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ABSTRACT 

The dynamics on the earth landscape impact both the biotic and abiotic components. 

One of the abiotic components of the landscape are wetlands, whose terrestrial part is also 

serving as a habitat for many biotic components. Many species cannot survive without 

wetlands, which have benefits that serve ecological values for both plants and animals. 

Wetlands have been loosely defined as a transitional habitat between aquatic systems and 

highlands; they may be a part of coasts, estuaries, floodplains, or watersheds of surface waters. 

As a relatively fragile part of the Earth ecosystem, wetlands are often regarded as a socio-

ecological system (SES). Wetland SES functions and services include habitats for fish, 

wildlife, and plants, natural water quality improvement and biochemical cycling, atmospheric 

maintenance, hydrologic cycling, food storage, shoreline erosion protection, education 

research, and aesthetics. As such, it is critical to fully understand wetlands’ responses to the 

surrounding landscape changes in relation to the change impact on wetlands’ SES benefits. 

However, the research issue was less addressed by previous studies, especially in identifying 

resultant terrestrial habitat loss and fragmented edges mostly caused by urban development. 

This landscape change process was found to be one of the primary drivers of species 

endangerment and extinction. 

The social and natural components of wetlands that were affected by fragmentation in 

terrestrial habitats are the major focus of this study. The study selected ten wetlands situated 
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in the three major watersheds in the Kansas City area. The physical boundaries and changes of 

these study wetlands were adequately captured using remote sensing and GIS techniques. The 

study is divided into four parts. The first part employed an object-based image analysis (OBIA) 

approach for image classification performed in ENVI software. This approach involves 

segmentation and grouping imagery into objects to preserve the spatial, spectral, and temporal 

scale. Two classification algorithms support vector machine (SVM) and K-Nearest Neighbor 

(K-NN) were used. The second part involved deriving secondary terrain attributes using the 

compound topographic index (CTI) and the stream power index (SPI) generated from the 

United States Geological Survey (USGS) digital elevation model (DEM). The third part 

involved metric calculations, which were implemented based on the spatial patterning of the 

structure of landscape heterogeneity in relation to some aspect of ecological function. The 

fourth part is the wetland landscape dynamic (WELD) modeling performed to estimate the 

changes impacted on ecological services indicators between 1992 and 2017, as it relates to 

wetland terrestrial habitat. In addition, demographic data were used to analyze the socio-spatial 

interaction of terrestrial habitat surrounding wetlands. 

The result of the study at the landscape level (watershed) revealed a general swell in 

the wetland coverage of the three major watersheds in the Kansas City area. At the patch level 

(wetland), the study showed modified wetland terrestrial areas, with more impacts on the 

smaller wetlands. The resulting indices for terrain analysis showed an increase in potential 

wetness for nine out of ten wetlands studied and relatively no change for the stream power. 

American Community Survey (ACS 2010) and major connecting roads data were used in 

socio-spatial interaction. The result for ACS revealed an increase in the total sum population 

per 100 people (sum_POP100), followed by the sum of households per 100 people 
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(sum_HU100), the least increase revealed by census block count. The major connecting roads 

interaction revealed 84 locally connected roads intersecting the terrestrial portion of nine out 

of the ten wetlands. This may imply a limited impact on the terrestrial wetland habitats for 

amphibians and reptiles since they are all local roads. Overall analysis for the socio-spatial 

interaction showed smaller wetlands had greater changes within the 25-year study period.  
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CHAPTER 1 

INTRODUCTION 

Background 

Many species cannot survive without wetlands, which have benefits that serve 

ecological values for both plants and animals. Arnold & Van der Valk (2012) described 

wetlands as a habitat with around 6 percent of the Earth’s surface but supporting one-fifth of 

the global biodiversity. It provides suitable habitat for a wide array of flora and fauna and 

serves as the last refuge for many threatened species. Kumar et al. (2009) suggested that at 

least 20 percent of the threatened bird species might inhabit various wetlands in Asia. These 

have further buttressed the roles played by wetlands in maintaining the population of wild flora 

and fauna making it a very vital issue in wildlife and conservation (Zhao et al. 2005). The 

ecological benefits of wetlands include a reduction in soil erosion, shoreline protection, flood 

attenuation, drought control, groundwater recharge, retention of nutrients and pollutants 

cleaning of water, modification of microclimates, and carbon sequestration (Prasad et al. 2002; 

Sheoran & Sheoran, 2006). Brander & Schuyt (204) valued these benefits accruing from 

wetlands economically with a global economic assessment of 63 million hectares of wetlands 

valued at $3.4 billion per year. The study revealed the highest benefits coming from Asia with 

an estimated economic value of $1.8 billion per year. Most of the identified wetland benefits 

are valuable economically, socially, and environmentally to the ecosystem. Wetlands are 

important is due to their socio-economic and environmental values that cover more than 12.8 

million km2 of the earth, worth approximately US$ 70 billion per year (Brander & Schuyt, 

2004). 
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With all the benefits mentioned and the value estimated, the continuous decline in area, 

extent, and quality of wetland habitat may lead to a severe threat to species such as amphibians 

and reptiles. The large anthropogenic impact on biodiversity due to urban development has led 

to several habitat loss and subsequent fragmentation in urban growth (Groom et al. 2006; 

Collinge, 1996). Examples of such impacted species are the Missouri Cavesnail and Missouri 

Saddled Darter, with the former requiring further research as regards species population size 

and distribution trends, according to the International Union for Conservation of Nature and 

Natural Resources (IUCN red list 2011). Newbold et al. (2015) identified habitat loss and 

fragmentation as the primary driver of species extinctions. Habitat loss or fragmentation due 

to urban development is only one of many anthropogenic impacts on biodiversity (Tilman & 

Lehman, 2001), which has been described as one of the principal causes of species 

endangerment in the United States (Dobson et al. 1997; Vitousek et al. 1997). Changing 

ecosystem functions such as wetland habitat is observed to have drastically led to the loss of 

species (Estes & Duggins, 1995). This may otherwise result in the invasion of new species 

(Vitousek et al. 1997). The continuous species loss due to fragmentation following 

disturbances may have important implications for ecosystem functioning and may negatively 

affect the flow of ecosystem services (Estes & Duggins, 1995). This may affect the valuation 

and diversity of the composition of species, structural, and functional biotic elements of the 

ecosystem, which include wetland habitats. Girvetz et al. (2008) in a study in California 

compared the relative impact of different types of land use disturbances such as roads and 

agriculture to analyze the changes in landscape structure for early warning habitat degradation. 

Most of the research in these direction have been more subtle with the advent of very high 

resolution (VHR) imagery that may provide a new technique for gathering information about 
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biodiversity and its heterogeneous habitat. VHR has been used in several efforts for watershed 

and wetland research. The issue of grain sizes and spatial extent that has been a major issue in 

the study of an urban heterogeneous landscape are well considered in this study. Nagendra 

(2001) described some of the major ways in which habitat mapping has been previously studied 

to include the mapping of one or a few dominant species in the upper canopy or by establishing 

links with their broader biophysical characteristics. Lucas et al. (2011) described the mapping 

of less complex habitat mosaics as being relatively straightforward, but they describe the 

problems with the landscape increasing as a result of heterogeneity in habitat (Varela et al. 

2008; Lucas et al. 2011). 

Considering all these, it is important to understand the environmental drivers of habitats 

to give more credence to the levels of species richness and their associated socio-ecological 

benefits. For example, the landscape barriers of many species to access terrestrial wetland 

habitats that can be identified by remote sensing data have encouraged the study of monitoring 

species loss and habitat fragmentation. However, no single environmental parameter drives the 

pattern of species distribution and richness (Nagendra, 2001). To investigate the interactions 

between social structures and ecological factors, the concept of social-ecological systems 

(SES) will be valuable. The SES are linked systems of people and nature, emphasizing that 

humans must be seen as a part of, not apart from, nature (Berkes & Folke, 1998). For adequate 

assessment of these interactions, Holling (2001) proposed a method for setting up an 

interdisciplinary research framework, which must be developed from a theoretical analysis of 

how research is conducted. In addition, the issue of scales and models, which are very 

necessary to study the dynamics of interrelated wetland and social-ecological systems, are 

considered. To model these scenarios effectively, remote sensing can assist conservation 
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biologists to better understand wetland dynamics and interactions. The accuracy of this process 

is important most especially in relation to wetland extraction and classification, which is a very 

critical step in the analysis of long time series of wetland landscapes (Dronova et al. 2012). 

The study presented in this dissertation considers the implications of wetland habitat change 

effect on species with estimation and assessment using land cover maps. The importance of 

this study stems from the urgent need to curb the loss of biodiversity most especially in the 

wetland habitat area, resulting mostly from human activities. The application of remote sensing 

for biodiversity might require two general approaches: direct and indirect remote sensing 

approaches (Wang et al. 2010). The former deals with individual organisms, species 

assemblages, or ecological communities from airborne or satellite sensors, while the latter 

deals with reliance on environmental parameters as proxies. The approach adopted for this 

study tilted more towards the indirect remote sensing methodology. To address some of the 

issues identified in this study, developing innovative approaches to automate image 

classification, which may include image extraction and object-oriented techniques may be 

required (Bock et al. 2005; Förster & Kleinschmit, 2008; Comber et al. 2010; Haest et al. 2017; 

Lucas et al. 2011; Kosmidou et al. 2014). In addition to the classification method used, the 

integration of extracted wetland habitat with topographic indices provided useful information 

about landscape structure. Furthermore, a geospatial model was built to assess the impact of 

natural and human activities on ecological service indicators on wetland habitat. 

Research Questions  

 For these issues identified to be successful study research questions will be needed. 

The research questions considered relevant for this study include: 
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• What classification algorithm better reveals wetland landscape patterns in the study area 

using the object-based image analysis (OBIA) approach? 

• What are the impacts of the changing wetland landscape patterns on species habitat in the 

study area? 

• How does the changing wetland landscape pattern affect socio-spatial interactions among 

the ecological component? 

• How and what activities, both natural and human, have created a unique disturbance (act 

quickly and with great effect) regime on wetland landscape dynamics in the study area? 

The answers to the above questions are captured in the entire body of this study, which includes 

the main procedures of identifying the research objectives, analyzing high-resolution 

imageries, and calculating and quantifying landscape and topographic indices. In addition, a 

terrestrial wetland habitat for reptiles and amphibians assessed using geospatial modeling. 

 Research Objectives 

The research goal for this study is to assess wetland dynamics and its associated 

benefits. To address this goal, this study integrates terrain and landscape metrics into an object-

based image analysis for assessing associated change benefits derived from wetlands, with the 

specific objectives as below: 

• Apply different image classification algorithms on a high-resolution image to reveal the 

variation in identified patterns for the same wetland landscapes. 

• Statistically assess wetland change detected on land-use/cover change in the classified 

image. 

• Calculate landscape structure of wetland terrestrial habitat vulnerability using indices from 

terrain analysis.  
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• Quantify landscape structure and pattern of change at patch level (wetland) and landscape-

level (watershed), and their impact on fragmentation and habitat loss.  

• Model wetland vulnerability using the SES framework to assess changes on terrestrial 

wetland habitat as a result of human and natural activities on ecosystem services. 

Study Area 

The three major watersheds in the Kansas City metropolitan area and ten of its major wetlands 

were included in this study. The Kansas City metropolitan area is located along the eastern 

boundary of Kansas and the western boundary of Missouri in the central United States (Mid-

America Regional Council). The general topography of the area is characterized by rolling 

hills with open plains (Ji et al. 2006). The predominant land-cover types are grasslands, forests, 

and croplands (MARC). Figure 1 shows the three major watersheds in the Kansas City area, 

which include the Blue River, Little Blue River, and Shoal Creek-Missouri River watersheds. 

Ten major wetland areas in the three major watersheds were also included (Figure 1). These 

wetlands are Missouri River, Lake Tapawingo, Blue Springs Reservoir, East Lake Wood, West 

Lake Wood, Lake Jacomo, Prairie Lee Lake, Longview Lake, Heritage Park Lake, and Loch 

Lloyd Lake. 

In recent decades, population growth, increased economic activities, and the continued 

expansion of urbanized areas in the watersheds and wetland areas have affected the natural 

environment of the area (Ji et al. 2006; Weilert et al. 2018; Zubair et al. 2017; Zubair et al. 

2019). This continued depletion of the natural area provided a basis for investigating the 

terrestrial wetland landscape of the study area. While the landscape dynamics and trends of the 

area have been well studied (e.g. Ji et al. 2015; Weilert et al. 2018; Zubair et al. 2017), not so 

much has been done in identifying and quantifying the landscape structure of the terrestrial 
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habitat surrounding the urban wetland landscape. In addition, the economic activities in these 

have increased resulting in urbanization (Zubair et al. 2017), impacting the wetland terrestrial 

edge as the city expands. Therefore, this study seeks to investigate the landscape structure and 

assess the socio-ecological benefits impact on wetlands and the terrestrial habitat. 

 
Figure 1: Study area: the major wetlands and watersheds. 

 

 

 

 



8 

 

CHAPTER 2 

LITERATURE REVIEW 

Wetlands 

Approximately 6% of the earth’s surface is loosely considered as wetlands (Barros et 

al. 2014). Brander & Schuyt (2004) suggested that 87 million hectares, which is about 54% of 

original wetlands (Tiner 1984) in the United States, been converted, mainly for agricultural 

purposes. Similarly, Pullan (1988) revealed that about 70% of the Algarve region been 

converted for agriculture and industrial development in Portugal. Similarly, in the Philippines, 

300,000 hectares which are about 67% of the country’s mangrove resources were lost between 

1920 and 1980 (Zamora, 1984) mainly due to urban development. Mitsch & Gosselink (2000) 

described wetlands as the transition between terrestrial and aquatic ecosystems where the water 

table is near the surface or shallow water surface covering the land. They identify wetlands as 

a functioning part of the landscape with or without humans. Wetlands are a very productive 

and fragile part of the ecosystems. Mitsch & Gosselink (2000), the wetland landscape is a 

multifunctional part of the ecosystem, and this has performed many processes simultaneously.  

A wetland is often portrayed as “the kidney of the Earth” mainly functioning as storage 

for floodwater and waste collection points from natural and human sources (William et al. 

2015). According to the United States Environmental Protection Agency (EPA), wetlands 

support a variety of fish and wildlife species and contribute to the aesthetic and environmental 

quality of the United States (EPA’s 2008 Report on the Environment). The EPA further 

classified wetlands as a swamp, shrub swamp, marsh, wet meadow, bog/fan, and vernal pool. 

In addition, the EPA has described the functions and values of wetlands to include high 

productivity, habitat diversity, flood control, groundwater recharged, filtration and nutrients, 
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recreation, agricultural uses, fisheries, rare and endangered species. Mitsch & Gosselink (2000) 

also consider wetland as serving as groundwater recharging areas and contaminant filters.  

In addition, wetlands have demonstrated a net carbon sink and are not radioactive 

sources of climate change, due to the contribution to carbon sequestration and methane 

emissions (Mitsch et al. 2013). Significantly, wetlands may incorporate other water bodies 

such as riparian and adjacent coastal zones, and marine water deeper than six meters at low 

tide. They help to buffer coastal areas against storm and wave damage and stabilize shorelines 

(Stedman & Dahl, 2008). The EPA report of environment shows that “the total wetland acreage 

has declined since the 1950s”. The EPA (2008) report also showed that “from the 1950s to 

1970s, an average of 456,000 acres” were lost per year. In addition, the period “from 1998 to 

2004 saw an increase in the total wetland area, at a rate of 32,000 acres per year, while the 

most recent study period (2004-2009) experienced losses of 13,800 acres per year”. In 

summary, the report showed varied gains and losses of wetland types between the years 

identified. The report points to urban development, rural development, silviculture, and 

conservation practices to be the major contributors to wetland losses. 

Urban Wetlands Landscape Dynamics 

Wetlands, either natural or man-made that are situated in urban areas, are generally 

referred to as “urban wetlands” because most of these water bodies are closely associated with 

residential and business facilities. Several types of research have also shown that urban 

wetlands could play active roles in ecology and human life in urban areas. Even though 

researchers have found many wetlands in the metropolis, towns, and cities, the study of wetland 

effects on socio-ecological systems has been limited. The dynamism in urban wetlands have 

resulted in various changes and modifications, and most times total disappearance of the water 
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bodies. Hall et al. (1998) described how scarcity in urban land could drive the destruction of 

small wetlands due to their proximity to the developed areas. Increased urbanization leading 

to more land consumption in the Kansas City area has been identified and characterized using 

multi-stage satellite images and landscape metrics (Ji et al. 2006; Zubair et al. 2017). The study 

described how urbanization has increased significantly in the past three decades in the Kansas 

City area, showing an increase in built-up areas at the expense of the non-forest land and the 

spread of urban development away from the urban core. 

Wetlands Socio-ecological Benefits 

Wetlands formerly considered useless and disease-ridden have been found to provide 

many benefits to society and serve many ecological functions. Constanza et al. (1997) 

identified several socio-ecological benefits provided by wetlands, some of which include 

providing a habitat for plants and animals, biochemical cycling, hydrologic cycling, shoreline 

erosion protection, recreation, education, research, and aesthetics. A wetland’s primary 

productivity is very high, making it suitable for organisms as a base for the food web. These 

activities provide nutrient-enriched particles called detritus, which are broken down and made 

available for use by several species of animals. Other larger predictor animals like amphibians, 

reptiles, fish, and birds may feed on these lower species. 

Overall, just as wetland provides food for animals, it also provides habitats as a shelter 

for migrating and breeding animals. Many of these animals need wetlands for part or all of 

their life cycles (e.g., frogs, salamanders, snakes, turtles, herpetofauna, etc.). Most of these 

species of animals migrate from uplands to wetland areas for breeding and egg deposition in 

winter and early spring. They leave the wetland area back to the upland area to continue their 
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adult life.  For this reason, the survival of these species of animals depends largely on the 

availability of wetlands and migration to the uplands.  

Wetlands also perform the ecological function of regulating mineralization in the 

habitats. Some important minerals such as nitrogen and sulfur transformed into gaseous forms 

and made available to plants through nitrogen-fixing bacteria in the soil. Furthermore, minerals 

that do not have a gaseous form such as phosphorous can transform into organic form through 

vascular plants in wetlands. Also, carbon which provides atmospheric functions is stored in 

wetlands within the plant biomass and prevents its release into the atmosphere as carbon 

dioxide which can increase the available greenhouse gases. However, some of these stored 

gases could be released during degradation, clearing of lands, landfilling, etc. 

Most of the wetlands store the water at the surface, and some as underground water for 

various usages. Wetlands play major roles in the hydrological cycle and are important water 

storage meant for evapotranspiration (precipitation and evaporation). The hydrological cycle 

helps to maintain the ecosystem, aid biological transportation by vegetation, and fill up 

depressional wetlands needed for nesting by wildlife. According to the U.S. Fish and Wildlife 

Service estimated that “up to 43% of the federally threatened and endangered species rely 

directly or indirectly on wetlands for their survival”. 

On the other hand, while wetlands may serve as a good spot for breeding it is also very 

important in influencing the quality flow of water. Water is filtrated, inorganic nutrients 

retained, organic waste processed, suspended segments reduced, and water quality improved 

for drinking. In addition, filtration by wetland helps to control environmental problems such 

as algal blooms and dead zones that may directly or indirectly result in excess nutrients loading. 

The excess minerals and decomposed organic pollutants trapped as suspended sediments. 
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Groundwater maintenance and replenishment are mostly by streamflow, which may help to 

provide water for drinking. The topography of the area might be potential flood zones. 

Wetlands are low land areas, surrounding uplands discharge water into it. This water is stored, 

controlled, and slowly released as surface water, rain, snowmelt, groundwater, and floodwater. 

The intercepted floodwater and other surface water are important for economic purposes, 

saving the cost of providing expensive dredging and levees for wetland preservation and 

restoration. Also, the insurance cost that may result in flood damage to houses and crops in 

agriculture zones are saved by the wetland habitats.  

Wetlands have created a lot of benefits and opportunities for recreational, educational, 

and research purposes, these are in the form of hunting, fishing, bird watching, or 

photographing wildlife. The benefits derived from wetlands are huge most especially from 

nature-based tourism. The scenery provided by the most protected wetlands serves as an 

opportunity for tourist and artist to derive their contents. Wetlands provide the basis for most 

studies in the institutions, and these have increased research in environmental education. The 

socio-ecological and socio-economic benefits of wetlands can be well captured in different 

courses, so making them excellent research sites to learn more about vegetation structure, 

landscape ecology, habitat and biodiversity, plant successions, plants, and animal interactions, 

etc.  

Landscape Ecology 

Landscape ecology has been described as a study that examines the pattern and 

interaction between ecosystems within a region of interest, and the way the interactions affect 

ecological processes, most importantly the unique effects of spatial heterogeneity on the 

interaction (Clark, 2010). Recently, the availability of more reliable geospatial techniques that 



13 

 

involves the integration of GIS and remote sensing has provided a platform for quantitative 

assessment of landscape ecology (McGarigal & Marks, 1995; Turner et al. 2001; McGarigal, 

2000). Some of the terminology and concepts in landscape ecology used in this study are well 

examined and represented. There are many terms and metrics proposed by researchers (e.g. 

Forman & Godron, 1981; McGarigal & Marks, 1995) used to characterize landscapes, but a 

few will be described in this section of the study. Starting with the patch that can be described 

as habitat differing from its surroundings, and often the smallest ecologically distinct landscape 

feature (Clark, 2010). The matrix, on the other hand, is said to be an extensive and connected 

landscape element type with a dominant role in landscape functioning (Forman & Godron, 

1986). An example of this matrix is an area of farming activities where pesticides used on the 

farm tend to flow to the nearest wetland patch. Another important term here is the “corridor” 

described as a narrow patch that may act as links or barriers in a landscape (Haddad et al. 

2003). In addition, corridors have been found to be an important landscape structure 

influencing the dispersal of plants and animals in the landscape (Haddad et al. 2003).  

Importance of Scale in Landscape Ecology 

The issue of spatial scale (grain and extent) is one of the most discussed and important 

considerations in landscape ecology (Kotliar & Wiens, 1990; Forman, 1995). The importance 

attached to scale cannot be underestimated when using remote sensing datasets in land cover 

mapping and their correlation analysis (McDermid et al. 2005). However, this term ‘scale’ has 

been plagued by imprecise and inconsistent usage, Wiens & Milne (1989) suggested a 

definition that includes grain as the minimum resolution of the data while the extent depicts 

the spatial size of the study area. Grain and spatial extent are inversely correlated, scarifying 

fine grain for a large extent have been performed in several studies. For more understanding 



14 

 

and clarity, the grain and spatial extent in an ecosystem study need to be separated. While grain 

refers to the spatial domain of study, the spatial extent is the organization at the population-

level or ecosystem-level. The studies carried out at the population-level examine the 

interactions among individuals, while the studies at the ecosystem-level examine the 

interactions and processes among biotic and abiotic components of the ecosystem. 

This study is carried out at the ecosystem-level using temporal images. The type of 

image used, sources, and quality dataset selection for habitat mapping is very critical to achieve 

good results (Devillers et al. 2007). For this study, the spatial scale used was determined by 

the distribution and heterogeneity of the species and habitats being monitored, factors 

impacting species distribution, and availability of ancillary datasets required for proper 

interpretation of remote sensing datasets (Nagendra, 2001). Relatively in an ecosystem-level 

study, the size of the pixel should be matched to the observed object so that it is one-quarter to 

one-third of the size of the smallest of habitat or species assemblage (Nagendra, 2001).  A 

similar suggestion was proposed by O’Neill et al. (1997). They suggested that “in general, the 

grain should be 2 to 5 times smaller than the smallest feature of interest and the calculation 

unit should be 2 to 5 times larger than the largest feature of interest”. This has thrown up 

various research and discussions about the ecological scale and the need to match spatial scale 

to the object being observed (e.g. habitat or species of focal interest). Some of these images 

are too expensive to be acquired at the desired scale for the research study and may not be 

readily available for research purposes, such as very high resolution (VHR) data from the 

QuickBird, SPOT, IKONOS, GeoEye, and WorldView-2 sensors. The cost limitation 

associated with VHR data has its own consequence on scaling, though more preference is given 

to VHR (Nagendra & Rocchini, 2008) for ecological study at a local scale. The availability of 
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United States Geological Survey (USGS) Landsat data which is free of charge has provided an 

opportunity to map habitats at a relatively finer scale. 

Furthermore, on the scale, Delcourt et al. (1982) argued that an ecological phenomenon 

tends to have characteristic spatial and temporal scales or spatiotemporal domains. Similarly, 

Levin (1992) advised that there is no single natural scale at which ecological phenomena 

should be studied. He suggested that systems generally show characteristic variability on a 

range of spatial, temporal, and organizational scales. Levins & Culver (1971) proposed the 

importance of spatial patterns in structuring ecological communities and maintaining the 

coexistence of competitors. A study by O’Neill et al. (1997) suggested that developing the 

principles of landscape ecology by an individual investigator on a relatively small spatial scale 

may suffice. However, for the purpose of monitoring status and assessing changes across the 

continent, there is a need to consider the regional scale. 

In conclusion, to the use of scale at both fine and coarse levels in the ecological study, 

it is best to consider the scale at which an organism perceives its environment. Some studies 

demonstrated the benefits of very high-resolution (VHR) imageries for mapping successional 

fine-scale habitats such as bogs (Bock et al. 2005). However, in most cases, the choice and 

availability of remote sensing datasets will determine the amount of information that is 

available to be mapped (Devillers et al. 2007). Overall, the unit area or extent of analysis should 

reveal the sensitivity of the indices to the scale of calculation, at which it is been computed 

(O’Neill et al. 1997).  

Landscape Ecological Modeling and Framework for Socio-Ecological Systems (SES) 

Landscape ecological modeling provides the template for a better understanding of the 

interactions between biophysical and social drivers of land-use and the changing ecological 



16 

 

systems. Landscape ecological modeling has been widely accepted due to the recent 

advancement in landscape ecology and availability of spatial data that are integrated into GIS 

technology. This integration has provided researchers with the opportunity to model and 

evaluate, monitor, and assess wildlife habitats using the combination of remote sensing satellite 

imagery and GIS spatial datasets (e.g., Forman & Godron, 1981). Several models have been 

used to quantify landscape patterns and structure for the management of wildlife populations 

and conservation planning in the past (U.S. Fish and Wildlife Service 1980, 1981). 

Understanding the spatial structure and landscape patterns have been found to be an important 

aspect of landscape modeling and evaluation using GIS technology (Donovan et al. 1995; 

Rickers et al. 1995; Robinson et al. 1995). Some of the spatial datasets used for landscape 

modeling may be demographic data on human settlements, road data, or impervious data to 

assess and evaluate wildlife habitat (Barve et al. 2005). 

Many models and frameworks have been employed in socio-ecological studies (e.g. 

Collins et al. 2011; Smith et al. 2009). Collins et al. (2011) in their research proposed a 

framework that integrates the internal and interactive dynamics of social and natural systems. 

The study suggested the process of the press–pulse dynamics (PPD) for ecosystem services.  

“Press” described as an extensive, pervasive, and subtle change while “pulses” are infrequent 

cumulative observed changes. Four components used in the framework to model the drivers of 

ecosystem services. The model encapsulates the critical linkage between social and biophysical 

domains to serve as the foundation for long-term study across scale, the focus was not on 

wetland landscape dynamics. Smith et al. (2009) in a similar study proposed the hierarchical-

response framework (HRF) which leverages ecological mechanisms of change to provide a 

theoretical basis for testing hypotheses. The study suggested two disturbance regimes; natural 
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disturbance and global change that drive the ecosystem responses. This study is a very good 

complement to other frameworks that focus on dynamic regimes and ecological thresholds, but 

it does not focus on wetland landscape dynamics. Other related frameworks like that of Shaver 

et al. (2000) in a study that describes challenges and provided the conceptual framework for 

interpreting experimental results. The study looks at predicting the effects of warming on the 

ecosystem. This study is important and looks at the direct and indirect effects of warming, 

response to warming, and interactions with other drivers of global change on the ecosystem. 

The study focused more on temperature and predicting warming response and not on the 

wetland landscape dynamic ecosystem. Similarly, Briske et al. (2006) proposed a unified 

framework for threshold assessment to link ecological theory and process with management 

knowledge and application. The study is vital to a conservation management application and 

defined operational thresholds based on probabilistic interpretation. However, the study does 

not look at the dynamics occurring at wetland levels specifically, but the threshold proposed 

can be adopted for wetland conservation.  

Considering all these studies mentioned above, the adoption of the wetland landscape 

model for SES would further complement existing frameworks and models. The proposed 

framework for wetland landscape dynamic (WELD) modeling emphasizes more on the 

approaches needed to understand the dynamics and processes of wetland landscape SES. This 

aimed at further bridging the enormous gap in interdisciplinary science. Different researchers 

may interpret Socio-ecological changes and processes differently, but the most effect imping 

on biophysical and social components that result in landscape modifications. Table 1 shows 

the relationship between key threatening processes associated with landscape modification and 
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biological attributes of species, which ameliorate extinction processes (Fischer and 

Lindermayer, 2007) 

Table 1: Landscape Modification and Threat to Biological Attributes of Species 

Threatening process  Ameliorating biological 

attribute  

Explanation 

Habitat loss and habitat 

degradation 

Low habitat specialization  

 

 

 

Disturbance tolerance  

 

 

Ability to live in the matrix 

(degree of landscape connectivity) 

Specie 

Specialized species are more 

likely to lose their habitats as a 

result of degradation landscape 

change. 

Disturbance-tolerant species are 

more likely to find suitable habitat 

in modified landscapes. 

Species can live in the matrix 

experience no habitat loss as a 

result of landscape modification 

Habitat isolation and sub-

division 

Ability to move through the 

matrix. 

 

 

Dispersal ability 

Species that can move through the 

matrix are less likely to suffer the 

negative consequences of habitat 

isolation.  

Strong dispersers may be more 

likely to maintain viable 

metapopulations  

Disrupted species interactions  Limited dependence on particular 

prey or mutualist species 

Competitive ability  

Species that can switch prey or 

mutualists are more likely to 

withstand landscape change 

Species that are strong competitors 

are less likely to be outcompeted 

by species whose habitat expands 

as a result of landscape change 

Disrupted biology Low biological and behavioral 

complexity  

Species with a complex biology 

(e.g. social or breeding systems) 

are complexity more likely to have 

their biological processes 

disrupted as a result of landscape 

change than species with simpler 

biological systems 

Stochastic events  Population density  High density populations contain 

many individuals even in a small 

area, and hence are more resilient 

to stochastic threats 

Adopted from Fischer and Lindermayer, 2007 
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Landscape Metrics 

The term ‘landscape metrics’ refers exclusively to indices developed for categorical 

maps. The focus is on grain size and the spatial extent to categorize the geometric and spatial 

properties of a pattern represented on a map at a single scale. McGarigal (1995) points out that 

it is important to note that while metrics at higher levels are derived from patch-level attributes, 

not all metrics are defined at all levels and that most of these metrics are correlated. McGarigal 

(1995) defined landscape metrics at three levels: patch-level metrics (individual patches and 

spatial characterization of patches), class-level metrics (integration using averaging overall the 

patches of a given type), and landscape-level metrics (integration overall patch types and 

classes over the full extent of the data). In addition to the three levels of landscape metrics, he 

further categories metrics into two major components, those that quantify composition 

(proportional abundance, richness, evenness, and diversity) and those that quantify 

configuration (patch size distribution and density, patch shape complexity, core area, 

isolation/proximity, contrast, dispersion, contagion and interspersion, subdivision, 

connectivity).  

Furthermore, the composition is the relative proportion of habitat types in the 

landscape, regardless of spatial distribution (habitat area), while configuration (spatial pattern 

of patches) refers to almost limitless aspects of landscape heterogeneity, especially the physical 

and spatial distribution of landscape elements (Clark, 2010). Landscape ecologists have shown 

more interest in how the spatial distribution of elements affects ecological processes. To 

measure the ecological processes and spatial interaction the patch area (PA) is a very important 

factor, especially for organisms that use a specific patch type as habitat. PA measures the 

amount of edge (ecotone) between a focal patch type and the surrounding matrix. Ecotone 
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represents the transition zone of influence on ecological processes. Both composition and 

configuration described above affect the dynamics of any habitat, in terms of altered area 

(composition) and spatial pattern. Landscape metrics are effective quantifications of landscape 

patterns and ecological processes, but users must be careful about how the results of the 

analysis are interpreted (McGarigal, 2000). The researcher or investigator must take some 

measures before the quantification of the landscape. The investigator or user must define the 

grain size and spatial extent of the patches before computing any of the metrics.  The bias 

involving edge or perimeter can be introduced into computation depending on the format used 

either raster or vector. The raster data format will have an upward bias for edge lengths, 

because of the stair-step outline, and the magnitude of this bias will vary with the grain or 

resolution of the image used. It is important to specify additional input parameters such as edge 

effect distance, edge contrast weights, and search distance. The measured pattern of the 

landscape must be seen as corresponding to a pattern that is functionally meaningful for 

organisms or species under consideration for the analysis to be useful. It is important to 

understand each landscape metrics before selection for use in interpretation. 

  This study considered landscape metrics as measuring landscape patterns with 

reference to a particular ecological process. McGarigal (1995) referred to this as functional 

metrics. They explicitly measure landscape pattern that makes it functionally relevant to the 

organism or process in the study area. On the other hand, structural metrics refer to the analysis 

that measures the physical composition or configuration of the patch mosaic without explicit 

reference to an ecological process. 
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Digital Terrain Analysis 

Modeling the digital elevation model (DEM) for landscape provides a quantitative 

detailed, objective, repeatable process to accurately model real landscape processes. The 

integration of DEM with Geographic Information System (GIS) and Remote Sensing (RS) 

technology allows for accurate characterization of large areas. Digital terrain analysis 

integration into the GIS model enables researchers to geospatially describes landscapes in a 

hydrological, biological, or geomorphological context in several applications (Wilson & 

Gallant, 2000). Terrain analysis applied to areas that may be essential for restoring and 

protecting water. Essential in this sense can be loosely defined as an area of the landscape that 

accumulates overland flow and is hydrologically connected to surface waters, either by an 

overland flow path or by sub-surface drainage. According to a study by Galzki et al. (2008), 

the areas as described have a higher likelihood of conveying contaminants to surface waters 

than other portions of the landscape. These areas are mostly found in a depression or riparian 

area and can be a major contributor to the contaminants in the water. These could be in the 

form of sediments, nutrients, and pesticides, to nearby surface waters. 

Advantages of using terrain models: 

1. Repeatable results (non-subjective) 

2. Numerical results (Spatial) 

3. Analysis and interpreting topographically related features 

4. Consistent with the level of details needed for conservation plans 

Terrain attributes are primary and secondary attributes data. Primary attributes data 

may include aspect, slope, catchment areas, profile curvature; all can be calculated directly 

from the elevation data. While the secondary attributes are the combination of the primary 
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attributes data (see Figure 2), these include derivative calculations such as compound 

topographic index (CTI) that is also referred to as the steady state of wetness index or wetness 

index (Wilson & Gallant, 2000). In addition to this is the stream power index (SPI) which is 

the potential erosive power of overland flow (see Figure 3), with isolated areas where water or 

ponds are collected in a landscape (Wilson & Gallant, 2000).  

Figure 2: Compound topographic index (CTI) in raster calculator. 
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Figure 3: Stream power index (SPI) in raster calculator. 

 

Land Cover Classification Algorithms 

Image classification is one of the most effective processes employed for the production 

of land use and land cover maps in remote sensing. The results of image classifications are the 

basis for many calculations and quantifications. Image classification described as the process 

of categorizing all pixels in an image such as raw remotely sensed satellite data to obtain a 

given set of labels or land cover themes (Lillesand & Keifer, 1994). The major steps in the 

remote sensing classification process may include the determination of a suitable classification 

system, selection of training samples, image preprocessing, and feature extraction, selection of 

suitable classification approaches, post-classification processing, and accuracy assessment 

(Jensen, 2015). Several studies have used various classification approaches that have been 

developed and widely used to produce land cover maps (e.g. Aplin & Atkinson, 2004). 

Whatever the approach used, they are associated with two broad types of classification 

procedures:  supervised classification and unsupervised classification. For this study emerging 
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methods of image classification referred to as object-based image analysis (OBIA) is applied. 

This is performed with object extraction using the example-based process for OBIA 

(segmentation) and further classified using two different machine-learning algorithms: Support 

Vector Machine (SVM) and K-Nearest Neighbor (K-NN) classification algorithm. 

OBIA (segmentation): Image segmentation is not a new idea for the image classification 

process in remote sensing. It has its roots in industrial image processing, but it was not used 

extensively in geospatial applications throughout the 1980s and 1990s (Blaschke, 2003). This 

process requires meaningful object identification and attributes labeling. The attributes 

considered for segmentation include spatial attributes, spectral attributes, texture attributes, 

color space, and band ratio attributes. Training data output from this process is used to assign 

objects of unknown to identify to one or more known features using supervised classification. 

Using the OBIA techniques can help to improve image shadow regions using the rule-based 

approaches or spectral unmixing that can eventually improve image accuracy (Sawaya et al. 

2003; Förster & Kleinschmit, 2008; Haest et al. 2017; Mücher & Kooistra, 2011). 

Support Vector Machine (SVM): The proficiency of this classification method was put 

forward by Vapnik and colleagues in the 1990s. SVM has been known to be effective for face 

and object recognition in a photo before its adoption for use in remote sensing (Pal & Mather, 

2005; Hermes et al. 2000). The SVM considers the critical elements of the training set and uses 

the pairwise classification strategy for multiclass classification. The SVM classification output 

is the decision values of each pixel for each class, used for probability estimates. This process 

allows an optional threshold to report pixels with all probability values less than the threshold 

as unclassified. SVM tries to identify the hyperplane, the central distance between the closest 

points of each of the two classes, which is referred to as support vectors (Pal & Mather, 2005).  
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A trade-off between training errors and forcing rigid margins is set to allow control of pixel 

information as a penalty parameter.  SVM assumes that, if two classes separated by a line 

drawn in the feature space, to separate these two classes, the space between the two classes 

identifying a central hyperplane should be maximized (Pal & Mather, 2005). 

K-Nearest Neighbor (K-NN): This is one of the simplest and most used instance-based 

learning algorithms. The 'k' in KNN is a parameter that refers to the number of nearest 

neighbors to include in the majority of the voting process. This classification algorithm 

assumes that all instances are points in some n-dimensional space and defines neighbors in 

terms of distance (usually Euclidean in R-space). K-NN has been known to have a few remarks 

that have increased its usage in the research community for land use land cover classification. 

K-NN works well on many practical problems and is fairly noise tolerant (depending on the 

value of K). When K increases, it makes K-NN less sensitive to noise but if K decreases it will 

allow capturing the finer structure of space. It all depends on the study and the data, but it is 

better to make K not too large or too small. Though the K-NN classifier is one of the simplest 

and most widely used nonparametric classifications, it has been successfully used for 

hyperspectral image classification (Huang et al. 2016) 

Accuracy Assessment Issue in Modeling 

 Accuracy assessment in remote sensing is the comparison of classification with ground 

truth data to evaluate how well the classification represents the real world. This can be referred 

to as the degree to which the derived image classification agrees with reality or conforms to 

the ‘truth’ (Campell, 1996; Smits et al. 1999). However, after the classified image, ground truth 

can be collected in the field to validate the results, though this can be very expensive and time-

consuming. Ground truth data can also be performed by interpreting high-resolution imagery 
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(Google Earth), existing classified imagery, or GIS data layers. The most common way to carry 

out accuracy assessment on a classified map is to create a set of random points from the ground 

truth data and compare that to the classified data in a confusion matrix. For this study, an 

accuracy assessment was conducted on all four classified images, for each of the two 

algorithms used. The confusion matrix was constructed, and it consists of overall accuracy, 

overall kappa coefficient, ground truth wetland producer’s accuracy, and user’s accuracy, 

commission, and omission. The overall accuracy is calculated by summing the number of 

correctly classified values dividing by the total number of values.  

Previous Studies related to Wetland Dynamics, and Socio-Ecological Systems 

 Several studies have used different methodologies and techniques to better understand 

the dynamics of wetlands. Researching urban wetland landscape dynamics is far from being 

straightforward, due to its heterogeneous nature. Mapping a heterogeneous landscape is more 

relatively challenging (e.g. Lengyel et al. 2008). This is no exception to this study. The wetland 

landscape dynamic of the Kansas City area has been well studied. But not much has been done 

on wetland terrestrial habitat change and how it affects the function and values of socio-

ecological benefits derived from it. Ji (2016) in his study of an urban wetland landscape in the 

Kansas City area, referred to urban wetland as “urban wet-landscape”. Wetland in this study 

was described as a sensitive indicator in detecting the coupling effect of two major driving 

forces of the urban landscape: human impact and climate change. The study employs the rule-

based classification algorithm at a fine-scale, which was able to detect hidden wetlands that 

could not be detected using the traditional image classification. While this study successfully 

verified that the urban wet-landscape was an effective indicator of the two major urban change 

drivers, it did not address the socio-ecological benefits of urban wetlands. A similar study by 
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Ji et al. (2005) in the Kansas City metropolitan area characterized the urban sprawl using 

remote sensing methods and landscape metrics. The study suggested that the effect of 

landscape response to urbanization could better reveal within larger spatial units (Metropolitan 

area, habitat, or county) as compared to a finer scale unit like a city. The result of the study is 

very important and a pointer to the scale factor, but it did not dwell specifically on wetland 

terrestrial habitat and its socio-ecological components. Zubair et al. (2017) studied wetland 

changes in the three watersheds in the Kansas City area between 1992 and 2010, which 

revealed wetland increase in two watersheds historically and loss to urban expansion in one. 

This study did not look at the effect of these changes observed on wetland socio-ecological 

benefits.  

 Away from the Kansas City area, many other researchers have demonstrated how 

different forces can drive wetland landscape dynamics. In this light, Baker et al. (2007) 

investigated the changes observed in the wetland ecosystem in the Gallatin Valley of southwest 

Montana, using stochastic gradient boosting (SGB) for classification and change vector 

analysis (CVA) to identify predicted area of change. This technique was able to achieve high 

accuracy of 81-86% but changes to wetland socio-ecological benefits were not investigated. 

Mitsch et al. (2000) in a study carried out to value wetlands using the location in the landscape. 

The study suggested that a range of 3–7% of temperate-zone watersheds should be in wetlands 

to provide adequate flood control and water quality values for the landscape. The research 

concluded that consideration must be given to what constitutes the basis for valuation, it is the 

adjacent biological population, wetland ecosystem, or the entire biosphere where the wetland 

is located. The study provided important answers to some wetland questions but less related to 

socio-ecological benefits change of wetlands terrestrial habitat. A couple of other studies have 
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actually work on investigating the general changes of wetland landscape using VHR, diverse 

classification techniques, and other auxiliary data. Most of these studies did not lay much 

emphasis on the implication of changes on wetland terrestrial habitat and how it affects the 

associated socio-ecological benefits (e.g. Burgin et al. 2016; Dronova et al. 2012; Ji et al. 2006 

& 2015; Lawrence et al. 2014; Szantoi, 2015; Wu et al. 2016; Weilert et al. 2018; Zubair et al. 

2017 & 2019). Therefore, considering all the aforementioned studies, their suggestions, and 

area of concentration, this study will seek to further improve on the techniques used, and create 

a better understanding of the associated socio-ecological benefit of wetland relatively 

researched in the past. To achieve this purpose high-resolution imagery at a fine-scale was 

employed for data extraction and classification. In addition, archival digital elevation model 

data was used for the assessment of landscape structure. Landscape metrics change detection 

statistics and ecosystem service modeling were applied to understand the perspective for policy 

and decision-makers, urban planners, and conservationists. 
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CHAPTER 3 

METHODOLOGY 

To better address the goal and objectives set for this study and give an adequate and 

quantitative answer to the major research questions, the study has adopted a salient research 

technique and framework. The methodology used in this study is divided into four parts (see 

Figure 5). The first part employed an object-based image analysis (OBIA) approach for image 

classification. Two classification algorithms, Support Vector Machine (SVM) and K-Nearest 

Neighbor (K-NN), were used. Both methods involved feature extraction using an example-

based method for segmentation and merging. Furthermore, change detection statistics (CDS) 

was performed on the classified images resulting from the application of both algorithms. This 

was done to understand the class change among the LULC in different classes. CDS was used 

specifically for the calculation of wetland coverage change at the watershed level in this study. 

The second part involved deriving secondary terrain attributes using compound topographic 

index (CTI) and stream power index (SPI) from the United States Geological Survey (USGS) 

digital elevation model (DEM). These indices were used for wetness and stream power 

quantification around the terrestrial wetlands. Furthermore, in this part, a 30-meter inward 

buffer was performed on the extracted wetlands to serve as estimated core areas. These then 

clipped to derive secondary terrain attributes (CTI and SPI) at 340-meter buffers, which served 

as the terrestrial wetland habitat area (see Figure 5 & 6). The third part involved metric 

calculations, which were implemented based on the spatial patterning of the structure of 

landscape heterogeneity in relation to some aspect of ecological function (e.g. direct or indirect 

role). The major metrics employed for analysis were related to the edge, diversity, shape, and 

size of wetland patches (see Table 1). Fourthly is the wetland landscape dynamic (WELD) 
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modeling performed to estimate the changes impacted on ecological services indicators 

between 1992 and 2017, as it relates to wetland terrestrial habitat (see Figure 7 & 8). 

 

Figure 4: Feature extraction for object-based supervised classification 

Source: Adopted from ENVI software feature extraction workflow Manual 
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Flow Chart of the Major Tasks Performed in this Study 

 
Figure 5: Major tasks in this study
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Image Classification Techniques 

The data for this study were carefully sourced, cleaned, and validated. For the first part 

of this study, object-based feature extraction and the two algorithmic supervised image 

classification were performed. These research objectives require identifying and detecting the 

predicted spatial wetland landscape pattern, with a focus on interpreting the wetland landscape 

change using multiple algorithmic classification techniques. The two algorithms were 

compared to achieve a better result for the image classification, which avoids possible 

misinterpretations that could have resulted from using different multispectral images (Lu & 

Weng, 2007). To address this need for research, spectral analysis was performed in ENVI 

before the image extraction and classification. SPOT 2 sensors with the data collected in three 

relatively broad multispectral bands and one panchromatic band were compared to SPOT 7 

that contains four similar bands (Table 2). In this study, the two images were compared using 

the spectral signature to distinguish the types of ground cover or objects performed in ENVI 

software. The processing level 1A, which means correction by normalizing the charge-coupled 

device (CCD) response to compensate radiometric variations due to detector sensitivity has 

been applied, was applied to SPOT 2 image 1992. On the other hand, the 2017 SPOT 7 image 

was pre-processed on the 2A level, meaning scenes have been rectified to match a standard 

map projection (UTM WGS 84) without using ground control points. Level 2A is the entry-

level map product for the SPOT image. This means no geometric correction was needed for 

SPOT 7 and the systematic distortion effects and transformations have been compensated by 

projecting the image in a standard map projection UTM WGS 84. 

The OBIA techniques was applied, which involved image segmentation and merging 

processes which were performed on two archived SPOT imageries. Both SPOT 2 (29 January 
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1992; 20 m x 20 m resolution) and SPOT 7 (22 October 2017; 6 m x 6 m resolution) were 

classified using K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) algorithms, 

respectively. Both datasets were resampled to a uniform pixel size with a representative 

minimum mapping unit (6 m x 6 m) adopted. Jensen (2015) reiterated that this does not present 

much impact on the results, because the resampled data can never be greater than the 

instantaneous field of view (IFOV). He mentioned that additional information should not be 

expected from the resampled image. In addition, object-based classification may be a good 

alternative to traditional pixel-based methods. This is to overcome the high-resolution problem 

and the “salt and pepper effect”. Salt-and-pepper noise is a form of noise caused by close 

neighbors which often have different classes, despite being similar. The object-based 

segmentation was used to reduce this effect by grouping pixels, characterizing, and organizing 

it into objects, and treat each object as a minimum classification unit (Yu et al. 2006). 

Table 2: Characteristics of SPOT imagery included in the study. 

Sensor  Date  Spectral 

mode  

No. of bands  Processing 

level  

Spatial 

Resolution  

Source  

SPOT 2  29-Jan-92  XS  3  1A  20 meters  SPOT Image 

Corporation  

SPOT 7  09-Sep-17  PMS 4  2A 6 meters  EADS  

 

The images were selected with the consideration of their availability and the type of 

classification methods used to ensure that they will not affect the accuracy of the result. In 

addition, the classification method adopted for segmentation and merging were focused more 

on the spatial, spectral, and textual information of the images. Segmentation is the process of 

partitioning an image into objects by grouping neighboring pixels with common values (L3 

Harris Geospatial documentation center). Merging, on the other hand, combines the adjacent 

segments with similar spectral attributes textural information together based on image 
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resolution (L3 Harris Geospatial documentation center). This process is example-based, which 

is also referred to as supervised classification. It is used to obtain training data as objects and 

then assigns them to one or more known features. Archived SPOT images with a temporal 

resolution of 25 years between the two images were classified (see Figure 6). Overall, a 

segmentation process using feature extraction, and machine learning techniques were 

sequentially applied in the classification process. For most of the analysis in the study, the 

SVM classification result was used because it provided higher accuracy than the other 

methods. 

Adopted Classification Scheme 

This study adopted a classification scheme that grouped the different classes on the images 

into four categories of land cover (Table 3). This was done mostly because of the issue of 

spectral signature similarity experienced during the process of image segmentation when 

generating the training sites. The four categories as shown in Table 3 include Impervious 

Surfaces (IS), which represent urbanized areas; Forestland (FL), which covers all areas with a 

collection of trees. Further, all areas with brush, crops and non-forest vegetation/grassland 

were classified as Farmland/grassland (FGL) and Open water bodies were classified as 

Wetlands (WL). The output was a classified raster grid, which was then converted to vector 

polygons to perform landscape metrics calculation on them. Patch Analyst 5, an extension of 

ArcGIS 10.6 software, was used for the landscape metrics calculations. 
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Table 3: The land-cover classification scheme. 

Class name  
Class Description 

Wetlands (WL) Rivers, lakes, ponds, riparian area, vegetated depressions 

Farmland/Grassland (FGL) Cultivated land, grasslands, golf courses, lawns 

Impervious surfaces (IS) Built-up areas (buildings, roads, paved walk-ways, etc.) 

Forestland (FL) Trees and shrubs  

 

Accuracy Assessment 

ENVI software confusion matrix was used to calculate the accuracy of the Object-

Oriented Classification, with emphasis on wetland classification. 50 regions of interest (ROI) 

polygons for each class were selected and referenced using Google Earth archival imageries 

and other classified maps of the Kansas City area. The report of the calculation pairs ROIs with 

the classes of classified images to show what percentage of the ROI pixels were or were not 

contained in a resulting class. The overall accuracy was calculated by summing the number of 

correctly classified values and dividing by the total number of values. Table 4 shows the 

accuracy assessment reports with a higher overall accuracy percentage for SVM classification 

for both SPOT 1992 and 2017 images and the overall accuracy for K-NN SPOT 1992 and 

2017. SVM–based classification for SPOT 2017 revealed 89.14% accuracy while the K-NN-

based classification on the same image resulted in a 79.54% total accuracy. The SVM-based 

classification for SPOT 1992 resulted in 63.84% while the K-NN approach for the same year 

generated an overall accuracy of 61.42%. Overall, little disparity was revealed for both 

algorithms when results for each year were compared. However, the SVM accuracy results 

were better when compared to that of K-NN (Table 4). Despite that two different classification 

algorithms were used on the same image, their accuracy reports revealed a consistent trend. 
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Similar trends in landscape patterns were obvious using the two classification algorithms (see 

Table 4). 

Table 4: Accuracy assessment with emphasis on wetland accuracy from both classifications. 

Confusion Matrix: Accuracy of Object-Oriented Classification Results 

SPOT 

Image 

Supervised 

Classification 

Method 

Overall 

Accuracy 

(%) 

Overall Kappa 

Coefficient 

Ground 

Truth 

Wetland 

(%) 

Prod. Acc. 

(%) 

User Acc. 

(%) 

Commission 

(%) 

Omission 

(%) 

1992 SVM 63.84 0.48 96.75 96.75 92.25 7.75 3.25 

K-NN 61.42 0.45 96.75 96.75 93.20 6.80 3.25 

2017 SVM 89.14 0.80 95.86 97.29 94.91 6.26 4.14 

K-NN 79.54 0.65 97.29 95.86 93.74 5.09 2.71 

 

Urban Wetland Terrestrial Habitat Buffer  

To understand the landscape structure surrounding the terrestrial wetland habitat 

necessary for the urban wetland ecosystem, a buffer of 340-meters from the core area was 

adapted for the study (Murcia, 1995; Semlitsch & Bodie, 2003). To achieve this, a 30-meters 

inward buffer was performed on the extracted wetland files, which serves as the aquatic buffer 

zone from the core wetland. Another 260-meters outward buffer was created from the extracted 

wetland files, which served as the core habitat area. The aquatic buffer is also a part of the core 

habitat area; an additional 50-m buffer recommended by Murcia (1995) to protect the core 

habitat from edge effects was used (see Figure 6). This implementation is similar to a study by 

the Environmental Law Institute (2008), in which the area served as the terrestrial wetland area 

sufficient for the movement of wetland wildlife (e.g., Amphibians and Reptiles) through the 

landscape (see Table 5).  
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Table 5: Mean minimum and maximum core terrestrial habitat for amphibians and reptiles. 

Group Mean minimum 

(m) 

Mean maximum 

(m) 

Amphibians  

Frogs  205 368 

Salamanders  117  218 

Reptiles  

Snakes  168  304 

Turtles  123  287 

 

Adapted from Semlitsch & Bodie (2003) study on criteria for buffer zones around wetlands 

and riparian habitats for Amphibians and Reptiles. 

For this study, the buffered terrestrial wetland area files were clipped to derive 

secondary terrain attributes, CTI and SPI. The clipped portion was reclassified into wetness 

and non-wetness areas for CTI, and stream power and non-stream power areas for SPI using 

the reclassify tool in the ArcGIS. This was done for the ten major wetlands in the study area. 

The percentage of vulnerability is the potential area of gully erosion for CTI and the potential 

area of increased stream power for SPI. These were calculated using the pixels spilling into the 

different segments of the reclassified and clipped terrestrial wetland habitats. Following this 

process, the study estimated the percentage vulnerability for both years studied and the results 

compared (see Equation 3 & 4). 

The change in vulnerability estimate for CTI 

%ΔvE =
x1

(χ0+x1)
∗ 100  (1) 

The change in vulnerability estimate for SPI 

%ΔvE =
y1

(y0+y1)
∗ 100  (2) 

%ΔvE—percentage change in vulnerability estimate 

χ1—wetness area for CTI 

y1—stream power area for SPI 

χ0—non-wetness area for CTI 

y0—non-stream power area for SPI 
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(a)        (b)   

Figure 6: Buffered protection zones: wetlands (a) and streams (b). 

Source: Adapted for this study based on Semlitsch & Bodie (2003), with an additional 50-m 

buffer to protect core habitat from edge effects recommended by Murcia (1995).  

Quantification of Landscape Structure 

Landscape metrics quantification was performed at two major levels and was loosely 

grouped according to the heterogeneity and spatial patterns of urban wetlands in the study area. 

These two levels are landscape level (three major watersheds), and patch level (individual 

wetland core area). Spatial statistics in Patch Analyst 5, an extension to the ArcGIS for spatial 

analysis of landscape patches and modeling, was used for the analysis. The default map unit 

for area is in meters (m) and later stated in hectares (ha), which is an option, provided by the 

Patch Analyst tool. The choice of these metrics (see Table 6) is because most other landscape 

metric results are correlated and statistically redundant. As such, they may quantify a similar 

or identical aspect of landscape pattern (McGarigal, 2000; Turner et al. 2001). However, some 

metrics may be empirically redundant not because they measure the same aspect of the 
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landscape pattern, but they are alternative ways of representing similar information for the 

landscape under investigation (McGarigal, 2000).  

The metrics used in this study took into consideration the scale of change patterns of 

the variables under study. This was done with specific consideration to the spatial pattern of 

the entire landscape and the patch types, bearing in mind the heterogeneity of the terrestrial 

wetland area. The major components (extent, subdivision, geometry, isolation, and 

connectedness) of habitat landscape composition and configuration were also considered when 

interpreting the landscape structure of our study area. For the three major watersheds, 

“landscape-centric” metrics were considered for measurement at this level; these are metrics 

that summarized patches using the mean and the area-weighted mean (McGarigal, 2000). Also, 

for the individual patches such as wetlands, “patch-centric” quantifications were performed 

which measured or described the spatial context of an isolated patch (McGarigal, 2000). 

Landscape metrics quantification was performed on the derived watershed polygons for the 

three major watersheds. This study followed the recommendation of Semlitsch & Bodie (2003) 

to preserve terrestrial wetland habitats such as amphibians and reptiles. Table 6 depicts the 

metrics used in this study, including acronyms, descriptions, and justification. 
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Table 6: Landscape metrics selected for this study. 

Acronym 
Name (units) Description Justification 

TCAI Total Core Area Index 

(ha) 

Total core area index is a measure of the amount of core 

area in the patch or landscape 

Fragmentation 

SI  Shape index (ha) normalized ratio of patch perimeter to area Fragmentation 

CA Core Area (ha) The total size of disjunct core patches (hectares). Fragmentation 

ED Edge Density (m/ha) Amount of edge relative to the landscape area Fragmentation 

TE  Total edge (m) Perimeter of patches Fragmentation 

MPE  Mean Patch Edge 

(m/patch)  

Average amount of edge per patch Fragmentation 

MPS Mean Patch Size (ha) Mean Patch Size of Patches (Class or Landscape Level) Fragmentation 

MSI Mean Shape Index (ha) sum of each patch's perimeter divided by the square root of 

patch area (in hectares) 

Fragmentation 

AWMSI Area Weighted Mean 

Shape Index (ha) 

AWMSI equals the sum of each patch's perimeter, divided 

by the square root of patch area (in hectares) 

Fragmentation 

MPFD Mean Patch Fractal 

Dimension (ha) 

Measure shape Complexity Fragmentation 

SDI Shannon's Diversity 

Index (ha) 

Measure of relative patch diversity Diversity 

SEI Shannon's Evenness 

Index (ha) 

Measure of patch distribution and abundance Diversity 

Adapted from McGarigal, K. (1995) 
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Wetland Landscape Modeling (WELD) for Socio Ecological Systems (SES) 

Developing a robust geospatial decision model for SES requires examining previous 

decision-making tools used for monitoring or assessing ecosystem services (e.g. Brown & 

Vivas, 2005; Leitão & Santos, 2019; Larson et al. 2003). Several geospatial decision models 

have used the advantage of small-scale habitat variables to quantify field data (e.g. Seto & 

Kaufmann, 2003). Most of these models focus more on using known indexes to assess wetland 

conditions and quantification of baseline information between wildlife and habitat 

management. For this study, a couple of indexes and ecosystem service indicators were 

considered for the geospatial modeling of wetland terrestrial habitat in the study area, as shown 

in Table 7. 

For this study, the ten major wetlands in three major watersheds in the Kansas City area 

were selected for the WELD modeling. The assessment was performed to see the impact of 

both natural and human variables, on wetland socio-ecological services, as regards benefits to 

amphibians and reptile’s terrestrial habitat. In total, four species habitats were assessed, two 

Amphibians; Frogs and Salamanders, two Reptiles; Snakes, and Turtles. These species were 

chosen because they are semiaquatic and have close dependence on the terrestrial habitat 

surrounding wetland. In addition, these species spend most part of their critical life cycle, 

which spans from few days during breeding on the wetland to several weeks on terrestrial 

habitat (Semlitsch & Bodie, 2003).  This part of the habitat needed protection and seems to 

have been underappreciated by conservation planners. These have been estimated to be a few 

meters away from the core wetland area (Brosofske et al. 1997; Burbrink et al. 1998). The 

buffer area protecting the core habitat from edge effects has been recommended to be about 
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290 meters (Semlitsch & Bodie, 2003), with an additional 50-m buffer recommended by 

Murcia (1995) (see Table 5 above). 

The WELD modeler focused on assessing changes in the major functions of a terrestrial 

wetland landscape in relation to the socio-ecological aspect. A GIS-based decision support 

system was developed to integrate classified images and the DEM binary files into a model 

builder. Model builder in ArcGIS 10.6 was used to examine the change in the terrestrial 

wetland habitat for forestland, farmland/grassland, impervious surface, CTI, and SPI (see 

Figure 7). These are binary files and collectively referred to as ecosystem service indicators 

(ESI) in this study. Ecosystem services (ES) described as the benefits provided by Nature and 

could have a direct impact on wildlife. ESI in this study was calculated to estimate the species 

vulnerability with proximity to the wetland core. The binary files were then clipped to the 

extracted and buffered terrestrial wetland files for the two different years under study. These 

were performed for the maximum core terrestrial habitat occupied by the species under 

consideration. The zonal histogram tool in ArcGIS 10.6 was used to investigate the frequency 

distribution of pixels in the binary files (ESI) to the core area of the wetlands for both years 

under study. The result is a graphical representation and a bar graph is output for comparison 

of the changes between 1992 and 2017. In addition to this, an estimated percentage of 

vulnerability between 1992 and 2017 for each species habitat ESI was calculated from the core 

terrestrial wetland habitat. The differences in the area covered were quantified and compared 

side-by-side for impacted ESI (see Equation 5). 
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Table 7: Ecosystem Service Indicators, Metrics and Geospatial data 

Indicators Metrics Geospatial Data Used 

Ecosystem Hydrological Vulnerability 

Stream Power 

Surface runoff 

Stream power index (SPI), number of 

contributing cells to the energy of 

water flow 

USGS DEM 

Wetness 

Water retention and 

accumulation potential 

Compound Topographical Index 

(CTI), wetness index indicating 

surface water collection 

USGS DEM 

Social-ecological Vulnerability 

Farmland/Grassland 

Proximity to agricultural 

land 

 

Proximity to agricultural lands 

(Farmland/Grassland) 

Classified SPOT image 

grassland/farmland 

Forestland 

Proximity to forestland 

 

Proximity of species to standing forest 

trees 

Classified SPOT image forestland 

Impervious Surfaces 

Proximity to human 

settlements and 

distribution 

Proximity to built-up areas 

(Impervious surfaces: roads and 

housing) 

Classified SPOT image  

impervious surfaces 

 

Percentage area covered ecosystem services indicator (ESI) 

%ΔESI =
s1

(s0+s1)
∗ 100  (5) 

%ΔESI—percentage change in vulnerability estimate for ESI 

s1—estimated ESI area for Species Habitat 

s0—estimated non ESI area for Species Habitat 
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Figure 7: Model Builder and Script for Estimating Amphibians and Reptiles Terrestrial Habitat 

in WELD Modeler 

WELD Framework 

The framework provides a platform to understand the relationship between social and 

biophysical components in WELD, and how the benefits provided by the ESI have been 

affected. Figure 8 depicts two different dimensions, with the left hand showing the changes in 

the human dimension in the society while the right hand is the ecological research domain. 

Together the two templates were driven by human and natural factors as the benefits provided 

by ES have been influenced by these impacts. 

In general, wetland ecological drivers are the main determinant of habitat loss and 

degradation and can be grouped into; infrastructure development, land conversion, water 

withdrawal, eutrophication, and pollution, overharvesting and over exploration, and 

introduction of invasive species (Galatowitsch, 2016). For this study, the complexity of these 

multiple drivers results in grouping them into human and natural factors. The drivers play a 

major role in the social and biophysical components of ecosystem services. The social template 



 

45 

 

deals with policies, legal regulations, and social networks which help to structure the dynamics 

of human behaviors and possible outcomes. The biophysical template, on the other hand, plays 

a major role in monitoring the biotic structure and ecosystem functioning. However, the ability 

of the wetland ecosystem to deliver services can be assessed by a variety of qualitative and 

quantitative methods. Assessing wetland ecosystem services is very vital and they are mostly 

disturbed by both human and natural factors. The quality and quality of wetland services and 

terrestrial habitat are essential for humans and wildlife, but they have been altered by these 

factors. 

Figure 8: WELD framework for SES. 
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CHAPTER 4 

RESULTS  

This chapter presents the results and interpretation of all the analyses performed in this 

study. The analysis based on the methodology as depicted in Figure 5, including the results 

from the four different parts of the study. The general interpretation of results was broken down 

into two, landscape-level analysis and wetland-level analysis. This quantification was due to 

the level of heterogeneity in the study area. The landscape-level analysis included the 

classification algorithms used, change detection statistics (CDS), landscape metrics, and 

wetland landscape dynamic modeling. The two classification methods employed to achieve 

better image classification with a higher accuracy value. The CDS was performed to get a 

clearer view of the overall change in wetland coverage in the three major watersheds. The 

landscape metric quantification was performed for the three major watersheds. The other part 

of the analysis was at the wetland level that describes the patches. Furthermore, the assessment 

of the terrestrial wetland habitat using the ecosystem service indicators (ESI) was performed 

at this level to build a geospatial model. On the other hand, calculating and deriving secondary 

terrain attributes and integration with extracted wetland files were performed at the wetland 

level. Also, the quantification of patch metrics was performed to assess the ten major wetlands 

in the three major watersheds in the study area. In addition, included in the two-level of analysis 

was a socio-spatial analysis, assessed to see the impact on wildlife terrestrial wetland habitat 

using the census track data and proximity to the roads.  
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Landscape-Level Analysis 

Object-Based Image Classification and Change Detection Statistics (CDS)  

Firstly, the study revealed a similar trend for class change for the two algorithms used, 

with SVM having a better accuracy assessment report compared to K-NN. The CDS was 

performed with the two algorithms and the change detection revealed K-NN with a value of 

21% and SVM with a value of 18%. This indicates that the total percentage change in pixels 

from other classes to wetland increased for K-NN by 21% but not as much for SVM at 18%. 

The two algorithms were compared to achieve a better result for the image classification, which 

avoids the possible misinterpretations that could have resulted from using different 

multispectral images (Peña-Barragán et al. 2011). Regardless of the class change in the CDS, 

results from using both algorithms revealed a swell in the wetland coverage for the study area. 

Zubair et al. (2017) observed swell in two major watersheds out of three in the Kansas City 

area in the past decade in a study. In addition, this result is similar to a study by Ji et al. (2015) 

which showed that larger wetlands accumulated more precipitation, while the smaller wetlands 

were prone to human impacts. Similarly, Zubair et al. (2017) in their study of urban wetland 

modeling in the study area observed that wetlands increased in two of the major watersheds 

historically but reduced as a result of urban expansion in one. These results generally support 

the findings that wetlands swelled in the study area within the study period, and this can be 

associated with the effects of human and natural factors as suggested by previous studies, such 

as reference (Ji et al. 2015). 
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Figure 9: Classified satellite images for the two detection years, using both K-NN and SVM. 

At the landscape level, the CDS was used to measure the changes between a pair of 

images that present the initial state (SPOT 1992) and the final state (SPOT 2017). This was 

performed for three watersheds to quantify the total wetlands coverage between 1992 and 2017 

in the study area. The CDS results will guide the interpretation of the metrics and terrain 

analysis, as it provides prior knowledge of the general wetland level. The CDS as summarized 

in Tables 4 for SVM algorithms classification reveals an increase in wetland coverage from 

1992 to 2017. The result showed an increase of 21% class change from the initial state (1992) 

to the final state (2017) for the three watersheds. The CDS in Table 5 for K-NN algorithms 

revealed an 18% class change. This result is similar to the change observed for SVM algorithm 

classification for the three watersheds between 1992 and 2017. 
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Table 8: SVM Change Detection Statistics (Initial State SVM 1992, Final State SVM 2017). 

 Initial State 

F
in

a
l 

S
ta

te
 

 Wetland (%)  Row Total (%) Class Total (%) 

Wetland 82.18 99.91 100.00 

Class Total 100.00 100.00 100.00 

Class Changes 17.82   

Image Difference 9.17   

 

Table 9: K-NN Change Detection Statistics (Initial State K-NN 1992, Final State K-NN 

2017). 

 Initial State 

F
in

a
l 

S
ta

te
 

 Wetland (%)  Row Total (%) Class Total (%) 

Wetland 79.00 99.81 100.00 

Class Total 100.00 100.00 100.00 

Class Changes 21.00   

Image Difference 8.08   

Landscape-level Metric Calculation  

The result of the metrics calculation examined at the landscape level for watersheds is 

shown in Figure 10. For the landscape metric calculation, at the watershed level, the three 

major watersheds in the Kansas City area were quantified. Indices used were Shannon's 

Diversity Index (SDI), Shannon's Evenness Index (SEI), Area Weighted Mean Shape Index 

(AWMSI), Mean Shape Index (MSI), Mean Patch Fractal Dimension (MPFD), edge density 

(ED), and Mean Patch Size (MPS). The identified diversity indices used are SDI and SEI, 

which measure at the landscape level. For the shape metrics MSI, we used MPFD, ED, and 

AWMSI to quantify the shape complexity of the watershed at the landscape level. Further, 
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MPS was used to quantify the size irregularities between the study periods. The result of the 

metric calculations reveals SEI with little or no change for wetland distribution in the three 

watersheds for the study periods. It shows an equal trend in wetland proportions, 0.81 ha for 

1992, and 0.82 ha for 2017. SDI, on the other hand, reveals a small increase in the distribution 

of wetlands from 0.89 ha for 1992 to 1.14 ha for 2017. This indicates a slight dynamic in the 

diversity of wetland patches for the watersheds in 2017. The result for MSI reveals 1.58 ha for 

1992 and 1.55 ha for 2017. This quantification reveals little or no change for shape 

irregularities or complexity between 1992 and 2017 at the watershed level. However, both 

MPFD and AWMSI indexes for shape metrics reveal a slight change in shape complexity 

between 1992 and 2017. MPFD has a slight change from 1.35 ha for 1992 to 1.40 ha for 2017, 

and AWMSI slightly increased in shape irregularity from 19.91 ha for 1992 to 21.58 ha for 

2017. Further quantification reveals an increased ED from 64.85 m/ha for 1992 to 135.28 m/ha 

for 2017. This indicates an increase in edge density (ED) in 2017 relative to the landscape area 

in 1992. ED was calculated using the amount of edge present in 1992 as compared to the 

amount present in 2017 for watershed at the landscape level. On the other hand, the MPS shows 

a reduction in the size of the watersheds for 2017 compared to the increase in 1992. 
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Figure 10: Landscape level metrics at the watersheds scale. 
 

Wetland-Level Analysis 

Terrain Calculation 

The analysis at this level deals with individual wetland patches; ten major wetlands 

were calculated in the study area using digital terrain analysis. The terrain analysis involves 

integrating extracted wetland files, buffered at a distance of 340-meters from the core area with 

secondary terrain attributes. The results are summarized in Figure 11 (a, b, and c). All the major 

wetlands except the Heritage Park Lake showed a slight reduction in the core area for 2017. 

Similarly, nine out of the ten major wetlands examined for wetness vulnerability using the CTI 

reveal potential wetness in wetlands within the study area in 2017 (see Appendix A). The only 

wetland that did not show a slight wetness potential is Heritage Park Lake, with – 0.16%. On 

the other hand, the SPI calculated revealed a relatively little or no change in stream power, 

except for three averagely small wetlands. The three wetlands slightly increased with a net 

change of 3.31% for East Lake Wood, 2.97% for Lake Jacomo, and 2.71% for Prairie Lee Lake 

in 2017 (see Appendix B). 
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(c) 

Figure 11: (a–c) SPI, and CTI for each wetland. 

Patch level metric calculation  

Similar to the terrain analysis, the patch metrics were calculated for the ten major 

wetlands in the study area. Patch-centric metrics were used to quantify the patch in terms of 

shapes and sizes. Indices used include MPE, CA, MSI, SI, and TE. As summarized in Figure 

12 (a, b, c, d, e), CA reveals a general decrease for all ten wetlands for 2017. Heritage Park 

Lake and Loch Lloyd Lake revealed the least decrease in terms of core area change for 2017. 

Heritage Park Lake showed 10.86 ha for 1992 and 10.31 ha for 2017, with a net loss of 0.56 

ha between 1992 and 2017. Similarly, the Loch Lloyd Lake showed 28.72 ha for 1992 and 

27.12 ha for 2017, with a net loss of 1.60 ha. Blue Springs Reservoir revealed the most 

decreased core area change for 2017 with 310.79 ha for 1992 and 233.90 ha for 2017, a net 

loss of 76.89 ha. On the other hand, the SI and MSI indices used to quantify the wetland shape 

revealed increased shape complexity and irregularities for all the ten wetlands in 2017. This 

was not the case for the TE and MPE used to quantify the wetland edge. While nine of the ten 
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wetlands show an increase in the edge difference, Blue Springs Reservoir did not increase the 

edge difference for 2017, as compared to 1992. 
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(c) 
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(e) 

Figure 12: (a–e) Patch-level metric analysis at the wetland scale. 

WELD Modeling, estimation for Amphibians and Reptiles Terrestrial habitat 

The WELD modeler is built using the ecosystem service indicators (ESI). These are 

selected ecosystem services (ES) that could influence benefits to humans and biodiversity 

directly or indirectly (see Table 7 & 8 above).  ES are the benefits provided by nature that helps 

to maintain the conditions of life on Earth. ES in the model is quantified with consideration to 

the impact of human and natural drivers influencing terrestrial wetland habitat (see Figure 8 

above). 

In this study, the habitat of seven terrestrial wetland species of amphibians and reptiles 

were examined using the WELD model. For example, the first species ES benefits examined 

is Frog with all the ESI quantified and estimated. This was followed by the six other species 

within the terrestrial wetland areas. All the species examined, occupy the same terrestrial 
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shown in Figure 13-32 (a-c). These include forestland, farmland/grassland (fam/gra), 

impervious surfaces, CTI, and SPI for all species habitat under study.  

FROGS 

Estimated Forest Habitat for Frogs 
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(b) 

 
(c) 

Figure 13: (a-c) Estimated Frog Forest Habitat. 

The Frog terrestrial habitat within the recommended mean maximum core area of 368 m 

showed increasing forest habitat for 1992 as compared with 2017. Most of the larger 

wetlands revealed a huge increase in forest terrestrial habitat in 2017 while the smaller 

wetlands showed a slight increase for smaller wetlands (see Figure 13: (a-c)). 
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Estimated Farmland/Grassland Habitat for Frogs 
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(c) 

Figure 14: (a-c) Estimated Frog Farmland/Grassland Habitat. 

The Frog terrestrial habitat within the recommended mean maximum core area of 368 m 

showed an increase in farmland/grassland for 1992 as compared to 2017. Increasing 

farmland/grassland was revealed for all wetlands except the Heritage Park Lake which 

showed no change between the study periods (see Figure 14: (a-c)).  
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Estimated Impervious Surface Habitat for Frogs 
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(c) 

Figure 15: (a-c) Estimated Frog Impervious Surface Habitat. 

The Frog terrestrial habitat within the recommended mean maximum core area of 368 m 

showed an increase for all impervious surfaces in 2017 as compared with 1992. The largest 

change of 145,156 m was revealed for the Missouri river in 2017 (see Figure 15: (a-c)). 
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Estimated CTI for Frog Terrestrial Habitat 
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(c) 

Figure 16: (a-c) Estimated CTI for Frog Habitat. 

The Frog terrestrial habitat within the recommended mean maximum core area of 368 m 

showed a relatively slight CTI change in favor of 1992 as compared with 2017 (see Figure 

16: (a-c)).  
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Estimated SPI for Frog Terrestrial Habitat 
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(c) 

Figure 17: (a-c) Estimated SPI for Frog Habitat. 

The Frog terrestrial habitat within the recommended mean maximum core area of 368 m 

showed a relatively slight SPI change in favor of 2017 as compared with 1992 (see Figure 

17: (a-c)). 
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SALAMANDERS 

Estimated Forest Habitat for Salamanders 
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(c) 

Figure 18: (a-c) Estimated Salamander Forest Habitat 

The Salamander terrestrial habitat within the recommended mean maximum core area of 218 

m showed increasing forest habitat for 2017 as compared with 1992. Most of the wetlands 

revealed increasing forest terrestrial habitat in 2017 except for Heritage Park Lake (see 

Figure 18: (a-c)). 
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Estimated Farmland/Grassland Habitat for Salamanders 
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(c) 

Figure 19: (a-c) Estimated Salamander Farmland/Grassland Habitat. 

The Salamander terrestrial habitat within the recommended mean maximum core area of 218 

m showed an increase in farmland/grassland for 1992 as compared to 2017. Increasing 

farmland/grassland was revealed for all wetlands except the Heritage Park Lake which 

showed no change between the study periods (see Figure 14: (a-c)). 
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Estimated Impervious Surface Habitat for Salamanders 
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(c) 

Figure 20: (a-c) Estimated Salamander impervious surface habitat.  

The Salamander terrestrial habitat within the recommended mean maximum core area of 218 

m showed an increase impervious surfaces for all wetland in 2017 as compared with 1992 

(see Figure 20: (a-c)). 
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Estimated CTI for Salamander Terrestrial Habitat 
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(c) 

Figure 21: (a-c) Estimated CTI for Salamander Habitat. 

The Salamander terrestrial habitat within the recommended mean maximum core area of 218 

m showed a relatively slight CTI change in favor of 1992 as compared with 2017 (see Figure 

21: (a-c)).  
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Estimated SPI for Salamander Terrestrial Habitat 
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(c) 

Figure 22: (a-c) Estimated SPI for Salamander Habitat. 

The Salamander terrestrial habitat within the recommended mean maximum core area of 218 

m showed a relatively slight SPI change in favor of 2017 as compared with 1992 (see Figure 

22: (a-c)). 
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SNAKES 

Estimated Forest Habitat for Snakes 
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(c) 

Figure 23: (a-c) Estimated Snake Forest Habitat. 

The Snake terrestrial habitat within the recommended mean maximum core area of 304 m 

showed increasing forest habitat for 2017 as compared with 1992. Most of the wetlands 

revealed increasing forest terrestrial habitat in 2017 except for Heritage Park Lake (see 

Figure 23: (a-c)). 
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Estimated Farmland/Grassland Habitat for Snakes 
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(c) 

Figure 24: (a-c) Estimated Snake Farmland/Grassland Habitat. 

The Snake terrestrial habitat within the recommended mean maximum core area of 304 m 

showed an increase in farmland/grassland for 1992 as compared to 2017. Increasing 

farmland/grassland was revealed for all wetlands except the Heritage Park Lake which 

showed no change between the study periods (see Figure 24: (a-c)).  
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Estimated Impervious Surface Habitat for Snakes 
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(c) 

Figure 25: (a-c) Estimated Snake Impervious Surface Habitat. 

The Snake terrestrial habitat within the recommended mean maximum core area of 304 m 

showed an increase impervious surfaces for all wetland in 2017 as compared with 1992 (see 

Figure 25: (a-c)). 
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Estimated CTI for Snake Terrestrial Habitat 
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(c) 

Figure 26: (a-c) Estimated CTI for Snakes Habitat. 

The Snake terrestrial habitat within the recommended mean maximum core area of 304 m 

showed a relatively slight CTI change in favor of 1992 as compared with 2017 (see Figure 

26: (a-c)).  
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Estimated SPI for Snake Terrestrial Habitat 
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(c) 

Figure 27: (a-c) Estimated SPI for Snake Habitat. 

The Snake terrestrial habitat within the recommended mean maximum core area of 304 m 

showed a relatively slight SPI change in favor of 2017 as compared with 1992 (see Figure 

27: (a-c)). 
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TURTLES 

Estimated Forest Habitat for Turtles 
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(c) 

Figure 28: (a-c) Estimated Turtle Forest Habitat. 

The Turtle terrestrial habitat within the recommended mean maximum core area of 287 m 

showed increasing forest habitat for 2017 as compared with 1992. Most of the wetlands 

revealed increasing forest terrestrial habitat in 2017 except for Heritage Park Lake (see 

Figure 28: (a-c)). 
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Estimated Forest Habitat for Turtles 
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(c) 

Figure 29: (a-c) Estimated Turtle Farmland/Grassland Habitat. 

The Turtle terrestrial habitat within the recommended mean maximum core area of 287 m 

showed an increase in farmland/grassland for 1992 as compared to 2017. Increasing 

farmland/grassland was revealed for all wetlands except the Heritage Park Lake which 

showed no change between the study periods (see Figure 29: (a-c)).  
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Estimated Impervious Surface Habitat for Turtles 

 
(a) 

 
(b) 

0 100000 200000 300000 400000 500000 600000 700000

Missouri River

Lake Tapawingo

Blue Springs Reservoir

East Lake Wood

West Lake Wood

Lake Jacomo

Prairie Lee Lake

Longview Lake

Heritage Park Lake

Loch Lloyd Lake

meters

W
e
tl

a
n

d
s

Turtle Impervious Habitat 1992

Imperv 92 TerrWet 92

0 100000 200000 300000 400000 500000 600000

Missouri River

Lake Tapawingo

Blue Springs Reservoir

East Lake Wood

West Lake Wood

Lake Jacomo

Prairie Lee Lake

Longview Lake

Heritage Park Lake

Loch Lloyd Lake

Turtle Impervious Surface Habitat 2017

Imperv 17 TerrWet 17



 

92 

 

 
(c) 

Figure 30: (a-c) Estimated Turtle Impervious Surface Habitat. 

The Turtle terrestrial habitat within the recommended mean maximum core area of 287 m 

showed an increase impervious surfaces for all wetland in 2017 as compared with 1992 (see 

Figure 30: (a-c)). 
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Estimated CTI for Turtle Terrestrial Habitat 
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(c) 

Figure 31: (a-c) Estimated CTI for Turtle Habitat. 

The Turtle terrestrial habitat within the recommended mean maximum core area of 287 m 

showed a relatively slight CTI change in favor of 1992 as compared with 2017 (see Figure 

31: (a-c)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 50000 100000 150000 200000 250000 300000 350000

Missouri River

Lake Tapawingo

Blue Springs Reservoir

East Lake Wood

West Lake Wood

Lake Jacomo

Prairie Lee Lake

Longview Lake

Heritage Park Lake

Loch Lloyd Lake

meters

W
e
tl

a
n

d
s

Turtles CTI 1992 and 2017

CTI 17 TerrWet 17 CTI 92 TerrWet 92



 

95 

 

Estimated SPI for Turtle Terrestrial Habitat 
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(c) 

Figure 32: (a-c) Estimated SPI for Turtle Habitat. 

The Turtle terrestrial habitat within the recommended mean maximum core area of 287 m 

showed a relatively slight SPI change in favor of 2017 as compared with 1992 (see Figure 

32: (a-c)). 
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Estimated Species Habitat Change Summary 

To estimate the percentage area covered by the ecosystem service indicators (ESI) as shown 

in Table 10, Equation 5 in the methodology under the WELD modeling section was applied. 

The estimated ESI area for species habitat is divided by the total area occupied (estimated ESI 

area for Species Habitat and estimated non ESI area for Species Habitat), multiplying by 100. 

The percentage estimated habitat area changes between 1992 and 2017 are shown in Fig. 33. 

Table 10: Estimated Species Habitat Change in 1992 

Indicators Frogs Salamanders Snakes Turtles % Change 1992 

Forestland 36.50 27.04 27.13 27.15 28.47  
Fam/Gra 54.26 53.75 54.07 54.04 54.04  
Impervious 12.09 9.10 10.96 10.64 10.68  
CTI 4.70 3.53 4.01 3.76 3.91  
SPI 12.38 13.37 12.71 12.85 12.83  

 

Table 11: Estimated Species Habitat Change in 2017 

Indicators Frogs Salamanders Snakes Turtles % Change 2017 

Forestland 49.46 54.32 51.47 52.05 51.90  
Fam/Gra 19.76 12.04 14.95 14.45 14.95  
Impervious 19.76 22.47 25.08 24.62 23.70  
CTI 4.50 3.72 4.08 3.97 4.03  
SPI 12.35 13.11 12.63 12.72 12.70  
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Figure 33: Percentage estimated habitat area for ESI between 1992 and 2017 

Tables 10 & 11 reveal the general trend of changes between 1992 and 2017. The 

forestland, impervious surfaces, and wetness observed to increase in 2017. This is not the same 

for farmland/grassland and stream energy in 2017, revealing a decrease.  
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Socio-Spatial Interactions Within the Terrestrial Wetland Habitat 

The major parts of the wetland landscape dynamics in this study are social and 

biophysical components. The interaction between these components and the terrestrial wetland 

habitat were quantified using the American Community Survey (ACS) 2010 census blocks 

data, and the intersection with the local connected roads (ESRI Roads and Highways). The 

estimation was performed using the zonal histogram tool in ArcGIS 10.6 showed in Fig. 34 

and 35. The factors considered for measurement in ACS 2010 are the total census block count, 

the sum of households per 100 people (sum_HU100), and the total sum population per 100 

people (sum_POP100), respectively. These factors were analyzed using the zonal histogram, 

as shown in Fig. 34. Observed from the analysis, is the increase in the total sum population per 

100 people for all areas in the wetlands under consideration. This increase was far more than 

the other two factors (block counts and households).  The increase in the total population per 

100 people was followed by the total sum of households in the terrestrial wetlands area for the 

year 2017. The least increased among these factors is the total census block counts examined 

in the terrestrial wetlands area for the year 2017. For overall analysis, the smaller wetlands 

showed greater changes within the 25-year study period. Some of the small wetlands include 

the East and West Lake Wood, Prairie Lee Lake, Lake Tapawingo which are relatively small 

but experienced increase significant changes. The large wetlands are the Blue Springs 

Reservoir, Longview Lake, and Lake Jacomo which are relatively large with minimal changes. 

Secondly, further analysis revealed that 84 locally connected roads intersect with the terrestrial 

portion of nine out of the ten wetlands. The only wetland without local connecting roads 

encroaching into its terrestrial portion is Loch Lloyd Lake, see Fig. 36 (a & b). 
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Figure 34: Estimated Census block count, Sum_HU100, and Sum_POP100 in Terrestrial 

Wetland Habitat area in the year 2017 
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Figure 35: Estimated Census block in the terrestrial wetland habitat area in the year 2017.
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(a)                                                                      (b) 

Figure 36: Maps a & b shows the local connecting roads intersecting with the wetland terrestrial area
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

Discussion 

The discussion generally encapsulates all assessments of wetland dynamics between 

1992 and 2017 in the study area, at both watershed and patch levels. The analysis was used to 

examine the edge effect, as it affects the terrestrial wetland habitats. To achieve the goal and 

objectives set for this research, satellite remote sensing, elevation data, and other ancillary 

datasets were considered to evaluate the socio-ecological system of terrestrial wetlands. The 

study started with OBIA and change detection analysis performed, the result showed SVM 

with better accuracy, and such adopted for the most part of the study. In addition, the change 

detection analysis revealed a swell in wetland coverage for the study area between 1992 and 

2017. It then moved to terrain analysis, where the landscape calculated using secondary terrain 

indices at the wetland level. Furthermore, different relevant metrics were used for both 

landscape and patch quantification to assess the impact of edge on terrestrial wetland habitat. 

Finally, a geospatial model (WELD) used to assess the general condition of the ecosystem 

services considered as an indicator to measure wetland terrestrial species habitat. In addition, 

socio-spatial interactions within the terrestrial wetland habitat were examine using the ACS 

2010 datasets and local connected roads in Kansas City. All the steps, analysis, and 

interpretation of results are discussed in this section to further throw more light on 

observations.   

Image Classification and Change Detection Analysis 

Firstly, the study revealed a similar trend for class change for the two algorithms used, 

with SVM having a better accuracy assessment report compared to K-NN. The change 
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detection statistics (CDS) was performed showed the K-NN method revealed a change of 21% 

while the SVM revealed 18%, respectively. This indicates that the total percentage change in 

pixels from other classes to wetland increased for K-NN by 21% but not as much for SVM at 

18%. The two algorithms were compared to achieve a better result for the image classification, 

which avoids the possible misinterpretations that could have resulted from using different 

multispectral images (Lu & Weng, 2007). Regardless of the class change in the CDS, results 

from using both algorithms revealed a swell in the wetland coverage for the study area. This 

swell may be a result of increased precipitation in the past decade (Zubair et al. 2017), and 

improved streamside ordinance protection for wetlands (e.g. Weilert, 2018) in the study area. 

In addition, this result is like a study by Ji et al. (2015) which showed that larger wetlands 

accumulated more precipitation, while the smaller wetlands were prone to human impacts. 

Similarly, Zubair et al. (2017) in their study of urban wetland modeling in the study area 

observed that wetlands increased in two of the major watersheds historically but reduced 

because of urban expansion in one. These results from this study generally support the findings 

that wetlands swelled in the area within the study period, and this can be associated with the 

effects of human and natural factors as suggested by previous studies, such as Ji et al. (2006).  

Terrain Analysis 

Secondly, the resulting indices for terrain analysis showed an increase in potential 

wetness for nine out of ten wetlands studied. This may indicate the level of activities around 

these wetlands. This may be associated with the size of the wetland core area. Heritage Park 

Lake is one of the smallest of the ten major wetlands, and the effect of natural and human 

activities may have more influence on this wetland. This is like the study by Tomaselli et al. 

(2012) where the small landscape that could harbor biodiversity was highly fragmented in 
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small patches. On the other hand, wetlands with a slight increase for compound topographic 

index (CTI) can be an indirect influence on soil moisture and provide information about the 

soil condition near the wetland. O’Neill et al. (1997) in a similar study revealed how the topsoil 

is lost through erosion because of fragmentation due to distance between patches. This can also 

be an indirect indication of changes in the type of vegetation surrounding the terrestrial wetland 

areas over the years. Furthermore, Weilert et al. (2018) when studying the effects of a 

streamside ordinance protecting the riparian vegetation within the ordinance area, found that 

the streamside ordinance can effectively reduce human impacts within the protected area. Most 

vegetated areas are close to the wetlands, and the availability of moisture in a protected wetland 

can improve the growth rate of trees and reduce erosive power. The condition of the wetland 

terrestrial soil and vegetation can impact biodiversity, especially for reptiles and amphibians. 

The slight stream power increase for the averagely small wetlands can result in the 

vulnerability of the terrestrial wetlands. These impacts may indirectly increase the erosive 

potential for the terrestrial wetland and expose the locations to severe gullies (Li et al. 2014). 

In addition, the results of the topographic indices can be used to assess the vulnerability of the 

terrestrial wetland habitat condition available for biodiversity sustainability, as shown in the 

studies conducted by Murcia (1995), and Semlitsch & Bodie (2003). 

Landscape Analysis 

Thirdly, the landscape structure was also quantified at the patch and landscape level. It 

is important to interpret each metric in a manner appropriate to its scale (Ji et al. 2006; Turner 

et al. 1989; O’Neill et al. 1997). At the patch levels, which describe wetlands in this study, the 

indices used for the metric quantification are MPE, CA, MSI, SI, and TE (see Table 6 for full 

description). In this study, decreases in the core area for all the ten wetlands were revealed for 
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the studied period between 1992 and 2017. According to McGarigal (2017), all other things 

held constant, increasing shape complexity decreases the core area, and increasing patch area 

increases the core area. This decreased in the core area implies that wetlands during the period 

of study may have an increased patch area. The complexities and irregularities in the core area 

may be a result of human activities (e.g., agriculture, etc.) around most of the terrestrial wetland 

areas (Zubair et al. 2017; Weilert et al. 2018). The revealing effect of MSI and SI on shape 

increased for 2017. This implies a decrease in the core area. In addition, the increased edge 

effect revealed by the TE and MPE may also result in a decreased core area. The edge effect 

differs among organisms at different ecological habitats (Hansen et al. 1992). This implies that 

an increase in edge effects may impact the wildlife and biodiversity around the terrestrial 

wetland areas, particularly the amphibians and reptiles. Also, core areas are a much better 

predictor of habitat quality than patch areas (Temple 1986). Some human-induced activities 

can result in habitat loss and may have a considerable impact on the terrestrial habitat. These 

effects are bound to affect most species with low mobility, a narrow feeding niche, and low 

reproduction (Öckinger et al. 2010) around the terrestrial habitat. These effects can be very 

useful to assess when monitoring the landscape structure surrounding wetland and riparian 

habitats. They provided a good link between LULC and ecological modeling for predictions 

or informed management.  

Fourthly, at the landscape level quantification, the diversity indices used SDI and SEI 

revealed little or no proportional diversity within the study period. Similarly, the shape indices 

MSI, MPFD, and AWMSI revealed slight shape complexity at the watershed level. An increase 

in edge density (ED) in 2017 relative to the landscape area in 1992 was exhibited. This 

increased edge effect may reflect a reduced core area resulting from more activities around the 
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watershed in 2017 compared to 1992. This indicates that some parts of the wetland landscape 

areas might have been converted to other usages as a result of urbanization, similar to a study 

conducted by Liu et al. (2014). Generally, the landscape level quantification revealed changes 

in ED and a slight increase in shape complexities and irregularities. This might have resulted 

from human activities in the form of urbanization or agriculture impacting the area during the 

period of study. This is similar to another study by Zubair et al. (2019) revealing the depletion 

of wetland landscape at the sub-watershed level in this area due to agriculture activities. This 

shows that the response of species richness for agriculturally induced fragmented wetlands for 

wildlife such as amphibians and reptiles can be monitored, even at a very large-scale map 

(small area), similar to the study by Kolozsvary & Swihart (1999). 

WELD Modeling Analysis (socio-ecological implications) 

The final part of the discussion is the wetland landscape dynamic modeling (WELD 

modeling). The WELD model was developed to take full advantage of the SES framework. 

The interactions between the social and natural components of the ecosystem were considered 

to assess the impact of the changed ESI on the wetland terrestrial habitat. For this study, the 

general interpretation of the model results was based on the trends revealed by the habitat 

change for all species habitats considered. The terrestrial wetland area is interpreted 

collectively based on ESI impacted by human and natural factors. The interpretation started 

with the forestland analysis for the percentage area covered. The forestland showed a relative 

increase in favor of 2017 compared to 1992 with forestland area cover of 28.47% in 1992 to 

51.90% in 2017. This implies that the rate at which trees were cut down between these periods 

reduced. This may be because of forestland protection provided for most of the terrestrial areas 

around the wetlands as reveal by Weilert et al. (2018). The study assessed the impact of the 
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streamside ordinance in a protected area. The study acknowledged the loss of trees in recent 

times in the non-ordinance area, but the rate of loss was reduced in areas with ordinance 

compared to non-ordinance implemented areas. This will be beneficial to some species that 

depend on these trees for dispersal as part of their short life cycle. Continuous exploitation of 

these resources by human activities may reduce the reproductive potential and leads to the 

extinction of most of these species. The forestland is closely associated with the 

farmland/grassland. The farmland/grassland (fam/Gra) showed a reduction in 2017 compared 

to 1992, 54.04% in 1992 to 14.95% in 2017. This is maybe associated with increasing human 

activities at the edge of the wetlands. A study by Zubair et al. (2019) is in tandem with previous 

research, (e.g., Ji et al. 2005) on urban sprawl in the study area. They observed the depletion 

of agricultural and grassland in all six sub-watersheds mostly due to human activities. These 

studies attributed most of these losses of prairies and agricultural land to urban expansion and 

development of human activities. However, for the impervious surface, there was a general 

increase in 2017 compared to 1992 for the terrestrial wetland areas. There was an increase from 

10.68% in 1992 to 23.70% in 2017. The increase in the impervious surface can be associated 

with built-up and the construction of roads in this area. This previously corroborated in several 

studies performed for this area (e.g. Zubair et al. 2017; Ji et al. 2005). This may be an indicator 

of the increase in human activities due to urban expansion and increase agricultural practices. 

The effect of the increasing impervious surfaces may directly or indirectly affect the terrain 

surface of these areas.  

Similar to the individual wetlands, the general trend for terrain indices, CTI for 2017 

revealed an increase compared to that of 1992. The potential wetness (CTI) for the wetland 

terrestrial habitats increased from 3.91% in 1992 to 4.03% in 2017. This attributed to the 
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impact on other ESI earlier discussed, the conversion of the farmland or agricultural land to 

other uses for human development. In addition, the increase in impervious surfaces, such as 

paved roads, and construction of buildings, can reduce the rate of water percolation. This may 

indicate potential flooding for some of the wetland terrestrial habitats. Similarly, a reduction 

in the energy of the surface water flow (SPI) is observed, 12.83 in 1992 to 12.70 in 2017. 

However, this reduction is minimal and the effect on wetland terrestrial habitat might not be 

much. Considering the general topography of the area characterized by rolling hills with open 

plains (Ji et al. 2005), a lift shift in topography can increase the potential for flooding in this 

area. Past studies have shown the swell of the wetlands and the total watersheds in these areas 

(e.g., Zubair et al. 2017 and Ji et al. 2015).  The study observed that most of the smaller 

wetlands experienced more impact by human activities compared to larger wetlands (Festus et 

al. 2020). Overall, most EPA reports point to urban development, rural development, 

silviculture, and conservation practices to be the major contributors to the losses of wetland 

acreage. This is like the landscape observation for this study (see Appendix A and Appendix 

B). Overall, the WELD model has been able to show the impact on ESI as it affects the 

terrestrial wetland habitat for the species. Some of these are due to human activities; the natural 

and anthropogenic disturbances at abrupt boundaries may affect soil moisture variation on 

small agricultural watersheds at the surface (e.g. Hawley et al. 1983). 

Benefits of WELD modeler tool:  

• It allows the use of assessable environmental geospatial data to assess the changed 

wetland terrestrial habitat made available for wetland management. 

• It allows rapid integration of topographic indices, LULC classification, and other spatial 

data for assessing wetland landscape structure.  
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• It allows the indirect assessment of the SES indicators that could result in fragmentation 

and habitat loss needed for planning and decision-making. 

• To evaluate anthropogenic and natural events that may impact the benefits of terrestrial 

wetland habitat. 

• Assess wetland coverage change using estimated vulnerability index from the 

topography.   

• Provide the baseline for monitoring and assessing wetland change that could help in 

restoration and planning at local scales. 

Limitations of WELD model 

• Difficulty in acquiring a very high-resolution image for temporal change analysis. 

• Limitation of available DEM in terms of resolution and the unavailability of Light 

Detection and Ranging (LiDAR) coverage for most areas. 

• The need to carefully consider the indexes and the image classification for the landscape 

quantification and calculation. 

• Lack of demographic data at the scale of study to be integrated into the model. 
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Conclusions 

In the last 25 years, several remote sensing-based methods have been employed to 

address issues bordering watersheds and wetlands. The techniques used during this period were 

mostly pixel-based or knowledge-based classification. The results of these previous studies 

contributed immensely to the body of knowledge. However, to further improve on these studies 

an object-based approach integrating machine learning was considered for this study. These 

techniques were able to preserve the spatial, spectral, and temporal characteristics during 

image classification. At the watershed level, a swell in watersheds between the 25-year study 

period was observed using the object-oriented classification algorithm approach. Also 

observed during the classification were the increasing forestland and built-up areas, which may 

be an indication of developmental activities around most of the watershed and wetlands within 

the period of study. 

In addition, the landscape patterns were quantified, and changes observed. These 

changes impacted more on smaller wetlands than larger wetlands, resulting to edge effect, size, 

and shape complexity for most of the wetlands. The analysis at fine-scale with the integration 

of object-based machine learning classification approach provided more information to detect 

an impact on smaller wetlands, which would have been difficult with the traditional 

classification techniques, using coarse grain sizes. The ability to detect these changes for 

smaller wetlands will avail natural resource managers the opportunity to put restoration plans 

in place for the smaller wetlands quickly. This is because landscape changes observed at that 

level may be faster to manage than the larger wetland levels. 

Furthermore, the impacts on wetlands in terms of potential wetness (CTI) and stream 

power energy (SPI) were observed. The reducing stream power energy in this area might be 
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an indication of the increasing wetness among many other factors in the study area. These 

indices were integrated to build a geospatial model (WELD), which could be a useful tool for 

monitoring the migratory pattern of species in the terrestrial habitat, most especially the 

amphibians and reptiles. On the other hand, the socio-spatial interaction analysis showed an 

increase in the total sum population per 100 people, an increase in the total sum of households, 

and little or no change in census blocks. This may be the result of developmental activities in 

areas close to the wetlands during the study period. The development in terms of built-up and 

road construction might impact semiaquatic species that depend on these areas for survival. 

Most times the migratory pattern of these species required movement across the roads. In 

addition to the socio-spatial interaction, the impacts of roads on the proximity to the habitats 

were investigated. The study observed 84 locally connected roads intersecting with the 

terrestrial portion of nine out of the ten wetlands. Though these roads may be regarded as local 

roads with little or no impact on the terrestrial wetlands. More impact on species can be caused 

by the major roads which can dictate the migratory pattern of the species crossing the roads. 

The intersection with local roads may indicate less impact on most species during migratory 

movement, amphibians and reptiles are slow-moving animals and will not survive busy roads. 

Summarily, this study proposed a more efficient technique for classifying images at a 

fine scale using OBIA segmentation and machine learning algorithms. In addition, the 

usefulness of quantifying terrestrial wetland habitat using landscape metrics and terrain 

analysis were observed, showing more impact on smaller wetlands. The proposed geospatial 

model (WELD) can be a very good tool in the hands of conservationists and wetland managers. 

This tool will be useful for monitoring the impact on ecosystem services and tracking the 

movement of species that depends on the terrestrial portion of the wetlands for survival.  
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APPENDIXES 

A. Estimated CTI at 340-meter from the wetland core area 

Compound Topographical Index Estimate 

1992 2017 Wetland Impact 

 

 

 

Blue Springs 

Reservoir 

 

Estimated CTI 

1992 = 2.71% 

2017 = 3.48% 

 
 

 

East Lake Wood 

  

Estimated CTI 

1992 = 1.41% 

2017 = 1.67% 

 

 

 

 

Heritage Park Lake 

  

Estimated CTI 

1992 = 3.26% 

2017 = 3.10% 
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Compound Topographical Index Estimate 

1992 2017 Wetland Impact 

 
 

Lake Jacomo 

  

Estimated CTI 

1992 = 1.53% 

2017 = 1.64% 

           

 

Loch Lloyd Lake 

  

Estimated CTI 

1992 = 0.78% 

2017 = 4.33% 

 
 

Longview Lake 

  

Estimated CTI 

1992 = 1.22% 

2017 = 1.42% 

 

 

Lake Tapawingo 

  

Estimated CTI 

1992 = 1.57% 

2017 = 2.03% 
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Compound Topographical Index Estimate 

1992 2017 Wetland Impact 

 
 

Missouri River 

  

Estimated CTI 

1992 = 6.55% 

2017 = 6.55% 

 

 

Prairie Lee Lake 

  

Estimated CTI 

1992 = 1.16% 

2017 = 1.45% 

 
 

West Lake Wood 

  

Estimated CTI 

1992 = 1.24% 

2017 = 1.55% 
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B. Estimated SPI at 340-meter from the wetland core area 

Stream Power Index Estimate 

1992 2017 Wetland Impact 

  

 

Blue Springs 

Reservoir 

 

Estimated SPI 

1992 = 15.40% 

2017 = 14.85% 

 
 

 

East Lake Wood 

  

Estimated SPI 

1992 = 18.33% 

2017 = 21.64% 

  

Heritage Park Lake 

  

Estimated SPI 

1992 = 8.00% 

2017 = 8.01% 
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Stream Power Index Estimate 

1992 2017 Wetland Impact 

 
 

Lake Jacomo 

  

Estimated SPI 

1992 = 16.40% 

2017 = 19.37% 

  

Loch Lloyd Lake 

  

Estimated SPI 

1992 = 17.29% 

2017 = 17.06% 

 
 

Longview Lake 

  

Estimated SPI 

1992 = 12.86% 

2017 = 11.52% 
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Stream Power Index Estimate 

1992 2017 Wetland Impact 

  

Lake Tapawingo 

Estimated SPI 

1992 = 21.19% 

2017 = 17.25% 

 

 

 

Missouri River 

Estimated SPI 

1992 = 10.11% 

2017 = 9.95% 

  

Prairie Lee Lake 

Estimated SPI 

1992 = 16.01% 

2017 = 18.72 

  

West Lake Wood 

  

Estimated SPI 

1992 = 19.51% 

2017 = 19.22% 
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