OSMOSIS AND DIFFUSION in 

another way? 
 
Knowledge of Curriculum 
Say to the participant: These next questions are designed probe your ideas about the 
biology curriculum and where your ideas for these two lessons came from. 
  
14. Tell me how you decide upon the content of your lessons. In other words, how do you  
      decide what to teach?  

a. Tell me about the materials (lecture notes, handout, transparencies) you 
prepared.  

• Where did the materials (lecture notes, activities, worksheets, etc.) 
come from?  

• What modifications did you make to these materials?  
• Tell me about your use of the Internet as a resource.   

• What did you hope that your students would learn from this? 
• How did you incorporate this into your teaching? 

• How do you intend to sequence your instruction in the lessons? 
 
15. I have some questions for you related to how these plans relate to other topics that 

you might teach. 
a. How do you see these two lessons relating to one another? 
b.   How do these 2 days of instruction fit into the unit you currently are teaching? 
c.   How does that math/science fit into the bigger picture of what students learn 

in this class? 
d.   How does (this topic) fit into the “big picture” of what students learn about 

math/science in middle school/high school? 
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Knowledge of Assessment  
Say to the participant: The last area I want to ask you about is how you will know what 
students learn from these two days of class. 
 
16. During the 2 days of instruction, what do you plan to assess? Why do you think it is 

important to assess this? 
a. How will you determine if students understand the concepts portrayed 

in the video on cell functions? 
b. How do you plan to assess student understanding? 

• Describe how you will find out if students learned what you intended?  
• What assessment strategies have you found to be most effective? 
• Where did you learn about those assessment strategies? 
• How have you refined your assessment strategies to more accurately 

assess student understanding? 
• What will you do with the information you gain from assessment? 

c. How do student responses influence ‘on the fly’ decisions about 
content or instructional strategies during a lesson? 

d. How are your decisions about lesson content and activities influenced 
by state and district assessments? 

 
17. At the end of the day when students have left and you have time to reflect upon the  
      goals and outcomes for the lesson, do you make changes that will be implemented the  
      next time you teach that lesson?  

a. What criteria do you use to evaluate your planning and teaching? 
b. What do you base your decisions upon when you decide to change the 

goals, content, instructional strategies, or assessments implemented 
within a lesson?    

 
During the observation: 

• The researcher will select several occurrences during the course of each lesson 
to use as a basis for reflection and questions during the Stimulated Recall 
Interviews. 

• Video instances with focus on participant knowledge of: 
o Representations and instructional strategies 
o Students’ understanding of science 
o Assessment 
o Curriculum 
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After each observation: 
Stimulated recall interview (purpose:  to have the intern immediately reflect on the 
instruction as a window into SMK and PCK and connect to pre-interview).  
 
Stimulated Recall Interview 

18. How do you think the lesson went? In what ways was the lesson I observed  
      different than other periods you taught it?  Different from your plans? 

 
19. I have selected some parts of the instruction I found particularly interesting. I 

want to watch them together and ask you some questions about them.  
 
20. Let’s watch this part (interviewer asks questions starting in one of the following 

categories based on the reason for selecting the specific interesting instance).  
 

a. What were you thinking when this was occurring?  Tell me more about what 
was happening when you __________. 

b. Was there a time during the instruction when you changed your plan? Tell me 
about that. 

c. [K of Learners] What do you think the student was thinking? Why do you 
think the student was having difficulty at that point? What knowledge about 
students did you use to make instructional decisions? In what ways, did 
students influence your teaching decisions today?  

d. [K of Instructional Strategies] Tell me about that 
(example/analogy/activity/lab)?  Why did you decide to use that? How did 
this teaching strategy help you achieve your overall goals? Where did you 
learn to teach it that way?   

e. [K of Curriculum] Did the activities achieve the purpose you intended? Why 
do you think that? How did your curriculum materials support or hinder you 
in implementing your plan? 

f. [K of Assessment] What do you think students got out of the lesson? How do 
you know? Tell me about how you found out about student learning. Why did 
you decide to do that? Where did that idea come from? How do you think it 
worked? 

g.  [SMK] Given the opportunity to sit down with a colleague you trust, what 
questions would you ask about diffusion and osmosis? 

h. [SMK] What were the critical science ideas in today’s lesson? 
 

 
 
The following questions focus specifically on the orientation to science teaching. 
 
21. [Orientations].  Imagine your best day of teaching science/mathematics.  
     a. Describe what makes it a "best day" for you. 
     b. How do these two lessons that you've taught compare to your "best day"  
         description. 
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22. [Teachers’ orientations to science teaching].  Now I would like you to consider a  
      typical day of teaching. 

a. What do you perceive as the teacher's role in a typical lesson? 
b. What do you perceive as the students' role in a typical lesson? 
c. How do you prefer to teach? Explain your answer. 
d. How do you think your teaching is influenced by your colleagues? 
e. In what ways have your ideas about teaching changed over the years you have 

been teaching. Probe for sources of these changes. 
f. How do you think you learn science best? How do you think your perception of 

yourself as a science learner influences your teaching? 
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Appendix B 
 

PRINCIPAL CONSENT FORM  
 

Ph.D. Dissertation: Examining the Topic-Specific Pedagogical Content Knowledge of 
Experienced Biology Teachers for Teaching Diffusion and Osmosis 

 
 

My name is Deanna Lankford and I am beginning my dissertation study researching how 
experienced teachers draw upon their knowledge of teaching to make instructional 
decisions. Ultimately, I want my work to provide insight into the practice of experienced 
teachers to inform science teacher educators.  
 
INFORMATION 
The study I plan to conduct involves observing experienced teachers, selected by the 
University to serve as mentors for ASTEP interns, teaching two consecutive lessons 
focused on a topic in cell biology. Study participants will have an opportunity to reflect 
upon their planning and teaching during three interviews conducted prior to teaching and 
following each of the lessons observed. This individual is an experienced and 
accomplished biology teacher selected to serve as a mentor teacher by the University for 
student interns in the ASTEP teacher preparation program. Participation in this research 
is totally voluntary with no penalty or consequence for electing not to participate or for 
withdrawing from the study at any time.   
 
PARTICIPATION 
Participation in the study will result in the participant agreeing to:   

1. Allow the researcher to observe and videotape the participant teaching one class 
on two consecutive days. These observations will occur during the fall semester 
of 2008 and require the following: 

(a) The development and submission of written lesson plans for two 
consecutive lessons designed to teach concepts as defined by: 

i.  Course Level Expectation 3:2:F – Cellular activities and responses 
can maintain stability internally while external conditions are 
changing (homeostasis). 

(b) An interview prior to the lesson observation during which I will ask 
questions about teacher knowledge and beliefs concerning teaching, 
learning, and learners. 

(c) Observation of the lessons by the researcher.  
(d) A post observation interview following each observation during which the 

teacher will be asked to respond to questions about the lesson and 
instructional decisions made during the planning and teaching of the 
lesson. 

 
BENEFITS 
Teacher participation in this research study will provide important insights into how 
experienced teachers draw upon their knowledge of teaching to make instructional 
decisions during planning and teaching. This insight into teacher knowledge and decision 
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making of experienced teachers has the potential to inform teacher educators and enhance 
teacher preparation programs. 
 
 
CONFIDENTIALITY 
Teacher identity will be kept strictly confidential. Pseudonyms will be used in all 
published documents and the name and location of your school and school district will 
not be revealed. Only the researcher will know the participant’s identity. The data 
collected during the study will be stored in a secure area. The teacher may choose to end 
participation at any time during the study, and, at that time, all related data will be 
destroyed.  Data will be stored for three (3) years beyond the completion of the study and 
at that time it will be destroyed. 
 
RISKS 
This project does not involve any risks greater than those encountered in everyday life.  
This project has been reviewed and approved by the University Human Subject Review 
Board.  The Board believes the research procedures adequately safeguard your privacy, 
welfare, civil liberties, and rights.  For additional information regarding human subject 
participation in this research, please contact the University IRB officer. 
 
CONSENT 
Please read the consent statement below and place an “x” next to the statement that 
describes your desire to participate in this study at this time. Sign and date the 
form. 
 
I have read the information presented above and have had an opportunity to ask questions 
and receive answers pertaining to this project.   
 
_______________ I have been informed of this study and agree to allow this research 
study to be conducted in my building.  I am aware that participation is voluntary and that 
the teacher is free to withdraw participation at any time without penalty.  
 
_______________ I have been informed of this study and do not agree to allow this 
research study to be conducted in my building.   
 
Signed: _______________________________________ Date: ________________ 
 
 
Printed Name: ________________________________________________________ 
 
Researcher: _______________________________________ 
                                        Deanna Lankford 
 
Research Supervisor: ________________________________ 
                                        Dr. Patricia Friedrichsen 
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Appendix C 
 

TEACHER INFORMED CONSENT  
 

Ph.D. Dissertation: Examining the Topic-Specific Pedagogical Content Knowledge of 
Experienced Biology Teachers for Teaching Diffusion and Osmosis 

 
My name is Deanna Lankford and I am beginning my dissertation study researching how 
experienced teachers draw upon their knowledge of teaching to make instructional 
decisions. Ultimately, I want my work to provide insight into the practice of experienced 
teachers to inform science teacher educators.  
 
INFORMATION 
You must be at least 18 years of age to be eligible to participate in the study.  Your 
participation in this study is voluntary; you may choose not to participate and there will 
be no penalty or consequence to you.  If you decide to participate, you may withdraw 
from the study at any time without penalty.  
 
PARTICIPATION 
If you decide to participate, you will agree to:  

2. Allow the researcher to observe and videotape you teaching one class on two 
consecutive days. These observations will occur during the fall semester of 2008 
and require the following: 

(a) The development and submission of written lesson plans for two 
consecutive lessons designed to teach concepts as defined by: 

i. Course Level Expectation 3:2:F – Cellular activities and responses 
can maintain stability internally while external conditions are 
changing (homeostasis). 

(b) An interview prior to the lesson observation during which I will ask you 
some questions about your ideas concerning teaching, learning, and 
learners. 

(c) Observation and videotaping of the lessons. The participant is responsible 
for collecting informed consent forms from the students enrolled in the 
class being videotaped. 

(d) A post observation interview following each observation during which 
you will be asked to watch segments of the video and respond to questions 
about the lesson and instructional decisions made during the planning and 
teaching of the lesson. 

 
3. Allow the research team to display video clips at professional research 

conferences and other professional meetings.  (Your image may appear in these 
clips.) 

 
BENEFITS 
Your participation in this research study will provide important insights into how 
experienced teachers draw upon their knowledge of teaching to make instructional 
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decisions during planning and teaching. This insight into teacher knowledge and decision 
making of experienced teachers has the potential to inform teacher educators and enhance 
teacher preparation programs. 
 
CONFIDENTIALITY 
Your identity will be kept strictly confidential. Pseudonyms will be used in all published 
documents and the name and location of your school and school district will not be 
revealed. Only the researcher will know your identity. The data collected during the study 
will be stored in a secure area. You may choose to end your participation at any time 
during the study, and your data will be destroyed.  Data will be stored for three (3) years 
beyond the completion of the study and at that time it will be destroyed. 
 
RISKS 
This project does not involve any risks greater than those encountered in everyday life.  
This project has been reviewed and approved by the University Human Subject Review 
Board.  The Board believes the research procedures adequately safeguard your privacy, 
welfare, civil liberties, and rights.  For additional information regarding human subject 
participation in this research, please contact the University IRB officer. 
 
CONSENT 
Please read the consent statement below and place an “x” next to the statement that 
describes your desire to participate in this study at this time. Sign and date the 
form. 
 
I have read the information presented above and have had an opportunity to ask questions 
and receive answers pertaining to this project.   
 
_______________ I hereby agree to participate in this research study.  I am aware that 
my participation is voluntary and that I am free to withdraw participation at any time 
without any penalties to myself.  
 
_______________ I do not agree to participate in this research study. 
 
 
Signed: _______________________________________ Date: ________________ 
 
 
Printed Name: ________________________________________________________ 
 
Researcher: _______________________________________ 
                                        Deanna Lankford 
 
Research Supervisor: ________________________________ 
                                        Dr. Patricia Friedrichsen 
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Appendix D 
 

STUDENT RELEASE FORM: 
 

PhD. Dissertation  
Ph.D. Dissertation: Examining the Topic-Specific Pedagogical Content Knowledge of 

Experienced Biology Teachers for Teaching Diffusion and Osmosis 
 

I am a graduate student completing a doctoral degree in science education. My doctoral 
research will investigate how experienced biology teachers plan and teach lessons. As 
part of the study, I will be videotaping your biology teacher and, as a result, your image 
may be captured on videotape.  I am seeking your permission to analyze the content of 
the videotapes in which your image is captured.  
 
Information:  Your participation/release is voluntary; you may choose not to participate 
and there will be no penalty or consequence. You may view data at any time and request 
that certain information not be used. 
 
If you sign yes on this form, you give permission for the research team to: 

1. Capture your image on videotape, and analyze the content of the videotapes for 
research purposes. 

2. Display clips at professional research conferences and other professional 
meetings.  (Your image may appear in these clips.) 

Privacy:  No names or identifying information will be used in reporting the research 
findings on written documents.  However, your image may appear in a video clip 
displayed at professional research conferences and other professional meetings.  (You 
may view videotapes at any time and request that certain video clips not be used). 
 
Risks:  This project does not involve any risks greater than those encountered in everyday 
life.   This project has been reviewed and approved by the University Human Subject 
Review Board.  The Board believes the research procedures adequately safeguard your 
privacy, welfare, civil liberties, and rights.  For additional information regarding human 
subject participation in this research, please contact the University IRB officer. 
 
Consent:  I have received and read a copy of this form. I understand the above 
information.   
�   Yes, I agree to participate.  I understand that I can change my mind and withdraw 

from the project at any time.  I understand that I may request that certain information 
not be used. 

�   No, I will not participate.  If your image is captured on video while in the classroom,  
      it will not be displayed or analyzed for research purposes. 
 
Student Signature          Date       

Name (please print)        
                         
Parent Signature          Date  __________________ 
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Appendix E 
 

Lesson Plan Request 
 

Ph.D. Dissertation: Examining the Topic-Specific Pedagogical Content Knowledge of 
Experienced Biology Teachers for Teaching Diffusion and Osmosis 

 
As a participant in this study, you will submit two consecutive lesson plans for teaching 
the topics of diffusion and/or osmosis. When developing your lesson plans please note 
the Course Level Expectation 3:2:F – Cellular activities and responses can maintain 
stability internally while external conditions are changing (homeostasis). 
 
Your lesson plans will provide a written introduction and guide for my observation of 
your lessons. Please respond to the following prompts in your lesson plans: 
 

• What do plan to teach in the lessons? 
• Describe what will happen each day (beginning, middle, and end of class) 

as you teach these two lessons. 
• Describe the materials you will use to teach the lessons.   
• Please include any handouts, overhead transparencies, or PowerPoints you 

plan to  
      use. 

 
Please contact me if you have any questions regarding this request or about your 
participation in this research. 
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VITA 
 

Deanna Lankford was born and raised in St. Louis, Missouri. She earned a 

Bachelor’s degree with a double major in education and biology from Southeast Missouri 

State University in Cape Girardeau, Missouri. Deanna taught physical science at 

Mehlville Junior High School before relocating to Blue Springs, Missouri. In Blue 

Springs, Deanna worked as a full time junior high science teacher for five years teaching 

physical science. At the close of the fifth year of full time teaching, Deanna left to raise 

her two daughters. She returned to the Blue Springs School District to teach tenth grade 

general biology and earn a Master’s Degree in Teaching Arts from Webster University. 

Deanna earned National Board Certification in Adolescent and Young Adult Science in 

1998 and won the Presidential Award for Excellence in Science Teaching in 2000.  

In 2003, Deanna retired from teaching, relocated with her husband to Rocheport, 

and entered graduate school at the University of Missouri. Deanna’s assistantship 

included serving as a supervisor for interns in the Alternative Certification Program 

(ACP) and as a Graduate Teaching Assistant (GTA) for Dr. Fred vom Saal. In 2005, 

Deanna won the Graduate Teaching Assistant of the Year Award and became a Graduate 

Research Assistant (GRA) investigating teacher learning among ACP interns. In 2005, 

she earned a Education Specialist Degree in Science Education and entered the Science 

Education Doctoral Program while continuing with the GTA and GRA assistantships. 

Deanna completed her doctoral degree in the spring of 2010 with Dr. Patricia 

Freidrichsen as her dissertation advisor. Deanna’ future plans include working through 

the Office of Science Outreach to design professional develop and learning opportunities 

for Missouri teachers and high school students. 
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