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Abstract

The relative motion of a classical relativistic spinning test particle is studied with respect to

a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-

curvature coupling force are elucidated and the implications of the results for the motion of rotating

plasma clumps in astrophysical jets are discussed.
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I. INTRODUCTION

The purpose of this Letter is to discuss the relative motion of a spinning test particle

in a gravitational field with respect to a nearby geodesic observer. To compare the theory

with observation, it proves useful to express such relative motion in a quasi-inertial Fermi

normal coordinate system that can be set up along the worldline of the reference observer

[1]. This approach has been recently employed for the general motion of a test particle; in

particular, astrophysically significant results have been obtained for ultrarelativistic relative

motion, i.e. motion with relative speed above a critical speed given by c/
√

2 ≃ 0.7c [2]. The

present work aims to extend previous results to the case of a spinning test mass. We choose

units such that c = 1 in the rest of this Letter.

The motion of an extended body in a gravitational field can be described using the

Mathisson-Papapetrou-Dixon equations [3]. If we neglect the quadrupole and higher mo-

ments of the particle, then the Mathisson-Papapetrou (“pole-dipole”) equations suffice; these

are given by

DP µ

dτ
= −1

2
Rµ

ναβuνSαβ, (1)

DSµν

dτ
= P µuν − P νuµ. (2)

Here τ is the proper time, uµ = dxµ/dτ is the four-velocity, P µ is the four-momentum of

the particle and Sµν is its spin tensor. Suppose that the particle has mass m and spin s0

and is moving in the gravitational field of an astronomical mass M ≫ m. In general, the

dipole interaction must be much smaller than the monopole interaction in our approximation

scheme; thus, the spin-curvature force in equation (1), ∼ (GM/r3)s0, must be much smaller

than the Newtonian force (GMm/r2). This means that the Møller radius [4] of the particle,

ρ := s0/m, should be much smaller than the distance r between m and M .

Equations (1) and (2) must be supplemented with additional constraints on the spin

tensor. For extended bodies, the appropriate condition turns out to be [5]

SµνPν = 0. (3)

In section II, we develop an iterative scheme for the solution of equations (1)-(3). Section

III is devoted to a discussion of the spin-curvature force. The equations of relative motion

are developed in section IV and specialized to the exterior Kerr spacetime in section V.
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The effects of spin-curvature coupling along the rotation axis of a Kerr black hole are of

particular relevance to current theoretical speculation on the nature of gamma ray bursts.

We conclude with a brief discussion of our results in section VI.

II. APPROXIMATION SCHEME

It is necessary to develop an iterative approximation method for the solution of equations

(1)-(3). We note that these equations imply that uµDP µ/dτ = 0 and

1

2
SµνS

µν = s2
0, (4)

where s0 is the constant magnitude of the spin of the particle. Differentiating (3) with

respect to proper time and using (2) results in

(P · u)P µ − P 2uµ + Sµν DPν

dτ
= 0. (5)

Next, we multiply (5) by DPµ/dτ and use the antisymmetry of the spin tensor to get

(P · u)
DP 2

dτ
= 0. (6)

Thus either P · u = 0 or P 2 = −m2, where m has the interpretation of the constant mass of

the spinning particle. The signature of the spacetime metric is assumed to be +2 throughout

this work. The multipole approximation method discussed in the previous section implies

that P µ should be approximately parallel to uµ except for small corrections due to the spin

of the particle; in fact, multiplication of (2) with uν results in

P µ = −(P · u)uµ − uν
DSµν

dτ
. (7)

We therefore assume that P · u 6= 0 and write

P µ = muµ + Eµ, (8)

where the extra term Eµ is the small contribution of the spin to the canonical momentum.

From (8), we find m = −P · u + E · u; on the other hand, multiplying (5) with uµ results in

m2 = (P · u)2 + uµS
µν DPν

dτ
. (9)
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It thus follows from equations (8) and (9) that E · u = m(1 −
√

1 − ǫ), where

ǫ =
1

m2
uµS

µν DPν

dτ
(10)

is ∼ (GM/r)(ρ/r)2 ≪ 1.

Differentiating (8) with respect to τ and using (1) we get

m
Duµ

dτ
= −1

2
Rµ

ναβuνSαβ − DEµ

dτ
. (11)

To determine Eµ, we substitute (8) in (5) to get

√
1 − ǫ Eµ = (E · u)uµ +

1

m
Sµν DPν

dτ
. (12)

It is clear from equations (10)-(12) that Eµ is generally small and of order mǫ; moreover,

DEµ/dτ is a force that is of second order in the spin of the particle. In this way, it is

possible to develop an iterative scheme based on the small parameter ρ/r ≪ 1. Restricting

our treatment to effects that are of first order in the spin, we drop DEµ/dτ in (11) and

focus on the Mathisson-Papapetrou spin-curvature force

fµ = −1

2
Rµ

ναβuνSαβ . (13)

It is useful to define the spin vector Sµ of the extended test particle in general as

Sµ =
1

2m
ηνµρσP νSρσ, (14)

where ηαβγδ =
√−g ǫαβγδ is the Levi-Civita tensor and ǫαβγδ is the alternating symbol with

ǫ0123 = 1. Equation (14) implies that SµS
µ = s2

0; moreover,

mSαβ = ηαβγδPγSδ. (15)

It follows from the results of this section that to linear order in spin, one can replace P µ by

muµ in equations (14) and (15).

III. SPIN-CURVATURE FORCE

Consider the linear post-Newtonian gravitational field of a source with mass M and

angular momentum J given by

− ds2 = −(1 + 2Φ)dt2 − 4(A · dx)dt + (1 − 2Φ)δijdxidxj, (16)
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where Φ = −GM/r is the Newtonian gravitoelectric potential, A = GJ × x/r3 is the

gravitomagnetic vector potential and r = |x|. The gravitomagnetic field is given by B =

∇× A in analogy with electrodynamics. If an ideal torque-free test gyroscope is placed at

x, its precession frequency is given by

B =
G

r5
[3(x · J)x − Jr2], (17)

so that the gravitomagnetic field has the interpretation of a precession frequency in con-

formity with the gravitational Larmor theorem. Expressing the metric tensor in (16) as

gµν = ηµν +hµν , we note that h00 = −2Φ, hij = −2Φδij and h0i = −2Ai. The corresponding

Riemann curvature tensor is given by

Rµνρσ =
1

2
(hµσ,νρ + hνρ,µσ − hνσ,µρ − hµρ,νσ). (18)

Imagine a free test particle S initially at rest in the stationary gravitational field of the

source. The particle carries an orthonormal tetrad frame λ̃µ
(α), where λ̃µ

(0) = uµ is its

local temporal axis and λ̃µ
(i), i = 1, 2, 3, are its local spatial axes. The curvature tensor as

measured by S is given by the projection of (18) on its local tetrad frame. To calculate this

curvature in the linear approximation in the gravitational potentials, one may set λ̃µ
(α) = δµ

α;

then, the measured components of the Riemann tensor can be expressed as a 6 × 6 matrix



 E B
B −E



 (19)

with indices that range over {01, 02, 03, 23, 31, 12}. Here E and B are the electric and mag-

netic components of the curvature, respectively, and are 3 × 3 symmetric and traceless

matrices given by

Eij =
GM

r3
(δij − 3x̂ix̂i), (20)

Bij = −3
GJ

r4
[x̂iĴ j + x̂j Ĵ i + (δij − 5x̂ix̂j)x̂ · Ĵ], (21)

where x̂ = x/r and Ĵ = J/J .

The spin-curvature force experienced by the extended test particle S is given by f (α) =

fµλ̃
(α)

µ , so that using equation (13),

f (0) = 0, f (i) = Bijsj, (22)
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where S(α) = (0, s). More explicitly, this force can be written as

f = −∇(s · B), (23)

which is the gravitational analog of the Stern-Gerlach force.

As an illustration, let us suppose that S is initially at rest on the z axis with its spin

along the z direction, which we take to be the rotation axis of the source; then,

f =
6GJs0

z4
ẑ, (24)

where z ≫ 2GM . This Mathisson-Papapetrou force is repulsive (attractive) if S spins in

the same (opposite) sense as the rotation of the central source. Moreover, it is interesting

to note that this force is always smaller than the Newtonian force of attraction (GMm/z2).

Indeed, in realistic astrophysical situations, the Mathisson-Papapetrou dipole force would

be very small in comparison with the Newtonian monopole force. This holds in general

relativistic situations as well, as demonstrated in section V.

If instead of being at rest, S is initially boosted with speed v0 along the z axis, then the

spin-curvature force F (α) experienced by the boosted particle can be obtained via a Lorentz

transformation. In fact, the spin tensor remains invariant under a boost along the z axis,

so that S12 = −S21 = s0 are the only nonzero components of the spin tensor. As discussed

in the next section, the curvature tensor remains invariant as well. In any case, the nonzero

components of F (α) can be simply calculated to be

F (0) = γ0v0f, F (3) = γ0f, (25)

where γ0 = (1 − v2
0)

−1/2 and f = 6GJs0/z
4 is given by equation (24).

It should be emphasized that equations (22)–(25) are valid only to first order in the

spin of the extended test particle. Similar results have been derived before using the other

principal interpretation of the Mathisson-Papapetrou equations, namely, within the context

of a classical point particle with “intrinsic” spin; that is, a point gyro that satisfies instead

of (3) the Pirani supplementary conditions Sµνuν = 0 [6].

IV. RELATIVE MOTION IN FERMI COORDINATES

Imagine a free test “observer” O following a timelike geodesic in the exterior gravitational

field of an astronomical source. Let λµ
(α) be an orthonormal tetrad frame that is parallel

6



transported along the worldline of O. A Fermi normal coordinate system (T,X) can be set

up in the neighborhood of this worldline based on λµ
(α) as the local axes such that O remains

at the spatial origin of this coordinate system. Thus O has Fermi coordinates (T, 0), where

T is the proper time of O. We need to express the motion of a spinning test particle S

Duµ

dτ
= Aµ, Aµ ≈ − 1

2m
Rµ

ναβuνSαβ, (26)

with respect to O. The equation of relative motion has been derived in general in [7] and is

given by
d2X i

dT 2
+ (Γi

αβ − Γ0
αβV i)

dXα

dT

dXβ

dT
=

1

Γ2
(Ai −A0V i), (27)

where the four-velocity uµ in Fermi coordinates is Γ(1,V) with Γ = dT/dτ . The requirement

that the worldline of S be timelike can be expressed as

Γ−2 = −g00 − 2g0iV
i − gijV

iV j > 0. (28)

The metric in Fermi coordinates is given by

g00 = −1 − FR0i0j(T )X iXj + · · · ,

g0i = −2

3
FR0jik(T )XjXk + · · · ,

gij = δij −
1

3
FRikjl(T )XkX l + · · · , (29)

where

FRαβγδ(T ) = Rµνρσλµ
(α)λ

ν
(β)λ

ρ
(γ)λ

σ
(δ). (30)

The Fermi coordinates are admissible in a cylindrical region with |X| < R along the reference

worldline such that R(T ) is a certain minimum radius of curvature of spacetime.

In the next section, equation (27) is studied for the case of motion along the rotation axis

of a Kerr source. The motion of spinning test particles in the Kerr field has been the subject

of previous investigations [8, 9, 10, 11, 12, 13]; however, in the present work we consider the

deviation of such motion relative to a reference geodesic in the context of a Fermi normal

coordinate system that is constructed along the reference geodesic. This approach turns

out to be of direct observational relevance for the motion of clumps in astrophysical jets as

discussed in section VI.
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V. MOTION IN THE KERR FIELD

The purpose of this section is to study the motion of S relative to O along the rotation

axis of a Kerr source. The Kerr metric is given by

− ds2 = −dt2 + Σ

(
1

∆
dr2 + dθ2

)
+ (r2 + a2) sin2 θdφ2

+2GM
r

Σ
(dt − a sin2 θdφ)2 (31)

in Boyer-Lindquist coordinates, where Σ = r2 + a2 cos2 θ and ∆ = r2 − 2GMr + a2. Here

M and a > 0 are respectively the mass and the specific angular momentum (J/M) of the

source. We assume that the free reference particle O moves along the rotation axis on an

escape trajectory. The geodesic equations of motion of O reduce to

dt

ds
= γ

r2 + a2

r2 − 2GMr + a2
,

dr

ds
=

√
γ2 − 1 +

2GMr

r2 + a2
. (32)

Here γ ≥ 1 is a constant of integration such that for r → ∞, γ is the Lorentz factor of

the particle as measured by the static inertial observers at spatial infinity. We integrate

system (32) with the initial conditions that at s = 0, t = 0 and r = r0 >
√

3a. Moreover,

the spinning test particle S also starts from this same event with speed V0 > 0 relative

to O and moves along the rotation axis. To describe this relative motion, we establish a

Fermi coordinate system along the worldline of O. In (t, r, θ, φ) coordinates, the orthonormal

tetrad frame λµ
(α) is such that

λµ
(0) = (ṫ, ṙ, 0, 0), λµ

(3) = (γ−1ṫṙ, γ, 0, 0), (33)

where ṫ = dt/ds and ṙ = dr/ds are given by (32). The axial symmetry about the rotation

axis implies that there is a simple rotational degeneracy in the choice of λµ
(1) and λµ

(2). The

projection of the curvature tensor on the tetrad frame of O, given by equation (30), turns

out to be independent of the explicit choice for λµ
(1) and λµ

(2) and may be expressed as

before in terms of E and B such that E/k = diag
(
−1

2
,−1

2
, 1

)
and B/q = diag

(
−1

2
,−1

2
, 1

)
,

where

k = −2 GM
r(r2 − 3a2)

(r2 + a2)3
, q = 2 GMa

3r2 − a2

(r2 + a2)3
. (34)

Thus for a given r, the curvature measured by O is completely independent of γ. This

remarkable fact is a consequence of the degenerate nature of the Kerr solution, which im-

plies that the rotation axis of the exterior Kerr spacetime corresponds to two special tidal
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FIG. 1: Plot of Γ̂ versus T/(GM) based on the integration of equation (35) for r0 = 5GM , ρ̂ = 2,

a = GM and Γ0 = 100, 200, 400, 600, 800 and 1000.

directions for ingoing and outgoing trajectories; in fact, E and B are invariant under a boost

along the rotation axis [14, 15].

The equation of motion of S relative to O is given by equations (26) and (27), where we

need to evaluate the force term involving Rµ
ναβ(T,X) and Sαβ(T,X) in the Fermi system.

To simplify matters, we assume that Rµ
ναβ(T,X) ≈ Rµ

ναβ(T, 0), which can be determined

by equation (34), and Sαβ(T,X) ≈ Sαβ(T, 0). As in the previous section, the spin of the test

mass S is assumed to be along the axis of rotation, so that the only nonzero components

of the spin tensor are S12 = −S21 = s0. It follows that A0 = qρΓV and A3 = qρΓ are the

only nonzero components of Aµ, where Γ−1 =
√

1 − Ż2 + kZ2 and ρ = s0/m is the Møller

radius of S. With these simplifications and taking only the terms given in (29) into account,

equation (27) reduces to

Z̈ + k(1 − 2Ż2)Z = qρ(1 − Ż2)Γ−1. (35)

This equation takes a dimensionless form if all lengths are expressed in units of GM and ρ

is replaced by ρ̂ = ρ/(GM). Then, (GM/r)ρ̂ = s0/(mr) ≪ 1 by assumption.

The term 1 − 2Ż2 in equation (35) is due to the fact that we express the equation of

motion of S with respect to the Fermi time T rather than τ , the proper time of S. For
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FIG. 2: Plot of Γ̂ versus T/(GM) based on the integration of equation (35) for r0 = 5GM , ρ̂ = 2

in the top panel and ρ̂ = −2 in the bottom panel, a = GM and Γ0 =
√

2, 2, 3, 4 and 5.

|Ż| ≪ 1, equation (35) reduces to a Jacobi-type equation for the relative motion of S with

respect to O [2].

To characterize the relative motion invariantly, let us imagine a set of static observers in

the Fermi system situated along the Z axis and let Γ̂ be the Lorentz factor of S as measured

by these static Fermi observers that are in general accelerated. Then Γ̂ =
√−g00 Γ, where

−g00 = 1 + kZ2 in our approximation scheme; therefore, Γ̂ ≤ Γ, since k < 0.

Equation (35) contains the “electric” and “magnetic” curvatures k and q, respectively,

that can be expressed as functions of the Fermi coordinate time T . That is, the equation

for ṙ in (32) can be integrated such that with s 7→ T , we find r(T ) and hence k(T ) and

q(T ) that must then be substituted in (35). This system has been numerically integrated

with initial conditions that at T = 0, Z = 0 and Ż = V0 > 0, and the results are presented

in figures 1 and 2, where Γ̂ is plotted versus T/(GM) for ultrarelativistic relative motion

along the rotation axis of a maximal (a = GM) Kerr source. We note that with our initial

conditions both Γ and Γ̂ at T = 0 are given by Γ0 = (1 − V 2
0 )−1/2, which is the Lorentz
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factor corresponding to V0 < 1. For motion along the Z axis, Γ̂ ≤ Γ; however, it turns

out that a similar plot for Γ would be indistinguishable from figure 1. We choose γ = 1 in

figures 1 and 2, since the results turn out to be independent of the choice of γ so long as O
is slowly outgoing. For highly ultrarelativistic motion as in figure 1, the spin of the clump

has a negligible influence on its deceleration. In fact, with the same conditions as in figure 1

but for ρ̂ = 0 and 10, the resulting figures turn out to be indistinguishable from figure 1.

Let us note that Γ0 → ∞ is not allowed here, since the back reaction of such a particle

on the gravitational field of the source cannot be neglected and hence our test particle

approximation scheme would break down. The case where the spin of S is antiparallel to

the Z axis can be treated by formally letting s0 7→ −s0. The corresponding results are

presented in the bottom panel of figure 2. The graphs in the top panel are slightly above

the corresponding ones in the bottom panel, though the trends are essentially the same.

Let us suppose that the clump is homogeneous and cylindrical with radius R, and the

axis of the cylinder coincides with the Z axis. Thus s0 = 1
2
mR2ω, where ω is the frequency

of rotation of the clump such that Rω < 1. Moreover, (GM/r)ρ̂ = s0/(mr) ≪ 1 implies that

ρ̂ ≪ r/(GM). In figures 1 and 2 we have r ≥ r0 = 5 GM ; therefore, we have chosen ρ̂ = 2

to represent in effect the maximum spin of the clump. This choice is consistent with various

scenarios that have been proposed for jet creation near the poles of a rapidly rotating Kerr

black hole (see [16], chapters 9 and 11, and the references cited therein).

VI. DISCUSSION

If the initial Lorentz factor Γ0 of S is close to the critical value Γc =
√

2, then the spin-

curvature force is rather small but may not be negligible very close to the central black

hole. However, for Γ0 ≫
√

2, the contribution of the spin-curvature force turns out to be

essentially negligible and the spinning particle S decelerates toward the critical speed. This

confirms our previous work [2] on the speed of jets in microquasars [17].

In this paper, we have shown that the current speculation [18] that the spin-curvature cou-

pling could be a prominent driver of astrophysical jets from black holes is overly optimistic.

We show quite generally that the standard tidal effects [2] will dominate the spin-curvature
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effects for plasma clumps in astrophysical jets.
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