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Abstract

We point out novel consequences of general relativity involving tidal
dynamics of ultrarelativistic relative motion. Specifically, we use the
generalized Jacobi equation and its extension to study the force-free
dynamics of relativistic flows near a massive rotating source. We show
that along the rotation axis of the gravitational source, relativistic
tidal effects strongly decelerate an initially ultrarelativistic flow with
respect to the ambient medium, contrary to Newtonian expectations.
Moreover, an initially ultrarelativistic flow perpendicular to the axis
of rotation is strongly accelerated by the relativistic tidal forces. The
astrophysical implications of these results for jets and ultrahigh energy
cosmic rays are briefly mentioned.
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1 Introduction

This paper is about the motion of free test particles in the background grav-
itational field of a Kerr black hole. The geodesics of Kerr spacetime are well
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known and have been extensively studied in standard systems of coordi-
nates such as the Boyer-Lindquist coordinate system. The Boyer-Lindquist
coordinates are adapted to the stationary and axisymmetric nature of the
source and are Minkowskian (expressed in spherical polar coordinates) in-
finitely far from the black hole. We are interested however in the relative

motion of free nearby particles; as explained in detail in [1], from the stand-
point of relativity theory the study of relative motion is certainly preferred,
since it is in keeping with the spirit of the theory. Moreover, relative motion
has direct observational significance. Thus theoretical results obtained in
the study of relative motion can be directly compared with suitable experi-
mental data [1, 2].

To study the relative motion of free particles, we need a reference particle
whose motion is well known. For the purposes of the present work, we
select the free motion of particles on radial escape trajectories along the
rotation axis of the Kerr black hole. Thus at a given initial position along
a radial direction in Schwarzschild spacetime or the rotation axis in Kerr
spacetime, the reference particle has an escape velocity such that the particle
eventually reaches infinity with zero kinetic energy. We then study the
relative motion of the relativistic particles that start from the same location
as the reference particle and travel in different directions. The origin of
these relativistic particles on the axis of rotation will not be discussed in
this paper. We will simply assume that such particles exist near the poles
of the Kerr black hole. The nature of the central engine and the details of
the accretion phenomena that could generate such relativistic particles are
beyond the scope of this work. Instead, we concentrate on the gravitational
dynamics of these particles relative to the reference particle. Moreover, it
turns out that the existence of event horizons has no bearing on our main
results; therefore, our treatment applies equally well to test particles in the
exterior of a gravitational source whose field is adequately described by the
exterior Kerr spacetime. However, our results are in general observationally
significant only in the case of highly collapsed gravitational sources such as
neutron stars and black holes.

To characterize the relative motion, we establish a quasi-inertial coordi-
nate system along the worldline of the reference particle. This Fermi normal
coordinate system [3] is valid in a cylindrical region of radius R along the
worldline of the reference particle. Here R is the radius of curvature of the
spacetime manifold. The geodesic equations of motion for the free particles
are then integrated in this Fermi coordinate system subject to the limita-
tion that the relative distance must remain well within the admissible range
of Fermi coordinates. The results of such an investigation of the relative
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motion of free particles would naturally depend on the choice of the refer-
ence particle. For instance, a separate investigation would be necessary if
the reference trajectory is an orbit in the equatorial plane of the Kerr black
hole. In fact, a judicious choice of the reference particle would be essential
to explain a particular observational result. Moreover the relative distance
in our approach should be less than R.

We find that ultrarelativistic flows in the gravitational field of collapsed
configurations can exhibit purely non-Newtonian behavior due to general
relativistic tidal effects. These include the phenomenon of the tidal decel-
eration along the axis of rotation and the phenomenon of tidal acceleration
perpendicular to the axis of rotation, which follow from the integration of the
generalized Jacobi equation [1, 2]. We study this equation and its extension
in this paper and compare our results with the corresponding nonrelativistic
tidal effects. In the following we use units such that c = 1. The signature
of the spacetime metric is assumed to be +2.

Imagine a geodesic worldline in the gravitational field of an external
source. Let uµ = dxµ/dτ be the four-velocity vector of this reference geodesic
and τ be its proper time. A neighboring geodesic with an arbitrary velocity
relative to the reference geodesic is connected to it by the deviation vector
ξµ(τ) such that ξµuµ = 0. The generalized Jacobi equation [1] is given by
the geodesic deviation equation to first order in ξµ, namely,

D2ξµ

Dτ2
+ Rµ

ρνσuρξνuσ

+
(

uµ +
Dξµ

Dτ

)(

2Rζρνσuζ Dξρ

Dτ
ξνuσ +

2

3
Rζρνσuζ Dξρ

Dτ
ξν Dξσ

Dτ

)

+ 2Rµ
ρνσ

Dξρ

Dτ
ξνuσ +

2

3
Rµ

ρνσ

Dξρ

Dτ
ξν Dξσ

Dτ
= 0. (1)

Here Dξµ/Dτ = ξµ
;νuν is the covariant derivative of ξµ along the refer-

ence worldline. Let λµ
(α) be an orthonormal tetrad frame that is parallel

propagated along the reference trajectory such that λµ
(0)

= uµ. Then,

ξµ = Xiλµ
(i) and equation (1) may be written in terms of Fermi coordinates

(T,X), where T = τ along the reference geodesic, as [1, 2]

d2Xi

dT 2
+ FR0i0jX

j + 2 FRikj0V
kXj

+(2 FR0kj0V
iV k +

2

3
FRikjℓV

kV ℓ +
2

3
FR0kjℓV

iV kV ℓ)Xj = 0. (2)

Here V i = dXi/dT , |V| < 1 along the reference geodesic and

FRαβγδ(T ) = Rµνρσλµ
(α)λ

ν
(β)λ

ρ
(γ)λ

σ
(δ) (3)
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is the projection of the Riemann curvature tensor on the orthonormal tetrad
of the reference observer along its worldline. If the relative velocity is much
smaller than the speed of light, |V| ≪ 1, the velocity-dependent terms in
(1) and (2) may be neglected and the generalized Jacobi equation reduces
to the standard Jacobi equation that expresses the linear evolution of the
deviation between two neighboring geodesics that have negligible relative
motion. This relative motion generally evolves slowly on the scale of the
radius of curvature R, which is defined such that R−2 is the supremum
of |FRαβγδ|; therefore, |X| ≪ R in (2), since higher-order terms in the
deviation equation have been neglected. In the generalized Jacobi equation,
the relative velocity could approach the speed of light; therefore, the relative
motion could evolve rapidly thus further restricting the temporal domain of
validity of equation (2).

Equation (2) can be derived in a straightforward manner using the re-
duced geodesic equation in Fermi coordinates. That is, starting from the
geodesic equation for a free particle in arbitrary coordinates x̂µ = (t̂, x̂i),

d2x̂µ

ds2
+ Γ̂µ

αβ

dx̂α

ds

dx̂β

ds
= 0, (4)

where ds2 = ĝµνdx̂µdx̂ν , one can simply derive the reduced geodesic equa-
tion [1]

d2x̂i

dt̂2
− (Γ̂0

αβ

dx̂α

dt̂

dx̂β

dt̂
)
dx̂i

dt̂
+ Γ̂i

αβ

dx̂α

dt̂

dx̂β

dt̂
= 0. (5)

Specializing this equation now to the Fermi coordinates established along
the reference trajectory, i.e. (t̂, x̂i) 7→ (T,Xi), and using

g00 = −1 − FR0i0j(T )XiXj + · · · ,

g0i = −2

3
FR0jik(T )XjXk + · · · ,

gij = δij −
1

3
FRikjℓ(T )XkXℓ + · · · , (6)

one arrives at the tidal equation for the relative motion, since in these coordi-
nates the reference particle remains fixed at X = 0. Restricting our attention
to the terms given explicitly in (6) and thus neglecting higher-order terms of
the metric in the spatial Fermi coordinates, the tidal equation reduces to the
generalized Jacobi equation (2). We study the main physical consequences
of this equation in the field of a Kerr black hole (see also Appendix A).
Higher-order tidal accelerations are discussed in Appendix B.

Tidal deceleration along the rotation axis is discussed in the next sec-
tion. The non-Newtonian character of our results is emphasized in section 3.
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The analysis of the generalized Jacobi equation is extended to the three-
dimensional case in section 4. Tidal acceleration normal to the rotation axis
is discussed in section 5. Finally, section 6 contains a brief discussion of our
results.

2 Tidal deceleration

Imagine a Kerr source of mass M and angular momentum J = Ma ẑ at
the origin of an asymptotically inertial coordinate system (t, x, y, z). Here
a > 0 is the specific angular momentum of the source. The metric of Kerr
spacetime can be written in Boyer-Lindquist coordinates as

ds2 = −dt2 + Σ(
1

∆
dr2 + dϑ2) + (r2 + a2) sin2 ϑ dφ2

+ 2GM
r

Σ
(dt − a sin2 ϑ dφ)2, (7)

where Σ = r2+a2 cos2 ϑ and ∆ = r2−2GMr+a2. Asymptotically (r → ∞),
the spherical polar coordinates (r, ϑ, φ) are related to the Cartesian coordi-
nates (x, y, z) in the standard manner. In this paper, we are interested in
the motion of free test particles in the stationary and axisymmetric exterior
Kerr spacetime. Let us first consider geodesic motion along the axis of rota-
tion of the source, i.e. the z-axis. In terms of the Boyer-Lindquist temporal
coordinate t and radial coordinate r, the motion of a free test particle along
the rotation axis is given by

dt

dτ
= γ

r2 + a2

r2 − 2GMr + a2
,

dr

dτ
= ±

√

γ2 − 1 +
2GMr

r2 + a2
, (8)

where τ is the proper time along the path and γ > 0 is a constant of
integration. For γ < 1, the test particle cannot escape the gravitational
attraction of the source. When the test particle can escape to infinity, γ ≥ 1
and γ is its Lorentz factor at spatial infinity. In the limiting case of γ = 1, the
test particle approaches infinity with zero speed. We assume in the following
that there are many such outward moving test particles with γ = 1 in the
neighborhood of the rotation axis of the Kerr source forming an ambient
medium around the rotating source. Relative to this ambient medium, we
wish to study the motion of an ultrarelativistic jet emitted outward from a
region near the source along the axis of rotation.

Consider a jet clump starting from r0 and moving rapidly along the z-
axis according to equation (8) with γ > 1. This relative motion is properly
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described in the first approximation using the generalized Jacobi equation
(1) expressed in Boyer-Lindquist coordinates. To compare the consequences
of such an equation with astronomical data regarding the motion of jets, it
is appropriate to transform this equation to a quasi-inertial Fermi normal
coordinate system that is established along the reference trajectory. The
explicit relationship between the Boyer-Lindquist coordinate system of Kerr
spacetime and the Fermi system is not needed for the derivation of the
equation of relative motion in Fermi coordinates (2). We therefore proceed
keeping in mind that the radial coordinate r of the jet clump is a function of
the Fermi coordinates, r = r(T,Z), but that this relationship shall remain
implicit throughout this work.

Along the worldline of a generic outward moving test particle with γ = 1
on the rotation axis, we establish a Fermi coordinate system (T,X, Y, Z)
based on an orthonormal nonrotating (i.e. Fermi-Walker transported) tetrad
frame. The free test particle follows a geodesic; therefore, Fermi-Walker
transport reduces to parallel transport in this case. The Fermi coordinates
of the reference particle are then (τ, 0, 0, 0), i.e. the reference particle is at
the spatial origin of the Fermi coordinates. The quasi-inertial Fermi system
is the one appropriate for the comparison of the theory with observation as
well as Newtonian physics [3]. In fact, the speed of a jet is determined by
monitoring the motion of a jet clump with respect to neighboring “fixed”
features of the ambient medium [4]. The motion of the jet clump relative to
the reference particle in the Fermi system is given by the tidal equation [1]

d2Z

dT 2
+ k(1 − 2V 2)Z + O(Z2) = 0, (9)

where V = dZ/dT and the curvature k = FR0303 is given by

k = −2GM
r(r2 − 3a2)

(r2 + a2)3
. (10)

Here r is the Boyer-Lindquist radial coordinate of the reference particle and
r(T ) can be determined from the integration of the second equation in (8)
with γ = 1, τ = T and dr/dT > 0. We will be concerned with regions along
the rotation axis such that r2 ≫ 3M2 ≥ 3a2, so that k < 0. Solving equation
(8) with γ = 1 and τ → T for r(T ) and substituting this in equation (10)
gives us the appropriate k(T ) to use in the tidal equation (9). Let us note
that equations (8)–(10) are valid for any free reference particle moving along
the rotation axis of the Kerr source.

The specific angular momentum of the source J/M = a appears in equa-
tions (8) and (10) as a2, so that these equations are invariant under the
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transformation a 7→ −a. This implies that the sense of rotation of the black
hole is of no consequence for the phenomena described in this section. This
is consistent with the double-jet structure observed in astrophysics. It is
therefore sufficient to treat only the motion of particles moving outward
above the north pole of the black hole.

It is important to mention here that the main results of this work are
independent of the precise nature of the massive source. For the sake of
concreteness, we have assumed that the source is a Kerr black hole with
a ≤ GM . Moreover, we will concentrate on a jet clump launched from
r0 ≫ GM and moving along the positive z-axis. However, equations (8)–
(10) depend upon a in terms of a2/r2, which is very small for r ≥ r0 ≫ a.
In fact, our main results are insensitive to the ratio a/(GM). That is, our
main conclusions remain the same even if the source is spherically symmetric
(a = 0) and the jet clump is launched along a radial direction.

The tidal equation (9) in principle contains an infinite series in powers
of the quantity Z/R, where R is the effective radius of curvature such that
R−2 = |k|. For regions of interest in this work k ≈ −2GM/r3 and hence

R ≈
√

r3

2GM
. (11)

Starting from r = r0 corresponding to Z = 0 at T = 0, we integrate equation
(9) with a given initial V0 = V (0) > 0. For a highly relativistic jet clump, the

initial Lorentz factor Γ0 = (1− V 2
0 )−

1

2 is such that Γ0 ≫ 1. The integration
time T must be limited such that Z(T ) ≈ T < R0, where R0 is given by
equation (11) at r = r0. It is important to note that the endpoint of the
integration is only known implicitly in terms of the Boyer-Lindquist radial
coordinate r. There is, of course, a definite relationship between the Boyer-
Lindquist coordinates and the corresponding Fermi coordinates. However,
this relationship remains implicit here; making it explicit would immediately
imply that we know the tidal equation (9) to all orders [1].

The first-order approximation of the tidal equation corresponds to the
generalized Jacobi equation,

d2Z

dT 2
+ k(1 − 2V 2)Z = 0. (12)

This equation has solutions corresponding to V = ±1/
√

2, or Γ := (1 −
V 2)−

1

2 =
√

2, where the jet moves with uniform speed relative to the refer-
ence particle. For our reference particle with γ = 1, these special solutions
are attractors [1, 2]. Starting near the Kerr black hole and moving along

7



2 4 6 8 10

20

40

60

80

100

Figure 1: Plot of the Lorentz factor Γ versus T/(GM) based on the inte-
gration of equation (12) with initial data r0/(GM) = 10, Z(0) = 0 and
V (0) =

√

Γ2
0 − 1 /Γ0 for a/(GM) = 1. The graph illustrates the decelera-

tion of clumps with initial Lorentz factors Γ0 = 1000, 100 and 10.
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Figure 2: Plot of the Lorentz factor Γ versus T/(GM) based on the inte-
gration of equation (12) with initial data r0/(GM) = 100, Z(0) = 0 and
V (0) =

√

Γ2
0 − 1 /Γ0 for a/(GM) = 0. The graph illustrates the decelera-

tion of clumps with initial Lorentz factors Γ0 = 1000, 100 and 10.
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the positive z-axis, an initially ultrarelativistic jet clump decelerates rapidly
relative to the reference particle (γ = 1 ) according to equation (12). This
initial deceleration and approach to 1/

√
2 is depicted within the domain

of validity of equation (12) in figures 1 and 2 for three clumps with initial
Lorentz factors of Γ0 = 1000, 100 and 10.

The critical speeds ±1/
√

2 that appear in equation (12) correspond to
the critical Lorentz factor Γc =

√
2. A particle of mass m with a Lorentz

factor of Γc has kinetic momentum m, hence its de Broglie wavelength equals
its Compton wavelength. For our present purposes, the motion of a particle
is ultrarelativistic if its corresponding Lorentz factor Γ exceeds Γc. For
Γ ≪ Γc, the tidal equation has already been extensively studied in the field
of a Kerr black hole [5, 6].

The novel deceleration effect is thus a consequence of equation (2) re-
stricted to ultrarelativistic motion along a certain straight line. It is there-
fore interesting to consider the application of the generalized Jacobi equation
to the motion of astrophysical jets [1, 2]. Thus imagine a rotating gravita-
tional source with a double jet system moving outward along its axis of
rotation. We have assumed that the Fermi coordinates established along an
ambient trajectory that lies on the axis of rotational symmetry of the source
are such that the axis of rotation is the Z-axis. Concentrating on an ultra-
relativistic jet moving along the positive Z-axis, one finds that equation (2)
in this case involves a remarkably strong initial deceleration followed by a
gradual decline toward a terminal speed given by 1/

√
2. Starting with an

ultrarelativistic jet, this terminal speed is approached asymptotically after
an infinite period of time. On the other hand, the generalized Jacobi equa-
tion is only valid for a rather limited timescale that nevertheless covers the
initial rapid drop in velocity.

Figures 1 and 2 illustrate the main result of this paper regarding tidal
deceleration; therefore, it is worthwhile to develop an approximate analytic
understanding of how this tidal deceleration comes about. To fix our ideas,
we focus attention in what follows on a jet clump with an initial Lorentz
factor Γ0 ≫ 1 moving along the positive z-direction relative to a free test
particle of the ambient medium. At T = 0, Z = 0, i.e. the jet starts from
the position of the reference particle on the z-axis, where

r ≈
(

r
3/2
0 +

3

2

√
2GM T

)2/3
(13)

according to equation (8) with γ = 1 and r(T = 0) = r0 ≫ 2GM . It follows
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that in equation (9),

k ≈ −2
GM

(

r
3/2
0 + 3

2

√
2GM T

)2 . (14)

Starting from equation (12) and writing d2Z/dT 2 = V dV/dZ, it is sim-
ple to show that equation (12) can be completely integrated for a constant
curvature k; in fact, the phase diagram for this case has been given schemat-
ically in figure 2 of [1]. For k = k(T ), however, let us note that

d

dT
ln

(1 − 2V 2

1 − 2V 2
0

)

= 4k(T )V Z. (15)

Since k < 0, it follows form equation (15) that if V 2
0 < 1/2, V 2 increases

toward 1/2, while if V 2
0 > 1/2, V 2 decreases toward 1/2. Integrating equa-

tion (15), we find

ln

(

1 − 2V 2

1 − 2V 2
0

)

= 4

∫ T

0
k(T ′)V (T ′)Z(T ′)dT ′. (16)

To find an approximate solution of this equation we write equation (16) in
the form

ln

(

1 − 2Γ−2

1 − 2Γ−2
0

)

= 4

∫ T

0
k(T ′)V (T ′)Z(T ′)dT ′. (17)

Assuming that Γ ≫ 1 and Γ0 ≫ 1, the left side of equation (17) can be
approximately written as 2(Γ−2

0 − Γ−2). Next, in the integrand of equation
(17) we let V (T ′) ≈ 1 and Z(T ′) ≈ T ′, and note that

∫ T

0
k(T ′)T ′dT ′ ≈ −4

9

[

ln(1 + λ) +
1

1 + λ
− 1

]

(18)

using equation (14). Here λ is defined by

λ =
3

2

√
2GM T

r
3/2
0

, (19)

so that 2λ/3 = T/R0, using equation (11). For λ ≪ 1, one can show that

ln(1 + λ) +
1

1 + λ
≈ 1 +

1

2
λ2 + O(λ3). (20)
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Equations (17)–(20) thus imply that

Γ−2 ≈ Γ−2
0 +

( T

R0

)2
(21)

or V 2 ≈ V 2
0 − (T/R0)

2. This result provides an approximate solution of
equation (12) for Γ0 ≫ 1, Γ ≫ 1 and T ≪ 2R0/3. Indeed, a graph of
equation (21) is almost indistinguishable from the corresponding numerical
solution of equation (12) presented in figures 1 and 2.

To get an estimate of the time T that it would take for a highly relativistic
jet clump with Γ0 ≫ 1 to decelerate to Γ, where Γ2

0 ≫ Γ2 ≫ 1, we note that
λ ≈ 3/(2Γ) once we neglect Γ−2

0 compared with Γ−2. Thus equation (21)
can be written as

T

GM
≈ 1

Γ

√

1

2

( r0

GM

)3
. (22)

It follows that the deceleration time is essentially independent of Γ0. This
remarkable result is already evident from the form of equation (17): for
Γ0 ≫ Γ ≫ 1, the left side of equation (17) is nearly independent of Γ0. In
figure 1, for instance, r0 = 10 GM and the time it takes for Γ to decrease to
Γ ≈ 5 from any initial Γ0 ≫ 5 should be ≈ 2

√
5 GM based on equation (22),

in good agreement with the numerical results of figure 1. Thus no matter
how relativistic the clump may be initially at r0 = 10 GM , it decelerates to
Γ ≈ 5 in a short time of order GM . Moreover, this time is within the limit
of validity of the generalized Jacobi equation, since equation (22) may be
written as

T

R0
≈ 1

Γ
≪ 1. (23)

The difference between figure 1 and figure 2 is a reflection of the fact that the
curvature k decreases as the inverse cube of the radial distance (r ≫ GM)
from the black hole and, using equation (22) for a fixed Γ, T 2 ∝ r3

0, which
is reminiscent of Kepler’s third law.

Thus far we have considered only one reference particle of the ambient
medium with γ = 1. Let us now imagine N such particles all with γ = 1
distributed along the rotation axis of the source and constituting “fixed” fea-
tures of the ambient medium that can be used for reference purposes. More
specifically, let the Boyer-Lindquist radial coordinates ri, i = 1, 2, . . . , N , of
the particles be such that r1 < r2 < . . . < ri < ri+1 < . . . < rN ; moreover,
each interval is small enough that the generalized Jacobi equation is valid
within this interval to a reasonably good approximation. That is, N differ-
ent Fermi frames can be established that are centered on the N particles
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and the generalized Jacobi equation can be applied separately within each
interval [ri, ri+1], so that if the initial speed of the jet clump relative to ri is
more than the terminal speed, the clump continues to decelerate within this
interval, and so on. This is a direct consequence of the remarkable feature
of equations (8)–(10) noted above: they do not explicitly depend on any
specific reference particle with γ = 1. In this sense, the clump decelerates
with respect to the ambient medium toward the terminal speed. As the jet
clump approaches the terminal speed, the first-order tidal term proportional
to 1− 2V 2 in equation (9) approaches zero and hence the higher-order tidal
terms, neglected in equation (9), become dominant. A complete knowledge
of these terms is then required to predict the subsequent evolution of the
flow. It may be that at such a time the clump is sufficiently far from the
black hole that tidal effects become unimportant and plasma forces take
over the dynamics of the clump [2].

Consider now the tidal equation (9) in the nonrelativistic limit |V | ≪
1. The first-order approximation leads in this case to the standard Jacobi
equation, i.e. equation (12) but with 1−2V 2 replaced by unity. As explained
before, for a clump along the rotation axis at r with r2 ≫ 3a2, k ≈ −2GM/r3

just as in Newtonian mechanics. The tidal force of the central source in this
case simply tends to pull the clump and the reference particle apart, leading
to a relative tidal acceleration. The result of the integration of the standard
Jacobi equation is in this case essentially the same as in the Newtonian
theory [5, 6], which is studied in the next section.

3 Comparison with Newtonian gravitation

It is useful to compare the main results of the relativistic approach with the
Newtonian theory of tides, since our main conclusions regarding tidal decel-
eration and terminal speed have no counterparts in the Newtonian approach
and hence violate our “nonrelativistic” intuition.

Let us consider in the background inertial coordinate system (t, x, y, z),
the Newtonian equations of motion of the jet clump at r and the reference
particle at rp along the rotation axis of the source

d2r

dt2
= −GM

r2
,

d2rp

dt2
= −GM

r2
p

. (24)

We are interested in the relative motion; therefore, with ζ = r − rp,

d2ζ

dt2
= − GM

(rp + ζ)2
+

GM

r2
p

. (25)
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For ζ < rp, this equation can be written as

d2ζ

dt2
=

2GM

r3
p

ζ + O(ζ2), (26)

which should be compared and contrasted with equation (9). The higher-
order Newtonian tidal terms are considered in Appendix B.

Let us assume as before that the reference particle has zero energy, so
that its kinetic and potential energies add up to zero; then, (drp/dt)2 =
2GM/rp can be simply integrated and the result is

rp =
(

r
3/2
0 +

3

2

√
2GM t

)2/3
, (27)

where rp = r0 at t = 0. Substituting this result in equation (25), we find to
linear order in ζ

d2ζ

dt2
− 2GM

(

r
3/2
0 + 3

2

√
2GM t

)2
ζ = 0, (28)

which can be solved with boundary conditions that ζ = 0 and dζ/dt = v0

at t = 0. Here v0 > 0 is the initial speed of the jet clump relative to
the reference particle. The radial Newtonian tidal force tends to pull the
particles apart; therefore, ζ̇ = dζ/dt monotonically increases for the duration
of the validity of the approximation used here. This is the complete opposite
of what happens in the relativistic theory for an initially ultrarelativistic
relative speed.

An interesting feature of equation (12) is therefore that the nature of the
tidal force changes depending on whether V 2 is below or above the critical
value V 2

c = 1/2. In fact, for V 2 < 1/2 the tides behave essentially as in
Newtonian mechanics, i.e. the particle accelerates—its speed approaching
1/
√

2 very slowly—relative to the reference particle. The character of the
tides in a model star falling into a Kerr black hole has been investigated
in detail in [5, 6] using the Jacobi equation; the results are similar as in
Newtonian gravitation except possibly when the model star is very close to
the horizon of the black hole. On the other hand, for V 2 > 1/2 the tides
behave in the opposite way (see figures 1 and 2).

Comparing the Newtonian behavior with the consequences of equations
(12)–(14), we recognize the significance of the relativistic tidal accelera-
tion term 2kV 2Z for the difference between the results of the two theo-
ries. Thus tidal deceleration and terminal speed exhibited by (12) are due
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to this gravitomagnetic (i.e. motional) tidal effect that is purely relativis-
tic and thus goes beyond Newtonian gravitation. The higher-order tidal
terms [5, 6, 7] in equation (9) are treated using a certain post-Newtonian
approach in Appendix B.

4 Tidal dynamics

It is interesting to explore the dynamics of the three-dimensional general-
ized Jacobi equation (2) using the same reference trajectory (8) as before.
The components of the curvature tensor in the Fermi coordinate system
established along this worldline are given by [8]

F R0101 = F R0202 = −1

2
k, F R0303 = k, (29)

F R2323 = F R3131 =
1

2
k, F R1212 = −k, (30)

F R0123 = F R0231 = −1

2
q, F R0312 = q; (31)

these are the only nonzero components except, of course, for the symmetries
of the Riemann tensor. Here (0, 1, 2, 3) = (T,X, Y, Z), k is given by equation
(10) and q is directly proportional to the angular momentum of the source
and is given by

q = 2 GMa
3r2 − a2

(r2 + a2)3
. (32)

One can interpret q as the “magnetic” curvature, while k has the interpreta-
tion of “electric” curvature. It is a significant feature of equations (29)–(31)
that they are independent of the Lorentz factor of the reference trajectory
γ. This is a result of the fact that the axis of rotational symmetry in the
Kerr metric provides two special tidal directions—corresponding to ingoing
and outgoing trajectories—such that k and q are independent of any Lorentz
boosts along these directions [9, 10, 11]. These special tidal directions are
related to the repeated principal null directions of the curvature tensor and
therefore the degenerate nature of Kerr spacetime. That is, the special tidal
directions exist at each event in Kerr spacetime, since it is a vacuum space-
time of type D in the Petrov classification [9, 10, 11]. The significance of
such directions in connection with the direction of an astrophysical jet has
been pointed out in [10]: to preserve the collimation of a highly relativistic
jet against tidal disruptions caused by the central source, the most natural
jet direction would be a special tidal direction. Moreover, of all the special

14



tidal directions the Kerr rotation axis has the additional advantage of being
in conformity with the symmetry of the configuration under consideration.

Using equations (29)–(31), it is possible to express equation (2) as

Ẍ − 1

2
kX

[

1 − 2Ẋ2 +
2

3
(2Ẏ 2 − Ż2)

]

+
1

3
kẊ(5Y Ẏ − 7ZŻ)

+q[ẊẎ ŻX − ŻY (1 + Ẋ2) − 2Ẏ Z] = 0, (33)

Ÿ − 1

2
kY

[

1 − 2Ẏ 2 +
2

3
(2Ẋ2 − Ż2)

]

+
1

3
kẎ (5XẊ − 7ZŻ)

−q[ẊẎ ŻY − ŻX(1 + Ẏ 2) − 2ẊZ] = 0, (34)

Z̈ + kZ
[

1 − 2Ż2 +
1

3
(Ẋ2 + Ẏ 2)

]

+
2

3
kŻ(XẊ + Y Ẏ )

−q(XẎ − ẊY )(1 − Ż2) = 0, (35)

where Ẋ = dX/dT , etc. These equations reduce to the one-dimensional
generalized Jacobi equation (12) for X = Y = 0. It is simple to check that
equations (33)–(35) are invariant under the transformations (X,Y,Z; k, q) 7→
(Y,X,Z; k,−q) and (X,Y,Z; k, q) 7→ (X,Y,−Z; k,−q), since q is directly
related to the rotation of the source. Furthermore, equations (33)–(35) are
also invariant under parity or time reversal if in each case we also change q
to −q.

It is interesting to note an important symmetry of the system (33)–
(35) under rotations about the Z-axis. The rotational symmetry about
the direction of the motion of the reference particle implies that there is a
degeneracy in the choice of the X and Y axes of the tetrad frame of the
reference observer. Once an orthonormal tetrad is chosen, however, it is
then parallel transported along the reference worldline. Nevertheless, the
axial symmetry of the configuration under consideration implies that under
a rotation about the Z-axis with a constant azimuthal angle φ0,

X ′ = X cos φ0 + Y sinφ0, (36)

Y ′ = −X sinφ0 + Y cos φ0 (37)

and Z ′ = Z, the system (33)–(35) remains invariant. This symmetry can, of
course, be checked directly; for instance, for φ0 = π/2 we have X ′ = Y and
Y ′ = −X and it is simple to see that the transformation (X,Y ) 7→ (Y,−X)
leaves the system (33)–(35) invariant.

To express k and q as functions of the time T , we need an explicit
solution for the trajectory (8). To this end, we set γ = 1 as before and
integrate dr/dT =

√
2GMr/

√
r2 + a2 with the initial condition that r = r0
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at T = 0, where r2
0 > 3a2. We have thus far focused our attention on an

ultrarelativistic jet clump that is launched from (X,Y,Z) = 0 at T = 0
exactly along the rotation axis of the source such that X and Y remain zero
throughout the flow. What happens if the jet is not launched exactly along
the Z-axis? To answer this question, we must study the linearization of
equations (33)–(35) about a solution Z = Z(T ) of equation (12).

To obtain the linearization of system (33)–(35) around the motion of an
ultrarelativistic clump along the axis of symmetry, we keep only terms linear
in X, Ẋ , Y and Ẏ and find that

Ẍ − 7

3
k(ZŻ)Ẋ − 1

2
k(1 − 2

3
Ż2)X = q(ŻY + 2ZẎ ), (38)

Ÿ − 7

3
k(ZŻ)Ẏ − 1

2
k(1 − 2

3
Ż2)Y = q(ŻX + 2ZẊ), (39)

while the third equation simply reduces to equation (12).
At any given time T , the new system (38)–(39) represents two damped

harmonic oscillators that are coupled through the magnetic curvature q,
i.e. the coupling is due to the rotation of the source; moreover, the system
decouples if it is transformed to the new variables X ± Y . It is possible to
obtain a simple analytic solution of this system that is linearized about the
solution (22) of equation (12), which amounts to Z(T ) ≈ R0w(1 − w2/6)
with w = T/R0. Writing

k ≈ − 1

R2
0

[1 − 3w + O(w2)], q ≈ 3
a

r0R2
0

[1 − 4w + O(w2)] (40)

for 0 < w < 1, we find from equations (38)–(39) that

X(T ) = Ẋ(0)TF (
T

R0
) +

3

2

a

r0
Ẏ (0)TH(

T

R0
), (41)

Y (T ) = Ẏ (0)TF (
T

R0
) +

3

2

a

r0
Ẋ(0)TH(

T

R0
), (42)

where only terms linear in a/r0 ≪ 1 are taken into account and F and H
are given by

F (w) = 1 − 5

12
w2 +

5

8
w3 + O(w4), H(w) = w2 − 2w3 + O(w4). (43)

These results, which are approximately valid for Γ0 ≫ 1 and T ≪ R0,
provide insight into the general behavior of the flow near the jet that moves
along the Z-axis.
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Figure 3: Plot of the Lorentz factor Γ versus T/(GM) based on integration
of equation (44) with initial data X = 0 at T = 0 with Ẋ(0) = 2

√
6/5,

3
√

11/10,
√

399/20 and 7
√

51/50 corresponding respectively to Γ0 = 5, 10,
20 and 50. In this plot a/(GM) = 1 and r0/(GM) = 10. The graph
illustrates acceleration of the particle such that Γ essentially approaches
infinity at T/(GM) ≈ 3.9, 1.8 and 0.7 for Γ0 = 10, 20 and 50, respectively.
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Figure 4: Plot of the Lorentz factor Γ versus T/(GM) based on integration
of equation (44) with initial data X = 0 at T = 0 with Ẋ(0) = 2

√
6/5,

3
√

11/10,
√

399/20 and 7
√

51/50 corresponding respectively to Γ0 = 5, 10,
20 and 50. In this plot a/(GM) = 0 and r0/(GM) = 100. The graph
illustrates acceleration of the particle such that Γ essentially approaches
infinity at T/(GM) ≈ 55 and 21 for Γ0 = 20 and 50, respectively.
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The axial symmetry of the system (33)–(35) under rotation about the
Z-axis implies that it would be advantageous to express this system in cylin-
drical coordinates. This is done in Appendix A, where an approximate con-
stant of the motion for the system (33)–(35) is also derived based on axial
symmetry.

An important feature of equations (33)–(35) is that for Y = Z = 0, this
system reduces to

Ẍ − 1

2
kX(1 − 2Ẋ2) = 0. (44)

This equation has the same form as equation (12) except that the nega-
tive curvature k in (12) is replaced by −k/2. It follows that a particle
launched from (X,Y,Z) = 0 along the X-direction with a speed above
the critical speed 1/

√
2 is accelerated as in figures 3 and 4. It is a con-

sequence of the axial symmetry of the system (33)–(35) that the form of
equation (44) is generic for motion along any direction perpendicular to the
Z-axis (see Appendix A).

Equation (44) again contains the critical speed 1/
√

2. In this approx-
imation, if the initial speed is below this critical value, then the particle
starting with a positive initial velocity decelerates over time intervals that
are much longer than those corresponding to the validity of the approxima-
tion. While the asymptotic behavior of the system has no physical meaning,
one can show that the trajectories in the phase plane spiral around the
origin.

If the initial speed is above the critical value, then the particle acceler-
ates and its Lorentz factor approaches infinity in finite time. In the latter
case, it is interesting to extend our analytic approximation scheme involving
equations (12)–(23) in section 2 for Γ0 ≫ 1, Γ ≫ 1 and T ≪ 2R0/3 to
equation (44) by the simple substitution k 7→ −k/2. Instead of (21), we get

Γ−2 ≈ Γ−2
0 − 1

2

( T

R0

)2
, (45)

which implies that Γ diverges at

Td

GM
≈ 1

Γ0

( r0

GM

)3/2
. (46)

As expected, Td is inversely proportional to Γ0 for a fixed r0. For Γ0 =
10, 20 and 50 in figure 3, equation (46) predicts that Td/(GM) ≈ 3.16,
1.58 and 0.63, which compare favorably with 3.9, 1.8 and 0.7 obtained by
the numerical integration used to produce the figure. Similar results are
obtained for figure 4; for instance, Td/(GM) ≈ 50 and 20 for Γ0 = 20
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and 50, respectively, which should be compared with 55 and 21 based on
numerical results presented in figure 4. The approximation (46) improves
as Γ0 increases.

The phase diagram for equation (44) in the case of constant curvature
is given in figure 3 of [1]. It follows from this equation that

d

dT
ln

(1 − 2V 2

1 − 2V 2
0

)

= −2k(T )V X, (47)

which can be obtained from (16) by k 7→ −k/2. The left side of equation (47)
is positive; therefore, if V 2

0 < 1/2, then V 2 decreases toward zero. Moreover,
if V 2

0 > 1/2, then V 2 monotonically increases with time.
It is important to compare and contrast figures 3 and 4: the curvature is

weaker for larger r0; therefore, for a given initial Γ0, it takes longer for the
particle’s speed to reach unity (Γ → ∞). In fact, T 2

d ∝ r3
0 from equation (46),

as can be verified based on the data given for figures 3 and 4.

5 Tidal acceleration

We have demonstrated in the previous section that tidal acceleration can
occur in directions perpendicular to the Z-axis if the speed of the clump
exceeds the critical speed of 1/

√
2. In the three-dimensional case, motion

relative to the standard reference trajectory can occur in X, Y and Z direc-
tions. The main factors responsible for reversing the Newtonian behavior of
the tides along these directions are

νX =
[

1 − 2Ẋ2 +
2

3
(2Ẏ 2 − Ż2)

]

T=0
, (48)

νY =
[

1 − 2Ẏ 2 +
2

3
(2Ẋ2 − Ż2)

]

T=0
, (49)

νZ =
[

1 − 2Ż2 +
1

3
(Ẋ2 + Ẏ 2)

]

T=0
, (50)

based on equations (33)–(35). For instance, νX < 0 would imply that the
character of the motion along the X-direction could be opposite of that
expected from the Newtonian gravitation theory.

Observe that νX and νY cannot both be negative. This follows from the
inequality νX + νY > 0, since

1

2
(νX + νY ) =

1

3
(1 − Ẋ2 − Ẏ 2)T=0 +

2

3
(1 − Ż2)T=0, (51)
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θ

Z

Figure 5: Schematic representation of the boundary cone separating the re-
gions of relative deceleration and acceleration. Particles whose initial veloci-
ties are inside the critical velocity cone decelerate; particles whose velocities
are outside the cone accelerate. The critical angle θ is such that cos2 θ = 1

3
and hence P2(cos θ) = 0, where P2(x) = (3x2 − 1)/2 is the Legendre poly-
nomial of the second order. This angle is known in physics as the “magic
angle” and occurs in several different contexts such as, for instance, NMR
spectroscopy.
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where the right side is a sum of two manifestly positive terms. Moreover,
inspection of equations (48)–(50) reveals that

νX +
5

3
> 0, νY +

5

3
> 0, νZ + 1 > 0. (52)

On the other hand, it is in general possible to have νZ < 0 and either νX or
νY also negative. An example of this situation is provided by the motion of
a particle starting from the origin at T = 0 with velocity components given
by Ẋ =

√

19/60, Ẏ = 0 and Ż =
√

5/3. While the dynamics of this case is
complicated, numerical experiments show that Γ slowly decreases with time.

It follows from these results that highly relativistic particles emitted
near a gravitationally collapsed configuration are accelerated along direc-
tions normal to the rotation axis and hence immediately leave the black
hole environment, while highly relativistic particles emitted along the rota-
tion axis are decelerated and appear as jets. If the collapsed configuration
is nonrotating, then deceleration occurs along the radial direction and ac-
celeration occurs in directions normal to the radial direction.

We have performed a series of numerical experiments to delineate the
regions of acceleration and deceleration of particles relative to the refer-
ence particle. The results are represented in figure 5. For r0/(GM) = 100,
numerical experiments show that θ is independent of Γ0 and is given approx-
imately by tan θ =

√
2, so that θ ≈ 54.7◦. In our numerical experiments, θ

remained approximately constant for Γ0 ≥ 5 and 5 ≤ r0/(GM) ≤ 100.
To see how this comes about from an approximate analytical point of

view, we consider equations (33)–(35) in cylindrical coordinates, namely,
equations (A2)–(A4). It follows from our numerical experiments that the
influence of the rotation of the source on the relative motion is generally
negligible. To simplify matters, the rotation of the source can therefore be
neglected and we then confine our considerations to the (ρ, Z)-halfplane,
since ϕ̇ = 0 is a solution of equation (A3) with q = 0. Thus the equations
of motion reduce to

ρ̈ − 1

2
kρ = −kQρ, (53)

Z̈ + kZ = −kQZ , (54)

where −k > 0 and

Qρ = ρ(ρ̇2 +
1

3
Ż2) − 7

3
ρ̇ZŻ, (55)

QZ = Z(
1

3
ρ̇2 − 2Ż2) +

2

3
ρρ̇Ż. (56)
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If we set Qρ = QZ = 0, equations (53) and (54) reduce to the standard
Jacobi equation; therefore, the special deceleration/acceleration phenomena
discussed in this work come about as a consequence of the existence of
nonzero Qρ and QZ .

Let us now consider a particle starting out at time T = 0 from the
position of the reference particle at ρ = Z = 0. We will predict the motion
of the test particle, determined by equations (53) and (54), in case its initial
velocity vector is (ρ̇, Ż) = (V0 sin θ, V0 cos θ), where 0 < V0 < 1 and the
initial velocity vector makes an angle θ with respect to the Z-axis. To do
this, we let the function α be defined by

ρ(T ) = α(T )Z(T ), (57)

substitute equation (57) in equation (53) and use equation (54) to obtain
the differential equation

α̈Z + 2α̇Ż − 3

2
αkZ +

1

3
α̇kZ2(2αρ̇ − 7Ż) = 0. (58)

The Taylor expansions

α(T ) = (1 + α1T +
1

2
α2T

2 + · · · ) tan θ, (59)

Z(T ) = (V0 cos θ)T + · · · , (60)

k(T ) = −R−2
0 (1 − 3

R0
T + · · · ), (61)

may be employed in equation (58) to show that

α1 = 0, α2 = −1

2
R−2

0 . (62)

Thus for T ≪ R0, neglecting terms of second order and higher in T/R0

compared to unity, the particle trajectory is such that

ρ = Z tan θ, ρ̇ = Ż tan θ (63)

are approximately valid. Plugging these relations in equations (55) and (56),
we find that for T ≪ R0,

Qρ = ρŻ2(tan2 θ − 2), (64)

QZ = ZŻ2(tan2 θ − 2). (65)

For tan2 θ < 2, we have deceleration, while for tan2 θ > 2, we have accel-
eration according to equations (53) and (54). Thus the boundary region is
given by tan2 θ = 2, as illustrated in figure 5.
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6 Discussion

In this paper, we are interested in some of the observable consequences
of general relativity involving ultrarelativistic flows near a gravitationally
collapsed configuration. The measurement problem in general relativity is
rather subtle. Suppose, for instance, that in the background of Kerr space-
time one succeeds in solving certain covariant equations of magnetohydrody-
namics (MHD) in Boyer-Lindquist coordinates. Though possibly interesting,
this result per se may have little to do with understanding the observable

consequences of general relativistic MHD in this case. As a first step, we
therefore concentrate on an invariant characterization of the dynamics of
free particles in the exterior Kerr spacetime; in particular, we study relative

motion in the simplest possible situation, namely, the motion of free parti-
cles relative to a certain fiducial class of particles moving freely on escape
trajectories along the rotation axis of the Kerr source. The relative motion
of two nearby free particles is then determined by the generalized Jacobi
equation.

The generalized Jacobi equation has been known for three decades [5],
but its physical consequences for relativistic relative motion have only re-
cently received attention [1, 2]. An important issue regarding the generalized
Jacobi equation is that for ultrarelativistic relative motion, the duration of
validity of this equation is rather short. However, we have shown that even
within this limit, for ultrarelativistic outward motion along the rotation axis
of a Kerr black hole, there is a remarkably strong initial tidal deceleration
relative to the ambient medium regardless of the value of Γ0 ≫ 1. To go
beyond this initial deceleration, let us note that a significant feature of our
basic equations (8)–(10) is that they do not explicitly depend on the refer-
ence trajectory corresponding to a “fixed” marker in the ambient medium.
One can therefore imagine a number of such markers along the path of the
jet such that from one marker to the next, the integration of equation (12)
describes the force-free jet deceleration to a good approximation. In this
way, one may approach the terminal speed of the jet by referring the jet
motion to different markers. So long as the jet speed relative to any nearby
ambient marker is significantly greater than 1/

√
2, it tends to decrease to-

ward this terminal speed.
It is possible to view the terminal speed in another way. Along a radial

direction far from a massive source, its tidal influence on two neighboring
test particles is a tidal acceleration if the relative speed of the particles is sig-
nificantly below 1/

√
2. However, this influence turns to a tidal deceleration

if the relative speed is significantly above 1/
√

2.
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We have neglected plasma effects in this paper; in fact, our treatment is
valid for a force-free plasma. If the plasma is not force-free, the inclusion of
its effects would enormously complicate matters [2, 12]. In any case, tidal
deceleration is most effective very close to the central source, where the jet
originates. Moreover, it is expected to be more significant for microquasars,
since tidal effects near a black hole generally decrease as the inverse square
of the mass of the source. Thus the results of this paper may well play a
significant role in the dynamics of jets, especially in microquasars [4]. More
generally, this work may be of interest in connection with the astrophysics
of energetic particles such as the ultrahigh energy cosmic rays.

Let us now turn to the motion of a particle normal to the rotation axis of
the black hole. Relative to the reference particle, the particle accelerates if
its initial speed exceeds the critical speed 1/

√
2. For ultrarelativistic relative

motion, this tidal acceleration can lead to ultrahigh energy particles accord-
ing to the generalized Jacobi equation; more generally, particle acceleration
occurs outside a cone of angle θ, where the polar angle θ is measured from
the Z-axis and tan θ ≈

√
2. As the particle accelerates beyond the Fermi

system, one can in principle use other overlapping coordinate systems to
describe the motion over an extended period of time. On the other hand,
the tidal effects of the black hole diminish rapidly with increasing distance
and hence the influence of the black hole can be neglected once the particle
has moved sufficiently far away.

The rotation of the source leads to a preferred radial direction, i.e. the
axis of rotation, but is otherwise of little importance for the tidal dynam-
ics presented in this paper. This remark applies equally well to the exact
nature of the source, except that our results become physically significant
near gravitationally collapsed objects, where tidal accelerations can be sub-
stantial.

The nature of the accretion mechanisms that create ultrarelativistic par-
ticles near black holes is beyond the scope of our investigation. The analysis
presented in this paper based on the generalized Jacobi equation indicates
that once such particles are created near the poles of the black hole, those
propagating mainly along the rotation axis of the black hole decelerate with
respect to the ambient medium, while those propagating mainly normal to
this axis can accelerate to almost the speed of light.

The loss of kinetic energy for the motion of an initially ultrarelativistic
particle along the rotation axis and the gain in kinetic energy for motion nor-
mal to this axis may be attributed, in analogy with Newtonian gravitation,
to the change in the gravitational potential energy, which is the tidal energy
in the case under consideration in this paper. The underlying assumption
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here is that the perturbation of the background geometry caused by the
motion of the test particle may be neglected. This breaks down, however,
when the particle is accelerated to almost the speed of light; therefore, the
back-reaction on the motion is expected to moderate this singularity lead-
ing to an ultrahigh energy particle. More generally, the gravitational and
electromagnetic (in case of charged particles) radiations emitted by the de-
celerating/accelerating particles should be taken into account as well. The
tidal acceleration mechanism may provide the key to the explanation of
recent Chandra X-ray observations of the Crab Nebula.

It is well known that primary ultrahigh energy cosmic ray protons with
energies above 1020 eV from extragalactic sources are expected to inter-
act with the cosmic microwave background photons resulting in photopion
production and pair creation [13, 14]. Therefore, it may be reasonable to as-
sume that the most energetic particles that reach the solar system originate
within our galaxy (see [15] for a recent review of cosmic ray astrophysics).
In view of the foregoing results, it would be interesting to determine whether
the directional distribution of the ultrahigh energy cosmic rays is correlated
with the known microquasars, taking due account of the directionality of
the acceleration zones normal to the jet directions.

Appendix A Cylindrical coordinates

In system (33)–(35), let us introduce the cylindrical coordinates ρ, ϕ and Z,
where

X = ρ cos ϕ, Y = ρ sin ϕ. (A1)

The resulting system is given by

ρ̈ − ρϕ̇2 − 1

2
k[ρ(1 − 2ρ̇2 +

4

3
ρ2ϕ̇2 − 2

3
Ż2) +

14

3
ρ̇ZŻ]

+qρϕ̇(ρρ̇Ż − 2Z) = 0, (A2)

ρϕ̈ + 2ρ̇ϕ̇ +
1

3
kρϕ̇(5ρρ̇ − 7ZŻ) + q[2ρ̇Z + ρŻ(1 + ρ2ϕ̇2)] = 0, (A3)

Z̈ + k{Z[1 +
1

3
(ρ̇2 + ρ2ϕ̇2) − 2Ż2] +

2

3
ρρ̇Ż}

−qρ2ϕ̇(1 − Ż2) = 0. (A4)

This system depends on ϕ only through ϕ̇ and ϕ̈ and is therefore invariant
under ϕ 7→ ϕ + constant, which again reflects the axial symmetry of the
system.
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A remarkable feature of system (A2)–(A4) is that for ϕ̇ = 0 and Z = 0,
the system reduces to purely radial motion given by

ρ̈ − 1

2
kρ(1 − 2ρ̇2) = 0, (A5)

which is the same form as equation (12) except for k 7→ −k/2. This rever-
sal of sign of the curvature leads to the acceleration of an ultrarelativistic
particle that is launched from ρ = 0 in a direction normal to the Z-axis as
illustrated in figures 3 and 4.

It has been shown in [1] that the tidal equation is derived from a La-
grangian given in Fermi coordinates by

L = −
√

−g00 − 2g0iV i − gijV iV j , (A6)

where the metric components in Fermi coordinates are given by equation (6).
Using equations (29)–(31), it is possible to show that in our approximation
the Lagrangian reduces to

L̃ = −
√

1 − Ẋ2 − Ẏ 2 − Ż2 − 1

2
k(T )S − 2q(T )(XẎ − ẊY )Z , (A7)

where S(X,Y,Z, Ẋ , Ẏ , Ż) is given by

S = X2+Y 2−2Z2+
2

3
(XẎ −ẊY )2− 1

3
(XŻ−ẊZ)2− 1

3
(Y Ż− Ẏ Z)2. (A8)

Expressed in cylindrical coordinates, L̃ takes the form

L̃ = −
√

1 − ρ̇2 − ρ2ϕ̇2 − Ż2 − 1

2
k(T )Ψ − 2q(T )ρ2ϕ̇Z , (A9)

where

Ψ = ρ2 − 2Z2 +
1

3
ρ2(2ρ2 − Z2)ϕ̇2 − 1

3
(ρŻ − ρ̇Z)2. (A10)

Here ϕ is a cyclic coordinate; therefore,

Pϕ =
∂L̃

∂ϕ̇
(A11)

is an approximate constant of the motion for system (A2)–(A4) given by

Pϕ =
[1 + 1

6k(T )(2ρ2 − Z2)]ρ2ϕ̇ + q(T )ρ2Z
√

1 − ρ̇2 − ρ2ϕ̇2 − Ż2 − 1
2k(T )Ψ − 2q(T )ρ2ϕ̇Z

. (A12)

One can interpret Pϕ as a generalized orbital angular momentum about the
Z-axis; its approximate constancy in time is related to the axial symmetry of
the system (A2)–(A4). We do not know if system (A2)–(A4) is Lagrangian.
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Figure 6: Plot of the Lorentz factor Γ versus T/(GM) based on the inte-
gration of equation (B1) with initial data r0/(GM) = 100, Z(0) = 0 and
V (0) =

√

Γ2
0 − 1 /Γ0 for a/(GM) = 0. The graph illustrates the decelera-

tion of clumps with initial Lorentz factors Γ0 = 1000, 100 and 10.

Appendix B Higher-order tidal accelerations

It is in principle possible to obtain the infinite set of higher-order tidal
accelerations that have been ignored in our analysis thus far. Moreover, we
must impose the requirement that for a timelike geodesic g00 + 2g0iV

i +
gjkV

jV k < 0. The generalized Jacobi equation contains the first-order tidal
terms [5]. Tidal terms of second and third order were first calculated in [6]
and [7], respectively. Based on these previous detailed calculations, the
first two such contributions to equation (9) can be computed and hence the
resulting augmented form of equation (9) is

d2Z

dT 2
= −(k +

1

2
k′Z +

1

6
k′′Z2)(1 − 2V 2)Z +

1

2
(K +

1

3
K ′Z)V Z2

− 2

3
k2(1 + V 2)Z3 + O(Z4). (B1)
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Figure 7: Plot of the Lorentz factor Γ versus T/(GM) based on integration
of equation (B13) with initial data X = 0 at T = 0 with Ẋ(0) = 2

√
6/5,

3
√

11/10,
√

399/20 and 7
√

51/50 corresponding respectively to Γ0 = 5, 10,
20 and 50. In this plot a/(GM) = 0 and r0/(GM) = 100. The graph
illustrates acceleration of the particle such that Γ essentially approaches
infinity at T/(GM) ≈ 63 and 21 for Γ0 = 20 and 50, respectively.
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Here V = dZ/dT , k is given by equation (10) as before and

k′(T ) = FR0303 ; 3 = Rµνρσ ; δ λµ
(0)λ

ν
(3)λ

ρ
(0)λ

σ
(3)λ

δ
(3), (B2)

k′′(T ) = FR0303 ; 33 = Rµνρσ ; δω λµ
(0)λ

ν
(3)λ

ρ
(0)λ

σ
(3)λ

δ
(3)λ

ω
(3), (B3)

K(T ) = FR0303 ; 0 = Rµνρσ ; δ λµ
(0)λ

ν
(3)λ

ρ
(0)λ

σ
(3)λ

δ
(0), (B4)

K ′(T ) = FR0303 ; 30 = Rµνρσ ; δω λµ
(0)λ

ν
(3)λ

ρ
(0)λ

σ
(3)λ

δ
(3)λ

ω
(0), (B5)

along the reference worldline where ∂xµ/∂Xα = λµ
(α). In principle, the

projections of the covariant derivatives of the Riemann curvature tensor of
Kerr spacetime on the tetrad frame of the reference particle evaluated along
its worldline are required for the determination of the higher-order tidal
accelerations. However, for r0 ≫ GM , it is simpler and more instructive
to employ the linear approximation of general relativity as follows. The
linearized Kerr metric in the post-Newtonian framework is given by

ds2 = −(1 + 2Φ) dt2 +
4GJ

r3
(y dx − x dy) dt

+ (1 − 2Φ)(dx2 + dy2 + dz2), (B6)

where Φ = −GM/r is the Newtonian potential. This metric can be written
as gµν = ηµν + hµν , where h00 = −2Φ, hij = −2Φδij and

h0i = −2G
(J × r)i

r3
(B7)

is proportional to the gravitomagnetic vector potential. The Riemann tensor
in the linear approximation is given by

Rµνρσ =
1

2
(hµσ , νρ + hνρ , µσ − hνσ , µρ − hµρ , νσ), (B8)

which can be represented in the standard manner as a symmetric 6×6 matrix
with indices that range over the set {01, 02, 03, 23, 31, 12}. For the linearized
Kerr metric (B6), we have such a representation in terms of symmetric and
traceless 3 × 3 matrices E and B,

[

E B
B −E

]

, (B9)

where E and B are the electric and magnetic parts of the curvature and

Eij = R0i0j = Φ, ij =
GM

r3
(δij − 3

xixj

r2
), (B10)

Bij =
1

2
ǫjkℓR0ikℓ = −3

G

r5
[xiJj + xjJ i + (δij − 5

xixj

r2
)r · J]. (B11)
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In the linear approximation under consideration here λµ
(α) along the

reference worldline in effect reduces to δµ
α in the computation of the Rie-

mann tensor and its covariant derivatives (which reduce to partial deriva-
tives) as measured by the reference particle. It is therefore interesting to
note that along the reference trajectory (x = y = 0, z = r), the Riemann
tensor measured by the reference particle turns out to be identical to equa-
tions (29)–(31) without the a2 terms, as can be verified by direct calculation
using (B10) and (B11).

The rotation of the source plays a rather minor role in the numerical
results of this paper; therefore, for the sake of simplicity we will set J = 0
in the computation of k′, k′′, K and K ′. We find that K = K ′ = 0 and
k = −2GM/r3,

k′ = 6
GM

r4
, k′′ = −24

GM

r5
, (B12)

so that k′ = k , 3 and k′′ = k , 33 along the reference path (z = r). It follows
that the results in equation (B12) agree with the higher-order Newtonian
tidal terms in equation (26). Thus the first term on the right-hand side
of (B1) contains the higher-order Newtonian tidal terms once 1−2V 2 7→ 1 in
the nonrelativistic limit. Equation (B1) can now be integrated with r = r(T )
given by (13); the results of this integration are presented in figure 6, where
the Lorentz factor versus T is given for r0/(GM) = 100 and initial Lorentz
factors 1000, 100 and 10. This figure should be compared and contrasted
with figure 2.

Let us now turn to the higher-order tidal corrections to equation (44).
Based on the detailed treatments in [6, 7], the result is

d2X

dT 2
= −X(1 − 2Ẋ2)(FR0101 +

1

2!
FR0101 ; 1X +

1

3!
FR0101 ; 11X

2)

+
1

2
X2Ẋ(FR0101 ; 0 +

1

3
FR0101 ; 10X) − 2

3
X3(1 + Ẋ2)(FR0101)

2

+ O(X4). (B13)

Using our approximation scheme with J = 0, we find that along the trajec-
tory FR0101 ; 0 = FR0101 ; 10 = 0 and

FR0101 =
GM

r3
, FR0101 ; 1 = 0, FR0101 ; 11 = −9

GM

r5
. (B14)

Equation (B13) can be integrated with r = r(T ) given by (13); the Lorentz
factor versus T is given in figure 7 for r0/(GM) = 100. The results should
be compared and contrasted with those given in figure 4. The terms in
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equations (B1) and (B13) proportional to k2 make negligible contributions
to the numerical work presented in figures 6 and 7, respectively, in agreement
with our approximation scheme.

Within the limit of validity of the tidal equation, the higher-order tidal
terms provide small corrections to the generalized Jacobi equation as in fig-
ures 6 and 7. To demonstrate that the main results of this paper, namely, the
strong initial tidal deceleration of ultrarelativistic flows along the rotation
axis and the acceleration normal to this axis will remain unchanged by the
addition of the higher-order tidal terms, we have integrated equations (B1)
and (B13) with the same initial data as in figures 2 and 4, respectively. The
results are presented in figures 6 and 7, respectively, which appear to be
almost identical to figures 2 and 4, respectively and demonstrate that the
higher-order tidal terms slightly enhance the deceleration effect and tend to
moderate the acceleration effect. For instance, in figure 2, the graph for ini-
tial Γ0 = 100 reaches Γ ≈ 4.63 at T = 100 GM , while in figure 6 it reaches
Γ ≈ 3.44. Nevertheless, figures 6 and 7 demonstrate that the inclusion of
higher-order tidal terms will not change the main results of this work.

Concerning the tails in figures 1, 2 and 6, we note that so long as the
initial Γ0 is well above the critical value of

√
2, a temporal interval of inte-

gration can be found such that the flow decelerates as described in detail in
this paper. However, the size of this temporal interval of validity decreases
as the flow speed approaches the critical speed. Thus sufficiently close to
the critical speed our approach loses its validity. Moreover, based on the
available terms of the tidal equation (B1), it is clear that the critical speed
1/
√

2 is not a feature of the general tidal equation in this case. It follows
that our treatment breaks down when the jet clump decelerates to a speed
sufficiently close to this critical speed. On the astrophysical side, we note
that by the time the clump decelerates close to the critical speed relative to
the ambient medium, the black hole may be sufficiently far from the clump
that tidal effects may no longer play a significant role in the subsequent
motion of the clump.
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