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Entropy minimization, convergence, and

Gibbs ensembles (local and global)

Alexander M. Hughes

Dr. Stamatis Dostoglou, Dissertation Advisor

ABSTRACT

We approach the subject of Statistical Mechanics from two different perspectives. In

Part I we adopt the approach of Lanford and Martin-Lof. We examine the minimiza-

tion of information entropy for measures on the phase space of bounded domains,

subject to constraints that are averages of grand canonical distributions. We describe

the set of all such constraints and show that it equals the set of averages of all prob-

ability measures absolutely continuous with respect to the standard measure on the

phase space. We also investigate how the set of constrains relates to the domain of

the microcanonical thermodynamic limit entropy. We then show that, for fixed con-

straints, the parameters of the corresponding grand canonical distribution converge,

as volume increases, to the corresponding parameters (derivatives, when they exist)

of the thermodynamic limit entropy.

In Part II, we use the Banach manifold structure on the space of finite positive

measures to show that the critical points of the Gibbs entropy are grand canonical

equilibria when the constraints are scalar, and local equilibria when the constraints

are integrable functions. This provides a rigorous justification of the derivation of the

Gibbs measures that appears often in literature.
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Chapter 1

Introduction

The concept of information entropy and its optimization subject to constraints are

central subjects in Statsitical Mechanics. It is well known that in thermodynamic

equilibrium, the minimizing probability distribution is the Gibbs distribution. Despite

its prominence, no mathematically rigorous derivation of the Gibbs distribution from

the perspective of Lagrange multipliers has been given. Instead, the proof of Gibbs as

a minimizer utilizes convex analysis, see [K] for example. Further work in the fields

of statistical mechanics and thermodynamics also tend to rely on convex analysis, as

in [L] and [M-L].

In Part I we approach Statistical Mechanics from the perspective of convex anal-

ysis. In Chapter 3 we give the definitions of many of the basic quantities and give a

characterization of SΛ, the set of physical quantities that can be the expectation of

a Gibbs distribution (the set of solvability). Furthermore, we can show the existence

of a homeomorphism between SΛ and set of possible thermodynamic parameters in

the Gibbs distribution (the Lagrange Multipliers). Thus, each possible macroscopic

quantity corresponds to a unique thermodynamic parameter and unique Gibbs dis-

tribution. We also show the image of the expectation values with respect to the

Gibbs distributions maps to an open set. In Chapter 4, we introduce the concepts of
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microcanonical entropy and thermodynamic pressure as well as prove several useful

facts about these quantities. In Chapter 5 we use ideas of epi-convergence and the

Legendre transform from convex analysis to prove the convergence of microcanoni-

cal entropy to thermodynamic entropy. We also show that when the microcanonical

and thermodynamic entropies converge while corresponding to the same macroscopic

quantities, we have convergence of the thermodynamic parameters as well. We con-

clude Part I by using the thermodynamic pressure to show the existence of a local

homeomorphism between the thermodynamic parameters and macroscopic physical

quantities in the thermodynamic limit.

In Part II, we change our approach and use the tools of differential geometry

on Banach manifolds to provide a rigorous derivation of the Gibbs distribution as

a Lagrange multiplier problem. After providing an overview of Orlicz spaces and

e-convergence in Chapter 7, we construct a manifold structure on the appropriate

set so that both information entropy and the constraint functionals are C1 mappings

(Chapter 8). Chapter 9 consists of verifying the necessary conditions to solve a

Lagrange multiplier problem on a Banach manifold. We then apply the manifold

structure to derive the Grand Canonical Gibbs distribution in Chapter 10. Chapter

11 uses the manifold structure to provide an alternate proof of the open mapping

result from Part I. Chapter 12 concludes Part II by applying the Banach manifold

structure to the problem of deriving the local Gibbs distribution. In this setting the

constraint functionals no longer map into R but into a function space. The same

manifold structure developed in Chapter 8 gives the necessary smoothness for the

constraint functionals.
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Part I

Convex Analysis Approach to
Statistical Mechanics
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Chapter 2

Introduction

For systems with a large number of components, information entropy optimization

subject to a few given constraints is widely used in several fields, see [BKM] for ex-

ample. In statistical mechanics, for bounded domains in space, one minimizes the

information entropy of measures, absolutely continuous with respect to the standard

measure on the phase space, subject to appropriate macroscopic constraints for den-

sity, velocity, and energy, see [J], [Z]. The minimizing measure, a grand-canonical

Gibbs distribution, is characterized by parameters conjugate to the constraints, in

the sense that differentiating the logarithm of the partition function of the measure

with respect to these parameters returns the constraints. On the other hand, it is

standard how, as the volume increases, one defines microcanonical entropy in terms of

thermodynamic limits as a function of the given macroscopic quantities. Convex con-

jugation (or derivatives, when they exist) now define the thermodynamic parameters

at the limit.

Motivated by:

• the need to know in advance in numerical simulations the range of constraints

that can be used when minimizing information entropy on bounded domains,

as well as
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• the comparison of hydrodynamic equations from statistical mechanics on bounded

domains, which heavily relies on minimizing information entropy (see [BAR] and

[Z]), to the standard hydrodynamic limit approach (see [OVY]),

we ask the following:

• what are the appropriate constraints for a given domain and how does the set

of these constraints change with domain?

• do the thermodynamic parameters for finite volume converge to the thermody-

namic limit parameters while the macroscopic constraints remain fixed?

In this article we address these questions. In doing so we also obtain some other

results which, to our knowledge, are new to the literature.

To start, in Chapter 3, we examine rigorously the constrained information entropy

minimization over a bounded domain. It is standard that if we assume the constrains

are averages of some grand canonical distribution this grand canonical distribution

is the unique minimizer, cf. [Gibbs]. We give an explicit description of the set of

solvability, SΛ, of grand-canonical distributions on bounded domains, cf. Theorem

3.7.1. Furthermore, Theorem 3.7.3 asserts that this set in fact coincides with the

averages of all measures that are absolutely continuous with respect to the standard

measure on phase space (with the exception of a trivial case: the measure concentrated

on the empty configuration). This shows that the usual assumption on the constrains

is not restrictive. It is worth mentioning that the usual formal Lagrange multipliers

argument (cf. [Z]) is not employed here. In fact, we find the application of Lagrange

multipliers in this setting questionable, cf. Section 3.3.
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We then proceed to thermodynamic limits in Chapter 4. After recalling defini-

tions and standard properties of the thermodynamic limit microcanonical entropy

and pressure we discuss the strict convexity property of the thermodynamic limit

pressure. The arguments presented here rely on the Gibbs variational principle. No-

tice here that, by the convex conjugacy between pressure and microcanonical entropy,

the strict convexity of pressure gives differentiability of entropy which plays a role in

Chapters 5 and 6.

In Chapter 5 we answer the question of convergence of thermodynamic parameters.

We start by showing in Theorem 5.1.1 that the domain of the thermodynamic limit

entropy (where it is not −∞) is nonempty and also give it an explicit characterization

which improves the results in [L] and [M-L]. Then Theorem 5.1.2 shows that, when-

ever we fix macroscopic constraints in the thermodynamic limit entropy, the finite

volume parameters of the corresponding grand-canonical distributions converge, as

the domain tends to infinity, to the thermodynamic limit parameters corresponding

to the same macroscopic quantities.

The main point here is that when the domain is bounded information entropy

and the log-partition function are related via convex conjugation (Legendre-Fenchel

transform). But at the thermodynamic limit the convex conjugate of pressure is

microcanonical entropy. As pressure is the limit of log-partition functions, to relate

information entropy (for macroscopic constraints that do not change as the domain

increases) to microcanonical entropy (at the same macroscopic values), we need to

know convergence of the conjugates to the conjugate of the limit. We show that

the standard results for this type of convergence from convex analysis, involving

6



convergence of epigraphs of the functions in question, apply. In the presence of

derivatives at the limit, already established in work by Georgii [Gi] for example, the

results follow.

Related work on determining parameters of Gibbs states via maximum likelihood

methods on bounded domains appears in [CG], [Gi], [DL]. We compare this to our

results in section 5.2. Note that convergence of microcanonical entropy on bounded

domains to the thermodynamic limit microcanonical entropy is known, see [RP]. In

addition, an argument that appears in [L] and [M-L] shows that the information

entropy of the canonical Gibbs distributions for a fixed inverse temperature converges

to the microcanonical thermodynamic entropy evaluated at the energy corresponding

to that fixed temperature. We compare this convergence to our results in section 5.3.

Finally, Chapter 6 uses strict convexity results from Chapter 4 to show that there

is indeed a local homeomorphism between macroscopic and thermodynamic limit pa-

rameters. The existence of such a homeomorphism is often used, and is in fact a

cornerstone of some seminal work [OVY, p. 530, p. 556]. For the 1-dimensional case

see [LR, Proposition 5.3], [V, Theorem 10.2].

Sign Conventions: We do not use a negative sign for the coefficient of the energy in

the exponent of the grand canonical distribution and we define information entropy to

be the average of the logarithm of the distribution function. In this way the natural

domain for the grand canonical distribution is on negative inverse temperatures and

the information entropy on finite volumes here is that of [K], but the opposite of [Z].

These conventions avoid the awkward minus sign in front of the energy expectation

7



and render the conjugate of information entropy as the log-partition function. But,

since we work with convex functions on finite volumes, at the limit we get the opposite

of the concave microcanonical entropy.

We present our results for space dimension 3, but it will be clear that they hold

in any dimension.
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Chapter 3

Minimum Entropy on Bounded
Domains

It is standard that a finite grand-canonical Gibbs distribution is the unique minimizer

of information (Gibbs) entropy among all distributions with the same average as the

grand canonical, see [Gibbs, p. 130]. The main point of this section is to describe

the set of all such averages in Theorem 3.7.1 on bounded domains and how this set

depends on the domain. Theorem 3.7.3 shows that this set includes the averages of

all measures absolutely continuous with respect to the standard measure on phase

space (with the exception of the measure concentrated on the empty configuration).

The rest of the section collects standard results on information entropy, its minimiza-

tions, and the log-partition function, with proofs where these are not available in the

references.

3.1 Measures and Notation

For Λ ⊂ R3 bounded and measurable set with volume |Λ| > 0, we work on the phase

space

XΛ =
⋃
n≥0

(
Λn × R3n

)
= {∅} t

(
Λ× R3

)
t
(
Λ2 × R6

)
t . . . (3.1)

9



where {∅} indicates the empty configuration consisting of no particles. Unless oth-

erwise specified, we assume the underlying σ-algebra to be
⋃
n≥0 B(Λn × R3n) where

B(Λn × R3n) is the Borel σ-algebra on Λn × R3n. In general q and p stand for the

position and velocity of a particle, respectively. We take the reference measure on XΛ

to be

ω =
∑
n≥0

ωn (dq1, . . . , dqn, dp1, . . . , dpn) (3.2)

where

ω0({∅}) = 1,

ωn(dq1, . . . , dqn, dp1, . . . , dpn) =
1

n!
dq1 . . . dqn dp1 . . . dpn, n ≥ 1.

(3.3)

Then ∫
XΛ

f dω =
∑
n≥0

∫
Λn×R3n

f(q1, . . . , qn, p1, . . . , pn) dωn. (3.4)

Throughout, PΛ denotes the space of probability measures on XΛ.

For any configuration (q̃, p̃) ∈ XΛ, the total energy H(q̃, p̃) consists of both kinetic

energy and potential energy:

H : XΛ → R, (q1, . . . , qn, p1, . . . , pn) 7→
1

2

n∑
i=1

|pi|2 + U(q1, . . . , qn). (3.5)

Throughout this article we will assume the following for the interaction potential U :

• U is stable in the sense that there is L > 0 with

U(q1, . . . , qn) ≥ −nL, n ∈ N. (3.6)

• The potential energy of the empty or single particle configurations vanish:

U(∅) = U(q1) = 0.
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• U is shift invariant: U(q1, . . . , qn) = U(q1 + h, . . . , qn + h), for all h ∈ R3, and

all n ≥ 1.

• U is symmetric: U(q1, . . . , qn) = U(qσ(1), . . . , qσ(n)) for any permutation σ and

all n ≥ 1.

An abundance of examples of interaction potentials satisfying these assumptions can

be found in [R, pp. 34-39]. These include pairwise interaction potentials of the form

U(q1, . . . , qn) =
∑
i ̸=j

Φ(|qi − qj|), (3.7)

for appropriate Φ : [0,∞) → R. Chapter 4 here will require further assumptions on

U .

Define also the particle number and total momentum by

N : XΛ → N, (q1, . . . , qn, p1, . . . , pn) 7→ n,

~P : XΛ → R3, (q1, . . . , qn, p1, . . . , pn) 7→
n∑
i=1

pi.
(3.8)

In the above definitions, for the empty configuration, i.e. when n = 0, we take

(N, ~P ,H) = (0,~0, 0). For (µ,~λ, β) in I := R× R3 × R<0, define

g(µ,λ⃗,β),Λ(q̃, p̃) =
1

Z(µ,λ⃗,β),Λ

exp
(
(µ,~λ, β) · (N, ~P ,H)(q̃, p̃)

)
, (3.9)

where Z(µ,λ⃗,β),Λ is the normalization constant (partition function):

Z(µ,λ⃗,β),Λ =

∫
XΛ

exp
(
(µ,~λ, β) · (N, ~P ,H)(q̃, p̃)

)
ω(dq̃, dp̃). (3.10)

The above choice of (µ,~λ, β) ∈ I is justified by the following simple lemma.

Lemma 3.1.1. Let IΛ ⊂ R×R3 ×R be the set of (µ,~λ, β) such that Z(µ,λ⃗,β),Λ <∞.

Then IΛ = I.
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Proof. Complete the square for the p’s in the exponent and use the stability condition

(3.6) to see that β < 0 is sufficient. Conversely, for β ≥ 0, and regardless of ~λ, the

term of the integral for N = 1 gives

∫
Λ×R3

exp

(
µ+ ~λ · ~p+ β

|~p|2

2

)
dqdp = +∞. (3.11)

For each (µ,~λ, β) ∈ I, the probability measure g(µ,λ⃗,β),Λω is the Gibbs grand-

canonical distribution over Λ with parameters (µ,~λ, β). We will use E(µ,λ⃗,β),Λ[F ] for

the expectation of a function F on XΛ with respect to g(µ,λ⃗,β),Λω, i.e.,

E(µ,λ⃗,β),Λ[F ] =

∫
XΛ

F (q̃, p̃)
exp

(
(µ,~λ, β) · (N, ~P ,H)(q̃, p̃)

)
Z(µ,λ⃗,β),Λ

ω(dq̃, dp̃). (3.12)

3.2 Information Entropy

For any ν ∈ PΛ, define the information (Gibbs) entropy by

sΛ(ν) =


1

|Λ|

∫
XΛ

(log f)fdω, ν � ω, f :=
dν

dω

+∞ o/w.

(3.13)

In particular, if fn is the density of ν with respect to ωn, i.e. ν =
∑

n≥0 fnωn, then

sΛ(ν) =
1

|Λ|
∑
n≥0

∫
Λn×R3n

log fn fndωn. (3.14)

It is standard that sΛ is bounded below by 0 (using the convexity of the function

t 7→ t log t and Jensen’s inequality), therefore it is a proper1 convex function on PΛ.

1Recall that a convex function is proper if it never takes the value −∞ and it is not identically
+∞.
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3.3 Constrained Entropy Minimization on Fixed

Volumes

In statistical mechanics it is standard to minimize the information entropy sΛ over

PΛ subject to suitable constraints

∫
XΛ

N

|Λ|
dν = ρ,

∫
XΛ

~P

|Λ|
dν = ~u,

∫
XΛ

H

|Λ|
dν = E, (3.15)

and derive the grand canonical distributions as the minimizer. For this, it is common

to argue via Lagrange multipliers, see for example [Z, p. 66]. This is a formal applica-

tion of the Lagrange multiplier theory on spaces of functions. It is not at all clear to

us how the Lagrange multipliers in infinite dimensions as for example in [Zei, §43.8],

[BCM], can be used to make such arguments rigorous. (For example, one would need

to choose a Banach space of functions in which the set of probability densities forms

an open set.) On the other hand, such arguments can find solid ground if one employs

some differential structure in the space of measures, as for example in [PS]. We shall

come back to this point in Part II. For the moment we recall with minor modifications

the argument from [K]: to minimize sΛ, it clearly suffices to look only at measures

absolutely continuous with respect to ω, i.e. ν = fω. Assume there exists (µ,~λ, β) ∈ I

such that

(ρ, ~u,E) = E
[

1

|Λ|
(N, ~P ,H)

]
, (3.16)

an assumption that is not at all restrictive, see comments after equation (3.18) below.

Then for g(µ,λ⃗,β),Λ the grand canonical density as in (3.9), by (3.16) we have that

13



∫
XΛ

f log g(µ,λ⃗,β),Λ dω is finite, therefore

|Λ|sΛ(fω) =
∫
XΛ

f log

(
f

g(µ,λ⃗,β),Λ

)
dω +

∫
XΛ

f log(g(µ,λ⃗,β),Λ) dω

=

∫
XΛ

f log

(
f

g(µ,λ⃗,β),Λ

)
dω + (µ,~λ, β) · (ρ, ~u,E)− logZ(µ,λ⃗,β),Λ

≥ (µ,~λ, β) · (ρ, ~u,E)− logZ(µ,λ⃗,β),Λ = |Λ|sΛ(g(µ,λ⃗,β),Λω).

(3.17)

In the last inequality we have used that the relative entropy

∫
XΛ

f log

(
f

g(µ,λ⃗,β),Λ

)
dω

is always greater than or equal to zero (by Jensen’s inequality). As the relative

entropy is zero if and only if f = g(µ,λ⃗,β),Λ a.e., we conclude the standard

Entropy Minimization: For (ρ, ~u,E) such that there exists (µ,~λ, β) with (3.16)

satisfied the grand-canonical distribution g(µ,λ⃗,β),Λω is the unique minimizer to sΛ

over all ν’s in PΛ satisfying (3.15).

Notice in the above process of entropy minimization the assumptions on the con-

strains (ρ, ~u,E): we require that (ρ, ~u,E) ∈ SΛ (the set of solvability) where

SΛ =
{
(ρ, ~u,E) : there is (µ,~λ, β) ∈ I such that (3.16) holds

}
. (3.18)

In the next two sections, we provide a detailed description of the set of solvability SΛ

and will see that the assumption (ρ, ~u,E) ∈ SΛ is in fact reasonable: if (ρ, ~u,E) =∫
XΛ

1

|Λ|
(N, ~P ,H)dν for some ν ∈ PΛ absolutely continuous with respect to ω then

(ρ, ~u,E) ∈ SΛ, unless ν is the Dirac measure at the empty configuration, see Theorem

3.7.3 and Theorem 3.7.1.
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3.4 Homeomorphism between I and the set of solv-

ability SΛ

We now introduce the log-partition function:

ΦΛ(µ,~λ, β) =


1

|Λ|
logZ(µ,λ⃗,β),Λ, (µ,~λ, β) ∈ I

+∞, o/w.

(3.19)

A straightforward application of Fatou’s lemma shows that ΦΛ is closed, in the sense

that it has closed epigraph2. A standard calculation shows that ΦΛ is strictly convex

on I. Therefore ∇ΦΛ defines a bijection from I to SΛ, see [RV, Theorem B, p. 99].

That this bijection is in fact a homeomorphism follows from

Lemma 3.4.1. Let f be a proper and closed convex function with domain an open

set. If f is differentiable and strictly convex on its domain, then ∇f defines a home-

omorphism on the image of ∇f .

Proof. The domain of the subdifferential of f is between intdom(f) and dom(f),

see [Rock, p. 253]. Since the domain is open, this means that the subdifferential

is identical to ∇f on dom(f) and empty everywhere else. Then f is essentially

differentiable by [Rock, Theorem 26.1]. As f is also strictly convex, by assumption,

the statement follows from [Rock, Theorem 26.5].

Notice now that for (µ,~λ, β) in I

E
[

1

|Λ|

(
N, ~P ,H

) ]
=

1

|Λ|
∇µ,λ⃗,β logZ(µ,λ⃗,β),Λ = ∇µ,λ⃗,β ΦΛ. (3.20)

We therefore have:

2Recall that the epigraph of f is {(x, a) : f(x) ≤ a}.
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Proposition 3.4.2. SΛ = Image(∇ΦΛ) and the map

(µ,~λ, β) 7→ E
[

1

|Λ|

(
N, ~P ,H

)]
(3.21)

defines a homeomorphism between I and SΛ.

3.5 Characterization of the set of solvability SΛ

In this section, we describe the set of solvability, SΛ (see (3.18)). It is easy to find

some rough bounds:

Lemma 3.5.1. SΛ ⊂ {(ρ, ~u,E) ∈ R× R3 × R : −Lρ ≤ E, ρ > 0}, for L the stability

constant as in (3.6).

Proof. For ρ = E
[
N

|Λ|

]
, using the stability condition and working as in the proof of

Lemma 3.1.1, it follows that 0 < ρ < +∞. Furthermore

E
[

1

|Λ|
H

]
≥ E

[
1

|Λ|
U

]
≥ E

[
1

|Λ|
(−LN)

]
= −Lρ, (3.22)

after using (3.6) again.

3.6 Essential Range of (N, ~P ,H)

Theorem 3.7.1 below will describe the set of solvability, SΛ, in more detail after some

preparation. Let f be a measurable map between some measure space X to Rn.

Recall first that the essential range of f is all points x ∈ Rn such that ω(f−1(B)) > 0,

for any neighborhood B of x. (Alternatively, the essential range is the support of

the distribution of f .) When f is a function on XΛ or Λn × R3n, unless otherwise

specified, we assume the reference measure to be ω or ωn, respectively.
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For Λ fixed and for each n ≥ 0, use the stability of U to define L
(n)
Λ as the smallest

constant satisfying

−nL(n)
Λ ≤ U(q1, . . . , qn), for almost all (q1, . . . , qn) ∈ Λn (3.23)

w.r.t. Lebesgue measure on Λn.

Notation 1. From now on EΛ denotes the essential range of (N, ~P ,H)/|Λ| over XΛ,

CΛ the convex hull of EΛ, and C̊Λ the interior of CΛ.

Similarly, for each n ≥ 0, EΛ,n denotes the essential range of (N, ~P ,H)/|Λ| over

Λn × R3n and CΛ,n the convex hull of EΛ,n. Notice that CΛ is the convex hull of⋃
n≥0 CΛ,n. Clearly, when n = 0, CΛ,0 = EΛ,0 =

{
(0,~0, 0)

}
.

Lemma 3.6.1. For each n ≥ 1,

CΛ,n =
{
(ρ, ~u,E)/|Λ| : ρ = n,E ≥ −nL(n)

Λ , |~u|2 ≤ 2n(E + nL
(n)
Λ )
}
. (3.24)

Proof. By definition of L
(n)
Λ , for ωn-almost all (q̃, p̃) ∈ Λn × R3n we have

H(q̃, p̃) =
1

2

n∑
i=1

|pi|2 + U(q1, . . . , qn) ≥
1

2

n∑
i=1

|pi|2 − nL
(n)
Λ . (3.25)

Using |
∑n

k=1 pi|
2 ≤ n

∑n
i=1 |pi|2 we have that

EΛ,n ⊂
{
(ρ, ~u,E)/|Λ| : ρ = n,E ≥ −nL(n)

Λ , |~u|2 ≤ 2n(E + nL
(n)
Λ )
}
. (3.26)

Let

IΛ,n =
{
(ρ, ~u,E) : ρ = n,E ≥ −nL(n)

Λ , |~u|2 = 2n(E + nL
(n)
Λ )
}
. (3.27)

It remains to prove that IΛ,n belongs to the essential range of (N, ~P ,H).

Take any (n, ~u0, E0) ∈ IΛ,N . Fix any ε > 0. We will show that the inverse image

of the set

Sϵ = {(n, ~u,E) : |~u− ~u0| ≤ ε, |E − E0| ≤ ε} (3.28)

17



has nonzero ωn-measure.

As −nL(n)
Λ is the essential infimum of U(q1, . . . , qn), we know that

Aϵ =
{
(q1, . . . , qn) ∈ Λn : 0 ≤ U(q1, . . . , qn) + nL

(n)
Λ ≤ ε

2

}
(3.29)

has nonzero Lebesgue measure. Let

Bϵ =

{
(p1, . . . , pn) ∈ Rn :

∣∣∣∣∣∑
k

pk − ~u0

∣∣∣∣∣ ≤ ε,

∣∣∣∣∣12∑
k

|pk|2 −
|~u0|2

2n

∣∣∣∣∣ ≤ ε

2

}
. (3.30)

Notice that the image of Aϵ × Bϵ under (N, ~P ,H) is a subset of Sϵ. It remains to

show that Bϵ has nonzero Lebesgue measure. In fact, take p̃0 ∈ R3n such that

p̃0 =
1

n
(~u0, . . . , ~u0). (3.31)

Clearly, p̃0 ∈ Bϵ. As
∑n

k=1 pk and
∑n

k=1 |pk|2 are continuous functions on R3n, then

there exists δ > 0 such that

Bϵ,δ :=
{
p̃ ∈ R3n : |p̃− p̃0| ≤ δ

}
⊂ Bϵ. (3.32)

As Bϵ,δ has nonzero Lebesgue measure, the proof is now complete.

Remark 3.6.2. In fact, for n ≥ 2, the essential range EΛ,n equals the convex hull

CΛ,n. The proof is similar to that of Lemma 3.6.1. As this is not relevant to the rest

of the article, we omit the details.

Let CΛ be the closure of CΛ. As CΛ = conv

(⋃
n≥0

CΛ,n

)
, from the structure of

CΛ,n we see that if (ρ, ~u,E) ∈ CΛ, then (ρ, ~u,E + a) ∈ CΛ for any a > 0. A useful

consequence of this is: for any (ρ0, ~u0, E0) /∈ CΛ, we can find (α0, ~α, α4) with α4 > 0

and ε > 0 so that for all (ρ, ~u,E) ∈ CΛ

[(ρ, ~u,E)− (ρ0, ~u0, E0)] · (α0, ~α, α4) > ε. (3.33)

18



3.7 Results on the set of solvability SΛ

Now we are ready to state

Theorem 3.7.1. The set of solvability SΛ is the interior of the convex hull of the

essential range EΛ, i.e. SΛ = C̊Λ.

The rest of this section will give a proof for this theorem. To this end, we first

prove a result for the essential range of (N, ~P ,H) under more general probability

measures on XΛ.

Lemma 3.7.2. For n ≥ 1 and ν any probability measure on Λn × R3n which is

absolutely continuous with respect to ωn, we have that the average of (N, ~P ,H)/|Λ|

under ν is in the relative interior of CΛ,n (i.e. CΛ,n is treated as a subset in R4) and

therefore in the interior of CΛ (as a subset in R5).

Proof. Let Q0 = (n, ~P0, H0) =

∫
Λn×R3n

(N, ~P ,H)dν. Assume that Q0/|Λ| is on the

boundary of CΛ,n (as a subset of R4), then Q0 ∈ IΛ,n. By the strict convexity of CΛ,n,

there exists ~α ∈ R5 such that for all Q ∈ CΛ,N such that Q 6= Q0

~α · (Q−Q0) > 0. (3.34)

Notice that the inverse image of Q0 with respect to the map (N, ~P ,H) is a subset of

the set {
(q̃, p̃) ∈ Λn × R3n :

n∑
k=1

pk = ~P0

}
(3.35)

which has zero ωn-measure, therefore also zero ν-measure. We obtain now

∫
Λn×R3n

~α · ((N, ~P ,H)−Q0)dν > 0, (3.36)
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clearly contradicting the fact Q0 = (n, ~P0, H0) =

∫
Λn×R3n

(N, ~P ,H)dν.

On the other hand, if Q0 is in the exterior of CΛ,n (as a subset of R4), by convexity

of CΛ,n, we can find ~α such that (3.34) holds for all Q ∈ CΛ,N . Therefore we have

(3.36) which leads again to a contradiction.

Theorem 3.7.3. Let ν be any probability measure on XΛ absolutely continuous with

respect to ω. Assume that ν({∅}) < 1, i.e. ν is not the Dirac measure on the empty

configuration. Then the average of (N, ~P ,H)/|Λ| with respect to ν is in the interior

of CΛ.

Proof. Let Q = (ρ, ~u,E) be the average of (N, ~P ,H)/|Λ| with respect to ν. As ν is

not the Dirac at the empty configuration, we know that Q is a convex combination

of some family of {Qnk}k, nk ≥ 1, for Qn is the average of (N, ~P ,H)/|Λ| conditioned

on configurations of n particles.

From Lemma 3.7.2, we know that all Qnk are in the interior of CΛ, and then so is

their convex combination Q.

For any (µ,~λ, β) ∈ I, apply Theorem 3.7.3 to the grand-canonical distribution

g(µ,λ⃗,β),Λω to conclude that SΛ ⊂ C̊Λ. To prove Theorem 3.7.1, it remains to show

that for any (ρ, ~u,E) ∈ C̊Λ, there exists (µ,~λ, β) ∈ I such that (3.16) holds. The

contents of the following Lemma appear in [L, Lemma A4.6] without proof:

Lemma 3.7.4. For any (N0, ~P0, H0) ∈ |Λ|C̊Λ, i.e. the interior of the convex hull of

the essential range of (N, ~P ,H) over XΛ, there is ε such that for all unit vectors ~e in

R5 the following holds:

ω
({

(q̃, p̃) ∈ XΛ :
[
(N, ~P ,H)(q̃, p̃)− (N0, ~P0, H0)

]
· ~e > ε

})
> ε. (3.37)
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Proof. Whenever (N0, ~P0, H0) ∈ |Λ|C̊Λ, for any unit vector ~e there is some (N∗, ~P∗, H∗)

in the essential range of (N, ~P ,H) that belongs to the half-space through (N0, ~P0, H0)

with (inward) normal ~e; otherwise the whole convex hull of the essential range would

be on one side of (N0, ~P0, H0), i.e. (N0, ~P0, H0) would not be in its interior.

We then have

v :=
[
(N∗, ~P∗, H∗)− (N0, ~P0, H0)

]
· ~e > 0. (3.38)

Let N be a neighborhood of (N∗, ~P∗, H∗) such that for all (N ′, ~P ′, H ′) in N we have

[
(N ′, ~P ′, H ′)− (N0, ~P0, H0)

]
· ~e > v

2
. (3.39)

Then the ω measure of the inverse image of N is not zero, say m > 0. Take ε =

min{v/2,m} and notice that this ε satisfies (3.37) for ~e.

By continuity of projection, for the same N , there is a neighborhood U of ~e on the

unit sphere such that for any unit vector ~e ′ in U and any (N ′, ~P ′, H ′) in N we have

[
(N ′, ~P ′, H ′)− (N0, ~P0, H0)

]
· ~e′ > v

4
. (3.40)

Redefining ε = min{v/4,m}, we now have (3.37) satisfied on U .

By compactness of the unit sphere, we only need to repeat this finitely many times

and take the smallest ε to make sure that (3.37) is satisfied for all unit vectors.

We are ready to show that for any (ρ, ~u,E) ∈ C̊Λ, there exists (µ,~λ, β) ∈ I such that

(3.16) holds. This step builds on [L, pp. 44-47], see also [Kh, §16]. For (ρ, ~u,E) ∈ C̊Λ

fixed, let K : I → R>0 be given by

(µ,~λ, β) 7→
∫
XΛ

exp
(
(µ,~λ, β) · (N − ρ|Λ|, ~P − |Λ|~u, H − |Λ|E )

)
dω. (3.41)
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Clearly, logK = |Λ|
[
ΦΛ − (µ,~λ, β) · (ρ, ~u,E)

]
and therefore logK is strictly convex

on I. Note that

∇µ,λ⃗,β logK = 0 ⇔ (ρ, ~u,E) = ∇µ,λ⃗,βΦΛ(µ,~λ, β). (3.42)

To conclude there is unique critical point of logK in I, it suffices to show that K, and

therefore logK, goes to +∞ as (µ,~λ, β) approaches the boundary of I. Precisely, we

show that K(µ,~λ, β) → ∞ if |(µ,~λ, β)| → ∞ or (µ,~λ, β) → (µ0, ~λ0, 0) for any finite

µ0 and ~λ0.

To this end, we first apply Lemma 3.7.4 for

(N0, ~P0, H0) = |Λ|(ρ, ~u,E) and ~e = (µ,~λ, β)/|(µ,~λ, β)| (3.43)

to find ε > 0 such that for any (µ,~λ, β), there exists a set of XΛ of ω measure at least

ε where

(µ,~λ, β) ·
(
(N, ~P ,H)− |Λ|(ρ, ~u,E)

)
> ε|(µ,~λ, β)|. (3.44)

It follows that

K(µ,~λ, β) ≥ ε exp
(
|(µ,~λ, β)|ε

)
. (3.45)

Therefore K(µ,~λ, β) → +∞, as |(µ,~λ, β)| → ∞ while staying in I, and so does

logK(µ,~λ, β).

Next, if (µm, ~λm, βm) → (µ,~λ, 0), as m→ ∞, Fatou’s lemma gives

lim inf
m→∞

∫
XΛ

exp
(
(µm, ~λm, βm) · (N − ρ|Λ|, ~P − |Λ|~u, H − |Λ|E)

)
dω

≥
∫
XΛ

exp
(
(µ,~λ) · (N − ρ|Λ|, ~P − |Λ|~u)

)
dω = +∞,

(3.46)

showing that logK explodes when (µ,~λ, β) approaches the hyperplane β = 0. The

proof of Theorem 3.7.1 is now complete.
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3.8 Information Entropy and log-Partition Func-

tion

We shall compare eventually the information entropy sΛ with the entropy that appears

at the thermodynamic limit using convex conjugates. For this define now the convex

conjugate of the log partition function, ΦΛ from (3.19),

Φ∗
Λ(ρ, ~u,E) = sup

(µ,λ⃗,β)∈R5

[
(ρ, ~u,E) · (µ,~λ, β)− ΦΛ(µ,~λ, β)

]
. (3.47)

(For standard convex analysis consult [Rock].) The following describes the relation

of ΦΛ to sΛ.

Proposition 3.8.1. Φ∗
Λ takes values as follows:

1. For (ρ, ~u,E) in SΛ (see (3.18)),

Φ∗
Λ(ρ, ~u,E) = sΛ

(
g(µ,λ⃗,β),Λω

)
= (ρ, ~u,E) · (µ,~λ, β)− ΦΛ(µ,~λ, β), (3.48)

where (µ,~λ, β) ∈ I is the unique solution of

E

[
(N, ~P ,H)

|Λ|

]
= (ρ, ~u,E). (3.49)

2. For (ρ, ~u,E) /∈ SΛ, Φ
∗
Λ(ρ, ~u,E) = +∞.

3. And for (ρ, ~u,E) ∈ ∂(SΛ), Φ
∗
Λ(ρ, ~u,E) is the limit along any interior segment

as we approach (ρ, ~u,E):

Φ∗
Λ(ρ, ~u,E) = lim

t→1
Φ∗

Λ((1− t)(ρ′, ~u′, E ′) + t(ρ, ~u,E)), (3.50)

for any (ρ′, ~u′, E ′) ∈ SΛ.
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Proof. For (1) notice that the critical point equation of

(µ,~λ, β) 7→ (ρ, ~u,E) · (µ,~λ, β)− ΦΛ(µ,~λ, β) (3.51)

is

(ρ, ~u,E) = ∇(µ,λ⃗,β)ΦΛ(µ,~λ, β) = E
[

1

|Λ|
(N, ~P ,H)

]
, (3.52)

which, by Theorem 3.7.1 has solution if and only if (ρ, ~u,E) is in the set of solvability,

SΛ.

For (2), when (ρ, ~u,E) is not in the SΛ, by (3.33), we find (α0, ~α, α4) with α4 > 0

and ε > 0 so that almost always[
(N, ~P ,H)− |Λ|(ρ, ~u,E)

]
· (α0, ~α, α4) > ε. (3.53)

Notice that for any (µ,~λ, β) ∈ I,

(ρ, ~u,E) · (µ,~λ, β)− ΦΛ(µ,~λ, β)

= − 1

|Λ|
log

∫
XΛ

exp
{ [

(N, ~P ,H)− |Λ|(ρ, ~u,E)
]
· (µ,~λ, β)

}
dω.

(3.54)

Then for ϑ > 0, with choosing (µ,~λ, β) = −ϑ(α0, ~α, α4)− (0,~0, 1), we have

Φ∗
Λ(ρ, ~u,E) ≥ (ρ, ~u,E) · (µ,~λ, β)− ΦΛ(µ,~λ, β)

≥ − 1

|Λ|
log

∫
XΛ

exp {−ϑε− (H − |Λ|E)} dω

=
1

|Λ|
ϑε− 1

|Λ|
log

∫
XΛ

exp {−(H − |Λ|E)} dω.

(3.55)

Letting ϑ→ ∞, we conclude that Φ∗
Λ = +∞ whenever (ρ, ~u,E) is not in SΛ.

For (3), when (ρ, ~u,E) is on the boundary of the convex hull, Φ∗
Λ(ρ, ~u,E) is the

limit of the values along any segment that has (ρ, ~u,E) as end point and lies in the

interior of the convex hull otherwise, as is the case for any convex closed function,

see [Rock, Theorem 7.5]. (For similar results in a different setting and with different

proofs, see [WJ, Theorem 3.4.].)
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Chapter 4

Thermodynamic Limits

We now recall the definition of microcanonical thermodynamic limit entropy. In the

next section we will see how it relates to information entropy on bounded domains.

This section uses Martin-Löf’s formalism in [M-L] for thermodynamic limits as the

volume of the domain becomes infinite, see also [L]1.

As already mentioned, we shall compare entropies via their convex conjugates.

We examined convex conjugates of information entropy in the previous section. For

the microcanonical thermodynamic limit entropy it is well known that its convex

conjugate is related to the (grand canonical) thermodynamic limit pressure, the limit

of the log-partition functions ΦΛ’s as Λ increases. We are especially interested in the

strict convexity of pressure: we use it in this section for the differentiability of the

limit entropy (which we shall use in the main result of the next section) and we also

use it to show a one-to-one correspondence between thermodynamic parameters and

macroscopic quantities at the thermodynamic limit in Chapter 6.

1Note that the formulas in [L] and [M-L] are related as follows: the microcanonical thermody-
namic limit entropy at (ρ,E) in [M-L] equals the microcanonical thermodynamic limit entropy in
[L] at (ρ,E/ρ) multiplied by ρ.
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4.1 Microcanonical Entropy

We first introduce the temperedness condition for interaction potential: U is called

tempered if for some constants δ greater than the space dimension, K > 0, and

R > 0 it holds that, for q̃1 and q̃2 configurations consisting of N1 and N2 position

points respectively,

|U (q̃1, q̃2)− U (q̃1)− U (q̃2)| ≤ K
N1N2

(d (q̃1, q̃2))
δ
, (4.1)

whenever q̃1 and q̃2 have distance d (q̃1, q̃2) > R. (Lennard-Jones type potentials and

finite range interactions are tempered, Coulomb potentials are not.)

To define the microcanonical entropy, we will need to specify a special sequence of

Λ’s that increases to infinity.

Notation 2. For any l ∈ N, Λl will denote a box in R3 with sides of length 2l. And

Λ′
l ⊂ Λl will denote a smaller box with side 2l−2Rl, where Rl = R02

ρl, for some fixed

R0 and ρ ∈ [0, 1). (The choice of R0 and ρ depends on the interaction potential U

and ρ = 0 is when U is of finite range, cf. [M-L, p. 105, p. 88].)

For any (ρ, ~u,E) ∈ R5, we fix a sequence of open convex sets {Ak}k∈N such that Ak

shrinks to (ρ, ~u,E). For interactions potentials which are both stable and tempered,

the microcanonical entropy at (ρ, ~u,E) is defined as

s(ρ, ~u,E)

= lim
k→∞

lim
l→∞

1

|Λl|
logω

({
(q̃, p̃) ∈ XΛ′

l
:

1

|Λl|
(N, ~P ,H)(q̃, p̃) ∈ Ak

})
,

(4.2)

cf. [M-L, §3.4.2].

We also know that s(ρ, ~u,E) is an upper-semi continuous concave function on R5

and that s(ρ, ~u,E) <∞, cf. [M-L, p. 45,p. 96]. Therefore the set dom(s) = {(ρ, ~u,E) :
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s(ρ, ~u,E) > −∞}, i.e. the domain of s, is convex. We will give a description of

int dom(s), i.e. the interior of domain of s, in Theorem 5.1.1. To this end, we will

need the following notation:

Notation 3. E ′
Λl

will denote the essential range of
1

|Λl|
(N, ~P ,H) as a map on XΛ′

l
.

(Compared with EΛl as in Notation 1, E ′
Λl

takes into account only configurations in

Λ′
l.) Also conv(E ′

Λl
) denotes the convex hull of E ′

Λl
and int conv(E ′

Λl
) is the interior of

conv(E ′
Λl
). As E ′

Λl
=

Λ′
l

Λl
EΛ′

l
, from the proof of Lemma 3.6.1, it is easy to see that

conv(E ′
Λl
) =

|Λ′
l|

|Λl|
conv(EΛ′

l
) =

|Λ′
l|

|Λl|
CΛ′

l
. (4.3)

In this notation, the following will be crucial in the proof of Theorem 5.1.1:

Lemma 4.1.1. For stable, tempered interaction potentials the domain of s is related

to E ′
Λl

as follows:

dom(s) =
⋃
l

E ′
Λl
. (4.4)

Proof. See [M-L, p. 93, p. 95] for finite range, stable interaction potentials and [M-L,

pp. 105–111] for infinite range, stable, tempered interaction potentials. Note that the

claim there is for EΛ instead of E ′
Λl

(in our notation).

4.2 Pressure

For any (µ,~λ, β) ∈ R5, define now the thermodynamic limit pressure by

Ξ(µ,~λ, β) = lim
Λ→∞

ΦΛ(µ,~λ, β) (4.5)

where the sequence of Λ’s approaches infinity in the sense of “strong van Hove” [M-L,

p. 107] and “approximable by cubes” [M-L, p. 91]. The sequence {Λl} as in Notation
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2 is an example of such Λ’s. See [M-L, p. 111] for the existence and properties of this

limit2. Trivially, by (4.5), Ξ(µ,~λ, β) = ∞ for (µ,~λ, β) /∈ I.

Lemma 4.2.1. For (µ,~λ, β) ∈ I, we have 0 ≤ Ξ(µ,~λ, β) < ∞. (Therefore Ξ is a

proper convex function with domain dom(Ξ) = I.)

Proof. Fix any (µ,~λ, β) in I. By the stability (3.6) and completing squares for the

velocity terms, we easily see that Ξ(µ,~λ, β) <∞. On the other hand, as Z(µ,λ⃗,β),Λ ≥ 1

for all Λ, we have ΦΛ(µ,~λ, β) ≥ 0, therefore Ξ(µ,~λ, β) ≥ 0.

The thermodynamic limit microcanonical entropy s and the pressure Ξ are related

via convex conjugation:

Ξ(µ,~λ, β) = sup
(ρ,u⃗,E)∈R5

{s(ρ, ~u,E) + (ρ, ~u,E) · (µ,~λ, β)}, (4.6)

(see [M-L, p. 45, Lemma 5] 3) i.e.

Ξ(µ,~λ, β) = (−s)∗(µ,~λ, β), (4.7)

with ∗ still denoting the convex conjugate. As s is concave and upper-semi continuous,

we can conjugate once again to get

Ξ∗(ρ, ~u,E) = −s(ρ, ~u,E). (4.8)

2In [M-L]’s notation, our Ξ(µ, λ⃗, β) is s(R×R3 ×R>0;µ, λ⃗, β). [M-L] also comments on differen-
tiability of Ξ for finite range interactions but leaves open the differentiability for stable potentials.
We therefore resort to our own differentiability arguments here.

3To go from Martin-Löf’s Lemma 5 to (4.6) notice that the limit on the left of (4.6) is the
supremum of what Martin-Löf calls s(u, a) in Lemma 5, p. 45, and that the pointwise formula (in
Martin-Löf’s notation) s(u, a) = s(u)− a · u holds by [M-L, Lemma 5a].
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As mentioned in the introduction to this section, it will be important to know

when Ξ is strictly convex. We assume strict convexity for the moment and provide a

discussion in section 4.3.

Lemma 4.2.2. Assume that Ξ(µ,~λ, β) is strictly convex on I. Then s is essentially

differentiable, i.e. differentiable in the interior of its domain and |∇s| → ∞ on the

boundary of its domain.

Proof. As dom(Ξ) = I, we have that Ξ, as an extended-reals-valued function, is essen-

tially strictly convex (for the general definition see [Rock, p. 253]). This observation,

(4.8), and [Rock, Theorem 26.3] immediately imply the lemma (which should be com-

pared to [Gi, Remark 3.7, Remark 6.5] where differentiability of s on its domain was

shown).

4.3 Strict Convexity of Pressure

Strict convexity of pressure for lattice systems was shown by Griffiths and Ruelle in

[GR]. For continuous systems, this is the case in general when the Gibbs variational

principle (see [D], [Gi] for a definition) holds. As here is the only place we use the

concept of Gibbs states, we only sketch the argument. For details see [P, Proposition

8.5] and [Gi, Remark 3 and §5].

Let X be the the space of locally finite configurations on R3 marked with velocities.

For a state ν (a probability measure on X), one can define specific entropy s(ν),

density r(ν) and average energy u(ν) (when a suitable interaction potential is given).

In general, for any µ ∈ R and β < 0, it holds that

−Ξ(µ,~0, β) ≤ s(ν)− βu(ν)− µr(ν), (4.9)
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see [G, §3] for precise definitions and proof. The Gibbs variational principle states

that the equality in (4.9) holds if and only if ν is a Gibbs state indexed by µ and β. If

we assume that Ξ(µ,~0, β) is not strictly convex on R×R<0 then there exists distinct

(µ1, β1) and (µ2, β2) such that

Ξ(µt,~0, βt) = tΞ(µ1,~0, β1) + (1− t) Ξ(µ2,~0, β2), (4.10)

where (µt, βt) = t (µ1, β1) + (1− t) (µ2, β2) and 0 < t < 1. Let ν be a Gibbs state for

(µt, βt). Then applying Gibbs variational principle to ν,

t [s(ν)− β1u(ν)− µ1r(ν)] +(1− t) [s(ν)− β2u(ν)− µ2r(ν)]

= −tΞ(µ1,~0, β1)− (1− t)Ξ(µ2,~0, β2).

(4.11)

Again by the Gibbs variational principle, we have now that ν is also a Gibbs state

of both (µ1, β1) and (µ2, β2). However, it is standard that the Gibbs states are iden-

tifiable, in the sense that the sets of Gibbs states for different (µ, β) are disjoint,

cf. [G, Remark 3.7]. Therefore we conclude strict convexity of Ξ(µ,~0, β) under the

assumption of Gibbs variational principle.

The Gibbs principle holds at least for the following cases:

• For superstable, finite range pairwise potentials as in [D, Theorem 1].

• For regular, non-integrably divergent pairwise potentials as in [G, p. 1344].

Note that Lennard-Jones type interactions satisfy the assumptions from [G] and are

tempered.

The above argument was written for Ξ(µ,~0, β) which is the case in [G]. It is easy

to see that the dependence on ~λ does not spoil strict convexity:

Proposition 4.3.1. If (µ, β) 7→ Ξ(µ,~0, β) is strictly convex on R × R<0 (as in the

above cases) then Ξ(µ,~λ, β) is strictly convex on I.
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Proof. For any (µ,~λ, β) ∈ I, by completing squares, we obtain ΦΛ(µ,~λ, β) = ΦΛ(µ+

τ,~0, β) where τ = τ(~λ, β) = −|~λ|2

2β
. Therefore Ξ(µ,~λ, β) = Ξ(µ+ τ,~0, β). Elementary

calculus shows that τ is convex on R3 × R<0. Then the strict convexity of Ξ(µ,~λ, β)

follows from the fact that Ξ(µ,~0, β) is increasing in µ and the strict convexity of

(µ, β) 7→ Ξ(µ,~0, β).
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Chapter 5

Convergence

We are now ready for the main results. The main point here is that, thanks to the

properties of the functions at hand, as the log-partition functions for finite volumes

converge to the thermodynamic pressure their convex conjugates (finite volume in-

formation entropies) converge to the convex conjugate of the limit (microcanonical

entropy), and so do their derivatives (the thermodynamic parameters). The chapter

also includes comparisons with related results.

5.1 Convergence of Epigraphs

Recall again that the epigraph of a function f is the set {(x, a) : f(x) ≤ a}, that a

convex function is called proper if it is not identically +∞ and it never has the value

−∞ (with obvious modifications for concave functions), and that proper and closed

is synonymous to proper and lower semi-continuous in our setting.

For functions in general, convergence of epigraphs (for convergence of sets as in

[RW, §4B]) is used to preserve critical points at the limit. For convex functions,

pointwise convergence is not too far from convergence of epigraphs, in a sense that is

made precise as we recall the following facts :

Fact 1. For fn, f convex functions on Rd with fn → f , assume that f is closed and
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the interior of the domain of f is not empty. Then the epigraphs of fn converge to

the epigraph of f as sets.

The importance of the convergence of epigraphs also lies in that it is inherited by

conjugates:

Fact 2. If fn, f are proper, closed, convex functions on Rd, then the epigraphs of

fn converge to the epigraph of f if and only if the epigraphs of f ∗
n converge to the

epigraph of f ∗.

Finally, convergence of epigraphs implies pointwise convergence as in the following:

Fact 3. Let fn and f be convex functions on Rd with the epigraphs of fn converging

to the epigraph of f . Assume that f is closed and the interior of the domain of f is

not empty. Then fn → f uniformly on any compact set in the interior of the domain

of f .

Facts 1 and 3 are included in [RW, Theorem 7.17], while Fact 2 is Theorem 11.34 in

the same reference. Recalling the definition of E ′
Λl

from Notation 3 and the definition

of the set of solvability SΛ from (3.18), we can now state:

Theorem 5.1.1. For interaction U stable and tempered:

1. The interior of the domain of s is not empty.

2. Fix any sequence of Λ’s that approaches infinity in the strong van Hove sense and

is approximable by cubes. Whenever (ρ, ~u,E) is in the interior of the domain

of s then (ρ, ~u,E) is in SΛ, for all Λ large enough. Therefore int dom(s) ⊂

lim inf
Λ

SΛ.
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3. int dom(s) =
⋃
l

int conv(E ′
Λl
).

Proof. For 1, by (4.4) and the fact that dom(s) is convex we get

dom(s) =
⋃
l

E ′
Λl

=
⋃
l

conv
(
E ′
Λl

)
. (5.1)

Again by convexity of dom(s), we have int dom(s) = int dom(s) (cf. [Rock, Theorem

6.3]). It therefore follows that

int dom(s) = int

(⋃
l

conv
(
E ′
Λl

))
⊃
⋃
l

int conv
(
E ′
Λl

)
. (5.2)

As int conv
(
E ′
Λl

)
is not empty (cf. Notation 3), the proof of 1 is complete.

For 2: The interior of the domain of Ξ is not empty, by Lemma 4.2.1 and Ξ is

closed since it is a conjugate as in (4.7)(cf. [Rock, Thm. 12.2]). Therefore, according

to Fact 1, the pointwise converge (4.5) implies that the epigraphs of ΦΛ converge to

the epigraph of Ξ.

Therefore, by Fact 2, the epigraphs of Φ∗
Λ converge as sets to the epigraph of Ξ∗.

Equation (4.8) gives Ξ∗(ρ, ~u,E) = −s(ρ, ~u,E). In other words, the epigraphs of Φ∗
Λ

converge to the epigraph of −s. Then apply Fact 3 to obtain that that for (ρ, ~u,E)

in the interior of the domain of s we have that Φ∗
Λ converges uniformly to −s on any

ball in the interior of the domain that contains (ρ, ~u,E). In particular, (ρ, ~u,E) is in

the interior of the domain of Φ∗
Λ for all Λ large enough.

For 3, observe that we have already shown in part 1 that

int dom(s) ⊃
⋃
l

int conv
(
E ′
Λl

)
. (5.3)

Conversely, let x ∈ int dom(s). For any sequence of Λ’s that approaches infinity in

the strong van Hove sense and approximable by cubes, part 2 shows that x ∈ SΛ =
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int conv(EΛ) for all Λ large enough. Now we fix the sequence of Λ’s as {Λ′
l}. We

therefore have x ∈ int conv(EΛ′
l
) for l large–note that here the prime is on Λ and not

on E . Indeed, using the convexity of the sets conv(EΛ′
l
), a whole neighborhood of x,

say Bx, is in conv(EΛ′
l
) for l large enough. Using (4.3) and liml→∞

|Λ′
l|

|Λl|
= 1, we have

that Bx is in conv(E ′
Λl
) for l large, therefore x ∈

⋃
l int conv

(
E ′
Λl

)
.

To prepare for the statement of the next theorem, we introduce:

Notation 4. For (ρ, ~u,E) ∈ R5, set s̃Λ(ρ, ~u,E) = −Φ∗
Λ(ρ, ~u,E).

This notation is partly justified by the relation between s̃Λ and the information

entropy sΛ. In fact, when (ρ, ~u,E) is in SΛ, by part 1 of Proposition 3.8.1, we have

s̃Λ(ρ, ~u,E) = −sΛ(g((µΛ,λ⃗Λ,βΛ)),Λ) for (µΛ, ~λΛ, βΛ) the unique thermodynamic param-

eter corresponding to (ρ, ~u,E) such that (3.16) holds. The following theorem shows

that, as Λ tends to infinity, s̃Λ(ρ, ~u,E) converges to thermodynamic limit microcanon-

ical entropy s(ρ, ~u,E) and (µΛ, ~λΛ, βΛ) converges to (µ,~λ, β), the thermodynamic

parameter corresponding to (ρ, ~u,E) in the limit.

Theorem 5.1.2. Fix any sequence of Λ’s that approaches infinity in the strong van

Hove sense and approximable by cubes. For (ρ, ~u,E) in the interior of the domain of

s, we have

1. s̃Λ(ρ, ~u,E) → s(ρ, ~u,E), as Λ tends to infinity.

2. If s is differentiable on some open convex set C containing (ρ, ~u,E) (e.g. as in

section 4.2), for (µ,~λ, β) = −∇s(ρ, ~u,E),

(µΛ, ~λΛ, βΛ) → (µ,~λ, β) as Λ tends to infinity. (5.4)
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((µΛ, ~λΛ, βΛ) is well defined for all Λ large.)

Proof. As s̃Λ = −Φ∗
Λ, then s̃Λ(ρ, ~u,E) → −s(ρ, ~u,E) follows from proof of Part 2 in

Theorem 5.1.1.

By Part 2 of Theorem 5.1.1, (ρ, ~u,E) is in SΛ for all Λ large.Therefore for such

Λ’s, (µΛ, ~λΛ, βΛ) is well defined. As ΦΛ is strictly convex on its domain I, s̃Λ is differ-

entiable on SΛ, cf. [Rock, Theorem 26.3]. By convexity of SΛ and Part 2 of Theorem

5.1.1, we may find open convex set C ′ containing (ρ, ~u,E) such that C ′ ⊂ C and

C ′ ⊂ SΛ for all Λ large. Now we may use [Rock, Theorem 25.7] (roughly: for convex

functions pointwise convergence implies convergence of derivatives) to conclude that

∇s̃Λ(ρ, ~u,E) → ∇s(ρ, ~u,E), i.e. (µΛ, ~λΛ, βΛ) → (µ,~λ, β).

Remark 5.1.3. Of less practical use is the following: In general, for any (ρ, ~u,E) ∈

int dom(s), we know that the subdifferential set ∂s of s at (ρ, ~u,E) is not empty,

cf. [Rock, Theorem 23.4]. Then for any (µ,~λ, β) such that −(µ,~λ, β) ∈ ∂s(ρ, ~u,E)

there is sequence (ρΛ, ~uΛ, EΛ) → (ρ, ~u,E) such that ∇s̃Λ(ρΛ, ~uΛ, EΛ) → −(µ,~λ, β).

This follows from Attouche’s Theorem: For fn, f proper, closed, convex functions, if

fn converges to f epigraphically then ∂fn converges to ∂f graphically. See [RW, §5E

and Theorem 12.35] for definitions and proof.

5.2 Comparison with Maximum Likelihood Esti-

mators

Several articles address the consistency of maximum likelihood estimators for Gibbs

point processes, for example [CG], [Gi], [DL]. The main point there is: given a Gibbs

state with parameter β, let ω, a locally finite configuration on R3, be a realization of
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it. For ωΛ the restriction of ω on Λ, maximize the likelihood

βΛ = argmaxβ
exp (βU(ωΛ))

ZΛ(β)
, (5.5)

for U the interaction and β < 0 to match our conventions here. Then [CG], [Gi], [DL]

show that almost always, βΛ → β, as Λ → ∞.

For exponential families of measures, maximizing likelihood and minimizing en-

tropy are closely related in general. Let xi, i = 1, . . . , n be independent realizations of

a member of an exponential family of probability measures µϑ = exp (ϑt(x)− logZ(ϑ))µ0.

Then maximizing the likelihood
∏

i exp (ϑt(xi)− logZ(ϑ)) is the same as solving

d

dϑ
log
∏
i

exp (ϑt(xi)− logZ(ϑ)) = 0 ⇔ 1

n

∑
i

t(xi) =
d

dϑ
logZ(ϑ). (5.6)

Note that the right hand side is Eϑ[t]. In other words, for exponential families of

the form exp (ϑt(x)− logZ(ϑ)), the maximum likelihood estimator ϑ for {xi}ni=1 is

the same as the ϑ of minimizing entropy with constraint
∑
t(xi)/n. See [Kull, p. 82,

p. 94] and the references there for more.

It is clear then how our convergence of thermodynamics parameters differs from the

consistency problem of maximum likelihood estimators: in our case, the constrains

(i.e. ρ, ~u,E) are given and fixed for all volumes Λ whereas in the consistency problems

the constrains come from the restriction of the realized configuration on Λ. Therefore,

in the consistency problems the constraints not only change with Λ, but they also

depend on ω, i.e. the estimated thermodynamic parameters are a sequence of random

variables.
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5.3 Comparison with Lanford

Lanford in [L, p. 63] shows (and [M-L, p. 57] explains a crucial step in the proof)

that for β the derivative of the microcanonical thermodynamic limit entropy s at

energy E (when this exists even in the absence of kinetic energy) for fixed density

ρ, the information entropy of the canonical distribution with parameter β converges

to −s(ρ,E). Note carefully that for Lanford β stays the same over all volumes,

whereas in our work we show convergence while the parameters change with volume.

Furthermore, the measure in Lanford’s argument is canonical, rather than grand

canonical. This is because ρ is now fixed throughout and is not on the same footing

as E. In particular, Lanford’s β is a function of ρ.
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Chapter 6

Local Homeomorphism at the
Thermodynamic Limit

We show here that at the thermodynamic limit the bijection between thermodynamic

parameters and macroscopic quantities as in Theorem 3.7.1 holds at least locally in

some region. The existence of such a bijection for continuous systems is folklore in the

theory of hydrodynamic limits, see for example [OVY, p. 530, p. 556]. For the case

of particle configurations on the line see [LR, Proposition 5.3], [V, Theorem 10.2].

Throughout this chapter, in addition to stability and temperedness, we will assume

pair interactions: U(q1, . . . , qn) =
∑

i ̸=j Φ(qi− qj). Notice that the stability (3.6) and

temperedness as in (4.1) imply that

C(β) :=

∫
R3

|exp (βΦ(x))− 1| dx < +∞, for all β < 0, (6.1)

cf. [R, p. 32, p. 72]. To establish the local homeomorphism, we will need the thermody-

namic limit pressure Ξ to be both strictly convex (as in section 4.3) and differentiable.

It is standard that, when not taking velocities into account, i.e. XΛ =
⋃
n≥0 Λ

n, H = U

and ~λ = 0, Ξ is analytic in µ and β in the low density region

{(µ, β) : β < 0, µ < 2βL− 1− logC(β)} . (6.2)

Analyticity with respect to µ is shown in [R, Theorem 4.3.1]. Combining this with
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results from [LP], analyticity with respect to β also follows. This is presented in detail

in [X, Appendix D].

Including the kinetic energy and ~λ, it follows easily that we have differentiability

of Ξ(µ,~λ, β) for

R =

(µ,~λ, β) : β < 0, µ < 2βL− 1− logC(β)− log

∫
R3

exp

(
~λ · ~p+ β

| ~p |2

2

)
d~p

 .

(6.3)

Proposition 6.0.1. Let U be a stable, tempered, pair interaction potential with Ξ

strictly convex (e.g. as in section 4.3) and let K be convex, open subset of R. Then

∇Ξ : K → R5 is a homeomorphism onto ∇Ξ(K) with (∇Ξ)−1 = −∇s.

Proof. On such a K the pressure Ξ is both differentiable and strictly convex which

implies that ∇Ξ is one-to-one from K to ∇Ξ(K), using [RV, Theorem B, p. 99] again.

∇Ξ is also continuous, see [Rock, Theorem 25.5].

∇Ξ(µ,~λ, β) = (ρ, ~u,E) if and only if (µ,~λ, β) is in the subdifferential of −s at

(ρ, ~u,E) ([Rock, Theorem 23.5]). Therefore, as −s is essentially differentiable by

Lemma 4.2.2, the range ∇Ξ(K) can only be a subset of the interior of the domain of

−s, where −s is differentiable, and ∇Ξ = (∇(−s))−1. Since ∇s is also continuous,

∇Ξ is a homeomorphism.
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Part II

Differential Manifold Approach to
Statistical Mechanics
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Chapter 7

Introduction

The physical derivation of the canonical Gibbs distribution at thermal equilibrium

for a Hamiltonian E is as follows. For f be a probability density function and

dqdp = dq1 . . . dqNdp1 . . . dpN the Lebesgue measure on phase space we minimize∫
f ln f dqdp subject to

∫
Efdqdp =constant. In particular, for δf a small pertur-

bation such that

∫
δf dqdp = 0 we solve

d

dε

∣∣∣∣
ϵ=0

∫
(f + εδf) ln (f + εδf)dqdp =

d

dε

∣∣∣∣
ϵ=0

λ

∫
E(f + εδf)dqdp (7.1)

for any δf , giving f = eλE−1. After relabeling and applying the condition

∫
fdqdp =

1, we have the Gibbs distribution:

f =
eλE∫
eλEdqdp

(7.2)

However, there is an issue with the above derivation. The space of probability

measures is not a linear space. Therefore, while the above steps are intuitively correct,

mathematically they are not justified. Our goal is to construct a framework in which

the process of deriving the Gibbs density makes sense.

To this end, we shall construct a differentiable manifold structure on the set of

finite measures on some Ω with respect to which a given vector valued function

C : Ω → Rn; C(Ω) = (C1(Ω), . . . , Cn(Ω)) . (7.3)
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is integrable. More precisely, let µ0 be some fixed positive measure on a topological

space Ω and let

F := { positive measure µ :

µ� µ0,
dµ

dµ0

> 0,

∣∣∣∣∫
Ω

Ciµ

∣∣∣∣ < +∞ i = 1, . . . , n},
(7.4)

where C0 ≡ 1 corresponds to the requirement that each µ ∈ F is a finite measure.

Note that the components of C need not be positive, hence the Ciµ’s are signed

measures.

Our goal is to solve the Lagrange multiplier problem where the information entropy

functional H : F → R is

H(pµ0) =

∫
Ω

p log pµ0 (7.5)

is minimized subject to given constraint functionals Gi : F → R defined by

Gi(pµ0) =

∫
Ω

Cipµ0. (7.6)

This requires that both (7.5) and (7.6) define differentiable functionals on F . For

this we shall construct a manifold structure on F , mapping open subsets of F to a

linear model space. The question is then what should our model space be. Part of the

issue with F is that probability density functions are positive everywhere. A natural

mapping to a space where functions are both positive and negative is the natural log

function. The inverse mapping from the model space back to F will then involve the

exponential function in some way. Thus, we require the functions in our model space

to be well behaved when exponentiated. Additionally, we wish to take derivatives

along paths through some pµ0 ∈ F . These paths in F will be written as

γ(t) = etupµ0 (7.7)
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where u is in the model space and pµ0 corresponds to t = 0. In order to take a

derivative at p, the above must be well defined in a neighborhood around t = 0. In

other words, both e−tu and etu must be integrable for some t > 0. This is equivalent

to requiring that our model space contains u’s such that et|u| is integrable for some

t > 0. This naturally leads us to consider Orlicz spaces with Young function e|t| − 1.

However, we also require that the constraint functionals are differentiable. If

one assumes that the model space consists of u’s in the above Orlicz space and

in L1(Cipµ0), problems appear with proving openness of the image of the chart.

Furthermore, the differentiability of

∫
Cipµ0 at p requires

∫
Ω

Cie
tupµ0 is well defined

in a neighborhood around t = 0. These point to a model space consisting of functions

in Orlicz spaces against the finite measures pµ0 and Cipµ0.

After providing some preliminary definitions (Chapter 7), we construct a manifold

on F (Chapter 8). We then apply the manifold structure to the above Lagrange

multiplier problem, showing that the result is a Gibbs distribution (Chapter 9). Ad-

ditionally, we apply the manifold structure to the problem of proving the constraint

functionals are open mappings (Chapter 11). Last, we apply the manifold structure

of Chapter 8 to the problem of local Gibbs.

7.1 Orlicz Spaces

We first review some standard theory regarding Orlicz spaces. First, consider the

following (see [AJVLS, p. 172]):

Definition 7.1.1. A function φ : R → R is called a Young function if φ(0) = 0,

φ is even, convex, strictly increasing on [0,∞) and lim
t→∞

φ(t)

t
= ∞. Given a Young
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function φ and a finite measure space (Ω, µ), we define the Orlicz space

Lϕ(µ) :=

{
f : Ω → R :

∫
Ω

φ(εf(x))µ(dx) <∞ for some ε > 0

}
. (7.8)

As required of a model space, Orlicz spaces are linear, (see [RR, Chapter 3 Theorem

2(ii)] or Proposition 13.1.1).

Note that for any f ∈ Lϕ(µ) there is ε such that [PS, p. 173]

∫
Ω

φ(εf)µ ≤ 1. (7.9)

In particular the following definition is justified:

Definition 7.1.2. The norm on Lϕ(µ) is given by

‖f‖ϕ = inf

{
a > 0 :

∫
Ω

φ

(
f(x)

a

)
µ(dx) ≤ 1

}
. (7.10)

Lϕ(µ) with this norm is a Banach space ([RR, Chapter 3, Theorem 10]). Note that

the infimum in the above definitions are attained (see [AJVLS, p. 173]). The Orlicz

norm is the smallest number that f can be divided by to make the integral less then

1. Note that dividing by larger numbers will also make the resulting integral smaller

than 1 (see Proposition 13.1.3). Convergence in Orlicz space can be defined in the

following equivalent ways (see [AJVLS, Proposition 3.8])

Proposition 7.1.3. Let fn be a sequence in Lϕ(µ). Then the following are equivalent:

1. lim
n→∞

fn = f in Orlicz norm.

2. For all c > 0, lim
n→∞

∫
Ω

φ(c(fn − f))µ = 0

Additionally, it will be helpful to relate Orlicz spaces corresponding to different

Young functions (see [AJVLS, Proposition 3.9]).
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Proposition 7.1.4. Let φ1(t) and φ2(t) be two Young functions and (Ω, µ) a finite

measure space. If

lim
t→∞

φ1(t)

φ2(t)
= c ∈ (0,∞), (7.11)

then Lϕ1(µ) = Lϕ2(µ) and the Orlicz norms ‖f‖Lϕ1 (µ) and ‖f‖Lϕ2 (µ) are equivalent.

Additionally, Orlicz spaces are continuously embedded in Lp spaces (see [AJVLS,

Equation 3.104], or [PS, Proposition 2.3]):

Proposition 7.1.5. The Orlicz space Lϕ(µ),φ(t) = e|t|− 1, is continuously embedded

in Lp(µ) for all p ≥ 1,

Lϕ(µ) ↪→
⋂
p≥1

Lp(µ). (7.12)

7.2 An equivalence relation

Let Ci be the components of C for i = 1, . . . , n. Recall C0 ≡ 1. Note that since

Eµ[Ci] <∞ for µ ∈ F , ∫
Ω

Ciµ =

∫
Ω

C+
i µ−

∫
Ω

C−
i µ (7.13)

are both finite integrals. Thus,∫
Ω

|Ci|µ =

∫
Ω

C+
i µ+

∫
Ω

C−
i µ <∞ (7.14)

and so we may regard each |Ci|µ as a positive finite measure. This will be used in the

construction of the model space in Chapter 8, as well as in the following definitions

that are adapted from [AJVLS, Equation 3.105].

Definition 7.2.1. Let µ, µ′ ∈ F . Define µ′ . µ if µ′ = φµ, φ ∈ Lpi(|Ci|µ) for some

pi > 1, i = 0, 1, . . . , n.

When both µ . µ′ and µ′ . µ we denote this by µ′ ∼ µ.
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Note that since |Ci|µ are finite measures, φ ∈ Lpi(|Ci|µ) implies φ ∈ Lr(|Ci|µ) for

all 1 ≤ r ≤ pi. Without loss of generality, we can take p = min
i
pi. Thus, µ′ . µ

implies

µ′ = φµ s.t. φ ∈
n⋂
i=0

Lp(|Ci|µ) for some p > 1. (7.15)

As these are in fact equivalent, we shall use (7.15) from now on.

The following is adapted from [AJVLS, p. 178].

Proposition 7.2.2. µ ∼ µ′ is an equivalence relation.

Proof. We verify the three required properties:

1. Reflexivity: µ = (1)µ, with 1 ∈ Lp(|Ci|µ), p > 1 by the fact |Ci|µ is a finite

measure.

2. Symmetry: obvious.

3. Transitivity: Suppose µ ∼ µ′ and µ′ ∼ µ′′. Then µ′ = φµ and µ = φ′µ′ with

φ ∈
n⋂
i=0

Lp(|Ci|µ) for some p > 1

φ′ ∈
n⋂
i=0

Lq(|Ci|µ′) for some q > 1

(7.16)

and µ′′ = ψ′µ′, µ′ = ψ′′µ′′ with

ψ′ ∈
n⋂
i=0

Lp
′
(|Ci|µ′) for some p′ > 1

ψ′′ ∈
n⋂
i=0

Lq
′
(|Ci|µ′′) for some q′ > 1.

(7.17)

Observe µ′′ = ψ′µ′ = ψ′φµ. Let p′′ :=
pp′

p+ p′ − 1
. Note that p′′ > 1 since

p, p′ > 1. Let λ :=
p′ − 1

p+ p′ − 1
∈ (0, 1). Then p′′ = p′(1−λ) and p′′ = 1+λ(p−1).
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Fixing i, by Holder’s inequality (with conjugates 1/λ and 1/(1− λ))∫
(ψ′φ)p

′′ |Ci|µ =

∫
(ψ′)

p′′
φp

′′|Ci|µ

=

∫
(ψ′)

p′(1−λ)
φ1+λ(p−1)|Ci|µ

=

∫ (
ψ′p′φ

)1−λ
(φp)λ |Ci|µ

≤
(∫

ψ′p′φ|Ci|µ
)1−λ(∫

φp|Ci|µ
)λ

=


∫
ψ′p′|Ci|µ′︸ ︷︷ ︸

ψ′∈Lp′ (|Ci|µ′)


1−λ

∫
φp|Ci|µ︸ ︷︷ ︸

ϕ∈Lp(|Ci|µ)


λ

<∞.

(7.18)

Similarly, µ = φ′µ′ = φ′ψ′′µ′′. Let q′′ :=
qq′

q + q′ − 1
and λ :=

q − 1

q + q′ − 1
. It can

be shown q′′ = q(1− λ) and q′′ = 1 + λ(q′ − 1). Fixing i and applying Holder’s

inequality∫
(φ′ψ′′)

q′′ |Ci|µ′′ =

∫
(ψ′′)

q′′
(φ′)

q′′ |Ci|µ′′

=

∫
(ψ′′)

1+λ(q′−1)
(φ′)

q(1−λ) |Ci|µ′′

=

∫
(ψ′′φ′q)

1−λ
(
(ψ′′)

q′
)λ

|Ci|µ′′

≤
(∫

(φ′)
q
ψ′′|Ci|µ′′

)1−λ(∫
(ψ′′)

q′ |Ci|µ′′
)λ

=


∫

(φ′)
q |Ci|µ′︸ ︷︷ ︸

ϕ′∈Lq(|Ci|µ′)


1−λ

∫
(ψ′′)

q′ |Ci|µ′′︸ ︷︷ ︸
ψ′′∈Lq′ (|Ci|µ′′)


λ

<∞.

(7.19)

Thus, φ′ψ′′ ∈
n⋂
i=0

Lq
′′
(|Ci|µ′′), q′′ > 1. We conclude µ′′ ∼ µ.

Remark 7.2.3. Note that µ′ = φµ where φ ∈ Lp(|C0|µ) implies µ′ � µ with φ the

Radon-Nikodym derivative. Similarly, µ = φ′µ′ implies that µ� µ′ with φ′ the Radon-

Nikodym derivative of µ with respect to µ′. Then (φ)(φ′) = 1 almost everywhere with

respect to either µ or µ′ (see [F, Corollary 3.10]). Thus, φ′ =
1

φ
.
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Similarly, µ := fµ0 and µ′ := gµ0 are equivalent elements of F . Then µ = fµ0,

f =
dµ

dµ0

and µ′ = gµ0, g =
dµ′

dµ0

and µ′ � µ0. Additionally, µ � µ′ with µ = φ′µ′,

φ′ =
dµ

dµ′ . Then µ � µ0 and
dµ

dµ0

=
dµ

dµ′
dµ′

dµ0

implies f = φ′g. (see [F, Proposition

3.9]). Equivalently φ′ =
f

g
. A similar argument applying µ′ � µ, φ =

dµ′

dµ
implies

φ =
g

f
. This details the relationship between φ and the probability density functions

f, g, which will be used below. Additionally, this shows the connection between the

chart defined below in Chapter 8 (and [AMR, Theorem 3.4]) and [PS].

We will apply Remark 7.2.3 to simplify the application of the equivalence relation.

Note that the equivalence class of µ is non-empty. Let φ be a function bounded

away from the origin: 0 < α ≤ φ ≤ β. Let p > 1. Then

αp|Ci|µ(Ω) ≤
∫
Ω

φp|Ci|µ ≤ βp|Ci|µ(Ω) (7.20)

implies φ ∈
n⋂
i=0

Lp(|Ci|µ) by the fact that each |Ci|µ is a finite measure. Similarly,

since φ is bounded away from 0, 0 <
1

β
≤ 1

φ
≤ 1

α
. This implies

1

βp
|Ci|µ(Ω) ≤

∫
Ω

(
1

φ

)p
|Ci|µ ≤ 1

αp
|Ci|µ(Ω). (7.21)

and
1

φ
∈

n⋂
i=0

Lp(|Ci|µ). Thus, the equivalence class is non-empty.

7.3 e-convergence

We consider a modification to the notion of e-convergence found in [AJVLS, Definition

3.13].

Definition 7.3.1. Let gn, g be measurable functions such that gn and g are positive

µ0 a.e. We say that a sequence gn is e-convergent to g in F if

lim
n→∞

∫
Ω

∣∣∣∣(gng
)
− 1

∣∣∣∣p |Ci|gµ0 = 0 ∀p ≥ 1, i = 0, 1, . . . , n (7.22)
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and

lim
n→∞

∫
Ω

∣∣∣∣( g

gn

)
− 1

∣∣∣∣p |Ci|gµ0 = 0 ∀p ≥ 1, i = 0, 1, . . . , n (7.23)

We denote e-convergence by gn
e−→ g.

Following [AJVLS, Proposition 3.7], e-convergence can be restated in several dif-

ferent ways (see Section 13.2 for proof). Note that we will only use (1) and (2) in the

below proposition. The proof given in the appendix reflects this.

Proposition 7.3.2. The following are equivalent:

1. The sequence gn is e-convergent to g.

2. For all p ≥ 1, we have

lim
n→∞

∫ ∣∣∣∣(gng
)p

− 1

∣∣∣∣ |Ci|gµ0 = lim
n→∞

∫ ∣∣∣∣( g

gn

)p
− 1

∣∣∣∣ |Ci|gµ0 = 0 (7.24)

for i = 0, 1, . . . , n.

3. The following conditions hold:

(a) gn converges to g in L1(|Ci|µ0), i = 0, 1, . . . , n.

(b) for all p ≥ 1, we have

lim sup
n→∞

∫ (
gn
g

)p
|Ci|gµ0 <∞

lim sup
n→∞

∫ (
g

gn

)p
|Ci|gµ0 <∞

(7.25)

i = 0, 1, . . . , n

Note the following relationship between the equivalence relation∼ and e-convergence.
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Proposition 7.3.3. Let fµ0 ∼ gµ0 and gn a sequence e-converging to g. Then, for

all p ≥ 1,

lim
n→∞

∫ ∣∣∣∣gng − 1

∣∣∣∣p |Ci|gµ0 = 0 ⇐⇒ lim
n→∞

∫ ∣∣∣∣gng − 1

∣∣∣∣p |Ci|fµ0 = 0 (7.26)

Proof. ⇒: Suppose

lim
n→∞

∫ ∣∣∣∣gng − 1

∣∣∣∣p |Ci|gµ0 = 0 (7.27)

for all p ≥ 1. Since fµ0 ∼ gµ0, there exists
1

φ
∈ Lq

′
(|Ci|gµ0), q

′ > 1 such that

1

φ
gµ0 = fµ0. Then, for all p ≥ 1,

lim
n→∞

∫ ∣∣∣∣gng − 1

∣∣∣∣p |Ci|fµ0

= lim
n→∞

∫ ∣∣∣∣gng − 1

∣∣∣∣p 1φ |Ci|gµ0

≤ lim
n→∞

(∫ (∣∣∣∣gng − 1

∣∣∣∣p)p′ |Ci|gµ0

)1/p′ (∫ (
1

φ

)q′
|Ci|gµ0

)1/q′

(7.28)

where the last line follows from Holder’s inequality. Note

∫ (
1

φ

)q′
|Ci|gµ0 <∞ since

1

φ
∈ Lq

′
(|Ci|gµ0). By hypothesis

lim
n→∞

∫ ∣∣∣∣gng − 1

∣∣∣∣p |Ci|gµ0 = 0 (7.29)

for all p ≥ 1, therefore,

lim
n→∞

∫ ∣∣∣∣gng − 1

∣∣∣∣p |Ci|fµ0 = 0 (7.30)

⇐: Now suppose

lim
n→∞

∫ ∣∣∣∣gng − 1

∣∣∣∣p |Ci|fµ0 = 0 (7.31)

for all p ≥ 1. Since fµ0 ∼ gµ0, there exists φ ∈ Lq
′
(|Ci|fµ0), q

′ > 1 such that
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φfµ0 = gµ0. Then, for all p ≥ 1,

lim
n→∞

∫ ∣∣∣∣gng − 1

∣∣∣∣p |Ci|gµ0

= lim
n→∞

∫ ∣∣∣∣gng − 1

∣∣∣∣p φ|Ci|fµ0

≤ lim
n→∞

(∫ (∣∣∣∣gng − 1

∣∣∣∣p)p′ |Ci|fµ0

)1/p′ (∫
(φ)q

′
|Ci|fµ0

)1/q′

(7.32)

where the last line follows from Holder’s inequality. Note

∫
(φ)q

′
|Ci|fµ0 < ∞ since

φ ∈ Lq
′
(|Ci|fµ0). By hypothesis

lim
n→∞

∫ ∣∣∣∣gng − 1

∣∣∣∣p |Ci|fµ0 = 0 (7.33)

for all p ≥ 1, therefore,

lim
n→∞

∫ ∣∣∣∣gng − 1

∣∣∣∣p |Ci|gµ0 = 0 (7.34)

Thus, so long as two measures are equivalent, e-convergence against one implies

convergence against the other. Last, note that the above holds for any two measures

in the equivalence class, not just the representative of the equivalence class (fµ0) and

the measure the sequence converges to (gµ0). In other words:

Corollary 7.3.4. Let [f ] be the equivalence class of the measure fµ0. Let gn be a

sequence converging to some g ∈ [f ]. Let f1, f2 ∈ [f ]. Then gn e-converges to g with

respect to f1 if and only if gn e-converges to g with respect to f2.

Note that there is a small difference between the e-convergence defined in [AJVLS]

and [PS]: in [PS], the definition of e-convergence is given as gn converging to g in µ0

measure and lim supEg
[(

gn
g

)p]
< ∞ and lim supEg

[(
g

gn

)p]
< ∞, for all p ≥ 1.

Note that this is similar to (3) in Proposition 7.3.2.
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It is of course not true that convergence in L1 is equivalent to convergence in

measure. However, if gn and g are restricted to probability density functions, it is

true that convergence in measure implies convergence in L1. This can be shown one

of two ways.

The first approach is to apply Scheffe’s Lemma (see [S]). The second approach

is to recall that if a sequence of functions fn converges pointwise µ-a.e. to f , and

if

∫
|fn|µ →

∫
|f |µ, then fn converges to f in L1, see [F, Chapter 6 Exercise 10].

Note that the second condition is always satisfied if fn and f are probability density

functions. Given convergence in measure, the first condition will be true up to sub-

sequence. It can then be argued by contradiction that the entire sequence converges

in L1 to f . Note that in both approaches it is necessary to know that the limiting

function f is a probability density function beforehand.

Since [AJVLS] is concerned with finite, not probability, densities it cannot be

said that convergence in measure implies convergence in L1. Therefore, while the

definition of e-convergence in [AJVLS] implies the e-convergence of [PS], the reverse

is not true. Since we are interested in finite densities our definition of e-convergence

follows [AJVLS].
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Chapter 8

Finite Measures

In this chapter we build the manifold structure of F . We first construct the model

space (8.3). After, proving a number of useful properties, we then show this model

space endows F with a C∞ manifold structure (Theorem 8.2.7). Note much of what

follows is adapted from [AJVLS, Section 3.3].

8.1 Preliminaries

Recall

F =

{
µ : µ� µ0,

dµ

dµ0

> 0

∣∣∣∣∫
Ω

Ciµ

∣∣∣∣ <∞ i = 0, . . . , n

}
. (8.1)

Note that the condition on C0 ensures that the density function itself is finite. We

first construct the set, Xµ that will be the model space for F .

Consider the following definitions (c.f [AJVLS, p. 176]).
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Definition 8.1.1. For µ ∈ F , let

B̂µ =
{
f : Ω → R : ef ∈ L1(|Ci|µ), i = 0, 1, . . . , n

}
,

Bµ = B̂µ ∩ (−B̂µ)

=
{
f : Ω → R : e±f ∈ L1(|Ci|µ), i = 0, 1, . . . , n

}
Lem 8.1.6
=

{
f : Ω → R : e|f | ∈ L1(|Ci|µ), i = 0, 1, . . . , n

}
B0
µ = {f ∈ Bµ : (1 + s)f ∈ Bµ for some s > 0} .

(8.2)

Finally, we define the proposed model space:

Xµ =
{
f : Ω → R : tf ∈ Bµ for some t 6= 0

}
. (8.3)

Remark 8.1.2. The description of the model space Xµ can be greatly simplified as a

result of Lemma 8.1.7. See (8.25).

Note the above spaces are constructed with respect to non-negative measures. As

noted in Equations 7.13 and 7.14, using |Ci|µ as our finite measure is equivalent to

taking Ciµ because of the integrability of Ci.

Lemma 8.1.3. B̂µ is a convex set.

Proof. Let f, g ∈ B̂µ so that

∫
ef |Ci|µ and

∫
eg|Ci|µ are finite for all i. By the

convexity of the exponential function we have∫
eλf+(1−λ)g|Ci|µ ≤ λ

∫
ef |Ci|µ+ (1− λ)

∫
eg|Ci|µ < +∞ (8.4)

for all i. We conclude B̂µ is a convex set.

Example 8.1.4. Let µ0 be the Lebesgue measure on R and Ω = [0, 1].

First, consider f(x) = ln (x). Note that∫
[0,1]

eln (x)dx =

∫
[0,1]

xdx < +∞ (8.5)
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but that ∫
[0,1]

e− ln (x)dx =

∫
[0,1]

1

x
dx = +∞. (8.6)

Thus, f ∈ B̂µ but f /∈ Bµ.

Similarly, consider f(x) = ln(x2/3). Then (1+1/2)f = ln(x), so that (1+1/2)f /∈

Bµ. However, (1 + 1/4)f = ln x5/6 so that∫
[0,1]

e(1+1/4)fdx =

∫
[0,1]

x5/6dx < +∞∫
[0,1]

e(1+1/4)fdx =

∫
[0,1]

1

x5/6
dx < +∞.

(8.7)

Then there exists s > 0 such that (1 + s)f ∈ Bµ. Thus, f ∈ B0
µ.

Lemma 8.1.5. Xµ is a linear space.

Proof. Let α, β ∈ R. Let f and g be such that∫
Ω

e|t1f ||Ci|µ < +∞∫
Ω

e|t2g||Ci|µ < +∞
(8.8)

for some t1, t2 6= 0 for i = 0, 1, . . . , n. By the triangle inequality and Holder’s∫
Ω

e|t(αf+βg|)|Ci|µ ≤
∫
Ω

e|tαf |e|tβg||Ci|µ

≤
(∫

Ω

e|2tαf ||Ci|µ
)1/2(∫

Ω

e|2tβg||Ci|µ
)1/2

.

(8.9)

Taking t = min

(
|t1|
2|α|

,
|t2|
2|β|

)
, each of the above integrals are finite. This follows from

e2αt|f | ≤ e|t1f | and e2β|tg| ≤ e|t2g|, in addition to the fact e|tx| is strictly increasing in t.

Thus, Xµ is a linear space.

Lemma 8.1.6.

{
f : Ω → R : e±f ∈ L1(|Ci|µ)

}
=
{
f : Ω → R : e|f | ∈ L1(|Ci|µ)

}
(8.10)

for i = 0, 1, . . . , n.
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Proof. First, assume e±f ∈ L1(|Ci|µ) for all i = 0, 1, . . . , n, then∫
f≥0

ef |Ci|µ+

∫
f<0

ef |Ci|µ <∞ (8.11)

and ∫
f≥0

e−f |Ci|µ+

∫
f<0

e−f |Ci|µ <∞. (8.12)

Therefore, ∫
Ω

e|f ||Ci|µ =

∫
f≥0

ef |Ci|µ+

∫
f<0

e−f |Ci|µ <∞. (8.13)

Next, assume

∫
e|f ||Ci|µ < +∞ for all i. Then∫
Ω

e|f ||Ci|µ =

∫
f≥0

ef |Ci|µ+

∫
f<0

e−f |Ci|µ <∞. (8.14)

Observe that ∫
f<0

ef |Ci|µ ≤
∫
f<0

|Ci|µ ≤
∫
Ω

|Ci|µ <∞, (8.15)

and that ∫
f≥0

e−f |Ci|µ ≤
∫
f≥0

|Ci|µ ≤
∫
Ω

|Ci|µ <∞. (8.16)

Therefore, both ∫
Ω

ef |Ci|µ =

∫
f≥0

ef |Ci|µ+

∫
f<0

ef |Ci|µ <∞ (8.17)

and ∫
Ω

e−f |Ci|µ =

∫
f≥0

e−f |Ci|µ+

∫
f<0

e−f |Ci|µ <∞. (8.18)

Note that in the definition of B0
µ, we could instead require that there exist s1, . . . , sn

all strictly positive, such that e±(1+si)f ∈ L1(|Ci|µ) for all i. In particular, we could

have taken

B0
µ =

{
f : Ω → R : e(1+si)|f | ∈ L1(|Ci|µ) for some si > 0, i = 0, . . . , n

}
(8.19)
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However, each |Ci|µ is a finite measure, so that f ∈ Lp(|Ci|µ) implies f ∈ Lq(|Ci|µ)

for all q ≤ p. Therefore, ef ∈ L1+si(|Ci|µ) implies ef ∈ L1+s(|Ci|µ) when s ≤ si and

we simplify the definition by taking s to be the minimum of si.

The following proposition gives the relationship between Orlicz spaces and the

model space, Xµ.

Lemma 8.1.7. Let µ be a finite measure on Ω. Then f ∈ Xµ if and only if

∫
Ω

(e|tf | − 1)|Ci|µ <∞ for i = 0, 1, . . . n. (8.20)

for some t > 0.

Proof. The forward direction follows from

f ∈ Xµ =⇒ tf ∈ Bµ for some t 6= 0

=⇒
∫
Ω

e|tf ||Ci|µ <∞
(8.21)

for all i = 0, 1, . . . , n. It follows

∫
Ω

(e|tf | − 1)|Ci|µ <∞ (8.22)

for all i = 0, 1, . . . , n. Thus, there exists t′ = |t| > 0 such that

∫ (
e|t

′f | − 1
)
|Ci|µ < +∞ (8.23)

for all i.

For the reverse direction, suppose

∫
Ω

(e|tf | − 1)|Ci|µ < ∞ for some t > 0 for all

i = 0, 1, . . . , n. It follows immediately that

∫
Ω

e|tf ||Ci|µ < ∞ for t > 0 for all i =

0, 1, . . . , n. Thus, tf ∈ Bµ and f ∈ Xµ.
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Lemma 8.1.7 shows that Xµ is the intersection of the Orlicz spaces, Le
|t|−1(|Ci|µ)

i = 0, 1, . . . , n, (see Definition 7.1.1) where

Le
|t|−1(|Ci|µ)

=

{
f : Ω → R :

∫
Ω

(e|tf | − 1)|Ci|µ < +∞ for some t > 0

}
,

(8.24)

i.e.

Xµ =
n⋂
i=0

Le
|t|−1(|Ci|µ). (8.25)

We will consider Xµ as an intersection of Banach spaces with the norm

‖f‖L(µ) = max
0≤i≤n

(
‖f‖

Le
|t|−1(|Ci|µ)

)
(8.26)

(see Proposition 13.6.1) where (as in Definition 7.1.1)

‖f‖
Le

|t|−1(|Ci|µ)
= inf

{
α > 0 :

∫
Ω

(e|f/α| − 1)|Ci|µ ≤ 1

}
. (8.27)

are the standard Orlicz norms.

Remark 8.1.8. We know Xµ is non-empty since it will contain functions of compact

support.

We now prove a number of useful properties regarding our proposed model space.

First, we show that for elements of the same equivalence class within F (see Definition

7.2.1), the model spaces are equivalent (i.e. equal as sets and with equivalent norms).

The following is modeled after [AJVLS, Proposition 3.11].

Proposition 8.1.9. Let µ′ . µ (see Definition 7.2.1). Then Xµ ⊂ Xµ′ is continu-

ously embedded with respect to the L norm (Equation 8.26) on these tangent spaces.

In particular, if µ′ ∼ µ, then Xµ = Xµ′ as Banach spaces (equal as sets and with

equivalent norms).
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Proof. Let µ′ . µ and u ∈ Xµ. Then

∫
Ω

(
et|u| − 1

)
|Ci|µ < ∞ for some t > 0 for all

i = 0, 1, . . . , n. Additionally, µ′ = φµ with φ ∈ Lp(|Ci|µ) for some p > 1 for all i. Let

q > 1 be such that
1

p
+

1

q
= 1. By Holder’s inequality∫ (

e|tu| − 1
)
|Ci|µ′ =

∫ (
e|tu| − 1

)
|Ci|φµ

≤ ‖φ‖Lp(|Ci|µ)
(∫ (

e|tu| − 1
)q |Ci|µ)1/q

.

(8.28)

Fix i. Define ψ(t) = ‖φ‖qLp(|Ci|µ)
(
e|t| − 1

)q
, noting that ψ is still a Young function

(see Definition 7.1.1) and that u ∈ Lψ(|Ci|µ). This follows from

lim
t→∞

ψ(t)

e|qt|−1
= ‖φ‖qLp(|Ci|µ) ∈ (0,∞) (8.29)

implying by Proposition 7.1.4 that Lψ(|Ci|µ) = Le
|qt|−1(|Ci|µ). However, [AJVLS,

Lemma 3.10] states that Young functions φ(t) and φ(λt) for λ > 0 have equiv-

alent Orlicz spaces. In particular, Le
|qt|−1(|Ci|µ) = Le

|t|−1(|Ci|µ) with equivalent

norm. Thus, u ∈ Le
|t|−1(|Ci|µ) implies u ∈ Lψ(|Ci|µ). Then (8.28) implies that

u ∈ Le
|t|−1(|Ci|µ′). This shows Le

|t|−1(|Ci|µ) ⊂ Le
|t|−1(|Ci|µ′). Since this holds for

any i,
n⋂
i=0

Le
|t|−1(|Ci|µ) ⊂

n⋂
i=0

Le
|t|−1(|Ci|µ′), or Xµ ⊂ Xµ′ .

We now show this inclusion is a continuous embedding. Set a := ‖u‖Lψ(|Ci|µ) and

let t =
1

a
, then

‖φ‖Lp(|Ci|µ)
(∫ (

e|tu| − 1
)q |Ci|µ)1/q

≤ 1 (8.30)

by the definition of the Orlicz norm for ψ (see Definition 7.1.1). Thus, by (8.28)∫ (
e|tu| − 1

)
|Ci|µ′ ≤ 1. (8.31)

implying ‖u‖Lψ(|Ci|µ) = a ≥ ‖u‖
Le

|t|−1(|Ci|µ′)
. Therefore, Lψ(|Ci|µ) ⊂ Le

|t|−1(|Ci|µ′)

is a continuous inclusion, i.e.

Lψ(|Ci|µ) ↪→ Le
|t|−1(|Ci|µ′). (8.32)
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Since Lψ(|Ci|µ) = Le
|qt|−1(|Ci|µ) = Le

|t|−1(|Ci|µ), we have

Le
|t|−1(|Ci|µ) ↪→ Le

|t|−1(|Ci|µ′). (8.33)

with ‖u‖
Le

|t|−1(|Ci|µ′)
≤ Ki ‖u‖Le|t|−1(|Ci|µ)

, for some Ki > 0. Therefore

‖u‖
Le

|t|−1(|Ci|µ′)
≤ Ki ‖u‖Le|t|−1(|Ci|µ)

≤ Kimax
i

(
‖u‖

Le
|t|−1(|Ci|µ)

)
= Ki ‖u‖L(µ)

(8.34)

Note that i was arbitrary. Thus the above holds for all i, implying

‖u‖L(µ′) ≤ K ‖u‖L(µ) , (8.35)

with K = maxiKi. We conclude Xµ ↪→ Xµ′ .

Remark 8.1.10. The above argument also shows Le
|t|−1(|Ci|µ) ↪→ Le

|t|−1(|Ci|µ′) for

individual i.

The following lemma (see [AJVLS, Page 177]) will be useful in Theorem 8.2.3.

Lemma 8.1.11. The set

B0
µ ⊂ Xµ (8.36)

contains the open unit ball in Xµ.

Proof. Let B denote the open unit ball in Xµ:

B =
{
f ∈ Xµ : ‖f‖L(µ) < 1

}
. (8.37)

Let f ∈ B. Then

max
0≤i≤n

(‖f‖
Le

|t|−1(|Ci|µ)
) < 1. (8.38)
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Set

ci := inf

{
β > 0 :

∫
Ω

(e|f/β| − 1)|Ci|µ < 1

}
. (8.39)

In particular, ci < 1 imply
1

ci
= 1 + si for some si > 0. Letting s = min

i
si, and

recalling f ∈ L1+si(|Ci|µ) implies f ∈ L1+s(|Ci|µ) since |Ci|µ are finite measures, we

conclude (1 + s)f ∈ Bµ. Therefore, f ∈ B0
µ. We conclude B ⊂ B0

µ.

8.2 Manifold Structure

We now build the manifold structure on F . Let µ ∈ F . Our model space is

Xµ =
n⋂
i=0

Le
|t|−1(|Ci|µ). (8.40)

with norm

‖x‖L(µ) = max
0≤i≤n

‖x‖
Le

|t|−1(|Ci|µ)
. (8.41)

The chart between F and its model space is defined now.

Definition 8.2.1. Define the map from F to Xµ which on the equivalence class of µ

(see Definition 7.2.1) is given by

logµ(µ
′) = logµ(φµ) = log(φ). (8.42)

where φ ∈
n⋂
i=0

Lp(|Ci|µ) for some p > 1.

Our chart between F and its model space Xµ will be:

Definition 8.2.2. Let µ ∈ F and let Kµ = [µ] be the equivalence class of µ. Then

the chart at µ is a map sµ : Kµ → Im(sµ) defined by

sµ(µ
′) = logµ(µ

′) = log φ. (8.43)
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Since the above mapping is defined via the natural log function it is one to one

on each equivalence class. This mapping is then a bijection. We first show that the

image of logµ(K)is in fact in Xµ and is an open set. We will then show that sµ and

its inverse are continuous and therefore sµ is a homeomorphism.

The following is based on [AJVLS, Theorem 3.4]:

Theorem 8.2.3. Let K ⊂ F be an equivalence class with respect to ∼. For a fixed

µ ∈ K, consider Xµ. Then:

1. logµ(K) ⊂ Xµ

2. logµ(K) is convex.

3. logµ(K) is open.

In particular, logµ(K) is convex implies, logµ(K) is connected.

Proof. Let f ∈ logµ(K), then f is the image of some µ′ ∈ K, with µ′ ∼ µ. By

definition (see Definition 7.2.1) µ′ ∼ µ implies

µ′ = φ1µ, φ1 ∈
n⋂
i=0

Lp1(|Ci|µ)

µ =
1

φ1

µ′,
1

φ1

∈
n⋂
i=0

Lp1(|Ci|µ′)

(8.44)

for some p1 > 1 (where we have set p1 to be the minimum of the two values that

appear in Definition 7.2.1) and f as the image of some µ′ implies

f = logµ(µ
′) = logµ(φ1µ) = log(φ1) =⇒ ef = φ1. (8.45)
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Then, for s1 > 0 such that p1 = 1 + s1,∫
e−s1f |Ci|µ =

∫
φ−s1
1 |Ci|µ

=

∫ (
1

φ1

)1+s1

φ1|Ci|µ

=

∫ (
1

φ1

)p1
|Ci|µ′ <∞, i = 0, 1, . . . , n

=⇒ −s1f ∈ B̂µ

(8.46)

and ∫
e(1+s1)f |Ci|µ =

∫
φ1+s1
1 |Ci|µ

=

∫
φp11 |Ci|µ <∞ i = 0, 1, . . . , n

=⇒ (1 + s1)f ∈ B̂µ.

(8.47)

where s1 > 0. Thus, s1f ∈ B̂µ by the convexity of B̂µ (Lemma 8.1.3). Together with

−s1f ∈ B̂µ shown above, we have s1f ∈ Bµ. Therefore, f ∈ Le
|t|−1(|Ci|µ) for all i.

We conclude f ∈ Xµ.

Next, we argue that logµ(K) is a convex set. Let f ∈ logµ(K). We first show

λf ∈ logµ(K) for all λ ∈ [0, 1]. Noting that

λf = log
(
φλ1
)

(8.48)

we must show µλ = φλ1µ is equivalent to µ, i.e. µλ ∼ µ. First, fix λ ∈ (0, 1) and note

by Holder’s inequality (with conjugates 1/λ and 1/(1− λ)) that

∫ (
φλ1
)p1 |Ci|µ ≤

[∫
φp11 |Ci|µ

]λ [∫
11/(1−λ)|Ci|µ

]1−λ
. (8.49)

That the above is finite follows from the fact φ1 ∈ Lp1(|Ci|µ) for all i and each |Ci|µ

is a finite measure. Thus, φλ1 ∈
n⋂
i=0

Lp1(|Ci|µ).
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Similarly, ∫ (
φ−λ
1

)p1 |Ci|φλ1µ =

∫
φ
−λ(p1−1)
1 |Ci|µ

≤
[∫

φ1−p1
1 |Ci|µ

]λ [∫
11/(1−λ)|Ci|µ

]1−λ
=

[∫
e−s1f |Ci|µ

]λ [∫
|Ci|µ

]1−λ (8.50)

is finite since −s1f ∈ B̂µ as shown above and the |Ci|µ are finite measures. We

conclude
1

φλ1
∈

n⋂
i=0

Lp1(|Ci|µλ).

For λ ∈ (0, 1) we conclude µλ ∼ µ. If λ = 0, then µλ = µ and µ ∼ µ by the

reflexivity of the equivalence relation. If λ = 1 then µλ = φµ = µ′ which is equivalent

to µ be hypothesis. We conclude that if f ∈ logµ(K) then λf ∈ logµ(K) for λ ∈ [0, 1].

Now we argue tf + (1− t)g ∈ logµ(K), where

µ′′ = φ2µ, φ2 ∈
n⋂
i=0

Lp2(|Ci|µ)

µ =
1

φ2

µ′,
1

φ2

∈
n⋂
i=0

Lp2(|Ci|µ′′)

(8.51)

for some p2 > 1, such that

g = logµ(µ
′′) = log(φ2). (8.52)

Note also that g ∈ logµ(K) implies −s2g ∈ B̂µ for some s2 > 0 such that p2 = 1+ s2.

Similar to above, observing

tf + (1− t)g = log φt1φ
1−t
2 , (8.53)

we must show µt := φt1φ
1−t
2 µ is equivalent to µ, i.e. µt ∼ µ. Let t ∈ (0, 1). First,

without loss of generality let p = min(p1, p2) = p1, and apply Holder’s inequality to

get ∫ (
φt1φ

1−t
2

)p |Ci|µ ≤
[∫

φp11 |Ci|µ
]t [∫

φp12 |Ci|µ
]1−t

. (8.54)

65



The right hand side is finite since φ1 ∈ Lp1(|Ciµ) for all i and φ2 ∈ Lp2(|Ci|µ).

Since |Ci|µ is a finite measure and p1 ≤ p2, φ2 ∈ Lp1(|Ci|µ). We conclude φt1φ
1−t
2 ∈

n⋂
i=1

Lp(|Ci|µ). For the other direction of the equivalence relation

∫ (
φ−t
1 φ

−(1−t)
2

)p
|Ci|φt1φ1−t

2 µ =

∫
φ
−t(p−1)
1 φ

−(1−t)(p−1)
2 |Ci|µ

≤
[∫

φ
−(p−1)
1 |Ci|µ

]t [∫
φ
−(p−1)
2 |Ci|µ

]1−t
.

(8.55)

Since p = min(p1, p2) = p1, −(p− 1) = −(p1 − 1) = −s1, we have

∫ (
φ−t
1 φ

−(1−t)
2

)p
|Ci|φt1φ1−t

2 µ ≤
[∫

e−s1f |Ci|µ
]t [∫

e−s1g|Ci|µ
]1−t

. (8.56)

The first term on the right hand side is finite since −s1f ∈ B̂µ. For the second term,

we know −s2g ∈ B̂µ. It remains to argue this implies −s1g ∈ B̂µ. Note that since

p1 ≤ p2, s1 ≤ s2. Observe

∫
e−s1g|Ci|µ =

∫
g≤0

e−s1g|Ci|µ+

∫
g>0

e−s1g|Ci|µ (8.57)

and note g ≤ 0 implies e−s1g ≥ 1 while g > 0 implies e−s1g < 1. Therefore

∫
e−s1g|Ci|µ ≤

∫
g≤0

e−s1g|Ci|µ+

∫
g>0

|Ci|µ. (8.58)

Finally, note that for g ≤ 0, 0 < s1 ≤ s2 implies e−s1g ≤ e−s2g so that

∫
e−s1g|Ci|µ ≤

∫
g≤0

e−s2g|Ci|µ+

∫
g>0

|Ci|µ. (8.59)

The first integral is finite since −s2g ∈ B̂µ and the second since |Ci|µ is a finite

measure. Therefore, −s1g ∈ B̂µ and

∫ (
φ−t
1 φ

−(1−t)
2

)p
|Ci|φt1φ1−t

2 µ <∞. (8.60)

66



We conclude φ−t
1 φ

−(1−t)
2 ∈ Lp(|Ci|µt). Thus, for t ∈ (0, 1) µt ∼ µ and tf + (1− t)g is

the image of an element of logµ(K). Note for the case t = 0 or t = 1, µt equals µ
′′

and µ′, respectively. We conclude logµ(K) is convex.

Last, we show logµ(K) is open. We first argue that for µ ∼ µ′, logµ′(K) is a shift

of logµ(K). Let g ∈ logµ(K) so that

g = logµ(µ
′) = logµ(φµ) = log φ (8.61)

with µ′ ∼ µ. This implies eg = φ, or µ′ = egµ. Thus, g ∈ logµ(K) implies µ′ = egµ ∈

K and µ′ = egµ ∈ K implies logµ(e
gµ) = g. In particular, g ∈ logµ(K) if and only if

µ′ = egµ ∈ K. Similarly, f ∈ logµ′(K) if and only if µ = efµ′ ∈ K. Combining these

gives the following chain or equivalences:

f ∈ logµ′(K) ⇐⇒ efµ′ ∈ K

⇐⇒ ef+gµ ∈ K

⇐⇒ f + g ∈ logµ(K).

(8.62)

Therefore, f ∈ logµ′(K) if and only if f+g ∈ logµ(K). However, f ∈ logµ′(K) implies

f + g ∈ logµ(K) results in logµ′(K) ⊂ g + logµ(K). Alternatively, f + g ∈ logµ(K)

implies f ∈ logµ′(K) results in g + logµ(K) ⊂ logµ′(K). Thus, for some fixed g ∈

logµ(K), logµ′(K) = g + logµ(K).

Since logµ′(K) is a shift of logµ(K) by some fixed g ∈ logµ(K), it suffices to show

that 0 is an interior point of logµ′(K) for any µ′ ∈ K. Then for any point f ∈ logµ(K)

we shift f to 0 and a neighborhood of 0 will be contained in logµ′(K). Shifting back

will give a neighborhood of f contained in logµ(K), i.e. any point of logµ(K) is

contained in an open set in logµ(K). Note by Lemma 8.1.11 that B0
µ′ contains the

unit ball in the Xµ′ norm. Thus, 0 and a neighborhood of 0 are contained in B0
µ′ .
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Thus, if B0
µ′ ⊂ logµ′(K), logµ′(K) contains a neighborhood of 0, i.e. 0 is an interior

point of logµ′(K). We argue B0
µ′ ⊂ logµ′(K).

Let f ∈ B0
µ′ so that

(1 + s′)f ∈ Bµ′ for some s′ > 0 (8.63)

by definition, implying

e±(1+s′)f ∈ L1(|Ci|µ′) i = 0, 1, . . . , n. (8.64)

In particular

ef ∈ L1+s′(|Ci|µ′), i = 0, 1, . . . , n. (8.65)

Similarly, ∫
e−(1+s′)f |Ci|µ′ <∞ i = 0, 1, . . . , n

=⇒
∫
e−(2+s′)fef |Ci|µ′ <∞ i = 0, 1, . . . , n

=⇒
∫ (

e−f
)2+s′

ef |Ci|µ′ <∞ i = 0, 1, . . . , n

(8.66)

giving

e−f ∈ L2+s′(|Ci|efµ′) i = 0, 1, . . . , n. (8.67)

By 8.65 and 8.67, efµ′ ∼ µ′. Therefore µ′ ∼ µ implies efµ′ ∈ K and so f ∈

logµ′(K).

Next, we define the inverse of sµ:

Definition 8.2.4. Let µ ∈ F . Then the mapping s−1
µ : Im(sµ) → Kµ defined by

s−1
µ (u) = euµ (8.68)

is the inverse of Definition 8.2.2 (see Lemma 8.2.5).
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Lemma 8.2.5. Let µ ∈ F . Then the inverse of sµ in Definition 8.2.2 is s−1
µ :

Im(sµ) → Kµ defined by

s−1
µ (u) = euµ. (8.69)

Proof. First, we note euµ is well defined since

u = log φ (8.70)

for some φ ∈
n⋂
i=0

Lp(|Ci|µ) with
1

φ
∈
⋂n
i=0 L

p(|Ci|µ′), p > 1, for µ′ = φµ. Then

φ = eu (8.71)

and φ ∈ Lp(µ) implies eu ∈ Lp(µ). Therefore, eu is finite almost everywhere.

Next, µ, µ′ ∈ Kµ so that µ′ = φµ, φ ∈
⋂n
i=0 L

p(|Ci|µ), p > 1. Then

s−1
µ (sµ(µ

′)) = elogµ(ϕµ) = elog ϕ = φ. (8.72)

Last,

sµ(s
−1
µ (u)) = logµ(e

uµ) = log(eu) = u. (8.73)

We conclude s−1
µ is the inverse of sµ.

Last, we prove the chart in Definition 8.2.1 and its inverse in Definition 8.2.4 are

continuous (c.f [AJVLS, Proposition 3.13]).

Proposition 8.2.6. The sequence gn e-converges to g0 (gn
e−→ g0) if and only if

gnµ0 ∼ g0µ0 for n large enough and un → u0 in the L(g0µ0) norm as n → ∞ (see

8.41).

Proof. ⇒: Let gn
e−→ g0. Then∫ ∣∣∣∣(gng0

)
− 1

∣∣∣∣p |Ci|g0µ0 → 0 ∀p ≥ 1, i = 0, 1, . . . , n (8.74)
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and ∫ ∣∣∣∣(g0gn
)
− 1

∣∣∣∣p |Ci|g0µ0 → 0 ∀p ≥ 1, i = 0, 1, . . . , n. (8.75)

Then by reverse triangle inequality, for large n,

(
gn
g0

)
,

(
g0
gn

)
∈ Lp(|Ci|g0µ0) for all

p ≥ 1 and for all i. In particular, this implies φ =
gn
g0

∈ Lp(|Ci|g0µ0) for all i.

Therefore, gnµ0 . g0µ0.

The other direction of the equivalence relation follows from (8.75):∫ (
g0
gn

)p
|Ci|g0µ0 <∞ i = 0, . . . , n

=⇒
∫ (

g0
gn

)p+1

|Ci|gnµ0 <∞ i = 0, . . . , n

(8.76)

implying φ′ =
g0
gn

∈ Lp+1(|Ci|gnµ0) for all i. Thus, g0µ0 . gnµ0 and we conclude

g0µ0 ∼ gnµ0 for n large enough.

Let un = log gn ∈ Xgnµ0 . Then g0µ0 . gnµ0 implies Xgnµ0 ⊂ Xg0µ0 for large enough

n (see Proposition 8.1.9). Thus, un ∈ Xg0µ0 for n large enough. It remains to show

un → u0.

Since, gn
e−→ g0 implies e-convergence against all |Ci|g0, by Proposition 7.3.2 we

have

lim
n→∞

∫ ∣∣∣∣(gng0
)p

− 1

∣∣∣∣ |Ci|g0µ0 = 0 (8.77)

and

lim
n→∞

∫ ∣∣∣∣(g0gn
)p

− 1

∣∣∣∣ |Ci|g0µ0 = 0 (8.78)

for all p ≥ 1 and i = 0, 1, . . . , n. Therefore,

0 = lim
n→∞

∫ [∣∣∣∣(gng0
)p

− 1

∣∣∣∣+ ∣∣∣∣(g0gn
)p

− 1

∣∣∣∣] |Ci|g0µ0

= lim
n→∞

∫ [∣∣ep(un−u0) − 1
∣∣+ ∣∣ep(u0−un) − 1

∣∣] |Ci|g0µ0

= lim
n→∞

∫
2 sinh (p|un − u0|) |Ci|g0µ0 ∀p ≥ 1 and i = 1, . . . , n.

(8.79)
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This also holds for p ∈ [0, 1) since sinh(|t|) is an increasing function for t ≥ 0.

Proposition 7.1.3 implies un → u0 in L2 sinh |t|(|Ci|g0µ0) for all i, and

lim
t→∞

2 sinh |t|
e|t| − 1

= 1 ∈ (0,∞) (8.80)

implies L2 sinh |t|(|Ci|g0µ0) = Le
|t|−1(|Ci|g0µ0), by Proposition 7.1.4. Thus we have

un → u0 in Le
|t|−1(|Ci|g0µ0) for all i.

Therefore, un → u0 in Xg0µ0 .

⇐: Now suppose that gnµ0 ∼ g0µ0 for n large enough and un → u0 in Xg0µ0 . We

want to show gn
e−→ g0. Since un → u0 in Xg0µ0 we have un → u0 in the Orlicz space

Le
|t|−1(g0|Ci|µ0) which is equivalent to L2 sinh |t|(g0|Ci|µ0), implying

0 = lim
n→∞

∫
2 sinh (p|un − u0|) |Ci|g0µ0 ∀p ≥ 1, i = 0, 1, . . . , n

= lim
n→∞

∫ [∣∣ep(un−u0) − 1
∣∣+ ∣∣ep(u0−un) − 1

∣∣] |Ci|g0µ0

. = lim
n→∞

∫ [∣∣∣∣(gng0
)p

− 1

∣∣∣∣+ ∣∣∣∣(g0gn
)p

− 1

∣∣∣∣] |Ci|g0µ0,

(8.81)

giving gn
e−→ g0 by Proposition 7.3.2.

We conclude sµ is a homeomorphism. Moreover, by Theorem 8.2.3 we know the

image of Kµ is connected. Since Kµ and its image are homeomorphic, Kµ is also con-

nected. Thus the equivalence relation on F partitions F into connected components,

each of which is homeomorphic to an intersection of Orlicz spaces. It remains to show

that the collection (sµ, Kµ) forms an atlas on F .

Theorem 8.2.7. The collection (Kµ, sµ) is an atlas on F (see [AMR], Definition

3.1.1, Page 123).

Proof. Note that since the transition map is a composition of homeomorphisms, it

remains only to show that it is C∞. Let Kµ, Kµ′ be subsets of F such that Kµ∩Kµ′ 6=
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∅. SinceKµ andKµ′ are equivalence relations, this implies K̃ := Kµ∩Kµ′ = Kµ′ = Kµ

and µ′ ∼ µ where µ′ = φµ, with φ ∈ Lp(µ) and
1

φ
∈ Lp(µ′) for some p > 1. Let

u ∈ sµ′(K̃) = sµ′(Kµ). Then the transition map

sµ ◦ s−1
µ′ : sµ′(K̃) → sµ(K̃) (8.82)

is given by

sµ(s
−1
µ′ (u)) = logµ (e

uµ′)

= logµ (e
uφµ)

= log (euφ)

= u+ log φ

(8.83)

We argue the transition mapping is a C∞ diffeomorphism. For ease of notation, define

I[u] = u+ log φ. (8.84)

Let v ∈ sµ′(K̃) ⊂ Xµ′ then

duI[v] =
d

dt

∣∣∣∣
t=0

((u+ tv) + log φ)

= v

(8.85)

is the Gateaux derivative in the direction of v. Note that

lim
∥v∥L(µ′)→0

‖I[u+ v]− (I[u]− duI[v])‖L(µ)
‖v‖L(µ′)

= lim
∥v∥L(µ′)→0

0

‖v‖L(µ′)
= 0.

(8.86)

Thus the mapping u → duI = v is the derivative of I by uniqueness. Note that

derivative is continuous: let un → u in sµ′(K̃). Then∣∣∣∣∣ sup
∥x∥L(µ′)=1

dunI[x]− duI[x]

∣∣∣∣∣ =
∣∣∣∣∣ sup
∥x∥L(µ′)=1

v − v

∣∣∣∣∣
= 0.

(8.87)
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Therefore, I is C1. Next, we take the second order directional (Gateaux) derivative

in the direction of v:

d2uI(v, v) =
d2

dt2

∣∣∣∣
t=0

((u+ tv) + log φ)

=
d

dt

∣∣∣∣
t=0

v

= 0.

(8.88)

Note that

lim
∥w∥L(µ′)→0

‖du+wI[v]− (duI[v]− d2uI(v, v))‖L(µ)
‖w‖L(µ′)

= lim
∥w∥L(µ′)→0

‖du+wI[v]− duI[v]‖L(µ)
‖w‖L(µ′)

= 0

(8.89)

Thus, I is twice differentiable. Clearly, I will also be C2. Since the second derivative

is 0, all higher order derivatives will also be 0 and continuous. We conclude I is C∞

and that the collection (Kµ, sµ) is an atlas on F .

We have now shown F is endowed with a Banach manifold structure with Xµ

serving as the model space. Before applying this manifold structure to the problem

of deriving the Gibbs distribution (Chapter 9), we detail the connection between the

model space Xµ and the tangent space of F at µ: TµF . Recall the tangent space to a

point µ on a manifold is the set of equivalence classes [γ]µ of curves at µ, where two

curves are equivalent if they have the same tangent vector, with the same tangent

vector (see [AMR, Definition 3.4.3]):

Tµ(F) = {[γ]µ : γ is a curve at µ} . (8.90)

Alternatively, we can represent each equivalence class [γ] by the tangent vector u ∈ Xµ

common to all curves in that class.
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For the model space, let c be a curve through some u ∈ sµ(K). It can be shown

(see [AMR, Lemma 3.4.4]) that for each equivalence class of curves through u, there

is a unique e ∈ Xµ such that the curve cu,e(t) = u+ te is tangent to c: [c]u = [cu,e]u.

Then ([AMR, Lemma 3.4.4]) i : sµ(K)×Xµ → T (sµ(K)) defined by i(u, e) = [cu,e]u

is an isomorphism. Thus, the tangent space TµF can be identified with the fibres of

the bundle isomorphism corresponding to sµ: {u} ×Xµ ' TµF .

Further, in Chapter 9 we need to show functions defined on F are C1. Showing a

mapping between manifolds is C1 requires we show the local representation of that

map is C1 (see [AMR, Definition 3.2.5]). In our case for a map f : F → R, we need

to show f ◦ s−1
µ is C1 as a mapping from Xµ into R. Our strategy below will be

to calculate the directional derivative at some point u0 ∈ Xµ in the direction of u:

d

dt

∣∣∣∣
t=0

(f ◦s−1
µ )(u0+tu) and then show this directional derivative is in fact the standard

(Frechet) derivative, i.e. the bounded linear functional that best approximates the

mapping ([AMR, Definition 2.3.3]).
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Chapter 9

Lagrange Multipliers, Equilibrium
Case

In the following chapter we apply the manifold structure built in Chapter 8 to solve

the Lagrange multiplier problem outlined in Chapter 7. To do so, we apply Theorem

9.1.4 from [AMR]. In Sections 9.2, 9.3 and 9.4 we prove the necessary properties to

apply Theorem 9.1.4. This allows us to conclude the Gibbs distribution is a minimum

of information entropy in Theorem 9.4.5 and Corollary 9.4.6.

9.1 Preliminaries

The definitions and theorems in this section can be found in [AMR], see also Section

13.3. Let L(E,F ) denote the set of bounded linear functions from E to F . Consider

the Boltzmann-Gibbs entropy functional

H : F → R ∪ {+∞} (9.1)

defined by

H(µ) = H(pµ0) =

∫
Ω

p log pµ0. (9.2)

Let G : F → Rn, where G(µ) = (G0(µ), . . . , Gn(µ)), with

Gi(µ) =

∫
Ω

Ciµ. (9.3)
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Ci is a measurable function mapping from Ω into R. Our goal is to find µ ∈ F that

minimizes E(µ) subject to the constraints Gi(µ) = Ki, where Ki is a fixed constant.

This requires the following definitions (see [AMR] 2.1.14 and 3.5.3).

Definition 9.1.1. The closed subspace F of the Banach space E is said to be split

(or complemented) if there is a closed subspace H ⊂ E such that E = F
⊕

H, where

F
⊕

H denotes the direct sum of F and H.

Definition 9.1.2. Suppose M and N are manifolds with f : M → N of class Cr,

r ≥ 1. A point n ∈ N is called a regular value of f if Tmf is surjective with split

kernel for each m ∈ f−1({n}).

Definition 9.1.3. If, for each m in a set S, Tmf is surjective with split kernel, we

say f is a submersion on S.

Our goal is to apply the following theorem (see [AMR] 3.5.24 for a similar propo-

sition). The proof is given in the appendix (Section 13.5).

Theorem 9.1.4. Let g : M → P be a C1 submersion, N = g−1(p0) and let f :

M → R be C1. A point n ∈ N is a critical point of f
∣∣
N

if and only if there exists

λ ∈ (Tp0P )
∗, called a Lagrange Multiplier, such that Tnf = λ ◦ Tng.

Therefore, the above Lagrange multiplier problem requires the following:

1. H must be a differentiable mapping.

2. G must be C1

3. G must be a submersion.

We prove the above conditions are satisfied on partitions of F . Thus, for all p and

q below, we have pµ0 ∼ qµ0. Throughout this section, let µ := pµ0.
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9.2 Differentiability of H

We first look at H(µ). Recall

H(pµ0) =

∫
Ω

log ppµ0. (9.4)

Our strategy is to show H(µ) is C1 Gateaux (see Definition 13.3.4) and then apply

the following (see [AMR, Proposition 2.4.10]):

Proposition 9.2.1. If f : U ⊂ E → F is C1-Gateaux, then it is C1 and the two

derivatives coincide.

Before showing H is C1, note that it is not necessarily true that H is finite for all

measures in F . Recall that F is partitioned into connected components by the equiv-

alence relation (see Definition 7.2.1). It can be shown that, under certain conditions,

if H is finite for one element of an equivalence class, then it is finite for all elements

of the equivalence class.(c.f. [P, p. 4055]).

Lemma 9.2.2. Let µ, µ′ ∈ F be equivalent (see Definition 7.2.1). Let µ := pµ0 and

µ′ := qµ0. Then log p ∈ Le
|t|−1(µ) if and only if log q ∈ Le

|t|−1(µ).

Proof. Starting from µ′ = φµ, with φ =
q

p
(see Remark 7.2.3). We know log φ ∈ Xµ

by Theorem 8.2.3. In particular,

∥∥∥∥log qp
∥∥∥∥
Le

|t|−1(µ)

< +∞. (9.5)

Thus, if ‖log p‖
Le

|t|−1(µ)
< +∞

∥∥∥∥log qp
∥∥∥∥
Le

|t|−1(µ)

+ ‖log p‖
Le

|t|−1(µ)
< +∞. (9.6)
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This implies ∥∥∥∥log qp + log p

∥∥∥∥
Le

|t|−1(µ)

< +∞ (9.7)

by the triangle inequality. Therefore,

‖log q‖
Le

|t|−1(µ)
< +∞. (9.8)

For the other direction, µ =
1

φ
µ′ with

1

φ
=
p

q
(see Remark 7.2.3). We know log

1

φ
∈

Xµ′ and ∥∥∥∥log pq
∥∥∥∥
Le

|t|−1(µ′)

< +∞. (9.9)

Additionally, µ ∼ µ′ implies Le
|t|−1(µ) = Le

|t|−1(µ′) with equivalent norms. Therefore

∥∥∥∥log pq
∥∥∥∥
Le

|t|−1(µ)

< +∞. (9.10)

Thus, if ‖log q‖
Le

|t|−1(µ)
< +∞

∥∥∥∥log pq
∥∥∥∥
Le

|t|−1(µ)

+ ‖log q‖
Le

|t|−1(µ)
< +∞. (9.11)

This implies ∥∥∥∥log pq + log q

∥∥∥∥
Le

|t|−1(µ)

< +∞. (9.12)

Therefore,

‖log p‖
Le

|t|−1(µ)
< +∞. (9.13)

Lemma 9.2.3. Let µ := pµ0 ∈ F such that log p ∈ Le
|t|−1(µ). Then H(pµ0) is finite

and H(qµ0) is finite for all qµ0 ∼ pµ0.

Proof. If log p ∈ Le
|t|−1(µ), then log p ∈ L1(µ) by the continuous embedding of

Le
|t|−1(µ) into all Lp spaces (see Proposition 7.1.5). Thus H(pµ0) =

∫
p log pµ0 <∞.
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Similarly, log p ∈ Le
|t|−1(µ) and Lemma 9.2.2 imply log q ∈ Le

|t|−1(µ). Addition-

ally, qµ0 ∼ pµ0 implies Le
|t|−1(pµ0) = Le

|t|−1(qµ0) (see Remark 8.1.10) so that

log q ∈ Le
|t|−1(qµ0). The above embedding argument then allows use to conclude

H(qµ0) <∞.

We will solve the Lagrange multiplier problem only on those connected components

where H is finite.

Notation: Below we use non-standard notation to denote the derivatives of the

local representation of H (and later G). When writing the derivative of H ◦ s−1
µ at

u0, it would be standard to express this quantity as du0H. However, we express this

quantity as dµH, where µ is the element of F mapped to u0 ∈ Xµ by an arbitrary

chart sµ′ : sµ′(µ) = u0.

Remark 9.2.4. When calculating the derivative of the local representations at some

u0 ∈ Xµ in Propositions 9.2.5, 9.2.6, 9.3.1 and 9.3.2 (as well as the corresponding

propositions in Chapter 12), we show they are C1 with respect to an arbitrary chart

sµ′. Then s−1
µ′ (u0) = µ. Since the manifold is C∞ it would also have been sufficient

(and easier) to show the local representations are C1 with respect to the ”natural”

chart, i.e. the chart that maps to u0 to 0:s−1
µ (0) = µ.

Proposition 9.2.5. Let µ = pµ0 ∈ F . Then H is Gateaux differentiable on the

components of F satisfying log p ∈ Le
|t|−1(pµ0). Furthermore, dµH is a bounded

linear functional.

Proof. First, we find the Gateaux derivative of H. We must show H is a bounded

linear functional from Xµ to R with respect to any chart.
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Let sµ′ , µ
′ ∼ µ, be a chart such that sµ′−1(u0) = µ for some u0 ∈ Xµ′ . Then

dµH(u) =
d

dt

∣∣∣∣
t=0

H ◦ s−1
µ′ (u0 + tu)

=
d

dt

∣∣∣∣
t=0

∫
eu0+tuq log eu0+tuqµ0

=
d

dt

∣∣∣∣
t=0

∫
eu0+tuq [u0 + tu+ log q]µ0

=

∫
ueu0q [u0 + log q] + eu0q [u]µ0.

(9.14)

Using pµ0 = eu0qµ0 and µ = pµ0, the above becomes

dµH(u) =

∫
(u [u0 + log q] p+ up)µ0

=

∫
(u0 + log q + 1)uµ

(9.15)

Equivalently,

dµH(u) =

∫
u0uµ+

∫
log q uµ+

∫
uµ. (9.16)

We now show dµH is a bounded linear functional. First,

|dµH(u)| ≤
∫

|u0u|µ+

∫
| log q u|µ+

∫
|u|µ. (9.17)

We look at each of these terms individually. For the first term, Holder’s inequality(
1

r
+

1

s
= 1

)
implies ∫

|u0u|µ ≤ ‖u0‖Lr(µ) ‖u‖Ls(µ) . (9.18)

Since u0 ∈ Xµ′ , Proposition 8.1.9 implies u0 ∈ Xµ. Proposition 7.1.5 then implies that

‖u0‖Lr(µ) = K <∞ and that there exists K ′ > 0 such that ‖u‖Ls(µ) < K ′ ‖u‖
Le

|t|−1(µ)
.

Last, recall

‖u‖
Le

|t|−1(µ)
≤ max

0≤i≤n
‖u‖

Le
|t|−1(|Ci|µ)

= ‖u‖L(µ) . (9.19)

Therefore, ∫
|u0u|qµ0 ≤ K K ′ ‖u‖L(µ) = K1 ‖u‖L(µ) . (9.20)
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The second term of (9.17) can be bounded using the same arguments:

∫
| log q u|µ ≤ ‖log q‖Lr(µ) ‖u‖Ls(µ) (9.21)

Keep in mind we have restricted ourselves to components of F where log p ∈ Le
|t|−1(pµ0).

Then Proposition 7.1.5 implies log p ∈ Lr(µ) and there exists K ′ > 0 such that

‖u‖Ls(µ) ≤ K ′ ‖u‖
Le

|t|−1(µ)
. Therefore

∫
| log q u|µ ≤ ‖log q‖Lr(µ)K

′ ‖u‖
Le

|t|−1(µ)

= K2 ‖u‖Le|t|−1(µ)

≤ K2 ‖u‖L(µ) .

(9.22)

For the third term: ∫
|u|µ ≤ K3 ‖u‖Le|t|−1(µ)

= K3 ‖u‖L(µ)

(9.23)

where we have again used Proposition 7.1.5.

Thus, dµH is a bounded linear functional at each µ in the direction of u. We con-

clude that H is Gateaux differentiable on those partitions where log p ∈ Le
|t|−1(pµ0).

Next, we prove that the Gateaux derivatives are continuous.

Proposition 9.2.6. Let µ = pµ0 ∈ F . The mapping µ → dµH is continuous on

the components of F where log p ∈ Le
|t|−1(pµ0). In particular, H is C1 with Frechet

derivative

dµH[u] =

∫
(u0 + log q + 1)uµ (9.24)

where µ′ = qµ0 is equivalent to µ and u0 ∈ Xµ′ such that s−1
µ′ (u0) = µ.
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Proof. We want to show∣∣∣sup{dµnH[x]− dµH[x] : ‖x‖L(µ) = 1
}∣∣∣→ 0 (9.25)

as µn → µ. Let µ′ ∈ Kµ and sµ′ be an arbitrary chart as in the proof of Proposition

9.2.5. Since µn → µ, we know by Proposition 8.2.6 that µn := pnµ0 ∈ Kµ (i.e.

pnµ0 ∼ pµ0) for n large enough. Then there exists un ∈ Xµ′ such that s−1
µ′ (un) = µn

and Proposition 8.2.6 implies that un → u0 in Xµ′ . Then we must show∣∣∣∣∣ sup
∥x∥L(µ)=1

{∫
(un + log q + 1)xµn −

∫
(u0 + log q + 1)xµ

}∣∣∣∣∣→ 0 (9.26)

as n→ ∞. Equivalently, we look at the difference∫
unxµn −

∫
u0xµ︸ ︷︷ ︸

(1)

+

∫
log q xµn −

∫
log q xµ︸ ︷︷ ︸

(2)

+

∫
xµn −

∫
xµ︸ ︷︷ ︸

(3)

(9.27)

and show that each of the three groupings go to 0 as n goes to infinity.

Consider grouping (1): ∫
unxµn −

∫
u0xµ. (9.28)

Adding and subtracting

∫
unxµ gives∣∣∣∣∫ unxµn −

∫
u0xµ

∣∣∣∣ = ∣∣∣∣∫ unx(µn − µ) +

∫
(un − u0)xµ

∣∣∣∣
≤
∫

|un| · |x|
∣∣∣∣pnp − 1

∣∣∣∣ pµ0 +

∫
|un − u0| · |x|µ.

(9.29)

Applying Holder’s inequality (twice for the first integral a, b and c, d are conjugates)∣∣∣∣ ∫ unxµn −
∫
u0xµ

∣∣∣∣
≤
(∫

|un|acpµ0

)1/ac

︸ ︷︷ ︸
1.)

(∫
|x|adpµ0

)1/ad

︸ ︷︷ ︸
2.)

(∫ ∣∣∣∣pnp − 1

∣∣∣∣b pµ0

)1/b

︸ ︷︷ ︸
3.)

+

(∫
|x|aµ

)1/a

︸ ︷︷ ︸
4.)

(∫
|un − u|bµ

)1/b

︸ ︷︷ ︸
5.)

.

(9.30)
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Now

1. un ∈ Le
|t|−1(qµ0), qµ0 ∼ pµ0 implies un ∈ Le

|t|−1(pµ0) (Proposition 8.1.9).

Hence un ∈ Lac(qµ0) (by Proposition 7.1.5) and 1.) is finite.

2. x ∈ Le
|t|−1(pµ0), hence x ∈ Lad(pµ0) and 2.) is finite.

3. pn e-converges to p. Thus, 3.) goes to 0.

4. x ∈ Le
|t|−1(pµ0). Hence x ∈ La(µ) (by Proposition 7.1.5) and 4.) is finite.

5. pn e-converges to p implies un → u in Le
|t|−1(pµ0) (see Proposition 8.2.6). Thus,

un → u in Lb(qµ0) (by Proposition 7.1.5). Thus, 5.) goes to 0.

Thus, the first grouping of terms in the difference dµnH[x]− dµH[x] goes to 0.

Next, we consider grouping (2):

∫
log q xµn −

∫
log q xµ. (9.31)

We have ∣∣∣∣∫ log q xµn −
∫

log q xµ

∣∣∣∣ = ∣∣∣∣∫ log q x(pnµ0 − pµ0)

∣∣∣∣
≤
∫

| log q| |x|
∣∣∣∣pnp − 1

∣∣∣∣ pµ0.

(9.32)

Applying Holder’s inequality twice (a, b and c, d are conjugate) the above is bounded

by (∫
| log q|acpµ0

)1/ac(∫
|x|adpµ0

)1/ad
(∫ ∣∣∣∣pnp − 1

∣∣∣∣b pµ0

)1/b

(9.33)

Recall that we are restricted to components of F where log p ∈ Le
|t|−1(pµ0), then by

Proposition 7.1.5 log p ∈ Lac(pµ0). Similarly, x ∈ Le
|t|−1(pµ0) implies

∫
|x|adpµ0 <

∞. Last

∫ ∣∣∣∣pnp − 1

∣∣∣∣b pµ0 → 0 by the e-convergence of µn to µ.
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Last, for grouping (3): ∫
xµn −

∫
xµ (9.34)

we have

∣∣∣∣∫ xµn −
∫
xµ

∣∣∣∣ = ∣∣∣∣∫ x

(
pn
p

− 1

)
pµ0

∣∣∣∣ ≤
∫

|x|
∣∣∣∣pnp − 1

∣∣∣∣ pµ0. (9.35)

Apply Holder’s inequality to get

∣∣∣∣∫ xµn −
∫
xµ

∣∣∣∣ ≤ (∫ |x|apµ0

)1/a
(∫ ∣∣∣∣pnp − 1

∣∣∣∣b pµ0

)1/b

. (9.36)

Since x ∈ Le
|t|−1(pµ0),

∫
|x|adpµ0 <∞ by Proposition 7.1.5. Additionally,∫ ∣∣∣∣pnp − 1

∣∣∣∣b pµ0 → 0 by the e-convergence of µn to µ.

We conclude

∣∣∣sup{dµnH[x]− dµH[x] : ‖x‖L(µ) = 1
}∣∣∣→ 0 (9.37)

and that µ→ dµH is a continuous mapping.

We have shown H is C1 with respect to any arbitrary chart. When solving the

Lagrange multiplier problem it will be helpful to use the chart sµ(u) = euµ that maps

µ to 0 in the model space. Since we have shown H is C1 we can calculate its derivative

with respect to any chart. This leads to the following corollary.

Corollary 9.2.7. Let µ = pµ0 ∈ F . The tangent dµH of H, on those components

on F where log p ∈ Le
|t|−1(µ), is given by

dµH[u] =

∫
(log p+ 1)uµ (9.38)
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Proof. Since we have shown H is C1 we can calculate its derivative with respect to

any chart. Consider the chart sµ(u) = euµ so that µ corresponds to u0 = 0. Then

dµH(u) =
d

dt

∣∣∣∣
t=0

H ◦ sµ(0 + tu)

=
d

dt

∣∣∣∣
t=0

∫
etup log etupµ0

=
d

dt

∣∣∣∣
t=0

∫
etup [tu+ log p]µ0

=

∫
u p [log p] + p [u]µ0

(9.39)

Recalling µ = pµ0, the above becomes

dµH(u) =

∫
[log p+ 1]u µ (9.40)

9.3 G is C1 Mapping

Next, we show that G is C1. We start by proving each component Gi : F → R is C1.

Recall µ := pµ0. Again we argue Gi is C
1 Gateaux and apply Proposition 9.2.1.

Proposition 9.3.1. Let µ = pµ0 ∈ F . Then Gi is Gateaux differentiable and the

Gateaux derivative is a bounded linear functional.

Proof. As in the proof of Proposition 9.2.5, let sµ′ , µ
′ ∼ µ, be a chart such that

s−1
µ′ (u0) = µ for some u0 ∈ Xµ′ , with µ

′ = qµ0.

Then

dµGi(u) =
d

dε

∣∣∣∣
ϵ=0

∫
Cie

u0+ϵuqµ0

=

∫
Ci ue

u0qµ0

=

∫
Ci uµ

(9.41)
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It remains to show dµGi[u] is a bounded linear functional. Note

|dµGi[u]| ≤
∫

|u| |Ci|µ. (9.42)

In particular u ∈ Le
|t|−1(|Ci|µ). Then by Proposition 7.1.5, u ∈ L1(|Ci|µ) and there

exists K > 0 such that ‖u‖L1(|Ci|µ) ≤ K ‖u‖
Le

|t|−1(|Ci|µ)
. Therefore,

|dµGi[u]| ≤ K ‖u‖
Le

|t|−1(|Ci|µ)
≤ K ‖u‖L(µ) (9.43)

We conclude the Gateaux derivative is a bounded linear functional.

As in Section 9.2, we next prove the mapping µ→ dµGi is continuous.

Proposition 9.3.2. Let µ = pµ0 ∈ F . Then the mapping µ → dµGi is continuous.

In particular, Gi is C
1 with Frechet derivative

dµGi[u] =

∫
Ci uµ (9.44)

Proof. We want to show

∣∣∣sup{dµnGi[x]− dµGi[x] : ‖x‖L(µ) = 1
}∣∣∣→ 0 (9.45)

as µn → µ. Let µ′ ∈ Kµ and sµ′ be an arbitrary chart. Since µn → µ, we know by

Proposition 8.2.6 that µn := pnµ0 ∈ Kµ (i.e. pnµ0 ∼ pµ0) for n large enough and

there exists un ∈ Xµ′ such that s−1
µ′ (un) = µn. Then we must show∣∣∣∣sup{∫ Ci xµn −

∫
Ci xµ : ‖x‖L(µ) = 1

}∣∣∣∣→ 0 (9.46)

as µn → µ. We look at∣∣∣∣∫ Ci xµn −
∫
Ci xµ

∣∣∣∣ = ∣∣∣∣∫ x Ci(µn − µ)

∣∣∣∣
≤
∫

|x|
∣∣∣∣pnp − 1

∣∣∣∣ |Ci|pµ0.

(9.47)
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Apply Holder’s inequality, giving∣∣∣∣ ∫ Ci xµn−
∫
Ci xµ

∣∣∣∣
≤
(∫

|x|a|Ci|pµ0

)1/a
(∫ ∣∣∣∣pnp − 1

∣∣∣∣b |Ci|pµ0

)1/b

.

(9.48)

Note that x ∈ Xµ implies x ∈ Le
|t|−1(|Ci|pµ0). Hence x ∈ La(|Ci|pµ0) by Proposition

7.1.5. By the e-convergence of µn → µ,

∫ ∣∣∣∣pnp − 1

∣∣∣∣b |Ci|pµ0 → 0. We conclude∣∣∣sup{dµnGi[x]− dµGi[x] : ‖x‖L(µ) = 1
}∣∣∣→ 0 (9.49)

and that µ→ dµGi is a continuous mapping.

Last, note that G : F → Rk+1 given by G(µ) = (G0(µ), . . . , Gk(µ)) is C
1 by the

following Proposition (see [AMR], Proposition 2.3.5):

Proposition 9.3.3. Let fi : U ⊂ E → F , 1 ≤ i ≤ n be r times differentiable

mappings. Then f = f1 × · · · × fn : U ⊂ E → F1 × · · · × Fn defined by f(u) =

(f1(u), . . . , fn(u)) is r times differentiable and Drf = Drf1 × · · · ×Drfn.

By the above, we know that dµG = (dµG0, . . . , dµGk) is C
1:

sup
∥x∥=1

‖dµnG[x]− dµG[x]‖Rn+1

= sup
∥x∥=1

√
|dµnG0[x]− dµG0[x]|2 + · · ·+ |dµnGk[x]− dµGk[x]|2

≤
√

sup
∥x∥=1

|dµnG0[x]− dµG0[x]|2 + · · ·+ |dµnGk[x]− dµGk[x]|2

→ 0

(9.50)

as n → ∞, since for each 1 ≤ i ≤ k + 1, |dµnGi[x]− dµGi[x]| goes to 0, as shown

above. Thus, u → dµG is continuous and we conclude the vector valued constraint

functional G is a C1 mapping.

As in the section above, we can now identify the tangent in its simplest form by

using the chart that maps µ to 0:
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Corollary 9.3.4. Let µ = pµ0 ∈ F . The derivative dµG : Xµ → Rn+1 of G is given

by

dµG[u] =

∫
C uµ (9.51)

Proof. Since we have shown G is C1 we can calculate its derivative with respect to

any chart. Consider the chart sµ(u) = euµ so that µ corresponds to 0. Then

dµG([γ]) =
d

dt

∣∣∣∣
t=0

G ◦ s−1
µ (0 + tu)

=
d

dt

∣∣∣∣
t=0

∫
Cetuµ

=

∫
C uµ.

(9.52)

9.4 G is a Submersion

To be able to apply Theorem 9.1.4, it remains to show G is a submersion. Let

C ∈ Rn+1 be the constraints, i.e. G(µ) = C. For µ ∈ G−1
{
C
}
, µ = pµ0, we must

show

1. dµG : TµF → R is surjective.

2. TµF = ker dµG
⊕

F , where F and ker dµG are closed subspaces.

where p is such that log p ∈ Le
|t|−1(µ).

First we argue that dµG = (dµG1, . . . , dµGn) is surjective.

Lemma 9.4.1. Let µ ∈ G−1
{
C
}
and let Ci : Ω → R be not identically equal to zero,

Ci 6≡ 0 for all 0 ≤ i ≤ n. Then dµG : TµF → Rn+1 is surjective.

Proof. By way of contradiction, suppose dµG is not surjective. This implies there

exists Y ⊂ Rn+1 such that Rn+1 = Im(dµG) ⊕ Y . Then for some 0 < k ≤ n + 1,
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dimY = k. Then for k of the standard basis vectors ei ∈ Rn+1, there does not exist

xi mapping to these ei. If there were, then Im(dµG) would be of higher dimension

for each additional ei included. In particular,

dµG[u] 6= ei ∀u ∈ Xµ (9.53)

implying ∫
Ω

Ci uµ 6= 1 ∀u ∈ Xµ. (9.54)

Therefore ∫
Ω

Ci uµ = 0 ∀u ∈ Xµ, (9.55)

since one u mapping to a non-zero number c0 ∈ R implies
c

c0
u maps to any c ∈ R.

We claim this implies Ci ≡ 0. Suppose Ci 6≡ 0. Define the sets

M = {ω ∈ Ω : Ci(ω) > 0}

N = {ω ∈ Ω : Ci(ω) < 0} .
(9.56)

Suppose M has non-zero µ measure. Define u1 = χM ∈ Xµ. Then∫
Ω

Ci u1µ =

∫
M

Ciµ > 0. (9.57)

This contradicts

∫
Ω

Ci uµ = 0 for all u ∈ Xµ. We conclude µ(M) = 0.

A similar argument holds for N , allowing us to conclude µ(N) = 0 and implying

Ci ≡ 0, contradicting our hypothesis. We conclude dµG is surjective.

Remark 9.4.2. Lemma 9.4.1 implies that any Gi will be regular (have non identically

zero derivative) so long as Ci 6≡ 0.

It remains only to show the derivative has split kernel, to do so requires the

following Proposition (see [AMR, Corollary 2.2.18]):
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Proposition 9.4.3. Let E be a Banach space and F a closed subspace of E. Then

F is split if and only if there exists P ∈ L(E,F ) such that P ◦ P = P and F =

{e ∈ E : Pe = e}.

Proposition 9.4.4. TµF = ker dµG⊕F , where F and ker dµG are closed subspaces.

Proof. A continuous linear mapping has a closed kernel (see [F, Chapter 5, Exercise

15]). Therefore the subspace ker dµG is closed since dµG is continuous.

Next, note that by the surjectivity of dµG, there exists y1, . . . , yn ∈ TµF such

that dµG[yi] = ei for all i, where ei is the standard basis vector in Rn+1. Define

F = 〈y1, . . . , yn〉. Note that F is closed (a finite dimensional subspace of a normed

space is closed). Fix x ∈ TµF and let dµG[x] = k (if k = 0 then x ∈ ker dµG and we

are done). Then

dµG[x− k1y1 − . . .− knyn] = k− k1e1 − . . .− knen = 0. (9.58)

Hence x − k1y1 − . . . − knyn ∈ ker dµG. Additionally, k1y1 + . . . + knyn ∈ F . We

conclude

x = (x− k1y1 − . . .− knyn︸ ︷︷ ︸
ker duG

) + k1y1 + . . .+ knyn︸ ︷︷ ︸
∈F

,
(9.59)

implying TµF = ker dµG+F . To show TµF is topologically equivalent to ker dµG×F ,

we apply Proposition 9.4.3.

Define P : TµF → F by P (x) = dµG[x] · y. We argue P is a projection on F . Let

k ∈ Rn+1 and note that

dµG[k · y] = dµG[k1y1 + . . .+ knyn] = k. (9.60)

Then
P (x) = dµG[x] · y

= k · y
(9.61)
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for some k ∈ Rn+1. Then
P 2(x) = P (k · y)

= dµG[k · y] · y

= k · y

(9.62)

so that P 2 = P . Next, let x ∈ F so that x = k · y for some k ∈ Rn+1. Then

P (x) = dµG[k · y] · y = k · y = x. (9.63)

Thus, P (x) = x for x ∈ F . We conclude P is a projection of F and by Proposition

9.4.3 TµF = ker dµG⊕ F .

Having satisfied the conditions of Theorem 9.1.4, we now apply it to H and G

(see (9.1) and (9.3)).

Theorem 9.4.5. Let Ci : Ω → R be non-zero functions. Then the critical point of

Gibbs entropy, on components of F where log p ∈ Le
|t|−1(pµ0), is the Gibbs distribu-

tion:

p =

exp

(
n∑
i=1

λiCi

)
∫
Ω

exp

(
n∑
i=1

λiCi

)
µ

(9.64)

with λi ∈ R.

Proof. Let µ = pµ0 be a critical point. From Corollary 9.2.7 and Corollary 9.3.4 we

know

dµH(u) =

∫
Ω

[log p+ 1]u µ (9.65)

and

dµG(u) =

∫
Ω

C uµ. (9.66)
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By Lemma 9.4.1 and Proposition 9.4.4 we know G is a submersion. We therefore can

apply Theorem 9.1.4 to conclude there exists λ ∈ Rn+1 such that

∫
Ω

[log p+ 1]u µ = λ ·
∫
Ω

C uµ (9.67)

for all u ∈ Xµ. Equivalently,∫
Ω

(
log p+ 1−

n∑
i=0

λiCi

)
u µ = 0 (9.68)

for all u ∈ Xµ.

It remains to argue that the above implies log p+1−
k∑
i=1

λiCi = 0. We show that

if log p −
n∑
i=1

λiCi 6= 0 then it is possible to construct u ∈ Xµ such that Equation

(9.68) is non-zero.

We proceed in a similar manner to Lemma 9.4.1. Define

M =

{
ω ∈ Ω : log p+ 1−

n∑
i=0

λiCi > 0

}

N =

{
ω ∈ Ω : log p+ 1−

n∑
i=0

λiCi < 0

}
.

(9.69)

Suppose one has non-zero µ-measure. WLOG, suppose M is the set of non-zero

µ-measure. Define u1 = χM ∈ Xµ. Then∫
Ω

(
log p+ 1−

n∑
i=0

λiCi

)
u1 µ =

∫
M

(
log p+ 1−

n∑
i=0

λiCi

)
µ > 0. (9.70)

However, this contradicts

∫
Ω

(
log p+ 1−

n∑
i=0

λiCi

)
u µ = 0 for all u ∈ Xµ. We

conclude µ(M) = 0. If N also has non-zero µ-measure a similar argument would also

show µ(N) = 0. Therefore

log p+ 1−
n∑
i=0

λiCi = 0. (9.71)
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Solving gives the Gibbs distribution

p =

exp

(
n∑
i=1

λiCi

)
∫
Ω

exp

(
n∑
i=1

λiCi

)
µ

(9.72)

where we have used the condition

∫
µ = 1 to get the normalizing constant.

We conclude this chapter by noting that the argument given in (3.17) can be

generalized to show the generalized Gibbs distribution given in (9.64) minimizes in-

formation entropy. This is summarized in the following corollary:

Corollary 9.4.6. The distribution given by (9.64):

p =

exp

(
n∑
i=1

λiCi

)
∫
Ω

exp

(
n∑
i=1

λiCi

)
µ

(9.73)

minimizes information entropy (7.5):

H(pµ0) =

∫
Ω

p log pµ0. (9.74)
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Chapter 10

Application: The Grand Canonical

In this chapter we apply the results of Chapter 9. After recalling the definitions and

setting first given in Part I, deriving the Gibbs distribution follows almost immediately

from the proceeding chapter. We conclude by verifying that reasonable physical

assumptions imply that log p ∈ Le
|t|−1(pµ0).

10.1 The Grand Canonical Gibbs distribution

We now apply Theorem 9.4.5 to derive the Grand Canonical. Let Λ be a bounded

set in R3. Let Ω be the phase space XΛ, where

XΛ =
∞⊔
N=0

(
Λ× R3

)N
. (10.1)

Take the reference measure µ0 on XΛ to be

µ0 =
∞∑
N=0

dq1 . . . dqN
N !

dp1 . . . dpN . (10.2)

Let (q,p) = (q1, . . . , qN , p1, . . . , pN). Next we outline the constraints. Let U be the

interaction potential

U : XΛ → R, (q1, . . . , qN) → U(q1, . . . , qN). (10.3)
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It will be shown below that we require the assumption that U is stable: there exists

L > 0 such that

U(q1, . . . , qN) ≥ −NL (10.4)

for all N ∈ N.

The energy of a configuration is given by the Hamiltonian E : XΛ → R defined by

E(q1, . . . , qN , p1, . . . , pN) =
1

2

N∑
i=1

|pi|2 + U(q1, . . . , qN). (10.5)

We also define the total momentum and particle number as

~P : XΛ → R3, ~P (q1, . . . , qN , p1, . . . , pN) =
N∑
i=1

pi (10.6)

and

N : XΛ → N, N (q1, . . . , qN , p1, . . . , pN) = N. (10.7)

Recall from Chapter 9 that the derivative of

Gi(µ) =

∫
Ω

Ciµ (10.8)

is

dµGi[u] =

∫
Ω

Ciuµ0. (10.9)

For E, ~P and N the corresponding constraints are

E(µ) =

∫
XΛ

Eµ, ~P (µ) =

∫
XΛ

~Pµ, N (µ) =

∫
XΛ

Nµ (10.10)

with derivatives

dµE[u] =

∫
XΛ

E uµ, dµ
~P [u] =

∫
XΛ

~P uµ, dµN [u] =

∫
XΛ

N uµ (10.11)

respectively.
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Additionally, Theorem 9.4.5 holds on regions of the underlying manifold where

log p is in the corresponding Orlicz space. We verify that this requirement does not

eliminate the Gibbs Grand Canonical distribution under reasonable physical assump-

tions.

Proposition 10.1.1. Let U be a stable potential (see Equation (10.4)) and

p(q,p) =
eβE(q,p)+λ⃗·P⃗ (q,p)+νN(q,p)

Zβ,λ⃗,ν
(10.12)

the Grand Canonical density function with β < 0, where

Zβ,λ⃗,ν =

∫
XΛ

eβE+λ⃗·P⃗+νNµ0. (10.13)

Then log p ∈ Le
|t|−1(pµ0).

Proof. By Proposition 7.1.4 it is sufficient to show log p ∈ Lcosh(t)−1(pµ0). We show

there exists ε > 0 such that

∫
XΛ

(cosh (ε log p)− 1) pµ0 < +∞. (10.14)

In particular, we show there exists ε > 0 such that∫
XΛ

(
1

2

(
eϵβE+ϵλ⃗·P⃗+ϵνN−ϵ logZ

β,λ⃗,ν

+ e−ϵβE−ϵλ⃗·P⃗−ϵνN+ϵ logZ
β,λ⃗,ν

)
− 1

)
eβE+λ⃗·P⃗+νN

Zβ,λ⃗,ν
µ0 < +∞.

(10.15)

Since logZβ,λ⃗,ν is a constant it will not cause effect whether the above is finite. Sim-

ilarly, we can use the fact that p =
eβE+λ⃗·P⃗+νN

Zβ,λ⃗,ν
is a probability measure to simplify

the above to showing

∫
XΛ

(
eϵβE+ϵλ⃗·P⃗+ϵνN + e−ϵβE−ϵλ⃗·P⃗−ϵνN

) eβE+λ⃗·P⃗+νN

Zβ,λ⃗,ν
µ0 < +∞ (10.16)
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for some ε > 0. Multiplying through and recognizing
1

Zβ,λ⃗,ν
will not effect the con-

vergence, we must show∫
XΛ

(
e(1+ϵ)[βE+λ⃗·P⃗+νN ] + e(1−ϵ)[βE+λ⃗·P⃗+νN ]

)
µ0 < +∞. (10.17)

Consider each integral separately, and recall E = U +
1

2

N∑
i=1

p2i , implying the integral

of the first term can be written as

∫
XΛ

e

(1 + ε)[βU + β/2
N∑
i=1

p2i + ε~λ ·
N∑
i=1

pi + νN ]

µ0.
(10.18)

Completing the square with respect to p implies

∫
XΛ

e

(1 + ε)[βU +
N∑
i=1

β

2

(
pi +

~λ

2β

)2

−
~λ2

2β
+ νN ]

µ0.
(10.19)

If we integrate with respect to dp1 . . . dpN the above becomes

∑
N

(
2π

(1 + ε)|β|

)N/2
e−(1+ϵ)λ⃗2/2βe(1+ϵ)νN

∫
ΛN

e(1+ϵ)βU
dq1 . . . dqN

N !
, (10.20)

where

(
2π

(1 + ε)|β|

)N/2
is the constant resulting from integrating the N dimensional

Gaussian. Note that the above integral will be a decaying exponential (and hence

finite) when U ≥ 0. When U < 0 we can use the stability condition (keeping in mind

β < 0) to bound the integral∫
ΛN

e(1+ϵ)βU
dq1 . . . dqN

N !
≤
∫
ΛN

e(1+ϵ)βLN
dq1 . . . dqN

N !

=
e(1+ϵ)βLN |Λ|N

N !
< +∞

(10.21)

where |Λ| denotes the Lebesgue measure of Λ. This shows Equation (10.20) is finite

for any ε > 0. A similar argument will show∫
XΛ

e(1−ϵ)[βE+λ⃗·P⃗+νN ]µ0 < +∞. (10.22)
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so long as ε < 1 (otherwise the integral with respect to p will no longer be Gaussian).

We conclude log p ∈ Lcosh(t)−1(pω).

Remark 10.1.2. The Lagrange multiplier β corresponds physically to inverse tem-

perature, 1/T . Note that in the standard derivation of the Gibbs distribution entropy

is −
∫
p log pµ0 and the resulting β is positive. Our omission of the negative sign

explains this seeming physical discrepancy.

With all the conditions of Theorem 9.4.5 satisfied, we conclude the Gibbs Grand

Canonical minimizes Gibbs entropy.
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Chapter 11

Constraint Functionals as an Open
Mapping

We now use the manifold structure to provide an alternate proof to the open mapping

proved in Part I.

11.1 Constraint Functionals and the Local Surjec-

tivity Theorem

This alternate proof is based on the following theorem (see [AMR, Proposition 2.5.9],

[Luen, Section 9.2, Theorem 1] or Section 13.4).

Theorem 11.1.1. (Local Surjectivity Theorem) Let D be an open subset of X

and let T : D → Y be continuously differentiable. Let x0 ∈ D be a regular point,

i.e. T ′(x0) : X → Y is a surjective map. Then there is an open neighborhood N ′(y0)

of the point y0 = T (x0) such that the equation T (x) = y has a solution for every

y ∈ N ′(y0). Furthermore, there exists an open set in D containing x0 such that T

maps this open set onto N ′(y0). In particular, if T ′(x) is onto for x ∈ D, then f is

an open mapping.

We now apply this theorem to the manifold constructed in Chapter 8 to prove the

constraint functionals are open mappings.
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Proposition 11.1.2. Define µ := pµ0. The mapping G : F → R, defined by

Gi(µ) =

∫
Ciµ, (11.1)

where Ci 6≡ 0, has an open image.

Proof. Recall the derivative of Gi(µ) is (see Corollary 9.3.4)

dµGi[u] =

∫
Ω

Ci uµ. (11.2)

We have already shown the derivative at µ is surjective on R so long as Ci 6≡ 0 (see

Lemma 9.4.1). By the Local Surjectivity Theorem, for every y0 ∈ R there exists an

open neighborhood N ′(y0) such that there exists an open neighborhood of µ, Oµ with

Gi(Oµ) mapped onto N ′(y0): Gi(Oµ) = N ′(y0). Note this equality implies Gi(Oµ) is

open. Additionally, µ ∈ F was arbitrary.

Thus,

Gi (F) =
⋃
µ∈F

Gi(Oµ) (11.3)

is the union of open sets. We conclude Gi(F) is an open set. Finally, since G(F) =

(G1(F), . . . , Gn(F) and the product of a finite number of opens sets is open, we

conclude G(F) is open.

We now apply Proposition 11.1.2 to the grand cannonical ensemble (see Chapter

10). Recall our base measure µ0 in this setting is

µ0 =
∑
N≥0

dq1 . . . dqN
N !

dp1 . . . dpN . (11.4)

Note that by convention, µ0(∅) = 1. Define Fµ0 be as in (7.4) with respect to the

particular µ0 above. Observe that the Dirac measure on the null set

δ∅ =

{
1 on ∅
0 o.w.

(11.5)
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is absolutely continuous with respect to µ0. However, δ∅ fails to meet the conditions

of the local surjectivity theorem. Let u ∈ Xδ∅ . Then

dδ∅Gi[u] =

∫
Ω

Ciuδ∅ = 0 (11.6)

for all u and for all i. Therefore, the derivative of Gi at δ∅ is not onto. Additionally,

note that δ∅ is not a connected component of the manifold Fµ0 . There is no µ ∈ Fµ0

such that δ∅ ∼ µ. If this was the case, then there would exist some φ ∈ Lp(µ) for

some p > 1 such that

δ∅ = φµ. (11.7)

Thus, Fµ0 is the union of a singleton and all other measures absolutely continuous

with respect to µ0.

Define Fµ0 = Fµ0/ {δ∅}. Applying the above proposition on the on the constraint

functionals of the Grand Canonical, restricted to Fµ0 gives G(Fµ0) is an open set.

Last, we we restrict Fµ0 further to only Gibbs measures, the resulting image is still

a union of open sets, giving an alternative proof of the result from Part I.
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Chapter 12

Lagrange Multipliers, Local
Equilibrium Case

We would now like to extend the result of Chapter 9 to local equilibrium. In particular,

our constraint functionals will now map into some function space, rather than into

R. We will use the application to phase space in Chapter 10 as a starting point.

12.1 The Local Grand Canonical Gibbs Distribu-

tion

Define E, ~P and N the same as (10.5), (10.6), and (10.7). The reference measure µ0

also stays the same as (10.2). Recall C0 ≡ 1, let (q,p) = (q1, . . . , qN , p1, . . . , pN), and

defined
G0 : F → R+

G0(µ) =

∫
|C0| µ(dq, dp)

(12.1)

The constraint functionals are now defined as

Gj : F → L1(dx)

Gj(µ) =
∑
N≥0

∫ N∑
i=1

(E, ~P ,N )(q,p) δ(qi − x) µ(dq, dp).
(12.2)

Let G(µ) := (G0(µ), Gi(µ)). Similar to Chapter 10, the goal is to solve the corre-

sponding Lagrange multiplier problem and derive the local equilibrium Gibbs mea-
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sure:

1

Z
exp

(
N∑
i=1

β(qi)E(q,p) +
N∑
i=1

~λ(qi)~P (q,p) +
N∑
i=1

ν(qi)N (q,p)

)
(12.3)

where Z is the corresponding partition function.

The main difficulty with mapping into a function space (as opposed to R, see

Lemma 9.4.1) is ensuring the functions mapped to are regular values. Below we will

assume the constraint functions in (L1(dx))
5
that Gj(µ) maps to are regular points.

Under this assumption we show (12.3) is a critical point of Gibbs entropy (9.1). A

characterization of the regular values of Gj will be the focus of later work. As in

Chapter 9 we show G is C1 by calculating the Gateaux derivative, and then showing

this derivative is C1 and hence is the Frechet derivative. First we prove G(µ) maps

into L1(dx):

Lemma 12.1.1. Let µ = fµ0 be an element of F . Then

Gj(µ) =

∫
XΛ

N∑
i=1

Cjδ(qi − x)µ (12.4)

maps into L1(dx).

Proof. Note∫
|Gj(µ)(x)|dx

≤
∫ (∑

N≥0

∫ N∑
i=1

|Cj|δ(qi − x)f(q,p)µ0

)
dx

=

∫ (∑
N≥0

∫
|Cj|(x, q2, . . . , qN ,p)f(x, q2, . . . , qN ,p)

dq2 . . . dqN
N !

dp

+ . . .+∫
|Cj|(q1, q2, . . . , x,p)f(q1, q2, . . . , x,p)

dq1 . . . dqN−1

N !
dp

)
dx.

(12.5)
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By Tonelli’s theorem, iterating the above integrals and letting x = qi for each term

of the sum gives

∫
|Gj(µ)(x)| dx ≤

∑
N≥0

N

∫
|Cj|(q,p)f(q,p)

dq

N !
dp

=
∑
N≥0

∫
|Cj|(q,p)f(q,p)

dq

(N − 1)!
dp.

(12.6)

We argue the final summation in (12.6) is finite. Note that µ ∈ F implies by definition∑
N≥0

∫
|Cj|µ is finite. Since

∑
N≥0

∫
|Cj|µ =

∑
N≥0

1

N !

∫
|Cj|(q,p)f(q,p)dq1 . . . dqNdp1 . . . dpN︸ ︷︷ ︸

=:IN

=
∑
N≥0

IN
N !

(12.7)

we conclude
∑
N≥0

IN
N !

is finite. Noting that (12.6) can be rewritten as

∫
|Gj(µ)(x)| dx ≤

∑
N≥0

IN
(N − 1)! (12.8)

we apply the Ratio test, keeping in mind IN < +∞ and IN → 0 as N → ∞:

lim
N

∣∣∣∣∣∣∣∣
IN
N !
IN−1

(N − 1)!

∣∣∣∣∣∣∣∣ = lim
N

IN
IN−1

1

N
= 0. (12.9)

to conclude Gj(µ)(x) ∈ L1(dx).

This suggests measures of the form f
dq

(N − 1)!
dp or equivalently, Nfµ0 will be

important in proving G is C1, leading to the following lemma:

Lemma 12.1.2. Let µ = fµ0 be an element of F . Define µ̂ = Nfµ0. Then µ̂ ∈ F

and µ̂ and µ are equivalent measures.
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Proof. First note that µ ∈ F implies∑
N≥0

∫
f
dq1 . . . dqN

N !
dp1 . . . dpN =

∑
N≥0

1

N !

∫
fdq1 . . . dqNdp1 . . . dpN︸ ︷︷ ︸

=:IN

=
∑
N≥0

IN
N !

< +∞.

(12.10)

Therefore, we write ∫
XΛ

µ̂ =
∑
N≥0

∫
Nf

dq1 . . . dqN
N !

dp1 . . . dpN

=
∑
N≥0

IN
(N − 1)!

.

(12.11)

The sum in (12.11) can be shown to converge by the Ratio test as in the proof of

Lemma 12.1.1. Analogous arguments show

∫
XΛ

f |H|µ̂,
∫
XΛ

f |~P |µ̂ and

∫
XΛ

f |N |µ̂ are

finite. We conclude µ̂ ∈ F .

To show µ̂ and µ are equivalent (see Definition 7.2.1), note that their ratios are

φ =
Nf

f
= N and

1

φ
=

f

Nf
=

1

N
. Then µ̂ = φµ and µ =

1

φ
µ̂, where∫

XΛ

φpµ =

∫
XΛ

Npµ =
∑
N≥0

NpIN
N !

< +∞ (12.12)

for any p > 1, and ∫
XΛ

1

φp
µ =

∫
XΛ

1

N

p

µ =
∑
N≥0

IN
NpN !

< +∞ (12.13)

for any p > 1. Implying φ ∈ Lp(µ) and
1

φ
∈ Lp(µ̂) for some p > 1. Similar arguments

will show φ ∈ Lp(|Cj|µ) and
1

φ
∈ Lp(|Cj|µ̂). We conclude µ ∼ µ̂.

We now prove the constraint functionals are C1. First, we show the derivative is

a bounded linear functional.

Proposition 12.1.3. The derivative of the mapping G : F → (L1(dx))
5
is a bounded

linear functional, with the derivative of the jth component given by

dµGj(u) =

∫
XΛ

N∑
i=1

Cj u δ(qi − x)µ. (12.14)
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Proof. We show the derivative corresponding to the energy functional is a bounded

linear functional. Let µ′ = gµ0 ∈ Kµ and sµ′ : Kµ′ → Xµ′ such that s−1
µ′ (u0) = µ for

some u0 ∈ Xµ′ . Let u ∈ Xµ′ . Then

dµGj(u) =
d

dε

∣∣∣∣
ϵ=0

∫
XΛ

N∑
i=1

Cje
u0+ϵuδ(qi − x)gµ0

=

∫
XΛ

N∑
i=1

Cj u δ(qi − x)eu0gµ0

=

∫
XΛ

N∑
i=1

Cj u δ(qi − x)µ.

(12.15)

Note that u ∈ Xµ = Xµ̂ and an analogous argument to that in the proof of Lemma

12.1.1 shows dµGj ∈ L1(dx) and

‖dµGj[u]‖L1(dx) =

∫
Λ

∣∣∣∣∣
∫
XΛ

N∑
i=1

Cj u δ(qi − x)µ

∣∣∣∣∣ dx
≤
∫
Λ

∫
XΛ

N∑
i=1

|Cj| |u| δ(qi − x)µ dx.

(12.16)

Similar to the calculation in (12.5) and (12.6), we can rewrite the above as

‖dµGj[u]‖L1(dx) ≤
∑
N≥0

N

∫
|u| |Cj|µ =

∫
XΛ

|u| |Cj|µ̂. (12.17)

Since Orlicz spaces are continuously embedded in all Lp spaces, there exists K > 0

such that

‖dµGj[u]‖L1(dx) ≤ K ‖u‖
Le

|t|−1(|Cj |µ̂)
. (12.18)

Last, since µ̂ ∼ µ (Lemma 12.1.2), we know the norms Orlicz norms with respect to

µ and µ̂ are equivalent. Therefore, there exists some K ′ > 0 such that

‖dµGj[u]‖L1(dx) ≤ K ′ ‖u‖
Le

|t|−1(|Cj |µ)
≤ K ′ ‖u‖L(µ) . (12.19)

where ‖x‖L(µ) = max0≤j≤n ‖x‖Le|t|−1(|Cj |µ)
defined in (8.41).
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Proposition 12.1.4. The mapping µ→ dµGj is continuous.

Proof. Let µ := fµ0 and µn = fnµ0. From Proposition 12.1.3 we know

dµGj(u) =

∫
XΛ

N∑
i=1

Cj u δ(qi − x)µ. (12.20)

We must show

sup
∥y∥L(µ)=1

‖dµnGj[y]− dµGj[y]‖L1(dx) → 0 (12.21)

as µn e-converges to µ (see Definition 7.3.1).

We look at∫
Λ

∣∣∣∣∣
∫
XΛ

N∑
i=1

Cj y δ(qi − x)µn −
∫
XΛ

N∑
i=1

Cj y δ(qi − x)µ

∣∣∣∣∣ dx. (12.22)

This is bounded above by∫
Λ

∫
XΛ

N∑
i=1

|Cj| |y| δ(qi − x) |fn − f |µ0 dx. (12.23)

Equivalently, ∫
Λ

∫
XΛ

N∑
i=1

|Cj| |y| δ(qi − x)

∣∣∣∣fnf − 1

∣∣∣∣µ dx. (12.24)

As in the proof of Proposition 12.1.3, we integrate over dqi and then change variables

(again note any iterated integrals are justified by Tonelli’s theorem):∫
Λ

∫
ΛN−1×RN

N∑
i=1

|y|(. . . , x, . . .)
∣∣∣∣fnf (. . . , x, . . .)− 1

∣∣∣∣ |Cj|(. . . , x, . . .)µ̂i dx. (12.25)

Letting x = qi gives ∫
XΛ

N |y|
∣∣∣∣fnf − 1

∣∣∣∣ |Cj|µ. (12.26)

Thus far we have

‖dµnGj[y]− dµGj[y]‖L1(dx) ≤
∫
XΛ

N |y|
∣∣∣∣fnf − 1

∣∣∣∣ |Cj|µ
. =

∫
XΛ

|y|
∣∣∣∣fnf − 1

∣∣∣∣ |Cj|µ̂. (12.27)
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We proceed as in the proof of Proposition 9.3.3. We apply Holder’s inequality (a, b

conjugates) and get ‖dµnGj[y]− dµGj[y]‖L1(dx) is bounded above by

(∫
XΛ

|y|a|Cj|µ̂
)1/a

(∫
XΛ

∣∣∣∣fnf − 1

∣∣∣∣b |Cj|µ̂
)1/b

. (12.28)

Note that the first term is finite since y ∈ Xµ = Xµ̂ implies y ∈ Le
|t|−1(|Cj|µ̂). Propo-

sition 7.1.5 then implies y ∈ La(|Cj|µ̂). For the second term, recall that µ ∼ µ̂ and

that e-convergence against one measure implies e-convergence against equivalent mea-

sures (see Proposition 7.3.3). Thus, the second term converges to 0 by e-convergence

of µn to µ. Therefore,

‖dµnGj[y]− dµGj[y]‖L1(dx) → 0 (12.29)

and we conclude µ→ dµGj is a continuous mapping.

We now apply Theorem 9.1.4 to show (12.3) is a critical point of the Gibbs entropy.

Theorem 12.1.5. The critical point of Gibbs entropy, on components of F where

log f ∈ Le
|t|−1(fµ0), is the Gibbs distribution:

1

Z
exp

(
N∑
i=1

β(qi)E +
N∑
i=1

~λ(qi)~P +
N∑
i=1

ν(qi)N

)
(12.30)

where β(x), ~λ(x) and ν(x) are L∞(dx) functions.

Proof. Let µ = fµ0 be a critical point. By Theorem 9.1.4, we have (λ0, β(x), ~λ(x), ν(x)) ∈(
R× (L1(dx))

5
)∗

= R× (L∞(dx))5 such that

∫
XΛ

(log f + 1)u fµ0

= (λ0, β(x), ~λ(x), ν(x)) ◦

(∫
XΛ

u|C0|µ,
∫
XΛ

N∑
i=1

(E, ~P ,N ) u δ(qi − x)µ

) (12.31)
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for all u. In other words,∫
XΛ

(log f + 1)u µ =

∫
XΛ

λ0u |C0|µ

+

∫
Λ

β(x)

(∫
XΛ

N∑
i=1

E u δ(qi − x) µ

)
dx

+

∫
Λ

~λ(x)

(∫
XΛ

N∑
i=1

~P u δ(qi − x) µ

)
dx

+

∫
Λ

ν(x)

(∫
XΛ

N∑
i=1

N u δ(qi − x) µ

)
dx.

(12.32)

Note that∫
Λ

β(x)

(∫
XΛ

N∑
i=1

E u δ(qi − x) µ

)
dx

=

∫
Λ

β(x)

(∫
E(x, . . .)u(x, . . .)f(x, . . .)

dq2 . . . dqN
N !

dp1 . . . dpN

+ . . .+

∫
E(. . . , x)u(. . . , x)f(. . . , x)

dq1 . . . dqN−1

N !
dp1 . . . dpN

)
dx.

(12.33)

Making a change of variables (x = qi) at each integral in the sum gives∫
Λ

β(x)

(∫
XΛ

N∑
i=1

E u δ(qi − x) µ

)
dx

=

∫
XΛ

β(q1)E uµ+ . . .+

∫
XΛ

β(qN)E uµ

=

∫
XΛ

N∑
i=1

β(qi)E u µ.

(12.34)

Similar calculations hold for the other constraint functionals. Therefore we have∫
XΛ

(log f + 1)u µ =

∫
XΛ

λ0u |C0|µ+

∫
XΛ

N∑
i=1

β(qi)E u µ

+

∫
XΛ

N∑
i=1

~λ(qi)~P u µ+

∫
XΛ

N∑
i=1

ν(qi)N u µ.

(12.35)

implying (C0 ≡ 1, folding 1 and λ0 into a new relabeled λ0)

∫
XΛ

(
log f + λ0 −

N∑
i=1

β(qi)E −
N∑
i=1

~λ(qi)~P −
N∑
i=1

ν(qi)N

)
u µ = 0 (12.36)
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for all u. Proceeding as in Theorem 9.4.5, we can define u = χM where M is the set

of all points where the terms in the parenthesis are strictly positive. Then u ∈ Xµ

and the above integral will be some positive number, a contradiction unless

log f + λ0 −
N∑
i=1

β(qi)E −
N∑
i=1

~λ(qi)~P −
N∑
i=1

ν(qi)N = 0. (12.37)

A similar argument holds on N the set of negative points. Solving for f and using

the condition

∫
µ = 1 implies

f =
1

Z
exp

(
N∑
i=1

β(qi)E +
N∑
i=1

~λ(qi)~P +
N∑
i=1

ν(qi)N

)
. (12.38)

We conclude the local Gibbs (12.3) is a critical point of Gibbs entropy.

Next, we provide a proof of the fact that (12.3) minimizes entropy.

Lemma 12.1.6. The minimizing probability density of information entropy subject

to constraints is the local Gibbs distribution given by (12.3).

Proof. Let e(x), ~p(x), r(x) ∈ L1(dx) be the constraint functions mapped to by (12.2).

the Let g denote the local Gibbs distribution given in (12.3) and let q be some other

probability measure such G(gµ0) also maps to e(x), ~p(x) and r(x). Note∫
XΛ

N∑
i=1

β(qi)E(q,p)f(q,p)µ0(dq, dp)

=

∫
XΛ

β(q1)E(q,p)f(q,p)dq2 . . . dqN
dp

N !
dq1

+ . . .+

∫
XΛ

β(qN)E(q,p)f(q,p)dq1 . . . dqN−1
dp

N !
dqN .

(12.39)

After making the change of variables x = qi and using the delta function to condense

the result, we have∫
XΛ

N∑
i=1

β(qi)E(q,p)f(q,p)µ0(dq, dp)

=

∫
Λ

β(x)

(
N∑
i=1

∫
XΛ

E(q,p)f(q,p)δ(qi − x)µ0(dq, dp)

)
dx.

(12.40)
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Noting that the quantity in the parenthesis is G1(f) which is constrained to equal

e(x), (12.40) simplifies to∫
XΛ

N∑
i=1

β(qi)E(q,p)f(q,p)µ0(dq, dp) =

∫
Λ

β(x)e(x)dx. (12.41)

Similar arguments show∫
XΛ

N∑
i=1

~λ(qi)~P (q,p)f(q,p)µ0(dq, dp) =

∫
Λ

~λ(x) · ~p(x)dx

∫
XΛ

N∑
i=1

ν(qi)N (q,p)f(q,p)µ0(dq, dp) =

∫
Λ

ν(x)r(x)dx.

(12.42)

Recalling H denotes the information entropy, we have

H(fµ0) =

∫
XΛ

f log fµ0

=

∫
XΛ

f log
f

g
µ0 +

∫
Xµ

f log gµ0

=

∫
XΛ

f

g
log

f

g
gµ0 +

∫
Xµ

f log gµ0

≥
∫
Xµ

f log gµ0

(12.43)

where last line follows from

∫
XΛ

f

g
log

f

g
gµ0 ≥ 0 as a result of Jensen’s inequality on

the convex function φ(t) = t log t. Therefore, applying (12.41) and (12.42) gives

H(fµ0) ≥
∫
Xµ

f log gµ0

=

∫
Xµ

(
N∑
i=1

β(qi)E +
N∑
i=1

~λ(qi)~P +
N∑
i=1

ν(qi)N − logZ

)
fµ0

=

∫
Λ

β(x)e(x)dx+

∫
Λ

~λ(x) · ~p(x)dx+
∫
Λ

ν(x)r(x)dx− logZ.

(12.44)

However, the Gibbs distribution g also maps to the same e(x), ~p(x), r(x) and so (12.41)

and (12.42) also hold for g. Applying these in the reverse direction for g gives

H(fµ0) ≥
∫
Xµ

(
N∑
i=1

β(qi)E +
N∑
i=1

~λ(qi)~P +
N∑
i=1

ν(qi)N − logZ

)
gµ0

=

∫
Xµ

g log gµ0

= H(gµ0)

(12.45)
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We conclude the Gibbs distribution minimizes entropy.

Proposition 12.1.7. Let µ = fµ0 be the local Gibbs distribution (12.3):

f =
1

Z
exp

(
−

N∑
i=1

β(qi)E −
N∑
i=1

~λ(qi)~P −
N∑
i=1

ν(qi)N

)
, (12.46)

where β(x), ~λ(x) and ν(x) are L∞(dx) functions. Then log f ∈ Le
|t|−1(µ).

Proof. As in Proposition 10.1.1, we show log f ∈ Le
|t|−1(µ). This requires we show

∑
N≥0

∫
e−(1+ϵ)

∑N
i=1[β(qi)E+λ⃗(qi)P⃗+ν(qi)N]µ0 < +∞ (12.47)

and ∑
N≥0

∫
e−(1−ϵ)

∑N
i=1[β(qi)E+λ⃗(qi)P⃗+ν(qi)N]µ0 < +∞ (12.48)

Starting with (12.47), note that β(x), ~λ(x) and ν(x) in L∞(dx) implies there exists

M > 0 such that |(β,~λ, ν)| ≤ M . Therefore, these terms will not effect the conver-

gence of the integral. Similarly, the summation over i, will only add another factor

of N in a decaying exponential. The argument then follows similarly to the proof of

Proposition 10.1.1. For the second integral, after the above arguments are taken into

account, the approach is again the same as the proof of Proposition 10.1.1, down to

the restriction ε < 1. We conclude log f ∈ Le
|t|−1(µ).
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Appendix
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Chapter 13

Appendix

The following sections give additional details omitted from some of the chapters in

Part II.

13.1 Orlicz Space Propositions

Proposition 13.1.1. The Orlicz space Lϕ(µ), where φ is a Young function, is linear.

Proof. Letting α, β ∈ R and f, g ∈ Lϕ(µ), there exists c1 and c2 such that

∫
Ω

φ(f/c1)µ ≤

1 and

∫
Ω

φ(g/c2)µ ≤ 1. Then, by the convexity of φ,∫
Ω

φ

(
αf + βg

αc1 + βc2

)
µ =

∫
Ω

φ

(
αc1

αc1 + βc2

f

c1
+

βc2
αc1 + βc2

g

c2

)
µ

≤ αc1
αc1 + βc2

∫
Ω

φ

(
f

c1

)
µ+

βc2
αc1 + βc2

∫
Ω

φ

(
g

c2

)
µ

≤ αc1
αc1 + βc2

(1) +
βc2

αc1 + βc2
(1)

= 1

(13.1)

Thus, αf + βg ∈ Lϕ(µ). We conclude Lϕ(µ) is a linear space.

Proposition 13.1.2. Let φ be a Young function and Lϕ(µ) the associated Orlicz

space. Then the infimum in the definition of the norm

‖f‖Lϕ(µ) = inf

{
α > 0 :

∫
φ

(
f

α

)
µ ≤ 1

}
(13.2)
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is attained.

Proof. Let f ∈ Lϕ(µ) and an be a sequence decreasing to ‖f‖Lϕ(µ). Since an is a

decreasing sequence,
f

an
is an increasing sequence. Thus, since φ is a Young function

(and therefore increasing on [0,∞)), gn = φ

(
f

an

)
is monotonically increasing, re-

gardless of f being positive or negative, by the evenness of φ, to φ

(
f

‖f‖Lϕ(µ)

)
. By

the Monotone Convergence Theorem

lim
n→∞

∫
Ω

φ

(
f

an

)
µ =

∫
Ω

φ

(
f

‖f‖Lϕ(µ)

)
µ ≤ 1. (13.3)

Proposition 13.1.3. Let φ be a Young function and Lϕ(µ) be the associated Orlicz

space. Then ∫
Ω

φ

(
f

α

)
µ ≤ 1 (13.4)

for all α ≥ ‖f‖Lϕ(µ).

Proof. Let

c := ‖f‖Lϕ(µ) = inf

{
α > 0 :

∫
φ

(
f

α

)
µ ≤ 1

}
. (13.5)

Note

|f |
α

≤ |f |
c

(13.6)

for α > c > 0. Since φ is strictly increasing function,

φ

(
|f |
α

)
≤ φ

(
|f |
c

)
. (13.7)

Since φ is an even function, we can disregard the absolute value bars. Thus,

φ

(
f

α

)
< φ

(
f

c

)
for all α > c (13.8)

115



implying ∫
φ

(
f

α

)
µ <

∫
φ

(
f

c

)
µ ≤ 1. (13.9)

Thus, ∫
φ

(
f

α

)
µ ≤ 1 for all α > c. (13.10)

13.2 e-convergence

We now give a proof of Proposition 7.3.2. See [AJVLS, Lemma 3.7 and Proposition

3.9] for an alternate approach.

Proposition 13.2.1. The following are equivalent:

1. The sequence gn is e-convergent to g.

2. For all p ≥ 1, we have

lim
n→∞

∫ ∣∣∣∣(gng
)p

− 1

∣∣∣∣ |Ci|gµ0 = lim
n→∞

∫ ∣∣∣∣( g

gn

)p
− 1

∣∣∣∣ |Ci|gµ0 = 0, (13.11)

for i = 0, 1, . . . , n.

Proof. Let C0 ≡ 1. Fix i.

First, we show (1) =⇒ (2): Note that

∣∣∣∣(gng
)p

− 1

∣∣∣∣ and ∣∣∣∣( g

gn

)p
− 1

∣∣∣∣ are in-

creasing in p. Without loss of generality, we assume p ∈ N. Define fn :=
gn
g

− 1.

Then

lim
n→∞

∫
|fn|p|Ci|gµ0 = lim

n→∞

∫ ∣∣∣∣gng − 1

∣∣∣∣p |Ci|gµ0 = 0 (13.12)

for all p ≥ 1 by assumption. Then∫ ∣∣∣∣(gng
)p

− 1

∣∣∣∣ |Ci|gµ0 =

∫
|(1 + fn)

p − 1| |Ci|gµ0. (13.13)
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Applying the binomial theorem, we see∫ ∣∣∣∣(gng
)p

− 1

∣∣∣∣ |Ci|gµ0 ≤
∫ p∑

k=1

(
p

k

)
|fn|k |Ci|gµ0

=

p∑
k=1

(
p

k

)∫
|fn|k |Ci|gµ0 → 0.

(13.14)

Similarly, we can define hn :=
g

gn
− 1 and show

∫ ∣∣∣∣( g

gn

)p
− 1

∣∣∣∣ |Ci|gµ0 → 0. (13.15)

Next, we show (2) =⇒ (1). First note the following facts:

1. if x ≥ 1, then |x− 1|p ≤ |xp − 1| for p ≥ 1.

2. if x < 1, then |x− 1|p ≤ | 1
x
− 1|p for p ≥ 1.

By hypothesis

lim
n→∞

∫ ∣∣∣∣(gng
)p

− 1

∣∣∣∣ |Ci|gµ0 = lim
n→∞

∫ ∣∣∣∣( g

gn

)p
− 1

∣∣∣∣ |Ci|gµ0 = 0. (13.16)

Then, applying the above two facts implies

lim
n→∞

∫ ∣∣∣∣gng − 1

∣∣∣∣p |Ci|gµ0

= lim
n→∞

∫
{ gn
g
≥1}

∣∣∣∣gng − 1

∣∣∣∣p |Ci|gµ0 +

∫
{ g
gn
>1}

∣∣∣∣gng − 1

∣∣∣∣p |Ci|gµ0

≤ lim
n→∞

∫
{ gn
g
≥1}

∣∣∣∣(gng
)p

− 1

∣∣∣∣ |Ci|gµ0 +

∫
{ g
gn
>1}

∣∣∣∣gng − 1

∣∣∣∣p |Ci|gµ0

≤ lim
n→∞

∫
{ gn
g
≥1}

∣∣∣∣(gng
)p

− 1

∣∣∣∣ |Ci|gµ0 +

∫
{ g
gn
>1}

∣∣∣∣ ggn − 1

∣∣∣∣p |Ci|gµ0

≤ lim
n→∞

∫
{ gn
g
≥1}

∣∣∣∣(gng
)p

− 1

∣∣∣∣ |Ci|gµ0 +

∫
{ g
gn
>1}

∣∣∣∣( g

gn

)p
− 1

∣∣∣∣ |Ci|gµ0

≤ lim
n→∞

∫ ∣∣∣∣(gng
)p

− 1

∣∣∣∣ |Ci|gµ0 +

∫ ∣∣∣∣( g

gn

)p
− 1

∣∣∣∣ |Ci|gµ0

= 0

(13.17)
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Similarly,

lim
n→∞

∫ ∣∣∣∣ ggn − 1

∣∣∣∣p |Ci|gµ0

= lim
n→∞

∫
{ g
gn

≥1}

∣∣∣∣ ggn − 1

∣∣∣∣p |Ci|gµ0 +

∫
{ gn
g
>1}

∣∣∣∣ ggn − 1

∣∣∣∣p |Ci|gµ0

≤ lim
n→∞

∫
{ g
gn

≥1}

∣∣∣∣( g

gn

)p
− 1

∣∣∣∣ |Ci|gµ0 +

∫
{ gn
g
>1}

∣∣∣∣ ggn − 1

∣∣∣∣p |Ci|gµ0

≤ lim
n→∞

∫
{ g
gn

≥1}

∣∣∣∣( g

gn

)p
− 1

∣∣∣∣ |Ci|gµ0 +

∫
{ gn
g
>1}

∣∣∣∣gng − 1

∣∣∣∣p |Ci|gµ0

≤ lim
n→∞

∫
{ g
gn

≥1}

∣∣∣∣( g

gn

)p
− 1

∣∣∣∣ |Ci|gµ0 +

∫
{ gn
g
>1}

∣∣∣∣(gng
)p

− 1

∣∣∣∣ |Ci|gµ0

≤ lim
n→∞

∫ ∣∣∣∣( g

gn

)p
− 1

∣∣∣∣ |Ci|gµ0 +

∫ ∣∣∣∣(gng
)p

− 1

∣∣∣∣ |Ci|gµ0

= 0

(13.18)

We conclude gn e-converges to g.

13.3 Differentiation on a Banach Manifold

First, consider what it means for a mapping between Banach manifolds to be C1 and

Cr (see [AMR, Definition 2.3.3]):

Definition 13.3.1. Let E and F be Banach spaces, f : U ⊂ E → F , and L(E,F )

denote the space of linear maps from E to F . Let u, u0 ∈ U . If there exists L ∈

L(E,F ) such that

lim
u→u0

‖f(u)− (f(u0)− L[u− u0])‖F
‖u− u0‖E

= 0 (13.19)

we say f is Frechet differentiable at u0, and define the derivative of f at u0 to be

duf := L. If f is differentiable at each u0 ∈ U , the map

Df : I → L(E,F )

u→ duf

(13.20)
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is the derivative of f . Moreover, if duf is a continuous map (where L(E,F ) has the

norm topology, we say f is of class C1.

Definition 13.3.2. Proceeding inductively from Definition 13.3.1, we define

druf = du(d
r−1
u f) : U ⊂ E → Lr(E,F ) (13.21)

if it exists, where Lr(E,F ) := L(E × . . .× E︸ ︷︷ ︸
n times

, F ). If druf exists and is norm contin-

uous we say f is of class Cr.

Definition 13.3.3. Let E,F be Banach spaces. Let f : U ⊂ E → F and let u ∈ U .

We say that f has a derivative in the direction e ∈ E at u if

d

dt

∣∣∣∣
t=0

f(u+ te) (13.22)

exists. We call this element of F the Gateaux derivative.

Note that Frechet differentiability implies Gateaux differentiability (see [AMR,

Proposition 2.4.6]. This is analogous to differentiability implying the existence of

directional derivatives.

Definition 13.3.4. If f is Gateaux differentiable (see Definition 13.3.3) and if the

mapping E → L(E,F ) defined by u→ duf is continuous, then E is C1 Gateaux.

13.4 Local Surjectivity Theorem

Theorem 13.4.1. (Local Surjectivity Theorem) Let D be an open subset of X

and let T : D → Y be continuously differentiable. Let x0 ∈ D be a regular point,

i.e. T ′(x0) : X → Y is a surjective map. Then there is an open neighborhood N ′(y0)

of the point y0 = T (x0) such that the equation T (x) = y has a solution for every
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y ∈ N ′(y0). Furthermore, there exists an open set in D containing x0 such that T

maps this open set onto N ′(y0). In particular, if T ′(x) is onto for x ∈ D, then f is

an open mapping.

Proof. Let L0 = null T ′(x0). Since L0 is closed, X/L0 is a Banach space. Define

A : X/L0 → Y by A[x] = T ′(x0)x where [x] denotes the equivalence class of x,

modulo L0. A is well defined since equivalent elements yield the same y, i.e.

x1 = x2 =⇒ x1 ≡ x2

=⇒ A[x1] = A[x2].

(13.23)

This operator is linear:

A[x1 + x2] = T ′(x0)(x1 + x2) = T ′(x0)x1 + T ′(x0)x2 = A[x1] + A[x2]

A[kx] = T ′(x0)(kx) = kT ′(x0)x = kA[x]

(13.24)

continuous by the continuous differentaibility of T , injective (since A is defined on X

mod the kernel)

and onto:

y ∈ Y =⇒ by surjectivity of T ′(x0), ∃x s.t. y = T ′(x0)x

=⇒ A[x] = y.

(13.25)

Hence A−1 exists and is continuous (Banach Isomorphism Theorem see [AMR] Page

63). Let ε > 0 be given. By the continuity of T ′, there exists r > 0 such that

‖x− x0‖ < r implies ‖T (x)− T (x0)‖ < ε. However, since we want our neighborhood

of x0 to be contained in D, we make a further restriction on the neighborhood of x0.

Define

d = dist(x0, D
c) = inf {‖u− x0‖ : u ∈ Dc} (13.26)

and take all x ∈ X such that ‖x− x0‖ < r′ where r′ = min(r, d). Note that for such

x we still have ‖T ′(x)− T ′(x0)‖ < ε. Let y ∈ N ′(y0) so that y is sufficiently close to
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y0. In particular,

N ′(y0) =

{
y ∈ Y : ‖y − y0‖ <

r′

4 ‖A−1‖

}
. (13.27)

We now construct a sequence of elements Ln from X/L0 and gn ∈ Ln. Let g0 =

0 ∈ L0. We prove by induction that ‖gn‖ < r′ for all n.

Define L1 recursively by

L1 − L0 = A−1(y − T (x0 + g0))

= A−1(y − T (x0))

= A−1(y − y0).

(13.28)

Note that A[x] = T ′(x0)x, implying

A[Li] = T ′(x0)Li

=⇒ Li = A−1(T ′(x0)Li).

(13.29)

Therefore

L0 = A−1(T ′(x0)L0) = A−1(T ′(x0) · 0) = A−1(0) = [0]. (13.30)

Then L1 − L0 = A−1(y − y0) becomes

L1 = A−1(y − y0). (13.31)

Select g1 ∈ L1 such that ‖g1 − g0‖ ≤ 2 ‖L1 − L0‖ which is possible since ‖L1 − L0‖ =

inf
g∈L1

‖g − g0‖. Note that ‖g1 − g0‖ ≤ 2 ‖L1 − L0‖ is the same as

‖g1 − 0‖ ≤ 2 ‖L1 − [0]‖ (13.32)

or

‖g1‖ ≤ 2 ‖L1‖ . (13.33)

Since L1 = A−1(y − y0), this implies

‖g1‖ ≤ 2 ‖L1‖ ≤ 2
∥∥A−1

∥∥ ‖y − y0‖ < 2
∥∥A−1

∥∥ r′

4 ‖A−1‖
=
r′

2
. (13.34)
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Next, we prove the nth case, ‖gn‖ < r′. Assume ‖gn−1‖ , ‖gn−2‖ < r′. Define

Ln − Ln−1 = A−1(y − T (x0 + gn−1)). (13.35)

Select gn ∈ Ln such that

‖gn − gn−1‖ ≤ 2 ‖Ln − Ln−1‖ . (13.36)

Since A−1(T ′(x0)gn−1) = [gn−1] = Ln−1,

Ln = A−1(y − T (x0 + gn−1)) + Ln−1

= A−1(y − T (x0 + gn−1)) + A−1(T ′(x0)gn−1)

= A−1(y − T (x0 + gn−1) + T ′(x0)gn−1).

(13.37)

Similarly,

Ln−1 = A−1(y − T (x0 + gn−2) + T ′(x0)gn−2). (13.38)

Therefore,

Ln − Ln−1 = A−1(y − T (x0 + gn−1) + T ′(x0)gn−1)

− A−1(y − T (x0 + gn−2) + T ′(x0)gn−2)

= A−1 (−T (x0 + gn−1) + T (x0 + gn−2) + T ′(x0)(gn−1 − gn−2))

= −A−1 (T (x0 + gn−1)− T (x0 + gn−2 − T ′(x0)(gn−1 − gn−2)) .

Define gt = tgn−1 + (1− t)gn−2.Note that ‖gn−1‖ , ‖gn−2‖ < r′ implies ‖gt‖ < r′.

Then

‖Ln − Ln−1‖ ≤
∥∥A−1

∥∥ ‖T (x0 + gn−1)− T (x0 + gn−2 − T ′(x0)(gn−1 − gn−2)‖

≤
∥∥A−1

∥∥ sup
0≤t≤1

‖T ′(x0 + gt)(gn−1 − gn−2)− T ′(x0)(gn−1 − gn−2)‖

≤
∥∥A−1

∥∥ ‖gn−1 − gn−2‖ sup
0≤t≤1

‖T ′(x0 + gt)− T ′(x0)‖ .

Since T ′ is continuous at x0, ‖(x0 + gt)− x0‖ = ‖gt‖ < r, implying

‖T ′(x0 + gt)− T ′(x0)‖ < ε. Therefore,

‖Ln − Ln−1‖ ≤
∥∥A−1

∥∥ ‖gn−1 − gn−2‖ ε. (13.39)
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We have already shown ‖gn − gn−1‖ ≤ 2 ‖Ln − Ln−1‖, implying

‖gn − gn−1‖ ≤ 2
∥∥A−1

∥∥ ‖gn−1 − gn−2‖ ε. (13.40)

Thus, for ε sufficiently small

(
ε =

1

4 ‖A−1‖

)
,

‖gn − gn−1‖ ≤ 1

2
‖gn−1 − gn−2‖ . (13.41)

Therefore,
‖gn‖ = ‖g1 + (g2 − g1) + · · ·+ (gn − gn−1)‖

≤ ‖g1‖+ ‖g2 − g1‖+ · · ·+ ‖gn − gn−1‖

= ‖g1‖+
1

2
‖g1‖+ · · ·+ 1

2n−1
‖g1‖

= (1 +
1

2
+ · · ·+ 1

2n−1
) ‖g1‖

= 2 ‖g1‖

< 2

(
r′

2

)
= r′.

(13.42)

This completes the induction, we conclude ‖gn‖ < r′ for all n. Additionally,

‖gn − gn−1‖ ≤ 1

2
‖gn−1 − gn−2‖ (13.43)

for all n, implying gn is Cauchy. Thus, gn → g. Similarly, we have

‖Ln − Ln−1‖ ≤
∥∥A−1

∥∥ ‖gn−1 − gn−2‖ ε. (13.44)

Hence, Ln → L. Therefore,

Ln = Ln−1 + A−1(y − T (x0 + gn)) (13.45)

converges to (by the continuity of A−1 and T )

L = L+ A−1 (y − T (x0 + g))

=⇒ 0 = A−1 (y − T (x0 + g)) .

(13.46)
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Thus, by the injectivity of A−1

0 = y − T (x0 + g). (13.47)

We conclude T (x0 + g) = y. Hence, there exists N ′(y0) such that the image of

T ({x : ‖x− x0‖ < r′}) contains N ′(y0), where {x : ‖x− x0‖ < r′} ⊂ D. Note x0 ∈

D. Thus, there exists an open set in D containing x0 such that T maps this set onto

N ′(y0).

13.5 Proof of Lagrange Multiplier Theorem

We provide a proof of Theorem 9.1.4. First note the following (see [AMR, Theorem

3.5.2(ii)]):

Theorem 13.5.1. (Local Submersion Theorem) Let M and N be manifolds and f :

M → N be of class Cr, r ≥ 1. Suppose Tf restricted to the fiber TmM is surjective

to Tf(m)M . Then, if in addition, the kernel ker(Tmf) is split in TmM there are charts

(U, φ) and (V, ψ)with m ∈ U , f(U) ⊂ V , φ : U → U ′×V ′, φ(m) = (0,0), ψ : V → V ′

and fϕψ : U ′ × V ′ → V ′ is the projection onto the second factor.

The Local Submersion Theorem is used to prove the following:

Theorem 13.5.2. Let g : M → P be a C1 submersion, N = g−1(p0) and let f :

M → R be C1. A point n ∈ N is a critical point of f
∣∣
N

if and only if there exists

λ ∈ (Tp0P )
∗, called a Lagrange Multiplier, such that Tnf = λ ◦ Tng.

Proof. ⇒: Assume n ∈ N is a critical point of f
∣∣
N
. We first prove a local version of

the theorem. Let E ⊂M and F ⊂ P be open. Since g is a submersion and is C1, by
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Theorem 13.5.1 there exists charts (U, φ), (V, ψ)

φ : U → U1 × V1 ⊂ E × F

ψ : V → U1 ⊂ E

(13.48)

with U1 open in E, V1 open in F , g(U) ⊂ V , n ∈ U , φ(U∩N) = {0}×V1, φ(n) = (0, 0)

and p0 ∈ V (since N = g−1(p0) and g(U) ⊂ V ), ψ(p0) = 0 such that

gϕψ(x, y) = x (13.49)

for all (x, y) ∈ U1 × V1. Next, define fϕ = f ◦ φ−1 : U1 × V1 → R. Note that since f

is differentiable, we have

D2fϕ(0, 0) · e = D2f(n)︸ ︷︷ ︸
0

·e = 0 (13.50)

for all e ∈ E since Tnf

∣∣∣∣
TnN

= 0. Then, define µ = D1fϕ(0, 0) and let e ∈ E, d ∈ F ,

we get
Dfϕ(0, 0) · (e, d) = D1fϕ(0, 0)e+D2fϕ(0, 0)︸ ︷︷ ︸

0

d

= µ(e)

= (µ ◦Dg)(0, 0) · (e, d)

(13.51)

where the last line follows from D1gϕψ(x, y) = 1 and D2gϕψ(x, y) = 0. Thus,

Dfϕ(0, 0) = (µ ◦Dg)(0, 0) (13.52)

To get a global result, we pull back to M and P , let λ = µ ◦ Tp0ψ ∈ (Tp0P )
∗. Then

composing each side of Dfϕ(0, 0) = (µ ◦ Dg)(0, 0) from the right by Tnφ gives the

desired result.

13.6 Miscellaneous

Proposition 13.6.1. Let Yi, i = 1, . . . , n be a collection of Banach spaces with norm

‖x‖Yi. Then the space X =
n⋂
i=1

Yi with norm ‖x‖X = max
1≤i≤n

‖x‖Yi is a Banach space.
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Proof. First we verify ‖x‖X is norm:

1. We first show that ‖x‖X = 0 if and only if x = 0. Suppose ‖x‖X = 0. Then

‖x‖Yi = 0 for all i. Since ‖x‖Yi is already a norm by hypothesis, this implies

x = 0.

Next, suppose x = 0. Then ‖x‖Yi = 0 for all i. It follows ‖x‖X = 0.

2. Next, letting α ∈ R, we have

‖αx‖X = max
i

‖αx‖Yi

= max
i

|α| ‖x‖Yi

= |α|max
i

‖x‖Yi

= |α| ‖x‖X .

(13.53)

3. Last, we verify the triangle inequality:

‖x+ y‖X = max
i

‖x+ y‖Yi

≤ max
i

‖x‖Yi + ‖y‖Yi

= max
i

‖x‖Yi +max
i

‖y‖Yi

= ‖x‖X + ‖y‖X .

(13.54)

It remains to show that X is complete. Let xn be a sequence in X, converging to x.

Our goal is to show that x ∈ X. The sequence xn is also a sequence in each Yi. Since

each Yi is a Banach space, this implies xn converges to x ∈ Yi for all i. Thus, x ∈ X,

i.e. xn converges to an x ∈ X. We conclude X is a Banach space under the norm

‖x‖X = max
1≤i≤n

‖x‖Yi .

Lemma 13.6.2.

X ∩
⋃
α

Yα =
⋃
α

X ∩ Yα (13.55)
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Proof. First, let x ∈ X ∩
⋃
α

Yα. Then x ∈ X and x ∈ Yα0 for some α0. Therefore,

x ∈ X ∩ Yα0 . We conclude x ∈
⋃
α

X ∩ Yα.

Next, let x ∈
⋃
α

X ∩ Yα. Then x ∈ X ∩ Yα0 for some α0. In particular, x ∈ Yα0 .

Thus, x ∈ X ∩
⋃
α

Yα.

Proposition 13.6.3. Let X be a normed vector space and X0 be a closed subspace.

Let τX0 denote the norm topology on X0 and τr denote the subspace topology on X0.

Then τX0 = τr.

Proof. Let B0
δ (x), an open ball of radius δ > 0 centered at x, be an element of τX0 .

Let τX denote the norm topology on X and note Bδ(x) ∈ τX . Then

B0
δ (x) = X0 ∩Bδ(x). (13.56)

Thus, B0
δ (x) ∈ τr.

Next, let B ∈ τr. Then B = X0 ∩A where A ∈ τX . Then A can be written as the

union of open balls in τX , A =
⋃
x

Bδx(x), where Bδx(x) is a ball of radius δx centered

at x. Therefore
B = X0 ∩

⋃
x

Bδx(x)

=
⋃
α

X0 ∩Bδx(x)
(13.57)

where the second line follows from Lemma 13.6.2. Since unions of open sets are open,

it suffices to show X0 ∩Bδx(x) is open. However,

X0 ∩Bδx(x) = {y ∈ X : y ∈ X0 and ‖x− y‖X < δ}

= {y ∈ X0 : ‖x− y‖X < δ}
(13.58)

which is an open set in X0. Thus, X0 ∩Bδx(x) is open.
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