
Evolutionary dynamics while trapped in resonance: a Keplerian binary system perturbed by

gravitational radiation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 Class. Quantum Grav. 14 1831

(http://iopscience.iop.org/0264-9381/14/7/018)

Download details:

IP Address: 128.206.162.204

The article was downloaded on 28/09/2010 at 21:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0264-9381/14/7
http://iopscience.iop.org/0264-9381
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Class. Quantum Grav.14 (1997) 1831–1850. Printed in the UK PII: S0264-9381(97)80507-2

Evolutionary dynamics while trapped in resonance: a
Keplerian binary system perturbed by gravitational
radiation

C Chicone†‖, B Mashhoon‡ and D G Retzloff§
† Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
‡ Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
§ Department of Chemical Engineering, University of Missouri, Columbia, MO 65211, USA

Received 17 December 1996, in final form 4 April 1997

Abstract. The method of averaging is used to investigate the phenomenon of capture into
resonance for a model that describes a Keplerian binary system influenced by radiation damping
and external normally incident periodic gravitational radiation. The dynamical evolution of the
binary orbit while trapped in resonance is elucidated using a second-order partially averaged
system. This method provides a theoretical framework which can be used to explain the main
evolutionary dynamics of a physical system that has been trapped in resonance.

PACS numbers: 0430, 0540, 9510C, 9780

1. Introduction

In two previous papers [1, 2], we considered the long-term nonlinear evolution of a Keplerian
binary system that is perturbed by a normally incident periodic gravitational wave, and in a
recent work [3] we considered the additional effect of radiation damping, which is of interest
in connection with the observed behaviour of the Hulse–Taylor binary pulsar PSR 1913+16
[4, 5]. These studies have been concerned with the issue ofgravitational ionization,
i.e. the possibility that an external periodic gravitational wave could ionize a Keplerian
binary system over a long period of time. The impetus for this subject has come from
the close conceptual analogy between gravitational ionization and a fundamental physical
process, namely, the electromagnetic ionization of a hydrogen atom. That is, in these
studies one hopes to learn about the disposition of gravitational radiation to transfer energy
and angular momentum in its interaction with matter. In our recent investigation [3], we
encountered an interesting dynamical phenomenon connected with the passage of the binary
orbit through resonance. As the binary system loses energy and angular momentum by
emitting gravitational waves, its semimajor axis and eccentricity decrease monotonically on
average; however, this process of inward spiralling could stop if the system is captured into
a resonance. The resonance condition fixes the semimajor axis; therefore, if the semimajor
axis decreases to the resonant value and the orbit is trapped, it then maintains this valueon
averagewhile the external perturbation deposits energy into the system to compensate for
the radiation dampingon average. It turns out that along with this energy deposition, the
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external tidal perturbation can also deposit angular momentum into the binary orbit so that
its eccentricity decreases considerably during the passage through resonance. This was the
situation for the particular instances of resonance trapping reported in [3]. In general, the
orbital angular momentum can increase or decrease while the orbit is trapped in resonance.
Figure 1 depicts passage through a(1 : 1) resonance in which the eccentricity decreases. A
similar phenomenon, but with an initial increase in eccentricity that soon levels off once the
resonance is established, has been reported in the recent numerical study of the three-body
problem by Melita and Woolfson [6]. The increase in eccentricity can occur over a long
time-scale in a(4 : 1) resonance in our model as depicted in figure 3. The dynamical
phenomena associated with an orbit trapped in a resonance occur over many Keplerian
periods of the osculating ellipse; therefore, it is natural to average the dynamical equations
over the orbital period at resonance. This partial averaging removes the ‘fast’ motion and
allows us to see more clearly the ‘slow’ motion during trapping. It is possible to provide a
description of the slow motion as well as a theoretical justification for the transfer of angular
momentum by means of the method of second-order partial averaging near a resonance. The
purpose of the present paper is to study this phenomenon theoretically using the method
of averaging for the resonances that occur in a Keplerian binary that is perturbed by the
emission and absorption of gravitational radiation.

Figure 1. The plots are for system (4) with parameter valuesε = 10−4, δ/ε = 10−3, α = 1,
β = 0, ρ = 0, and� = 1. (a) L = a1/2 versus time for the initial conditions(pr , pθ , r, θ) equal
to (0.2817, 0.6389, 1.6628, 2.9272). (b) Eccentricity versus time and (c) G versusL. Here,
L∗ = 1 corresponds to a(1 : 1) resonance, 1/L3∗ = �.



Evolutionary dynamics while trapped in resonance 1833

Let us consider the simplest model involving a perturbed Keplerian (i.e. nonrelativistic)
binary that contains the effects of radiation reaction damping and external tidal perturbation
in the lowest (i.e. quadrupole) order. The tidal perturbation could be due to external masses
and gravitational radiation; in fact, in what follows we choose a normally incident periodic
gravitational wave for the sake of simplicity [3]. Moreover, the wavelength of the external
radiation is assumed to be much larger than the dimensions of the binary system. The
gravitational wave potentials that characterize this external perturbation in the transverse
traceless gauge have an overall amplitude given by a positive constantε that is usually
very small compared to unity; therefore, the external perturbation is considered only to first
order in ε. For instance, it is expected that for realistic sources of gravitational radiation
ε ∼ 10−20, though direct observational evidence for gravitational waves does not exist at
present. The Keplerian binary orbit under the combined perturbations due to the emission
and absorption of gravitational radiation in the quadrupole approximation is given in our
model by the equation of relative motion

d2xi

dt2
+ kx

i

r3
+Ri = −εKij xj , (1)

wherex(t) is the relative two-body orbit,r = |x| andk = G0(m1+m2). The binary consists
of two point massesm1 andm2, m1+m2 = M, that move according tox1(t) = (m2/M)x(t)
andx2(t) = −(m1/M)x(t), so that the centre of mass of the system is at the origin of
the coordinates. In fact, the centre of mass of the binary can be taken to be at rest in
the approximation under consideration here as explained in our recent paper [3]. This
is an interesting consequence of our simple model in which the post-Newtonian gravito-
electromagnetic effects have been neglected in the two-body system, while the strengths of
the radiative perturbations have been taken into account only to first order and the radiative
effects have been treated only at the quadrupole level. In this way, gravitational waves
emitted by the binary system carry energy and angular momentum away from the system
but not linear momentum; similarly, in absorption the system exchanges energy and angular
momentum with the incident radiation field but not linear momentum. The Newtonian
centre of mass of the binary system is thus unaffected by the radiative perturbations in our
model. The explicit expressions forR andK are

R = 4G2
0m1m2

5c5r3

[(
12v2− 30ṙ2− 4k

r

)
v − ṙ

r

(
36v2− 50ṙ2+ 4k

3r

)
x

]
, (2)

and

K = �2

 α cos�t β cos(�t + ρ) 0
β cos(�t + ρ) −α cos�t 0

0 0 0

 , (3)

wherev = ẋ(t), an overdot denotes differentiation with respect to time,α andβ are of the
order of unity and are the amplitudes of the two independent states of linear polarization of
the normally incident wave,ρ is a constant phase and� is the frequency of the external
wave.

It is interesting to transform the dynamical system (1)–(3) into dimensionless form. To
accomplish this, letx→ R0x and t → T0t whereR0 andT0 are scale parameters. Under
this transformation,k → kT 2

0 /R
3
0 andK remains unchanged if we let� → �/T0. Let

us further restrictR0 and T0 by the relationkT 2
0 = R3

0, so that we can setk = 1 in the
dynamical equations; for instance, this condition is satisfied ifR0 is the initial semimajor axis
of the unperturbed Keplerian orbit and 2πT0 is its period. We thus deal with dimensionless
quantities in the following analysis; however, our results can be simply rescaled in order
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to correspond to physical quantities. Furthermore, the dynamical system (1)–(3) is planar;
therefore, it is convenient to express these dimensionless equations in polar coordinates
(r, θ) in the orbital plane. The result is

dr

dt
= pr,

dθ

dt
= pθ

r2
,

dpr
dt
= − 1

r2
+ p

2
θ

r3
+ 4δpr

r3

(
p2
r + 6

p2
θ

r2
+ 4

3r

)
−εr�2[α cos 2θ cos�t + β sin 2θ cos(�t + ρ)],

dpθ
dt
= 2δpθ

r3

(
9p2

r − 6
p2
θ

r2
+ 2

r

)
+ εr2�2[α sin 2θ cos�t − β cos 2θ cos(�t + ρ)],

(4)

whereδ, 0< δ � 1, is the dimensionless strength of the radiation reaction and is given by

δ = 4G2
0m1m2

5c5T0R0
, (5)

while ε, 0< ε � 1, is the dimensionless strength of the external periodic perturbation. The
nature of the perturbation parameterδ becomes clear onceR0 is taken to be the semimajor
axis of the unperturbed Keplerian system. Equation (5) can then be written as

δ =
√

2

40

(
4µ

M

)
q

5/2
0 ,

whereµ is the reduced mass of the binary andq0 = (2G0M/c
2)/R0. Here 4µ 6 M in

any case and 2G0M/c
2 is the gravitational radius of the binary system so that the quotient

q0, 0 < q0 < 1, indicates how relativistic the system is at the outset; in fact, the system
is essentially a black hole forq0 ∼ 1. It follows thatδ <

√
2/40 for any physical system;

indeed, for the Sun–Mercury systemq0 ≈ 5× 10−8 and δ ≈ 10−26, while for the Hulse–
Taylor relativistic binary pulsarq0 ≈ 4×10−6 andδ ≈ 10−15. In this paper, we letδ = ε1,
where1, 0 < 1 < ∞, is a parameter that is fixed in the system; in this way, we avoid
dealing with a two-parameter(ε, δ) perturbation problem. In particular, we consider only
perturbations that correspond to fixed directions from the origin of this parameter space. The
full two-parameter problem would require the consideration of perturbations corresponding
to all curves in the parameter space.

In the absence of radiative perturbations(ε = 0 andδ = 0), the dynamical system (4)
describes a Keplerian ellipse. It is therefore useful to express the dynamical equations (4) in
terms of Delaunay variables that are closely related to the elements of the osculating ellipse.
This is the ellipse that the relative orbit would describe at timet , if the perturbations were
turned off at t . The osculating ellipse always has the same focus, which is taken to be
the origin of the (polar) coordinates in the space of relative coordinates. Let the state of
relative motion be described by(x,v), or equivalently(r, θ, pr, pθ ), at time t ; then, the
energy of the motion fixes the semimajor axisa of the osculating ellipse and its eccentricity
is subsequently fixed by the orbital angular momentumpθ . Only two angles are left to
determine the osculating ellipse completely: the orientation of the ellipse in the orbital
plane given byg and the position on the ellipse measured from the periastron given by the
true anomalyv̂. The latter is obtained fromprpθ = e sinv̂ and the equation of the ellipse

p2
θ

r
= 1+ e cosv̂,



Evolutionary dynamics while trapped in resonance 1835

and the former fromθ − v̂. The relevant Delaunay ‘action-angle’ variables(L,G, `, g) are
thus defined by [7, 8]

L := a1/2, G := pθ = L(1− e2)1/2,

` := û− e sinû, g := θ − v̂, (6)

whereû is the eccentric anomaly of the osculating ellipse,r = a(1− e cosû) and` is the
mean anomaly. The dynamical system (4) in terms of Delaunay variables is given briefly
in appendix A and used in the following section.

The Delaunay equations of motion are useful for the investigation of periodic orbits
using the Poincaré surface of section technique [9]. It has been shown in [3] that nearly
resonant periodic orbits exist in system (4) for sufficiently smallε and1. These correspond
to (m : 1) resonances, where(m : n) refers to the resonance conditionmω = n�. Herem
andn are two relatively prime integers andω = 1/L3 is the Keplerian frequency of the orbit.
A linear perturbation treatment [10] first revealed resonant absorption at(m : 1) resonances.
There could, in principle, be other periodic orbits whose existence is not revealed by our
method [11, 1].

In our numerical investigation of the simple nonlinear model described above, we found
[3] instances of resonance trapping during which the behaviour of the osculating orbit could
not be inferred in a simple manner on the basis of equation (4). However, the dynamics of
theaveragedequations in resonance is simpler to analyse and it turns out that our numerical
results [3] can be explained adequately using the second-order partially averaged dynamics.
The phenomenon of resonance trapping appears to be of basic significance for the origin of
the solar system; therefore, it is worthwhile developing a general theoretical framework for
the study of the evolutionary dynamics while trapped in resonance.

The dynamics of a system when it is locked in resonance is interesting in any
circumstance involving more than one degree of freedom; for instance, let us suppose that
the resonance condition fixes an action variable—say, energy—and for a one-dimensional
motion this would then imply that the state of the system at resonance is definite. However,
if other action variables are present, they will not necessarily remain fixed while the system is
trapped in resonance. Instead, the state of the system will, in general, vary and its dynamics
at resonance is best investigated using the method of averaging. This is a generalization of
the simple procedure that is commonly employed in Hamiltonian dynamics: the Hamiltonian
is averaged over certain ‘fast’ variables and the resulting averaged Hamiltonian is used to
derive new dynamical equations that presumably describe the ‘slow’ motion in a certain
averaged sense. The general method is described in appendix B and it is applied to the
dissipative dynamical system under consideration here in the rest of this paper.

Resonance is a general and significant physical phenomenon and the description of the
state of a physical system while trapped in resonance is of intrinsic importance. The inherent
dynamics at resonance is trivial for a one-dimensional oscillator, but is rich in physical
consequences for higher-dimensional systems. While the general methods described here
could be applied to a wide variety of physical problems, we confine our attention to a single
model. Our results may, however, be of qualitative interest in dealing with the three-body
problems that arise in the discussions of the origin of structure in the solar system.

The present paper relies on the results of our recent work [3]. We have repeated here
only what is needed for the discussion of the dynamics at resonance; for a more precise and
complete presentation of the background material, our papers [1–3] should be consulted.

Finally, a basic limitation of our model should be noted. The only damping mechanism
that we take into account is the gravitational radiation reaction; this is consistent with
our assumption that the binary consists of Newtonian point masses moving in vacuum
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except for the presence of background gravitational radiation. In this model, a theorem of
Neishtadt can be used to show that resonance trapping is a rather rare phenomenon [3].
However, taking due account of the finite size and structure of astronomical bodies and the
existence of an ambient medium, we would have to include in our model—among other
things—the additional damping effects of tidal friction as well as the various drag effects
of the ambient medium and electromagnetic radiation (cf, for instance, [6, 12–15]). These
additional frictional effects could well combine to violate the conditionN of Neishtadt’s
theorem [3, 16]. Thus, resonance trapping may not be so rare in astrophysics after all [17].
Inclusion of these additional effects is beyond the scope of our work.

2. Partial averaging near a resonance

We will consider the dynamics of the model system (4) that is derived in [3]. It has the
following form when expressed in the Delaunay elements for the Kepler problem under
consideration (cf appendix A):

L̇ = −ε ∂Hext

∂`
+ ε1fL,

Ġ = −ε ∂Hext

∂g
+ ε1fG

˙̀ = 1

L3
+ ε ∂Hext

∂L
+ ε1f`,

ġ = ε ∂Hext

∂G
+ ε1fg,

(7)

whereεHext is the Hamiltonian corresponding to the external perturbation and

Hext = 1
2�

2
[
αC(L,G, `, g) cos�t + βS(L,G, `, g) cos(�t + ρ)] . (8)

Here

C(L,G, `, g) = 5
2a

2e2 cos 2g + a2
∞∑
ν=1

(Aν cos 2g cosν`− Bν sin 2g sinν`),

S(L,G, `, g) = 5
2a

2e2 sin 2g + a2
∞∑
ν=1

(Aν sin 2g cosν`+ Bν cos 2g sinν`),

Aν = 4

ν2e2

[
2νe(1− e2)J ′ν(νe)− (2− e2)Jν(νe)

]
,

Bν = − 8

ν2e2
(1− e2)1/2

[
eJ ′ν(νe)− ν(1− e2)Jν(νe)

]
,

(9)

whereJν is the Bessel function of the first kind of orderν ande = (L2 −G2)1/2/L. The
radiation reaction ‘forces’fD, D ∈ {L,G, `, g}, are certain complicated functions of the
Delaunay variables given in appendix A. In fact, we will only require the averages of the
fD given by

f̄D := 1

2π

∫ 2π

0
fD(L,G, `, g)d`.
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These have been computed in [3], and are given by

f̄L = − 1

G7

(
8+ 73

3 e
2+ 37

12e
4
)
,

f̄G = − 1

L3G4
(8+ 7e2),

f̄` = 0, f̄g = 0.

(10)

In order to study the dynamics of the system (7) at resonance, we will apply the method
of averaging. We note here that averaging over the fast angle` and the timet gives
the correct approximate dynamics for most initial conditions via Neishtadt’s theorem as
explained in our previous paper [3]. Here we are interested in the orbits that are captured
into resonance. To study them, we consider partial averaging at each resonance.

Let us fix the value ofL at the(m : n) resonance, sayL = L∗ with m/L3
∗ = n�, and

consider the deviation ofL from the resonance manifold. To measure this deviation, we
introduce a new variableD given by

L = L∗ + ε1/2 D (11)

and a new angular variableϕ by

` = 1

L3∗
t + ϕ = n�

m
t + ϕ.

The scale factorε1/2 ensures that, after changing to the new variables in (7), the resulting
equations forḊ and ϕ̇ have the same order in the new small parameterε1/2 and therefore
the system is in the correct form for averaging. These new coordinates are standard choices
in the mathematical literature (for more details see, for example, [16, 18]). It is important
to emphasize here that the small parameter in the actual dynamics isε; however, the small
parameter turns out to beε1/2 in this case for the averaged dynamics.

To effect the coordinate transformation, we use the expansion

1

L3
= 1

L3∗

[
1− ε1/2 3D

L∗
+ ε 6D2

L2∗
+O(ε3/2)

]
(12)

and find

Ḋ = −ε1/2F11− εDF12+O(ε3/2),

Ġ = −εF22+O(ε3/2),

ϕ̇ = −ε1/2 3

L4∗
D + ε

(
6

L5∗
D2+ F32

)
+O(ε3/2),

ġ = εF42+O(ε3/2),

(13)

where theFij (G, n�t/m+ϕ, g, t) are defined such that the first index refers to the equation
in which it appears and the second index refers to the perturbation order in powers ofε1/2

that is employed. These quantities are given by

F11 := ∂Hext

∂`

(
L∗,G,

n�

m
t + ϕ, g, t

)
−1fL

(
L∗,G,

n�

m
t + ϕ, g

)
,

F12 := ∂2Hext

∂L∂`

(
L∗,G,

n�

m
t + ϕ, g, t

)
−1∂fL

∂L

(
L∗,G,

n�

m
t + ϕ, g

)
,

F22 := ∂Hext

∂g

(
L∗,G,

n�

m
t + ϕ, g, t

)
−1fG

(
L∗,G,

n�

m
t + ϕ, g

)
, (14)
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F32 := ∂Hext

∂L

(
L∗,G,

n�

m
t + ϕ, g, t

)
+1f`

(
L∗,G,

n�

m
t + ϕ, g

)
,

F42 := ∂Hext

∂G

(
L∗,G,

n�

m
t + ϕ, g, t

)
+1fg

(
L∗,G,

n�

m
t + ϕ, g

)
.

The system (13) is 2πm/� periodic in the temporal variable—sinceHext is 2π/�
periodic in time—and is in time-periodic standard form. Anticipating our intention to
average to second order, we will apply an averaging transformation (for a detailed exposition
see [18]). It is the characteristic property of this transformation that it automatically renders
system (13) in a form such that to lowest order the new system is exactly the first-order
averaged system and the second-order averaged system can be simply obtained by averaging
the new system (cf appendix B). To obtain the desired transformation, we define

F̄ij := �

2πm

∫ 2πm/�

0
Fij

(
G,
n�

m
s + ϕ, g, s

)
ds,

and the deviation from the mean forF11

λ(G, ϕ, g, t) := F11

(
G,
n�

m
t + ϕ, g, t

)
− F̄11. (15)

Furthermore, we define3(G, ϕ, g, t) to be the antiderivative ofλ(G, ϕ, g, t) with respect
to t with the additional property that the average of3 should vanish, i.e.∫ 2πm/�

0
3(G, ϕ, g, s)ds = 0.

Moreover, we note that bothλ and∂3/∂ϕ have zero averages. Our averaging transformation
is given by

D = D̂ − ε1/23(Ĝ, ϕ̂, ĝ, t), G = Ĝ, ϕ = ϕ̂, g = ĝ.
The averaging transformation is constructed so that its average becomes the identity
transformation.

Let us observe that ifG, ϕ andg depend ont as solutions of the system (13), then

3̇ = λ− ε1/2

(
3D
L4∗

)
∂3

∂ϕ
+O(ε).

After applying the averaging transformation, we find that the system (13) takes the form

˙̂D = −ε1/2F̄11− εD̂
(
F12+ 3

L4∗

∂3

∂ϕ

)
+O(ε3/2),

˙̂G = −εF22+O(ε3/2),

˙̂ϕ = −ε1/2 3

L4∗
D̂ + ε

(
6

L5∗
D̂2+ F32+ 3

L4∗
3

)
+O(ε3/2),

˙̂g = εF42+O(ε3/2).

(16)

Finally, we drop the O(ε3/2) terms in (16) and average the remaining truncated system to
obtain thesecond-order partially averaged system

˙̃D = −ε1/2F̄11− εD̃F̄12,

˙̃G = −εF̄22,

˙̃ϕ = −ε1/2 3

L4∗
D̃ + ε

(
6

L5∗
D̃2+ F̄32

)
,

˙̃g = εF̄42.

(17)
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This system is the averaged form of system (13) after dropping its O(ε3/2) terms; however,
this coincidence is fortuitous in this case. In general, one has to employ an averaging
transformation in order to obtain the second-order averaged system.

To explain the evolutionary dynamics at resonance, we will replace the actual dynamical
equations by the second-order partially averaged system. As explained in appendix B,
this is a reasonable approximation over a limited time-scale. We remark that although
the second-order partially averaged system will be used to explain some of the features
of our model system near its resonances, the actual dynamics predicted by our model is
certainly much more complex than the averaged equations reveal. In particular, we expect
that near the resonances—perhaps in other regions of the phase space as well—there are
chaotic invariant sets and, therefore, transient chaotic motions [3]. The averaged system is
nonlinear and could, in general, exhibit chaos; however, we have not encountered chaos in
the second-order averaged equations obtained from the model under consideration here.

It remains to computēFij , whereFij are defined in (14). For this, we recall equation (8)
and set` = n�t/m + ϕ̃, expand the trigonometric terms in the Fourier series using
trigonometric identities and then average over the variablet . The required averages
involving the external perturbation can be computed from the average ofHext. In fact,
after some computation, we find that

H̄ext := �

2πm

∫ 2πm/�

0
Hext

(
L∗, G̃,

n�

m
t + ϕ̃, g̃, t

)
dt

= Tc(L∗, G̃, g̃) cosmϕ̃ + Ts(L∗, G̃, g̃) sinmϕ̃,

where, forn = 1,

Tc := 1
4L

4�2
[
αAm(e) cos 2g + βAm(e) sin 2g cosρ − βBm(e) cos 2g sinρ

]
,

Ts := 1
4L

4�2
[−αBm(e) sin 2g + βAm(e) sin 2g sinρ + βBm(e) cos 2g cosρ

]
,

(18)

and forn 6= 1, H̄ext = 0 so that in this case we can defineTc = Ts = 0.
The averages offD, D ∈ {L,G, `, g}, are given in (10). The terms involving radiation

damping that appear in the partially averaged system are obtained from these expressions
by Taylor expansion about the resonant orbit using equation (11). For example, we will use

0(G) := f̄L
∣∣
L=L∗ = −

1

G7

(
8+ 73

3 e
2+ 37

12e
4
)∣∣
e2=1−G2/L2∗

and the average of∂fL/∂L at resonance given by

∂

∂L
f̄L

∣∣∣∣
L=L∗
= − 1

3L3∗G5
(146+ 37e2)|e2=1−G2/L2∗ .

The second-order partially averaged system (17) is thus given explicitly by

Ḋ = −ε1/2

[
−mTc sinmϕ +mTs cosmϕ + 1

G7

(
8+ 73

3 e
2+ 37

12e
4
)]

−εD
[
−m∂Tc

∂L
sinmϕ +m∂Ts

∂L
cosmϕ + 1

3L3∗G5
(146+ 37e2)

]
,

Ġ = −ε
[
∂Tc

∂g
cosmϕ + ∂Ts

∂g
sinmϕ + 1

L3∗G4
(8+ 7e2)

]
,

ϕ̇ = −ε1/2 3

L4∗
D + ε

(
6

L5∗
D2+ ∂Tc

∂L
cosmϕ + ∂Ts

∂L
sinmϕ

)
,

ġ = ε
(
∂Tc

∂G
cosmϕ + ∂Ts

∂G
sinmϕ

)
,

(19)
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where we have dropped the tildes. It is clear thatL in the expressions involvingTc, Ts and
e must be replaced byL∗, the value ofL at resonance.

Having derived the equations for the averaged dynamics (19), we now turn our attention
to the consequences of these equations and the comparison of predictions based on them
with the actual dynamics given by (4).

3. First-order averaged dynamics

The first-order partially averaged system, obtained from (19) by dropping the O(ε) terms,
is given by

Ḋ = −ε1/2[−mTc sinmϕ +mTs cosmϕ −10(G)],
Ġ = 0,

ϕ̇ = −ε1/2

(
3

L4∗

)
D,

ġ = 0.

(20)

In this approximation, the variablesG and g are constants fixed by the initial conditions
while the remaining system inD and ϕ is equivalent to a pendulum-type equation with
torque, namely,

ϕ̈ + 3ε

L∗4 (mTc sinmϕ −mTs cosmϕ) = − 3ε

L∗4 10(G). (21)

We also have a second-order differential equation—a harmonic oscillator with slowly
varying frequency—for the deviationD given by

D̈ + εw2D = 0, (22)

where

w :=
[

3m2

L4∗
(Tc cosmϕ + Ts sinmϕ)

]1/2

. (23)

These results can be justified formally if they are recast in terms of a new temporal variable
given byε1/2t ; however, we uset in order to facilitate comparison with the actual dynamics.

To show that (22) is an oscillator, we must show thatw is a real number. To this end,
we suppose that during capture into the resonance the orbit is near an elliptic region of
the first-order partially averaged system (20). This system is Hamiltonian with an effective
energy of the form

−ε1/2

[
1

2

(
3

L4∗

)
D2+ U(ϕ)

]
,

whereU represents the effective potential energy given by

U := −(Tc cosmϕ + Ts sinmϕ)+ (10)ϕ.
If (D, ϕ) = (0, ϕ0) is an elliptic rest point of the first-order partially averaged system; then,
U ′(ϕ0) = 0 andU ′′(ϕ0) > 0, where a prime denotes differentiation with respect toϕ. It
follows that

U ′′(ϕ0) = m2(Tc cosmϕ0+ Ts sinmϕ0),

so thatw0, w0 := [3U ′′(ϕ0)]1/2/L2
∗, must be real.
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To show that the frequencyξ := ε1/2w is slowly varying, we differentiate this frequency
with respect to time to obtain

ξ̇ = −ε 9m3

2L8∗w
(Ts cosmϕ − Tc sinmϕ)D +O(ε3/2).

It follows from the first-order averaged equations thatϕ−ϕ0 is expected to be of the order of
unity; thus,ξ is nearly constant over a time-scale of orderε−1/2 sinceξ̇ is proportional toε.
In particular,D varies on the time-scaleε1/2t . Inspection of equations (21) and (22) reveals
that whileD is predominantly a simple harmonic oscillator with frequencyξ0 = ε1/2w0, the
motion of ϕ in time could be rather complicated involving essentially all harmonics ofξ0.
Therefore,ϕ cannot in general be considered a slow variable in time.

Librational motions (periodic motions in the phase plane) of the pendulum-type averaged
equation (21) correspond to orbits of the original system that are captured into the resonance.
On the other hand, if there are no librational motions, then all orbits pass through the
resonance. Thus, we observe a necessary condition for capture: the pendulum system must
have rest points in its phase plane. The rest points of the first-order averaged system are
given byD = 0 andϕ = ϕ0, with

R sin(mϕ0+ η) = −10, (24)

wheremTc = R cosη and mTs = −R sinη. As an immediate consequence, we have
the following proposition: for the (m : n) resonance, ifn 6= 1, there is no capture into
resonance. On the other hand, forn = 1, if there are librational motions, then we must
have1|0/R| 6 1. These observations suggest that in the presence of sufficiently strong
radiation damping, i.e. for1 sufficiently large, there are no librational motions and, as
a result, each orbit will pass through all the resonant manifolds that it encounters. In
particular, sinceL = a1/2, the semimajor axis of the corresponding osculating ellipse will
collapse to zero. Moreover, capture is only possible for(m : n) resonances withn = 1
when1|0/R| 6 1. In this case, if1|0/R| < 1, then the rest points in the phase plane of
the pendulum-type equation (21) at the resonance are all nondegenerate. This is precisely
Neishtadt’s conditionB.

The quantities0 andR depend (nonlinearly) on the variables(L,G, g) as well as the
parameters of the system; therefore, the precise range of their ratio0/R is difficult to
specify, in general. However, the value of this ratio can be determined numerically. In
fact, to find orbits that are captured into resonance as displayed in figures 1–3, we use the
first-order averaged system. A rest point of the first-order system corresponds to a ‘fixed’
resonant orbit withD = 0 and constantG, g, andϕ = ϕ0. The main characteristics of these
orbits do not change with respect to the slow variableε1/2t ; that is, the resonant orbits are
essentially fixed only over a time-scale of orderε−1/2. After choosingG andg, we solve
for ϕ0 at a rest point and then test to see if the resulting resonant orbit corresponds to a
libration point of the first-order averaged system (e.g.w2

0 must be positive). If it does, we
convert the point with coordinates(L∗,G, ϕ0, g) to polar coordinates and then numerically
integrate our model (4) backward in time from this starting value. When the backward
integration in time is carried out over a sufficiently long time interval, the orbit is expected
to leave the vicinity of the resonance. After this occurs, we integrate forward in time to
obtain an orbit of (4) that is captured into the resonance.

The first-order partially averaged system (20) is Hamiltonian; therefore, we do not
expect that its dynamics would give a complete picture of the average dynamics near a
resonance for ourdissipativesystem. In particular, the librational motions of the pendulum-
like system are not structurally stable. Indeed, the phase space for the full four-dimensional
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Figure 2. The plots are for system (4) with parameter valuesε = 10−4, δ/ε = 10−3, α =
1, β = 0, ρ = 0, and� = 1. (a) L = a1/2 versus time for the initial conditions(pr , pθ , r, θ)
equal to(−0.007 485 536, 0.850 305, 2.758 946, 0.976 613 692 820 41). (b) Eccentricity versus
time and (c) G versusL. Here,L∗ ≈ 1.2599 corresponds to a(2 : 1) resonance, 2/L3∗ = �.

system (20) is foliated by invariant two-dimensional subspaces parametrized by the variables
G andg. If a librational motion exists in a leaf of the foliation, then the corresponding rest
points, the elliptic rest point and the hyperbolic rest point (or points) at the boundary of
the librational region for the associated pendulum-like system, are degenerate in the four-
dimensional phase space of the first-order averaged system; their linearizations have two zero
eigenvalues corresponding to the directions normal to the leaf. In the second-order partially
averaged system, viewed as a small perturbation of (20), we expect that only a finite number
of the degenerate rest points survive. These correspond to the continuable periodic solutions
described in [3]. We expect the corresponding perturbed rest points to be hyperbolic. As a
result, they persist even when higher-order effects are added. The dimensions and positions
of the stable and unstable manifolds of these rest points determine the average motion near
the resonance. In particular, if one of these rest points is a hyperbolic sink, then there is an
open set of initial conditions that correspond to orbitspermanentlycaptured into resonance.
Our numerical experiments have provided no evidence for this behaviour. However, another
possibility—that is consistent with our numerical experiments—is that a rest point of the
perturbed system in phase space is stable along two directions but unstable in the remaining
two directions. Thus a trajectory with its initial point near the corresponding stable manifold
will be captured into resonance and undergo librational motions near the resonant manifold
until it spirals outward along the unstable manifold.
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Figure 3. The plots are for system (4) with parameter valuesε = 10−4, δ/ε = 10−3, α = 1, β =
0, ρ = 0, and� = 1. (a) L = a1/2 versus time for the initial conditions(pr , pθ , r, θ) equal
to (−0.099 51, 1.569 04, 2.338 13, 2.329 09). (b) Eccentricity versus time and (c) G versusL.
Here,L∗ ≈ 1.5874 corresponds to a(4 : 1) resonance, 4/L3∗ = �.

4. Dynamical evolution during resonance

The dynamics of system (19) is expected to give a close approximation of the near resonance
behaviour of our original model (4) over a time-scale of orderε−1/2. In particular, a
basic open problem is the following: determine the positions of the rest points and the
corresponding stable and unstable manifolds of (19). A solution of this problem would
provide the information needed to analyse the most important features of the behaviour
of the orbits that pass through the resonance as well as those that are captured by the
resonance. Unfortunately, rigorous analysis of the dynamics in the four-dimensional phase
space of system (19) seems to be very difficult at present. Thus, in lieu of a complete and
rigorous analysis of the dynamics, we will show how to obtain useful information from
approximations of the second-order partially averaged system.

A typical example of the behaviour of the orbit as it passes through a(1 : 1) resonance
is depicted in figure 1. The semimajor axis undergoes librations of increasing amplitude
around the resonant value. Furthermore, the eccentricity of the orbit generally decreases
while the orbit is trapped.

We propose to analyse the oscillations ofD by using the O(ε) approximation of the
second-order differential equation forD derived from the second-order partially averaged
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equations (19). In fact, a simple computation yields the following differential equation:

D̈ + εγ Ḋ + εw2D = 0, (25)

where

γ := m
(
∂Ts

∂L
cosmϕ − ∂Tc

∂L
sinmϕ

)
+ 1

3L3G5
(146+ 37e2) (26)

is evaluated atL = L∗ in equation (25) andw is given by equation (23). Similarly,
the second-order partially averaged system (19) can be used to derive an equation for the
temporal evolution ofϕ to orderε; in fact, the resulting equation turns out to be equation (21)
with an additional damping (or anti-damping) term.

It is clear from inspection of the differential equation (25) thatL = L∗+ε1/2D oscillates
about its resonant valueL∗ with a libration frequency given approximately byξ0 = ε1/2w0.
The magnitude of this frequency is in agreement with our numerical results to within a few
per cent for the case of resonance trapping depicted in figure 1. Moreover, the amplitude
of the oscillations will increase (decrease) ifγ < 0 (γ > 0).

The sign ofγ varies with the choice of parameters, variables and the order of the
resonance. Our numerical experiments—which have been by no means exhaustive—indicate
that the(1 : 1) resonance for the linearly polarized incident wave withα = 1 andβ = 0
is special in thatγ is negative at the elliptic rest points of the first-order averaged system.
However, for a resonance with orderm > 1, γ is not of fixed sign. Nevertheless, our
numerical experiments indicate that the amplitude of librations generally increases over
a long time-scale (cf figure 2). Figures 2 and 3 illustrate the apparent richness of the
evolutionary dynamics near resonances withm > 1. It should be emphasized that the
damped (or anti-damped) oscillator (25) approximates the actual dynamics only over a
time-scale of orderε−1/2 (cf appendix B).

To obtain an approximate equation for the envelope of the oscillations, we consider a
time-dependent change of variables for the oscillator (25) defined by the relation

D = V e−(ε/2)
∫ t

0 γ (s) ds . (27)

After a routine calculation, we obtain the differential equation

V̈ + εw2V = O(ε3/2). (28)

Thus, to orderε, V (t) in equation (27) is the solution of a harmonic oscillator equation with a
slowly varying frequencyξ = ε1/2w. In fact, equation (28) is identical to the oscillator (22)
with frequencyξ obtained from the first-order averaged system. The solutionD(t) of the
second-order equation (25) in this approximation is obtained by modulating the amplitude
of V .

We note that ifγ andw are constants, then equation (27) reduces to

D(t) = Ae−εγ t/2 cos(ε1/2wt + τ),
whereA andτ are constants depending on the initial conditions; this is the standard result
for the damped (or anti-damped) harmonic oscillator with constant coefficients.

Equation (27) certainly agrees qualitatively with the numerical experiments reported in
figures 1–3. To check the accuracy quantitatively, we integrated system (4) numerically
and simultaneously evaluated the integral ofγ in order to obtain an approximation for the
envelope ofD(t). Over an interval of time of length 691, which is of orderε−1/2, the
value ofD at its maximum predicted from equation (27) differs from the value obtained by
numerical integration of the differential equations by only a few per cent (actually 2.5%).
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The error in the comparison of the two values for the envelope ofD grows slowly over
time; in fact, it remains less than 20% over a time interval of length 9000.

The evolutionary dynamics near resonance is characterized by librational motions
described above as well as variations in angular momentum. Our numerical experiments
suggest considerable variation in the angular momentum while the orbit is trapped in
resonance. The remainder of this section is devoted to a theoretical explanation of this
phenomenon.

During the time that an orbit is captured into resonance, we expect that on average
it will reside near an elliptic rest point of the first-order partially averaged system. Thus,
we expect the dynamical variables to satisfy equation (24) approximately while the orbit is
trapped. We will show how to determine the dynamical behaviour of the angular momentum
G under this assumption. In particular, for the(1 : 1) resonance, we claim thaṫG > 0, that
is, the orbital angular momentum increases.

It is easy to show that

∂Tc

∂g
− 2Ts = − 1

2L2∗
[α sin 2g − β cos(2g + ρ)]Sm(e),

∂Ts

∂g
+ 2Tc = 1

2L2∗
[α cos 2g + β sin(2g + ρ)]Sm(e),

where

Sm(e) := m2[Am(e)− Bm(e)].
After substituting these identities as well as condition (24) into the expression forĠ in (19),
we find that

Ġ = −ε[Pm(e)+ L−2
∗ Sm(e)Qm], (29)

where, after some manipulation using the relatione = (1−G2/L2
∗)

1/2,

Pm(e) := 1

G7

[
(1− e2)3/2(8+ 7e2)− 2

m

(
8+ 73

3 e
2+ 37

12e
4
)]
,

Qm := 1
2[α sin(mϕ − 2g)+ β cos(mϕ − 2g − ρ)].

The functionSm(e)→ 0 ase→ 0; therefore, it is clear thaṫG > 0 neare = 0 as long as
Pm(e) < 0. We haveP1(e) < −81/G7 for 0< e < 1. Form = 2, we haveP2(e) < 0, but
P2(0) = 0, while form > 2, we havePm(e) > 0 neare = 0. Our conclusion is that near
the (1 : 1) resonance, we can expectĠ > 0 during capture provided the osculating ellipse
is not too eccentric. The other cases are more delicately balanced. However, for a specific
choice of parameters and for a specific resonance, one can use equation (29) to predict the
behaviour ofG near the resonance.

Consider, for instance, the system (4) with the following parameter values:ε = 10−4,
1 = δ/ε = 10−3, α = 1, β = 0, ρ = 0 and� = 1. The orbit, as depicted in figure 1, with
initial conditions given by

(pr, pθ , r, θ) = (0.2817, 0.6389, 1.6628, 2.9272)

appears to be trapped in a(1 : 1) resonance with a sojourn time of approximately 40 000.
Moreover, during this period of time the angular momentum appears to increase from
approximately 0.66 to 0.95. To demonstrate that our theoretical scheme using the second-
order partially averaged system agrees with our numerical results, let us determine the
time-scale over which the angular momentum changes from 0.78 to 0.95. According to the
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numerical integration of system (4) this occurs over about 32 700 time units, whereas our
approximate analysis of the second-order partially averaged system predicts a time-scale of

−1

ε

∫ 0.95

0.78

[
P1
(
(1−G2/L2

∗)
1/2
)]−1

dG ≈ 34 200,

a time that is within 5% of the value given by our numerical experiment. In this integral,
we have used the fact that in equation (29), the termL−2

∗ S1(e)Q1 is small compared with
P1(e).

It should be clear from the results of this section that—by employing the second-order
partially averaged system—we have been able to provide theoretical explanations for the
behaviours of semimajor axisa and eccentricitye of the orbit that is trapped in resonance.
The basic dynamical equations for our model are only valid to orderε, since physical effects
of higher order have been neglected in equation (4); therefore, it would be inappropriate to
go beyond the second-order averaged system in this case. The averaging method is general,
however, and can be carried through to any order.

5. Conclusion

In our previous investigation of the dynamics of a Keplerian binary system that is perturbed
by the emission and absorption of gravitational radiation [3], we found in our numerical
work interesting instances of dynamical behaviour associated with resonance trapping that
could not be deduced in a simple way from the basic equations of our model. We have
shown in the present work that removing the ‘fast’ orbital motion at resonance via the
procedure of partial averaging of the basic equations results in a new set of equations that
can provide an effective theoretical explanation for the dynamical behaviour of the binary
system while trapped in resonance.

When the binary system in our model is trapped in a resonance, the semimajor axis of
the osculating ellipse oscillates about a fixed value determined by the resonance condition
while the external perturbation, in general, exchanges a net amount of angular momentum
with the system thus changing the shape of the binary orbit during resonance. We have
explicitly demonstrated in this paper that the main characteristics of our model system
while it is locked in resonance can be understood on the basis of the second-order partially
averaged dynamics.

The averaging procedure developed here could be applied to any dynamical system that
is trapped in resonance. Of particular interest would be a generalization of our model that
would take the tidal influence of external masses into account as well. Moreover, some of
the observed structure in the solar system could be the direct result of evolutionary dynamics
while trapped in resonance (see [6, 13, 14]). These issues warrant further investigation.

Appendix A. Delaunay equations of motion

The Delaunay equations of motion for our system are given in [3] as

dL

dt
= −ε

(
∂C
∂`
φ(t)+ ∂S

∂`
ψ(t)

)
+ δfL,

dG

dt
= −ε

(
∂C
∂g
φ(t)+ ∂S

∂g
ψ(t)

)
+ δfG,

d`

dt
= ω + ε

(
∂C
∂L
φ(t)+ ∂S

∂L
ψ(t)

)
+ δf`,

(A1)
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dg

dt
= ε

(
∂C
∂G

φ(t)+ ∂S
∂G

ψ(t)

)
+ δfg,

where

φ(t) := 1
2α�

2 cos�t, ψ(t) := 1
2β�

2 cos(�t + ρ),
andC andS are given by equation (9) and

fL = 4

Lr3

[
1− 16

3

L2

r
+ ( 20

3 L
2− 17

2 G
2
)L2

r2
+ 50

3

L4G2

r3
− 25

2

L4G4

r4

]
,

fG = − 18G

L2r3

(
1− 20

9

L2

r
+ 5

3

L2G2

r2

)
,

f` = 2 sinv̂

eL3Gr2

[
4e2+ 1

3

(
73G2− 40L2

) 1

r
− 2

(
1+ 70

3 L
2− 29

2 G
2
)G2

r2

−25

3

L2G4

r3
+ 25

L2G6

r4

]
,

fg = −2 sinv̂

eL2r3

[
11+ (7G2− 80

3 L
2
)1

r
− 25

3

L2G2

r2
+ 25

L2G4

r3

]
.

(A2)

ThefD can be expressed, in principle, in terms of Delaunay elements. In fact, expressions
of the form r−q and r−q sinv̂ can be expanded as Fourier series in terms of the mean
anomaly` (see [7], p 54). For example, the following results are known [7, 20]

L2

r
= 1+ 2

∞∑
n=1

Jn(ne) cosn`, (A3)

L4

r2
sinv̂ = (1− e2)1/2

e

∞∑
n=1

2nJn(ne) sinn`. (A4)

For the calculation of the other similar expressions—and eventually thefD—see the methods
of classical celestial mechanics involving the Bessel functions described in [7, 20]. Only
the averagesof the fD—calculated in [3] and given in equation (10)—are needed for the
purposes of this paper.

Appendix B. The method of averaging

In this section, we give a brief introduction to the method of averaging as it is used in
this paper. More detailed accounts can be found in many excellent sources. We suggest
[16, 21, 22, 18, 19], as they offer a range of mathematical sophistication as well as diverse
points of view.

The method of averaging is usually applied to differential equations in one of several
standard forms. In celestial mechanics, perhaps the most common standard form is the
‘angular standard form’

İ = εf (I, θ), θ̇ = ω(I)+ εg(I, θ),
whereI is anm-dimensional variable,θ is ann-dimensional angular variable, bothf andg
are 2π periodic inθ andε is a small parameter. This form is often obtained after a model
of disturbed two-body motion is expressed in the action-angle variables appropriate for
the unperturbed Kepler problem as in equation (7). The second form is the ‘time-periodic
standard form’

ẋ = εF (x, t), (B1)
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wherex is anm-dimensional variable andF is T -periodic in time. This form is obtained
for many different physical problems. In particular, in our case (i.e. equation (13)) the
small parameter isε1/2 and the equation of motion is a Taylor series inε1/2. Of course, the
time-periodic standard form can be viewed as a special case of the angular standard form
by introducing a new one-dimensional angular variable:

ẋ = εF ∗(x, θ), θ̇ = 2π

T
.

However, it is useful to separate the two cases. The averaging principle is often applied
to differential equations after they are transformed to one of the above standard forms. It
consists of approximating a solution of the angular standard form by the corresponding
solution (with the same initial conditions) of the averaged system

J̇ = ε 1

(2π)n

∫ 2π

0
f (J, θ)dθ

or, for the time-periodic standard form, by the equation

ẏ = ε 1

T

∫ T

0
F(y, t)dt.

The validity of the approximation produced by the averaging principle is often left unverified.
However, as many examples show, the averaging principle is not valid in general. Thus,
a careful analysis of a physical problem must always deal with this issue. Fortunately, the
problem has been treated in great detail in the mathematical literature. Many useful and
rigorous results are now available.

The basic result involves only one angular variable; that is, it pertains either to the time-
periodic standard form or to the case whenθ is one dimensional in the angular standard
form. The averaging theorem asserts in this case (with appropriate smoothness of the
functions involved) that the averaged solution approximates the original solution with an
error of orderε on a time-scale of order 1/ε; for example, ifx(0) = y(0), then there are
constantsC1 andC2 that do not depend onε such that

|x(t)− y(t)| < C1ε, 06 t 6 C2

ε
.

Furthermore, there is a change of coordinates (the averaging transformation) of the form
x = z+ εK(z, t) such that

ż = ε 1

T

∫ T

0
F(z, t)dt + ε2F2(z, t)+ ε3F(z, t, ε). (B2)

This is exactly the idea that we use to obtain the averaging transformation (15): the purpose
of the averaging transformation is to render the transformed equation in a form that is
already averaged to first order. The second-order averaged system is then

u̇ = ε 1

T

∫ T

0
F(u, t)dt + ε2 1

T

∫ T

0
F2(u, t)dt. (B3)

That is, once the differential equation (B1) is transformed into the exact form (B2) using an
averaging transformation, the second-order averaged system is simply obtained from (B2) by
averaging the second term and dropping terms of higher order. The averaging transformation
can be uniquely defined as in section 2; indeed, this leads to a unique second-order
averaged system. It turns out that a solutionu(t, u0, ε) of this system with initial condition
u(0, u0, ε) = u0 can be used to approximate the corresponding solution of equation (B1)
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with an error of orderε2 on a time-scale of order 1/ε. More precisely, there are constants
c1 > 0 andc2 > 0 such that

|x(t, u0+ εK(u0, 0), ε)− [u(t, u0, ε)+ εK(u(t, u0, ε), t)]| < c1ε
2

for 0 6 t 6 c2/ε. Thus, the second-order averaged system gives a second-order
approximation to the full dynamics. We expect that the qualitative features of the dynamics
of the original system, for example, the stability of its rest points, are reflected in the
second-order averaged system. While this is not always the case, it is a reasonable working
hypothesis for the analysis of our model. Thepartially averaged system is the result of
the application of the method of averaging to the dynamical system atresonance. Some of
the delicate mathematical issues associated with higher-order averaging, together with an
analysis of resonance trapping for a one degree of freedom model, are discussed in [23].

It is important to note that for systems in angular standard form with more than one
angle the averaging principle is not valid in general. In fact, it is exactly the orbits for
which the averaging principle is invalid that correspond to the orbits that are captured
into resonances. In [3], we have discussed the implications of the result of Neishtadt,
which asserts that, under additional assumptions that hold for our model, the set of initial
conditions corresponding to capture has a measure of orderε1/2. Resonance trapping is
therefore proved to be rare for the case of two angles unless Neishtadt’s hypotheses are
violated (see [17] for a discussion). Rigorous results about the validity of the averaging
method for the case of more than two angles are much weaker than Neishtadt’s result (cf
[16]).
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[9] Poincaŕe H 1892-99Les Méthodes Nouvelles de la M´ecanique C´elestevol 1–3 (Paris: Gauthier-Villars)

[10] Mashhoon B 1978 On tidal resonanceAstrophys. J.223 285–298
Mashhoon B 1977 Tidal radiationAstrophys. J.216 591–609
Mashhoon B 1979 On the detection of gravitational radiation by the Doppler tracking of spacecraftAstrophys.

J. 227 1019–36
Mashhoon B 1980 Absorption of gravitational radiationGRG Abstracts (Jena meeting)pp 1505–7
Mashhoon B, Carr B J and Hu B L 1981 The influence of cosmological gravitational waves on a Newtonian

binary systemAstrophys. J.246 569–91
[11] Chicone C 1995 A geometric approach to regular perturbation theory with an application to hydrodynamics

Trans. Am. Math. Soc.347 4559–98
[12] Henrard J 1985 Resonance sweeping in the solar systemStability of the Solar System and its Minor Natural

and Artificial Bodiesed V G Szebehely (Dordrecht: Reidel) pp 183–192
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