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Abstract

The posterior predictive p-value (ppp-value) is currently the primary measure of fit

for Bayesian SEM. It is a measure of discrepancy between observed data and a

posited model, comparing an observed likelihood ratio test (LRT) statistic to the

posterior distribution of LRT statistics under a fitted model. However, the LRT

statistic requires a likelihood, and multiple likelihoods are available for a given SEM:

we can use a marginal likelihood that integrates out the latent variable(s), or we can

use a conditional likelihood that conditions on the latent variable(s). A ppp-value

based on conditional likelihoods is unexplored in the SEM literature, so the goal of

this project is to study its performance alongside the marginal ppp-value. We present

comparisons of the marginal and conditional ppp-values using real and simulated

data, leading to recommendations on uses of the metrics in practice.

Keywords. Posterior predictive p-value, Bayesian SEM, Confirmatory Factor

Analysis Models, Latent Growth Models, model fit metrics
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Introduction

Until recently, applications of Bayesian analysis were limited outside of the field of

statistics, presumably because it was difficult due to complex statistical specifications

required (B. Muthen & Asparouhov, 2012). The development of Bayesian analysis in

Mplus provided a less technical software with convenient defaults, effectively

contributing to expanding the accessibility of Bayesian analysis in other fields of

study. With this increased accessibility, Bayesian methods have rapidly grown in

popularity and are often applied to many of the models found under the umbrella of

structural equation modeling (SEM). Some benefits to Bayesian analysis are: it

produces an analysis that better reflects substantive theories, it is useful for

measurement aspects of latent variable modeling (e.g., Confirmatory Factor Analysis

and measurement part of SEM), it is shown to perform well with both

non-informative and informative priors, and when a model is misspecified Bayesian

estimation with informative priors can outperform ML estimation (B. Muthen &

Asparouhov, 2012; Cain & Zhang, 2019; Lee, Cai, & Kuhfeld, 2016; Garnier-Villarreal

& Jorgensen, 2019; Gelman, Carlin, et al., 2013).

Despite this progress in the adoption of Bayesian methods into other fields of

study, there remain valuable expansions in methodology to investigate. For instance,

model fit and appraisal diagnostics have been understudied compared to model

building and estimation. Further, within the study of model fit and appraisal

diagnostics, there seems to be a focus on model comparison over model fit metrics. In

fact, popular model comparison criteria (e.g., AIC, DIC, WAIC) are often used

alongside or instead of model fit metrics in the literature (Bozorgzadeh & Bathurst,

2019; Levy, 2011; Cain & Zhang, 2019).

Model comparison has its merits, but we are interested here in expanding

knowledge about and encouraging the use of metrics to judge the absolute fit of a

model. There are multiple avenues one could travel to explore model fit metrics in the
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Bayesian framework. To start, Bayesian model fit metrics can largely be categorized

as prior predictive or posterior predictive model checking. Prior predictive model

checking does not require the model to be fit to the current data set and is completely

dependent on the choice of the prior. Posterior predictive model checking uses a

posterior distribution based on the model after the data have been incorporated and

therefore is more influenced by the data (Levy, 2011). Further, there are even more

choices for selecting model fit metrics within these categories of prior predictive and

posterior predictive model checking. However, we will be focusing on a metric that

falls within posterior predictive model checking, which seems to be more popular than

prior predictive model checking (Lee et al., 2016; Levy, 2011). Specifically, we will be

focusing on the posterior predictive p-value.

Meng (1994) promoted use of the posterior predictive p-value (ppp-value), which is

currently the primary measure of fit for Bayesian SEM. The ppp-value should not be

confused with the classical (frequentist) p-value and the formal hypothesis testing and

ad hoc methods associated with it. In many practical situations in the classical

setting, nuisance parameters interfere with calculating p-values. Nuisance parameters

refer to unknown parameters, which in our case would be the latent variables in our

models. In the classical setting, there is a two-level dependence on these nuisance

parameters, with the first-level dependence being a dependence of a discrepancy

variable on the nuisance parameters and the second-level dependence being a

dependence of the sampling distribution on the nuisance parameters. Solutions that

account for these nuisance parameters produce p-values that are not the tail-area

probabilities the classical approach intended (Meng, 1994; Lancaster, 2000;

Woutersen, 2001). Bayesian formulation better defines and evaluates the tail-area

probability underlying the classical setting (Meng, 1994). For this reason, Meng

(1994) suggested that the ppp-value could serve as a Bayes/non-Bayes compromise

that could promote Bayesian methods of statistical inference in areas of study where
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full Bayesian analyses are not yet accepted as a standard approach.

Use of the ppp-value and Bayesian methods in general have gained popularity

since Meng’s (1994) article in areas outside of statistics, like the social sciences. This

expansion into other areas has resulted in a recent boost in articles addressing topics

such as model fit assessment for Bayesian SEM (Asparouhov & Bengt, 2019;

Garnier-Villarreal & Jorgensen, 2019; Levy, 2011), Bayesian model comparison

metrics (Bozorgzadeh & Bathurst, 2019; Cain & Zhang, 2019; Gelman, Hwang, &

Vehtari, 2013), and more flexible and efficient methodology for model estimation and

model checking (Lee et al., 2016). These articles usually offer advice on how to use a

given procedure or present a newer, more efficient way to carry out widely used

procedures. Our project is a little more pointed than many of these articles because

we will be investigating the behavior of ppp-values calculated in different manners.

Although there are multiple statistics that can be used for calculating ppp-values, the

likelihood ratio statistic has been widely used. We will be comparing this standard

ppp-value calculated with a marginal likelihood against a ppp-value calculated with a

conditional likelihood. In the spirit of the earlier mentioned articles, we will compare

the standard option against the alternative and then offer recommendations for use.

In our study, the ppp-value is a measure of discrepancy between the observed data

and posited assumptions that compares the observed likelihood ratio test (LRT)

statistic to the posterior distribution of LRT statistics under a fitted model. If the

model fits the observed data well, then the observed LRT statistic should fall in the

middle of the posterior distribution of LRT statistics. The proportion of times that

the posterior predictive LRT statistic is greater than the observed LRT statistic is the

ppp-value. This proportion can be any value from 0 to 1, with values close to 0.5

indicating good model fit and values approaching 0 indicating misfit. Other than the

extreme values just mentioned, there are not established cutoffs for ppp-values.

Instead, they can be thought of as the probability of the fitted model producing a
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data set like the observed data set (Gelman & Shalizi, 2013).

Meng’s (1994) procedure for calculating ppp-values can be condensed into the

following steps with LRT statistics computed for each posterior draw νs (s = 1 ...S):

1. Compute the observed LRT statistic, LRT(Y, νs)

2. Simulate data Y rep from the model

3. Compute the posterior predictive LRT statistic, LRT(Y rep, νs)

4. Record whether or not LRT(Y rep, νs) > LRT(Y, νs)

Marginal and Conditional ppp-values

An LRT statistic can be calculated using either a marginal likelihood or a

conditional likelihood, with the difference between the two being their respective

treatments of latent variables fi in a given model. When calculating the marginal

ppp-value, fi does not count as a model parameter and is integrated out, as shown in

(1). In contrast, when calculating the conditional ppp-value fi does count as a model

parameter, with xi conditioning on fi, as shown in (2) and (3). More specifically, all

three of these equations are depicting the marginal or conditional data needed for

calculating the marginal and conditional likelihoods for a Confirmatory Factor

Analysis model with one latent variable and three manifest variables. These equations

can also be used for a latent growth model.

xi ∼ N(ν,λσ2
fλ

′ +ψ) (1)

In (1), xi represents marginal data, ν represents the means for the manifest

variables, λ represents the factor loadings, σ2
f represents variances for manifest

variables, and ψ represents variances for the latent variables.

xi|fi ∼ N(ν + λfi,ψ) (2)
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with

ψ =


σ2

1 0 0

0 σ2
2 0

0 0 σ2
3

 (3)

In equation (2), xi|fi represents the conditional data (note that the data is

conditioned on the latent variable fi), ν represents the means for the manifest

variables, λ represents the factor loadings, and ψ represents a covariance matrix for

the manifest variables. Equation (3) shows that the covariance matrix ψ consists of a

main diagonal of σ2 values representing the variances for each manifest variable and

zeros for all off-diagonal values. For these equations a single factor model is being

depicted, but multifactor models will have an additional variable α representing the

mean for the factors.

Practically speaking, the marginal method of calculating the ppp-value is related

to the population behind the data, while the conditional method is related to the

specific data being used (i.e., conditional is more influenced by the specific sample

than the marginal) (e.g., E. C. Merkle, Furr, & Rabe-Hesketh, 2019). In the context

of the parameters described earlier, the conditional likelihood has parameters fi that

are specific to each observation in the data, meaning that the conditional likelihood is

more tailored to the observations at hand. For the marginal likelihood we average the

fi parameters, so the marginal likelihood is more about the population.

So far, ppp-values calculated with the marginal likelihood have been the standard

and ppp-values calculated with the conditional likelihood have been unexplored in the

SEM literature. For this reason, we are interested in comparing marginal and

conditional ppp-values. Because calculating ppp-values with conditional likelihoods is

not standard practice, it was necessary to write code that calculates ppp-values with

conditional likelihoods.
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In the sections below, we will examine ppp-values in the context of confirmatory

factor analysis (CFA) and latent growth models. First, we will estimate models for

simulated and real data for multiple CFA models. Then we will do the same for a

group of latent growth models. We described the general process for calculating

ppp-values earlier, but the process specific to the model types we will be using

involves extracting parameters from our estimated models to simulate data sets for

calculating marginal and conditional log likelihoods and saturated log likelihoods.

The marginal and conditional log likelihoods and saturated log likelihoods, in turn,

are used to calculate marginal and conditional observed and posterior predictive LRT

statistics. This process repeats for a number of simulations, eventually resulting in a

ppp-value produced by computing the proportion of times that the posterior

predictive LRT statistic is greater than the observed LRT statistic.

We will first use simulated data to understand the behavior of the ppp-values,

followed by applications of the ppp-values to real data. Then we will summarize our

conclusions from these comparisons of marginal and conditional ppp-values and offer

recommendations for use of the metrics in practice.
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Chapter One: Confirmatory Factor Analysis

Data for the CFA models were based on the Holzinger and Swineford data set

available in R (Holzinger & Swineford, 1939). These models had one latent variable

and 3 to 4 manifest variables. CFA models were analyzed with the bcfa function in

blavaan (E. Merkle & Rosseel, 2018). After estimating the model, parameters were

extracted and used for simulating data sets and calculating likelihoods for ppp-values,

as described earlier in Meng’s (1994) 4-step procedure.

Simulated Data

Methods. Our simulated data set is a multivariate normal data set with three

manifest variables and 100 observations. The model constructed for these simulated

data is depicted in Figure 1. This model has one latent variable f , influencing the

values for the three manifest variables x1, x2, and x3. The values for the variables

found in Figure 1 are depicted in (4)–(8) below. These equations show how the

parameters listed earlier for extraction can be used to estimate xi, fi, and the error

for each manifest variable. These estimations contribute to simulating data for

ppp-value calculation.

xi = ν + λ× fi + ei (4)

fi ∼ N(0, σ2
f ) (5)

e1i ∼ N(0, σ2
1) (6)

e2i ∼ N(0, σ2
2) (7)

e3i ∼ N(0, σ2
3) (8)

The values for this data set are based on estimates from real data, with the means

for the manifest variables (ν) set to 0, 5, and 10, respectively. The three factor

loadings (λ) were set to 1, 6, and 11, respectively. Variances for manifest variables (θ)
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x1

x2

x3

α

λ1 = 1

λ2

λ3

ψ

Figure 1 . CFA Model 1 Path Diagram

were set to 4, 9, and 16, respectively. The variance for the latent variable (ψ) and the

first factor loading for these models were all set to 1. The matrix of values for latent

variables (fi) was calculated using the provided mean (mean of α) and variance (ψ)

for the latent variable. In this case, mean of α is 0 and ψ is 1.

Results. The model using the simulated data had a conditional ppp-value of 0.5

and a marginal ppp-value of 0.5. Both values were around 0.5, which indicates a good

model fit. These results indicate that our code works because we generated data

directly from the model, which was built with the true population values in mind (we

know these values because we simulated the data). These findings gave us confidence

that the code we had written to calculate marginal and conditional ppp-values

worked as intended for CFA models and that we could test with real data.

Applied Data

Methods. For applied data, we used the Holzinger and Swineford data set (N =

301) that can be found in lavaan (Rosseel, 2012). This data set consists of mental
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ability scores for seventh- and eighth-grade students from two schools in Chicago, IL,

in 1939. For our project, we will be using the manifest variables labeled x1, x2, x3,

x4, x8, and x9. Variables x1–x3 contain participants’ scores on three spatial ability

tests. Variable x4 contains participants’ score on a verbal ability measure. Variables

x8 and x9 contain participants’ scores on two mental speed tests.

We built three models for the Holzinger and Swineford data set that had varying

degrees of fit. These models each had one latent variable and three to four manifest

variables. The first model and the one that is supposed to have the best fit uses

variables x1–x3, i.e., a model that reflects participants’ spatial abilities. The structure

to this model is identical to that used with the simulated data, so Figure 1 can also

represent this model.

The first model, in theory, should have good fit because the manifest variables all

measure the same construct. This is a good start, but it is more interesting to see

how marginal and conditional ppp-values may differ as model fit decreases. For this

reason, we built the second model with variables x1–x4. This model has variables

reflecting both spatial and verbal abilities, so this should lead to worse model fit. The

path diagram in Figure 2 represents this second model.

Our third CFA model uses variables x1, x2, x8, and x9. With half of the manifest

variables representing spatial abilities and the other half representing mental speed,

this model should be the worst fitting of the three models. The path diagram in

Figure 3 represents the final CFA model.

Results.

CFA Model 1 Results. The first model we built for the Holzinger and

Swineford data set used manifest variables x1–x3 and is depicted in Figure 1. These

three manifest variables contained participants’ scores in three spatial ability tests.

Summary statistics for model 1 can be found in Table 1 in the Appendix. All

estimates had R-hat values of 1, indicating convergence (this will be the case for all
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x1

x2

x3

x4

α

λ1 = 1

λ2

λ3

λ4

ψ

Figure 2 . CFA Model 2 Path Diagram

x1

x2

x8

x9

α

λ1 = 1

λ2

λ3

λ4

ψ

Figure 3 . CFA Model 3 Path Diagram
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models described). The marginal ppp-value was 0.47, and the conditional ppp-value

was 0.54. Both of these values stay close to 0.5, indicating that there is a good model

fit.

CFA Model 2 Results. Our second model built to test the Holzinger and

Swineford data set used variables x1–x4, and its structure can be found in the path

diagram in Figure 2. This model used manifest variables containing participants’

scores on three spatial ability tests (variables x1–x3) and one verbal ability test

(variable x4). We included variable x4 in model 2 to decrease model fit and record

any differences that may occur between the marginal and conditional ppp-values.

The summary statistics for model 2 can be found in Table 2 in the Appendix. The

R-hat values for all the estimates are around 1, indicating convergence. For model 1,

the marginal and conditional ppp-values were close in value, but the addition of

variable x4 in model 2 increased the difference between the two ppp-values. For this

model, the marginal ppp-value was 0.09, and the conditional ppp-value was 0.45. In

this case, the marginal ppp-value indicates poor model fit, and the conditional

ppp-value remains close to 0.5 and indicates good model fit. These results were

intriguing because they indicated the potential for disagreement between the

marginal and conditional ppp-values on model fit as models became more ill-fitting.

CFA Model 3 Results. With the two previous models discussed, the

conditional ppp-value stayed close to 0.5. We were unsure if these results indicated

that conditional ppp-values always indicate good model fit or if they are inclined to

indicate better model fit than marginal ppp-values. For this reason, the third CFA

model built for the Holzinger and Swineford data set incorporated a mix of test score

types in hopes that it would have poor enough fit to budge the conditional ppp-value

away from 0.5. This model used variables x1, x2, x8, and x9, with half of these

variables containing participants’ scores on spatial ability tests (variables x1 and x2)

and the other half containing participants’ scores on mental speed tests (variables x8
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and x9). The structure of this model can be found in the path diagram in Figure 3.

The summary statistics for this model can be found in Table 3 in the Appendix.

As was the case with the previous models, R-hat values were around 1, indicating

convergence. The marginal ppp-value was 0.05 and the conditional ppp-value was

0.18. As was the case for models 1 and 2, the conditional ppp-value indicated a better

model fit than the marginal ppp-value, but for this model the conditional ppp-value

had moved away from 0.5.

CFA Models Discussion

In this chapter, we presented four CFA models. One model was built for simulated

data and ensured the code we had written to calculate marginal and conditional

ppp-values produced expected results. After confirming that our code produced

expected results for CFA models, we examined three models with decreasing model fit

for the Holzinger and Swineford data set. The graph in Figure 4 plots the marginal

and conditional ppp-values for the applied data set models. This graph shows a trend

of the conditional ppp-values having larger values than their marginal counterparts.

In other words, we found that the conditional ppp-values indicated better model fit

than the marginal ppp-values for the CFA models we tested.

Although the results we found are promising for indicating a pattern in the

relationship between marginal and conditional ppp-values within CFA models, there

are some difficulties that must be addressed. For one, we would have to compare many

more models to be able to generalize the results we found. Ideally, we would have

many more models for more data sets (simulated and real) estimated for comparison.

With the handful of models and data sets we used, the pattern of conditional

ppp-values indicating better fit than the marginal could be a fluke dependent on the

specific models or data we used. The only way to address this and be more certain

the pattern exists is by comparing more models and data sets. Another concern that
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comes up is that our findings may be limited to this specific type of model or data

(i.e., CFA models or the type of data used in CFA models). To address this concern,

the next chapter considers the same issues in the context of latent growth models.

0.1

0.2

0.3

0.4

0.5

Model 1 Model 2 Model 3
Model

pp
p−

va
lu

e Type

Conditional

Marginal

Figure 4 . CFA Model ppp-values Comparison
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Chapter Two: Latent Growth Models

The procedure for the Latent Growth model testing mirrors that of the CFA

models, except for some extra parameters that were described earlier that will be

accounted for. This difference in the parameters extracted is a reflection of the fact

that the models proposed here will have two latent variables instead of one. The

recommended minimum number of occurrences for a Latent Growth model varies

depending on the complexity of the model, with 3 or 4 time points being the

recommended number of occurrences for a linear model (Whittaker & Khojasteh,

2017; Curran, Obeidat, & Losardo, 2010; L. Muthen, 1999). For this reason, these

proposed models will also have more manifest variables (4–5 instead of 3–4) than the

CFA models to ensure that enough parameters are identified in the models. Latent

Growth models will be analyzed with the bgrowth function in blavaan (E. Merkle &

Rosseel, 2018). After running the model, parameters will be extracted and used for

simulating data sets that will be used to calculate likelihoods for ppp-value

calculation.

Simulated Data

Methods. When we simulated data for the CFA models, we created a data set

from scratch. Creating a data set from scratch that can be used for Latent Growth

models is more complicated, so we used the sleep study data set (N = 18) found in

the lme4 package in R (Bates, Mächler, Bolker, & Walker, 2015) to simulate data.

This data set contains the average reaction time of 18 truck drivers over the course of

9 days. During this time, participants had their normal amount of sleep on day 0 and

were limited to 3 hours of sleep per night on days 1–9. Each day, the participants

were given a series of tests to measure average reaction time for that day. This data

set has 180 observations for three variables: average reaction time in milliseconds

("Reaction"), number of days of sleep deprivation ("Days"), and participant
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("Subject").

Simulating data from the sleep study data set involved building a model for the

sleep study data set so that we could extract parameters for simulating the data. Our

simulated data set had 2000 observations and four manifest variables. As can be seen

in Figure 5, the model we built to test the simulated data set has two latent variables

and four manifest variables.

x0

x1

x2

x3

α1

α2

λ1 = 1

λ2 = 1

λ3 = 1

λ4 = 1

λ5 = 0

λ6 = 1

λ7 = 2

λ8 = 3

ψ
1

ψ
2

ψ
co

v

Figure 5 . Latent Growth Model 1 Path Diagram

Results. The model we built for this data did not wholly produce the

ppp-values we expected and had gotten for the simulated data for the CFA models.

The marginal ppp-value for this model was higher than we expected, with a value of

0.85, and the conditional ppp-value was what we had expected with a value of 0.52.

Although the marginal ppp-value was higher than the expected value of 0.5, it did

equal the marginal ppp-value provided by the blavaan package, which suggests that
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the marginal ppp-value is accurate. This may indicate that there is something about

the data we created that is causing this strange marginal ppp-value rather than the

code we created not working. Whenever we repeated this procedure with a new

generated data set, we found results that were more in line with what we had seen

before. With the new generated data set the marginal ppp-value for the model was

0.43 and the conditional ppp-value was 0.51. After this, we carried on with analyzing

the models for the sleep study data set.

Applied Data

Methods. The proposed models for this portion of the project each have two

factors (the intercept and slope) and 4–5 manifest variables, with each variable

representing one day in the sleep study. The first proposed model will use the four

manifest variables containing participants’ average reaction times on days 0 through 3

of the study. This model has the same structure as the one used for the simulated

data, so the path diagram in Figure 5 also depicts this model. The second model will

use participants’ reaction times on days 0, 2, 4, 7, and 9 of the study. The structure

of this model is depicted in Figure 6. Finally, the third model will use participants’

reaction times on days 0, 4, 5, and 9 of the study. Figure 7 depicts the structure of

this last model.

Results.

Latent Growth Model 1 Results. Model 1 is represented in the path

diagram found in Figure 5, and the estimates for this model can be found in Table 4

in the Appendix (the loadings for the model are included at the top of the table).

This model had R-hat values of 1, so it did converge. For this model, the marginal

ppp-value was 0.31, indicating a mediocre model fit. In contrast, the conditional

ppp-value was 0.44, indicating good model fit.



MARGINAL & CONDITIONAL PPP-VALUES IN BAYESIAN SEM 17

x0

x2

x4

x7

x9

α1

α2

λ1 = 1

λ2 = 1

λ3 = 1

λ4 = 1

λ5 = 1

λ6 = 0

λ7 = 1

λ8 = 2

λ9 = 3

λ10 = 4

ψ
1

ψ
2

ψ
co

v

Figure 6 . Latent Growth Model 2 Path Diagram

Latent Growth Model 2 Results. Model 2 is depicted in Figure 6, and its

loadings and estimates are in Table 5 in the Appendix. The marginal ppp-value was

0.34, and the conditional ppp-value for this model was 0.41. As was the case with the

first model, the marginal ppp-value indicates a mediocre model fit and the conditional

ppp-value indicates a good model fit.

Latent Growth Model 3 Results. Model 3 is depicted in Figure 7, and this

model’s loadings and estimates are in Table 6 in the Appendix. As was the case for

all the other models, this model had R-hat values at 1, indicating that the model

converge. For this model, the marginal ppp-value is 0.29, and the conditional
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Figure 7 . Latent Growth Model 3 Path Diagram

ppp-value is 0.39. Similar to the earlier models, the marginal ppp-value indicates

mediocre model fit, and the conditional ppp-value indicates fair model fit.

Latent Growth Models Discussion

Our model for the simulated data produced a conditional ppp-value indicating

excellent model fit, which is expected when using simulated data, but the marginal

ppp-value had a high value indicating that it was ordered differently than the other

ppp-values. It is possible the sleep study data set was a peculiar data set, resulting in

the unusual marginal ppp-value produced. The fact that the marginal ppp-value

matched the marginal ppp-value provided by preexisting software (blavaan) gives us

confidence in the accuracy of our results.

As can be seen in Figure 8, the applied models had mediocre to good model fit,
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with the conditional ppp-values indicating a better model fit than the marginal.

These results were on par with what we had expected and mirrored the trend we

noticed with the CFA models.

There were more difficulties involved with this portion of the project compared to

the portion for CFA models. It was more difficult to write the code for calculating

ppp-values compared to the CFA models because we were adapting the existing CFA

code to this more complex model, which had the extra alpha parameter and multiple

latent variables. Additionally, it is trickier to simulate data for this type of model,

which further contributed to making it difficult to check that our code calculated

reasonable ppp-values for our models. Finally, as was the case with the CFA models,

many more models and data sets being used for these comparisons would be useful in

determining if we can generalize the trends we found with the relationship between

marginal and conditional ppp-values.
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Figure 8 . Latent Growth Model ppp-values Comparison
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Conclusions

For this project, we explored the relationship between marginal and conditional

ppp-values by comparing them in the context of Bayesian SEM. We built multiple

CFA and Latent Growth models and studied them using simulated and applied data

sets. For all of these models, we recorded a trend of conditional ppp-values being

closer to 0.5 and therefore indicating better model fit than their marginal

counterparts. These findings make sense for two reasons. The first reason is that

posterior checking double-uses actual observations by testing the actual observations

with a predictive distribution learned from the actual observations. This double-use

of the observations results in an optimistic bias in which ppp-values are concentrated

around 0.5 rather than being uniformly distributed between 0 and 1 (Qiu, Feng, & Li,

2017; Marshall & Spiegelhalter, 2007). The second reason these findings make sense is

because conditional ppp-values are related to a model’s fit to the specific people who

were observed in the data, whereas the marginal ppp-values are related to the model’s

fit to the population of interest (for more discussion of these differences, see

E. C. Merkle et al., 2019). The combination of ppp-values having an optimistic bias

towards 0.5 anyway because of double-use of data and that conditional ppp-values are

more related to their specific data than the marginal could be contributing to the

conditional ppp-values being larger than their marginal counterparts.

Although the conditional ppp-values exhibited a pattern of indicating better model

fit than the marginal ppp-values, the size of the difference between the conditional

and marginal ppp-values for a given model varied. For instance, the conditional

ppp-value for the second applied CFA model is 0.41 and the marginal ppp-value is

0.34, which has a difference of 0.07. These values have a large enough difference that,

in this case, the conditional and marginal ppp-values indicate different degrees of

model fit for the same model. This instance presents a potential problem when using

conditional and marginal ppp-values: there is the possibility that for some models the
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conditional and marginal ppp-value may disagree on model fit.

With the current trend that we have recorded, users should be aware that there is

the potential for abuse of the conditional ppp-value by researchers who want their

models to fit their data and who would prefer statistics that indicate good fit.

However, the differences in marginal and conditional ppp-values may also be

informative about the degree and sources of misfit in a dataset.

Limitations

As mentioned before, one of the study’s limitations includes the limited number of

data sets and models tested, making it difficult to determine what results are caused

by quirks in the data or specific models tested and what results can be generalized to

represent the general behavior of conditional and marginal ppp-values. Based on our

findings, it seems likely that the conditional ppp-value will generally indicate better

fit — or at least be closer to 0.5 — than its marginal counterpart for CFA and Latent

Growth models. However, these results cannot be generalized to other model types

until more model types and data sets have been examined. The last limitation that

will be mentioned here is that there may be more efficient ways of determining model

fit. Looping through the same model hundreds or even thousands of times can add

up, especially for more complex models. For our code, the loops are not dependent on

each other, so our code’s efficiency may improve if we can successfully parallelize our

for-loops. This may be possible in R by rewriting the for-loop as an lapply call or by

using foreach loops in conjunction with either the package doMC or doSNOW,

depending on which OS is being used (Microsoft & Weston, 2020; Wallig, Analytics,

& Weston, 2020; Corporation & Weston, 2020). Some other options in R for parallel

processing are the parallel and future packages (R Core Team, 2020; Bengtsson,

2020). The parallel package is part of the core distribution of R and uses multiple

cores on the user’s machine. This package is supposed to be fairly simple to use
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(compared to other options for parallel processing). The future package implements

the Future API for parallel processing and R code can be evaluated on a local

machine, in parallel a set of local machines, or distributed on a mix of local and

remote machines. Another thing to note is that the parallel and future packages are

not restricted to an OS like some of the other packages mentioned are.

Future Directions

The work that has been described so far has set a foundation for how we think the

degree of model fit provided by marginal and conditional ppp-values compare to each

other, but more can be done to increase confidence in the conclusions we have drawn.

First, the ppp-values for many more models with varying data sets could be

calculated and compared. For instance, a simulation study could be set up that

catalogs the marginal and conditional ppp-values for hundreds of models. If this gave

similar results to what we found, we could be more confident in our conclusions.

Second, our conclusions would be even more compelling if we could back up our

findings with a proof-type solution demonstrating that conditional ppp-values are

inclined to indicate better model fit than marginal ppp-values.

In addition to corroborating what we already found, future research paths also

include examining the behavior of conditional and marginal ppp-values for an even

broader range of model types and data. Part of this exploration could involve using

other metrics in conjunction with marginal and conditional ppp-values to establish a

better idea of what true model fit is when marginal and conditional ppp-values

disagree. Garnier-Villarreal and Jorgensen (2019) propose multiple BSEM

counterparts to frequentist chi-square-based SEM fit indices that could be used in

conjunction with the marginal and conditional ppp-values. In particular,

BRMSEAPPMC and BRMSEADevM would be interesting to look into in conjunction

with marginal and conditional ppp-values. When there are large samples in which
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ppp-values would reject models with even minor misspecification, BRMSEAPPMC

complements ppp-values because it will indicate approximately well-fitting models are

acceptable (Garnier-Villarreal & Jorgensen, 2019). BRMSEADevM is similar to

BRMSEAPPMC, but it more closely estimates the same quantity that RMSEA

estimates in a frequentist framework. Because of the complementary nature of the

relationship between ppp-values and BRMSEA metrics, BRMSEA may offer insight

into the cases when marginal and conditional ppp-values disagree.

Not only could we incorporate other metrics to expand on the type of work we

have conducted in this paper, but there are also many other uses for ppp-values that

could be explored. Some examples that have been found in the literature but could

be explored further is using ppp-values to identify outliers or influential cases and to

assess and compare different priors and models (Bozorgzadeh & Bathurst, 2019;

Hjort, Dahl, & Steinbakk, 2006). Rather than limiting the use of the ppp-value as an

absolute model fit metric, it can be used to test essentially any component of the

model. Using the ppp-value in this fashion could improve model building and model

selection. On trend with the rest of this project it would be interesting to examine

this use of the ppp-value in the context of marginal and conditional ppp-values.

As stated in the beginning, there is still much to be explored in using Bayesian

SEM in Psychology. Our findings indicate that keeping marginal ppp-values as the

standard may be best considering most researchers are interested in generalizable

models. However, it seems that conditional ppp-values could be valuable in assessing

model fit for researchers interested more in the sample than the overall population.
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Appendix

The tables here contain the summary statistics for the applied models described

earlier. In these tables, "Latent Variables" corresponds to summary statistics for

factor loadings, "Intercepts" corresponds to summary statistics for intercept values for

manifest or latent variables, "Variances" corresponds to summary statistics for

variances for manifest or latent variables, and for the Latent Growth models

"Covariances" corresponds to summary statistics for the covariance of the latent

variables.
Table 1

CFA Model 1 Results

Estimate Post SD Lower Upper

Latent Variables

x1 1.000

x2 0.813 0.159 0.532 1.153

x3 1.261 0.324 0.799 2.083

Intercepts

x1 4.936 0.067 4.804 5.067

x2 6.087 0.068 5.955 6.22

x3 2.250 0.066 2.123 2.381

f 0.000

Variances

x1 0.886 0.128 0.64 1.142

x2 1.095 0.113 0.887 1.328

x3 0.581 0.175 0.114 0.864

f 0.480 0.136 0.24 0.767
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Table 2

CFA Model 2 Results

Estimate Post SD Lower Upper

Latent Variables

x1 1.000

x2 0.582 0.138 0.334 0.871

x3 0.750 0.154 0.473 1.086

x4 0.552 0.103 0.362 0.771

Intercepts

x1 4.934 0.068 4.799 5.066

x2 6.087 0.067 5.953 6.22

x3 2.249 0.065 2.121 2.379

x4 3.060 0.068 2.926 3.192

f 0.000

Variances

x1 0.564 0.161 0.191 0.85

x2 1.140 0.112 0.931 1.368

x3 0.860 0.109 0.651 1.08

x4 1.134 0.104 0.943 1.353

f 0.802 0.187 0.486 1.223
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Table 3

CFA Model 3 Results

Estimate Post SD Lower Upper

Latent Variables

x1 1.000

x2 0.616 0.170 0.308 0.981

x8 1.034 0.205 0.711 1.501

x9 1.704 0.417 1.082 2.675

Intercepts

x1 4.938 0.066 4.811 5.066

x2 6.089 0.068 5.956 6.222

x8 5.528 0.059 5.413 5.644

x9 5.376 0.058 5.262 5.487

f 0.000

Variances

x1 1.079 0.108 0.88 1.299

x2 1.298 0.110 1.094 1.525

x8 0.759 0.077 0.615 0.914

x9 0.288 0.139 0.007 0.537

f 0.280 0.093 0.125 0.483
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Table 4

Latent Growth Model 1 Results

Estimate Post SD Lower Upper

Latent Variables

Int Reaction 0 1.000

Int Reaction 1 1.000

Int Reaction 2 1.000

Int Reaction 3 1.000

Slope Reaction 0 0.000

Slope Reaction 1 1.000

Slope Reaction 2 2.000

Slope Reaction 3 3.000

Intercepts

Int 255.248 9.027 237.213 273.313

Slope 7.972 3.554 0.977 15.083

Variances

Reaction Times 229.415 61.026 139.954 372.189

Int 1292.962 689.683 483.872 3019.274

Slope 183.472 109.351 53.937 457.7

Covariances

Int:Slope -157.892 203.129 -623.812 139.498
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Table 5

Latent Growth Model 2 Results

Estimate Post SD Lower Upper

Latent Variables

Int Reaction 0 1.000

Int Reaction 2 1.000

Int Reaction 4 1.000

Int Reaction 7 1.000

Int Reaction 9 1.000

Slope Reaction 0 0.000

Slope Reaction 2 1.000

Slope Reaction 4 2.000

Slope Reaction 7 3.000

Slope Reaction 9 4.000

Intercepts

Int 247.691 7.979 231.795 263.61

Slope 24.218 4.096 16.224 32.468

Variances

Reaction Times 795.597 152.327 548.26 1141.186

Int 669.973 503.655 92.463 1951.709

Slope 220.876 136.819 61.15 574.368

Covariances

Int:Slope 71.713 170.137 -293.996 401.243
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Table 6

Latent Growth Model 3 Results

Estimate Post SD Lower Upper

Latent Variables

Int Reaction 0 1.000

Int Reaction 4 1.000

Int Reaction 5 1.000

Int Reaction 9 1.000

Slope Reaction 0 0.000

Slope Reaction 4 1.000

Slope Reaction 5 2.000

Slope Reaction 9 3.000

Intercepts

Int 255.832 8.596 238.651 272.88

Slope 30.256 5.595 19.043 41.272

Variances

Reaction Times 632.052 145.069 403.205 976.099

Int 886.065 605.396 180.749 2431.901

Slope 428.979 246.279 132.99 1054.364

Covariances

Int:Slope 224.239 254.420 -254.041 777.492
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