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QUANTIFYING THE EFFECT OF ENVIRONMENTS ON CROP 
EMERGENCE, DEVELOPMENT AND YIELD USING SENSING AND 

DEEP LEARNING TECHNIQUES 
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Dr. Jianfeng Zhou, Dissertation Supervisor 

ABSTRACT 

The world population is estimated to increase by 2 billion in the next 30 years, and 

global crop production needs to double by 2050 to meet the projected demands from rising 

population, diet shifts, and increasing biofuels consumption. Improving the production of 

the major crops has become an increasing concern for the global research community. 

However, crop development and yield are complex and determined by many factors, such 

as crop genotypes (varieties), growing environments (e.g., weather, soil, microclimate and 

location), and agronomic management strategies (e.g., seed treatment and placement, 

planting, fertilizer and pest management). To develop next-generation and high-efficiency 

agriculture production systems, we will have to solve the complex equation consisting of 

the interactions of genotype, environment and management (G×E×M) using emerging 

technologies. Precision agriculture is a promising agriculture practice to increase 

profitability and reduce environmental impact using site-specific and accurate 

measurement of crop, soil and environment. The success of precision agriculture 

technology heavily relies on access to accurate and high-resolution spatiotemporal data and 

reliable prediction models of crop development and yield. 

Soil texture and weather conditions are important factors related to crop growth and 

yield. The percentages of sand, clay and silt in the soil affect the movement of air and 

water, as well as the water holding capacity. Weather conditions, including temperature, 
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wind, humidity and solar irradiance, are determining factors for crop evapotranspiration 

and water requirements. Compared to crop yield, which is easy to measure and quantify, 

crop development effects due to the soil texture and weather conditions within a season 

can be challenging to measure and quantify. Evaluation of crop development by visual 

observation at field scale is time-consuming and subjective. In recent years, sensor-based 

methods have provided a promising way to measure and quantify crop development. 

Unmanned aerial vehicles (UAVs) equipped with visual sensors, multispectral sensors 

and/or hyperspectral sensors have been used as a high-throughput data collection tool by 

many researchers to monitor crop development efficiently at the desired time and at field-

scale. 

In this study, UAV-based remote sensing technologies combining with soil texture 

and weather conditions were used to study the crop emergence, crop development and yield 

under the effects of varying soil texture and weather conditions in a cotton research field. 

Soil texture, i.e., sand and clay content, calculated using apparent soil electrical 

conductivity (ECa) based on a model from a previous study, was used to estimate soil 

characteristics, including field capacity, wilting point and total available water. Weather 

data were obtained from a weather station 400 m from the field. UAV imagery data were 

collected using a high-resolution RGB camera, a multispectral camera and a thermal 

camera from the crop emergence to before harvesting on a monthly basis. An automatic 

method to count emerged crop seedlings based on image technologies and a deep learning 

model was developed for near real-time cotton emergence evaluation. The soil and 

elevation effects on the stand count and seedling size were explored. The effects of soil 

texture and weather conditions on cotton growth variation were examined using 



xviii 
 

multispectral images and thermal images during the crop development growth stages. The 

cotton yield variations due to soil texture and weather conditions were estimated using 

multiple-year UAV imagery data, soil texture, weather conditions and deep learning 

techniques. 

The results showed that field elevation had a high impact on cotton emergence 

(stand count and seedling size) and clay content had a negative impact on cotton emergence 

in this study. Monthly growth variations of cotton under different soil textures during crop 

development growth stages were significant in both 2018 and 2019. Soil clay content in 

shallow layers (0-40 cm) affected crop development in early growth stages (June and July) 

while clay content in deep layers (40-70 cm) affected the mid-season growth stages 

(August and September). Thermal images were more efficient in identifying regions of 

water stress compared to the water stress coefficient Ks calculated using data of soil texture 

and weather conditions. Results showed that cotton yield for each one of the three years 

(2017-2019) could be predicted using the model trained with data of the other two years 

with prediction errors of MAE = 247 (8.9%) to 384 kg ha-1 (13.7%), which showed that 

quantifying yield variability for a future year based on soil texture, weather conditions and 

UAV imagery was feasible. Results from this research indicated that the integration of soil 

and weather information and UAV-based image data is a promising way to understand the 

effects of soil and weather on crop emergence, crop development and yield. 
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Chapter 1. INTRODUCTION 

1.1 Problem Statement 

Crop production is the function of genotype, environment and management 

(Hatfield and Walthall, 2015). With the development of urbanization, the available 

cultivated land is reducing in recent decades. Moreover, long-term cultivation leads to a 

decline in soil quality (e.g. soil erosion, salinization, nutrient reduction), which affects 

future cultivation (Pennock et al., 2015). Because of the worsening environmental 

problems, freshwater resources are becoming more and more precious. Faced with the 

rapid growth of population, increasing crop yield using less freshwater resources, less input 

under the current situation of soil resources and cultivated land is an important topic. 

Timely monitoring of crop development and accurate estimation of yield are 

important to help improving field management and crop production. The information 

obtained from different crop growth stages can be used to explore environmental impacts 

and nutrient deficiencies. For example, Holman et al. (2016) monitored the wheat plant 

height in five days and found out that the growth rates range from -13 mm /day to 17 mm 

/day subject to four different nitrogen fertilizer treatments. Farmers could understand the 

growth status of crops and make management adjustments through monitoring crop growth 

in critical multi-temporal growth stages.  

Weather, soil texture and irrigation treatment affect crop development and yield. 

Soil texture type is an important soil property related to crop growth (Scherer et al., 2017). 

The size of solid particles can be used to classify soil texture as clay (less than 0.002 mm), 

silt (from 0.002 mm to 0.05 mm) and sand (from 0.05 mm to 2 mm). The percentage of 
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sand, clay and silt content in the soil would affect the movement of air and water, as well 

as the water holding capacity. 

Compared to the crop yield, which is easy to measure and quantify, crop 

development effects due to the soil texture and weather conditions within a growing season 

could be challenging to measure and quantify. Evaluation of crop development by visual 

observation in field-scale is time-consuming and subjective. In recent years, sensor-based 

methods have provided a promising way to measure and quantify crop development 

(Bendig et al., 2015; Hunt et al., 2013). Vegetation indices (VIs) such as normalized 

difference vegetation index (NDVI), chlorophyll vegetation index, triangular greenness 

index, and green red vegetation index can be used to quantify the crop growth status 

objectively. In remote sensing applications, VIs have been widely used for qualitative and 

quantitative evaluation of vegetation cover and its growth. In the visible range of light 

(spectral), the reflectance of green light (as shown in Figure 1.1) of plants is higher than 

that of blue and red (R). Red-edge and near-infrared (NIR) were 2 kinds of invisible light 

(as shown in Figure 1.1), which are in 700-800nm and 800-1000nm. Plants have higher 

reflectance near the infrared, which is obviously different from the reflection of soil 

(similar reflectance from 400 nm to 1000 nm). Moreover, different plants or those in 

different growth conditions reflect different values at red-edge. The slope of the reflection 

curve of crops in the red-edge range can reflect the growth states of crops. Thus, the red-

edge and near-infrared spectral region are of critical importance to describe crop traits 

comparing to visual wavelengths. The difference between NIR and R reflection of healthy 

green vegetation is relatively large because R is strongly absorbed by green plants, while 

NIR is the high reflection and high transmittance, which means that the healthier plants 
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have larger NDVI values (the equation is listed in Table 5.3). NIR and R of rock or bare 

soil are close to each other, so their NDVI was close to 0. Negative NDVI values indicated 

the effects of light and clouds. As for GNDVI (the equation is listed in Table 5.3), the green 

channel is more linked to the chlorophyll and nitrogen content of plants, so it can use to 

estimate vegetation biomass and leaf area index (Hunt et al., 2011). A study found that 

both NDVI and GNDVI were reliable predictors for forage biomass, forage N uptake, grain 

yield, grain N uptake in winter wheat (Moges et al., 2005). As for NDRE (the equation is 

listed in Table 5.3), a study used it as a Canopy Chlorophyll Content Index (CCCI) to 

estimate water and nitrogen stress (Barnes et al., 2000). Unmanned aerial vehicles (UAVs) 

equipped with visual sensors, multispectral sensors and/or hyperspectral sensors have been 

used as a high-throughput data collection tool by many researchers to monitor crop 

development at the desired time efficiently at field-scale (Turner, Lucieer, Malenovský, 

King, & Robinson, 2014).  
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Figure 1.1: Spectral reflection of healthy plants, unhealthy plants and soil (Chang et al., 

2013) 

1.2 Literature review 

Soil and weather affect crop emergence, development and yield 

Since soil texture affects soil water holding capacity, it is one of the more important 

factors that affecting crop development and yield. Forcella et al. (2000) reported that soil 

texture and soil water content affected seedling emergence date and emergence rate. Soil 

texture and soil water content also affected root development (Oosterhuis, 1990). Allen et 

al. (1998) pointed out that during the growing season, weather conditions (i.e. daily 

temperature, wind speed, relative humidity and solar irradiance) at different crop growth 

stages affected the crop evapotranspiration (ET) and water requirements. Models 

calculating the ET (FAO-56) provided in Allen et al. (1998) based on the soil, weather and 

crop growth are widely used for irrigation design and schedule, which calculate from ETo, 

crop coefficient Kc and water stress coefficient Ks. Once the water content in the soil cannot 

satisfy the crop water requirements, crop development would be influenced and those 

influences would eventually be reflected in yield. Many studies found that soil texture (or 

soil ECa) was related to the yield of cotton (Vories et al., 2020), corn (Kitchen et al., 2003; 

Kitchen et al., 2005) and soybean (Jiang and Thelen, 2004; Kitchen et al., 2005).  

Daily weather data determine the water loss due to soil evaporation (E) and crop 

transportation (T) (Allen et al., 1998). Weather parameters of radiation and air temperature 

provide energy for ET, air humidity affects the water stored capability in the air, and wind 

speed that affects the capability of water removal (Allen et al., 1998). Models such as 

Penman-Monteith (PM) model, Hargreaves–Samani (HS) model and Priestly–Taylor (PT) 
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model were widely used for calculating ET based on daily weather parameters (Chia et al., 

2020). Weather conditions of temperature, precipitation and solar radiation had been shown 

to be important effects for yield variability of maize and winter wheat between years 

(Ceglar et al., 2016). Addy et al. (2020) showed that the functional response of crop yield 

to nitrogen application rate varied under different weather conditions between years. Addy 

et al. (2020) showed that the cereal grain yield had different responses to nitrogen 

application under various weather conditions during 1968-2016. Tremblay et al. (2012) 

showed that weather conditions could influence the corn response to nitrogen. Battisti et 

al. (2018) showed that weather condition was an important component for soybean yield 

estimation. Van Bussel et al. (2016) used weather data for long-term (30 years) wheat yield 

estimation. 

Sensor networks for crop monitoring 

To explore the soil and weather effects on crop development and yield, data related 

to soil texture, weather and crop development states are required. Sensor-based in-field 

measurement networks were used for data collection and analysis for crop development 

monitoring due to different environmental conditions.  

Soil texture usually is determined by laboratory analysis, which analyzes the sand, 

clay and silt content. Sensor-based in-field measurements to determine the soil texture have 

been used by some researchers. For example, Sudduth et al. (2005), Stępień et al. (2015) 

and James et al. (2003) reported that the apparent electrical conductivity (ECa) measured 

by mobile sensors was related to clay, sand and silt content. Compared to the traditional 

laboratory methods, sensor-based methods had the advantage of providing dense datasets 

at a lower cost and high efficiency (Sudduth et al., 2005).  
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Crop growth can be monitored with remotely sensed data acquired at various 

platforms (Cheng et al., 2016). Some researchers monitored crop in a large-scale area 

through vegetation indices of satellite images (e.g. NDVI, GNDVI) using vegetation 

indices (Fermont and Benson, 2011). Satellite images are limited by low resolution, the 

influence of the cloud, and predetermined data collection times. The resolution of satellite 

images is generally not high enough for accurate yield estimation. For example, the 

resolution of free or affordable multispectral satellite images such as Sentinel-2 is around 

10 m (Liu, Wang, Skidmore, & Liu, 2018; Singhal, Bansod, Mathew, & Taneja, 2018). 

Commercial sources such as WorldView-3 provide panchromatic imagery with a 0.31 m 

resolution and multispectral imagery with a 1.24 m resolution (Rahman, Robson, & 

Bristow, 2018). However, it is a challenge to acquire images at the desired time of day, 

such as noon when plants may show more symptoms of stresses. For thermal images, the 

resolution is about 60 m -100 m from Landsat (Amazirh et al., 2018) and ASTER (Zhang 

et al., 2017) which is not sufficient for precision decision making in sub-field management 

zones. Meanwhile, atmospheric factors, such as clouds and humidity, make it challenging 

to utilize satellite images for the collection of dynamic and high-resolution crop 

information for field management.  

Ground-based platforms were also used to monitor crop growth by some studies. 

For example, Ni et al. (2018) used a handhold system equipped with a multispectral sensor 

to monitor wheat canopy spectral reflectance. The advantage of the extremely high 

resolution of the ground-based platforms makes them good tools to assess crop emergence. 

For example, Jin et al. (2017) and Liu et al. (2017) used ground vehicle-based imaging 

systems to assess wheat stand count in field conditions. However, ground vehicle-based 
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systems have many limitations when they are used in full-scale crop production, such as 

being slow and affected by ground conditions (e.g., wet soil or narrow-row cropping 

systems). 

Field monitoring with UAV integrated with remote sensors are increasingly used 

in agriculture recently due to the ultra-high spatial frequencies and efficiency of the UAV 

sensing systems (Yang et al., 2017). Some examples include the assessment of wheat 

density (Jin et al., 2017; Sankaran et al., 2015a), cotton uniformity (Feng et al., 2020), and 

stand count in cotton (Chen et al., 2018; Feng et al., 2020), corn (Varela et al., 2018), potato 

(Sankaran et al., 2017) and rapeseed (Zhao et al., 2018). Equipped with proper sensors, 

UAV-based remote sensing systems are able to provide low-cost and high-resolution 

digital surface models (DSMs) and orthomosaic images for researchers and farmers in a 

timely manner (Yang et al., 2017). Du and Noguchi (2017) used a UAV equipped with an 

RGB camera to monitor wheat growth status and estimate yield. UAV can also be used to 

monitor e.g. canopy cover (Chu et al., 2016), crop height (Chang et al., 2017), germination 

rate (Chen et al., 2015). Studies have also used UAV-based remote sensing technologies 

to estimate crop evaporation (Hoffmann et al., 2016b) and crop water status (Romero et al., 

2018) and have quantified water stress (Gago et al., 2017; Hoffmann et al., 2016a; Zhang 

et al., 2019). These studies explored the relationships between VIs and evapotranspiration 

(latent heat flux) calculated by energy balance models, water status measured by pressure 

bomb, ground measured stomatal conductance and sap flow under different irrigation 

treatments. 

Crop monitoring using multi-temporal UAV-based image data attracted a lot of 

attention recently. Multi-temporal image data were mainly used to monitor the growth 
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changes between different growth stages. The growth changes would be different based on 

the different treatment of the crops. For example, different nitrogen fertilizer treatments 

(Yue et al., 2018), different varieties (Pádua et al., 2018), different irrigation treatment 

(Dayananda et al., 2019), conventional tillage and no-tillage system (Ashapure et al., 2019), 

different field elevation and different planting date (Yang et al., 2019). By comparing the 

growth changes, the effect of those different treatments could be explored. The built multi-

temporal model could also use to estimate yield (Yang et al., 2019), biomass (Dayananda 

et al., 2019) and chlorophyll content (Aasen and Bolten, 2018).  

1.3 Problems not been solved 

The need for rapid and accurate emergence assessment in early stage 

Many UAV image studies used similar approaches to process UAV imagery data, 

i.e., using commercial UAV image processing software, such as Agisoft PhotoScan 

(Agisoft LLC, St. Petersburg, Russia) and Pix4D (Pix4D S.A., Lausanne, Switzerland), to 

generate orthomosaic images before further processing. The procedure of generating 

orthomosaic images includes image feature detection, matching, alignment and blending 

based on mosaic blending models as described by Brown and Lowe (2003), which may 

take a very long time (days or weeks) and require extensive computational resources. For 

example, it took more than two weeks to develop an orthomosaic image using 2000 images 

of 4864 × 3648 pixels using Agisoft in one of our projects. The software was running in a 

workstation desktop computer (Model Dell Precision Tower 5810, Dell, Round Rock, TX, 

USA) configured with an Intel Xeon E5 (1630 v3) 3.70 GHz central processing unit (CPU), 

32GB random-access memory (RAM) and an NVIDIA Quadro K1200 4GB graphics 

processing unit (GPU). Crop seedlings are usually small and require high-resolution 
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images to capture sufficient information, which results in a large number of images for 

mosaic processing and makes it challenging to make timely decisions. The challenge in the 

timely processing of imagery data becomes one of the most critical barriers for adopting 

UAV imagery in applications of crop emergence assessment (Forcella et al., 2000; Supak, 

1990). Although leveraging high-performance computing or cloud computing resources 

may provide an alternative solution, it requires expensive and complicated infrastructure 

that may not be feasibly or economically accessible by most users. Therefore, there is a 

pressing need to develop a cost-effective solution for timely image processing and real-

time decision making. 

Current studies related to crop emergence using UAV imagery focus on stand count 

and uniformity (Feng et al., 2020). Crop seedlings were usually segmented by their 

morphological features from the images to estimate the number of seedlings in a certain 

row length or area. The image features include canopy area (total number of green pixels) 

(Gnädinger and Schmidhalter, 2017), leaf polygons (Chen et al., 2018), and major axis 

length (Jin et al., 2017; Zhao et al., 2018). Developing seedling templates based on the 

statistical analysis of seedling geometric shape that is then matched with every single plant 

in images is another way to count seedlings (Koh et al., 2019). However, the shape, size 

and overlap of individual seedlings may vary in a large range (Zhao et al., 2018) due to the 

variation in soil conditions (moisture, temperature, nutrients), cropping system, planting 

depth and seed quality (Egli and Rucker, 2012; Feng et al., 2020). Simple image features 

or their combinations are not sufficient to identify seedlings accurately, which will result 

in large errors in the evaluation of stand count. In addition, most of the published studies 

used seedling clusters (overlapped seedlings) as regions of interest (RoIs) and then 
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developed classification models to estimate the number of seedlings in each RoI. However, 

Feng et al. (2020) found that the number of plants in each RoI was unbalanced and most 

of the RoIs contained one or two seedlings with only a few RoIs containing three or four 

seedlings. Unbalanced data sets could affect the estimation accuracy (Chawla, 2009); 

however, this effect can be potentially reduced by using regression models (Ribera et al., 

2017). 

The need of quantifying the effects of soil, water and weather on plant growth and 

yield 

Even though studies had shown that soil and weather affect crop development and 

yield, the combined effects of soil and weather on crops are complicated. Crops showed a 

different level of weather-sensitive in different regions (Mathieu and Aires, 2018) and 

different growth stages (Addy et al., 2020; Ceglar et al., 2016). Crop development and 

yield also showed different dependence on soil under different years’ weather conditions 

(Feng et al., 2021). Studies had developed many crop models from regions to the global to 

quantify crop development and yield based on weather and soil (Van Bussel et al., 2016). 

The development of those models required more than 10 years of data and generally needed 

a recalibration when used in other regions (Ceglar et al., 2016). Khaki et al. (2020) and 

Khaki and Wang (2019) developed yield prediction models based on weather and soil that 

can work for different states of the USA but needed data of 35 years and 9 years 

respectively. 

Evaluation of high-resolution spatiotemporal crop, soil and weather 

Most of the available literature focusing on a single sensor (RGB or multispectral 

cameras). Some researchers have noticed the prospect of multi-sensors for precision 
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agriculture. Busemeyer et al. (2013) mentioned that a single sensor showed constraints in 

the determination accuracy of more complex traits like biomass yield. No thermal multi-

temporal images or multi-sensors were used in the above literature. The effect of soil 

texture and weather on crop development from emergence to harvest has not been 

sufficiently investigated. 

Integration of emerging data analysis techniques: machine learning and deep learning 

Advanced data processing technology, deep learning (DL), has been increasingly 

used to process imagery data collected in agricultural applications this decade (Kamilaris 

and Prenafeta-Boldú, 2018). Deep learning models have been used to extract hidden 

information from imagery data collected by satellites, UAVs and ground robotic systems 

to monitor crop development and predict yield (Humphrey et al., 2012; Nanni et al., 2017). 

In addition, the multilayer structure of DL models works well for complex nonlinear 

problems (Nielsen, 2015). However, high accuracy prediction and explainable models are 

still not exploring enough under various agriculture application (Adão et al., 2017; 

Kamilaris and Prenafeta-Boldú, 2018). 

1.4 Goals of the study 

The goal of this study is to quantify the effects of soil and weather conditions on 

crop emergence, crop development and yield using sensing and data analytic technologies. 

This study tried to focus on the technologies and methods for extracting features of the 

crop, soil and weather from different sensing systems and tried to use the integrated data 

of soil, weather and images to understand the soil and weather effects on crop emergence, 

crop development and yield.  
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The specific objectives included:  

1) Methods to characterize crop development and yield using UAV-based remote 

sensing and deep learning technologies; 

2) Fusion of different spatiotemporal resolution soil, weather and images data; 

3) Quantification of soil and weather effects on crop development and yield. 

The study would organize the above contents as four majority Chapters: emergence 

evaluation study as described in Chapter 3, soil and elevation effects on crop emergence as 

described in Chapter 4, crop development monitoring study as described in Chapter 5, and 

yield estimation study as described in Chapter 6. 
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Chapter 2. GROUND DATA COLLECTION AND EXPERIMENT 

DESIGN 

2.1 Experimental field  

This study was conducted in a cotton research field at the Fisher Delta Research 

Center of the University of Missouri, located in the upper portion of the Mississippi River 

Delta region near Portageville, MO, USA as shown in Figure 2.1. The experimental site 

includes two sub-fields, i.e., west side and east side (East and West field hereafter). The 

two fields have similar dimensions of approx. 320 m × 160 m with the long dimension in 

the south-north direction. 

 

Figure 2.1: The research site includes two experimental fields (west and east) of similar 

sizes, shown in a Google Earth satellite image captured on Aug. 14, 2019. Higher sand 

content soil regions (i.e. brighter soil color) and variations in crop growth (i.e., degree of 

canopy closure) can be seen. 
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2.2 Soil, field elevation and weather data 

The spatial variability of soil texture in the field is quite large due to both alluvial 

and seismic activities. As soil texture is strongly correlated to ECa (Sudduth et al. 2003), 

soil ECa data were collected on May 9, 2016 using a Veris 3100 instrument (Veris 

Technologies, Salina, KS) following procedures described by Sudduth et al. (2003). The 

elevation variation of the field was measured using a Global Navigation Satellite System 

(GNSS) receiver (Geo 7X, Trimble Navigation Ltd., Westminster, Colorado, USA) and a 

network-based GNSS correction service that provided 10 cm or better accuracy in 2018. 

The field elevation increases from 86.85 m on the north side to 88.37 m above mean sea 

level on the south side, as shown in Figure 2.2.  

 

Figure 2.2: Field elevation. 

Figure 2.3 shows the cumulative precipitation and daily average temperature from 

May 1 to October 31 from 2017 to 2019, retrieved from an approximately 400 m nearby 

weather station (http://agebb. missouri.edu/weather/). 
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Figure 2.3: Cumulative precipitation and the daily average temperature of the 

experimental field from May 1 to October 31 in 2017, 2018 and 2019. The data were 

obtained from a 400 m nearby weather station. The red and purple dashed lines show the 

irrigation dates. Irrigations were on parts of the field as described in Vories et al. (2020) 

The accumulated growing degree days (GDD) were calculated by Eq. 2.1 (Main, 

2012; Thompson et al., 2019): 

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
2

− 15.6                              (2.1) 

where Tmax and Tmin are the highest and lowest temperature (ºC) of each day.  The 

accumulated GDD and the accumulated precipitation in each month from May to October 

are shown in Figure 2.4a-b. The accumulated GDD during 2017 to 2019 were similar to 

the 10-year (2009-2019) average accumulated GDD with the exceptions of being slightly 

lower in Aug. in 2017, higher in May and June 2018 and September 2019 (Figure 2.4a). 

However, the accumulated precipitation in each month from 2017 to 2019 was quite 

variable and different from the 10-year average accumulated precipitation. In the early part 

of the season, precipitation was lower than average in September in 2017 and from May to 

July in 2018, but higher from May to July in 2019 (Figure 2.4b). The highest monthly 

precipitation was in August 2017, September in 2018 but May in 2019. 
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Figure 2.4: Monthly accumulative GDD (a) and monthly accumulative precipitation (b) 

in 2017-2019 with the 10-year (2009-2019) averages 

2.3 Crop management and cotton yield data 

Cotton cultivar PHY 333WRF for 2017E (the east field), PHY 375 WRF for 2018W 

(the west field), PHY 320 WRF for 2019E and PHY 390 WRF (Dow Agrosciences, 

Indianapolis, IN, USA) for 2019W were planted on bedded soil using a commercial planter 

(John Deere 1700, Moline, IL, USA) with a GPS system. The planting dates were May 15, 

2017, May 16, 2018 and May 15, 2019. There were 152 cotton rows on the east side and 

148 cotton rows on the west side with a row spacing of 0.97 m.  

A Valley 6000 center pivot irrigation system with zone control variable rate 

irrigation (VRI; Valley Irrigation, Valley, NE, USA) was used to conduct site-specific 

irrigation based on the needs of crops and different treatments, including no irrigation, that 

was described in Vories et al. (2020). The amount of irrigation water applied to different 

areas of the fields was recorded. As the fields were part of an irrigation study, all treatments 

other than irrigation (e.g., fertility, pest management) were applied uniformly to the entire 

field. 
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Cotton was harvested using a four-row cotton spindle picker (Case IH 2155, Racine, 

WI, USA) on October 6 & 7, 2017, October 12, 2018 and October 10, 2019. An Ag Leader 

Insight yield monitor system (Ag Leader Technology, Ames, IA, USA) recorded geo-

referenced yield data separately for each row on a 1-s interval at approximately 6.5 km h-

1, or approximately 1.8 m of row per data point. The location of each data point was 

determined with a GNSS receiver (GPS 1500, Ag Leader Technology, Ames, IA, USA) 

using wide area augmentation system (WAAS) differential correction, which is expected 

to provide 150–200 mm pass-to-pass accuracy (Ag Leader Technology, 2011) in 2017 and 

2018. An Ag Leader GPS 7500 receiver with TerraStar-C Pro differential correction, with 

pass-to-pass accuracy of 30 – 60 mm (Ag Leader Technology, 2019) was used in 2019. 

The spatially referenced yield data were managed using Ag Leader SMS Basic version 

18.50 and ArcGIS 10.4 for Desktop (Esri, Redlands, CA, USA). 
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Chapter 3. COTTON EMERGENCE EVALUATION AND THE SOIL 

EFFECTS ON EMERGENCE 

3.1 Abstract 

Crop emergence is an important agronomic factor for making field management 

decisions, such as replanting, that are time-sensitive and need to be made at very early 

stages. Crop emergence, evaluated using plant population, stand count and uniformity, is 

conventionally quantified manually, not accurate, and labor and time-intensive. Unmanned 

aerial vehicle (UAV)-based imaging systems are able to scout crop fields rapidly. However, 

data processing can be too slow to make timely decision making. The goal of this study 

was to develop a novel image processing method for processing UAV images in nearly 

real-time. In this study, a UAV imaging system was used to capture RGB image frames of 

cotton seedlings to evaluate stand count and canopy size. Images were pre-processed to 

correct distortions, calculate ground sample distance and geo-reference cotton rows in the 

images. A pre-trained deep learning model, resnet18, was used to estimate the stand count 

and canopy size of cotton seedlings in each image frame. Results showed that the 

developed method could estimate stand count accurately with R2 = 0.95 in the test dataset. 

Similar results were achieved for canopy size with an estimation accuracy of R2 = 0.93 in 

the test dataset. The processing time for each image frame of 20 M pixels with each crop 

row geo-referenced was 2.22 s (including 1.80 s for pre-processing), which was more 

efficient than traditional mosaic-based image processing methods. An open-source 

automated image-processing framework was developed for cotton emergence evaluation 

and is available to the community for efficient data processing and analytics.  
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3.2 Introduction 

Crop emergence is an important agronomic factor for field management in early 

stages, which can be assessed using plant population, stand count, uniformity and seedling 

size (Sansone et al., 2002; Supak, 1990). Accurate and timely assessment of crop stand 

count and seedling size at the emergence stage may help farmers make important field 

management decisions (e.g., replanting) to reduce production loss (Goodell et al., 2015). 

Acquisition of high-resolution site-specific crop emergence information is the baseline for 

implementing precision field management. Meanwhile, accurate crop emergence 

information can be used to understand the impact of soil and environment on crop 

emergence (Forcella et al., 2000; Ghassemi-Golezani and Dalil, 2014). Conventionally, 

crop stand count is assessed through visual observation (manual counts) in a small number 

of sampling sites (Wiles and Schweizer, 1999), which is time-consuming, labor-intensive, 

and not suited to cover a large production field.  

To improve efficiency and accuracy, advanced proximal and remote sensing 

technologies have been developed to assess crop emergence. For example, Jin et al. (2017) 

and Liu et al. (2017) used ground vehicle-based imaging systems to assess wheat stand 

count in field conditions. However, ground vehicle-based systems have many limitations 

when they are used in full-scale crop production, such as being slow and affected by ground 

conditions (e.g., wet soil or narrow-row cropping systems). In recent years, unmanned 

aerial vehicle (UAV)-based imaging technology has been tested as a high-throughput tool 

for crop emergence assessment in various crops as summarized by Feng et al. (2020). Some 

examples include the assessment of wheat density (Jin et al., 2017; Sankaran et al., 2015), 
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cotton uniformity (Feng et al., 2019a), and stand count in cotton (Chen et al., 2018; Feng 

et al., 2019a), corn (Varela et al., 2018), potato (Sankaran et al., 2017) and rapeseed (Zhao 

et al., 2018).  

The published studies used similar approaches to process UAV imagery data, i.e., 

using commercial UAV image processing software, such as Agisoft PhotoScan (Agisoft 

LLC, St. Petersburg, Russia) and Pix4D (Pix4D S.A., Lausanne, Switzerland), to generate 

orthomosaic images before further processing. The procedure of generating orthomosaic 

images includes image feature detection, matching, alignment and blending based on 

mosaic blending models as described by Brown and Lowe (2003), which may take a very 

long time (days or weeks) and require extensive computational resources. For example, it 

took more than two weeks to develop an orthomosaic image using 2000 images of 4864 × 

3648 pixels using Agisoft in one of our projects. The software was running in a workstation 

desktop computer (Model Dell Precision Tower 5810, Dell, Round Rock, TX, USA) 

configured with an Intel Xeon E5 (1630 v3) 3.70 GHz central processing unit (CPU), 32GB 

random-access memory (RAM) and an NVIDIA Quadro K1200 4GB graphics processing 

unit (GPU). Crop seedlings are usually small and require high-resolution images to capture 

sufficient information, which results in a large number of images for mosaic processing 

and makes it challenging to make timely decisions. The challenge in the timely processing 

of imagery data becomes one of the most critical barriers for adopting UAV imagery in 

applications of crop emergence assessment (Forcella et al., 2000; Supak, 1990). Although 

leveraging high-performance computing or cloud computing resources may provide an 

alternative solution, it requires expensive and complicated infrastructure that may not be 

feasibly or economically accessible by most users. Therefore, there is a pressing need to 
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develop a cost-effective solution for timely image processing and real-time decision 

making. 

Current studies related to crop emergence using UAV imagery focus on stand count 

and uniformity (Feng et al., 2019a). Crop seedlings were usually segmented by their 

morphological features from the images to estimate the number of seedlings in a certain 

row length or area. The image features include canopy area (total number of green pixels) 

(Gnädinger and Schmidhalter, 2017), leaf polygons (Chen et al., 2018), and major axis 

length (Jin et al., 2017; Zhao et al., 2018). Template matching with a single plant was 

another way to count seedlings (Koh et al., 2019). However, the shape, size and overlap 

(Zhao et al., 2018) of individual seedlings may vary in a large range due to the variation in 

soil conditions (moisture, temperature, nutrients), cropping system, planting depth and seed 

quality (Egli and Rucker, 2012; Feng et al., 2019a). Using simple image features or their 

combinations may not identify seedlings accurately and result in errors in stand count. In 

addition, most of the published studies defined the seedling clusters (overlapped seedlings) 

as different regions of interest (ROI) and then used a classification model to estimate the 

number of seedlings in each ROI. Classification methods need to know the maximum 

expected plant number in each ROI (Ribera et al., 2017). Feng et al. (2019a) pointed out 

that there were unbalanced data sets in their study when using the classification method as 

most of the ROIs included one or two seedlings and only a few ROIs included three or four 

seedlings. Unbalanced data sets could affect the estimation accuracy (Chawla, 2009). 

Using regression instead of classification may help to reduce the effect of the above 

problems (Ribera et al., 2017). 
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Advanced data processing technology, deep learning (DL), has been increasingly 

used to process imagery data collected in agricultural applications (Kamilaris and 

Prenafeta-Boldú, 2018) Deep learning models have been used to extract hidden 

information from imagery data collected by satellites, UAVs and ground robotic systems 

to monitor crop development and predict yield (Humphrey et al., 2012; Nanni et al., 2017). 

In addition, the multilayer structure of DL models works well for complex nonlinear 

problems (Nielsen, 2015). There are two ways to develop a DL model: using the network 

architectures developed and tested by other research teams, or designing a specific network 

architecture (Kamilaris and Prenafeta-Boldú, 2018). Designing a specific DL network for 

a project requires a sufficiently large dataset for training and validating the models (Erhan 

et al., 2009), which is a challenge in agricultural studies. On the other hand, a number of 

successful and popular DL models (pre-trained DL models) have been tested and validated 

to have high efficiency and can be transferred to different tasks (transform learning model) 

(Pan and Yang, 2009). Transform learning models have been used in many studies and are 

potentially able to improve the efficiency and reduce the time to train the models  

(Ayyachamy et al., 2019; Kamilaris and Prenafeta-Boldú, 2018), including in many 

agricultural studies (Fu et al., 2020; Gao et al., 2020; Li et al., 2019). Various successful 

and popular deep learning models, such as AlexNet (Krizhevsky, 2014), VGG (Simonyan 

and Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016), 

have been used to process complex data from agriculture. The applications include weed 

detection (Dyrmann et al., 2017; Dyrmann et al., 2016), fruit detection and counting 

(Bargoti and Underwood, 2017; Chen et al., 2017; Rahnemoonfar and Sheppard, 2017) and 

plant disease detection (Ghosal et al., 2018; Mohanty et al., 2016). In addition, transform 
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learning models have been used to evaluate plant stand count and showed potential for 

improved accuracy (Ribera et al., 2017). 

This study focused on developing an efficient imagery data processing and analysis 

framework for timely evaluation of cotton emergence using UAV-based RGB imagery and 

deep learning technology. This study was different from previously published studies in 

the approach of directly processing individual image frames rather than developing 

orthomosaic images to reduce the processing time. The specific objectives included (1) 

developing a pre-processing pipeline to segment and geo-reference crop rows in each 

individual image frame; (2) implementing a deep learning model to estimate the cotton 

stand count and canopy size; and (3) developing a framework for automatically generating 

geo-referenced emergence maps in cotton. 

3.3 UAV system and experimental design 

To imaging the small size cotton seedlings, a high image resolution UAV system 

was used for the cotton emergence evaluation study. Imagery data were collected using a 

UAV imaging system (DJI Phantom 4 Advanced, DJI, Shenzhen, Guangdong, China). The 

onboard RGB camera has a focal length of 8.8 mm and the dimensions of the imaging 

sensor were 12.8 mm × 7.2 mm with 20M effective pixels. The spatial resolution of the 

images was 2.7 mm pixel-1 at 10 m AGL with a frame size of 3648×4864. A UAV control 

app (Autopilot, Hangar Technology, Austin, TX, USA) was used to plan flight paths, set 

waypoints, flight speed (7.5 km h-1), and height (10 m above ground level, AGL) before 

flying. The camera collected images at a snapshot rate of 2 s per image (i.e. 0.5 frames per 

second), with a 60% image overlap in both sideward and forward directions. Imagery data 
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were collected at near solar noon (around 1 pm Central Daylight Time, CDT) 16 days after 

planting (DAP) on May 31, 2019. The weather conditions during imaging are shown in 

Table 3. 1, which indicates a mild wind speed and negligible variation in the environment 

(air temperature, relative humidity and solar irradiance). The onboard GPS system on the 

UAV continuously recorded the coordinates and altitude of the imaging system and 

provided geo-referencing for each image frame as part of the image metadata. Geo-

referenced images were downloaded after the flight for further processing.  

Table 3. 1: Weather conditions during imaging measured by the nearby weather station 

Air temperature 
(ºC) 

Relative humidity 
(%) 

Wind speed (m 
s-1) 

Solar irradiance 

(W m-2) 

26.8±0.4 48.7±0.6 2±0 864±68.5 

 

Ground truth and reference data including ground reference points (GRPs), stand 

count and seedling size, were collected on the day of the UAV flight. In this study, 28 

GRPs (Figure 3.1) were set in the field, including 16 fence posts (~ 1.1 m in height) with 

white-black polytechnic boards (30 cm × 30 cm) and twelve 53 cm × 53 cm squares 

constructed with half-inch polyvinyl chloride (PVC) pipes. A ground stake was placed at 

each GRP to mark its position in a way that could be recognized during the growing season 

(Figure 3.1c). A real-time kinematic (RTK) survey kit (REACH RS+, Emlid Ltd., Saint 

Petersburg, Russia) with a ReachView app (Emlid Ltd.) was used to obtain the Global 

Positioning System (GPS) coordinates of the 28 GRPs. At each GRP, six flags were used 

to mark six 1-m intervals of crop seedlings in two cotton rows as shown in Figure 3.1a and 

Figure 3.1b. The number of seedlings in each 1-m interval was counted manually to serve 

as ground truth data for stand count estimation. Meanwhile, a tape measure with a precision 
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scale of 1 mm was placed along the cotton row to provide a reference to calculate ground 

sampling distance (GSD), which is defined as the number of pixels per meter. A digital 

camera on a cell phone (iPhone 6s, Apple Inc., Cupertino, CA, USA) was used to take 

videos of the crop rows while being held manually at a height of about 0.5 m AGL with 

the camera facing down. Cotton stands were counted by playing back the videos and 

canopy size (top view) was calculated using the GSD from the tape measure. 

 
Figure 3.1: Illustration of the field experiment setup. (a) and (b) show one of the 28 

ground reference points (GRPs) that include two 6-m crop rows, a fence post and red 

flags marking 1-m intervals. The ground videos were taken using a cell phone camera. (c) 

UAV image showing a PVC pipe square with one ground stake inside. 

3.4 UAV image pre-processing 

UAV images may have tilt/perspective angles to the ground (crop canopy) and 

different GSD due to variation in flight attitude and altitude of the UAV. Therefore, pre-

processing is required for three main purposes: 1) image distortion correction; 2) 

calibration of GSD in each image; and 3) geo-referencing each crop row.  

Distortion calibration 

There are two types of distortions in photography, i.e. optical distortion due to the 

camera lens and perspective distortion due to the position of the camera relative to the 
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scene. Both distortions will affect the accuracy of geometric measurements using UAV 

photogrammetry. In this study, each image frame included about nine to fifteen cotton rows 

depending on the flight altitude. The GSD of cotton rows at the edge of each image is 

affected by both optical distortion (including radial and decentering lens distortions) and 

perspective distortion. The optical distortion of the onboard camera was corrected through 

the calibration procedure using the DJI Assistant 2 software (DJI, Shenzhen, Guangdong, 

China) before fights. To evaluate the calibration results of the DJI Assistant 2 software, a 

checkerboard with nine rows and 12 columns of squares, each 60 mm × 60 mm, was used 

to calculate the level of distortion following the procedure described by Zhang (2000). 

Images including different views (orientations) of the checkerboard were taken and then 

the corners of the squares in the checkerboard were identified automatically. Since the 

images of the checkerboard were taken outdoors, the uneven sunlight and the complex 

background made corner detection challenging. A more robust method for checkerboard 

corner detection described by Geiger et al. (2012) was used for automatic corner detection. 

The corners of the squares were used as features to estimate the camera intrinsic matrix 

and distortion parameters based on the maximum likelihood criterion. The radial distortion 

coefficient k1 of the lens was used to describe the level of distortion (Zhang, 2000). There 

is no radial distortion when k1=0. The images have pincushion distortion when k1 is 

positive, and barrel distortion when k1 is negative. Perspective distortion of each image 

was explained using the differences in cotton row spacing in the edge and in the middle of 

images and is described in the following Chapter. 

Quantification of cotton row spacing  
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To calculate the GSD of each image, a dynamic ground reference object with a 

known dimension is needed. In field conditions, it is challenging to set a sufficient number 

of artificial objects to be captured by each frame. However, in production fields, row crops, 

including cotton, are planted using commercial planters with fixed row spacing, which can 

be used as a ground reference object for calculating the GSD of each image frame. The 12 

PVC pipe squares with a side length of 0.53 m were randomly distributed in the field to 

provide secondary ground reference objects for validating the GSD calculated using row 

spacing. 

To calculate row spacing in the images, the first step was to segment each row and 

identify their central lines. Figure 3.2 shows the procedures of crop row detection, 

including conducting decorrelation stretch and standard Hough transform (SHT) (Duda and 

Hart, 1972). Image decorrelation stretch is designed to reduce the inter-channel correlation 

and enhance (stretch) the color difference in a multiple-channel image for object 

segmentation and feature detection (Gnädinger and Schmidhalter, 2017). The decorrelation 

process was conducted using the decorrstretch function in Matlab (version 2018a, 

MathWorks, Natick, MA, USA). After decorrelation, the pixel values in the green channel 

of images showed a large difference between crops and soil; therefore, all pixels > 180 

were considered as cotton seedlings and set as “1” in a binary image as shown in Figure 

3.2b. The SHT was applied to the binary images to search long lines that were considered 

to be crop rows (Feng et al., 2020). The SHT process was conducted using the hough 

function in Matlab that returned two parameters for each detected line, i.e. the distance r 

from the origin coordinates of the image to the detected cotton row, and the angle θ of the 

detected cotton row to the vertical axis of the image. Angles within an image might be 
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slightly different for each row and the median θ was used for each image. The images then 

were rotated -θ degrees to obtain cotton rows aligned with the vertical axis of the images, 

as shown in Figure 3.2c. Row spacing was calculated based on the r difference between 

two neighboring rows, denoted by ri. As shown in Figure 3.2d, all cotton rows in an image 

were split into three groups automatically based on the r values, i.e. left two rows (two 

smallest r), right two rows (two largest r) and middle rows. This grouping was selected to 

keep more than 50% of an image as the middle rows and less than 50% as the edge rows. 

There were at least nine crop rows in each image frame based on our statistical analysis in 

this study (results not shown). A t-test was conducted to test the difference in row spacing 

between the edge rows (left and right two rows) and middle rows, and perspective 

distortion was detected by a significant difference. Since the paired t-test required an equal 

sample size in each group, a random resampling process was conducted before the t-test. 

The standard deviation (δ) of row spacing across all images was used to describe the 

variation of the cotton row spacing. After the row spacing was measured, the GSD of the 

image was calculated as the ratio of the number of pixels to the true row spacing, which 

was 0.97 m in this case.  
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Figure 3.2: Illustration of cotton row detection. (a) Image after decorrelation stretch 

procedure showing the substantial difference between pixel values of crops and soil. (b) 

The corresponding binary image after soil removal using a threshold. (c) Cotton rows 

were detected using a standard Hough transform (SHT). (d) Row spacing is denoted by 

ris. Cotton row spacings in an image were classified as left edges (two left row spacings, 

r1 and r2), middle (r3-r7), or right edges (two right row spacings, r8 and r9) to test 

perspective distortion.  

Geo-referencing cotton rows 

The accuracy of the UAV GPS was evaluated by comparing the horizontal 

coordinates of the ground stake in each GRP with those measured using the RTK receiver. 

As shown in Figure 3.3a, the northing and easting distances in pixels between the image 

geometric center and the ground stake were measured first. Then, those distances in pixels 

were transformed to distances in meters using the GSD calculated based on row spacing. 
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The GPS coordinates of the ground stake were calculated based on the above calculated 

distances in meters and the image GPS coordinates using Eq. 3.1 and Eq. 3.2 (Bugayevskiy 

and Snyder, 2013; Snyder, 1987). 

∆𝑙𝑙𝑙𝑙𝑙𝑙1 = 111132.92 − 559.82𝑐𝑐𝑐𝑐𝑐𝑐2𝜑𝜑 + 1.175𝑐𝑐𝑐𝑐𝑐𝑐4𝜑𝜑 − 0.0023𝑐𝑐𝑐𝑐𝑐𝑐6𝜑𝜑           (3.1) 

∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1 = 111412.84 − 93.5𝑐𝑐𝑐𝑐𝑐𝑐3𝜑𝜑 + 0.118𝑐𝑐𝑐𝑐𝑐𝑐5𝜑𝜑                                         (3.2) 

where ∆𝑙𝑙𝑙𝑙𝑙𝑙1  and ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1  are the lengths in meters of a 1-degree change of latitude and 

longitude, and 𝜑𝜑 is the latitude in radians. The constants 111132.92 and 111412.84 

represent the average estimation for ∆𝑙𝑙𝑙𝑙𝑙𝑙1  and ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1  based on earth’s radius and ellipsoid 

parameters. However, the earth is an irregular ellipse and ∆𝑙𝑙𝑙𝑙𝑙𝑙1  and ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1  change with 

latitude. The other parameters are the adjustment of these changes in different latitudes. 

The accuracy of image GPS coordinates was calculated as the distance between the 

coordinates of the ground stakes measured using the two systems and was calculated using 

the Haversine formula as explained in Lipan and Groza (2010) and Monawar et al. (2017). 

 

Figure 3.3: Illustration showing the location of a ground stake away from the center of an 

image and the location calculation for each cotton row. (a) Calculation of the ground 

stake coordinates from the UAV GPS system. (b) Calculation of GPS coordinates of 1-m 

seedling segments in each cotton row. The blue ‘x’ is the image geometric center. 
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Eq. 3.1 and Eq. 3.2 were also used to calculate the GPS coordinates of each 1-m 

seedling segment (white dashed boxes in Figure 3.3b) of each row in an image based on 

the UAV GPS system. GPS coordinates of the white boxes were assigned based on their 

distances from the geometric centers of the image frame. Since the images had > 60% 

overlap in both the sideward and the forward directions, only middle rows were used in the 

following processing, i.e., seedlings within 2 m from the geometric center in the north-

south direction.  

Evaluation of distortion correction and estimated row spacing 

One hundred and six (106) images of the checkerboard were processed to validate 

the calibration results of optical distortion using the DJI Assistant 2 software. In this study, 

k1=0.0205 was obtained, indicating the optical distortion was small enough to be negligible. 

Thirty-eight images that included PVC pipes were used to evaluate the variation of the row 

spacing of 334 rows, resulting in a mean of 99.0 cm with a standard deviation of 3.8 cm. 

This result showed that the variation of row spacing was small and usage of cotton row 

spacing as the reference of GSD was reasonable. 

The same thirty-eight images that included 334 rows were also used to test the 

perspective distortion of an image. Table 3.2 shows the means and standard deviations of 

row spacing of left, middle and right edge rows in the images (Figure 3.2). It can be seen 

that the mean row spacing at the middle of images was slightly larger than that of left and 

right edge rows. A resampling t-test with a resampling size of 1,000 showed that there was 

no significant difference among the three locations at a 5% significance level, which also 

indicated that the perspective distortion was small enough to be negligible. 
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Table 3.2: Mean and standard deviation of row spacing of edge and middle rows in 

images. The resampling t-test indicates that there was no significant difference (p-value < 

0.05) in row spacing among the rows at different locations of images. 

 Left two rows Middle rows Right two rows 

Mean ± std (cm) 98.80 ± 3.64 99.28 ± 4.03 98.70 ± 3.30 

 

3.5 Evaluation of cotton stand count and canopy size 

Introduction to convolutional neural networks 

The convolutional neural network (CNN) is a DL model designed in combinations 

of different numbers of convolution layers, pooling layers, activation layers, and full 

connection layers (Nielsen, 2015). Convolution layers and pooling layers include filter 

boxes that scan the input images using a sliding window to generate image feature maps, 

as shown in Figure 3.4a. A filter box is a parameter matrix. It moves from the top to the 

bottom and from left to right with a specific moving stride to calculate the sum of 

multiplication of the input image with the parameter matrix. This process can extract the 

input image features while keeping the spatial correlation of image features. Pooling layers 

extract the mean or maximum pixel values of the regions while they move. Full connection 

layers calculate the sum of multiplication of the input values with layer parameters, shown 

as Figure 3.4b. Activation layers include nonlinear functions, such as the sigmoid function, 

logistic activation function, or rectified linear unit (ReLU) function (Nielsen, 2015).  
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Figure 3.4: Illustration of the principle of convolution layers and full connection layers of 

the deep learning model. (a) Convolution layers include a 3 × 3 filter with the parameters 

wi. The input image size is assumed 9 × 9 and the moving stride is 2, resulting in the 

output of a 4 × 4 feature map. xi is one of the pixel values of each 3 × 3 region that is 

used to calculate outputs while moving. Each value in the output feature map is 

calculated by ∑ 𝒘𝒘𝒊𝒊 × 𝒙𝒙𝒊𝒊𝟗𝟗
𝒊𝒊=𝟏𝟏  . (b) In the full connection layers, wi,j are the parameters, and 

xi are the input values. This is a four input and one output full connection layer that is 

calculated by the formula inside the purple box. 

Deployment of transform learning model using resnet18 

The CNN model used in this study was based on a widely used pre-trained CNN 

model resnet developed by (He et al., 2015). The architecture of the CNN model is shown 

in Figure 3.5. The resnet model was chosen from many popular pre-trained models (such 

as VGG, DenseNet and AlexNet) due to the high estimation accuracy and low computation 

resource requirement. The resnet was trained and validated using the ImageNet dataset 

(Russakovsky et al., 2015) with a classification capacity of 1000 classes. The resnet model 

can be optimized easily and could achieve higher accuracy with deeper layers because of 

the residual blocks (He et al., 2016). The resnet model has different versions, including 18 
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layers, 34 layers and 152 layers that are developed to process data of different complexity. 

The smallest model, resnet18 was chosen in this study due to the relatively less complex 

dataset, preferred fast training speed and less computing time. The parameters trained on 

the ImageNet dataset were selected as the initial parameters as they had strong image 

feature extraction power (Pan and Yang, 2009) for low-level features (such as dots, lines, 

corners and textures) to avoid training models from scratch and to reduce the required time. 

Parameters in all layers of the model were fine-tuned using the imagery dataset from this 

study. 

 

Figure 3.5: The architecture of resnet18, as applied to the estimation of stand count and 

seedling size. 

The resnet18 model requires input images of 224 × 224 pixels in three channels 

(red, green and blue). Therefore, images collected in this study were resized to the required 

dimensions. The pixel values in the three channels ([R, G, B], pixel values ranged from 0-

255) of the input images were normalized to the range of [0, 1] by dividing by 255 (i.e., 
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[R/255, G/255, B/255]). The pre-trained resnet18 model requires the same normalizing 

procedure as the original ImageNet training set. Therefore, the imagery data were 

subtracted [0.485, 0.456, 0.406] and divided by [0.229, 0.224, 0.225], i.e.,  [(R/255-

0.485)/0.229, (G/255-0.456)/0.224, (B/255-0.406)/0.225], which were the mean and 

standard deviation of the three channels (red, green and blue) of the ImageNet dataset 

(Russakovsky et al., 2015). The model used five stages of different numbers of convolution 

layer combinations, batch normalization layers, ReLU activation layers and max pooling 

layers for feature extraction (He et al., 2016). Shortcut connections were added to this 

network to provide the residual learning (residual blocks) (He et al., 2016). The last two 

stages (stages 6-7) were average pooling and full connection layers. The outputs were stand 

count and canopy size of each seedling based on a regression model. The L1 loss function 

(|f(x)-y|) was used to minimize errors and search for optimal model parameters 

(Goodfellow et al., 2016). The model calculated canopy size and stand count 

simultaneously using one loss function for the parameter optimization. However, the 

absolute values of canopy size (mean was about 24 cm2 per seedling) were larger than the 

stand count (mean was about 12 seedlings m-1), so the L1 loss was defined by Eq. 3.3 to 

balance the loss of canopy size and stand count. Mean absolute percentage error (MAPE) 

defined by Eq. 3.4 was used to evaluate the accuracy of the stand count and canopy size 

estimations. 

𝐿𝐿1 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = |𝑦𝑦�𝑠𝑠𝑠𝑠 − 𝑦𝑦𝑠𝑠𝑠𝑠| + 𝛽𝛽 × |𝑦𝑦�𝑐𝑐𝑐𝑐 − 𝑦𝑦𝑐𝑐𝑐𝑐|           (3.3) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0.5 × (|𝑦𝑦�𝑠𝑠𝑠𝑠−𝑦𝑦𝑠𝑠𝑠𝑠|
𝑦𝑦𝑠𝑠𝑠𝑠

+ |𝑦𝑦�𝑐𝑐𝑐𝑐−𝑦𝑦𝑐𝑐𝑐𝑐|
𝑦𝑦𝑐𝑐𝑐𝑐

)                 (3.4) 
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where 𝑦𝑦�𝑠𝑠𝑠𝑠 is estimated stand count, 𝑦𝑦𝑠𝑠𝑠𝑠 is the true stand count, 𝑦𝑦�𝑐𝑐𝑐𝑐 is estimated canopy size 

and 𝑦𝑦𝑐𝑐𝑐𝑐 is true canopy size, β is the ratio of the mean of stand count to the mean of canopy 

size in the training set.  

Deep learning models have provided promising results for agricultural applications 

in many current studies but with limited potential for interpretation as a “black box” system 

(Kamilaris and Prenafeta-Boldú, 2018). Several ways have been developed in other studies 

to explain the mechanisms of DL models (Ghosal et al., 2018; Mohanty et al., 2016). Those 

included visualization of the DL filters and feature maps, deconvolutional networks (Zeiler 

and Fergus, 2014), calculation of filters’ receptive field (Dumoulin and Visin, 2016), or 

the Grad-class activation map (Grad-CAM) (Selvaraju et al., 2017). In this study, feature 

maps of the first two stages in the resnet18 and the Grad-regression activation map (Grad-

RAM) (Wang and Yang, 2017) were used to visually interpret the results. The feature maps 

were the outputs of each filter in each stage of the resnet18 model (Figure 3.5). All the 

feature maps outputted from stage 5 (the 512 7 Х 7 features outputted from stage 5 in Figure 

3.5) were elementally summed with weights that were connected between the outputs of 

AvgPool in stage 6 (the 512 1 Х 1 outputs from stage 6 in Figure 3.5) and the FC in stage 

7 (Figure 3.5) to generate the Grad-RAM. This Grad-RAM can localize the discriminative 

regions of seedlings in images that determined the final estimation of canopy size and stand 

count (Wang and Yang, 2017). 

Data set preparation  

 A total of 155 images were selected to train and test the DL model. A GRP included 

two 6-m cotton rows as illustrated in Figure 3.1, resulting in 12×28=336 m of cotton rows 

in total. Each selected image contained all or a portion of the 6-m crop rows. All the 
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individual cotton seedlings and seedling clusters in the images were segmented as RoIs 

(small red boxes in Figure 3.6) using the method developed by (Feng et al., 2020). The 

number of seedlings in each RoI was counted manually by playing back the recorded 

videos, and each RoI was labelled using the number of seedlings in the RoI. A few RoIs 

only contained part of a seedling (one seedling was identified as two separate RoIs) and 

were labelled as 0.5. To improve the volume of the training dataset, a data augmentation 

method was used as illustrated in Figure 3.6. Input images were cropped in each image 

with a length range from 0.7 m to 1.3 m of each cotton row and including different numbers 

of consecutive RoIs, shown in Figure 3.6 as different colored boxes.  

 
Figure 3.6: Illustration showing the approach used for the preparation of the training data 

and data augmentation. The red boxes mark the RoIs that contained a single cotton 

seedling or a cluster of several cotton seedlings. The yellow text gives the ID of each RoI 

and the black text gives the number of seedlings in each RoI. The different color boxes 

are the cropping images used as the input images of resnet18 model, where image size 

varied from 0.7 to 1.3 m, equaling 375 to 697 pixels.  
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The augmented input images were cropped as a square using the segmentation 

length as side length, which resulted in the dimensions of input images varying from 

375×375 to 697×697 pixels with the length from 0.7 m to 1.3 m (Figure 3.6). The positions 

of the crop boxes from left to right in each image were random. The square images provided 

a constant ratio of height to width and minimized the distortion of geometric features due 

to resizing (to 224 × 224 pixels as required by resnet18). The number of seedlings in each 

input image was the sum of the seedlings of all RoIs. The canopy area (cm2) of seedlings 

of each input image was calculated by Eq. 3.5.  

𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑝𝑝 ×10000
𝐺𝐺𝐺𝐺𝐺𝐺2

                                       (3.5) 

where, CA is the canopy area of all seedlings from aerial images (cm2), Np is the total 

number of pixels in a RoI of an input image. GSD is the ground sample distance of each 

input image (pixel m-1). In this study, a total of about 20000 input images were generated, 

which were split 85% in the training set and 15% in the test set. The model was trained and 

evaluated using the Pytorch package (pytorch.org) (Paszke et al., 2017). 

Performance of deep learning model resnet18 

The seedling data set that included more than 20000 input images was used to train 

resnet18 with 40 epochs. An estimation error of an overall MAPE = 3.3% was obtained in 

training and an overall MAPE = 4.4% was obtained in testing. Figure 3.7 shows the true 

values and the predicted values of the test set for cotton stand count and canopy size. For 

stand count estimation, R2 = 0.95 and MAPE = 4.3% were obtained, while for canopy size 

estimation R2 = 0.93 and MAPE = 4.5% were obtained. These results are promising when 

compared to similar published studies that reported MAPE from 9.8% to 5.1% (Chen et al., 

2018; Gnädinger and Schmidhalter, 2017; Jin et al., 2017; Ribera et al., 2017; Sankaran et 
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al., 2015; Sankaran et al., 2017; Zhao et al., 2018). Only one of those papers used a deep 

learning model and estimated stand count with MAPE = 6.7% (Ribera et al., 2017), a value 

larger than that obtained in this study.  

 
Figure 3.7: Predicted results of (a) cotton stand count and (b) canopy size in the test set 

To understand the reasons for such results and potential approaches for improving 

the accuracy, Figure 3.8 shows the feature maps and the Grad-RAM. Figure 3.8a, e, and i 

show three examples of input images that had different numbers of seedlings and variations 

in soil color. It can be seen from Figure 3.8b, f and j that their seedlings were identified 

with higher values in the feature maps of stage 1. Although the difference between soil and 

seedlings decreased when the soil color was bright (Figure 3.8i and j), they were segmented 

correctly in stage 2 (Figure 3.8c, g and k), which not only highlighted the seedlings but 

also the color differences of the soil. Figure 3.8d, h and l show the seedlings identified in 

the last convolution layer (stage 5) of resnet18. When the number of seedlings in the 

clusters and the canopy size of the seedlings decreased, the values of the Grad-RAM map 

decreased. Based on the algorithm of the Grad-RAM calculation, it can be confirmed that 

the model’s final estimation of stand count and canopy size was decided by the regions of 

seedlings rather than other regions, which was in line with our expectations of the model. 
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Figure 3.8: Feature maps of stages 1 and 2 of the resnet18 model and the Grad-regression 

activation map (Grad-RAM) of stage 5. (a), (e) and (i) are three input images; (b), (f) and 

(j) are the corresponding feature maps of average outputs of 64 filters in stage 1 of the 

resnet18 model. The higher values in the feature maps mean that these regions were 

highlighted by the model and that information would be passed to the next layers. The 

color scale legends of (f) and (j) are the same as that of (b). (c), (g) and (k) are the 

corresponding feature maps of average outputs of 64 filters in stage 2. The color scale 

legends of (g) and (k) are the same as that of (c). (d), (h) and (l) are the Grad-RAM 

extracted from stage 5 of resnet18. The color scale legend of (h) and (l) are the same as 

that of (d). 

Vegetation indices such as excess green index (ExG) combined with a dynamic 

threshold method, Otsu’s method, have been used to segment seedlings from the 

background (Varela et al., 2018; Zhao et al., 2018). Otsu’s method can automatically find 
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an image threshold having the largest difference between two classes and the smallest 

difference within each class (Otsu, 1979). However, the variability in soil texture and water 

content may cause soil color differences, which makes it challenging to segment seedlings 

(Feng et al., 2020). One example of using the ExG with Otsu’s method is shown in Figure 

3.9a and b, from which we can see that some of the seedlings could not be identified 

successfully. Figure 3.9c shows an enhanced image of Figure 3.9a using a decorrelation 

stretch procedure with a global threshold of 180 that improves the performance of 

segmentation (Figure 3.9d). However, 180 was a global threshold instead of a dynamic 

threshold (Gnädinger and Schmidhalter, 2017), and needed to be determined by statistical 

analysis of the crop pixel values or by the image histograms (Feng et al., 2020) that aim to 

find a global threshold to largely separate the plants and soil. This global threshold is a 

global optimal value in the whole data set, and there may be some misidentification when 

using this value. Variations in soil texture and/or moisture level resulted in large 

differences in soil color and bright soil was detected as crop objects when a global threshold 

was used. When building the input image set for resnet18, visual counting labelled the 

detected objects that did not include cotton seedlings with a 0 value (that is, misidentified 

by the global threshold). This manually helped resnet18 learn to correct the global 

threshold segmentation error to provide more accurate stand count and canopy size results 

than methods based only on image segmentation. 
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Figure 3.9: Illustration of the complexity of image background removal for segmentation 

of seedlings due to soil color resulting from variations in texture and/or moisture content 

over a field. (a) A portion of an RGB image including four crop rows; (b) A binary image 

showing the segmented seedlings using the ExG and Otsu’s method. Some seedlings in 

the third and the fourth rows were not identified. (c) The pertinent image after using 

decorrelation stretch procedure and (d) its results of seedling segmentation. 

Comparison of resnet18 and other deep learning models 

The resnet18 model was running on a desktop configured as an Intel Core i9-9900K 

3.60 GHz CPU, an NVIDIA GeForce RTX 2060 GPU with 6GB memory, 32GB RAM 

and 256 GB solid-state drive (SSD). The performance of the resnet18 model in estimation 

accuracy and computation resources for training models was compared with other popular 

DL models, including resnet50 (He et al., 2016), AlexNet (Krizhevsky, 2014), VGG11, 

VGG16 (Simonyan and Zisserman, 2014), SqueezeNet (Iandola et al., 2016) and DenseNet 
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(Huang et al., 2017). As shown in Table 3.3, the resnet18 model had a lower use rate of 

GPU and GPU memory than other DL models except for the SqueezeNet that used fewer 

computation resources but had a higher MAPE. The size of the parameter file of resnet18 

was smaller than other models except for DenseNet, which had a smaller Parameter file, 

but used more computation resources and had a longer training time. Except for the VGG16, 

resnet18 had a lower test MAPE than other models, however, VGG16 used the most GPU 

and GPU memory. Therefore, when considering both the low MAPE and low computation 

resource usage, the resnet18 model showed more potential to integrate into UAV systems 

to conduct real time emergence evaluation in the future. AlexNet was the second most 

promising model based on Table 3.3 and could be considered as an alternative. 

Table 3.3: Accuracy and computation resources comparison  

Model Train 
MAPE 

(%) 

Test 
MAPE 

(%) 

Training 
time in s 

(40 epoch) 

CPU 
(%) 

GPU 
(%) 

GPU 
memory 

(GB) 

RAM 
(GB) 

Parameter 
file (MB) 

Resnet18 3.3 4.4 5508 71 60 1.1 7.2 42.6 

Resnet50 4.9 5.0 11482 69 80 2.1 8.1 89.9 

AlexNet 4.3 4.4 4294 71 58 2.1 7.9 217.0 

VGG11 6.5 6.9 11389 67 79 4.2 7.5 491.0 

VGG16 2.9 3.9 15590 68 88 4.6 7.6 512.0 

SqueezeNet 7.0 7.9 4948 71 54 1.2 7.8 2.8 

DenseNet 4.6 5.0 18951 71 77 2.3 9.0 27.0 

 

3.6 Development of a framework for evaluation of cotton emergence 

An image processing and analysis framework was developed in Python with the 

MATLAB engine application programming interface (API) for Python. This framework 

included an easy to use graphical user interface (GUI) to guide users 1) to train the deep 
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learning model using their own data set, and 2) map their crop emergence. The framework 

was implemented following the flowchart in Figure 3.10. The process for training the 

model for specific applications is illustrated in Figure 3.10a, which includes setting GRPs, 

pre-processing training dataset and training the model. After the model was trained for a 

specific application, individual images collected in the field could be processed using the 

procedure illustrated in Figure 3.10b. All the cotton rows in each image frame would be 

automatically split into geo-referenced 1-m segments based on the GPS information in the 

metadata of images. The output would be the geo-referenced stand count and canopy area 

of seedlings in every meter of the row, which would be used to map the emergence of the 

field. 
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Figure 3.10: Overall processing flowchart. (a) Training procedure; (b) Cotton emergence 

mapping procedure; (c) Legend used in both (a) and (b). 

The data processing framework was developed in a Windows 10 operating system 

(Microsoft, Redmond, WA, USA) environment using Python software (v3.6), Matlab 

software (v2018a), Matlab engine API for Python, Opencv package (v3.4) (Bradski, 2000), 

Scikit-learn package (v0.22) (Pedregosa et al., 2011), NumPy package (v1.16) (Oliphant, 

2006), Pandas package (v0.25) (McKinney, 2010) and Pytorch package (v1.2) (Paszke et 

al., 2017). The framework has been uploaded to GitHub (https://github.com 

/AJFeng/Emergence-evaluation-Framework) and is ready for testing by other research 

groups. 

Stand count and canopy size mapping 

Manually measured and estimated stand count and canopy area per seedling from 

the 20000 input images were summarized using histograms as shown in Figure 3.11. The 

mean stand count of manual measurements was 12.5 seedlings per meter with a standard 

https://github.com/
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deviation of 2.2. The mean value of 12.5 was higher than the target seeding rate of 11.0 

seed m-1. However, based on field observation by the farm operator, it was found that there 

was a planter-calibration error and the actual rate was close to the mean value in this study. 

The figure also shows that the manually measured canopy size per seedling was 24.3 ± 7.0 

cm2, indicating a big variation in the canopy size of the measured seedlings. The estimated 

stand count and canopy area of the tested images for the whole field were shown in Figure 

3.11c and d. This showed that the estimated values of the whole field were consistent with 

our manual measurement with sampling. 

 

Figure 3.11: Histogram of (a) stand count per meter; and (b) canopy size of the input 

images that were manually labelled in the GRPs. Predicted results of (c) cotton stand 

count and (d) canopy size in the whole field. 
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The stand count and canopy size of the whole field were calculated using the 

developed model with all collected images. All data were geo-referenced using the 

metadata of the images and the GPS assignment method in this study. Time spent on the 

mapping was 2.2 s for each 20 M pixel image frame, which was nearly real-time image 

processing as the UAV took images every 2 s. When we checked the procedures, it was 

found that the majority of the processing time (2.2 s) was spent on the process of GPS 

assignment (about 1.8 s per image). The search of connected regions and SHT algorithm 

was the most time-consuming steps as this was the limitation of search-based methods.  

Geo-referenced stand count and canopy size were imported to the open-source 

software QGIS (version 3.6, www.qgis. org). Figure 3.12 shows the field maps of cotton 

stand count and canopy size overlaid on a Google map (Google, Mountain View, CA, 

USA). Visual observation found that the distribution patterns of two maps (Figure 3.12a 

and b) were similar to that of the yield map (Figure 3.12c) and the soil ECa map (Figure 

3.12d), i.e., regions of the field with low seedling canopy sizes had low ECa and low yield. 

Regions with lower ECa corresponded to areas with a high-profile sand content (Sudduth 

et al., 2003) and therefore a low soil water holding capacity, which may affect the crop 

emergence and growth (Feng et al., 2019b). The quantitative relationship among crop 

emergence, soil condition and yield need further analysis. The framework developed in 

this paper can be used to help farmers and researchers to explore the seedling emergence 

status of their field efficiently and in real-time. Our GPS accuracy test showed that the 

accuracy of image GPS coordinates based on the 27 ground stakes was 1.72 m with a 

standard deviation of 1.37 m (1.72 ±1.37 m). This study aimed to enable real-time stand 

count and canopy size mapping with meter level spatial resolution using UAV-based RGB 

http://www.qgis.osgeo.org/
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images and the geo-location of each image frame may be improved using an RTK GPS, 

for example, DJI Phantom 4 RTK Drone (DJI, Shenzhen, Guangdong, China) that has an 

accuracy of 1cm + 1ppm RTK horizontal positioning. 

 

Figure 3.12: (a) Cotton stand count mapping and (b) canopy size mapping; (c) yield map; 

(d) soil ECa map. The red circles show the 28 GRPs. 

The use of the data processing framework 

The data processing framework consists of two major tasks, i.e. model training and 

emergence evaluation. Users may directly use the model provided to map cotton fields 

having similar data collection conditions to our experiment, i.e., 0.97 m fixed crop row 

spacing, images collected in about 16 DAP, 2.7 mm pixel-1 and 60% image overlap. Since 

the fixed row spacing is used for canopy size GSD calibration, the developed method can 

potentially be used in the conditions of different row spacing and image overlap (from 40% 

to 80%) when the values of the canopy size map are modified accordingly based on the 

ratio of our row spacing to users’ specific row spacing. Users may have images with 

different image resolution and collected a few days earlier or later than 16 DAP that have 

different canopy shapes, sizes and overlapping. It is expected that users would train a 

Seedlings/m
Canopy size
cm2/seedling

(a) (b)

(d)

ECa-sh
(mS m-1)

(c)

Yield
(kg ha-1)
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specific model using their own data by following the processing steps described in this 

paper. The developed framework has not been tested in other crops such as soybean and 

corn but will be evaluated in future studies. A detailed introduction file that explained the 

usage of the framework and every item appearing in the GUI was attached with the 

framework in GitHub. 

Figure 3.13 illustrates the major steps to train a customized model using UAV 

imagery data. All raw image frames that include GCPs should be stored in one folder and 

would be read automatically by the program. The program would first conduct the seedling 

segmentation process following the orange mouse icon in Figure 3.13. This would generate: 

1) a file that has the row spacing calculation results; 2) a folder including images with 

segmented crop seedlings; and 3) a file that has the GPS coordinates of the segmented 

images and waits for users to visually label the cotton seedlings. After visual counting, the 

image cropping process following the green mouse icon in Figure 3.13 would ask the user 

to provide the address of the rotated images folder, the labelling file, and the row spacing 

file (those were all generated from the above orange icon process of the seedling 

segmentation process) to crop the cotton seedlings into 1-m segmented images to build the 

training data set. This would generate: 1) input images of the model that were cropped from 

each individual image frame; 2) a file that included image names of these cropped images 

and their labels. These would be used to train the resnet18 model (the training process 

following the blue mouse icon in Figure 3.13). After this training process, the model trained 

on the users’ own data would be generated.  
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Figure 3.13: The process for training a customized model using the users’ own data set. 

Different color of the mouse icons showed the different processing options as described 

in the text.  

The process of mapping crop emergence is illustrated in Figure 3.14. The GPS 

assignment process (following the orange mouse icon in Figure 3.14) would guide users to 

assign GPS coordinates to each 1-meter of crop row. After geo-referencing all data of the 

whole field, the process would generate: 1) input images of resnet18 cropped by a meter 

of each cotton row; 2) the related GPS file of each input image. Those input images and 

the GPS file would be used to map the cotton stand count and canopy size (the mapping 

process following the blue mouse icon in Figure 3.14). 
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Figure 3.14: The process for mapping the cotton emergence of the whole field. Different 

color of the mouse icons showed the different process options as described in the text. 

3.7 Conclusion 

This study developed a method and related framework for real-time cotton stand 

count and canopy size mapping. A UAV system with a high-resolution RGB camera was 

used to take individual image frames. The cotton rows in each image frame were detected 

and the row angle was used for rotating each individual frame. The row spacing was used 

as a reference for dynamic GSD calibration of each image frame. Seedlings in every 

individual frame were located based on their position in image coordinates and the GSD. 

The located seedlings were used as the input to the deep learning model resnet18 for stand 

count and canopy size estimation. The results from the resnet18 model and the related 

location information were used to map cotton emergence. Results showed that the method 

had an overall error of MAPE = 4.4% and worked better than current traditional image 

segmentation methods. The framework could be used as a powerful tool for farmers and 
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researchers to explore the relationships between cotton emergence, soil conditions and 

weather conditions. 

3.8 Future work 

Comparing to image stitching and mosaic processing, this study processed 

individual image frames to map the emergence and had the problem of some same seedling 

that duplicate in two different image frames. For two image frames that included the same 

seedlings, those data would be mapped twice. Since this study mapped based on GPS of 

each meter of each crop row, the data may be mapped twice at the same position (due to 

the GPS error, they would be mapped twice at the close position). Later, average processing 

was needed to group those mapped data points in each meter together. 

This study used MAE to evaluate the emergence prediction performance. It is worth 

trying other types of error measurement methods rather than MAE since the numbers of 

seedlings were small in each frame and the performance of the seedling prediction in each 

cluster of the frames needed to be evaluated. 

For the current data set, we had weeds control in the field and few weeds appeared 

in the image data. This study did not use any methods to deal with weeds. However, for 

some fields with weeds, the stand count and canopy size prediction may have errors due to 

the difficulty of identification between weeds and cotton seedlings. Weed identification 

methods are needed for this case. 
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Chapter 4. SOIL AND ELEVATION EFFECTS ON COTTON 

EMERGENCE 

4.1 Abstract 

Crop emergence is an important agronomic factor for farmers and researchers to 

explore crop development in the early growth stage, as well as explore the relationship 

between emergence, subsequent growth and environment (such as soil texture and field 

elevation). A method and related framework were developed for near real-time emergence 

mapping using Unmanned aerial vehicle (UAV)-based images in our previous study. 

However, analysis of the emergence data, soil and field elevation, as well as the UAV 

image data collected in the later growth stages needed ways to align those data from 

different sensor systems together. The GPS error of the previous study depended on the 

UAV GPS system, which was 1.72 ±1.37 m comparing with the ground RTK measurement. 

To improve the alignment accuracy, the goal of this study is to improve the GPS accuracy 

of cotton emergence mapping and then evaluate the feasibility of a UAV-based imaging 

system in quantifying the relationship between emergence, subsequent growth and 

environment. A crop row alignment method was developed based on feature detection and 

matching, and then the geo-referenced crop emergence data were registered with its 

subsequent growth data (UAV-based vegetation indices) in July as well as soil and field 

elevation data. Pearson correlation, ANOVA and machine learning model XGBoost were 

used to analyze the relationships between stand count and canopy size with field elevation, 

soil, as well as with the UAV-based vegetation indices in the next growth stages in July. 

Results showed that the GPS error comparing with the ground RTK was 0.17 ± 0.13 m, 
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which was higher accuracy than our previous methods. Emergence, ECa-sh, ECa-dp and 

clay10-clay30 were ranked the first six important features to cotton emergence. The 

seedling size had about 0.4-0.5 Pearson correlation coefficients with the image features 

collected in July but about 0.3 with the final yield, which showed the low correlation 

between emergence and its later growth. 

Keyword: emergence evaluation, soil texture, field elevation, row geo-reference; real-

time processing 

4.2 Introduction 

Crop emergence is an important agronomic factor for crop development assessment 

and field management in the early stages, which can be evaluated using plant population, 

stand count, uniformity and seedling size (Sansone et al., 2002; Supak, 1990). Accurate 

and timely assessment of crop stand count and seedling size at the emergence stage may 

help farmers make important field management decisions (e.g., replanting) to reduce 

production loss (Goodell et al., 2015) as well as explore the environmental effects on the 

crop emergence and development (Anda and Pinter, 1994; Benvenuti, 2003; Domenech 

and Vila, 2008; Forcella et al., 2000; Ghassemi-Golezani and Dalil, 2014; Valdés-

Rodríguez et al., 2013). Acquisition of high-resolution site-specific crop emergence 

information is the baseline for the above decisions and studies. Conventionally, crop 

emergence is assessed through visual observation (manual stand counts and seedling size 

evaluation) in a small number of sampling sites (Wiles and Schweizer, 1999), which is 

time-consuming, labor-intensive, and not suited to cover a large production field.  

In recent years, unmanned aerial vehicle (UAV)-based imaging technology has 

been tested as a high-throughput tool for crop emergence assessment in various crops as 



71 
 

summarized by Feng et al. (2020b). Some examples include the assessment of wheat 

density (Jin et al., 2017; Sankaran et al., 2015), cotton uniformity (Feng et al., 2019), and 

stand count in cotton (Chen et al., 2018; Feng et al., 2019), corn (Varela et al., 2018), potato 

(Sankaran et al., 2017) and rapeseed (Zhao et al., 2018). Those published studies used 

similar approaches to process UAV imagery data, i.e., using commercial UAV image 

processing software, such as Agisoft PhotoScan (Agisoft LLC, St. Petersburg, Russia) and 

Pix4D (Pix4D S.A., Lausanne, Switzerland), to generate orthomosaic images before 

further processing. The procedure of generating orthomosaic images included image 

feature detection, matching, alignment and blending based on mosaic blending models as 

described by Brown and Lowe (2003), takes a very long time (days or weeks) and requires 

extensive computational resources. However, emergence evaluation is a time-sensitive 

analysis and the challenge in timely processing of imagery data becomes one of the most 

critical barriers for adopting UAV imagery in applications of crop emergence assessment 

(Forcella et al., 2000; Supak, 1990). In our previous study (Feng et al., 2020a), an efficient 

imagery data processing and analysis framework for timely evaluation of cotton emergence 

using UAV-based RGB imagery and deep learning technology was developed. It was 

different from previously published studies in the approach of directly processing 

individual image frames rather than developing orthomosaic images to reduce the 

processing time. 

With the above methods and framework, timely emergence mapping and accurate 

emergence data could be obtained. Exploring the relationship between crop emergence, its 

subsequent growth and the environment are the next important topic (Feng et al., 2020a, 

b). Soil texture correlates with soil water holding capacity and is one of the most important 
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factors that affect crop emergence (Anda and Pinter, 1994; Benvenuti, 2003; Domenech 

and Vila, 2008; Valdés-Rodríguez et al., 2013). The study of Stewart (2020) showed that 

topography and slope had the potential effects on soil erosion, water runoff and field 

microclimate, which influenced corn emergence. Some studies (Carter and Nafziger, 1990; 

Nafziger et al., 1991) showed that uneven crop emergence resulting in plant competition 

in the later growth stages decreased crop yield. Although there have been studies on the 

relationships between emergence, subsequent growth, yield and environment many years 

ago, the emerging sensing technologies (i.e. soil EC sensors, field elevation sensors and 

UAV imaging sensors) in recent years can provide more reliable and large amounts of data 

for these studies to draw more credible conclusions. Analysis of the emergence data, soil 

and field elevation, as well as crop growth in the later growth stages, needed ways to 

alignment those data from different sensor systems (i.e. different UAV systems used in the 

emergence growing stage and in the later growth stages, soil EC sensor systems, field 

elevation measurement system and yield monitor system) together. The GPS error of the 

mapping methods used in our previous study (Feng et al., 2020a) depended on the specific 

UAV GPS system used, which was 1.72 ±1.37 m comparing with the ground RTK 

measurement. Therefore, to improve the crop row alignment with the plants in later growth 

stages and the ECa-based soil texture as well as the field elevation data, improving 

alignment algorithm is needed to add to the previous study to conduct the environment 

effects on emergence as well as explore the relationships between emergence with the later 

grow stages and yield. The goal of this study is to improve the GPS accuracy of cotton 

emergence mapping and then evaluate the feasibility of UAV-based imaging system in 

quantifying the relationship between emergence, subsequent growth and environment. The 
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specific objectives are: 1) increasing the accuracy of emergence maps to register with its 

subsequent growth data as well as soil and elevation data; and 2) using the developed 

mapping methods to explore the soil and field elevation effects on emergence, as well as 

the relationships between the emergence with its subsequent growth and yield. 

4.3 Emergence row register from individual RGB frame 

Feature detection and matching 

The crop row alignment algorithm was based on previous customized image 

alignment and stitching algorithms described in Feng et al. (2020b). Feature detection and 

matching were conducted to the rotated images based on the SHT crop row identification. 

Image features were detected using the method of Speeded-Up Robust Features (SURF), a 

128-dimension (8 orientation bins for each of the 4 × 4 location bins) local feature detector 

and descriptor developed in (Bay et al., 2008). As a scale-invariant feature, SURF used 

image pyramids and different sized box filters to find points of interest at different scale-

spaces (Lowe, 2004). The scale-space of SURF was divided into octaves and each octave 

was subdivided into a constant number of scale levels. The number of pyramid octaves and 

octave layers were both set to 3 in this study. After feature detection, the k-nearest 

neighbors (KNN) algorithm was used to match the most similar feature pairs in two 

successive raw images. The KNN calculated all of the Euclidean distances of features with 

each other to find the closest K matches. In this study, K was set to two (K = 2); therefore, 

the KNN algorithm returned the two closest key points for each key point to be matched. 

Removal of false matches 
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False matches were those pixels that had the shortest Euclidean distance but were 

different objects in the successive images. To detect and remove false matches, a distance 

ratio test was conducted to compare the Euclidean distance of the closest key point to that 

of the second-closest key point identified by KNN (Lowe, 2004). It was assumed that the 

first closest key point came from the same object as the key point to be matched, while the 

second closest key point came from another object. Distance ratio tests checked the 

similarity of the two nearest matches to select the matches with high similarity in 

successive images that were not reliable and should be removed. All matches whose 

distance ratio test was greater than 0.65 were removed in this study. 

The images were collected on a calm day, and the UAV was parallel flying with 

the ground with minimum variations in roll and pitch, but small adjustments in yaw angle 

due to navigation error (flight heading, speed and height). Therefore, the geometric 

transformations for matching any two successive images only included the operations of 

translation, scale and rotation. Considering the rotation and scale factor of two successive 

images were small in this study, in the case where scale and rotation were small enough to 

be negligible, the matching lines of the correct matches should have similar slopes and 

lengths. The slope and length of the matching lines were calculated using Eq 4.1 and 4.2:  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑦𝑦2−𝑦𝑦1
𝑥𝑥2−𝑥𝑥1

                                             (4.1)  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ =  �(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2                                  (4.2)  

where, (x1, y1) and (x2, y2) are the coordinates of a key point and its matching point in two 

successive images. The matches were considered to be false matches if the slopes and 

lengths of the matching lines had a large difference from other matches. 



75 
 

Another way to determine false matches was to calculate the ratio of the slope and 

the length of one matching line to the mean value of all matching lines in two successive 

images. The ratios of the slope and length of the correct matches would be close to 1. The 

thresholds for false matches were set as lower than 0.9 and greater than 1.1. Both the 

methods discussed above were used in this study to remove false matches. Figure 4.1 shows 

an example of feature detection and matching in two successive frames after all the false 

matches were removed. 

 

Figure 4.1: Feature detection and matching in two example frames. The blue numbers in 

each frame are the detected image features and the same number IDs with a color line 

connect two matched image features.  

Calculation of the geometric transformation matrix 

Once the correct matches were identified, transformation matrices of each pair of 

two successive images were calculated. As mentioned earlier, the scale factor of two 

successive images was small in this study and the image frames were rotated to obtain 

cotton rows aligned with the vertical axis of the images, therefore, only translation was 

considered in this study. The transform matrix M is shown as Eq 4.3 (Szeliski, 2007): 
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𝑀𝑀 = �
𝑡𝑡𝑥𝑥
𝑡𝑡𝑦𝑦�                                           (4.3)  

where, tx and ty are the distance in pixels of translation in the horizontal and vertical 

directions. Assuming a pixel value of an image coordinate I(x, y) was to be transformed 

into its previous image coordinate I’(x',y'), Eq 4.4 shows the transformation of these two 

images based on the transform matrix M: 

�𝑥𝑥′𝑦𝑦′� = 𝑀𝑀 ∙ �
𝑥𝑥
𝑦𝑦
1
�                                  (4.4)  

where, (x, y) and (x’, y’) are image coordinates of image I(x, y) and I’(x',y').  

Crop rows alignment based on the geometric transformation matrix 

After conducting the SHL to the original image frames, the images rotated and each 

crop row positions in the rotated images could be obtained. There were 152 crop rows in 

total and the crop row numbers of the first image frame were identified manually. The tx in 

the geometric transformation matrix M controls the distance in pixels of translation in the 

horizontal directions. When each crop rows in the second image frame translated tx pixels, 

they would match with the positions of each crop rows in the first image and would be 

assigned row numbers corresponding with the row numbers in the first image. New crop 

rows that appeared on the right side of the second image frame would be assigned a 

successive number of the last crop row in the first image frame. This process would 

continue in every two consecutive image frames until all pictures have been assigned the 

corresponding crop row numbers. Figure 4.2 shows the crop rows alignment of the first 

two image frames. 
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Figure 4.2: Crop rows alignment. There were 10 cotton rows identified manually in the 

first image frame. The numbers of 9 cotton rows identified by the SHL in the second 

image frame were aligned with the first image frame based on the geometric 

transformation matrix M. 

Image frame positions within each entire crop row 

The ty in the geometric transformation matrix M controls the distance in pixels of 

translation in the vertical directions. When the UAV flew through north to south then south 

to north, the regions included in each image frame moved from the beginning to the end 

then from the end to the beginning of the entire crop rows. A specific image frame moved 

ty pixels from its previous image frame in the vertical directions. However, uncontrol 

factors such as wind and low batteries during the flight made the UAV flew unstably and 

resulted in different GSD in each image frame and the pixels of translation in the vertical 

directions cannot represent the true translation in the meters of the entire crop rows in the 
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vertical directions. Since the GSD of each image frame was calculated based on the fixed 

row spacing in Chapter 3.1, translation in meters in the vertical directions can be calculated 

by Eq 4.5. The first image frame at the beginning of the data collection (the beginning of 

the first crop rows) was used as the reference of zero of the entire field, and positions of 

other image frames were calculated as the meters of distance between them and these zero 

references in the vertical directions. 

𝑡𝑡𝑦𝑦_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑡𝑡𝑦𝑦
𝐺𝐺𝐺𝐺𝐺𝐺

                            (4.5) 

where ty_meter is the translation in meters in the vertical directions, ty is the pixels of 

translation in the vertical directions and GSD is the ground sample distance. 

Emergence mapping based on the image alignment 

For each 1-m seedling segment in Figure 3.3b, the algorithm would first recognize 

its crop row numbers based on the crop row assignment results described above. The ty_meter 

described the translation in meters in the vertical directions for the geometric center of each 

image frame. To calculate the translation in meters of each 1-m seedling segment in Figure 

3.3b between them and the zero reference in the vertical directions, the distance in meters 

between the 1-m seedling segments and the geometric center of the image frames were 

needed to calculate. The translation in meters between each 1-m seedling segment and the 

zero reference in the vertical directions was the result of ty_meter added or subtracted the 

distance in meters between the 1-m seedling segments and the geometric center of the 

image frames. If some 1-m seedling segments from different image frames were 

geometrically close (less than 1 meter distance), the average of their predicted stand count 

and their predicted canopy size would be used when mapped the emergence of the whole 

field.  
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4.4 Limitation of the crop row alignment algorithm 

Low overlapping of the image frames 

The success of feature detection and matching relied on the overlapping of every 

two successive frames. If the two successive frames had a very small overlapping rate in 

the forward direction, the feature detection and matching would fail. Figure 4.3 shows two 

alignment examples with one about 30% and the other one less than 5% overlapping in the 

forward direction. Although a 60% overlapping in both forward and sideward directions 

were set for the UAV flight plan, uncontrol factors such as wind and low batteries during 

the flight made the UAV flew unstably and resulted in low overlapping images. There are 

2200 images in total and 11 images were found out unsuccessful alignment due to the low 

overlapping rate. There were two solutions for those 11 images to align correctly: 1) used 

the side overlapping images instead. The sideward overlapping images could be found 

based on the closest of the image GPS in the nearby UAV flight path. Figure 4.4 shows an 

example of the successfully sideward overlapping images alignment; 2) if both the forward 

and sideward overlapping rate were less than 5%, this image frame cannot be aligned 

successfully using the provided algorithm. Manually identified the crop row numbers of 

this image frame with crop row numbers in its nearby image frames were needed to assign 

the correct crop row numbers. There were 3 images out of those 11 images needed to assign 

the correct crop row numbers manually.    
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Figure 4.3: Two examples of the image frame alignment: (a) successfully aligned with 

about 30% overlapping in the forward direction between those two successive frames; (b) 

less than 5% overlap in the forward direction between these two successive frames and 

cannot be aligned successfully with the algorithm. The alignment result in (b) was the 

result of manual alignment. 

 

Figure 4.4: Image frames aligned successfully using sideward overlapping images. This 

is one of the solutions for the 11 image frames that cannot be successfully aligned due to 
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the low forward overlapping. The color numbers in each image were the crop row 

numbers assigned to each image. 

Incorrect image alignment when changing UAV batteries 

When the UAV batteries were about to use up, the UAV usually cannot have a well-

control of the stable flying, especially for the flight height controlling, which resulted in a 

low UAV flight height, smaller numbers of crop rows including in one image and larger 

GSD of the image frames.  We considered scale factor of two successive images were small 

and only translation was considered in the geometric transformation matrix M. When the 

UAV batteries were used up and changed to new batteries, the UAV would become well-

control of the stable flying again and had a different flight height with the last image frame 

that using the previous about to use up batteries, which resulted in a larger scale factor 

between these two image frames and unsuccessful crop rows alignment. We used four sets 

of batteries in total for the entire field data collection, and the crop row numbers of the first 

image frame in each set of batteries needed to be identified manually. For crop row 

numbers of the first image collected with the first set of the UAV batteries were easy to 

assign the row numbers, as shown in Figure 4.2. For the crop row numbers of the first 

image collected with the second to the fourth set of the UAV batteries, the crop row 

numbers can be assigned based on the feature detection and matching results, as shown in 

Figure 4.5. 
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Figure 4.5: Crop row alignment of image frames collected in the UAV batteries changed 

based on the feature detection and matching results. The color numbers in each image 

were the crop row numbers assigned to each image. 

4.5 GPS accuracy 

GPS accuracy of the row alignment mapping method was measured between 

ground RTK measurement and image measurement, as shown in Figure 4.6. Ground RTK 

measurement measured the distance in meter between each two GPS coordinates of the 28 

GRPs, while image measurement measured the distance in meter between every two 

ground stakes in the 28 GRPs in images. The row spacing determination affected the 

accuracy of the ground distance calculation between two subsequent image frames within 

a UAV flight path based on the Eq. 4.5. The row spacing was set as 0.97 m of the seed 

planter, however, in Chapter 3, the row spacing was 0.99 m based on image measurement 

in the GRPs. We tested the GPS accuracy using 0.97, 0.975, 0.98, 0.985, 0.99 m as the row 

spacing of the Eq. 4.5 respectively, and 0.98 m using as the row spacing had the lowest 

GPS accuracy, which was 0.17 ± 0.13 m. This was higher accuracy than the methods used 

in Chapter 3, which was 1.72 ±1.37 m. 
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Figure 4.6: GPS error measurement between two different kinds of systems: ground RTK 

measurement and image measurement. 

4.6 Factors affected the stand count and canopy size 

The emergence maps 

There were 152 crop rows in total and each crop row was about 315 m lengths, 

therefore a stand count map (seedlings meter-1) and a canopy size map (cm2 seedling-1) 

with a dimension of 152 crop row × 315 m length of each crop row could be generated, 

shown as Figure 4.7a-b. Then, those maps were downsampled to a dimension of 38 × 63 

maps to match with the lower special dimension data such as soil ECa, elevation, yield and 

vegetation indices maps in July.  Each data point in the 38 × 63 maps equates to a 4 m × 5 

m area. 
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Figure 4.7: Emergence maps of (a) stand count (seedlings meter-1) and (b) canopy size 

(cm2 seedling-1) with a dimension of 152 crop row × 315 m length of each crop row. (c) 

and (d) are the stand count (seedlings meter-1) and (b) canopy size (cm2 seedling-1) that 

downsampled from (a) and (b). Their dimension was 38 × 63, and each data point equates 

to a 4 m × 5 m area. 

Soil and elevation effects on the stand count and canopy size 

Some studies had shown that clay content had a negative relationship while sand 

content had a positive relationship with crop emergence rate (Anda and Pinter, 1994; 

Benvenuti, 2003; Domenech and Vila, 2008; Valdés-Rodríguez et al., 2013). In this study, 

the ECa-based clay% were split into five groups evenly: low clay% (0, 5.95], medium_low 

clay% (5.95, 8.69], medium clay% (8.69, 10.58], medium_high clay% (10.58, 12.72], and 

high clay% (12.72, 28.39]. Analysis of variance (ANOVA) was conducted to compare 

differences in the means of stand count and canopy size for different clay% groups using 

Tukey’s Honest method at a 0.05 level of significance, as shown in Figure 4.8a-b. Kernel 

density estimation (KDE) was used to model the probability distribution of stand count and 

canopy size in the five clay% groups using Gaussian kernels, as shown in Figure 4.8c-d. 

The results show that a majority of stand count of all the clay% groups were in the range 
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of 10 to 14, and the low and medium-low clay% groups had a slightly higher stand count. 

The planting rate was 11 seedlings meter-1 but with some planter-calibration errors. For the 

canopy size, the low clay% group had the lowest average canopy size and there was higher 

probability distribution of less than 20 cm2 seedling-1 than other clay% groups. Except for 

the low clay% group, the average canopy size decreases from the medium_low to the high 

clay% groups, which shows a negative relationship between canopy size and clay%. 

 
Figure 4.8: Relationships between emergence (stand count and seedling size) and ECa-

based soil clay%. Low clay%: (0, 5.95], medium_low clay%: (5.95, 8.69], medium 

clay%: (8.69, 10.58], medium_high clay%: (10.58, 12.72], and high clay%: (12.72, 

28.39]. Each clay% group had the same numbers of clay% data points. (a) Mean stand 

count and (b) seedling size difference of five clay% content groups. Different lower-case 

letters indicate a significant difference at the 5% level of Tukey’s honest significant 

difference test. The KDE of the (c) stand count and (d) seedling size in the five clay% 

content groups. 
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A scalable tree boosting model XGBoost (Chen and Guestrin, 2016) was used to 

explore how much the soil features contributed to the stand count and canopy size variation. 

The XGBoost model included hundreds of decision trees trained by the inputs of soil 

features (included the ECa-sh, ECa-dp, clay10-clay70, WP, FC, TAW and field elevation; soil 

data processing details were written in Chapter 5.4) and used the stand count and canopy 

size as the prediction with an additive strategy (build trees one following another, with the 

current one trying to predict what the previous trees did not predict well). Each decision 

tree was trained using 70% of the training data and built its branches (decision boundary) 

based on the residual of the previously built trees. The procedure of building tree branches 

of each decision tree was the procedure of choosing features from inputs for prediction, 

and a certain proportion of features instead of all the inputs would be used to build each 

tree to avoid overfitting. Therefore, the XGBoost model itself has the ability for feature 

selection and to address collinearity problems (Hayes et al., 2015). The overall dataset was 

split into 85% training set and 15% test set, and the coefficient of determination (R2) in the 

test set was used to quantify how well the model explained the data. The R2=0.43 and mean 

absolute percentage error (MAPE)=5.97% were obtained for the stand count prediction of 

the test set, while R2=0.43 and MAPE=8.51% were obtained for the canopy size prediction 

of the test set.  

Shapley values (Shapley, 1953) were used to explain how much each of the soil 

input feature values contributed to the stand count and canopy size prediction. We 

computed the predicted stand count and canopy size with a difference of each soil feature 

value and take the predicted difference to get the marginal contribution. The Shapley value 

is the (weighted) average of marginal contributions (Molnar, 2020). When the Shapley 
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value was zero for a specific soil feature, it means that this feature does not have any 

contribution to the stand count and canopy size prediction, while if the Shapley value was 

a negative (or positive) value for a specific soil feature, it means this feature had a negative 

(or positive) contribution to the prediction. Soil features with large absolute Shapley values 

are important to the stand count and canopy size prediction (Molnar, 2020). SHapley 

Additive exPlanations (SHAP) tool (Lundberg et al., 2020) was used to calculate the 

Shapley value in this study. Figure 4.9 shows the Shapley value of the soil features in stand 

count and canopy size prediction. Elevation ranks at the first important to both the stand 

count and canopy size prediction, and the elevation shows a positive relationship with both 

of them. The clay10 to clay70 show decrease important to the canopy size prediction, while 

clay10 and clay30 show more important to the stand count than the clay content in other 

depth layers. WP, FC and TAW did not show too much important to both the stand count 

and canopy size prediction. Elevation, ECa-sh, ECa-dp and clay10-clay30 were ranked the 

first six important to both the stand count and canopy size prediction. 

 

Figure 4.9: Shapley value of the soil features in (a) stand count and (b) canopy size 

prediction. 

Canopy sizeStand count

(a) (b)
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The SHAP tool (Lundberg et al., 2020) includes a function named SHAP 

dependence plot, which can help to explore the details of how Shapley values changes with 

specific soil feature value changes, as shown in Figure 4.10 and Figure 4.11. The overall 

elevation difference of the field is 1.5 m and increases from the north side to the south side. 

The prediction of the stand count decreases 1-2 seedlings and canopy size decreased 1-5 

cm2 seedlings-1 compared to the overall average seedling numbers and canopy size if the 

elevation is lower than 87.2 m. For clay10 and clay20, stand count and canopy size 

prediction decreases largely when the clay content is less than 6%, and the highest stand 

count and canopy size prediction appear in the range of 6%-8%. When the clay content is 

larger than 8%, stand count and canopy size prediction decrease slightly. The clay30 has a 

similar trend with the clay10 and clay20 for the canopy size prediction, but stand count had 

a decreasing trend when clay30 increases. ECa-sh had an increasing trend for the stand count 

prediction in the range of 0-15, while ECa-dp had an increasing trend for the canopy size 

prediction in the range of 0-15. 
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Figure 4.10: Shapley value changes corresponding to the top six important soil feature 

values changes for stand count prediction. 

 

Figure 4.11: Shapley value changes corresponding to the top six important soil feature 

values changes for canopy size prediction. 

Emergence and the crops’ subsequent development 

The stand count and seedling size data in the emergence were conducted the 

Pearson correlation with the NDVI, canopy size, GNDVI, NDRE, a* in the image collected 

on July 12, 2019 (image processing details were written in Chapter 5.3) and the final yield 

in 2019, as shown in Table 4.1. Canopy size had higher correlation coefficients with the 

image features and yield than the stand count. The coefficients between seedling size with 

NDVI, canopy size, GNDVI and NDRE were 0.4-0.5. The coefficients between stand count 

with image features and yield were less than 0.4. Both the stand count and seedling size 

had low correlation coefficients with the final yield (0.3 and 0.35). 
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Table 4.1: Pearson correlation coefficients between emergence (stand count and seedling 

size) and image features collected on July 12, 2019 and the final yield in 2019.  

 NDVI Canopy size GNDVI NDRE a* Yield 

Stand count 0.25 0.33 0.26 0.18 0.02 0.3 

Seedling size 0.42 0.5 0.4 0.41 0.16 0.35 

 

4.7 Conclusion 

This Chapter improved the mapping GPS accuracy for real-time cotton stand count 

and canopy size mapping. A UAV system with a high-resolution RGB camera was used to 

take individual image frames. A crop row alignment method on each individual frame was 

developed. The results showed that the GPS accuracy of the improved method of 

emergence mapping was 0.17 ± 0.13 m. Field elevation, ECa-sh, ECa-dp and clay10-clay30 

were ranked the first six important features to both the stand count and canopy size 

prediction. The seedling canopy had about 0.4-0.5 Pearson correlation coefficients with the 

image features collected in July but a low correlation coefficient with the final yield. The 

methods developed could be used as a powerful tool for farmers and researchers to explore 

the relationships between cotton emergence, soil conditions and weather conditions. 

4.8 Future work 

Compared to the emergence mapping methods in Chapter 3, the row alignment 

mapping method in this Chapter had higher GPS accuracy. However, the image processing 

time increased a lot (about 17 s / image) and did not reach near real-time mapping as the 
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methods in Chapter 3. Other low time cost image features rather than the SUFT for image 

alignment could be tried to reduce the processing time in the future. 
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Chapter 5. COTTON DEVELOPMENT VARIATION AFFECTS BY 

SOIL AND WEATHER 

5.1 Abstract 

Crop development and production are partly determined by soil conditions, plant 

available water, and weather conditions. Quantification of their interactions is the key for 

optimizing field management, such as precision irrigation and fertilization, to achieve 

optimal production. The goal of this study was to quantify the effects of soil and weather 

conditions on cotton development and production using temporal areal imagery data and 

soil apparent electrical conductivity (ECa) of the field.  Soil texture, i.e., sand and clay 

content, calculated using ECa based on a model from a previous study, was used to estimate 

the soil characteristics, including field capacity, wilting point and total available water. 

Water stress coefficient Ks was calculated using soil texture and weather data. Unmanned 

aerial vehicle (UAV)-based multispectral imaging systems were used to acquire imagery 

data at three growth stages of cotton in 2018 and 2019, respectively. Image features of 

canopy size and several vegetation indices (VIs) were extracted from the derived 

orthomosaic images. Pearson correlation, analysis of variance (ANOVA) and a machine 

learning method (XGBoost) were used to quantify the relationships between crop response 

(variables extracted from UAV images) and environments (soil texture and weather 

conditions). Results show that the cotton NDVI was various monthly under different soil 

textures in both 2018 and 2019. Soil clay content in shallower layers (0-0.4 m) affected 

crop development in early growth stages (June and July) while clay content in deeper layers 

(0.4-0.7 m) affected the mid-season growth stages (August and September). It was also 
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found that soil clay content at 0.4-0.7 m had a higher impact on crop development when 

water inputs were not sufficient, while features related to crop water stress had a higher 

contribution to the prediction of crop growth when water stress was less. The study 

indicates that the integration of soil and weather information was able to predict crop 

growth and yield. 

Keywords Cotton; plant growth; soil texture; UAV; multispectral imagery 

5.2 Introduction 

The world population is estimated to increase by 2 billion in the next 30 years, from 

7.7 billion currently to 9.7 billion in 2050, although the growth speed is at a slower pace 

(United Nations, 2019). It is estimated that global crop production needs to double by 2050 

to meet the projected demands from rising population, diet shifts, and increasing biofuels 

consumption (Alexandratos and Bruinsma, 2012; Hickey et al., 2019; Ray et al., 2013). 

However, the current yearly increases of crop production for maize (Zea mays L.) at 1.6%, 

rice (Oryza sativa L.) at 1.0%, wheat (Triticum aestivum L.) at 0.9%, and soybean [Glycine 

max (L.) Merr.] at 1.3% are insufficient to meet the projected demands of ~2.4% in 2050 

(Alexandratos and Bruinsma, 2012; Ray et al., 2013). How to improve the production of 

the major crops has become an impressing pressure to the global research communities 

(Hatfield and Walthall, 2015).  

Crop development and yield are complex and determined by many factors, such as 

crop genotypes (varieties), growing environments (e.g., weather, soil, microclimate and 

location), and agronomic management strategies (e.g., seed treatment and placement, 

planting, fertilizer and pest management) (Cobb et al., 2013). To develop next-generation 

and high-efficiency agriculture production systems, we will have to solve the complex 
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equation consisting of the interactions of genotype, environment and management 

(G×E×M) using emerging technologies (Beres et al., 2020; Russell, 2017; Xin and Tao, 

2019). Although crop yield potentials have been improved through advanced crop breeding 

technologies, the yield gap, i.e., the difference between farm yield (final yield) and 

potential yield, is still substantial (Beres et al., 2020). Precision agriculture is a promising 

agriculture practice to increase profitability and reduce the environmental impact using 

site-specific and accurate measurement of crop, soil and environment (Basso and Antle, 

2020; Walter et al., 2017). However, the success of precision agriculture technology 

heavily relies on the access of accurate and high-resolution spatiotemporal data and reliable 

prediction models of crop development and yield (Feng et al., 2020b). To-date, most 

research projects have been focused on development of crop development and yield 

predication models using single factors, such as crop response to irrigation (Bell et al., 

2018; Onder et al., 2005), fertilizer (Cuong et al., 2017; Schut et al., 2018). There are few 

studies that have integrated effects of environment and management in their prediction due 

to the lack of data and complex interactions (Beres et al., 2020). In this study, we tested 

the feasibility of modelling crop development using multiple factors of soil, weather and 

management practices.  

Soil texture is an important soil property related to crop growth (Scherer et al., 

2017). The size of solid particles has been used to classify soil texture into different types, 

including clay (less than 0.002 mm), silt (from 0.002 mm to 0.05 mm) and sand (from 0.05 

mm to 2 mm) (Easton and Bock, 2016). The percentages of sand, clay and silt in the soil 

affect the movement of air and water, as well as the water holding capacity (Bittelli, 2011; 

Datta et al., 2017; Easton and Bock, 2016). Soil texture is a determining factor for soil 
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water holding capacity that is one of the important factors affecting crop development. Soil 

texture can affect seedling emergence date and emergence rate (Forcella et al. (2000)), root 

development (Oosterhuis, 1990). Soil texture can be measured using a laboratory-based 

wet chemistry method that is expensive and time-consuming (Vos et al., 2016). An 

alternative method is to use a sensor-based method that is efficient to acquire data with 

high spatial resolution and low cost.  The most acceptable method is to predict soil texture 

using soil apparent electrical conductivity (ECa) with a good calibration (James et al., 2003; 

Stępień et al., 2015; Sudduth et al., 2005). Many studies have found that soil texture (or 

soil ECa) was related to the yield of cotton (Vories et al., 2020), corn (Kitchen et al., 2003; 

Kitchen et al., 2005) and soybean (Jiang and Thelen, 2004; Kitchen et al., 2005). 

Weather conditions, including temperature, wind, humidity and solar irradiance, 

that are determining factor for crop evapotranspiration and water requirements,  also have 

a great impact on crop development and yield (Allen et al., 1998). Addy et al. (2020) 

showed that the cereal grain yield had different responses to nitrogen application under 

various weather conditions during 1968-2016. Tremblay et al. (2012) showed that weather 

conditions could influence the corn response to nitrogen. Battisti et al. (2018) showed that 

weather condition was an important component for soybean yield estimation. Van Bussel 

et al. (2016) used weather data for long-term (30 years) wheat yield estimation. 

Compared to crop yield, which is easy to measure and quantify, crop development 

effects due to the soil texture and weather conditions within a season could be challenging 

to measure and quantify. Evaluation of crop development by visual observation at field 

scale is time-consuming and subjective. In recent years, sensor-based methods have 

provided a promising way to measure and quantify crop development (Bendig et al., 2015; 
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Hunt et al., 2013). Vegetation indices (VIs) such as normalized difference vegetation index 

(NDVI), chlorophyll vegetation index, triangular greenness index, and green red vegetation 

index, can be used to quantify the crop growth status (Xue and Su, 2017). Unmanned aerial 

vehicles (UAVs) equipped with visual sensors, multispectral sensors and/or hyperspectral 

sensors have been used as a high-throughput data collection tool by many researchers to 

monitor crop development at the desired time efficiently at field-scale (Feng et al., 2019; 

Feng et al., 2020a; Feng et al., 2020b; Turner et al., 2014). Studies have used UAV-based 

remote sensing technologies to estimate crop evaporation (Hoffmann et al., 2016b), crop 

water status (Romero et al., 2018) and water stress (Gago et al., 2017; Hoffmann et al., 

2016a; Zhang et al., 2019). These studies explored the relationships between VIs and 

evapotranspiration (latent heat flux) calculated by energy balance models, water status 

measured by pressure bomb, ground measured stomatal conductance and sap flow under 

different irrigation treatments. 

Using UAV-based remote sensing technologies to study the relationships between 

soil texture (or ECa), weather conditions and crop development is an important and ongoing 

topic. For example, Santesteban et al. (2017) and Křížová et al. (2018) showed that the 

crop canopy temperature captured by a UAV-based thermal camera was related to soil ECa.  

This study focused on examining the effects of soil texture and weather conditions on 

cotton growth variation. The specific objectives included: (1) extracting features of the 

crop, soil and weather from different sensing systems; and (2) quantifying soil texture and 

weather effects on cotton growth variation. 
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5.3 Multi-sensors UAV system and experimental design  

To monitor crop development during the whole growth season (from July to 

September), imagery data were collected using a UAV imaging system integrating a UAV 

platform (DJI Matrice 600 Pro, DJI, China) with multiple cameras and thermal camera. 

The multiple cameras used in 2017, June and July of 2018 were an RGB camera (HERO 

5, GoPro, San Mateo, CA, USA) and a customized multispectral camera 

(XNiteCanonElph130, LDP LLC, Carlstadt, NJ, USA). The camera used in August and 

September of 2018 and in 2019 was a multispectral camera (RedEdge-M, MicaSense Inc., 

WA, USA). The thermal camera used in all three years was an infrared thermal camera 

(ICI 8640P, Infrared Cameras Inc., Beaumont, TX, USA). Because the thermal camera had 

an uncooled detector, it was warmed up by connecting to a power bank for more than half 

an hour before data collection to produce stable temperature readings. The firmware 

provided by the thermal camera company was installed on a Raspberry Pi (model 3B, 

Raspberry Pi Foundation, UK) to collect thermal images at a snapshot rate of 1 s image-1 

and images were saved on the SD card of the Raspberry Pi.  Image data were collected at 

the east field in 2017 and 2019, and the west field in 2018. The UAV imaging system flew 

at 30 m above the ground level (AGL) when using the RedEdge-M, and at 50 m AGL when 

using the HERO 5 and XNiteCanonElph130. The specifications of the cameras, flight 

height and ground sampling distance (GSD) are listed in Table 5.1: Specifications of the 

cameras used in the study Table 5.1. The cameras collected images with about 75% overlap 

in both sideward and forward directions. A UAV control app (Autopilot, Hangar 

Technology, Austin, TX, USA) was used to plan flight paths and set waypoints, flight 

speed (7.5 km h-1), and height (30 or 50 m AGL). Imagery data were collected near solar 
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noon (around 1 pm Central Daylight Time). The specific conditions during image 

collection in two years are shown in Table 5.2: Weather conditions during imaging. The 

values are the means and standard deviations from 11 am to 2 pm of the imaging days, i.e., 

the weather conditions from 11:00 pm to 2:00 pm CDT. The on-board GPS system on the 

UAV system and on the cameras continuously recorded the coordinates and altitude and 

provided geo-referencing for each image frame in the metadata of each image. Geo-

referenced images were downloaded after the flight for further processing. 

Table 5.1: Specifications of the cameras used in the study 

Camera type Model Spectrum range 
(nm) 

Frame rate 
(s image-1) 

Resolution 
(pixel) 

Flight 
height (m) 

GSD * 
(cm pixel-1) 

Multispectral XNiteCanon 
Elph130 

NIR (820 ± 80), R 
(630 ± 80), 

G (550 ± 50) 
2.5 4608 × 3456 50 1.56 

RGB GoPro 
Hero5 R-G-B 0.5 4000 × 3000 50 2.6 

Multispectral Micasense 
RedEdge-M 

B (475±10), G 
(560±10), R 

(668±5), red-edge 
(717±5) NIR 

(840±20) 

1 1280 × 960 30 2 

Thermal ICI 8640 P 7,000 – 14,000 1 640 × 512 50 6.8 

* GSD = ground sampling distance. 

Table 5.2: Weather conditions during imaging. The values are the means and standard 

deviations from 11 am to 2 pm of the imaging days 

Year Date 
Air 

temperature 

(ºC) 

Relative 
humidity (%) 

Wind speed 

(m s-1) 

Solar 
irradiance 

(W m-2) 

2017 Aug. 12 26.8 ± 0.2 63.0 ± 1.0 1.3 ± 0.2 989 ± 35 

2018 

Jun. 29 29.3 ± 0.5 68.5 ± 1.3 2.3 ± 0.5 759 ± 71 

Jul. 18 30.7 ± 0.3 51.3 ± 1.5 2.8 ± 0.5 737 ± 96 

Aug. 22 25.4 ± 0.3 64.8 ± 2.6 2.0 ± 0.0 655 ± 38 

Sept. 15 30.0 ± 1.2 61.5 ± 4.7 2.5 ± 0.6 773 ± 38 
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2019 

Jul. 12 31.0 ± 0.9 48.7 ± 4.8 2.0 ± 0.0 914 ± 30 

Aug. 14 31.3 ± 0.9 51.0 ± 5.2 1.5 ± 0.6 850 ± 71 

Sept. 6 27.4 ± 1.0 53.0 ± 3.9 2.0 ± 0.0 828 ± 34 

 

Ground truth and reference data, including ground reference points (GRPs) and soil 

moisture content, were collected prior to UAV flights on the same day as image data 

collection. In this study, 28 GRPs were randomly set in the field and kept in the same 

locations for all flights in each growing season. The GRPs consisted of sixteen fence posts 

(~ 1.1 m in height) with white-black polytechnic boards (0.3 m × 0.3 m) on the top and 

twelve 0.53 m × 0.53 m squares constructed with half-inch plastic polyvinyl chloride (PVC) 

pipes on the ground.  A ground stake was placed at each GRP to be used as a permanent 

mark of GPS position in the growing season. A real-time kinematic (RTK) GNSS survey 

kit (REACH RS+, Emlid Ltd., Saint Petersburg, Russia) was used to obtain the coordinates 

of the 28 GRPs. Soil samples were obtained at those 28 GRPs at two depths (0-0.075 m 

and 0.075-0.15 m) in 2019 during imagery data collection. The soil samples were put in 

sealed plastic bags and weighted in the lab (wet weight). Then the soil samples were put in 

an oven to dry 24 hours at 105 ºC. Soil samples were weighed again after drying (dry 

weight). Gravimetric soil moisture content was obtained by Eq. 2.2.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 % = 𝑤𝑤𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡−𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡

                              (2.2) 

Soil moisture sensors (TDR-315, Acclima, Meridian, ID, USA) were installed at 

five selected locations within the field at nominal 0.15, 0.30, 0.45, and 0.60 m depths to 

measure soil water content. Data loggers (CR206X, Campbell Scientific, Logan, UT, USA) 

were set to record the data every 15 minutes and wirelessly transmit it to a central computer 

from July to October each year. 
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As crop temperature affects by the daily air temperature, five poster boards (1.0 m 

×1.5 m) painted with different colors (blue, black, green, white, and yellow) were 

distributed in the field and their temperature was measured using the thermal camera and 

a handheld IR thermometer (59 MAX+, FLUKE Corporation, Everett, WA, USA) during 

the flight each time, as shown in Figure 5.1 . In 2019, not only the five color poster boards, 

we also included the dry-wet artificial reference surface (including a wet white cotton sheet 

and a dry black cotton sheet) (Meron et al., 2010) as the reference to check how canopy 

temperature changes during different daily air temperature, as shown in Figure 5.2. 

 

Figure 5.1: Five poster boards painted with different colors. 

 

Figure 5.2: Dry-wet artificial reference surfaces. 



104 
 

5.4 UAV-based multispectral and thermal images processing 

Images were uploaded to Agisoft PhotoScan Pro software (Version 1.2.2, Agisoft 

LLC., Russia) to generate orthomosaic images, which is created out of many individual 

image frames that have been stitched together and geometrically corrected (Dukowitz, 

2017) based on a mosaic blending model described by Brown and Lowe (2003), as shown 

in Figure 5.3a. The GPS locations of the GRPs were used for GPS calibration of the 

orthomosaic images. 

 
Figure 5.3: Image processing and image feature extraction. (a) Part of an orthomosaic 

image with corresponding row separation by the red lines and background removal (b). 

(c) Illustration of unit area (1 m2) used to extract image features to generate (d) 152 (or 

148) × 315 data points of the UAV image features. Then the data points were 

downsampled to 38 (or 37) × 63 data points. Each data point corresponded to a 4 m × 5 m 

area of the field. 

   
Each cotton row was identified from the orthomosaic images using the method 

developed in previous studies (Feng et al., 2019; Feng et al., 2020b) based on the 

identification of image features along the edge of the crop rows (such as low NDVI and v* 
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values in hue, saturation, lightness (HSV) color space that represented darker color due to 

shadows). An example of separated crop rows is shown in Figure 5.3b. Then, the soil 

background was removed using a threshold of NDVI<0.5 determined by the image 

histogram (Feng et al., 2020a). Five image features were extracted from each ~1-m2 

rectangle (0.97 m crop row spacing × 1 m length of row based on the GSD calculated by 

the image resolution, as shown in Figure 5.3c). These image features were NDVI, green 

normalized difference vegetation index (GNDVI), the normalized difference red edge 

index (NDRE), the values of a channel in the CIE-LAB color space (a*) and canopy size. 

These indices have shown to be useful to monitor and evaluate crop growth status in other 

studies (Table 5.3). For example, canopy size had a strong relationship with crop biomass 

(Maimaitijiang et al., 2019). Studies found that healthier plants had lower reflectance in 

the red channel (about 600 nm to 660 nm wavelength) than unhealthy plants so that NDVI 

values would be higher for the healthier plants (Ihuoma and Madramootoo, 2019). The 

NDRE calculated by the red edge channel (about 680 nm to 760 nm wavelength) was also 

useful for nitrogen status evaluation and had a linear relationship with leaf area index (LAI) 

and chlorophyll content (Hansen and Schjoerring, 2003). GNDVI and a* were related to 

crop leaf greenness and chlorophyll content (Friedman et al., 2016; Reyes et al., 2017). 

There were 152 (or 148 in 2018) cotton rows and the fields were about 320 m in the south-

north direction, so 152 (or 148) × 315 data points with related image features were obtained 

(the north and south edges of the field were removed to avoid edge effects).  Then, the data 

points were down sampled to 38 (or 37) × 63 data points by spatial averaging, with each 

data point equal to 4 cotton rows (matched with the four-row harvested yield data) × 5 m 

length (integer 315/5 rectangle instead of non-integer 315/4 square). The GPS locations of 
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the center of each 4 m × 5 m area were also extracted from the geo-referenced orthomosaic 

images.  

Table 5.3: Image features from the three cameras used in this study 

Features Equations Related traits References 

NDVI 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅

 
where NIR and R are pixel values in the near-

infrared and red channels, respectively 

Yield, chlorophyll 
content, biomass 

(Dalezios et al., 2001; 
Hunt et al., 2011; 

Moges et al., 2005; Ren 
et al., 2008) 

GNDVI 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺

 
where G are pixel values in the green channel 

Yield, chlorophyll 
content, biomass 

(Hunt et al., 2011; 
Moges et al., 2005)  

NDRE 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅

 
where RE are pixel values in the red edge 

channel 

Crop senescence, 
maturity 

(Barnhart et al., 2019; 
Thompson et al., 2019) 

Canopy 
size (CS) 

𝐶𝐶𝐶𝐶 

=
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑛𝑛 𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑅𝑅𝑅𝑅𝑅𝑅

 
Yield, biomass, 

crop density 

(Hunt et al., 2011; Liu 
et al., 2017; Steduto et 
al., 2012; Walton et al., 

2008) 

𝑎𝑎∗ 𝑎𝑎∗ channel in the CIE-LAB color space; a* 
represents the green–red color components 

Yield, water 
content, nitrogen, 

chlorophyll 
content 

(Friedman et al., 2016; 
Hunt et al., 2013; Reyes 
et al., 2017; Schwarz et 

al., 1987) 

CWSI  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑐𝑐−𝑇𝑇𝑤𝑤
𝑇𝑇𝑏𝑏 − 𝑇𝑇𝑤𝑤

 

where Tc is the crop canopy temperature, Tb 
is the temperature of the black poster board 
and Tw is the temperature of the white poster 
board  

Yield, water stress (Ludovisi et al., 2017; 
Rischbeck et al., 2016) 

$ROI: region of interest. 

Canopy temperature is also an important variable that has been found to be related 

to leaf water content and respiration of crops (Baluja et al., 2012; Hoffmann et al., 2016a; 

Hoffmann et al., 2016b; Ludovisi et al., 2017), and has the potential for yield prediction 

(Feng et al., 2020b; Rischbeck et al., 2016). The canopy temperature in this study was 

extracted from the thermal images collected in 2018-2019. The camera readings were 

factory calibrated using a calibration file provided by the camera supplier. 

To validate the readings of the thermal camera, the average temperature of each of 

the five reference color boards was extracted from the UAV thermal images, and measured 
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three times using the handheld thermometer (Figure 5.4). The intent of the comparison was 

not to calibrate the camera, but to validate the sensor readings using an additional device. 

A linear regression analysis was conducted between the temperature from the thermal 

camera and the handheld thermometer for the five reference boards, and results show a 

good fit (R2 = 0.99 and RMSE = 0.69 °С) between two sensors, indicating the readings of 

the thermal camera were valid. 

 
Figure 5.4: Temperature of the ground reference boards measured by the UAV-based 

thermal camera and handheld thermometer. The numbers above the columns show the 

means of the measurements. 

As crop canopy temperature affects by the daily air temperature, a crop water stress 

index (CWSI) instead of the original canopy temperature was used to quantify the crop 

water stress and crop growth variation in this study. The CWSI used the temperature of the 

black and white poster boards as the temperature reference. 



108 
 

5.5 Soil and weather data processing 

5.5.1 Soil texture data  

A soil ECa survey was conducted in both fields on the same day using the Veris 

3100, which measured the soil ECa at two depths, i.e. shallow (0.3 m, ECa-sh) and deep (1 

m, ECa-dp).  There were about 5500 ECa readings (data points) in the research fields (around 

half in each field). The Kriging method of spatial interpolation was used to generate soil 

ECa-sh and ECa-dp maps (2946×1716 raster for each field, with each grid representing about 

0.1 m × 0.1 m area) based on the discrete ECa points and their GPS coordinates. In this 

study, a python package pyKrige (Revision db07202a, PyKrige developers adopted from 

an Open-Source Project. http://pykrige.readthedocs.io) and its build-in variogram models 

were used to generate the block kriging soil ECa-sh and ECa-dp maps. A variogram plot was 

created. Four variogram models (spherical, exponential, gaussian, cubic models) were 

fitted to the variogram plot and the exponential model was chosen as it had the lowest 

RMSE. Then the ordinary kriging estimator was used to predict soil ECa-sh and ECa-dp of 

those unknown points in the raster based on the variogram model and the distance between 

the unknown points and the measured points (ArcGIS Pro 2.7, 2020; Oliver and Webster, 

1990). Once the maps were generated, then soil ECa-sh and ECa-dp could be extracted for the 

grid where the image features were extracted to connect the soil data points and image data. 

Kriging spatial interpolation was also conducted for the yield data, to allow it to be 

connected to soil data and image features. 

To develop field-wide estimates of soil texture, linear regressions were calculated 

for laboratory-measured sand and clay content as a function of ECa-sh (Sudduth et al., 2017; 

Vories et al., 2020). Calibration data came from profile soil cores that were obtained at 
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eight locations selected across the field to span differences in ECa and analyzed by the 

pedogenic horizon. Combined data from the top two soil horizons (mean depth 0.34 m) 

yielded the best results, likely because approximately 90% of the ECa-sh response comes 

from the top 0.3 m of the soil profile (Sudduth et al., 2003).  Results indicated a high 

correlation between clay and ECa-sh (R2=0.85) and between sand and ECa-sh (R2= 0.80). 

These calibrations were then applied to the kriged ECa datasets to estimate sand and clay 

for the entire field (ECa-based sand% and ECa-based clay%). 

Field capacity (FC) and wilting point (WP) are two variables used to describe the 

water holding capacity. FC is defined as the level of soil moisture content in the soil after 

water drainage by gravity, and the wilting point is defined as the level of soil moisture 

content where plants cannot exert enough force to obtain the moisture from the soil (Easton 

and Bock, 2016; Scherer et al., 2017). The amount of water between field capacity and 

wilting point can be considered to be the total available water (TAW) for plant use. Based 

on the studies of Saxton et al. (1986) and Saxton and Rawls (2006), the field capacity and 

wilting point were estimated based on the percentage sand and clay content: 

𝐹𝐹𝐹𝐹 = ( 1
3×𝐴𝐴

)
1
𝐵𝐵                                            (5.1) 

𝑊𝑊𝑊𝑊 = (15
𝐴𝐴

)
1
𝐵𝐵                                             (5.2) 

where FC is field capacity (cm3 water / cm3 soil) and WP is wilting point (cm3 water / cm3 

soil). A and B are coefficients that are calculated as: 

𝐴𝐴 = 𝑒𝑒(−4.396−0.0715×𝐶𝐶−0.000488×𝑆𝑆2−0.00004285×𝑆𝑆2×𝐶𝐶)                    (5.3) 

𝐵𝐵 = −3.14 − 0.00222 × 𝐶𝐶2 − 0.00003484 × 𝑆𝑆2 × 𝐶𝐶               (5.4) 

where C is the percentage clay content, and S is the percentage sand content (the ECa-

based sand% and clay% were used in this study). TAW could be calculated by Eq. 5.5 

(Allen et al., 1998). 
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𝑇𝑇𝑇𝑇𝑇𝑇 = 1000 × (𝐹𝐹𝐹𝐹 −𝑊𝑊𝑊𝑊) × 𝑍𝑍𝑟𝑟                                (5.5) 

where TAW is the total available water (mm), Zr is the rooting depth (m). Zr in the 

emergence stage was set to 0.25 m (Allen et al., 1998; Oosterhuis, 1990; Savva and Frenken, 

2002) and in the full development stage was set to 0.69 m based on prior research in fields 

with irrigation management in the Mid-South (Sui and Vories, 2020). However, because it 

is difficult for plants to extract all the available water in the soil, a fraction should be applied 

to the TAW based on a specific crop to calculate the readily available water (RAW) as shown 

in Eq. 8 (Allen et al., 1998): 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝜌𝜌 𝑇𝑇𝑇𝑇𝑇𝑇                               (5.6) 

where ρ is the fraction, which was set to 0.6 in this study based on Allen et al. (1998). 

In addition, to explore the effects of soil texture at different depths on crop 

development, clay content in 10-cm layers from the surface to a 70 cm depth was estimated 

using ECa data obtained by Veris MSP3 system following the methods developed by 

Sudduth et al. (2017) with the invVERIS software package (EMTOMO, Odivelas, 

Portugal), which used a quasi-3D (Q3D) inversion method (Koganti et al., 2017). 

5.5.2 Evapotranspiration and water stress coefficient 

Crop evapotranspiration determines the crop water requirement and could be 

estimated by weather parameters and soil conditions. Based on Allen et al. (1998) and 

Snyder and Eching (2002), daily evapotranspiration of the reference crop (i.e. 20 cm height 

grass), defined as ETo, can be calculated using the Penman-Monteith model based on 

latitude and elevation of the research field, solar radiation, wind speed, dew point 

temperature, and maximum and minimum air temperature. The American Society of Civil 

Engineers (ASCE) standardized equation was recommended to simplify the ETo 
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calculations (ASCE-EWRI, 2005; Walter et al., 2000). The ETo of the research field was 

directly provided from a weather station 400 m from the field using the ASCE standardized 

equation. The evapotranspiration of cotton was estimated based on the ETo and the crop 

coefficient of cotton (Kc) calculated using Eq. 5.7. The appropriate Kc has been found to 

vary in different growth stages and different crop types (Allen et al., 1998; Hong et al., 

2017). The Kc was set to 0.35 in the emergence growth stage and 1.2 in mid-season in this 

study (Allen et al., 1998; Ko et al., 2009). The length of the crop emergence, crop 

development and reproductive periods were set to 20, 50 and 55 days respectively (Allen 

et al., 1998; Ko et al., 2009). 

𝐸𝐸𝐸𝐸𝑐𝑐 = 𝐾𝐾𝑐𝑐 × 𝐸𝐸𝐸𝐸𝑜𝑜           (5.7) 

where ETc is the evapotranspiration of crop and Kc is the crop coefficient of cotton. 

Root zone depletion (Dr) could be used to determine the soil water storage relative 

to field capacity (Allen et al., 1998) with Dr = 0 indicating no depletion of water (at the 

field capacity level after rain and/or irrigation). The Dr would increase when crops used 

soil water due to evapotranspiration. A value of Dr > RAW indicates that the readily 

available water stores in the soil are less than the plant water required, and therefore crops 

are under water stress. A water stress coefficient (Ks) ranging from 0 to 1 was used to 

describe the level of crop water stress (Allen et al., 1998). When Dr < RAW, Ks = 1, which 

means no water stress. When Dr > RAW, Ks was calculated as: 

𝐾𝐾𝑠𝑠 = 𝑇𝑇𝑇𝑇𝑇𝑇−𝐷𝐷𝑟𝑟,𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇−𝑅𝑅𝑅𝑅𝑅𝑅

                              (5.8) 

where TAW and RAW were calculated based on Eq. 4.5 and Eq. 5.6, Dr,i was the Dr on a 

specific day i and was determined by: 

𝐷𝐷𝑟𝑟,𝑖𝑖 = 𝐷𝐷𝑟𝑟,𝑖𝑖−1 + 𝐸𝐸𝐸𝐸𝑐𝑐,𝑖𝑖 − 𝑃𝑃𝑖𝑖 − 𝐼𝐼𝑖𝑖                        (5.9) 
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where Dr,i-1 was the Dr on the last day, ETc,i,,  Pi, and Ii were the ETc, precipitation and the 

irrigation amounts for the specific day. Precipitation and/or irrigation amounts greater 

than Dr were assumed lost through runoff and/or deep percolation below the root zone 

and were not available to the crop. 

Using 2019 data as an example, the daily Ks was calculated for each of the 38 × 63 

= 2,394 raster (each data point was the 4 m × 5 m area) using the weather data and irrigation 

data from May 15 (planting date in 2019) to September 6 (the last date of image collection), 

or a total of 113 days as shown in Figure 5.5. For each position (or data point) in the 38 × 

63 rasters of the 113 days, 113 Ks maps were calculated based on the weather data, 

irrigation data and soil data using Eq. 5.8 and Eq. 4.9. These two equations connected each 

day’s weather (there were 113 days in Figure 5.5 so that 113 Ks maps were generated) and 

the spatially variable soil together. After all 113 Ks maps were generated, the following 

features were calculated (up to the imaging date, i.e. Aug 14 in Figure 5.5) to match each 

data point of the image features (i.e. images collected on Aug 14 in Figure 5.5) with the 

soil features raster as shown in Figure 5.5, including Ks on the imaging date; the number 

of days after planting when Ks < 1 first occurred; the total number of days with Ks < 1 (as 

well as 0.9 ≤ Ks <1, 0.8≤ Ks <0.9, 0.7≤ Ks <0.8, 0.6≤ Ks <0.7, 0.5≤ Ks <0.6, 0.4≤ Ks <0.5  

and Ks <0.4; the Ks was classified as 8 different stress levels); the largest number of 

continuous days with Ks < 1 (as well as Ks <0.9, Ks <0.8, Ks <0.7, Ks <0.6, Ks <0.5, Ks <0.4 

and Ks <0.3). The main reasons for using this method to connect the soil and image feature 

maps with the Ks maps instead of directly connecting the 113 Ks maps with the image 

feature and soil raster were: 1) there were many instances of Ks = 1 in the overall 63 × 38 

× 113 matrix; and 2) the overall 63 × 38 × 113 matrix was a large matrix and dimension 
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reduction methods were needed. Similar processing was conducted for the 2018 data from 

May 16 to Sep 15 (122 Ks maps). 

 

Figure 5.5: The Ks maps and the connection method of soil, image features and Ks maps. 

Ks was calculated for each position in the 38 (or 37 in 2018) × 63 spatial raster with each 

Ks map representing a day 

5.6 Soil and weather effects on crop development 

5.6.1 Data analysis methods 

The goal of this study was to evaluate variations in cotton development due to the 

variation of soil and weather. The soil condition of the field was quantified using the 

features extracted from ECa data, including the ECa-based sand% (the ECa-based clay% 

did not be included due to the high linear correlation with the ECa-based sand% came from 

the same ECa data source), ECa-based clay content percentage in seven different depths of 

soil (clay10 – clay70), FC, WP, TAW and RAW. Soil water input included irrigation data 

and the watered plots recorded for the center pivot irrigation system and precipitation from 

the weather station. The Ks feature was calculated based on water input, ETc (Eq. 4.7) and 

soil features. The image features extracted were used to represent the crop development. 
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Pearson correlation coefficients between soil features and image features were 

calculated to evaluate their relationships. Analysis of variance (ANOVA) was conducted 

to compare differences in the means of NDVI for different Ks groups and sand% groups 

using Tukey’s Honest method at a 0.05 level of significance. A scalable tree boosting 

model XGBoost (Chen and Guestrin, 2016) was used to explore how much the soil features 

and Ks features contributed to the crop growth variation (as quantified by image features). 

XGBoost, standing for eXtreme Gradient Boosting, is an implementation of gradient 

boosted decision trees designed for efficiently processing structured or tabular data. The 

XGBoost model, as one of the tree ensemble methods, included hundreds of decision trees 

that were trained using soil features and Ks features as inputs and image features as the 

prediction (outputs) based on an additive strategy. The overall dataset was split into 85% 

training set and 15% test set, and the training process for each tree used 70% of the training 

dataset.  The XGBoost model has the ability to automatically select features and to address 

collinearity problems (Hayes et al., 2015). Another benefit of using XGBoost model is that 

the model can retrieve importance scores for each input feature, indicating how useful or 

valuable each feature was in the construction of the boosted decision trees within the model 

(Friedman et al., 2001; Lee, 2017). The developed model was tested using the test dataset 

and the coefficient of determination (R2) of a regression between the prediction and true 

data (imagery features) was used to quantify how well the model explained the true data. 

All data analysis was conducted in Matlab (version 2018a, MathWorks, Natick, 

MA, USA), and in Python software with the packages NumPy (v1.16) (Oliphant, 2006), 

Pandas (v0.25) (McKinney, 2010) and SciPy (v1.5.2) (Virtanen et al., 2020). 
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5.6.2 Correlation between soil features and image features 

Even though there were nonlinear relationships between ECa -based sand%, FC, 

WP and TAW based on Eqs. 4.1-4.6 and between clay contents through the soil profile 

(clay10-clay70) based on inversion methods using the invVERIS software package, 

Pearson correlation coefficients (r) observed between them were high. For example, 

correlations were over 0.9 between clay% in every adjacent depth layer (clay10-clay70) as 

shown in Figure 5.6. This high similarity in clay% distribution between adjacent depth 

layers can also be seen in Figure 5.7. The first three layers (i.e. 0 to 10 cm, 10 to 20 cm and 

20 to 30 cm) had similar spatial clay% distribution patterns with r around 0.7-0.9. The last 

three layers (i.e. 40 to 50 cm, 50 to 60 cm and 60 to 70 cm) also had similar spatial clay 

distribution patterns with r over 0.95. However, the first three layers and the last three 

layers had different spatial clay distribution patterns with the r around 0.2-0.8. Figure 5.7 

shows the clay content was higher in the deeper soil layers. 
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Figure 5.6: Pearson correlation coefficients between soil features. Clay% and sand% are 

the average ECa-based clay and sand content in the top two soil horizons. 

 

Figure 5.7: Kriged maps of clay content in different depth layers. (a) to (g) are the soil 

clay% distribution in the field at the seven different depths (clay10 – clay70) 

Table 5.4 shows the mean and standard deviation of the 28 soil moisture samples 

collected in 2019. In July, August and September, the soil had a low average moisture level 
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around 6%-7% in the top ~15 cm, which was lower than the average calculated WP around 

the whole field (about 3000 data points in the east field; average WP: 8.73%, FC: 21.48%) 

and indicated that crop could not obtain water from the upper layers of the soil. The 

standard deviation in moisture content was around 2% between the 28 samples that had 

various ECa-estimated soil textures. Pearson correlation coefficients (r) between soil 

clay10-clay20 and NDVI, GNDVI, canopy size, and NDRE that represented the crop 

growth variation of 2019 (Figure 5.8) were as low as 0.2-0.5, and most of them were lower 

than the r between image features and clay content at other deeper soil layers. The above 

three points indicated that the clay10-clay20 had low effects on crop growth variation. 

Table 5.4: Mean and standard deviation of the moisture content of 28 soil samples in the 

top 0-0.075 and 0.075-0.15 m 

Date Mean (%) Std (%) 

 0-0.075 m 0.075-0.15 m 0-0.075 m 0.075-0.15 m 

May 7 11.06 13.38 2.46 2.46 

May 31 14.52 16.64 3.27 3.04 

July 12 6.11 6.86 1.70 1.50 

August 14 6.38 - 2.37 - 

September 6 7.37 - 1.94 - 
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Figure 5.8: Pearson correlation coefficients between soil features and image features. 

NRRE were not available before August of 2018. Thermal data were not available in 

August 2018 and July 2019 

Clay content in different depths had a different correlation with crop growth during 

different growth stages (Figure 5.8). The highest r values between the clay content and the 

NDVI, GNDVI, canopy size, and NDRE in Jul. 2019 were around 0.4-0.5 in the middle 
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layers (i.e., clay30 - clay40), while the highest r values in Aug. and Sep. 2019 were around 

0.55-0.75 in deeper layers (i.e., clay50 - clay70). The study of Ritchie et al. (2007) showed 

that the root mass peaked at the flowering stage (Aug.), and the highest mass was at the 55 

cm soil depth for a mature cotton plant (Aug. and Sep.). The cotton on July 12, 2019 was 

58 days after planting, and the length of the roots may have reached 70 cm depth 

(Oosterhuis, 1990). However, the mass of the roots may have been small in July in 50-70 

cm depth. Based on the crop water requirement curve during the growing season (Allen et 

al., 1998; Scherer et al., 2017), cotton required less water in the vegetation development 

stage and early reproductive stage (July) than in the peak reproductive stage (Aug. and 

Sep.), which may be the reason that the soil clay content had 0.2-0.3 higher r with the crop 

growth in Aug. and Sep. than in July.  

The r values between soil features (i.e., WP and FC) and image features (NDVI, 

GNDVI, canopy size, and NDRE) increased from July to September in 2019 (Figure 5.8). 

There was 0.8 cm average daily rainfall on 19-27 of June and 0.34 cm on 5-10 of July in 

2019 (Figure 2.3), and there was no irrigation during the period. The r between soil water 

holding capacity (WP and FC) and crop growth variation (NDVI, GNDVI, canopy size, 

and NDRE) were around 0.4-0.5 on July 12. The r values between soil water holding 

capacity and crop growth variation were around 0.5-0.6 in Aug. and around 0.6-0.7 in Sep., 

suggesting that the effect of soil water holding capacity on crop growth status may be a 

cumulative process. 

The r values between soil features (i.e., clay% in 0-70 cm) and image features 

(NDVI, GNDVI, canopy size, and NDRE) were around -0.3-0 in Jun., 0.3-0.5 in July, 0-

0.3 in Aug. and -0.3-0 in Sep. of 2018. Due to an equipment error, many of the 7 irrigation 
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applications in 2018 were applied to the whole field, rather than site-specific, resulting in 

over-irrigation in parts of the field (see Figure 2.3), and this may be one of the reasons for 

the low r values between clay content and the image features in 2018, which will be 

discussed with more details in the three following Chapters. Since the irrigation was only 

conducted three times at a few plots in 2019 but having an over-irrigation problem in 2018 

and the crop growth variation had more correlation with soil texture in 2019 than in 2018, 

we will talk about the data in 2019 before that in 2018 in all following Chapters. 

5.6.3 Water stress coefficients 

The daily Ks of the 38 × 63 (2019) or 37x63 (2018) positions (raster) of the field 

were calculated using the Eq. 4.8, and the lowest Ks (min Ks) was checked to decide if 

water stress presented in the field. As shown in Figure 5.9a there were three periods having 

min Ks < 1 larger than 3 days, beginning on July 9, Aug 1 and Sep. 2 of 2019 as marked by 

black lines in Figure 5.9a. The Ks returned to 1 again when rains > 1 cm per day occurred 

on July 16, and Aug. 23. Figure 5.9a shows that the crops imaged in July had experienced 

only 3 days (from July 9 to July 11) of min Ks = 0.84, while the crops imaged in Aug. had 

a lower min Ks around 0.31 after being subjected to water stress for several days, which 

matched with the conclusion in the previous Chapter that higher r values between clay 

content and crop growth were found in Aug. 2019 than that in July 2019. 

In 2018, images were collected on dates where min Ks = 0.90 in June (Figure 5.9b), 

min Ks = 0.41 in July, and non-water stressed days with min Ks = 1 in Aug. and Sep. Some 

regions were irrigated on July 14 and July 17, which was just a few days before image 

collection. These may be another two reasons that NDVI, GNDVI, canopy size and NDRE 

have lower r values with clay content, WP and FC in 2018 than those in 2019. 
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Figure 5.9: Cumulative precipitation and the lowest water stress coefficients in each day 

of (a) 2019 and (b) 2018. The black vertical lines mark the starting dates for Ks <1. The 

green lines mark the dates of imaging. Irrigation was site-specific and did not show in the 

figures 

Figure 5.10 shows an example of the Ks maps on Aug. 8, Aug. 10, and Aug. 13 in 

2019. Crops were affected by the lack of water beginning on Aug. 1 (Figure 5.9a) and then 

rainfall on Aug. 7 helped the crop recovered the most on Aug. 8. However, no rainfall and 

irrigation was applied between Aug. 8- 13, and the lack of water effects accumulated until 

August 13 resulting in a large variation of Ks due to different soil water storage capacities 
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(Figure 5.10b-c). The NDVI map collected on Aug 14 (Figure 5.10d) had similar patterns 

with the Ks map on Aug 13. Figure 5.10e shows the different mean NDVI at different Ks 

levels. When Ks < 0.44, the mean NDVI was 0.77; while, when Ks > 0.67, the mean NDVI 

was 0.89. In the Ks intervals of 0.44-0.56 and 0.56-0.67, a similar mean NDVI of around 

0.85 was observed. The result indicated that the Ks has a good correlation with crop growth 

(NDVI). 

 

Figure 5.10: Ks maps on (a) Aug 8, (b) Aug 10 and (c) Aug 13. The legend in (c) is also 

used in (a)-(b). The white circle in (c) marks a plot that had about 22 mm irrigation 

applied on Aug 6. (d) NDVI map collected on Aug 14. (e) relationship between NDVI 

and the Aug 13 Ks map. Different lower-case letters indicate a significant difference at 
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the 5% level of Tukey’s honest significant difference test. The mean NDVI in Ks levels 

from 0-0.25 is 0.77, from 0.25-0.5 is 0.86, from 0.5-0.75 is 0.85, from 0.75-1 is 0.89. 

The Ks maps were compared to the thermal data to exam their ability of water stress 

identification. Firstly, the color poster boards’ temperature collection on each imaging date 

were compared, shown as Figure 5.11. The color poster board’s temperature difference can 

reflect the air temperature difference on the imaging date. The temperature of the white 

color poster boards did not have too much difference and the different range was around 

2 °C. The temperature difference of the yellow, green and blue color poster boards was 

around 10 °C. The temperature difference of the black poster boards was 7 °C. The Sep. 

2018 and Aug. 2019 had the highest temperature of the black poster boards. 

 

Figure 5.11: Temperature of the five color poster boards on each day of image collection. 

Figure 5.12 shows the CWSI maps of Aug. 14 and Sep. 6 in 2019; and Ks maps of 

Aug. 13 and Sep. 5 in 2019 (since images were collected at noon of the day and the CWSI 

maps were compared with the Ks maps in the previous days). As mentioned above, min Ks 

was around 0.31 on Aug. 13 and around 0.37 on Sep. 5 in 2019. The Ks maps showed there 

was water stress identification on Aug. 13 shown as the marked black circle regions in 
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Figure 5.12c, which also be identified by the CWSI maps on Aug. 14 shown as the marked 

black circle regions in Figure 5.12a. The right upper region of the field also was identified 

as a water stress region in CWSI on Aug. 14 in Figure 5.12a but the Ks map on Aug. 13 in 

Figure 5.12c did not show too much serious water stress as the other water stress regions 

in the black circles. CWSI map of Sep. 6 in Figure 5.12b shows less water stress level than 

that on Aug. 14, and the Ks map of Sep. 5 in Figure 5.12d also shows less water stress level 

than that on Aug. 13. The Ks maps were estimated water stress level maps based on soil 

texture and weather condition, while the CWSI maps were the images of the crop canopy. 

Although they are focus on different objects, they almost gave the same water stress region 

identification results, which showed that the results of those maps were consistent and both 

of them could be used as the tool for crop water stress identification.  
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Figure 5.12: CWSI maps of Aug. 14 (a) and Sep. 6 (b) in 2019; and Ks maps of Aug. 13 

(c) and Sep. 5 (d) in 2019. There was a problem with the camera on Sep 6, 2019 and the 

images in (d) were lost of the east edge part of the field. The legend in (a) is also used in 

(b), and the legend in (c) is also used in (d). The black and white circles mark the regions 

discussed in the text. 

Figure 5.13 shows Ks maps of Jun. 29, Jul. 18 and Sep. 15 in 2018; and Ks maps of 

Jun. 29, Jul. 18 and Sep. 15 in 2018. Unlike the thermal images collection in 2019, two of 

the three images were collected in the days that did not have too much water stress 

identification, with the highest CWSI values of 0.06 on Jun. 29 in Figure 5.13a and of 0.01 

on Sep. 15 in Figure 5.13c. Min Ks was around 0.90 on Jun. 29 in Figure 5.13d and 1.0 on 
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Sep. 15 in Figure 5.13f. Unlike other vegetation indices maps (such as NDVI maps 

described in Chapter 4.4.4), if no water stress identification on that specific day, CWSI 

would not show value variation through the field even though the daily air temperature was 

high (i.e. Sep. 15). If no water stress identification on that specific day, Ks maps also would 

not show value variation through the field (Figure 5.13c). The min Ks was around 0.41, and 

it could be seen in Figure 5.13b and Figure 5.13e that the Ks map and the CWSI map almost 

mark the same regions that identifying water stress. However, the Ks map in Figure 5.13e 

has a very hard boundary of the irrigation regions, while the boundary of the CWSI was 

much soft. This is because when calculated the Ks map, only soil, weather and water input 

were considered, and the irrigation plots were considered as the exact same positions as 

our irrigation design. But in fact, when irrigation was applied in the field with no physical 

separation, winds and water flow at the boundary of the irrigation regions could not be 

accurate control, which resulted in the soft boundary of water stress variation in the CWSI 

maps. For this reason, the boundary of water stress in the Ks map may not reflect real crop 

condition, while CWSI captured by UAV thermal images had better performance to 

indicate water stress than the Ks maps. 
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Figure 5.13: CWSI maps of Jun. 29 (a), Jul. 18 (b) and Sep. 15 (c) in 2018; and Ks maps 

of Jun. 29 (d), Jul. 18 (e) and Sep. 15 (f) in 2018. CWSI map of Aug. 22 in 2018 was not 

available due to a thermal camera problem. The legend in (a) is also used in (b) and (c), 

and the legend in (d) is also used in (e) and (f). 

5.6.4 Difference in NDVI under various soil and weather conditions  

Through comparison of the image features collected through 2018-2019, different 

crop growth rates under varying soil and weather conditions were observed. The NDVI 

maps collected in the west field in 2018 and in the east field in 2019 were used as examples 

here to explain the different growth rates, as shown in Figure 5.14 to Figure 5.19.  

Figure 5.14a-c is the NDVI maps of 2019. NDVI in July (Figure 5.14a) ranged from 

0.75-0.91 (mean=0.85, Figure 5.15a) within the whole field and Figure 5.16a shows 



128 
 

significant NDVI differences associated with four different sand% groups of the field. 

However, Figure 5.14b shows that NDVI values in regions with more sand (Figure 5.14d 

and Figure 5.15d) decreased into the range of [0.6, 0.8] (0.6≤ NDVI≤ 0.8) and increased 

into [0.8, 0.95] in regions having lower sand content percentage (Figure 5.14d and Figure 

5.15d) in Aug. This result was consistent with the results in Figure 5.16 that NDVI dropped 

from Jul. to Aug. in the (67,89] sand% group (67< sand%≤ 89) while the other three groups 

showed NDVI increased from Jul. to Aug. NDVI increased more in the (0,42] sand% group 

than in the (42,53] and (53,67] sand% groups. Figure 5.14c shows that most of the NDVI 

values were in the range of [0.85, 0.9] (Figure 5.15c), and only a few values were less than 

0.8 in Sep. Some of the NDVI values increased from Aug. to Sep. and some decreased (less 

than 0.1) as shown in Figure 5.14e and Figure 5.15e. The decreasing values were in the 

regions with lower sand content. NDVI of the regions that had more sand content increased. 

Figure 5.16 also shows this trend. The crops in high sand content regions were under water 

stress from Aug. 8 to Aug. 20 (Figure 5.9a) and the early stress causes the plants to develop 

more slowly. But the rainfall in 21-28 Aug. helped the stressed crops to recover and the 

plant started growing more in September with the nitrogen that wasn’t used earlier and 

grows at the time of year that it should be senescing. 
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Figure 5.14: NDVI maps collected on east field in 2019. (a)-(c) NDVI of Jul., Aug. and 

Sep in 2019. There was a problem with the camera on Sep 5, 2019 and the images in (c) 

were lost of the east edge part of the field. The legend in (c) is also used in (a) and (b). 

(d)-(e) show the NDVI changes from Jul. to Aug. and Aug. to Sep. in 2019. (f) ECa-based 

sand% map of the east field. 
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Figure 5.15: (a)-(c) Histogram of NDVI maps of Jul., Aug. and Sep in 2019. (d)-(e) 

Histogram of NDVI changes from Jul. to Aug. and Aug. to Sep. in 2019. 

 

Figure 5.16: (a) Mean NDVI and (b) NDVI difference of four sand% content groups in 

2019. ANOVA test was conducted to compare the mean NDVI and its difference in four 

sand% levels. Different lower-case letters indicate a significant difference at the 5% level 

of Tukey’s honest significant difference test. The results of Sep. 2019 may be misleading 

due to missing NDVI values on the right side of the field. The sand% groups were split 

based on quartiles of the soil data of each side of the field. 

Difference in NDVI were also observed in 2018 (Figure 5.17a-d and Figure 5.18a-

d). No decrease in NDVI was observed from Jun. to Jul. when the crop was in the vegetative 

development stage, but a potentially different growth rate could be observed as shown in 
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Figure 5.17e and Figure 5.18e that crops in the regions having higher clay content were 

associated with a faster NDVI increase. A faster NDVI increase was observed in the (0,50] 

sand% group and (50,65] sand% group than the (65,72] sand% group and (72,85] sand% 

group from Jun. to Jul. in Figure 5.19. The camera was changed from XNiteCanonElph130 

to Micasense RedEdge-M in Aug. 2018 and the XNiteCanonElph130 camera had a smaller 

dynamic NDVI range due to the broad spectral bands (Feng et al., 2020b). In order to 

compare NDVI maps collected by these two cameras, two 40 m × 40 m regions of the field 

were imaged at the same time using these two cameras and Figure 5.20 shows the NDVI 

histograms of the collected frames. The region in Figure 5.20a was with full canopy cover 

and no soil background was observed, while the region in Figure 5.20b was with non-full 

canopy cover and soil background was observed. NDVI values less than 0.7 in the 

Micasense image and less than 0.1 in the XNiteCanonElph130 image were soil background. 

Therefore, there was a 0.60 NDVI shift between these two cameras when the soil 

background was removed. Obviously, different growth rates were observed in Aug. 2018 

in Figure 5.17f and Figure 5.18f, with some of the NDVI decreasing and the other 

increasing, which was the same trend with the east field of Aug. 2019 in Figure 5.17d. 

Mean NDVI increased in the (0,50] sand% group (a little bit), (50,65] sand% group and 

(65,72] sand% group but dropped in the (72,85] sand% group from Jul. to Aug. in Figure 

5.19. The mean NDVI in the (0,50] sand% group dropped the most in Sep. 2018. The crop 

in the low sand content region may have first entered the senescence stage. Higher NDVI 

values were found in the (50,65] sand% and (65,72] sand% groups than the (0,50] sand% 

group during the whole 2018 growing season (Figure 5.19). Soil moisture sensor data 

showed that the (50,65] sand% groups had the highest water content in July (Figure 5.21), 
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and this result was consistent with the NDVI data in July in Figure 5.19. Soil water content 

in the (50,65] sand% was still higher than the (0,50] sand% group in Aug. except for the 

first 0-15 cm depth. The last irrigation was applied on Aug. 7, 2018, and then the soil water 

content in (0,50] sand% group became the highest one in Sep., resulting from the higher-

than-average rainfall (Figure 2.3). However, due to the sufficient soil moisture content in 

the Jul. and Aug., crop in (50,65] sand% and (65,72] sand% groups still showed high NDVI 

on Sep. 15. 

 

Figure 5.17: NDVI maps collected on the west field in 2018. (a)-(d) NDVI of Jun., Jul., 

Aug. and Sep in 2018. (e)-(g) NDVI changes from Jun. to Jul., July to Aug. and Aug. to 

Sep. in 2018. (h) ECa-based sand% map of the west field. 
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Figure 5.18: (a)-(d) Histogram of NDVI maps of Jun., Jul., Aug. and Sep in 2018. (e)-(g) 

Histogram of NDVI changes from Jun. to Jul., July to Aug. and Aug. to Sep. in 2018. 

 
Figure 5.19: (a) Mean NDVI and NDVI difference of four sand% content groups in the year 2018. 

ANOVA test was conducted to compare the mean NDVI in different sand% levels. Different lower-case 

letters indicate a significant difference at the 5% level of Tukey’s honest significant difference test. The 

sand% groups were split based on quartiles of the soil data of each side of the field 
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Figure 5.20: Histogram compares two NDVI images collected by two cameras at the 

same time with (a) full canopy cover and no soil background visible and (b) non-full 

canopy cover and soil background visible. 

 

Figure 5.21: Soil moisture content (%) in different sand% groups at 4 different depth 

(0.15, 0.30, 0.45 and 0.60 m) in (a) Jul., (b) Aug. and (c) Sep. in 2018 
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5.6.5 The effects of soil and weather features on crop growth 

To explore the contribution of soil and weather features on crop growth, the soil 

features and Ks features were used as the inputs to train the XGBoost model to predict each 

image feature and yield. Table 5.3 shows the R2 obtained for the test set. The R2 in Aug. 

and Sep. in 2019 were around 0.6-0.7 and Jul., Aug. and Sep. in 2018 were around 0.5-0.6. 

Soil features and Ks features cannot fit the variance of the crop growth accurately in the 

early growth stages (i.e. Jul. 2019 and Jun. 2018) with R2 around 0.2-0.4. The accuracy of 

yield prediction based on soil and weather features increased from Jun. (R2 = 0.57) to Jul.-

Sep. (around 0.62) in 2018 as well as from Jul. (0.65) to Aug.-Sep. (around 0.7) in 2019.  

Table 5.5: R2 for each image features predicted by soil features and Ks features on the test 

set 

 2019 2018 

 July Aug Sep June July Aug Sep 

NDVI 0.40 0.75 0.73 0.29 0.59 0.65 0.62 

Canopy size 0.52 0.72 0.77 0.29 0.60 0.53 0.52 

GNDVI 0.46 0.73 0.65 0.26 0.56 0.54 0.53 

NDRE 0.39 0.70 0.54 -* - 0.50 0.50 

Lab_a 0.22 0.65 0.65 0.28 0.56 0.59 0.55 

Yield 0.65 0.70 0.71 0.57 0.64 0.62 0.62 

     *  XNiteCanonElph130 did not have red-edge spectral band. 

The XGBoost model could not fit the crop growth variation accurately in June 2018 

when all the plants were small (could not explain the June 2018 data well), therefore they 

were not used to analyze feature contribution. Figure 5.22 shows the feature contribution 

of soil features and Ks features for each image feature and yield in July, Aug. and Sep in 

2018 and 2019 based on the analysis of the decision trees built into the XGBoost model,  
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with the percentage (%) represented the ratio of a specific feature used in trees to the total 

trees of the XGBoost (details of the first five important features are shown in Fig. S4 in the 

Supplementary data). 

Figure 5.22 shows that there are more grids with darker red color in the soil features 

rather than Ks features with image features and yield in 2019, indicating that soil features 

might contribute more than the Ks features did to crop development. The contribution of 

clay content at deeper layers (i.e., contribution cumulated from all the clay40 to clay70) 

accounted for 34%-58% (Figure 5.23a) to each of the prediction of NDVI, GNDVI, a* and 

NDRE in Aug 2019, while the shallow layers (i.e. contribution cumulated from all the 

clay10 to clay30) contributed less. However, the contribution of the clay content at deep 

layers (i.e., contribution cumulated from all the clay40 to clay70) dropped to 16-40% 

(Figure 5.23a) in September. The longest period of days continuously having Ks <0.3 

(L_0.3 in Figure 5.22) was 7%-13% (Figure 5.23a) contribution to the NDVI, GNDVI, a* 

and NDRE prediction in Aug. This may indicate that crops’ development might be 

seriously affected if they were under a long period of Ks <0.3. Clay content percentage at 

deep layers (i.e. clay40 to clay70) had about 33%-69% (Figure 5.23a) contribution on the 

final yield prediction. In summary, the result indicated the clay content in deeper layers 

played an important role to crop development in 2019. It also showed that L_0.3 was a 

more important feature than other Ks features to the crop growth in Aug. 
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Figure 5.22: Heat map for the feature importance (%) of soil features and Ks features for 

each image feature and yield. I_ Ks: the Ks in the imaging date; T_1: total days having Ks 

<1; T_0.9_1: total days having Ks in [0.9,1]; L_1: the largest number of continuous days 

having Ks <1; B_1: number of days after planting to first instance of Ks <1. 

Yield_2019_08_2019: the Ks features for the 2019 yield estimation were calculated from 

the date of planting to the imaging date in Aug. The pink and blue boxes mark the values 

described in the text 



138 
 

 

 



139 
 

 

 

Figure 5.23: Feature contribution (%) of the five highest and remainder (as ‘others’) soil 

features and Ks features for each image feature and yield in (a) 2019 and (b) 2018. 

XNiteCanonElph130 camera did not have a red-edge spectral band and NDRE was not 

available in July 2018 
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In addition, Figure 5.23b shows the feature contribution (%) of soil and Ks features 

for the prediction of each image feature and yield in 2018. It can be seen from the figure 

that the feature contribution of the overall soil features was less than 20% in the prediction 

of all the image features in Aug. and September. On the other hand, the Ks features had 

higher feature contribution values to the image feature prediction, especially L_1 and L_0.9 

whose contribution values were 25%-55% on the prediction of NDVI, GNDVI, a* and 

NDRE. The different patterns showing in 2018 and 2019 might be due to more irrigation 

applied in 2018 and crops being less affected by the soil water capacity. The feature 

contribution value of soil feature on yield estimation in 2018 decreased to 18%-25%, which 

was 15%-44% lower than that in 2019. In summary, Ks is a good feature to explore crop 

growth variation with fields having irrigation applied. 

5.7 Conclusion 

This study investigated the impact of soil texture, moisture and weather conditions 

on cotton growth variation that was quantified by crop growth image features from UAV-

based multispectral images collected in 2018 and 2019. Soil features such as clay content, 

field capacity, wilting point and water holding capacity were calculated and calibrated 

based on soil ECa data. The water stress coefficient Ks was calculated using weather, 

irrigation and soil data. Pearson correlation, ANOVA and XGBoost models were 

developed to explore the relationship of soil features and Ks features with crop growth. 

Results showed that difference in NDVI were found in both 2018 and 2019 under varying 

ECa-based soil texture. Soil features and Ks features did not fit the crop growth variation 

well in the early growth stages when crops do not require a large amount of water and soil 

water storage is sufficient.  Soil features and Ks features had a higher correlation with image 
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features in middle growth stages. Soil features had a stronger correlation with crop 

development when crops suffered from water stress. Clay content in shallow layers affected 

crop development in early growth stages while clay content in the deeper layers affected 

the middle growth stages. The Ks features were important indicators of crop growth 

variation if irrigations were applied. The results showed that investigating the soil and 

weather data corresponding with UAV image data is feasible to exam the effects of soil 

and weather on crop growth variation. 
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Chapter 6. CROP YIELD ESTIMATION BASED ON SOIL, 

WEATHER AND UAV IMAGES 

6.1 Abstract 

Crop yield prediction is important for farmers to conduct proper field management 

and marketing decisions. However current prediction models are usually built on single 

types of data, e.g. imagery data, soil or weather data, which may not reflect the holistic 

effect of environment and management on crop development. The goal of this study was 

to quantify cotton yield variance due to soil texture and weather conditions using the 

multiple-year unmanned aerial vehicle (UAV) imagery data and deep learning techniques. 

Eleven soil features were extracted using the collected apparent soil electrical conductivity 

(ECa) to describe soil variation over the field. A soil convolutional neural network (CNN) 

was developed to process the soil features. In addition, six weather parameters were also 

processed by a weather CNN. A gated recurrent unit (GRU) network was used to quantify 

cotton yield variation due to soil and weather features by integrating UAV-based image 

features (e.g., NDVI) variance in different months. Results show that each one of the three 

years’ cotton yield could be predicted using the model trained with data of the other two 

years with prediction errors of MAE = 247 (8.9%) to 384 kg ha-1 (13.7%), which showed 

that quantified yield variance based on soil texture, weather conditions and UAV imagery 

for a future year was feasible. 

Keyword: Yield prediction, soil CNN, weather CNN, multispectral imagery, gated 

recurrent unit network 
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6.2 Introduction 

Soil and weather conditions are important factors to quantify crop development and 

yield. Soil texture, defined as different percentages of sand, clay and silt content in a soil 

group, affects the water holding capacity and had effects on crop development and yield 

(Scherer et al., 2017; Tremblay et al., 2012). Forcella et al. (2000) reported that soil texture 

and soil water content affected seedling emergence date and emergence rate. Soil texture 

and soil water content also had effects on root development (Oosterhuis, 1990). Many 

studies found out that soil texture had relationships with the yield of cotton (Vories et al., 

2020), corn (Kitchen et al., 2003; Kitchen et al., 2005) and soybean (Jiang and Thelen, 

2004; Kitchen et al., 2005). Weather conditions of temperature, precipitation and solar 

radiation had been shown to be important effects for yield variability of maize and winter 

wheat between years (Ceglar et al., 2016). Addy et al. (2020) showed that the functional 

response of crop yield to nitrogen application rate varied under different weather conditions 

between years. 

However, the combined effects of soil and weather on crops are complicated. Crops 

showed different levels of weather sensitivity in different regions (Mathieu and Aires, 2018) 

and different growth stages (Addy et al., 2020; Ceglar et al., 2016). Crop development and 

yield also showed different dependence on soil under different years’ weather conditions 

(Feng et al., 2021). Studies have developed many crop models from regional to global to 

quantify crop development and yield based on weather and soil (Van Bussel et al., 2016). 

The development of those models required more than 10 years of data and generally needed 

a recalibration when used in other regions (Ceglar et al., 2016). Khaki et al. (2020) and 
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Khaki and Wang (2019) developed yield prediction models based on weather and soil that 

can work for different USA states but needed data from 35 years and 9 years, respectively. 

Remote sensing technology has been used in recent years to monitor crops to 

quantify crop development and yield. For example, satellites images were used for yield 

prediction (Schut et al., 2018; You et al., 2017) , evaluating metal-induced stress on crops 

development (Liu et al., 2018), and quantifying chlorophyll concentration in vegetation 

(Singhal et al., 2018). Site-specific monitoring instead of the region and state-level 

monitoring is more meaningful for farmers, and unmanned aerial vehicle (UAV)-based 

images were used to evaluate field-scale crop emergence (Chen et al., 2018; Feng et al., 

2020a), crop water stress (Bian et al., 2019), crop growth status (Du and Noguchi, 2017) 

and yield (Feng et al., 2019; Feng et al., 2020b). Many studies that worked with UAV 

images to quantify crop growth and yield focused on images (including training and testing 

sets) collected within one year (Maimaitijiang et al., 2020; Yang et al., 2019; Zhang et al., 

2020). Models built using one year’s data were difficult to apply in a future year to guide 

field management. Evaluation of yield in a future year before harvest is meaningful for 

farmers, which required models that have good predictions performance in an additional 

year that included data not used in the model training procedure. There were studies 

working on this (Chu and Yu, 2020; Khaki and Wang, 2019; Khaki et al., 2020; Schwalbert 

et al., 2020) but none of them works with UAV images. 

Combining soil texture, weather conditions and UAV images together would be 

promising to quantify crop growth and yield in a future year. This study aimed to establish 

a method for yield estimation based on soil texture, weather conditions and UAV imagery 

collected in three different years where soil texture did not change much (2017-2019). The 
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specific objectives were: 1) developing data fusion methods for spatiotemporal soil data, 

weather data and UAV image data; 2) developing a deep learning model to predict yield 

for different years. 

6.3 UAV image processing 

Images collected in all three years were processed using Agisoft PhotoScan Pro 

(Version 1.2.2, Agisoft, Russia) to generate orthomosaic images. The GPS locations of the 

GRPs were used for the GPS calibration of the orthomosaic images. Each cotton row was 

identified from the orthomosaic images using the method developed in a previous study 

(Feng et al., 2019). NDVI was calculated in the orthomosaic images and soil background 

was removed based on a threshold of NDVI < 0.5. There were 152 (or 148 in 2018) cotton 

rows and the field was about 320 m in the south-north direction, therefore 152 (or 148) × 

315 rectangles with ~1.0 m2 each were segmented (the north and south edges of the field 

were removed to avoid edge effects) and the mean NDVI in each rectangle were extracted 

as image data points following by the procedure written in Feng et al. (2021).  Then, the 

data points were downsampled to 38 (or 37) × 63 data points by averaging the NDVI in a 

sample area of 4 m (match the four-row harvested yield data) × 5 m (got the integer from 

315/5 instead of non-integer from 315/4). The GPS of the center of each sample area was 

extracted from the geo-referenced orthomosaic images. To register the data collected in 

different years, data points of soil ECa and yield and were firstly interpolated with Kriging, 

and then the 4 m × 5 m sample areas were cropped from the Kriging maps of yield and soil 

ECa to align with those NDVI areas in different years. 
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6.4 Soil and weather features processing 

Sand content percentage (sand%) and clay content percentage (clay%) in the 

average 34 cm and clay content percentage in seven different depths from 10 cm to 70 cm 

(defined as clay10 - clay70) were calibrated based on ECa and the soil sample lab analysis 

following the data processing procedure described in Chapter 4. Field capacity (FC), 

wilting point (WP) and total available water (TAW) were calculated based on the sand% 

and clay% (Saxton and Rawls, 2006; Saxton et al., 1986). Those soil features could be used 

directly as inputs in machine learning models for crop development and yield estimation 

as described in Chapter 4. However, Khaki et al. (2020) and Chapter 4 pointed out that 

there were dependencies (relationships) of the soil features measured at different depths. 

For example, the clay10 – clay70 features showed high Pearson correlation coefficients 

between their neighborhood layers (as described in Chapter 4). A soil convolutional neural 

network (S_CNN) was developed to capture the dependencies of soil data measured at 

different depths using two convolution layers (Figure 5.1). The convolutional neural 

networks are able to scan the clay content in every two-neighbor layer to extract the spatial 

features. The first convolution layer consisted of four kernels (Khaki et al., 2020) to extract 

information in each two neighborhood depth layers.  Each kernel (marks as color dot in 

Figure 5.1) was designed as ∑ 𝒘𝒘𝒊𝒊 × 𝒙𝒙𝒊𝒊𝑛𝑛
𝒊𝒊=𝟏𝟏  where xi were the inputs of clay1 - clay7 and the 

wi were the weights. Different kernels with different wi defined different relationships or 

data transforms between the neighborhood depth layers. The numbers of kernels were 

designed based on the numbers of soil features and the amount of soil data points. If the 

number of kernels is too small, it would not have enough fitting ability to extract the 

information between the soil features; however, if the number of kernels is too large, it may 
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cause over-fitting problems. In this paper, there were seven input features (clay10 - clay70) 

and the number of kernels in the first layer of the S_CNN were four, which was about the 

half of the number of input features. Followed was an average pooling layer that conducted 

an average process on the outputs of the first convolution layer. The second convolution 

layer conducted similar process as the first convolution layer but with eight kernels, which 

was the twice of the first convolution layer, followed by an average pooling layer to 

generate features with 1 × 8 dimensions. The S_CNN extracted the most significant and 

independent parameters from the seven soil features (clay10 - clay70) that included the 

clay content in different depth layers as well as their relationship between layers. In 

addition, four soil features of sand% (clay% were removed since linear calibration were 

used based on the same ECa data with the sand%), FC, WP and TAW were transformed 

using a fully connected layer to reduce collinearity since high Pearson correlation 

coefficients were found between these four soil features (Chapter 4). The fully connected 

layer conducted another mathematical operation of ∑ 𝒘𝒘𝒊𝒊 × 𝒙𝒙𝒊𝒊𝑛𝑛
𝒊𝒊=𝟏𝟏  where xi were inputs of 

FC, WP, TAW and sand%. 
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Figure 6.1: S_CNN. Soil clay content percentage from different depth were processed 

using a network with two convolution layers. Each color dot was a mathematical 

operation result of ∑ 𝒘𝒘𝒊𝒊 × 𝒙𝒙𝒊𝒊𝟐𝟐
𝒊𝒊=𝟏𝟏  where xi were the clay content percentage of each layer 

and the wi were the weights obtained by training from the data set provided. 

Weekly weather data was used in this study instead of daily weather (large amount 

of data and was shown not necessary in (Khaki and Wang, 2019) and (Khaki et al., 2020)) 

data and monthly weather data (less amount of data and may not enough to reflect the 

weather effects on crop development), which included accumulative input water 

(precipitation and irrigation), maximum and minimum air temperature, total solar radiation, 

vapor pressure and evapotranspiration of reference crop  (Allen et al., 1998) from May 1 

to Oct. 29 in each year of 2017 to 2019. In the experimental area, cotton is preferred to 

plant in late May or early June, and they develop in the months of Jul., Aug. and Sep., and 

harvest in Oct (Goodell et al., 2015). UAV images were collected in Jul., Aug. and Sep. to 

monitor cotton development. Weather data were divided into four periods to match with 

the imagery data periods, i.e., the first 13 weeks after planting (May 1 to Jul. 30, Period 1) 

to match with the UAV image collected in Jul., week 14 to week 18 (Jul. 31 to Sep. 3, 

Period 2) to match with the UAV image collected in Aug., week 19-week 22 (Sep. 4 to Oct. 

1, Period 3) to match with the UAV image collected in Sep. and week 23 to week 26 (Oct. 

2 to Oct. 29, Period 4) to represent the period that between the last image collection and 

harvest.  

Weather data have temporal dependencies. For example, some weather prediction 

models such as the Markov chain (Khiatani and Ghose, 2017) assumed that temperature 

would reduce and vapor pressure would increase dependently if rain, and if last week was 
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in high temperature, this week may have a low possibility of low temperature. A weather 

convolutional neural network (W_CNN) was designed to extract the relationships among 

the six weekly weather parameters and the temporal relationships (dependencies) of the 

weekly weather parameters in the sequential weeks. Two convolution layers were designed 

with four filters in each layer (color boxes in Figure 5.2). Similar to the S_CNN, a moving 

window scans every three weekly weather from the first week to the 26th week after 

planting using kernels that provided various relationships (non-linear fit) between weekly 

weather parameters. The output features from the W_CNN were 1×12 matrixes with fused 

information of both relationship information between six weather parameters and 

sequential weeks. 

 

Figure 6.2: The illustration of the developed W_CNN. Weekly weather data from May 1 

to Oct. 29 were used. The first 13 weeks related to date from May 1 to Jul. 30, week14-

week18 related to date from Jul. 31 to Sep. 3, week19-week22 related to date from Sep. 4 

to Oct. 1 and week 23 to week 26 related to date from Oct. 2 to Oct. 29. The meanings of 

the abbreviations of the weather features are: P- total precipitation (irrigation data was 

included), Tmax- max air temperature, Tmin- min air temperature, SR- total solar radiation, 
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VP- vapor pressure, and ETo- evapotranspiration for reference crop. W1-W26 mean 

week1-week26 after planting. 

 

6.5 Yield estimation model 

A recurrent neural network (RNN) is a type of neural networks that are designed to 

process a sequence of variables (e.g., a temporal sequence) by modelling the relationship 

between the current state of a variable and the previous states (recurrent) in the sequence. 

It has been used to handle sequential data such as weather data and time series image data 

(Lipton et al., 2015). Improved RNN models, such as Long Short-Term Memory networks 

(LSTMs) or Gated Recurrent Units (GRU), enable training on long sequences, overcoming 

problems like vanishing gradients (Lee et al., 2020). Chung et al. (2014) showed that the 

GRU and LSTM almost had similar performance on serval sequence prediction tasks, 

however, GRU has fewer model parameters and easier to optimize. 

In this study, a GRU-based RNN (Chung et al., 2014) was used to quantify cotton 

yield based on soil, weather condition and imagery data. The GRU continuously accepts 

inputs from a sequence and outputs the information that describes the data transform (or 

the weighted combination results) of the previous inputs and the current inputs. To easily 

understand the loop operation in the GUR, the GRU was drawn with the unfolded way 

(Chen et al., 2019) in this paper, as shown in Figure 5.3a. The GRU includes a reset gate 

(Eq. 5.1) and an update gate (Eq. 5.2) to control how much information through the 

sequence needed to be forgotten and memorized. Then a candidate hidden layer ℎ�𝑡𝑡 was 

calculated based on the 𝑟𝑟𝑡𝑡, 𝑥𝑥𝑡𝑡 and ℎ𝑡𝑡−1 to carry the information remained after the process 

of the reset gate (Eq. 5.3). If the reset gate 𝑟𝑟𝑡𝑡 were close to 0, all the information ℎ𝑡𝑡−1 from 
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the previous sequence would not carry and passed (or memorized) to the later process of 

the sequence. The final hidden output calculates the ratio (the updated gate 𝑧𝑧𝑡𝑡) of previous 

inputs information ℎ𝑡𝑡−1 updated to information after the reset process  ℎ�𝑡𝑡 to calculate the 

information that should be passed to the later process of the sequence (Eq. 5.4). If 𝑧𝑧𝑡𝑡 were 

close to 1, only the information from previous layers ℎ𝑡𝑡−1 and none of the current input 𝑥𝑥𝑡𝑡 

would be used as the input to the later process of the sequence. 

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑟𝑟ℎ𝑡𝑡−1)      (5.1) 

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1)    (5.2) 

ℎ�𝑡𝑡 = 𝑡𝑡𝑎𝑎𝑛𝑛ℎ(𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑟𝑟𝑡𝑡 ∗ 𝑈𝑈ℎ𝑡𝑡−1)   (5.3) 

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ�𝑡𝑡 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡𝑡−1   (5.4) 

where, 𝑟𝑟𝑡𝑡, 𝑧𝑧𝑡𝑡 and ℎ�𝑡𝑡 are the reset gate, update gate and candidate hidden layer; ℎ𝑡𝑡 is the 

hidden layer with the information passed to the next layer; 𝑥𝑥𝑡𝑡  is the current input of a 

sequence for the GRU and ℎ𝑡𝑡−1 is the information from the last layer; 𝑊𝑊𝑟𝑟,  𝑊𝑊𝑧𝑧, 𝑊𝑊, 𝑈𝑈𝑟𝑟, 𝑈𝑈𝑧𝑧 

and 𝑈𝑈 are parameters to be trained from the training data set; and 𝜎𝜎  is the sigmoid function 

and * is the Hadamard product.  

 

Figure 6.3: The explanation of GRU. (a) GRU continuously accepts inputs from a 

sequence. To easily understand the loop operation in the GUR, the GRU was drawn with 
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the unfolded way in this paper. The ‘t’ represented each time step. (b) The architecture of 

GRU related to Eq. 5.1-5.44. 

 

The architecture of the GRU-based RNN is shown in Figure 5. 4 that included four 

layers, i.e., S_CNN, W_CNN, GRU layers for NDVI prediction (‘GRU’ in Figure 5. 4) and 

the fully connected layers for yield prediction (‘FCL2’ in Figure 5. 4). The input parameters 

of the GRU network included the 11 soil features processed by the S_CNN and weather 

data from May 1 to Jul. 30 processed by the W_CNN. The initially hidden input vector 

(‘Init’ in Figure 5. 4) of the GRU was set as zeros and the corresponding output was 

assumed to be the NDVI in July (the GRU output of its first loop). The hidden outputs of 

the July GRU would be passed to the next loop of the GRU unit (i.e. the Aug. GRU). The 

processed weather data from Jul. 31 to Sep. 3 would be passed to the Aug. GRU and its 

output was assumed to be the NDVI in Aug. The NDVI in Jul. would be used to replace 

the ‘Init’ to input to the Aug. GRU. Similar procedures were conducted to the GRU of Sep. 

and yield. The GRU unit was a loop processing unit that continued to accept the three-

month weather data and the previous month’s NDVI images. The GRU can predict the 

NDVI distribution of the current month based on the current month’s weather and the 

previous month’s NDVI. 
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Figure 6.4: The architecture of the GRU network. SL means sequence length, which was 

set as 1 in this study. BZ is the batch size for the training procedure. FCL means fully 

connected layer, which conducted another mathematical operation of ∑ 𝒘𝒘𝒊𝒊 × 𝒙𝒙𝒊𝒊𝒏𝒏
𝒊𝒊=𝟏𝟏 . The 

yellow GRU was the same loop processing unit in the network and has the same 

parameters, as well as all the green FCL_1 unit. 

Although the GRU has the memory of short-term information and can pass the 

condensed information to the next timestamp, there is still information loss and not all 

information that is able to be used after the previous process of the GRU. Therefore, the 

processed soil features that were important to the yield prediction were directly connected 

to the fully connected yield prediction layer (‘FCL_2’ in Figure 5. 4) to avoid information 

loss through the whole GRU process. These processed soil features would combine with 

the final output of the GRU and the NDVI in Jul., Aug. and Sep. together to have the final 

yield prediction after the FCL_2 layer. The NDVI values from images and yield were used 

as the true labels to train the overall network and the loss function was defined in Eq. 5.5: 
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𝐿𝐿 = |𝑦𝑦� − 𝑦𝑦| + �𝑁𝑁𝐽𝐽� − 𝑁𝑁𝐽𝐽� + �𝑁𝑁𝐴𝐴� − 𝑁𝑁𝐴𝐴� + �𝑁𝑁𝑆𝑆� − 𝑁𝑁𝑆𝑆�                          (5.5) 

where, L is the loss, 𝑦𝑦�  is the predicted yield (normalized values), y is the true yield 

(normalized values),  𝑁𝑁𝐽𝐽�, 𝑁𝑁𝐴𝐴�  and 𝑁𝑁𝑆𝑆�  are the predicted NDVI of the Jul., Aug. and Sep. 

respectively, and 𝑁𝑁𝐽𝐽, 𝑁𝑁𝐴𝐴 and 𝑁𝑁𝑆𝑆 are the true NDVI of the Jul., Aug. and Sep.  

However, the selected deep learning network is a long training network and some 

information cannot be passed to the subsequent layers, which makes it hard to train using 

the overall ground true corresponded with the global loss function. Therefore, a Teacher 

Forcing (TF) technology (Williams and Zipser, 1989) was conducted to improve the 

parameter optimizing, which used the NDVI of Jul., Aug. and Sep. from the imagery data 

to train the individual month’s GRU. To avoid yield overfitting of the image NDVI, the TF 

conducts with a given possibility (for example, 0.5-0.9; TF=1 means true NDVI will 

always be used, while TF=0 means the predicted NDVI will always be used) in the training 

procedure, which means the model had the possibility to learn yield variability from the 

soil, weather and the predicted NDVI (instead of relying the most on the collected image 

data and ignoring the soil and weather features). Image NDVI (not predicted NDVI) would 

always be used in the testing procedure. 

  The best hyperparameters of the learning rate, training batch size, momentum of 

the stochastic gradient descent (SGD) optimizer and the TF possibility were obtained by 

the Bayesian optimization procedure with an open-source constrained global optimization 

tool (Nogueira, 2014). All input data of the model were normalized using Eq. 5.6 before 

they were used in the model. 

𝑁𝑁𝑥𝑥 = 𝑥𝑥−𝑚𝑚
𝑠𝑠𝑠𝑠𝑠𝑠

                                  (5.6) 
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where Nx is the normalized value, m and std are the mean and standard deviation of the 

training set, and x is the original data. 

There are five important components in the GRU-based RNN network, including 

the direct connection between processed soil and the yield fully connected layer (FCL_2 

in Figure 5. 4), S_CNN, W_CNN, GRU and NDVI images. To test the importance of each 

component on the GRU-based RNN, different models without (WO_) one of each 

component were tested, as shown in Table 5.1. Firstly, the components of NDVI would be 

removed from the original model from the test procedure and then from the training 

procedure by setting the TF to 0 (WO_TF_Test and WO_TF_Train in Table 5.1). S_CNN 

would be removed and used a fully connected layer instead to process the raw soil features 

(WO_S_CNN in Table 5.1). W_CNN would be removed and used the average weekly 

weather as the inputs instead (WO_W_CNN in Table 5.1). The direct connection between 

soil and the FCL_2 would be removed in WO_S2Y in Table 5.1. All the data used in the 

original GRU-based RNN network would be used in the above five models. However, 

when GRU units were removed, an ensemble module XGBoost (Chen and Guestrin, 2016) 

was used to replace the GRU for yield prediction and due to the requirement of fix 

dimension for the inputs of XGBoost, only August NDVI, soil and weather would be used 

in the WO _GRU as there were some missing image data in July and September in 2017 

and 2019. WO_GRU_NDVI would remove the GRU and NDVI in the original model, 

while WO_GRU_NDVI_W would only predict the yield by soil data and the XGBoost. 

Table 6.1: Yield prediction models with the removal of the five important components  

Models Description 
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WO_TF_Test Set teacher forcing as 0 in the test procedure, which meant that the true 
NDVI would not be used as the input of the GRU. The overall model 
relied on soil, weather and the predicted NDVI. This aimed to test the 

importance of the UAV NDVI images for yield prediction. 

WO_TF_Train Set teacher forcing as 0 in both train and test procedure. There was only 
yield data and no image data to guide the model to optimize the GRU 

parameters in the training procedure. This aimed to test the importance of 
the UAV NDVI images in the training procedure for the parameter 

optimization guide. 
WO_S_CNN Remove the S_CNN and use a fully connected layer instead. This aimed to 

test the importance of the S_CNN. 

WO_W_CNN Remove the W_CNN and instead use the mean weather parameters as the 
input. This aimed to test the importance of the W_CNN. 

WO_S2Y Remove the connection between the processed soil features and the FC_2 
layer. This aimed to test if soil information would be lost through the 

whole GRU procedure.  
WO _GRU Use an XGBoost model instead of a GRU model and the inputs of soil 

features, mean weather parameters and NDVI images for yield prediction. 
This aimed to test the importance of the GRU unit. Only soil, weather and 

August NDVI would be used. 
WO_GRU_NDVI Use an XGBoost model and the inputs of soil features and mean weather 

parameters for yield prediction. This aimed to test the importance of the 
UAV NDVI images.  

WO_GRU_NDVI_W Use an XGBoost model and only soil features for yield prediction. This 
aimed to test the importance of the UAV NDVI images and the weather 

data. 
 

6.6 Yield prediction accuracy 

6.6.1 Correlation between yield with soil features and image features 

Pearson correlation coefficients (r) between yield with soil features are shown in 

Table 5.2. As can be seen in Table 5.2, the correlation between yield and soil features in 

each year was about 0.5-0.7, except for the topsoil clay10 and clay20 that had a lower 

correlation. Cotton yields in all three years had a higher correlation with clay content in the 

depth between 40 – 70 cm, i.e., clay40 – lay70 than those in shallower layers, which may 

be due to the less water content in the shallow soil and higher water-use effeteness of deeper 

roots (Djaman and Irmak, 2012). The r in clay40 -clay70 with yield is very close to each 

other as the r between clay40 – clay 70 were over 0.92 (Chapter 5.6.2). Table 5.2 also 



168 
 

shows that the soil features derived from soil texture, including sand% in the top 0-34 cm, 

WP, FC and TAW were about 0.5 and did not show strong correlations with yield.  

Table 6.2: Pearson correlation coefficients (r) between yield and soil features. 

Yield sand% clay10 clay20 clay30 clay40 clay50 clay60 clay70 WP FC TAW 
2017E§ -0.45 0.2 0.37 0.5 0.52 0.51 0.51 0.51 0.49 0.49 0.48 
2018W -0.51 0.27 0.46 0.56 0.58 0.58 0.57 0.58 0.57 0.55 0.52 
2019E -0.55 0.23 0.46 0.64 0.67 0.69 0.69 0.69 0.58 0.57 0.55 
2019W -0.5 0.19 0.42 0.58 0.61 0.63 0.63 0.64 0.59 0.55 0.53 
§: ‘W’ represents the west side of the field, while ‘E’ represents the east side of the field. 
 

Soil features did not explain all the variability of the yield in the three years in this 

study. As shown in Figure 5.5, histograms of the cotton yield of the same fields, whose soil 

texture had not had substantial changes in the three years, showed different distribution in 

2017-2019. In addition, Figure 5.6 shows the fitness of the cotton yield in each same 

position at different years, i.e., data points in 2017E vs. 2019E, and 2018W vs. 2019W, as 

well as the average yield in different sand% groups of these three years. The variance of 

cotton yield was MAE = 627 kg ha-1 (equivalent 27.0% to the Yield2017E) between the 

year 2017 and 2019 in the east field, and MAE = 662 kg ha-1 (equivalent 20.0% to the 

Yield2018W) between the year 2018 and 2019 in the west field. Yield variation between 

years in the same positions (assumed same soil texture) may be due to the different weather 

conditions and field management (irrigation in this case). 
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Figure 6.5: Yield data distributions in 2017E, 2018W, 2019E and 2019W. KDE: kernel 

density estimation. 

 

 
Figure 6.6: Yield comparison of different years in the same positions as well as the 

average yield in different sand% groups of these three years. (a) Comparing the yield in 

2017 and 2019 in the east side of the field; (b) comparing the yield in 2018 and 2019 in 



170 
 

the west side of the field; (c) yield difference between 2017E and 2019E in different 

sand% groups; (d) yield difference between 2018W and 2019W in different sand% 

groups. Different lower-case letters indicate a significant difference at the 5% level of 

Tukey’s Honest significant difference test with ‘a’ the largest mean yield and ‘d’ the 

smallest mean yield. 

NDVI in August of 2017E and 2019E was highly correlated to yield, as shown in 

Table 5.3. The correlation between NDVI and yield in Aug. and July of the 2018W were 

close (i.e., 0.65 and 0.69). Figure 5.7 shows the relationships between NDVI and yield in 

different years in the east side of the field, where the soil texture was considered the same 

within two years. The relationship between NDVI and yield was quadratic in 2019 but a 

linear relationship in 2017. If predicting the yield in 2019 only based on image NDVI 

collected in 2019 and the linear function fitted using NDVI and yield data collected in 2017, 

R2=0.31 was obtained. The NDVI collected in 2019 may face the saturation problem 

though the 16-bit multispectral camera was used. Even though there was no difference in 

quadratic and linear relationships, coefficients of the formula may still be different in a 

different year. The NDVI had a high correlation with yield in 2017 and 2019, but predicting 

yield in different years only based on a model build with the previous year’s image NDVI 

and yield may not be accurate. 

Table 6.3: Pearson correlation coefficients (r) between yield and image NDVI 

respectively 

Yield Jul. NDVI Aug. NDVI Sep. NDVI 
2017E -- 0.81 -- 
2018W 0.69 0.65 0.12 
2019E 0.6 0.9 0.79 
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Figure 6.7: Relationships between NDVI and yield in different years: (a) quadratic 

relationship between NDVI collected in Aug. 2019 and yield in 2019; (b) relationship 

between NDVI collected in Aug. 2017 with yield was more likely be a linear relationship. 

To avoid the effects of different multispectral sensors, all the NDVI and yield were 

normalized as (x-mean)/std. 

In summary, the low correlation between soil features with yield (Table 5.3 and 

Figure 5.6) and the unstable relationship between NDVI and yield in different yield (Figure 

5.7) show that combining soil, weather and NDVI together for yield prediction in a 

different year is necessary. 

6.6.2 Yield prediction based on soil, weather and UAV images 

Four tests were conducted with each selected one of the years’ data as the testing 

set and the others as the training set to evaluate the performance of the proposed model 

structure for yield prediction in an additional year.  Soil features, weather conditions and 

image data of the training set were used as the inputs and the true yield data of the training 

set were used as the targets to train the GRU-based RNN network.  After model training, 

soil features, weather conditions and image data of the testing set were used as the inputs 

for the trained model to predict the yield of the testing year and compared with the true 
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yield in the testing set. There were 38*63= 2394 data points per year. If used two years of 

data for training, there would be 2394*2=4788, and the other year for testing is 2394. We 

had 4788+2934=7722 in total for each one test in Figure 5.8. In Figure 5.8a, the model was 

trained using the soil, weather and NDVI images in Jul. Aug. and Sep. of 2018W and 2019E, 

and predicted the yield of 2017E with the inputs of soil, weather and the NDVI in Jul. 2017. 

Figure 5.8b shows the yield prediction result of 2018W with the predictors of soil, weather 

and NDVI of 2018W and the model trained with soil, weather and NDVI of 2019E and 

2017E. MAE=345 kg ha-1 (12.3%) and R2=0.72 for 2017E as well as MAE=384 kg ha-1 

(13.7%) and R2=0.67 of 2018W were obtained. Figure 5.8c shows the result of 2019E with 

the predictors of soil, weather and NDVI of 2019E based on the model that trained with 

soil, weather and NDVI of 2018W and 2017E, while Figure 5.8d shows the yield prediction 

result of 2019W with the predictors of soil and weather of 2019W but not have NDVI 

images available in 2019W based on the GRU network trained using the soil, weather and 

NDVI of 2018W and 2017E. MAE=247 kg ha-1 (8.9%) and R2= for 2019E as well as 

MAE=355 kg ha-1 (10.8%) and R2=0.60 of 2019W were obtained. Those MAE were lower 

than the MAE shown in Figure 5.6 (only relied on soil) and R2 were higher than that in 

Figure 5.7 (only relied on image NDVI), which indicate that combining soil, weather and 

image NDVI as the predictors could potentially predict yield using model that training with 

previous years’ soil, weather and NDVI.  
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Figure 6.8: Yield prediction results. (a) The data set of 2019E and 2018W were used for 

training to predict the yield in 2017E; (b) The data set of 2019E, 2019W and 2017E were 

used for training to predict the yield in 2018W; (c) The data set of 2019W, 2018W and 

2017E were used for training to predict the yield in 2019E; (d) The data set of 2019E, 

2018W and 2017E were used for training to predict the yield in 2019W. Note, no image 

NDVI was available in 2019W and the result in (d) is equal to the result of WO_TF_test. 

The prediction results in Figure 5.8 that obtained from the proposed model can be 

used as a reference to compare with the models that excluded each of the components of 

S_CNN, W_CNN, a direct connection between soil and FCL_2 layer, GRU unit and image 

NDVI  (set by changing the TF) (Table 5.1), as shown in Figure 5.9. Overall, models 

removing those components had higher MAE and lower R2 compared with the original 

model. It is worth noting that the removal of W_CNN obtained the worst performance 



174 
 

(about 150-250 kg ha-1 MAE increased compared to the original model) in all the years’ 

yield prediction. There was about 150-220 kg ha-1 MAE increased of the WO_TF_Test and 

WO_TF_Train models compared to the original model, which indicated that NDVI played 

an important role in the yield prediction. The models without S_CNN had about 20-120 kg 

ha-1 MAE increased. The models without connection between the soil features and the 

FCL_2 layer showed 20-130 kg ha-1 MAE increased, indicating that there was some soil 

information loss through the GRU loop process. There was about 100 kg ha-1 MAE 

increased for the models without GRU units. Removing the NDVI from those XGBoost 

models showed more performance drop, as well as the weather data. This indicates that 

NDVI and weather data were important even using a non-time series model. 

 

Figure 6.9: Yield prediction performance of models that excluded each of the components 

of  S_CNN, W_CNN, GRU unit, image NDVI and TF described in Table 7. (a) The 

MAE and R2 of WO_S_CNN, WO_W_CNN, WO_TF_Test and WO_TF_Train; (b) 
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MAE and R2 of  WO_S2Y, WO _GRU, WO_GRU_NDVI and WO_GRU_NDVI_W. 

Note, no image NDVI was available in 2019W. 

Since there were 7 clay input features in the S_CNN, the yield prediction 

performance of kernel numbers of 2, 4, 8 in the first layer and of 2, 4, 8, 16 in the second 

layer were compared, as well as the kernel numbers of 4, 8, 16 in the first layer and of 8, 

12, 16 in the second layer of the W_CNN. The numbers of kernels changes did not affect 

the yield prediction performance in 2017E and 2019E too much (about 20-50 kg ha-1 MAE 

increased and 0.01-0.03 R2 dropped). This may due to the NDVI in 2017E and 2019E had 

a high correlation with yield and the yield prediction can get information from the NDVI. 

There were about 30-80 kg ha-1 MAE increased and 0.12-0.2 R2 dropped for the 2018W 

when kernel numbers changed, which was the one that had the largest effects. There was 

about 20-60 kg ha-1 MAE increased and 0.1 R2 dropped for the 2019W. 

 

Figure 6.10: Yield prediction performance of models with different kernel numbers in 

S_CNN and W_CNN. 



176 
 

6.6.3 The crop growth and yield maps 

The monthly NDVI can be used to trace the crop development through the growing 

season. Figure 5.11 shows the NDVI and yield maps of the east field in 2017 and 2019. 

Only NDVI in Aug. of 2017 was available, and only 2/3 field’s NDVI in Sep. 2019 was 

available due to a camera problem. The predicted NDVI from the GRU network in Jul. and 

Sep in 2017 and the other 1/3 field’s in Sep. 2019 were used as the alternative in Figure 

5.11. Tough the soil texture was considered the same between these two years, crop yield 

distribution shows a difference in some regions. The black circles in the yield maps mark 

the regions that having more yield in 2019, while the pink circles mark the regions that 

having more yield in 2017. The predicted yield of 2017E and 2019E captured most of the 

true yield variance, as well as those yield difference between these two years. Irrigation 

was applied in late July and in Aug. 2017 in the pink circle region, while there was no 

irrigation in 2019. NDVI in the pink circle region in July of 2019 was high.  The amount 

of rainfall was small from the middle of July to the late of Aug. in 2019, and the temperature 

in 2019 in these days was higher than that in 2017 (Figure 2.3). The soil in this pink circle 

region had about 40%-50% sand content. Those may be the reasons that NDVI were drop 

in the pink circle region in Aug. and Sep. in 2019. However, the rainfall amount in June 

and early July in 2019 were higher than that in 2017, and this may be the reason for the 

high clay content region (the black circles) having a higher yield than that in 2017. 
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Figure 6.11:  The NDVI and yield of (a) 2017E and (b) 2019E. The multispectral camera 

in Sep. 2019 had some problems and the data of the right side of the field were lost (the 

NDVI in the right of the white line was the predicted NDVI from the GRU network). The 

black circles make the regions that had more yield in 2019 while the pink circles mark the 

regions that had more yield in 2017. The white circles mark the regions of how NDVI 

changed from July to Sep. of the yield difference regions between 2017 and 2019. All the 

NDVI were normalized and the absolute values did not have physical meanings. The 

legend of NDVI was the same in all the NDVI maps. The legend of yield was the same in 

all the yield maps. I: irrigation applied 

The rainfall amount before the middle of Aug. was low in 2018, and this may be 

the reason that most of the region in 2018 having a lower yield than the same position in 

2019, especially in the black circle regions in the yield maps that having 55%-75% sand 

content. For the year that had higher rainfall amount (i.e., 2019 compared with 2018 and 

2017), yield distribution patterns were more similar with the soil texture pattern and the 
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correlation between yield and soil features were higher (Yield2019E and Yield2019W had 

the highest Pearson correlation with clay30- clay70, FC, WP and TAW in Table 5.2). There 

was no NDVI available in 2019W, the predicted NDVI were showing in Figure 5.12, which 

provided an alternative way to observe the crop growth changes during the season. 

 
Figure 6.12: The NDVI and yield of (a)2018W and (b) 2019W. The black circles make 

the regions that having more yield in 2019 than in 2018. All the NDVI were normalized 

and the absolute values did not have physical meanings. The legend of NDVI was the 

same in all the NDVI maps. The legend of yield was the same in all the yield maps. S: 

regions with 55%-75% sand content. 

6.7 Conclusion 

This paper quantified yield variation based on soil texture, weather conditions and 

UAV imagery collected in three different years of 2017-2019. Eleven soil features (sand 

content percentage, wilting point, field capacity, total available water, and clay content 

percentage in 7 different depth layers) and six weekly weather data (total precipitation, 
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max air temperature, min air temperature, total solar radiation, vapor pressure and 

evapotranspiration for reference crop) were processed in an S_CNN and a W_CNN. A 

GRU-based RNN network was trained using the processed soil features and weather 

features, as well as the UAV image NDVI and yield as ground true labels. Then the trained 

models were used for yield prediction in an additional year. MAE = 247 (8.9%) to 384 kg 

ha-1 (13.7%) were obtained for yield prediction of 2017-2019. The S_CNN, W_CNN, 

direct connection between soil with the final yield prediction layer, UAV-based NDVI, 

weather data and the GRU unit were showed important for the high accuracy yield 

prediction. Results showed that quantified yield variation based on soil texture, weather 

conditions and UAV imagery for a future year was feasible. 

6.8 Future work 

For the crop growth quantification study in Chapter 5.6.5, we tried to answer if the 

weather data more important to the crop growth or the soil data more important in the year 

2018 and 2019 respectively. In this Chapter of the yield prediction study, I haven’t figure 

out this question of how a specific input feature (soil or weather features) affected the final 

yield variation. One reason is that deep learning models though have high prediction ability 

but usually work like a ‘black box’ and have low explanation ability. For my current 

prediction model, I haven’t found out a better way to explain how the input features affect 

the final yield prediction. Another reason is that I had a limited data set. I only had three 

years of data from 2017-2019. The current model had the function for crop growth 

prediction monthly. But the growth prediction currently did not have high accuracy. Even 

though we collected image data in the middle of each month, the crop growth stage at the 

same time of different yield was different due to the weather variation. I did not have higher 
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temporal resolution image data now. I may need more data especially more high temporal 

image data to track the crop growth to answer this question. Also, collecting the image data 

before or after irrigation is a good way to understand the soil and water effects on crop 

development. 

In this Chapter, previous years’ data were used for model training. When predicted 

a future year, all the data for the future year such as soil, weather and image data were used. 

The cut-off date of the image data was the date we collected images. The cut-off date of 

the weather data was the end of October.  It may be better to use part of the weather data 

such as weather data up to August or September rather than using all the weather data in 

the whole growth season since farmers would like to know the yield earlier than waiting 

for the whole growth season at the harvest time. There are publications (Khaki and Wang, 

2019; Khaki et al., 2020) that working for a future yield prediction, and they added the 

weather prediction function in their models. Future weather prediction or other methods 

are needed if not the whole growth season weather data are included in the yield prediction 

model. 

I mixed the west field east field and different years in the four tests because of the 

limited amount of the data set. For example, in the west field, I only had two years’ data, 

2018 and 2019, and therefore I cannot have more than one year’s data for training as I need 

an additional year’s data for testing. The same situation happened to the east field, I only 

had two years’ data 2017 and 2019. If more data will be collected in the future, separating 

the field for different years’ tests (such as using the left half of the west field data of 2018-

2019 for training and using the right half of the west field data of 2020 for testing) is a 

good way to try. 
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Weekly weather data was used instead of daily weather (large amount of data and 

was shown not necessary in (Khaki and Wang, 2019) and (Khaki et al., 2020)) data and 

monthly weather data (less amount of data and may not enough to reflect the weather 

effects on crop development). However, a test to tell is which is the best to use (daily 

weather data or weekly weather data or monthly weather data) for yield prediction is worth 

conducting. 

I tried to use the cotton boll as one of the image data for yield prediction before. 

But at that time, the UAV flew too high, and the cotton bolls cannot be seen clearly. 

Another difficulty for using the cotton bolls is that the image collected before harvest is 

hard to stitch together due to no plant leaves and fewer image features for stitching. the 

growing degree days (GDD) as one of the weather data is worth trying in the yield 

prediction model. 
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Chapter 7. CONCLUSIONS AND FUTURE STUDY 

7.1 Conclusions 

This study tried to use emerging sensing technologies, such as soil EC sensors, and 

UAV imaging sensors as well as data from the weather station to understand the 

environmental effects on crop emergence, crop development and yield. This study 

specifically focused on methods to characterize crop development and yield using UAV-

based remote sensing and deep learning technologies. This study also developed methods 

for the fusion of different spatiotemporal resolution soil, weather and images data so that 

those data can be used to quantification of soil and weather effects on crop development 

and yield. Specifically, this study developed the above characterize methods and the fusion 

methods that can be used in crop emergence, crop development and yield accordingly. The 

whole study showed that the developed technologies and methods are feasible for crop 

emergence evaluation, crop development monitoring and yield prediction.  

First of all, this study developed methods and a framework for timely crop 

emergence mapping. High accuracy of crop emergence stand count and canopy size 

estimation was obtained in near real-time. With the improved crop row alignment 

algorithm, the mapping GPS accuracy was improved and provided the feasibility of 

exploring the relationship between emergence, subsequent growth and environment using 

UAV image data. Although there are only one-year data collected due to weather and 

equipment issues for the other year (the year 2018 and 2020), field elevation, ECa-sh, ECa-

dp and soil clay content in the shallow depth (i.e. clay10-clay30) still showed important 

effects on the crop stand count and seedling canopy size. 
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Secondly, crop development variation and water stress level can be quantified by 

the UAV multispectral images and thermal images. Under different years (i.e. 2018 and 

2019) weather conditions and field management (i.e. irrigation management), crop 

vegetation indices increased and decreased differently in regions with different soil texture. 

The study showed that soil had more influence on crop development in the year that when 

water inputs were not enough and crop were under water stress. High sand content regions 

affected the crop development due to water stress, but the high sand content regions would 

not affect the crop development too much if irrigation were applied. If irrigation was 

applied and water inputs were enough, the effects of soil on crop decreased. 

In the end, this study showed that the cotton yield could be estimated accurately 

and mapped based on the integration of soil, weather and UAV image data. Integration of 

soil, weather and images data is a promising way to understand the soil and weather effects 

on crop development and yield. With the methods and models developed in this study, 

predicting yield accurately in a future year before harvest based on the model training on 

previous years’ soil, weather and UAV image data is feasible, which is meaningful for 

farmers to prepare harvest and make marketing decisions. 

7.2 Future study 

The methods and models developed in this study are promising for understanding 

soil and weather effects on crop emergence, crop development and yield. However, a larger 

amount of data may be required to give more convincing conclusions of the environmental 

effects on the crop. Currently, the temporal resolution for image data (once per month) and 

the spatial resolution for ground data (like soil moisture data) in this study was still not 

high. Future works may focus on higher temporal resolution image data (twice or three 
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times a week) to check more temporal details of the crop development and higher spatial 

resolution ground data (like soil moisture data) to understand more spatial distribution of 

the environmental characteristics of the field. Especially in the yield estimation study as 

described in Chapter 6, predicting the crop growth as well as yield together may also be 

meaningful for researchers and farmers. For the current model, the prediction of crop 

growth is still with low accuracy, and it requires more data support for future study. 

More accurate prediction models are needed to have higher accuracy for yield 

estimation results and mapping. New models with machine learning and deep learning 

technologies are waiting to be explored. Especially, accurate models with higher 

explainable ability are needed to explain the relationships between crop, soil and weather 

as most of the machine learning and deep learning models are with low explanation ability 

currently.  Explainable ability is important in agriculture science for understanding the 

environmental effects on the crop. 
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