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Abstract. The long-term nonlinear dynamics of a Keplerian binary system under the combined
influences of gravitational radiation damping and external tidal perturbations is analysed.
Gravitational radiation reaction leads the binary system towards eventual collapse, while the
external periodic perturbations could lead to the ionization of the system via Arnold diffusion.
When these two opposing tendencies nearly balance each other, interesting chaotic behaviour
occurs which is briefly studied in this paper. It is possible to show that periodic orbits can exist
in this system for sufficiently small damping. Moreover, we employ the method of averaging
to investigate the phenomenon of capture into resonance.

PACS numbers: 9510C, 0430, 9510S, 9530S

1. Introduction

Consider long wavelength gravitational waves incident on a Keplerian binary system. In
close conceptual analogy with classical electrodynamics, it is interesting to investigate the
conditions under which the interaction leads to ionization. There are a number of damping
mechanisms in a realistic binary; however, we will consider only gravitational radiation
reaction for the sake of simplicity. Thus the dynamical evolution of a binary orbit under
perturbations due to the absorption as well as the emission of gravitational radiation is the
subject of this paper.

The Kepler problem traditionally involves two point masses,m1 and m2, moving
under the influence of their mutual gravitational interaction. The incorporation of
relativistic gravitational effects in the Kepler system brings about three main post-Newtonian
modifications in the traditional picture.

(i) There exist gravitoelectromagnetic post-Newtonian effects that need to be taken
into account. The most important of these is the periastron precession that has played an
important role in the historical development of general relativity.

(ii) Moreover, the system emits gravitational radiation and hence there existradiative
post-Newtonian effects in the orbit that are characteristic of gravitational radiation damping.
This radiative damping is consistent with the observed rate of inward spiralling in the Hulse–
Taylor binary pulsar system [1, 2].

(iii) The system is expected to be affected by gravitational waves that have been emitted
by other systems as well as by their post-Newtonian tidal perturbations. Gravitational
radiation has not yet been directly observed; however, the Hulse–Taylor binary pulsar data
appear to be consistent with the notion that gravitational radiation is emitted by binary
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systems [2]. Half of all stars are expected to be members of binary or multiple systems
that could emit gravitational waves; therefore, there might be a cosmic background of
gravitational radiation that has been generated by various sources throughout the history
of the universe. Moreover, there could also be primordial gravitational waves left over
from the epoch at which the Hubble expansion began. The inclusion of all of these effects
in the Kepler problem is impractical; in fact, the two-body problem in general relativity
is intractable. To render the problem amenable to mathematical analysis, it is therefore
necessary to replace the actual problem by a model that contains the main physical effects of
interest. We consider a Kepler system in which the main effects of emission and absorption
of gravitational radiation are taken into consideration. Gravitation is a spin-2 field; therefore,
the main radiative effects first occur in general at the quadrupole level in emission as well
as in absorption. At this level, the wavelength of the radiation is large compared to the size
of the system. In this work, we analyse the radiative perturbations of a Keplerian binary
system in the quadrupole approximation.

In our previous papers [3, 4], we considered the problem of ionization of a Keplerian
binary system by a normally incident periodic gravitational wave. To render the absorption
problem tractable, we simply ignored the emission of gravitational radiation by the binary
system. Therefore, the influence of the gravitational radiation reaction on the binary
orbit was not taken into account. In the absence of this dissipative effect, our model
of gravitational ionization turned out to be a Hamiltonian system to which the basic
results of the Kolmogorov–Arnold–Moser (KAM) theory could be applied under certain
circumstances. The main purpose of the present work is to take gravitational radiation
damping into account; therefore, in this paper we study the long-term nonlinear evolution
of a Keplerian binary system under the combined action of perturbations due to the emission
and absorption of gravitational radiation.

The nonlinear dynamics of a Keplerian binary that emits and absorbs gravitational
radiation is given in our model by

d2ri

dt2
+ kr

i

r3
+Ri = −εKij (t)rj , (1)

where r := x1 − x2 denotes the relative two-body orbit,r is the length ofr, and
k = G0(m1+m2). Here the radiation reaction termR is given by

R = 4G2
0m1m2

5c5r3

[(
12v2− 30ṙ2− 4k

r

)
v − ṙ

r

(
36v2− 50ṙ2+ 4k

3r

)
r

]
, (2)

wherev is the relative velocity,G0 is Newton’s constant,c is the speed of light in a vacuum,
and an overdot represents differentiation with respect to time, i.e.ṙ = dr/dt . We emphasize
here that equation (1) represents the simplest equation for the relative motion of two point
masses,m1 andm2, that contains the main dynamical effects of emission and absorption of
gravitational radiation that we wish to study here; in fact, other post-Newtonian contributions
have been simply ignored. The justification for this approach emerges from our analysis;
that is, the substitution of the actual intractable problem by our simple model permits us to
arrive at interesting results of possible astrophysical interest.

Let the background spacetime metric be given bygµν = ηµν+ εχµν , whereηµν denotes
the Minkowski metric,ε is a small parameter indicative of the strength of the external
radiation field(0 < ε � 1), andχµν represents the gravitational radiation field pervading
the space. We impose the transverse-traceless gauge condition such thatχ0µ = 0, ∂jχij = 0,
and (χij ) is traceless; moreover,χij satisfies the wave equation�χij = 0. Imagine now
that the mutual gravitational interaction between the two masses is turned off and they
are, therefore, following geodesics of the background spacetime manifold. The spatial
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separation between the two masses is assumed to be small compared with the wavelengths
of the background (external) waves; therefore, the relative motion of the two masses can be
expressed via the Jacobi equation. It is useful to express the deviation equation with respect
to a Fermi coordinate system established along the worldline of the centre of mass of the
system. The Fermi system is the most natural extension of a local inertial frame along
the path of an observer in spacetime. Hence, the relative acceleration of the two bodies in
the Fermi system takes on a Newtonian form that is derivable from a quadrupole potential
given by 1

2εKij (t)x
ixj with

Kij (t) = −1

2

∂2χij

∂t2
(t,xCM), (3)

where(m1+m2)xCM = m1x1+m2x2.
In equation (1), we have neglected terms of the order ofε2, εδ, δ2, or higher, where

δ is the strength of the radiation reaction term as defined in appendix A; that is, in
conformity with the Newtonian appearance of equation (1) the various forces have been
linearly superposed. A detailed treatment of equation (1) withR = 0 is contained in our
previous papers [3, 4], which considered only normally incident external waves for the sake
of simplicity. We shall also choose here an external periodic monochromatic gravitational
wave that is perpendicularly incident on the orbital plane. Let this plane be characterized by
the vanishing of the third component ofr. Then, the nonzero elements of the tidal matrix
(εKij ) are given by

K11 = −K22 = α�2 cos(�t),

K12 = K21 = β�2 cos(�t + ρ), (4)

where α and β are of the order of unity and represent the constant amplitudes of the
two independent linearly polarized components of the incident monochromatic wave of
frequency� andρ is the constant phase difference between the two components (cf [3]).

It is interesting to note the partial reciprocity between the emission and absorption
of gravitational radiation. In the quadrupole approximation, an elliptical Keplerian binary
system emits gravitational waves only at frequenciesmω, m = 1, 2, 3, . . ., whereω is the
Keplerian frequency of the orbit [5]. It follows from a linear perturbation analysis [6]
that when a Newtonian binary system absorbs gravitational energy from an incident wave
of frequency�, resonances occur at� = mω, m = 1, 2, . . .. However, it is important
to point out that while the binary monotonically loses energy in the form of gravitational
radiation, the absorption of gravitational radiation energy is not monotonic.The system can
gain or lose energy in absorption. In our previous papers [3, 4], we examined the long-term
nonlinear evolution of the dynamical system withR = 0 and proved the possibility of
existence of periodic orbits for which the net flow of energy between the binary and the
external periodic gravitational radiation field must vanish. In the present work, we extend
our previous results by taking due account of gravitational radiation damping; in fact, we
show periodic orbits exist whenε andδ/ε are both sufficiently small.

The issue ofgravitational ionization provided the original motivation for our work.
The possibility of ionization of a Keplerian binary by incident gravitational waves had been
first discussed within the framework oflinear perturbation analysis [6]. However, the linear
perturbation treatment breaks down over time as a consequence of the appearance of secular
terms in the analysis. On the other hand, the results of the linear analysis can be applied to
the possibility of detection—via the solar system—of gravitational pulses [7] or a stochastic
cosmological background of gravitational waves [8]; a review of this general topic can be
found in [9] and further work in this direction is contained in [10–14] and the references
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cited therein. Furthermore, the tidal influence of very long wavelength gravitational waves
on galaxies has been studied in [15]. Ournonlinear perturbation treatment [3, 4] has led
to the conjecture that gravitational ionization is tantamount to Arnold diffusion. Moreover,
there are interesting circumstances—other than periodic orbits—for which ionization does
not occur. For instance, it follows from the KAM theorem that when the incident wave is
circularly polarized (i.e.α = β andρ = ±π/2) the perturbed binary is forever confined and
ionization does not occur ifε is below a certain limit(ε < εKAM ). It is the purpose of this
paper to determine how all of these results are affected by the presence of gravitational
radiation damping. While our previous work [3, 4] has involved time-dependent (i.e.
nonconservative) Hamiltonian systems with chaotic behaviour, the introduction of radiation
damping leads to a dissipative dynamical system that is not Hamiltonian.

At each instant of timet , the state of relative motion is determined by the relative
position and velocity(r,v); however, it is useful to employ instead the six orbital parameters
of the osculating ellipse. That is, the unperturbed bounded motion is in general a Keplerian
ellipse; therefore, it is interesting to describe the state of relative motion at each instant
by the ellipse that the system would follow if the perturbations were turned off at that
instant. The orbital elements of the osculating ellipse are closely related to the Delaunay
elements employed in this paper. They are particularly useful in a Hamiltonian system
[3, 4], since the transformation to the Delaunay action-angle variables is canonical and
the corresponding generating function is time-independent so that the magnitude of the
Hamiltonian is unchanged under the transformation.

A limiting case of the relative osculating ellipse is a circle. In this case, the system
emits gravitational waves with a single frequency 2ω. On the other hand, linear perturbation
theory reveals that resonant absorption occurs at wavefrequenciesω, 2ω, and 3ω. However,
it should be remarked that, after the passage of time, the orbit will no longer be circular.
The nonlinear perturbation theory employed in our work is based on the ideas and methods
originally developed by Poincaré [16]. An important aspect of this theory is itslack of
emphasison the precise form of theinitial conditions; clearly, this characteristic of the
theory is rather useful in celestial mechanics. In this approach, the dynamical behaviour
of a physical system is investigated after transients have died away and a steady state has
been established.

In connection with the issue of initial conditions, it is necessary to remark that the
external periodic perturbation in our model is meant to represent the dominant component of
an initial wavepacket composed mainly of long-wavelength Fourier components consistent
with the quadrupole approximation under consideration here. On the other hand, high-
frequency waves with wavelengths much smaller than the semimajor axis of the system
are expected to have negligible influence on the dynamics. That is, along any significant
portion of the relative orbit the waves are expected to go through many oscillations and
their net influence is on average expected to be vanishingly small. In our model, the
strength of the external perturbation isε; at present, it is expected thatε ∼ 10−20, though
gravitational waves have not yet been detected in the laboratory. On the other hand, the
strength of radiative damping in our model is given byδ (cf appendix A); for instance,
for the binary pulsar PSR 1913+16, discovered by Hulse and Taylor [1],δ ∼ 10−15, while
for the Earth–Sun systemδ ∼ 10−26. The more relativistic a binary system is, the larger
the magnitude ofδ, which for a physical system must always be less than(20

√
2)−1 as

discussed in appendix A.
Throughout this paper, the external perturbing force is assumed to be due to background

gravitational waves. However, as explained in detail in our first paper [3], this is not
necessary since any tidal influence on the binary orbit by a far-away mass would contribute
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a forcing term with the same functional form as in the equation of relative motion (1). In
general, the binary system cannot be isolated from the other masses in the universe; this
is simply a result of the universal character of gravitational attraction. Thus equation (1),
which is essentially the damped Newton–Jacobi equation, should contain the tidal influence
of distant masses as well as background gravitational waves in the forcing function. That
is, the background spacetime curvature—represented in equation (1) by the tidal matrix—is
due to the combined gravitational influence of background waves as well as masses. The
analysis of the general problem would involve the three-dimensional Kepler system. In our
planar model, we neglect the other masses and choose a normally incident monochromatic
plane wave for the sake of simplicity. Further investigation is necessary for the elucidation
of the dynamics of the complete system; however, the qualitative results of this planar
analysis are expected to be representative of the behaviour of the general system.

An interesting feature of equation (1) must be noted here. The vector cross product of
this equation with the relative position vector results in an equation for the rate of change of
the orbital angular momentum with time. In this result, the torque due to the gravitational
radiation reaction is proportional to the orbital angular momentum according to equation (2);
therefore, the action of this torque is only to change the angular momentum normal to the
orbital plane. The torque due to the external force is similar in character, since the external
wave is transverse and is assumed to be normally incident on the orbital plane. The net
result is that the relative motion isplanar, and this fact considerably simplifies the analysis
of the relative motion. Moreover, in conformity with the quadrupole approximation the net
velocity of the centre of mass (i.e. the velocity of the binary system as a whole) is uniform.
Therefore, we choose the ‘inertial’ reference frame(t,x) for our model such that it is
comoving with the whole binary system and thatxCM = 0. In this frame, the orientation
of the coordinate system is so chosen that the perturbed Keplerian motion has a positive
initial orbital angular momentum.

The motion in our model is planar; therefore, it is interesting to express equation (1) in
terms of polar coordinates(r, θ) in the orbital plane. Thus,

dr

dt
= pr,

dθ

dt
= pθ

r2
,

dpr
dt
= − k

r2
+ p

2
θ

r3
+ 16G2

0m1m2

5c5

pr

r3

(
p2
r + 6

p2
θ

r2
+ 4

3

k

r

)
−εr�2[α cos 2θ cos�t + β sin 2θ cos(�t + ρ)],

dpθ
dt
= 8G2

0m1m2

5c5

pθ

r3

(
9p2

r − 6
p2
θ

r2
+ 2

k

r

)
+εr2�2[α sin 2θ cos�t − β cos 2θ cos(�t + ρ)].

(5)

Herepθ is the orbital angular momentum and the initial conditions are chosen such that
pθ > 0. It is clear from these equations that the corresponding vector field in phase space
is periodic with frequency�.

The main dynamical result of our work may now be stated qualitatively in terms of
the characteristic forms of the perturbing functions. The gravitational radiation reaction
force is proportional tor−q with q > 3. Thus if r becomes small, radiative damping takes
over and leads the system inexorably to collapse. On the other hand, the external potential
is proportional tor2—i.e. the energy exchange is proportional to the orbital area through
which the normally incident wave passes (cf [7])—so that ifr becomes large the external
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force takes over and the results of our previous work [3, 4] imply that Arnold diffusion
might take place leading to the ionization of the binary system. Thus it appears that the
long-term dynamical behaviour of the system under consideration here is characterized by
two possibilities: collapse to the origin and unbounded growth; in fact, our results indicate
that the collapse scenario is prevalent in most cases.

The paper is laid out as follows, In section 2, we discuss the radiation reaction termR
in equation (1). Section 3 is devoted to the determination of the bifurcation function and
the proof of the existence of periodic orbits in the damped system. In section 4, the average
behaviour of the dynamical system (1) withε = 0 is determined for all times. Section 5
describes the average properties of the system (1). Section 6 considers the case of circularly
polarized incident waves. Section 7 describes the chaotic net using numerical analysis. A
number of detailed computations are relegated to the appendices. The paper relies on our
previous work [3, 4] for background material regarding the topic ofgravitational ionization;
however, we have tried to make this paper essentially self-contained.

2. Gravitational radiation damping

In the quadrupole approximation under consideration here, gravitational waves carry energy
and angular momentum away from the system but not linear momentum. Similarly, in
absorption the orbit exchanges energy and angular momentum with the incident gravitational
wave but not linear momentum. This implies that the motion of the system as a whole—i.e.
the centre-of-mass motion—is not affected by the emission and absorption of radiation in the
quadrupole approximation. Taking proper account of the emission of gravitational radiation,
the conservation laws of energy and momentum require that these losses be reflected in the
motion of the system. To satisfy this requirement, it is sufficient to include in the equations
of motion of a particle in the system a gravitational radiation reaction force per unit inertial
mass given byA,

Ai = − 2G0

15c5

d5Dij
dt5

xj , (6)

where (Dij ) is the quadrupole moment of the system (cf [17] and the references cited
therein). We may look upon this force as the spin-2 analogue of the standard spin-1
radiation reaction force in electrodynamics [18]. The radiation reaction term in the equations
of motion cannot be derived from a potential; otherwise, the dissipative dynamical system
would be Hamiltonian.

Let E denote the energy radiated as gravitational waves; then,

dE
dt
= G0

45c5

...

Dij
...

D
ij
, (7)

where

Dij =
∫
ρ̃(3xixj − δij x2) dV.

Here the quadrupole moment of the system is traceless by definition,ρ̃ is the mass density,
and dV is the volume element. Equation (7) is a standard result of general relativity in
the quadrupole approximation; that is, it can be obtained from a detailed treatment of the
linearized form of the gravitational field equations together with the physical interpretation
of the Landau–Lifshitz pseudotensor. Following this approach, a similar expression can be
derived in the quadrupole approximation for the angular momentum carried away by the
gravitational waves. The energy and angular momentum radiated away via gravitational
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waves are lost by the orbit; therefore, the equation of orbital motion should reflect this loss.
For both energy and angular momentum, this must be accomplished by the introduction of
the radiation reaction force. By analogy with electrodynamics, we expect that the radiation
reaction force per unit inertial mass is of the form given by equation (6), so that for the
binary system under consideration we can express the equations of motion as

d2xi1

dt2
+ G0m2(x1− x2)

i

r3
= − 2G0

15c5

d5Dij
dt5

x
j

1 − εKij (t)xj1, (8)

d2xi2

dt2
+ G0m1(x2− x1)

i

r3
= − 2G0

15c5

d5Dij
dt5

x
j

2 − εKij (t)xj2, (9)

wherer = x1 − x2. Multiplying the first equation bym1 and the second equation bym2

and adding them results in

d2xiCM

dt2
= −

[
2G0

15c5

d5Dij
dt5
+ εKij (t)

]
x
j

CM.

In the absence of perturbations,xCM is at the origin of the coordinate system; therefore,
this equation of motion forxCM implies that it is effectively unchanged in our approximate
treatment. It is thus possible to setxCM = 0, so that the emission or absorption of
gravitational waves does not affect the total linear momentum of the system in the quadrupole
approximation. The relative motion is obtained by subtracting the two equations:

d2ri

dt2
+ G0(m1+m2)r

i

r3
= − 2G0

15c5

d5Dij
dt5

rj − εKij (t)rj . (10)

It follows that the full content of the equations of motion is simply contained in the
expressionsx1 = m2r/M and x2 = −m1r/M, whereM = m1 + m2 is the total mass
and r is given by the equation of relative motion (10). The quadrupole moment of the
system is then given by

Dij = m1(3x
i
1x
j

1 − δij x2
1)+m2(3x

i
2x
j

2 − δij x2
2) = µ(3rirj − δij r2), (11)

whereµ is the reduced mass, i.e.µ = m1m2/M.
It is clear from the form of equations (10) and (11) that the relative motion must

be determined from an equation in which the order of differentiation with respect to
time exceeds two. On the other hand, the higher derivative terms only appear in the
radiation reaction acceleration that has an overall dimensionless strength given by a small
parameterδ that is particularly small for Keplerian (i.e. nonrelativistic) binaries as discussed
in appendix A. It follows that the problem can be avoided in this case if we proceed
iteratively and substitute for̈ri from equation (10) every time it appears in the calculation
of gravitational radiation damping. The end result of this process would be to replace
equation (10) with one that contains an infinite number of terms of ordersδε, δ2, δε2 . . .,
besides the terms that are linear in the perturbation parameters; however, for sufficiently
small ε and δ the nonlinear terms are not expected to change the qualitative behaviour of
the dynamical system over a long period of time. Then, keeping only terms of the first
order in the perturbation parametersε andδ in equation (10) we find that

1

µ

d5Dij
dt5
= −2

kṙ

r4

(
9v2− 15ṙ2− 8k

r

)
δij − 90

kṙ

r6
(3v2− 7ṙ2)rirj

+24
k

r5

(
3v2− 15ṙ2− k

r

)
(rivj + rj vi)+ 180

kṙ

r4
vivj , (12)
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which is the approximate expression to be used in the radiative damping term

Ri = 2G0

15c5

d5Dij
dt5

rj (13)

in order to obtain equation (2). In deriving equation (12), we have repeatedly used the fact
that r · v = rṙ. In the following sections, we shall use equations (1) and (2) to study the
dynamical behaviour of the Kepler system over a long period of time.

Let us now return to equation (10) and point out that this equation of relative motion—
in which the effects of emission and absorption of gravitational radiation have been taken
into account in the quadrupole approximation and all other retardation effects have been
neglected—is consistent with the conservation laws of energy and momentum. We will
illustrate this point explicitly for the energy of the system; the case of angular momentum
is similar but will not be treated here. Let us therefore derive an energy expression for the
equation of relative motion (10). Multiplying both sides of that equation by the reduced
mass and the relative velocity results in

d

dt

[
E + G0

45c5
(
....

Dij Ḋij−
...

Dij D̈ij )
]
= − G0

45c5

...

Dij
...

D
ij −1

6
εKij Ḋij , (14)

where we have useḋDij = µ[3(virj + rivj )−2r ·vδij ] and the fact that(Dij ) is symmetric
and traceless. The first term in the square brackets in equation (14) is the Keplerian energy
of the relative orbitE, 2E = µv2−2kµ/r, and the second term is a relativistic contribution.
The rate at which this latter term varies averages out—over the period of the unperturbed
Keplerian motion—to a quantity that is negligible at the level of approximation under
consideration in this paper. It follows that the average rate of loss of Keplerian energy of
the dynamical system by radiation damping is equal to the average rate at which energy
leaves the orbit via gravitational waves, as expected. This latter rate is given by averaging
equation (7) over one period of elliptical Keplerian motion and the result is [5]〈

dE
dt

〉
= 32G4

0m
2
1m

2
2(m1+m2)

5c5a5(1− e2)7/2

(
1+ 73

24
e2+ 37

96
e4

)
, (15)

where a and e are the semimajor axis and the eccentricity of the Keplerian ellipse,
respectively. At this average rate, gravitational radiation energy permanently leaves the
system and goes off to infinity. No energy is actually lost; the orbital energy is simply
converted into gravitational radiation energy.

It is sometimes stated (cf [17] and references therein) that the force due to gravitational
radiation damping could be derived from a quadrupole potential. If so, the dynamical
system under consideration here would be Hamiltonian. That is, a simple comparison of the
two perturbing influences in equation (10) reveals that this system would be Hamiltonian if
d5Dij /dt5 were simply a function of time. However, this cannot be the case since d5Dij /dt5
is a function ofr andv; moreover, the system is manifestly dissipative.

3. Continuation of periodic orbits

The investigation of the dynamics of the perturbed Kepler system (1) can be simplified
considerably if the equations of relative motion are expressed in terms of action-angle
variables that are suited to the unperturbed system [19, 20]. If the perturbations of the
Kepler system (5) are turned off at a given instant, the relative motion will follow an
osculating elliptical orbit with semimajor axisa, eccentricitye, eccentric anomalŷu, and
true anomalyv̂. The orientation of the underlying coordinate system can be so chosen that
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the relative orbital angular momentum is positive. The action-angle variables appropriate to
the Kepler problem are the Delaunay elements [19, 20] that are given for the planar problem
under consideration by

L := (ka)1/2, G := pθ = L(1− e2)1/2,

` := û− e sinû, g := θ − v̂. (16)

To analyse the dynamical behaviour contained in equation (1) in terms of Delaunay
variables, we first put these equations in dimensionless form. This is done in appendix A.
Then, the dimensionless equations of motion are expressed in terms of Delaunay elements;
this transformation is presented in appendix B. This results in the following form of the
dynamical equations:

dL

dt
= −ε

(
∂C
∂`
φ(t)+ ∂S

∂`
ψ(t)

)
+ δfL,

dG

dt
= −ε

(
∂C
∂g
φ(t)+ ∂S

∂g
ψ(t)

)
+ δfG,

d`

dt
= ω + ε

(
∂C
∂L
φ(t)+ ∂S

∂L
ψ(t)

)
+ δf`,

dg

dt
= ε

(
∂C
∂G

φ(t)+ ∂S
∂G

ψ(t)

)
+ δfg,

(17)

where

fL = 4

Lr3

[
1− 16

3

L2

r
+
(

20

3
L2− 17

2
G2

)
L2

r2
+ 50

3

L4G2

r3
− 25

2

L4G4

r4

]
,

fG = − 18G

L2r3

(
1− 20

9

L2

r
+ 5

3

L2G2

r2

)
,

f` = 2 sinv̂

eL3Gr2

[
4e2+ 1

3

(
73G2− 40L2

) 1

r

−2

(
1+ 70

3
L2− 29

2
G2

)
G2

r2
− 25

3

L2G4

r3
+ 25

L2G6

r4

]
,

fg = −2 sinv̂

eL2r3

[
11+

(
7G2− 80

3
L2

)
1

r
− 25

3

L2G2

r2
+ 25

L2G4

r3

]
,

(18)

andfL, fG, f`, fg can be expressed in terms of Delaunay elements using classical methods
of celestial mechanics involving the Bessel functions (cf appendix B). The right-hand side
of system (17) is periodic in time with frequency�. For δ = 0 and ε > 0 sufficiently
small, system (17) has periodic orbits as proved in [3]; moreover, this same Hamiltonian
system exhibits dynamical behaviour [3, 4] that appears to be characteristic of Arnold
diffusion [22, 23]. In the following, we show that when radiation reaction is taken into
account periodic orbits persist under certain conditions. Forε = 0 and δ 6= 0, on the
other hand, we establish in the next section that the system (17) continuously loses energy
to gravitational radiation and eventual collapse is inevitable. Dynamical behaviour of this
type—a globally attracting sink—is generically structurally stable and is therefore expected
to persist for sufficiently smallε 6= 0. Moreover, the same dynamical behaviour would be
expected to persist if certain sufficiently small additional perturbations—due to higher-order
radiative effects, for instance—were included in the model. However, the problem of the
structural stability of the system (17) in the general case requires further analysis that is
beyond the scope of this work.
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Let us now assume that there are relatively prime positive integersm andn such that
mω = n�, i.e. the unperturbed Keplerian orbit is in resonance with the disturbing function.
Then, it turns out that the three-dimensional resonance manifold (period manifold)

ZL = {(L,G, `, g) : mω = n�}
is a normally nondegenerate manifold [3]. Moreover, the solution of the unperturbed system
starting at(L0,G0, `0, g0) is given by

t 7→ (L0,G0, ωt̄ + `0, g0),

where t̄ = t − t0 and t0 is the initial time. It turns out that we can sett0 = 0 with no
loss of generality. It follows from [3, 4, 21] that we must project the partial derivative of
the Poincaŕe map with respect toε onto the complement of the range of the infinitesimal
displacement. The partial derivative of the Poincaré map with respect toε at ε = 0 is
obtained from the solution of the second variational initial value problem

L̇ε = −
(
∂C
∂`
φ(t)+ ∂S

∂`
ψ(t)

)
+1fL,

Ġε = −
(
∂C
∂g
φ(t)+ ∂S

∂g
ψ(t)

)
+1fG,

˙̀
ε = − 3

L4
Lε +

(
∂C
∂L
φ(t)+ ∂S

∂L
ψ(t)

)
+1f`,

ġε =
(
∂C
∂G

φ(t)+ ∂S
∂G

ψ(t)

)
+1fg,

(19)

with

Lε(0, L0,G0, `0, g0) = 0, Gε(0, L0,G0, `0, g0) = 0,

`ε(0, L0,G0, `0, g0) = 0, gε(0, L0,G0, `0, g0) = 0,
(20)

where1 = δ/ε so that 0< 1 <∞. In fact, the partial derivative is given by the vector[
Lε

(
m

2π

�
,L0,G0, `0, g0

)
,Gε

(
m

2π

�
,L0,G0, `0, g0

)
, `ε

(
m

2π

�
,L0,G0, `0, g0

)
,

gε

(
m

2π

�
,L0,G0, `0, g0

)]
.

Here the independent variables are(t, L,G, `, g) and the last four variables of each
component function give the initial point for the original solution of the unperturbed system,
i.e. equations (17) withε = 0 andδ = 0.

The appropriate projection is onto the first, second and fourth coordinates. In fact, the
bifurcation function is this projection restricted toZL, and is given by

B =
[
Lε

(
m

2π

�
,L0,G0, `0, g0

)
,Gε

(
m

2π

�
,L0,G0, `0, g0

)
,

gε

(
m

2π

�
,L0,G0, `0, g0

)]
, (21)

whereL = L0 is fixed by the choice of resonance, i.e.m/L3
0 = n�, andG0 > 0 by our

choice of spatial coordinate axes. Dropping subscripts indicating initial values of Delaunay
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elements for the sake of simplicity, the components of the bifurcation function (21) can
now be written as

BL(G, `, g) = −∂I
∂`
+1

∫ 2πm/�

0
fL(L,G,ωt + `, g)dt,

BG(G, `, g) = −∂I
∂g
+1

∫ 2πm/�

0
fG(L,G,ωt + `, g)dt,

Bg(G, `, g) = ∂I
∂G
+1

∫ 2πm/�

0
fg(L,G,ωt + `, g)dt,

(22)

whereI is defined by

I =
∫ 2πm/�

0
[C(L,G,ωt + `, g)φ(t)+ S(L,G,ωt + `, g)ψ(t)] dt, (23)

andC andS are given in appendix B. The integral in (23) has been calculated in [3] with
the result thatI = 0 for n > 1, while for n = 1,

I = 1
2πma

2�{α(Am cosm` cos 2g − Bm sinm` sin 2g)

+β[Am cos(m`− ρ) sin 2g + Bm sin(m`− ρ) cos 2g]}. (24)

The periodic orbits that continue are determined by the simple zeros of the bifurcation
function (22). The integrals multiplying1 in equations (22) are given in appendix C;
therefore, periodic orbits continue to exist when the following equations are satisfied by
simple zeros:

∂I
∂`
+ 2π1

L3

G7

(
8+ 73

3
e2+ 37

12
e4

)
= 0,

∂I
∂g
+ 2π1

1

G4
(8+ 7e2) = 0,

∂I
∂G
= 0.

(25)

Forn > 1, I = 0 and hence these equations have no solution as the expressions multiplying
1 are manifestly positive. Forn = 1 and1 = 0, we have proved in [3] that there are simple
zeros of the bifurcation function for all positive integersm. It follows that equation (25)
must have simple zeros as well for sufficiently small1.

It is important to remark here that the persistence of periodic orbits would not be altered
by the inclusion of terms of the order ofε2, εδ, δ2, or higher in the original system (1). In
fact, the incorporation of such higher-order effects could only affect the shape of a periodic
orbit of the type investigated here but not its existence.

The Kepler system under investigation in this paper may in general have other periodic
orbits than those revealed by our first-order method. The investigation of the stability of
the periodic orbits under consideration is beyond the scope of this work. If there is a
stable periodic orbit forε > 0 andδ > 0, then its (open) basin of attraction consists of
trajectories that are permanently captured into resonance. This same issue will be discussed
in connection with the averaging methods that we introduce in the next section.

4. Averaged dynamics

In this section, we wish to consider our system in Delaunay elements when no external
gravitational waves are present. The motivation for this discussion is the experimental
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observation of the inward spiralling of the members of the Hulse–Taylor binary pulsar [1].
Thus, we consider the traditional Kepler problem except that the post-Newtonian effect of
gravitational radiation damping is taken into account in the quadrupole approximation. We
expect that the system remains planar and loses energy and angular momentum such that
eventuallyL→ 0, G→ 0, and the system collapses. The behaviour of the system in the
infinite past is less trivial. The precise manner in which the orbit behaves on average for
t →±∞ can be determined using the method of averaging. In this case, we have

L̇ = δfL, Ġ = δfG,
˙̀ = ω + δf`, ġ = δfg.

(26)

Equations (26) are of the general form

İ = εf (I, ϕ, ε), ϕ̇ = ω(I)+ εg(I, ϕ, ε), (27)

where bothf andg are 2π periodic in the angle variableϕ. In fact, in our caseI = (L,G, g)
andϕ = `. The averaging theorem [24] asserts the following: suppose thatt 7→ (I (t), ϕ(t))

is a solution of equations (27) andω(I (t)) > 0 for all t . If t 7→ J (t) is the solution of the
averaged system

J̇ = ε 1

2π

∫ 2π

0
f (J, ϕ,0) dϕ

with J (0) = I (0), then, for sufficiently smallε, there is a constantC independent ofε such
that

|I (t)− J (t)| < Cε for 06 t 6 1

ε
.

That is, the ‘action variables’ of the original system (27) remain close to the solution of the
averaged system over a long time scale.

It is important to note that the averaging theorem, in the generality stated above, is only
true for the case of a single frequency, i.e. there is only one angle variable and its frequency
does not vanish. If there are more than one angle present, then resonances among the
frequencies must be taken into account. Thoughg is an angle variable, its evolution is slow
and its average rate of variation vanishes; hence, it may be regarded as an ‘action’ variable
for the purposes of this section. Therefore in our case, the averaged system obtained from
(26), where we useL, G, andg for the averaged variables,e = √L2−G2/L, and1 = δ/ε,
is given by (cf appendix C)

L̇ = −ε 1
G7

(
8+ 73

3
e2+ 37

12
e4

)
,

Ġ = −ε 1

L3G4
(8+ 7e2),

ġ = 0.

(28)

To determine the dynamics of the averaged system (28) for the variablesL andG, we
note that equations (28) are autonomous. Of course, the system is in this case singular on the
(invariant)L-axis. Also, recall that it suffices to consider only the case whereG > 0. After
multiplication by 12L5G7/ε1, we obtain the dynamically equivalent system of equations

L̇ = −L(37G4− 366G2L2+ 425L4),

Ġ = −G3(180L2− 84G2).
(29)

The Delaunay elements are defined only forL > 0 and 0< G 6 L. It is easy to determine
the phase portrait of the system (29); in fact, all orbits in the sector bounded by theL-axis



Gravitational ionization 711

and the lineL = G are attracted to the origin. The ‘singular set’ corresponding to the limits
of the definition of Delaunay elements,e = 0 ande = 1, consists of the lineL = G and the
L-axis, respectively; indeed, these are invariant sets in the scaled system (29). Recall that
L = √a andG =

√
a(1− e2), wherea ande are the semimajor axis and the eccentricity,

respectively. From our analysis, it follows thata approaches zero ast →∞ anda increases
without bound ast → −∞. We claim thate→ 0 ast →∞ ande→ 1 ast → −∞. To
see this just note that

d

dt

G

L
= G

L
(L2−G2)(425L2− 121G2);

now let η = G/L and observe that 0< η < 1, η = √1− e2, and

η̇ = L4η(1− η2)(425− 121η2).

By rescaling time, the dynamics of this equation turns out to be equivalent to the dynamics
of

η′ = η(1− η)(425− 121η2),

where a prime denotes differentiation with respect to the new temporal variable. The last
differential equation has a source atη = 0, a sink atη = 1, and no other rest point on the
interval (0, 1) on the corresponding phase line; therefore, we see thatη → 1 as t → ∞
andη→ 0 ast →−∞, i.e. e→ 0 ast →∞ ande→ 1 ast →−∞. Hence the orbit is
unbound in the infinite past.

The main physical conclusion of this section has been previously obtained by Walker
and Will [17]. However, the method of averaging employed here provides a simple and
transparent proof of their results on the dissipative nature of the radiation damping.

5. Passage through resonance

In this section, we consider some additional aspects of the dynamics of equation (1) that can
be determined using the method of averaging. In particular, we will discuss the phenomenon
of capture into resonance.

The Delaunay ‘action-angle’ variables provide the appropriate form of the dynamical
equations required for the averaging method. Here we will begin with system (17) in the
form

L̇ = −ε ∂H
∗

∂`
+ ε1fL,

Ġ = −ε ∂H
∗

∂g
+ ε1fG

ġ = ε ∂H
∗

∂G
+ ε1fg,

˙̀ = 1

L3
+ ε ∂H

∗

∂L
+ ε1f`,

ṡ = �,

(30)

where

H∗ = 1
2�

2[αC(L,G, `, g) coss + βS(L,G, `, g) cos(s + ρ)],
denotes the O(ε) terms of the Hamiltonian giving the gravitational wave interaction in
Delaunay elements ands := �t . Here we assume thatε is the small parameter; however,
our conclusions remain the same ifδ = ε1 is taken to be the small parameter in this system.
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A key observation that motivates the analysis of this section is the fact that the angular
variable,g, is a slow variable for (30). Thus, the dynamical system can be treated as a
two-frequency system with fast variables` and s. The associated resonances are given by
relations between the frequencies 1/L3 and�. More precisely, ifm andn are relatively
prime integers, the(m : n) resonant manifold is given by{

(L,G, g, `, s) : m
1

L3
= n�

}
.

After averaging system (30) over the fast variables, we obtain system (28) that was
analysed in the last section. Thus, according to the averaging principle [24], every perturbed
Keplerian elliptical orbit collapses even in the presence of gravitational wave interaction.
However, as is well known, the averaging principle is not valid for two-frequency systems
unless additional hypotheses are imposed. Violations of the asymptotic estimates embodied
in the averaging principle are associated with the dynamical phenomenon called capture
into resonance. A theorem of A I Neishtadt (cf [24], p 163, for a discussion) allows for the
possibility of capture into resonance and provides a strong result on the applicability of the
averaging principle.

Neishtadt’s theorem requires two hypotheses that we refer to as conditionN and
conditionB. ConditionN requires that the rate of change of the frequency ratio of the fast
angles with respect to time along theaveragedsystem be bounded away from zero. For
our case, the frequency ratio is given by(1/L3)/�, and the required derivative is

3ε1

�L4G7

(
8+ 73

3
e2+ 37

12
e4

)
. (31)

Clearly, the derivative is bounded away from zero as long asL andG are bounded away
from infinity. As we have shown in section 4, bothL andG decrease with time in the
averaged motion. Thus, conditionN is satisfied along each fixed orbit of the averaged
system. ConditionB is generically satisfied for most orbits.

If conditionsN andB both hold, then Neishtadt’s theorem asserts that for all initial
points outside a set of measures not exceeding a constant multiple of

√
ε, the averaged

motion approximates the motion over a time-scale 1/ε with an error given by O(| ln ε|√ε).
In particular, capture into resonance is rare, and most motions are well approximated by the
averaged motion. This is the behaviour predicted for our model equations. That is, except
for a set of initial conditions with small measure, the variablesL andG associated with the
perturbed orbit are such thatL→ 0 andG→ 0 ast →∞; the long-time behaviour of the
osculating ellipse is described by eventual collapse.

The exceptional set of initial conditions mentioned in Neishtadt’s theorem is not empty
in our case. In fact, we have proved that some of the unperturbed periodic orbits can be
continued to periodic orbits in the presence of perturbation for sufficiently smallε and1;
indeed, these periodic orbits are in a sense permanently captured into resonance.

In order to determine the average dynamics in more detail, the dynamical behaviour
near the resonant manifolds must be studied. One approach to the study of this behaviour
is provided by the theory of partial averaging near a resonant manifold. In fact, these ideas
are used in the proof of Neishtadt’s theorem. An elementary exposition of the main aspects
of the now well established theory can be found, for example, in [24]; a mathematical
proof of Neishtadt’s theorem is given in [25]. This theory requires second-order averaging
near the resonant manifold, where we find essentially a pendulum-like equation with slowly
varying amplitude, phase, damping, and torque. The existence and stability of its stationary
solutions together with the positions of the associated invariant manifolds determine the
actual average dynamics near each resonance. We have obtained the second-order partially
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Figure 1. The plots are for system (32) with parameter valuesε = 10−4, δ/ε = 10−3,
α = 2, β = 2, ρ = 0, and� = 0.649 519 0528. The top panel showsL = √a versus
time for the initial conditions(pr , pθ , r, θ) equal to(0.389 27, 0.610 85, 2.709 00,−2.456 77).
The middle panel showsL versus time and the bottom panel showsG versusL for the
initial conditions (0.3893, 0.6109, 2.709,−2.4568). Here,L ≈ 1.1547 corresponds to(1 : 1)
resonance, 1/L3 = �.

averaged system for the perturbed Kepler problem, but its analysis is beyond the scope of
this paper. However, we mention here two facts in this connection: near(m : n) resonance
with n 6= 1, there is no capture into resonance; moreover, as1 increases, the likelihood of
capture into resonance decreases.

Figure 1 shows an example of capture into resonance. The top panel in this figure
illustrates capture into resonance and the middle panel involves an orbit whose initial
conditions are slightly perturbed compared with the orbit depicted in the top panel.
The middle panel shows passage through resonance on the time-scale of our numerical
experiment. In the bottom panel, the behaviour of the orbital angular momentum,G, is
plotted versusL = √a for the system depicted in the middle panel. During this passage
through(1 : 1) resonance, the energy of the orbit is constant on average while the orbital
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angular momentum increases in this case—i.e. the eccentricity of the osculating ellipse
decreases frome ≈ 0.8 to e ≈ 0.4. That is, there is balance on the average between the
processes of emission and absorption for energy but not for angular momentum. Recall
that the resonance condition only fixes the energy of the osculating orbit and so the angular
momentum can change. A preliminary analysis indicates that this behaviour is consistent
with the second-order partially averaged dynamics; however, a full investigation of this
interesting phenomenon necessitates further research. It would be quite interesting, of
course, if this theoretically rare phenomenon could be observed astronomically. A binary
system gradually spirals inward, but when the decreasing semimajor axis reaches a certain
value corresponding to resonance with an external periodic perturbation the collapse process
temporarily ceases—though the binary orbit’s eccentricity could change considerably in this
sojourn while the semimajor axis fluctuates with increasing amplitude about the resonance
value—during the period of passage through resonance that may be very long compared
to the orbital period until the collapse process resumes again. We also note that for our
choice ofε the time scale for the validity of the averaged motion for orbits not captured into
resonance is 1/ε = 104, a value that is an order of magnitude smaller than the integration
time of 105. Finally, we emphasize that the numerical experiments are conducted by
integrating the original equations of motion—not the averaged system.

6. Circularly polarized forcing function

A remarkable outcome of our nonlinear analysis ofgravitational ionization[3] has been the
recognition that, for normally incident monochromatic plane waves with definite helicity
(i.e. right or left circularly polarized waves), the KAM theorem would ensure that there
would be no ionization forε < εKAM . This result has been further discussed in [4]. It is
clear on physical grounds that the inclusion of radiative dissipation cannot change the basic
result of this analysis: the system would constantly lose energy and final collapse would
be inevitable. While the KAM theorem only guarantees confinement, damping by radiation
cannot but lead to catastrophic collapse. Forε > εKAM , the situation is less clear and—as
discussed in previous sections—there could be an interesting interplay between collapse and
Arnold diffusion.

It must be pointed out that these results are independent of the frequency of incident
radiation� and only require thatα = β and ρ = ±π/2. The dynamical system can be
viewed from a frame rotating with frequency�/2; in this frame, there exists an energy
integral once the radiative damping is neglected. That is, the incident gravitational wave
stands completely still as a consequence of the gravitational helicity–rotation coupling [26]
and hence the dynamical system is time independent in the absence of damping. The
KAM theorem would then imply that for sufficiently smallε the system is forever bounded.
This confinement brings into rather sharp focus the nonreciprocal nature of emission and
absorption of gravitational radiation. Clearly, the continuous loss of energy by the binary
would eventually result in the collapse of the system.

7. Transient chaos

The equations of motion (5) can be integrated numerically given a set of initial conditions
at t = 0. For this purpose it is convenient to express these equations in dimensionless form
using the scale transformations discussed in appendix A. The actual system that we use is
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given by

dr

dt
= pr, dθ

dt
= pθ

r2
,

dpr
dt
= − 1

r2
+ p

2
θ

r3
+ 4δ

pr

r3

(
p2
r + 6

p2
θ

r2
+ 4

3r

)
−εr�2[α cos 2θ cos�t + β sin 2θ cos(�t + ρ)],

dpθ
dt
= 2δ

pθ

r3

(
9p2

r − 6
p2
θ

r2
+ 2

r

)
+ εr2�2[α sin 2θ cos�t − β cos 2θ cos(�t + ρ)].

(32)

We remark that this system is numerically ill-conditioned near collision, i.e. nearr = 0.
Unfortunately, there does not seem to be a way to regularize the system for numerical
integration as can be done for regular perturbations of Kepler motion as discussed in [27].
The problem is that the two perturbation terms in our system enter with negative and positive
powers of the variabler.

A possible set of initial conditions for (32) that we use for our numerical experiments in
this work is(pr, pθ , r, θ) = (e, 1, 1, 0), which corresponds to an osculating ellipse att = 0
with unit orbital angular momentum, eccentricitye, semimajor axisa = (1− e2)−1, and
Keplerian frequencyω = (1− e2)3/2. The true anomaly of this osculating ellipse is given
by v̂ = π/2, the Delaunay elementg = −π/2, and the periastron occurs atθ = −π/2.

The main conclusion of the analysis in this paper is that for sufficiently smallε, the
majority of initial conditions leadon averageto collapse. However, from basic results in
nonlinear dynamics, we expect that near resonances there would be transverse intersections
of stable and unstable manifolds of some of the perturbed periodic orbits. This suggests the
existence of transient chaos—chaotic invariant sets that are not attractors. We will see in
a moment that numerical experiments are consistent with this observation. However, since
we do not have estimates on the size of the perturbation parameters for which the expected
behaviour is valid, there does not seem to be a mathematical obstruction to the existence of
attracting chaotic sets (strange attractors) for some choices of the perturbation parameters.
In this regard, we mention the connection between the planar Kepler system and a two-
dimensional anharmonic system with an external periodic force and damping [27]. The
existence of transient chaos for small amplitude forcing and the possibility of the existence
of strange attractors for larger amplitude forcing and damping is an interesting and well
documented dynamical feature of the systems in the latter class. In fact, the existence of
transient chaos and strange attractors for the case of a single oscillator is well known (see,
for example, [28]). It should also be mentioned that the connection between the Kepler
system and oscillators is quite general; in this paper, we have restricted our attention to the
planar Kepler problem for the sake of simplicity. It is possible that the three-dimensional
Kepler system given by the general form of equations (1) and (2) would exhibit novel
features not found in the planar case. We have conducted apreliminary numerical search
for a strange attractor in our perturbed Kepler system, but we have not succeeded in finding
such an attractor. This is an interesting problem for further research.

As a numerical example consistent with transient chaotic behaviour, we refer to figure 2
where the evolution of the action variables, strobed at each cycle of the incident wave,
is depicted. While both action variables tend to eventual collapse, complicated transient
dynamics is indicated in this case. It is interesting to note that here the orbit passes through
a dense set of(m : n) resonances that may be responsible for the complicated behaviour
of these action variables. The evolution of these variables in the bottom panel should be
compared and contrasted with that in the bottom panel of figure 1.
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Figure 2. The plot ofG versusL for system (32) with initial conditions(pr , pθ , r, θ) equal
to (0.5, 1, 1, 0) and parameter valuesε = 10−3, δ/ε = 10−5, α = 2, β = 2, ρ = 0, and
� = 1.299 038 106. The top panel depicts 157 000 points, one after each time interval 2π/�.
The middle panel is a blow up for iterates 110 000–130 000, the bottom panel for 140 000–
155 000.

Finally we note that, while energy continuously leaves the system via the emission
of gravitational waves, the definite trend toward collapse that results may—under special
circumstances—be counter-balanced by the input of energy into the system by the external
periodic perturbations. If the net flow of energy into the system is positive on average,
gravitational ionization will take place—the semimajor axis of the osculating ellipse will
grow, albeit not necessarily monotonically. This balance seems to depend very sensitively
on the choice of parameters and initial conditions. For instance, let the initial conditions
be (pr, pθ , r, θ) = (0.5, 1, 1, 0) in the system (32) and set the parameters such thatα = 2,
β = 2, ρ = 0, and� = 1.299 038 106; forε = 0.005 andδ/ε = 0.001 989 92 the system
appears to ionize over a long time scale, while forδ/ε = 0.001 989 93 the system collapses.
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Appendix A. Scale transformations

To facilitate the analysis of the dynamical behaviour of the Kepler problem with both
incident gravitational waves and gravitational radiation damping, we transform the equations
of motion for this system to dimensionless form. To this end, letri = R0r̂

i and t = T0t̂ ,
whereR0 andT0 are scale parameters andr̂ i and t̂ are dimensionless. This will be true for
all quantities with a hat. Substituting forri and t in equations (1) and (2) leads to

d2r̂ i

dt̂2
+ k̂ r̂

i

r̂3
+ δ

r̂3

[(
12v̂2− 30˙̂r2− 4

k̂

r̂

)
dr̂ i

dt̂
−
˙̂r
r̂

(
36v̂2− 50˙̂r2+ 4

3

k̂

r̂

)
r̂ i

]
+ εK̂ij r̂ j = 0,

(A1)

where

k̂ := k T
2

0

R3
0

, δ := 4

5

G2
0m1m2

c5T0R0
, and K̂ij := T 2

0Kij .

Let us now consider the physical interpretation of such a transformation. If we take a binary
system with initial period 2πT0 and semimajor axisR0, then by Kepler’s law

ω2 = G0(m1+m2)

R3
0

= 1

T 2
0

,

i.e. k̂ = 1. In general, one can definêω = ωT0 and â = a/R0; then, Kepler’s law
becomesω̂2 = k̂/â3, whereâ is the dimensionless semimajor axis. We also note thatδ is
dimensionless and turns out to be a small parameter, 0< δ � 1, for all realistic binary
systems. By settinĝk = 1 and dropping all hats in equation (A1), we obtain

d2ri

dt2
+ ri

r3
+ δ

r3

[(
12v2− 30ṙ2− 4

r

)
dri

dt
− ṙ
r

(
36v2− 50ṙ2+ 4

3r

)
ri
]
+ εKij rj = 0,

(A2)

which is the form of the equation of motion that we investigate in this paper. Now everything
is dimensionless in equation (A2); there are two small parametersε andδ and becausêk = 1,
the underlying scalesR0 and T0 are connected such thatR3

0 = kT 2
0 . Furthermore, if we

take the direction of incidence of the external gravitational waves to be perpendicular to the
initial orbital plane, then it follows directly from (A2) that the damped motion is planar.

Let us now estimate the magnitude ofδ for binaries of physical interest. Expressingδ
in terms of the total massM = m1+m2 and the reduced massµ = m1m2/M, we find

δ = 4

5

( µ
M

)( R0

cT0

)(
G0M

c2R0

)2

.

Furthermore, our assumption thatk̂ = 1 implies

R0

cT0
=
(
G0M

c2R0

)1/2

;
hence, we have

δ = 1

5

(
4µ

M

)(
G0M

c2R0

)5/2

.
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Here 4µ/M 6 1 by definition, andG0M/c
2R0 is always less than1

2. The quantity
2G0M/c

2R0 is the ratio of the Schwarzschild radius of the system to the semimajor axis of
the binary; thus, the system is nearly a black hole for 2G0M/c

2R0 ∼ 1, while for a Keplerian
binary 2G0M/c

2R0� 1, which indicates that the semimajor axis of the orbit is much larger
than the gravitational radius of the binary system. It follows from these remarks that for a
physical systemδ < 0.04. For the Earth–Sun system, for instance,µ/M ' 3× 10−6 and
G0M/c

2R0 ' 10−8, so thatδ ' 10−26; by comparison,δ is negligibly small for an artificial
satellite in orbit about the Earth. On the other hand, for the Hulse–Taylor binary pulsar,
PSR 1913+16, we find thatδ ' 10−15.

Appendix B. Equations of motion in Delaunay elements

Let us now transform the equations of motion (A2) from Cartesian coordinates and velocities
to Delaunay elements. The standard derivation of the equations of motion in Delaunay
variables is based on the assumption that the system under consideration is Hamiltonian.
However, the dynamical system in our treatment is dissipative; therefore, in this appendix
we present a general derivation for the planar Kepler problem. This transformation is
performed in two steps. First equation (A2) is expressed in polar coordinates and then in
Delaunay elements. Let

fi = − 1

r3

[(
12v2− 30ṙ2− 4

r

)
dri

dt
− ṙ
r

(
36v2− 50ṙ2+ 4

3r

)
ri
]

andr = (r cosθ, r sinθ, 0); then, equation (A2) can be written in polar coordinates as

r̈ − rθ̇2+ 1

r2
= δfr − εKr ,

rθ̈ + 2ṙ θ̇ = δfθ − εKθ ,
(B1)

where

fr = f1 cosθ + f2 sinθ, fθ = −f1 sinθ + f2 cosθ,

Kr = r(K11 cos 2θ +K12 sin 2θ), Kθ = r(−K11 sin 2θ +K12 cos 2θ).
(B2)

In determiningKr andKθ , we have utilized the fact that the matrix(Kij ) is symmetric and
traceless. In what follows, we let

Fr := δfr − εKr , Fθ := δfθ − εKθ (B3)

for the sake of simplicity.
The Delaunay elements are defined by the ellipse tangent to the path at timet . The

state of relative motion is specified by(r, θ, pr, pθ ) in polar coordinates; therefore, using
the standard formulae for elliptic motion we haveprpθ = e sinv̂ andp2

θ /r = 1+ e cosv̂,
which uniquely specify the eccentricitye and the true anomalŷv of the osculating ellipse.
Next, the semimajor axis of this ellipsea is obtained fromp2

θ = a(1− e2) and the eccentric
anomalyû can be determined from

cosv̂ = cosû− e
1− e cosû

, sinv̂ =
√

1− e2 sinû

1− e cosû
.

The Delaunay elements are then given by

L = √a, G = pθ ,
` = û− e sinû, g = θ − v̂. (B4)
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To obtain the equations of motion in Delaunay elements, we observe that the energy and
orbital angular momentum of the relative motion per unit mass are

E

µ
= 1

2
(ṙ2+ r2θ̇2)− 1

r
= − 1

2a
,

pθ = r2θ̇ =
√
a(1− e2),

(B5)

where the orientation of the spatial coordinate system is chosen such thatpθ > 0. Now

1

µ

dE

dt
= F · v,

whereF · v = Fr ṙ + Fθrθ̇ . It follows that

dL

dt
= a√

1− e2

[
Fre sinv̂ + Fθ a(1− e

2)

r

]
, (B6)

where we have replaceḋr by e sinv̂/pθ , which follows from equation (B5). It is a direct
consequence of equations (B1) and (B3) that

dG

dt
= rFθ . (B7)

To determine d̀/dt and dg/dt , we first note the following useful relationships that are
obtained from equations (B6) and (B7), the definitions of the Delaunay elements, and the
Kepler lawω = 1/L3,

da

dt
= 2

ω
√

1− e2

[
Fre sinv̂ + Fθ a(1− e

2)

r

]
,

de

dt
=
√

1− e2

aω

[
Fr sinv̂ + Fθ

(
e + r + a

a
cosv̂

)]
.

(B8)

Consider first dg/dt = dθ/dt − dv̂/dt , where

dθ

dt
=
√
a(1− e2)

r2
. (B9)

Differentiating the relationship

ln r = ln a + ln (1− e2)− ln (1+ e cosv̂)

with respect to time and using the definition ofg together with equations (B8) and (B9),
we have

dg

dt
=
√
a(1− e2)

e

[
−Fr cosv̂ + Fθ

(
1+ r

a(1− e2)

)
sinv̂

]
. (B10)

Let us now compute d̀/dt using the definition of̀ . The Kepler equatioǹ = û − e sinû
expresses the mean anomaly` in terms of the eccentric anomaly and the eccentricity of the
orbit. Thus,

d`

dt
= r

a

dû

dt
− r

a
√

1− e2
sinv̂

de

dt
. (B11)

Using the identity

ṙ − ȧ r
a
+ ė a − r

e
= er sinv̂√

1− e2

dû

dt
,
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which is obtained by differentiatingr = a(1 − e cosû) with respect to time, and
equation (B8), we find

d`

dt
= ω + r

e
√
a

[Fr(−2e + cosv̂ + e cos2 v̂)− Fθ(2+ e cosv̂) sinv̂]. (B12)

Therefore, the equations of motion in Cartesian coordinates are equivalent to Delaunay’s
system given by equations (B6), (B7), (B12), and (B10). These equations for the planar
problem are closely related to corresponding equations for the variation of the orbital
elements of the osculating ellipse. In the general, i.e. three-dimensional, Kepler problem, the
osculating ellipse is characterized by six orbital elements and the variation of these orbital
elements due to perturbing forces is given by a set of equations that are usually associated
in celestial mechanics with the name of Lagrange (e.g. ‘Lagrange’s planetary equations’).
In general, the path of the osculating ellipse in the six-dimensional manifold of orbital
elements encounters singularities ate = 0 ande = 1. These singularities, corresponding to
a circle (G = L) and a straight line (G = 0), respectively, are also evident in the Delaunay
equations.

The right-hand side of the set of Delaunay equations should also be represented in
Delaunay elements. To accomplish this, recall equations (B3) and letδfD − εKD, where
D denotes any one of the Delaunay variables, be the net contribution of radiation reaction
and external forces to the rate of variation of Delaunay elementD with respect to time. We
have shown in a previous paper [3] that

KL = ∂C
∂`
φ(t)+ ∂S

∂`
ψ(t),

KG = ∂C
∂g
φ(t)+ ∂S

∂g
ψ(t),

K` =
(
∂C
∂L
φ(t)+ ∂S

∂L
ψ(t)

)
,

Kg = −
(
∂C
∂G

φ(t)+ ∂S
∂G

ψ(t)

)
,

(B13)

where

φ(t) = 1
2α�

2 cos(�t), ψ(t) = 1
2β�

2 cos(�t + ρ), (B14)

and

C(L,G, `, g) = 5
2a

2e2 cos 2g + a2
∞∑
ν=1

(Aν cos 2g cosν`− Bν sin 2g sinν`),

S(L,G, `, g) = 5
2a

2e2 sin 2g + a2
∞∑
ν=1

(Aν sin 2g cosν`+ Bν cos 2g sinν`).

(B15)

Here we have introducedAν andBν , which are given in terms of the Bessel functions by

Aν = 4

ν2e2
(2νe(1− e2)J ′ν(νe)− (2− e2)Jν(νe)),

Bν = − 8

ν2e2

√
1− e2(eJ ′ν(νe)− ν(1− e2)Jν(νe)).

Let us now compute the contribution of radiation damping terms to the equations of
motion. Using equation (B2) and the relationships

v2 = 2

r
− 1

a
, ṙ2 = −1

a
+ 2

r
− G

2

r2
,
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we find that

fr = −4e sinv̂

GL2r3

(
1− 10

3

L2

r
− 5

L2G2

r2

)
,

fθ = − 18G

L2r4

(
1− 20

9

L2

r
+ 5

3

L2G2

r2

)
.

(B16)

The substitution of equation (B16) into the Delaunay equations via equation (B3) results
in the set of equations presented in equation (18), wheree =

√
1−G2/L2; moreover,

these relations involve powers of 1/r as well as sin̂v times powers of 1/r. Therefore,
to complete the discussion we need Fourier expansions of these expressions in terms of
cosν` and sinν` similar to those given in equation (B15). This can be accomplished
by extending the classical methods of celestial mechanics described, for instance, in the
definitive monograph of Watson [29]. The final expressions forfD, D ∈ {L,G, `, g}, are
not used explicitly in this paper; therefore, we do not present them here for the sake of
brevity.

Finally, let us note that the Delaunay equations can now be expressed in the form given
in equation (17).

Appendix C. Average rate of damping

The average contribution of radiation damping to the equations of motion in Delaunay
variables is employed in this paper in the calculation of the bifurcation function (section 3)
as well as in the description of averaged dynamics (section 4). In the light of the results of
the previous appendix, the quantityfD, whereD is any one of the Delaunay variables, is
given by equation (17) and can be expressed as a Fourier series

fD(L,G, `, g) = a0+
∞∑
ν=1

(aν cosν`+ bν sinν`). (C1)

We are interested inf̄D, which is the average offD with respect to the ‘fast’ angular
variable`, i.e.

f̄D := 1

2π

∫ 2π

0
fD(L,G, `, g)d`.

It is clear thatf̄D = a0, and this is the quantity that is needed in section 4.
The contribution of radiation damping to the bifurcation functionB is given by1FD,

where

FD =
∫ 2πm/�

0
fD(L,G,ωt + `, g)dt. (C2)

Using the change of variablẽt = �t/m + `/n, the resonance conditionω = n�/m, and
the periodicity offD with respect tò , equation (C2) can be written asFD = 2πnL3f̄D.
It remains to computef̄D.

Using the relation d̀= r2 dv̂/(a2
√

1− e2), we can write

f̄D = 1

2πa2
√

1− e2

∫ 2π

0
r2fD dv̂ = 1

L3G
〈r2fD〉, (C3)
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where the angular brackets denote the average over the true anomalyv̂. The various averages
may be evaluated using

G2

〈
1

r

〉
= 1, G4

〈
1

r2

〉
= 1+ 1

2
e2, G6

〈
1

r3

〉
= 1+ 3

2
e2,

G8

〈
1

r4

〉
= 1+ 3e2+ 3

8
e4, G10

〈
1

r5

〉
= 1+ 5e2+ 15

8
e4,

G2

〈
sin2 v̂

r

〉
= 1

2
, G4

〈
sin2 v̂

r2

〉
= 1

2

(
1+ e

2

4

)
,

G6

〈
sin2 v̂

r3

〉
= 1

2

(
1+ 3

4
e2

)
.

(C4)

We find that

f̄L = − 1

G7

(
8+ 73

3
e2+ 37

12
e4

)
,

f̄G = − 1

L3G4
(8+ 7e2),

f̄` = 0, f̄g = 0,

(C5)

where the last two equations simply follow from the fact that

〈h(cosv̂) sinv̂〉 = 0

for every continuous functionh.
For the bifurcation functionB, only FL, FG, andFg are needed and these are then

given by

FL = −2πn
L3

G7

(
8+ 73

3
e2+ 37

12
e4

)
,

FG = −2πn
1

G4
(8+ 7e2),

Fg = 0.

(C6)
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