
Mineralocorticoid Receptor Blockade Attenuates
Chronic Overexpression of the Renin-Angiotensin-
Aldosterone System Stimulation of Reduced
Nicotinamide Adenine Dinucleotide Phosphate Oxidase
and Cardiac Remodeling

Sameer Stas, Adam Whaley-Connell, Javad Habibi, Lama Appesh, Melvin R. Hayden,
Poorna R. Karuparthi, Mahnaz Qazi, E. Matthew Morris, Shawna A. Cooper, C. Daniel Link,
Craig Stump, Meredith Hay, Carlos Ferrario, and James R. Sowers

Divisions of Endocrinology (S.S., M.R.H., J.R.S.) and Nephrology (A.W.-C.), Diabetes and Cardiovascular Lab (S.S.,
A.W.-C., J.H., L.A., M.Q., E.M.M., S.A.C., J.R.S.), University of Missouri School of Medicine (S.S., A.W.-C., J.H., L.A.,
M.R.H., P.R.K., M.Q., E.M.M., S.A.C., J.R.S.), Columbia, Missouri 65212; Harry S. Truman Veterans Administration
Medical Center (A.W.-C., J.H., L.A., J.R.S.), Columbia, Missouri 65201; Department of Medicine (C.S., C.D.L), The
University of Arizona, Tucson, Arizona 85721; University of Iowa (M.H.), Iowa City, Iowa 52242; and Wake Forest
University School of Medicine (C.F.), Winston-Salem, North Carolina 27157

The renin-angiotensin-aldosterone system contributes to car-
diac remodeling, hypertrophy, and left ventricular dysfunc-
tion. Angiotensin II and aldosterone (corticosterone in ro-
dents) together generate reactive oxygen species (ROS) via
reduced nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, which likely facilitate this hypertrophy
and remodeling. This investigation sought to determine
whether cardiac oxidative stress and cellular remodeling
could be attenuated by in vivo mineralocorticoid receptor
(MR) blockade in a rodent model of the chronically elevated
tissue renin-angiotensin-aldosterone system, the transgenic
TG (mRen2) 27 rat (Ren2). The Ren2 overexpresses the mouse
renin transgene with resultant hypertension, insulin resis-
tance, proteinuria, and cardiovascular damage. Young (6- to
7-wk-old) male Ren2 and age-matched Sprague-Dawley rats
were treated with spironolactone or placebo for 3 wk. Heart
tissue ROS, immunohistochemical analysis of 3-nitrotyrosine,

and NADPH oxidase (NOX) subunits (gp91phox recently re-
named NOX2, p22phox, Rac1, NOX1, and NOX4) were measured.
Structural changes were assessed with cine-magnetic reso-
nance imaging, transmission electron microscopy, and light
microscopy. Significant increases in Ren2 septal wall thick-
ness (cine-magnetic resonance imaging) were accompanied
by perivascular fibrosis, increased mitochondria, and other
ultrastructural changes visible by light microscopy and trans-
mission electron microscopy. Although there was no signifi-
cant reduction in systolic blood pressure, significant improve-
ments were seen with MR blockade on ROS formation and
NOX subunits (each P < 0.05). Collectively, these data suggest
that MR blockade, independent of systolic blood pressure re-
duction, improves cardiac oxidative stress-induced structural
and functional changes, which are driven, in part, by angio-
tensin type 1 receptor-mediated increases in NOX. (Endocri-
nology 148: 3773–3780, 2007)

THERE IS ACCUMULATING evidence that mineralocor-
ticoids play an important role in adverse cardiac re-

modeling associated with cardiac fibrosis (1–3) and perivas-
cular inflammation (4–6). The initial pathogenic event in
mineralocorticoid-induced myocardial damage is inflamma-
tory injury of blood vessels leading to reactive fibrosis (1–6).
Both cardiomyocytes and cardiac fibroblasts express miner-

alocorticoid receptors (MRs) with high affinity for aldoste-
rone and corticosterone (7–9). Effects of aldosterone or cor-
ticosterone in the heart appear to involve an interaction with
the renin-angiotensin-aldosterone system (RAAS), as well as
direct effects of mineralocorticoid to increase cardiac fibrosis
(10–18). In aldosterone and salt-treated rats, angiotensin type
1 receptor (AT1R) expression and the ventricular density of
the AT1R have been observed to increase (18). Furthermore,
mineralocorticoids have increased expression of the angio-
tensin-converting enzyme in cardiomyocytes from adult rat
primary (19) and in cultured fetal rat cardiomyocytes (12).
More recently, data from two laboratories suggest that MR
activation may potentiate the proinflammatory/fibrotic ef-
fects of AT1R signaling by enhancing the cardiac oxidative
stress induced by angiotensin II (Ang-II) (17–20).

A number of clinical studies have suggested that blockade
of MR is cardioprotective. Even at subpressor doses (25 mg
daily), the MR antagonist spironolactone has reduced all
cause mortality in patients with severe heart failure already
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receiving standard therapy, including an angiotensin-con-
verting enzyme inhibitor (21). In addition, spironolactone
therapy has been associated with reduced circulating levels
of procollagen type III N-terminal amino peptide, a marker
of collagen turnover, suggesting that MR blockade exerts
beneficial antifibrotic effects in patients with heart failure
(22). Animal studies have also demonstrated similar bene-
ficial effects of MR blockade on myocardial reactive fibrosis
(14–16, 23, 24) that were independent of blood pressure
effects. These effects may be modulated, in part, by reduction
of myocardial oxidative stress. Consistent with this notion,
in vivo treatment with a reduced nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase inhibitor prevented
cardiac fibrosis in aldosterone-infused rats (24). More re-
cently, MR inhibition has reduced cardiac oxidative stress
and inflammation in rodent models of chronic pressure over-
load (25, 26). Finally, it has been reported that spironolactone
treatment partially suppressed cardiac inflammatory/fibro-
genic and oxidative stress responses in vivo after Ang II
infusion of normotensive Sprague-Dawley (SD) rats (17).

There is growing evidence that the autocrine/paracrine
actions of Ang-II and mineralocorticoids are responsible for
many of the adverse effects of the RAAS (1–6). Increased
oxidative stress and inflammation have been observed in the
kidney (27, 28) and skeletal muscle (29) of the TG(mRen2)27
rat (Ren2), which overexpresses the mouse renin transgene
in these tissues. In the young Ren2 rat, zona glomerulosa
production of corticosterone is significantly increased be-
cause adrenal transgenic, pro-renin production is under reg-
ulatory control of ACTH (30). Furthermore, in rats double
transgenic for the human renin and angiotensin genes, MR
blockade attenuated vascular injury, as well as the expres-
sion of inflammatory markers (15). These data suggest that
mineralocorticoids enhance the inflammatory and fibrotic
effects of Ang-II. However, the mechanisms underlying in-
teractive actions of Ang-II and mineralocorticoids in pro-
moting cardiac inflammation, fibrosis, and remodeling, in
vivo, remain poorly understood. Because both Ang-II (31)
and mineralocorticoids (18, 31) promote oxidative stress via
NADPH oxidase (NOX) activation in cardiovascular tissues,
we sought to investigate the impact of in vivo MR blockade
with low-dose spironolactone on NOX activity, generation of
reactive oxygen species (ROS), and cardiac remodeling in a
model of chronic tissue RAAS overexpression, the Ren2
transgenic rat.

Materials and Methods
Animals and treatments

All animal procedures were approved by the University of Missouri
animal care and use committees, and animals were housed in accordance
with National Institutes of Health guidelines. Ren2 (6–7 wk of age) and
age-matched SD rats were randomly assigned to untreated [Ren2-C (n �
5) and SD-C (n � 6), respectively] or spironolactone-treated [Ren2-SP
(n � 6) and SD-SP (n � 4)] paradigms. Ren2 SP and SD SP animals were
implanted with sc time-release, matrix-driven delivery pellets (Innova-
tive Research of America, Sarasota, FL) containing either spironolactone
(5 mg; 0.24 mg/d) or placebo for 21 d (32).

Systolic blood pressure (SBP) and body weight

Restraint conditioning was initiated on the day of initial blood pres-
sure measurements. SBP was measured in triplicate, on separate occa-

sions throughout the day, using the tail-cuff method (Harvard Systems,
Student Oscillometric Recorder) before initiation of treatment and on d
19 or 20 before killing (27–29). Total body weight was obtained before
initiation of treatment and at the time of killing.

In vivo cine-magnetic resonance imaging (MRI)

MRI scans were performed on Ren2 and SD rats pre- and posttreat-
ment using a Varian 7T horizontal bore MRI (Varian Inc., Palo Alto, CA)
with electrocardiogram gating (SA Instruments, Inc., Stony Brook, NY).
Animals were anesthetized using 2–3.5% isoflurane on a nose-cone
nonrebreathing system supplying continuous oxygen. A series of cine-
images of the left ventricle (LV) in both long and short axis views were
acquired at 12 equally spaced time points throughout the entire cardiac
cycle with a frame rate of 9–13 msec. The total acquisition time of each
cine-sequence was approximately 6 min with in plane spatial resolution
of 156 � 137 �m2 (long-axis view) or 156 � 156 �m2 (short-axis view)
and two signal averages. Heart wall thickness and left ventricular vol-
ume measurements were determined using VnmrJ (Varian, Inc., Palo
Alto, CA) and ImageJ 228 (National Institutes of Health, Bethesda, MD).
LV ejection fractions (EFs) were calculated using a modified ellipsoid
equation (33). Intraventricular wall thickness was measured at five po-
sitions and averaged using a single transverse axial image captured at
0-msec delay after the R wave.

Transmission electron microscopy (TEM) methods

Heart tissue was thinly sliced and placed in primary electron mi-
croscopy (EM) fixative as described (27, 28). After secondary fixation,
specimens were placed on a rocker overnight, embedded, and poly-
merized at 60 C for 24 h. There were 85-nm thin sections then stained
with 5% uranyl acetate and Sato’s Triple lead stain for viewing by a
transmission electron microscope.

Light microscopy

Fixed paraffin sections of LV were evaluated with Verhoeff-van Gie-
son (VVG), which stains elastin (black), nuclei (blue black), collagen
(red), and connective tissue (yellow) (28). Slides were analyzed with a
Nikon50i microscope (Nikon Corp., Tokyo, Japan), and 4, 10, and 40�
images were captured with a CoolSNAPcf camera (Photometrics, Roper
Scientific, Inc., Tucson, AZ). Morphometric analysis was performed
using MetaVue software (Boyce Scientific Inc., Gary Summit, MO). In
each image, the perimeters of the adventitia, media, and lumen of 15–20
arteries were traced, and the percentage area was then calculated by
subtracting the combined areas for media and lumen from the total area,
and then dividing by the total area.

Measurement of heart tissue oxidative stress

The formation of ROS in LV sections was evaluated by chemilumi-
nescence and further by immunostaining for 3-nitrotyrosine content, a
marker of peroxynitrite formation. Tissue sections were homogenized in
sucrose buffer [250 mm sucrose, 0.5 mm EDTA, 50 mm HEPES, and
protease inhibitor tablet (pH 7.5)] using a glass/glass homogenizer.
Homogenates were centrifuged 1500 rcf � 10 min at 4 C. Supernatants
(whole homogenate) were then removed and placed on ice. Whole
homogenate (100 �l) was added to 1.4-ml 50 mm phosphate (KH2PO4)
buffer [150 mm sucrose, 1 mm EGTA, 5 �m lucigenin, and 100 �m
NADPH (pH 7.0)] in dark-adapt counting vials. After dark adaptation
for 1 h, samples were counted every 30 sec for 10 min on a scintillation
counter, and the last 5 min were averaged. Samples were then normal-
ized to total protein in the whole homogenate. Values are expressed as
counts per minute per milligram (cpm/mg) of protein.

To assess myocardial 3-nitrotyrosine content, two LV sections per
animal were deparaffinized, rehydrated, and epitopes were retrieved in
citrate buffer (28). Endogenous peroxidases were quenched with 3%
H2O2, and nonspecific binding sites were blocked with avidin, biotin,
and protein block (Dako, Carpinteria, CA). The sections were then in-
cubated with 1:200 primary rabbit polyclonal anti-Nitrotyrosine anti-
body (Chemicon, Temecula, CA). Sections were then washed and in-
cubated with secondary antibodies, linked, and labeled with
Streptavidin (Dako) for 30 min each. After several rinses with distilled

3774 Endocrinology, August 2007, 148(8):3773–3780 Stas et al. • MR Blockade: Ren2 Rat Heart



water, diaminobenzidine was applied for 10 min. The sections were
again rinsed with distilled water, stained with hematoxylin for 1 min,
rehydrated, and mounted with a permanent media. The slides were
evaluated under a bright-field microscope (Nikon 50i), and eight to 10
images at �40 were captured with a CoolSNAPcf camera. All computer
and microscope settings were kept constant throughout the experiment.
Images were analyzed blinded, and the signal intensities were measured
with MetaVue.

Immunofluorescent studies

Harvested LV was immersed and fixed in 3% paraformaldehyde
(27–29). After fixation, tissues were placed in histological cassettes, and
dehydrated with ethanol, infiltrated with low-melting (50 C) paraplast,
and embedded in high-melting (56 C) paraplast. Blocks were sectioned,
deparaffinized in CitriSolv (Thermo Fisher Scientific, Waltham, MA),
and rehydrated in ethanol and HEPES wash buffer. Seven sections of LV
of each animal were used for analysis. The first section was washed (3 �
15 min) with HEPES wash buffer and then mounted with Mowiol (first
control level) (PolySciences, Inc., Warrington, PA). The second section
was washed and incubated with 1:100 primary antibodies in 10-fold
diluted blocking agent (second control), and the third/fourth sections
were washed and kept in the blocker. Over the course of 48 h, a fifth,
sixth, and seventh section was incubated with 1:100 of goat anti-gp91phox

(recently renamed NOX2), mouse anti-Rac1 (Upstate Cell Signaling,
Millipore Corp., Billerica, MA), goat anti-p22phox, rabbit anti-Nox1
(Santa Cruz Biotechnology, Santa Cruz, CA), and goat anti-Nox4 (Santa
Cruz Biotechnology) antibodies, respectively, in 10-fold diluted blocker.
After 24 h, the slides were washed (3 � 15 min), and a seventh section
was mounted with Mowiol (third control). Other sections were incu-
bated with 1:300 of Alexa fluor rabbit antigoat 647 (Invitrogen Corp.,
Carlsbad, CA) in 10-fold diluted blocker except the sixth, which was
stained with 1:300 of Alexa fluor goat antimouse 647. After 4 h, the slides
were washed, mounted with Mowiol, and examined using a laser con-
focal scanning microscope (Bio-Rad, Hercules, CA). Eight to 10Z optical
images were captured from each section using a �60 water lens of a
confocal microscope. All computer and microscope settings were kept the
same throughout the experiments. The resolution of each image was 1024 �
1024 pixels. Images were captured blinded, using the Laser-sharp software
(Bio-Rad) and signal intensities measured by MetaVue analysis (27).

Statistical analysis

All values are expressed as mean � se. Statistical analyses were
performed in SPSS 13.0 (SPSS, Inc., Chicago, IL) using paired or unpaired
Student’s t tests, or ANOVA with Fisher’s least significant difference as
appropriate.

Results
SBP and cine-MRI

At initiation of treatment (6–7 wk of age), SBPs were
higher in Ren2-C compared with SD-Cs (P � 0.05) (Table 1).
At the end of the treatment period (9–10 wk of age), there was
no difference in SBP between Ren2-C and Ren2-SP (P � 0.05).
In vivo cine-MRI was used to measure septal wall thickness
(Fig. 1A) and systolic EF (Fig. 1B) before initiation and at the
end of treatment. At baseline, there was no significant dif-
ference in septal wall thickness among the groups. At 8–9 wk

of age, septal wall thickness was significantly increased in the
Ren2-C (1.9 � 0.06 mm; � 0.64 � 0.08) compared with SD-C
(1.65 � 0.04 mm; � 0.34 � 0.09) (P � 0.05), an effect that was
attenuated by spironolactone treatment (1.78 � 0.05 mm; �
0.24 � 0.07) (P � 0.06, P � 0.05). In addition, no significant
differences were found with respect to systolic EF at baseline
or posttreatment in the Ren2 compared with SD rats in either
treatment or control groups (P � 0.05) (Fig. 1B).

Heart tissue oxidative stress

ROS formation was increased in Ren2-C (4266 � 1191
cpm/mg; P � 0.05), an effect that was abrogated with spi-
ronolactone (3207 � 446 cpm/mg; P � 0.05) (Fig. 2A). There
were similar increases observed with immunostaining of
nitrotyrosine, a measure of peroxynitrite (ONOO�) forma-
tion, in the Ren2-C (62.8 � 2.6 average gray-scale intensities)
when compared with SD-C (41.6 � 9.7 average gray-scale
intensities; P � 0.05) that was again improved in the Ren2-SP
(41.1 � 1.9 average gray-scale intensities; P � 0.05) (Fig. 2, B
and C).

NOX subunits

Evaluation of NOX subunits NOX2, Rac1, and p22phox, as
well as NOX1 and NOX4 via immunohistochemistry re-

TABLE 1. Experimental parameters

SD-C SD-SP Ren2-C Ren2-SP

Weight
Initial (g) 102.5 � 19.4 142.8 � 16.0 108.8 � 2.1 137.8 � 12.7
Final (g) 256.2 � 9.7 254.0 � 6.9 254.8 � 7.3 266.6 � 10.5

SBP
Initial (mm Hg) 126.2 � 3.7 142.7 � 4.7 144.6 � 1.7a 153.8 � 6.4a

Final (mm Hg) 139.5 � 3.8 143.3 � 5.1 189.6 � 3.0a 199.4 � 7.5
a P � 0.05 when age-matched Ren2-Cs or Ren2-SPs are compared with SD-Cs.
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FIG. 1. Cine-MRI evaluation of cardiac remodeling. A, In vivo cine-
MRI measures of heart septal wall thickness pre- and posttreatment.
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vealed increases in NOX2, Rac1, and p22phox in the Ren2-C
(40.2 � 7.2, 38.8 � 6.4, and 23.6 � 2.9 average gray-scale
intensities, respectively) when compared with SDC (26.7 �
1.0, 21.7 � 1.2, and 16.5 � 0.8 average gray-scale intensities,
respectively; P � 0.05) (Fig. 3, A and B). Although the NOX1
and four subunits in the Ren2-C were not elevated compared
with the SD-C (P � 0.05), there were significant reductions
in each subunit in the Ren2-SP (NOX2, 17.9 � 1.8 average
gray-scale intensities; Rac1, 14.7 � 1.0 average gray-scale
intensities; (p22phox, 16.2 � 1.5 average gray-scale intensities;
NOX1, 34.8 � 1.8 average gray-scale intensities; and NOX4,
23.8 � 1.8 average gray-scale intensities) when compared
with Ren2-C (each P � 0.05).

Light microscopy and TEM

Perivascular fibrosis, as represented by percent area of
adventitia presenting fibrosis on VVG staining, was in-
creased in the Ren2-C (70 � 2.9%) compared with the SD-C
(57 � 3.7%) (P � 0.05) that was improved in the Ren2-SP

(57.8 � 4.3%) compared with the Ren2-C (P � 0.05) (Fig. 4,
A and B). Interestingly, there were no significant changes in
the area of the media or lumen in the groups (P � 0.05).
Fibrosis emanated from the perivascular area to the inter-
stitium of the endomysium between cardiomyocytes. Car-
diomyocytes were also elongated in the Ren2-C compared
with SD.

TEM images (Figs. 5 and 6) of the Ren2-C heart demon-
strate striking changes in the mitochondria, intercalated discs
(IDs), and Z-lines. There were increased numbers of mito-
chondria in the Ren2-C compared with the SD-C, and thick-
ening of the Z-lines, as well as a prominent appearance of ID
duplication in the Ren2-C compared with the SD-C (Fig. 5).
Thickening (duplication) of the ID may reflect an increasing
number of convolutions to lengthen this structure and in-
crease its strength. Treated animals, Ren2-SP, displayed a
substantial reduction in the development of these adaptive
remodeling changes of the ID.

Discussion

Data from this investigation indicate that MR blockade
with treatment of subpressor dose spironolactone for 3 wk
reduced the cardiac remodeling and oxidative stress typi-
cally present in the Ren2 rodent model of tissue RAAS over-
expression. A similar observation of cardiac protection with-
out blood pressure lowering has been reported in other
hypertensive rodent models (14–16, 23, 24, 34–36). This myo-
cardial protective effect was associated with reduced NOX
subunit expression and reduced 3-nitrotyrosine levels, as
have been observed in several different rodent models (5, 17,
24–26).

Cardiac imaging with cine-MRI technology demonstrated
increased septal wall thickness in the Ren2 heart that was
abrogated by MR blockade. Despite the increased septal wall
thickness, there was no abnormality of systolic function in
Ren2 rats at the early age at which they were studied.

Heart failure and hypertension have each been linked to
enhanced oxidative stress, in part, through activation of both
systemic and tissue RAAS (5, 30, 31). Oxidative stress, in turn,
is generally believed to be responsible for the proinflamma-
tory/profibrogenic changes in the myocardium (5, 31). In this
study, 8- to 10-wk-old Ren2 rats were observed to have
coronary perivascular fibrosis and adventitial expansion in
concert with increases in 3-nitrotyrosine staining in the
perivascular region. Indeed, NOX catalyzes a one-electron
reduction of molecular oxygen to superoxide (O2

�), which
can react to form short-lived peroxynitrite (ONOO�), which
is converted to stable 3-nitrotysrosine (31, 37). The heart has
a very limited endogenous antioxidant capacity as contrib-
uted by both enzymatic and nonenzymatic-free radical scav-
engers and antioxidants (31, 35, 37). This characteristic ren-
ders the myocardium more susceptible than other tissues to
oxidative stress with associated structural and functional
abnormalities (31, 37).

Legato et al. (38), using TEM, described several qualitative
changes in the pressure overloaded myocardium, but little
follow-up work has been conducted. In that early report, they
noted thickened Z-lines of the sarcomere, smaller and more
numerous mitochondria, and what they describe as doubling
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Ren2 rats. A, Heart tissue formation of ROS in the Ren2. B, Represen-
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of the IDs. In our investigation, the untreated 8- to 10-wk-old
hypertensive Ren2 had the following TEM abnormalities:
thickened Z-lines; doubling or duplication of the IDs; and

more plentiful, smaller interdigitating mitochondria. The du-
plication of IDs has been proposed to represent increased
convolutions, allowing more physical contact and strength-
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FIG. 4. Spironolactone attenuates perivascular
fibrosis visible by light microscopy in Ren2 rats. A,
VVG-stained sections of LV. VVG is specific for
fibrosis and stains elastin (black), nuclei (blue
black), collagen (red), and connective tissue (yel-
low). All scale bars in black are 50 �m. B, Average
calculated values of percentage area of adventitia,
media, and the lumen of the intramural arteries in
the heart. *, P � 0.05 when Ren2-Cs are compared
with SD-Cs; **, P � 0.05 when Ren2-SPs are com-
pared with Ren2-Cs.
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ening of the ID in pressure overload conditions (38). Treat-
ment with low-dose spironolactone lessened this duplication
and decreased the number of interdigitating mitochondria.
This represents the first TEM examination of Ren2 hearts, as
well as the first study to examine the impact of MR blockade
therapy. The noted changes occurred in concert with light
microscopy observations of perivascular inflammatory/fi-
brogenic alterations and increased perivascular nitrotyrosine
staining. Thus, our data suggest that Ang-II and mineralo-
corticoid interact to increase induction of oxidative stress,
which leads to myocardial inflammation and fibrosis with
accompanying alterations in IDs and mitochondria that
likely reflect redox-mediated alterations.

The MR-mediated cardiac effects may have been produced
by either glucocorticoid or mineralocorticoid stimulation be-
cause the MR in the heart is also activated by endogenous
glucocorticoids, including cortisol in humans and cortico-
sterone in rodents (39, 40). These two glucocorticoids express
the same affinity for the MR as aldosterone (39). Further-
more, corticosterone is present in the blood at concentrations
2 orders of magnitude greater than aldosterone (39, 40). Myo-
cardial expression of the 11 �-hydroxysteroid dehydroge-
nase (oxidase form) in the heart (8) gives glucocorticoids the
same or greater degree of access as mineralocorticoids to the
MR in the heart (8, 39). A phagocyte-type NOX is expressed
in the heart and is a major source of ROS during the devel-

Mitochondria

Intercalated Disc

60K

60K

 Ren2-SP

 SD-C

60K

 Ren2-C

A

B C

D

FIG. 5. Spironolactone improves ultrastructural re-
modeling of the ID visible by TEM in Ren2 rats. A,
Normal cardiac ultrastructure with mitochondria
and IDs as observed on TEM (inset upper left) and a
sarcomere (lower inset) with Z lines and the I and A
bands. B, Representative normal ID from the SD-C at
�10,000 magnification with a �60,000 inset com-
pared with representative remodeled ID from the
Ren2-C at �10,000 magnification. C, Duplication of
the IDs noted in the Ren2-C described by others (39).
The inset further reveals increased convolutions of
the ID at �60,000 magnification. D, Representative
ID from the Ren2-SP model at �10,000 magnifica-
tion. The ID of the Ren2-SP more closely resembles
the healthy SD-C in both the �10,000 and �60,000
insets.
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opment of pressure overload cardiac hypertrophy (40), as
exists in the Ren2 rat. Aldosterone-induced MR activation
results in stimulation of vascular NOX (20, 30). Furthermore,
glucocorticoid-MR complexes are activated as a result of ROS
generation (40, 41). Thus, the RAAS and ROS pathways can
interact to result in multiplicative injury to the heart. Treat-
ment with low, nonblood pressure lowering doses of spi-
ronolactone appears to interrupt this process by suppression
of MR signaling.

At least five subunits of the NOX have been observed
previously in the heart (18, 39, 42). The myocardium of the
Ren2 heart manifested increased NOX2, gp22phox, and Rac1
subunits. In concert with decreases in NOX subunit expres-
sion, ROS formation, and 3-nitrotyrosine staining after low-
dose spironolactone treatment, there was decreased acti-
vated membrane Rac1. Given the seminal role of Rac1
translocation to the membrane in activation of the NADPH
complex, the effect of treatment to decrease membrane trans-
location appears to be an important underlying mechanism
for the cardioprotective effects of MR blockade. Reduction of
cardiac NOX2 by MR blockade is a novel finding of this
investigation. The NOX2 is the catalytic subunit and the
primary membrane component to which the p40phox, p47phox,
and p67phox complex binds via Rac1 activation (30, 31). El-
evation of the p40phox subunit in the Ren2 transgenic model
of tissue RAAS overexpression, and the subsequent reduc-
tion with MR blockade, is another novel observation. Al-
though the precise role of p40phox in the cardiac redox state
is not well understood, there is evidence that it acts as a
bridge between p47phox and p67phox to assemble the NOX
membrane complex (43). p40phox may be derived from fi-
broblasts on macrophages that infiltrated the myocardium
(44). This is consistent with our observations of increased

perivascular fibrosis, increased macrophage infiltration, and
increased 3-nitrotyrosine staining in the perivascular region,
changes that were substantially ameliorated by low-dose MR
blockade.

Collectively, these data suggest that MR activation po-
tentiates the proinflammatory/fibrotic effects of Ang-II by
enhancing cardiac NOX-mediated oxidative stress in-
duced by tissue RAAS activation. Furthermore, MR block-
ade at subpressor doses, i.e. independent of SBP reduc-
tions, ameliorate cardiac oxidative stress and subcellular
remodeling.
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FIG. 6. Spironolactone improves ultrastructural
remodeling visible TEM in Ren2 rats. A, Repre-
sentative image from the SD-C demonstrating a
line of sarcolemmal mitochondria (M) just beneath
the sarcomeres (ScM; the distance between two Z
lines) of the myocardium at �10,000 magnifica-
tion. B, Representative remodeled mitochondria in
the Ren2-C. This image represents a marked in-
crease of interdigitating mitochondria at �5,000
magnification. C, The same image as in panel B at
�10,000 magnification to compare to SD-C and
Ren2-SP in (D). D, A representative �10,000 im-
age from the Ren2-SP at �10,000 magnification.
Note the improved appearance of the sarcolemmal
mitochondria with the spironolactone treatment.
The mitochondria in this model now possess an
appearance more similar to the SD-C (A) with a
monolayer of mitochondria beneath the sarco-
meres.
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