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ABSTRACT

Cloud ecosystems, technologies, and paradigms have transformed our world in recent

years revolutionizing supply chains, healthcare, energy distribution, as well as our home

functions. With everything in our lives so interconnected in these cloud systems, they

are now prime targets for targeted attacks such as Advanced Persistent Threats (APTs).

The targeted attacks lead to exposure of sensitive data (data exfiltration) as well as stolen

computing resources (resource exfiltration).

In this thesis, we present a novel methodology, which we call ADAPTs (Automated

Defense of Advanced Persistent Threats), developed to assist in defending cloud systems

against APTs. We show how ADAPTs can be extended to defend against other targeted

attacks such as DDoS and cryptojacking. Using an open cloud testbed, we mimic multi-

ple cloud systems, monitor network traffic between them, and generate a suspiciousness

score for devices connected to said cloud networks. Using the suspiciousness scores, we

demonstrate how we determine what work that device on the network is participating in,

be it data exfiltration, resource exfiltration, or some other unwanted practice. Using these

suspiciousness scores, we block the attacks while they are taking place and using pretense,

continue to allow the attackers to believe their attack is successful. Our experimental re-

sults show how ADAPTs tricks attackers to continue to waste their own resources on an

attack which is fruitless, while also protecting the targeted system by keeping the related

services working as expected for actual users.

viii



Chapter 1

Introduction

1.1 Security in Cloud-hosted Applications and Services

Cloud-hosted applications and services have been distributed all across the globe. These

services and application systems encompass many sectors from manufacturing systems to

the financial markets, as well as to individual homes and personal devices. Such wide and

broad facing systems have their advantages; such as allowing instant access and accessibil-

ity from just about anywhere in the modern world, provide instant access to information,

and entertainment. However, they also open themselves up to mischievous and detrimen-

tal attacks from larger, well-funded hacker groups and adversary governments. For such

groups there is much to be had: from reputation and monetary gains by having targeted

customers lose faith in valuable applications and related services, to power and political in-

fluence to threaten governance. Attacks from such groups can cause any number of issues

including Loss of Confidentiality (LoC), Loss of Integrity (LoI), and Loss of Availabil-

ity (LoA). This culminates in the loss of income, undesired exposure of confidential, or

personally identifiable information.
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1.2 Targeted Attacks

1.2.1 Advanced Persistent Threats (APTs)

One of the main attack vectors for these groups is Advanced Persistent Threats (APTs).

These form of attacks are characterized by computer viruses/trojans/worms, which hide on

network devices (personal computers, servers, mobile devices) while waiting in attempts

to exfiltrate data from within the network, to devices outside the network. These are long-

term attacks, intended to go unnoticed for as long as possible so that maximum exfiltration

may occur. Many APTs will attempt to exploit both Zero-Day attacks (faults in software

which have not been discovered by the application developers or hardware vendors and can

be exploited) as well as human error (e.g., the curiosity of finding a flash drive in a parking

lot, taking it, and attempting to use it). A combination of these methods are also used

for initially breaking into an application system as well as spreading through an enterprise

infrastructure [1].

Since the APTs attempt to be stealthy and commonly use Zero-Day attacks, detection

is difficult with existing technologies. Many of these attacks go unnoticed for years, such

as Red October, which was active for over five years [2]. With such long lasting and

subtle attacks, new methods and technologies are needed which can detect these attacks

quickly and defend against them before any further long term damage or exfiltration can be

accomplished.

1.2.2 Distributed Denial of Service (DDoS)

Compared to the new and advanced attack techniques, such as APTs, invented every year,

Distributed Denial of Service (DDoS) attacks are ancient predecessors, the fist known at-

tack occurring on September 12th, 1996 [3]. Despite there being many years of research on

DDoS attacks and a variety of defenses against them, it still behooves us to experiment and
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test new defensive designs and strategies as the attacks are still a common occurrence. In

2020 alone there were 10.8 million DDoS attacks with an estimated 15.4 million by 2023

[4]. As these attacks continue to grow in frequency, duration, and scale, perhaps becoming

some sort of Massively Distributed Denial of Service attacks, we need continued advances

in countermeasures in order to keep up with these attacks else we potentially experience

Loss of Availability in services. Countermeasures which allow for faster, more accurate,

and robust detection, as well as being affordable will continue to be in high demand. Novel

approaches like our past Dolus work [5] are prime examples of how we can better tackle

such attacks.

1.2.3 Advanced Persistent Mining (APM) and Cryptojacking

There has been much enthusiasm recently for cryptocurrencies. The volatile yet surpris-

ingly expensive various crypto coins such as Bitcoin and Etherium means that someone

who participates in the crypto market could potentially make a fortune. An estimate showed

in 2017 that a popular torrent site could be earning upwards of $12,000 a month using a

cyptominer which ran in their user’s browser [6], and the value of many cryptocurrencies

have vastly grown since then. The craze has spawned all manner of different means of min-

ing or obtaining these coins, several such methods are nefarious in nature. Attackers will

use attacks such as Advanced Persistent Mining (a variation of APT) and Cryptojacking

to ’mine’ coins on systems which they do not own, thus exfiltrating resources from said

systems. This resource exfiltration can be highly profitable as there is little cost to the at-

tacker and the burden of mining the coins is left at the expense of the owner of the attacked

systems [7].
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1.3 Novel Defense Against Targeted Attacks

In this paper, our goal for targeted attack defense is to detect which devices may be infected

by or participating in a targeted attack by determining which devices are most suspicious

while also tracking for data or resource exfiltration. Once a device is suspected of being

a participant in an attack, the device’s traffic can be rerouted so that it does not leave the

enterprise network, but can instead be analyzed to determine what is being exfiltrated or

what has been compromised.

1.3.1 Pretense Theory

The pretense is designed to create stimulus from the target side that matches the initial

expectation of an attacker that a high-value target has not yet been compromised through

an automated bot activity. Pretense theory concepts from [8] motivate us to address the

issue of how a cognitive agent can present a pretense world, which is different from the

real world using the following four steps:

(a) The basic assumption(s) or premise(s) that is used by a pretender on what is being

pretended.

(b) Inferential elaboration which details of what goes into or what actually happens in

the process of pretense.

(c) Appropriate behavior production which answers the question of whether the pre-

tender was successful on the audience being tricked.

(d) Balancing and steering the effects of pretense.
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1.3.2 Suspiciousness Scores

In order to detect possible targeted attacks and identify systems, which have been com-

promised we use a concept called Suspiciousness Scores [9]. A Suspiciousness Score is

assigned to each device on or off the network. Each device will be assigned a score which

is calculated based upon it’s total number of network traffic destinations contacted, total

number of packets sent outside the host network, and total number of bytes transmitted.

Using these scores we are able to form a baseline for the entire network. Consequently,

devices which are ‘suspicious’ will stand out with higher scores. Suspiciousness Scores do

not only have to be calculated for internal devices, but can also be calculated for external

devices and domains; therefore an external device or domain, which we find to be suspi-

cious, can later be blocked from devices on the internal network. In addition, we use an

allowlist which allows us to ignore scores for traffic which we deem as benign.

1.3.3 Policy Updating and Threat Sharing

Once an attack has been detected and a pretense initiated it becomes necessary to put mea-

sures into place which will properly defend against similar attacks in the future. Automated

policy updating allows for suspicious devices which have been used for attacks to be block-

listed to prevent them from launching further attacks. These policy updates are then shared

across the SDxI cloud network further preventing similar attacks on other systems which

were not original targets of the attack.
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Figure 1.1: Sequence Diagram for system attack detection, quarantine, pretense initiation
and mitigation.

1.4 Thesis Outline

The remainder of this thesis is organized as such: In Chapter 2, we describe the thesis

background and review existing work and literature, which gives context and meaning to

our proposed solution. In Chapter 3, we elaborate upon our solution’s methodology and

approach while providing details of each feature. Chapter 4 evaluates the effectiveness

of the solution, findings, and performance evaluations. Chapter 5 discusses future work

and provides an example of how the research has been extended. Chapter 6 concludes the

thesis.
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Chapter 2

Background and Related Work

2.1 Advanced Persistent Threats

APTs are long-term attacks [2, 10, 11, 12, 13, 14, 15]. They affect a target in four stages:

preparation, access, resident, and harvest [16]. In the preparation stage, attackers apply

a reconnaissance tactic through social engineering (e.g., via social networks) to bootstrap

the attack [1]. Once the attack is bootstrapped, attackers identify a vulnerability, and/or a

vulnerable target and send malwares either through email (e.g., spear phishing) or through

third-party software/service (e.g., watering-hole attack) in the access stage. Subsequently,

the malwares gain access to the control and command center, and spread across other targets

in the resident stage; which is a slow and a stealthy phenomenon. Finally, in the harvest

stage, attackers extract any vital information in an on-going fashion for extended periods

of time.

Techniques to detect APTs have been of interest to the community [17, 18, 19, 19, 9, 20,

21, 22, 23, 24, 25, 26]. This includes finite angular state velocity machines and vector math-

ematics to model benign versus attack traffic, allowing a network operator to easily view

the differences [23], assessing the outbound network traffic [9, 20], using honeypots [27]
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and using distributed computing [26]. Another APT detection technique is based on a rank-

ing system where all internal hosts are ranked based on number of bytes sent outside the

network, number of data transfers initiated to an entity outside the network, and number of

distinct destinations contacted outside the network per host [9]. Yet another APT detection

technique is to monitor attack traffic using a detector in an enterprise network [24].

2.2 Prior Work on Countermeasures

Potential countermeasures against APTs are discussed in [1, 16, 28, 29, 30, 31, 32, 33].

Defense strategies include: (a) running routine software updates to avoid backdoors, bugs

and vulnerabilities; (b) strengthening network access control and monitoring services; (c)

enabling strict Internet access policies; and (d) dropping encrypted traffic from unknown

hosts. Similarly, authors in [1] discuss a number of counter measures against APTs includ-

ing training users about social engineering attacks, blocklisting hosts, dropping packets,

etc. Furthermore, SDN-based defense [31] involves: (i) defining and maintaining a net-

work baseline to identify any deviation from the baseline through analytical tools, and (ii)

updation of flow policies for (re)directing and blocking traffic in any of the network seg-

ments. A framework that realizes such an SDN-based defense is discussed in [32]. In a

similar vein, authors in [33] provide a sandbox environment using which a security profes-

sional can emulate the propagation of APTs across an enterprise network environment.

8



Chapter 3

ADAPTs Solution for Combating
Targeted Attacks

3.1 Methodology and System Overview

Our novel ADAPTs (Automated Defense from Advanced Persistent Threats) system was

originally designed to automatically defend against APTs and was later expanded to de-

fend against DDoS and APM/Cryptojacking attacks. Building upon by our previous work,

Dolus, ADAPTs uses pretense theory in child play to combat targeted attacks within an

organization albeit with changes based upon the novel designed elaborated upon in sec-

tions 3.2, 3.4, and 3.5. ADAPTs consists of: (1) a Suspiciousness Score-based detection

mechanism, which is robust against the threshold evasion problem; (2) internal quarantine

VMs (iQVMs), which are a minimal version of honeypots to mimic hosts internal to an

organization, along with performance/topology views to aid network administrators; (3) a

coordination mechanism driven by enterprise defense policies to share threat intelligence

about APTs among hosts; and (4) network policy update mechanism to mitigate attack

spreading based on coordinated intelligence using iQVMs. We outline each one these

mechanisms/components in the remainder of this chapter.

9



3.2 Suspiciousness Score-based Thresholds

Inspired by the work of authors in [9] to identify hosts exhibiting suspiciousness in a net-

work, we propose a Suspiciousness Score (SS) in a similar vein. We calculate SS based

on captured network traces (.pcap) using three main features: destinations (dst), flows, and

bytes.

Value Description

switch id ID of the switch which received the
frame

trace id ID for the trace under consideration

frame number Order in which the frame was received

frame time Unix timestamp at which the frame was
received

frame time relative Unix timestap at which the frame was
received relative to last received frame

frame protocols Protocols used in the frame

frame len Size of the frame in bytes

ip src Source IP of the frame

ip dst Destination IP of the frame

Table 3.1: Features captured from a network trace.

Table 3.1 shows the list of values/features captured in network traces. For each packet, a

trace id t is assigned. For each t, we perform the following: the features are normalized and

weighted based upon their targeted suspiciousness (further defined later in this subsection)

and their combined Root Mean Square Error (RMSE) values are calculated. Using the

RMSE values, we calculate the Suspiciousness Scores of each device as follows. The Min

and Max values (below) are assumptions made per device type on what one may expect the

minimum and maximum values to be on the type of network and traffic expectations.
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Destination suspiciousness for trace t:

wdst ∗dsti =
numDsti−numDistMini

numDstMaxi−numDstMini
;wdst ∈ [0.0,1.0] (3.1)

Flow suspiciousness for trace t:

fdst ∗ f lowsi =
numFlowsi−numFlowsMini

numFlowsMaxi−numFlowsMini
fdst ∈ [0.0,1.0] (3.2)

Bytes suspiciousness for trace t:

bdst ∗bytesi =
numBytesi−numBytesMini

numBytesMaxi−numBytesMini
bdst ∈ [0.0,1.0] (3.3)

Device suspiciousness for trace t is based on equations 3.1, 3.2 and 3.3 as shown below.

ssi =

√
dst2

i + f lows2
i +bytes2

i
3

(3.4)

Note that for each device on the network i we calculate a Suspiciousness Score and the

overall network suspiciousness for trace t is calculated based on ss for each individual

device (equation 3.4) that is connected. That is, the sum of all ss for each devices on the

network n is the overall network suspiciousness SS for that particular t.

SSt =

√
(ss2

1 + ss2
2 + ss2

3 + ...+ ss2
n)

n
(3.5)

Relative change in device i’s suspiciousness score on new traffic t is simply given by

equation 3.6

∆ssit =
ssit −

√
ss2

i1
+ss2

i2
+...+ss2

it−1
t−1√

ss2
i1
+ss2

i2
+...+ss2

it−1
t−1

(3.6)

In equations 3.1, 3.2 and 3.3, we assume a weight parameter i.e., wdst wflows wbytes to be
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equal to 1 in a general case of SS calculations. As shown later through experiment findings

in 4.3.2, assigning suitable weights for a variety of suspicious traffic can maximize attack

detection accuracy, as opposed to the general case. Consequently, we extend SS calcula-

tions as detailed in Algorithm 1 by introducing a novel concept of Targeted Suspiciousness

Scores for specific traffic types that a system/network administrator would like to classify

as suspicious. We remark that system/network administrators could allowlist certain traffic

types, however none of the devices on the network will be entirely allowlisted. Thus, by

using a targeted suspiciousness scoring for certain traffic types (e.g., for suspected APM-

like traffic) can still be effective to detect malicious activities, even when allowlisting is

performed for legitimate user traffic.

Input: devices ∈ [1 . . .n] = array of all devices on the network,
maxTrace = Maximum number of packet traces to be evaluated,
t = current trace being evaluated
Result: Targeted Suspiciousness Scores calculated for each network device after

traffic analysis
1 function calcDst()

2 function calcFlows()

3 function calcBytes()

4 function calculateTargetedSuspiciousness(devicei)
5 calcDst(devicei,wdst);
6 calcFlows(devicei,w f lows);
7 calcBytes(devicei,wbytes);
8 end
9 function calculateNetworkSuspiciousness()

10 do
11 for each devicei;
12 calculateTargetedSuspiciousness(devicei);
13 while t <= maxTrace;
14 end

Algorithm 1: Targeted Suspiciousness Score Calculations
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3.3 Internal Quarantine VMs (iQVMs)

VMs which are internal to an organization and which implement minimal versions of

honeypot-like hosts are iQVMs. iQVMs are present in the network and their Suspicious-

ness Scores are monitored continuously. These are also the hosts that play the game of

pretense i.e., they create a false notion of high-value targets within an organization with

sensitive data to the external world. An attacker is lured to attack iQVMs first; they main-

tain pretense by sending data similar to what a host with sensitive data would send. Apart

from monitoring the data sent out of iQVMs, they also add weights to the calculated Sus-

piciousness Scores, overcoming the threshold evasion problem.

To simplify the process of monitoring iQVMs and other hosts effectively, we develop a

user interface as part of ADAPTs. It allows the administrator a more robust monitoring of

the network with views separated based on the various requirements: devices connected to

the network, blocklisted IPs, metrics, as well as any other requirements of the administrator.

The user interface is developed using the traditional LAMP stack (Linux OS, Apache Web

Server, MySQL, PHP), with views specifically built for ADAPTs including the following:

1. SS per device (see Figure 3.1) or for the overall network can be viewed in temporal

fashion (see Figure 3.2). Moreover, when a suspiciousness score of a blocklisted

device is shown to be above a certain threshold, an administrator can block all traffic

from that device to the network or take an appropriate action.

2. Upload policy view: This view on the user interface enables administrators to push

NetKAT-based policies [34] to a centralized database, which stores device configu-

rations, thresholds, policies maintained by the organization. Interfaces are provided

to select a specific device and a corresponding NetKAT policy to affect that device

as shown in Figure 3.3.
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Figure 3.1: Suspiciousness score per device over time.

Figure 3.2: Overall network suspiciousness score over time.
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Figure 3.3: Policy table view.

3. Network view: a vis.js-based view to monitor the network as a graph of con-

nected devices as depicted in Figure 3.4.

3.4 Policy Decision Making

In ADAPTs, each device has a corresponding access control policy to control/configure

it remotely. We call this configuration policy, which determines the structure of the net-

work and decides how traffic flows traverse through the network in normal versus attack

conditions.

Similarly, ADAPTs also features a defense policy for the enterprise network. The de-

fense policy is reactive i.e., it will take effect when the original configuration policy has

failed to communicate erratic host behaviors such as SS threshold changes, jump in the

number of external hosts contacted, etc., or if an attack has be detected and communication

privileges need revocation. The interface can facilitate administrators to update policies

directly in the event of an attack.

Both these policies and the revocation/enabling functionalities are instantiated based
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Figure 3.4: Network graph of all the connected devices.

on the policy updater mechanism, whose main objective is to simplify the learning curve

for users/administrators to become proficient at writing policies (e.g., using network pro-

gramming languages such as Frenetic [35])—a daunting and tedious task. With this in

mind, the updater component can auto-generate policies based on simplified inputs that are

provided via the user interface. For example, to minimize the process, the policy updater

takes a generic command such as “user1 to server1” and all possible configuration policies

would be generated by the updater. The updater works with the centralized database and is

pre-programmed with the network architecture.

3.5 Threat Sharing Mechanism

Algorithm 2 runs in the monitor component and coordinates/shares intelligence with the

switches deployed in the network and across different providers. This in turn enables
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a collaborative environment among providers such that the targeted attacks can be de-

tected closer to the source without affecting the cloud infrastructure. A natural question

is why would a provider share the attack intelligence, especially in a business that is driven

by competition? We posit that the coordination among different Autonomous Systems

(ASes)/providers is mutually beneficial for all the entities involved. Of course, a particular

AS/provider can decide not to share the attack intelligence to others. However, if an AS

experiences an attack and if it shares the intelligence with other ASes, a global and unified

hardening of infrastructure against such targeted attacks can be achieved. In addition, any

downtime is money lost in a business; sharing the attack intelligence in turn provides a

cheaper alternative to lost host/business downtime.

Our iQVM monitors also coordinate and share the targeted attack threat intelligence

such as SS thresholds, policy updates, etc. with other hosts in the network. Apart from

providing a collaborative environment amongst pertinent hosts to effectively counter said

attacks, the mechanism also provides a way to drill down on specific segments of the net-

work with suspicious hosts. Furthermore, we believe that the coordination mechanism will

pave the way to achieve a global and unified hardening of the enterprise network against

APT, APM, DDoS and future attacks.
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input : attacker ID . Attacker ID
src ip . source IP
dst ip . destination IP
no o f packets . number of packets
spoo f dst ip . spoofed IP
block ip . blocklisted IP list

Result: Attack traffic will be redirected to the quarantine VM and Targeted Attack
blocking policy will be generated

1 function initQuarantine()
2 createVM();
3 updatePolicy(src ip);
4 do
5 redirectTraffic();
6 pretense data = generatePretense();
7 vmResponse(spoof dest ip, src ip, dst ip, pretense data);
8 while true;
9 End Function

10 function updatePolicy (src ip)
11 logAttackTraffic();
12 new policy = generateNewPolicy();
13 collaborate(new policy);
14 end

15 function collaborate (new policy)
16 advertisePoliciesToNeighbors(new policy);
17 block ip = updateList(src ip);
18 redirectTraffic();
19 end

20 function redirectTra f f ic ()
21 sendTrafficToQuarantineVM();
22 end

23 function main ()
24 /* Receive incoming data from external machine */
25 data = monitorPackets(attacker ID, src ip, no of packets, start time,

end time);
26 attack = calculateNetworkSuspiciousness(data);
27 /* Update policy in case of attack detected */
28 if attack.suspiciousnessDetected == true then
29 initQuarantine(src ip);
30 end
31 decideToStopOrContinue();
32 end

Algorithm 2: Dolus/ADAPTs system phases for spoofing pretense
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Chapter 4

Performance Evaluation

In this section, we describe our evaluation of ADAPTs in a GENI testbed. We start by

describing our testbed, followed by the experiments and results from our evaluation. The

instructions on how to replicate this experiment can be found on github [36].

4.1 Testbed Setup

Original Dolus Testbed Setup

Our original Dolus/ADAPTs testbed is comprised of two open vSwitches (a worker and a

root), nine nodes (which are hosts), and a controller as shown in Figure 4.1. The worker

switch connects all the user nodes, and the root switch connects all the servers hosting

the application system and related services. A controller is a standalone node, running the

monitor and policy updaters, calculating SS thresholds for nodes and the overall network,

managing all the traffic and defense mechanisms of ADAPTs. All these components run

Ubuntu 16.04 on a GENI testbed.
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Figure 4.1: ADAPTs GENI slice for APT and DDoS experiments
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Enhanced ADAPTs Testbed Setup

For the purposes of APT/APM attack detection and defense, a modified GENI Cloud

testbed was setup as shown in Figure 4.2. The purpose of the enhanced GENI Cloud

Testbed is to simulate a collaborative crossdomain SDxI architecture with the core servers

and services located at the switch-root in the Clemson InstaGENI (blue) domain. Corre-

spondingly, the user traffic originates from three other separate domains with two distinct

paths to where the services are located. Since an APT is not a distributed attack, there was

no need to consider multiple attack vectors from many directions. However, due to the

nature of an APT attack being secretive and stealthy, we assume that an APT can be hiding

anywhere in an SDxI.

Our testbed is comprised of multiple open vSwitches (multiple workers and a single

root), numerous nodes (which are hosts), and a controller. The slave switches connect all

the user nodes, and the root switch connects all the servers hosting the application system

and related services to the worker switches. The controller in the setup is a standalone

node, running the monitor and policy updaters, calculating SS thresholds for nodes and the

overall network, managing all the traffic and defense by pretense mechanisms of the Dolus

system.
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Figure 4.2: ADAPTs GENI slice for APM experiments

4.2 Experiments

4.2.1 Advanced Persistent Threat and Data Exfiltration

In the first experiment, we randomly selected three hosts, and compromised them by run-

ning slowhttp (DDoS) attacks from attacker 1 and attacker 3, and a secure copy, scp

(APT data exfiltration), from attacker 2. Before running the experiment, we

specify minimum and maximum values for flows, connections, and bytes: the user and at-

tacker nodes are each set to a minimum of 1 and a maximum of 10 connections, a minimum

of 100 and a maximum of 1,000 flows, and a minimum of 10 and a maximum of 100,000

bytes. The servers had a minimum of 10 and a maximum of 1000 connections, a mini-
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Node Command Score

Attacker1 slowhttp 8.8

Attacker2 scp 215.5

Attacker3 slowhttp 18.0

Server1 ping 17.3

Server2 Traffic Response 16.4

Server3 iperf -s 9.0

User1 iperf -c 5645.7

User2 wget 200.7

Table 4.1: Suspiciousness scores before allowlisting

mum of 1,000 and maximum of 10,000 flows, and minimum of 100,000 and a maximum

of 100000000 bytes.

From the controller, we obtain the SS for these three attackers before (see Table 4.1)

and after (see Table 4.2) allowlisting. Note that devices are not allowlisted on our network,

which is why their suspiciousness scores are of focus. User1 initally displays the highest

SS due to iperf being a measurement of maximum bandwidth available on a network. The

results therefore, could look like a data exfiltration attack. This result is later allowlisted

due to it being a network traffic test and expected benign traffic. Attacker 2 exhibited the

highest SS out of three, due to actual data exfiltration [9]. The traffic that is being exfiltrated

generates a much higher score than the regular traffic in the network.
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Figure 4.3: Overall suspiciousness for APT attack case

4.2.2 DDoS Attack and Loss of Service

For purposes of a more complete evaluation of our Suspicousness Scores, we decided

to recreate our original Dolus DDoS attacks and determine how the same slowHTTPtest

DDoS attack would be evaluated using the same Suspiciousness evaluation used for our

above APT and Data Exfiltration experiments. The Suspicousness of the slowHTTPtest

DDoS attack can be seen in figure 4.4.

As you can see from the results, it was somewhat surprising that the DDoS attack is

actually far less suspicious than the wget and scp traffic. We needed to perform further

evaluation and analysis to determine what needed to be done to successfully detect a DDoS

attack as suspicious traffic. It was upon investigation of our next attack, Advanced Persis-

tent Mining and Loss of Resources in 4.2.3, in which we determined how to better evaluate

this type of attack. This evaluation for DDoS attacks is further discussed in 4.3.3.
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Figure 4.4: Overall suspiciousness for DDoS attack case

4.2.3 Advanced Persistent Mining and Loss of Resources

Advanced Persistent Mining attacks we expected to be evaluate quite differently from the

previous APT attacks discussed in 4.2.1 as the APT attacks lie in wait and exfiltrate data

at opportune times whereas APM attacks would tend to use resources immediately and

quickly to generate crypto currencies for the attacker before administrators have an oppor-

tunity to respond to the attack.

For the purposes of our attack, we decided to use several variations of mining in an

attempt to defeat the suspiciousness detection. We used the Etherium miner geth for CPU

mining. We ran three variations of the geth mining. The initial geth mining was not limited

in any way and thus used 100% of the available CPU and as much network traffic as it

needed without limit. The second evaluated geth attack, getht, used a network limitation on

geth which only allowed for a maximum of 10 kbps download and upload speed. The final

of the three geth attacks, gethcpu used a CPU limiter on the geth process, only allowing it

to use a maximum of 10% of the CPU at any given time.
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In addition, we also ran our previous ping, wget, scp, and DDoS traffic alongside the

geth APM to evaluate it alongside the various traffic types. We also decided to evaluate

torrent traffic, as we expected that torrent traffic may look quite similar to geth APM traffic.

As you can see in figure 4.5, the most suspicious traffic was actually the torrent traffic.

This actually wasn’t entirely surprising as the torrent traffic transfers over 1 Gigabyte of

network traffic outside the network and could be seen as a form of data exfiltration if not

accounted for. Geth CPU mining does not actually transfer a large number of bytes outside

the network as most of the work is simply CPU calcuations, therefore we needed some

additional analysis of the network traffic to determine what would actually make the geth

traffic suspicious.

Upon further analysis, we found an interesting statistic of the geth traffic which made

it stand out far and above all other traffic types we evaluated. The geth traffic actually

establishes far more IP connections than any other form of traffic. This can be seen quite

clearly in figure 4.6. Both the regular geth traffic as well as the network limited geth traffic

established about three times and two and a half times IP connections than the torrent

traffic respectfully. Even the geth attack limited to 10% CPU still produced nearly as many

IP connections as the torrent traffic.
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Figure 4.5: Overall suspiciousness for APM attack case

4.3 Findings

4.3.1 Advanced Persistent Threats

The purpose of allowlisting is to allow administrators to ignore traffic, which is not going

outside of the network. For example, if we consider that both server 1 and user 1 are within

our own network, then any data transmitted between those two machines would not be data

being exfiltrated from the enterprise network. Therefore, we can consider such traffic as

benign. However, whenever we consider attacker 1 and server 1, since attacker 1 exists

outside our controlled network, we consider all traffic from attacker 1 to be possible data

exfiltrated from the enterprise network.

As you can see in Table 4.2, we ignore the traffic between users and servers, even

though there was data moving between them (Table 4.1). Moreover, by considering the

allowlisting prior to the Suspiciousness Score calculations, we decrease the overall time

spent on speed of the calculations since we will need to calculate scores for only a portion

of the network.
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Node Command Score

Attacker1 slowhttp 8.8

Attacker2 scp 215.5

Attacker3 slowhttp 18.0

Table 4.2: Suspiciousness scores after allowlisting

4.3.2 APM Results and Findings

As we saw in section 4.2.3, the geth mining created many more IP connections than torrent

traffic. Another interesting finding was the distinct IP connections over time. Figure 4.7

shows both the three forms of geth traffic as well as the torrent traffic. All forms of geth

traffic displayed quite a wild variation of distinct IP connections made very few seconds.

Even the CPU limited geth attack while clearly making fewer connections, still maintained

the same wide variation every few seconds. This seems to indicate that a wide variation of

distinct IP connections could be used as a fingerprint of an APM and used to increase the

suspiciousness score of the devices with an active APM. Likewise, the torrent traffic ini-

tially creates more distinct IP connections, it remains steady and then completely drops off

once the file transfer is complete. This can be used in a similar manner to increase/decrease

suspiciousness of a device depending on what type of attack one may be intersted in de-

tecting.
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Figure 4.6: Total distinct IP connections made for APM attack case

Fading Pretense Against APM

The Fading Pretense policy can be implemented as an effective defense mechanism against

APM attacks as described earlier in Section 3.1. Herein, we describe a demonstration of an

experiment which illustrates how the fading pretense policy could deter an APM attacker

in practice. Figure 4.8 shows the experiment conducted using a safe system zone, and

an attacked system zone. The x-axis is an arbitrary unit of time progression that can be

configured (on the order of several minutes, hours or even days) by the system/network

administrator depending on the duration of the pretense policy being in effect. Behavioral

psychology considerations also could be factored into determining the rate of progressive

decline of the resource allocation on a compromised device. In any case, we can observe

that three distinct phases of pretense should occur:

1. (Phase-1): Fading pretense begins. Assuming at time x = 1, a resource exfiltration

attack is detected to be occurring in an attacked system zone, at which point the

attacker will have 100% availability to the system resources, and the fading pretense

policy is initiated at time x = 2.
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Figure 4.7: Distinct IP connections contacted for APM and Torrent traffic per every 15s.

2. (Phase-2): Attacker is deterred. In the time after the fading pretense policy is in

effect, the availability of the system resources is reduced progressively to 90%, 60%,

30% and 10% to ultimately cause the attacker to consider a redirection of the APM

attack to a morepotent device with higher resource allocations.

3. (Phase-3) Safe system zone restoration. Once the attacker is found to have been

deterred at time x = 6, the previously compromised device can be added to into the

safe system zone with 100% availability of system resources. We remark that the safe

system zone restoration should be performed only after suitable patching or system

re-imaging in order to ensure that there is no re-occurrence of the APM attack on that

particular device in the future.
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Figure 4.8: Demonstration of a fading pretense policy implementation to deter an APM
attack after its detection on a compromised device.

4.3.3 DDoS Results and Findings

Coming back to our DDoS results after the APM evaluation in 4.3.2 we had new ideas for

how we can similarly detect a DDoS attack and flag it as suspicious. Much like the APM

results, we decided to look at various types of traffic over time to determine a better DDoS

suspiciousness evaluation. This can be seen in figure 4.9, the DDoS attack starts by sending

a large number of bytes which tapers of quickly within the first ten seconds, remains close

to zero bytes transfered for another ten seconds before it quickly bursts a large number of

bytes again. The initial burst of bytes was unique among the various types of traffic we
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evaluated and as such, could also be a possible fingerprint to better the detection of a DDoS

attack using suspiciousness scores.

Figure 4.9: DDoS slowHTTPtest attack over time

Fading Pretense Against DDoS

Much the same as our previous Dolus experiments with Moving Target Defense (MTD) [5],

figure 4.10 compares the time taken by our Dolus/ADAPTs system to stop a DDoS attack

versus MTD-based and no defense strategies. These results are nearly exactly the same

as our previous Dolus only defense. This is expected, as we implement the same defence

mechanisms which Dolus uses, redirection of attack traffic and pretense, however with the

attack detection based upon suspiciousness scores. After a warm-up period of 6 seconds,

we start the SlowHTTPTest and hping3 at the 7th second from the attackers. In a SDxI-

based cloud network with no defense strategy, the services are immediately affected by

the attack traffic. Similarly, the MTD-based defense strategy takes ∼6 seconds to mitigate

the attack traffic impact. However, our Dolus/ADAPTs system supported service on the

other hand, does not suffer from any loss of availability in comparison with the other two

strategies. This is due to the sharing of attack intelligence between the slave switches and
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redirection of attack traffic to quarantine VMs closer to the attackers, making the cloud

network completely oblivious to the attackers. This shows how despite the different attack

detection methodology, the ADAPTs implementation of suspiciousness scores with Dolus

does not lose any capability but rather maintains the same defense capacity as before.

Figure 4.10: Comparison of cloud service restoration time metric with cases of: no De-
fense, MTD and Dolus/ADAPTs

4.3.4 ADAPTs Performance

Table 4.3 shows the time taken by ADAPTs to calculate the SS for devices, each running

on a single core. It also shows the number of traces, and their corresponding processing

times. As high as 1.8 Million traces for 8 devices can be processed under 100s, which

demonstrates the efficacy of ADAPTs. However, there is a linear increase in time as the

number of traces grow. To address this issue we plan to implement parallelization, and

evaluate ADAPTs on a multi-core setting as part of our future work.
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Single Threaded

Devices Number of traces Time (in seconds)

3 590,492 50

6 1,249,490 77

8 1,839,982 94

Table 4.3: Processing time taken by ADAPTs on single core nodes.
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Chapter 5

Future Work

There are a number of enhancements which I believe could greatly improve the overall

impact of the Dolus and ADAPTs systems. Firstly some of the greatest benefits would come

from parallelized calculations of suspiciousness scores. At the time of our experimentation,

we were severely limited by the GENI system in which we could only use a single threaded

MySQL database for calculating the suspiciousness scores. This in turn, increased the time

required for detection of an APT.

Secondly, our system could also benefit from additional Big Data analytics. In our small

test cases and scenarios, a single minute of traffic could easily produce several gigabytes of

data. Perhaps both Hadoop and MapReduce could be leveraged to help process the network

traffic in a more real time manner and allow for faster suspiciousness score calculation.

Lastly, a method in which we could more easily share the results of the network traffic

analysis and suspiciousness calculations would be ideal for network policy sharing within

a Confederation. A possible solution to this could be a blockchain implementation, where

the the suspiciousness score and traffic analysis is mined and network policy updates are

written to the blockchain allowing other members of the Confederation to then apply these

network policies. In fact, there has been some future progress made on such efforts. De-

fenseChain has been shown to give organizations an incentive-based and trustworthy co-
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operation to mitigate the impact of cyber attacks [37].

Figure 5.1: DefenseChain execution pipeline.
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Chapter 6

Summary and Concluding Remarks

With the advent and advancement of cyber attacks such as APTs, the development of proper

countermeasures is of the utmost importance. The nature of APTs is one of subtlety and

trickery; therefore, proper systems must be in place to combat against these threats. We

have found that with the use of Suspiciousness Scores, the difficulty in determining which

devices on your network may be compromised can be greatly eased to initiate a pertinent

defense strategy.

In the future, we would like to continue to improve upon the Suspiciousness Scores

calculator, the policy updater, and the administrator user interface components. For the

Suspiciousness Scores, one direction we intend to pursue is depending on the type of traffic,

type of device, or the expected user of the device, real-time weight update mechanism can

be added. The goal is to vary (i.e., increase or decrease) the Suspiciousness Score, in

real-time, depending on the how suspicious a device or traffic is in a fine-grained fashion.

For example, typical htt p traffic may have a lesser weight associated with it as opposed to

SSH traffic, which would be more closely examined and therefore carry a larger weight.

Likewise, Suspiciousness Scores calculated on a device used by an expert user may carry

a lesser weight, whereas new or unknown devices to the network with unknown users may

carry a greater weight. With respect to the administrator user interface, we would like to
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continue on the development of automated policy management using SDN controllers. In

our prior work, the development of Dolus [5], we wanted to show how tricks and pretense

can be used to combat against DDoS attacks. We would like to further these concepts and

attempt pretense against Command and Control (C&C) servers, the remote machines which

command the APTs and to which they exfiltrate data. For the policy updater, it is possible

make the process even more simplified. We also plan to implement the ability to drag and

drop network elements that will dynamically update an enterprise network’s policy. This

will in turn provide the enterprise network administrator with a graphical overview of the

network and a more user-friendly way to interact with voluminous network flows.
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