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ABSTRACT

Major galaxy merging is a fundamental aspect of the hierarchical structure-growth

scenario of the universe, and it is theoretical expected to contribute to several key aspects

of galaxy evolution. As such, empirically identifying major mergers is a key method-

ological step towards assessing the “merging – galaxy evolution” connection, and close-

pair and morphology-based methods are established empirical merger identification tech-

niques. Yet, the merger rate measurements from these methods vary up to a factor of five

owing to their unique but analogous systematic biases, especially during the key epoch of

galaxy growth (∼ 7 − 11 Gyr ago), highlighting that the merger contribution to galaxy

growth remains poorly constrained. As a step towards addressing key open questions

pertaining to empirical merger identification methodologies, we carryout comprehensive
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analysis of close pairs and merging induced tidal features (and in general galactic sub-

structures) using forefront observational data from the Hubble Space Telescope (HST)

and realistic mock observations from leading theoretical simulations. We analyze the

incidence of major, similar-mass (mass ratio< 4) close pairs among a large sample of

∼ 9800 massive galaxies (logM?/M� ≥ 10.3) from the HST-CANDELS survey and

quantify the major merger rate evolution over ∼ 11 Gyr in cosmic history (published in

Mantha et al., 2018). Using the mock light cone data from the leading SantaCruz Semi-

Analytical Model (SAM), we systematically analyze the impact of different observational

effects on the measurement of close-pair frequency and provide detailed statistical cor-

rections to account for them. We also developed a new public software tool to extract and

quantify different kinds of faint morphological substructures hosted by massive galaxies

in the HST imaging and demonstrated its applicability in extracting tidal features using

mock observations of a galaxy merger from a cosmological simulation (published in Man-

tha et al., 2019). Finally, using supervised and unsupervised deep-learning models, we

also investigate the automated characterization of different morphological substructures

hosted within the parametric light-profile subtracted residual images of∼ 10, 000 massive

galaxies from the HST CANDELS survey.
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CHAPTER 1

MAJOR MERGING HISTORY IN CANDELS. I. EVOLUTION OF THE INCIDENCE

OF MASSIVE GALAXY-GALAXY PAIRS FROM Z = 3 TO Z ∼ 0

Published in Mantha et al., 2018, MNRAS, 475, 1549

DOI: 10.1093/mnras/stx3260

Abstract

The rate of major galaxy-galaxy merging is theoretically predicted to steadily in-

crease with redshift during the peak epoch of massive galaxy development (1≤z≤3).

We use close-pair statistics to objectively study the incidence of massive galaxies (stel-

lar M1>2×1010M�) hosting major companions (1≤M1/M2≤4; i.e., <4:1) at six epochs

spanning 0<z<3. We select companions from a nearly complete, mass-limited (≥ 5×109M�)

sample of 23,696 galaxies in the five CANDELS fields and the SDSS. Using 5 − 50 kpc

projected separation and close redshift proximity criteria, we find that the major compan-

ion fraction fmc(z) based on stellar mass-ratio (MR) selection increases from 6% (z∼0)

to 16% (z∼0.8), then turns over at z∼1 and decreases to 7% (z∼3). Instead, if we use a

major F160W flux ratio (FR) selection, we find that fmc(z) increases steadily until z = 3

owing to increasing contamination from minor (MR>4:1) companions at z > 1. We show

that these evolutionary trends are statistically robust to changes in companion proximity.

We find disagreements between published results are resolved when selection criteria are

closely matched. If we compute merger rates using constant fraction-to-rate conversion
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factors (Cmerg,pair=0.6 and Tobs,pair=0.65Gyr), we find that MR rates disagree with the-

oretical predictions at z>1.5. Instead, if we use an evolving Tobs,pair(z)∝(1 + z)−2 from

Snyder et al., our MR-based rates agree with theory at 0<z<3. Our analysis underscores

the need for detailed calibration of Cmerg,pair and Tobs,pair as a function of redshift, mass

and companion selection criteria to better constrain the empirical major merger history.

1.1 Introduction

In an hierarchical universe, collisions between similar-mass galaxies (major merg-

ers) are expected to occur, and many theoretical studies predict such merging plays an

important role in the formation and evolution of massive galaxies. A key measurement

for quantifying the role of major merging in galaxy development is the merger rate and

its evolution during cosmic history. A host of studies have measured major merger rates

at redshifts z ≤ 1.5, primarily based either on close-pair statistics [3–6], clustering statis-

tics [7, 8], and morphological disturbances and asymmetries [9, 10]. These studies have

all found higher incidences of major merging at earlier look-back times and a strong to

moderate decrease to the present epoch, in broad agreement with many theoretical pre-

dictions [11–13]. Despite these successes, large scatter (factor of 10) exists between even

the most stringent individual constraints, owing to systematic uncertainties in different

methodologies and merger timescales. These issues are compounded for empirical esti-

mates at the epoch of peak galaxy development (z ∼ 2 − 3; ‘cosmic high-noon’). Some

early empirical estimates based on both methodologies found increasing major merger in-

cidence at z > 1.5 [14], but recent studies find a possible flattening or turnover in merger
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rates between 1 < z < 3 [15–17]. These new empirical trends are in strong disagreement

with recent theoretical models predicting that merger rates continue to rise from z = 1

to z = 3 and beyond [13, 18, 19]. These discrepancies and the large variance between

past measurements highlight the need for improved major merger constraints, especially

during the critical high-noon epoch.

A host of selection-effect issues has plagued many previous attempts to constrain

major merger statistics at high redshift, from low-number statistics and significant sam-

ple variance due to small-volume pencil-beam surveys, and rest-frame UV selections of

both disturbed morphologies and close pairs. While the identification of close pairs is

less prone to some systematics, the lack of statistically useful samples of spectroscopic

redshifts or even moderately small-uncertainty photometric redshifts at z > 1 until very

recently have limited the usefulness of this method. Moreover, the wildly varying close-

companion selection criteria among previous studies is a plausible explanation for ten-

sions between empirical merger rates and theoretical predictions [18]. In this study, we

will address many of these shortcomings and systematically explore the impact of major

close-companion selection criteria by analyzing major companion fractions in a sample

of 10,000 massive host galaxies (stellar mass M1 ≥ 2 × 1010M�) from the five Hubble

Space Telescope (HST) legacy fields in CANDELS [20, 21] and the SDSS survey. This

comprehensive sample provides statistically useful major companion counts, down to a

mass limit of M2 = 5 × 109M�, from rest-frame optical images over a large volume out

to z = 3.
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The hierarchical major merging of similar mass halos via gravitational accre-

tion is the underlying physical driver of galaxy-galaxy major merging. Cosmological

simulations predict that the major halo-halo merger rate rises steeply with redshift as

R ∝ (1 + z)2−3 [22–24], which is in agreement with simple analytical predictions based

on Extended Press-Schechter (EPS) theory of R ∝ (1 + z)2.5 [25, 26]. Cosmologically-

motivated simulations of galaxy formation and evolution predict major galaxy-galaxy

merger rates that follow R ∝ (1 + z)1−2 over a wide redshift range (e.g., z < 6) [19].

While there is some debate on the increasing merger rate evolution among theoretical

studies due to model-dependencies [13], some works claim flattening of merger rates with

increasing redshift [27], most agree with an increasing incidence (within a factor-of-two

uncertainty). Not only are merger rates expected to be higher at early cosmic times, but

major galaxy merging is predicted to play a crucial role in nearly all aspects of the forma-

tion and evolution of massive galaxies including buildup of spheroidal bulges and massive

elliptical galaxies [28–32], triggering and enhancement of star formation (SF) including

nuclear starbursts [33–36], and the fueling of active galactic nuclei (AGN) [13, 37–39]

and subsequent SF quenching [40, 41].

Many empirical studies support the predictions that major merging may explain

the documented build-up of massive and quenched (non-star-forming and red) galaxy

number densities and their stellar content growth at z < 1 [42–44], enhancement of SF

activity [45, 46], and elevation of AGN activity [47–49]. Despite this agreement, some

studies find a weak major merging-SF connection and suggest mergers may not be the

dominant contributor to in-situ galactic SF [50–52]. Moreover, other studies find a lack
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of a merger-AGN connection [53–56]. These conflicting observations lend support to

theories that predict violent disk instabilities (VDI) due to the rapid hierarchical accretion

of cold gas may be responsible for key processes like bulge formation and AGN triggering

[57, 58]. Indeed, a recent CANDELS study by [59] found the observed evolution of

massive quenched spheroids at z < 3 is better matched to SAM predictions that include

both mergers and disk-instability prescriptions. Therefore, the role of major merging

in galaxy evolution remains a critical open question. Hence, measuring the frequency

and rate at which major mergers occur at different cosmic times using large, uniformly

selected close-pair samples is a key step towards answering the role played by them in

massive galaxy development.

Theoretical simulations predict that galaxies involved in major close pairs will

interact gravitationally and coalesce over time into one larger galaxy, and thereby make

them effective probes of ongoing or future merging. Many studies in the past have em-

ployed the close-pair method to estimate the frequency of major merging as a function of

cosmic time. This typically involves searching for galaxies that host a nearby companion

meeting a number of key criteria: (i) 2-dimensional projected distance, (ii) close redshift-

space proximity, and satisfies a nearly-equal mass ratio M1/M2 between the host (1) and

companion (2) galaxies. For each criterion, a wide range of choices is used in the liter-

ature. For projected separation Rproj, a search annulus is often employed with minimum

and maximum radii. Common choices vary between Rmax ∼ 30 − 140 kpc [60, 61]

and Rmin ∼ 0 − 14 kpc [14, 16]. Depending on available redshift information, the
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choice of physical proximity criterion ranges from stringent spectroscopic velocity dif-

ferences (commonly ∆v12 ≤ 500 km s−1) [62] to a variety of photometric redshift zphot

error overlaps [6,63] To study similar-mass galaxy-galaxy mergers, previous studies have

adopted stellar-mass-ratio selections ranging from 2 > M1/M2 > 1 (or 2:1) [64] to

5 > M1/M2 > 1 (5:1) [65], with 4:1 being by far the most common mass ratio crite-

rion. In the absence of stellar-mass estimates, flux ratio F1/F2 is often used as a proxy

for M1/M2 [66]. The wide range of adopted close-companion selection criteria lead to

a large scatter in two decades of published pair-derived merger rates with redshift evolu-

tion spanning R ∝ (1 + z)0.5−3 at 0 < z < 1.5, and sometimes even indicating a flat

or turnover in merger rates at z > 1.5 [16, 17, 63, 67]. This large scatter in pair-derived

merger rate constraints highlights the strong need for tighter constraints at cosmic high-

noon, and motivates a careful analysis of selection effects.

Numerical simulations of the gravitation interactions between merging galaxies

can produce disturbed morphological features due to strong tidal forces [68–70]. As such,

morphological selections have also been used to empirically identify mergers. These se-

lections are broadly divided into visual classifications [71, 72], analysis of image−model

residuals [43, 73], and automated measures of quantitative morphology such as Gini-

M20 [74] and CAS [75]. Although morphology-based studies broadly find merger rates

to be rising strongly with redshift as (1 + z)2−5 [76, 77], sometimes finding as high as

25%− 50% of their sample as mergers [78], there are significant study-to-study discrep-

ancies where some studies find no merger rate evolution [9,79]. Morphology-based selec-

tions depend on identifying relatively fainter disturbances than the galaxy, which makes
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this method prone to systematics. The cosmological surface-brightness of galaxies falls

off as (1 + z)−4, which can lead to a biased identification of faint merger-specific features

as a function of redshift. In addition, most of these morphology-based merger rates are

based on small-volume, pencil-beam surveys probing the rest-frame UV part of the spec-

trum, especially at z > 1. This can lead to over-estimation of merger rates due to contami-

nation from non-merging, high star-forming systems with significant substructure that can

be confused as two merging galaxies. Recent theoretical developments suggest that VDI

can also cause disturbances in the host galaxy morphology and mimic merger-like fea-

tures [80–82], which in principle may complicate the measurement of morphology-based

merger rates. Thus, to robustly identify plausible merging systems out to high redshifts

(z ∼ 3) without having to rely on imaging-related systematics strongly, we resort to the

close-pair method in this study. We acknowledge that the close-pair method has its limita-

tions at high redshift where galaxies have large photometric redshift uncertainties, which

may lead to incorrect merger statistics. In this study, we initially exclude the galaxies

with unreliable redshifts from our analysis, but later add back a certain fraction of them

by employing a statistical correction.

In this work, we analyze galaxy-galaxy close pairs in a large sample of 5698

massive galaxies (Mstellar ≥ 2 × 1010M�) from the state-of-the-art Cosmic Assembly

Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) [20, 21] of five highly-

studied extragalactic fields at six epochs spanning z ∼ 0.5−3.0 (with a width ∆z = 0.5).

To simultaneously anchor our findings to z = 0, we take advantage of 4098 massive

galaxies from the Sloan Digital Sky Survey (SDSS) [83], Data release 4 (DR4) [84] at
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z ∼ 0.03 − 0.05, which is matched in resolution to CANDELS and probes an average

of ∼ 1.3 × 106 Mpc3 per redshift bin. With the available data, we also perform rigorous

analyses to understand the impact of different close-companion selection criteria on the

derived results.

We structure this chapter as follows: In § 1.2, we provide a brief description of

the CANDELS and SDSS data products (redshifts and stellar masses) and describe the

selection of massive galaxies hosting major companions based on the stellar mass com-

plete massive galaxy sample. In § 1.3, we describe the calculation of major companion

fraction and its redshift evolution including necessary statistical corrections. In § 1.4, we

discuss the impact of close-companion selection choices on the derived major companion

fractions. In § 1.5, we calculate the major merger rates based on the major companion

fractions. We synthesize detailed comparisons of the companion fractions and merger

rates to other empirical studies and theoretical model predictions, and also discuss plausi-

ble reasons and implications of disagreement between the observed and theoretical merger

rates. We present our conclusions in § 1.6. Throughout this paper, we adopt a cosmology

of H0 = 70 km s−1Mpc−1 (h = 0.7), ΩM = 0.3 and ΩΛ = 0.7, and use the AB magnitude

system [85].

1.2 Data and Galaxy Sample

In this study, we analyze close galaxy-galaxy pairs selected from a large sample

of massive galaxies from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy

Survey [20, 21], spanning redshifts 0.5 ≤ z ≤ 3, and subdivided into five epochs probing
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a volume of∼ 1.3×106 Mpc3 each. We anchor our findings to z ∼ 0 using a sample from

the SDSS that is matched in volume and resolution to the CANDELS sample. To reliably

track the major merging history since z = 3 using close-pair method, we start with a mass-

limited sample of galaxies that will allow a complete selection of massive > 2× 1010M�

galaxies with major companions meeting our chosen stellar mass ratio: 1 ≤ M1/M2 ≤ 4

(1, 2 represent host and companion galaxies, respectively). In this section, we describe

the relevant details of the data necessary to achieve this sample selection.

1.2.1 CANDELS : 5 Legacy Fields

1.2.1.1 Photometric Source Catalogs

The five CANDELS HST legacy fields – UDS, GOODS-S, GOODS-N, COSMOS,

and EGS – have a wealth of multi-wavelength data and cover a total area of∼ 800 arcmin2

(∼ 0.22 deg2). The CANDELS survey observations and image processing are described

in [20] and [21], respectively. We use the photometric source catalogs from UDS [86],

GOODS-S [87], [88] (GOODS-N), COSMOS [89], and EGS [90]. Each catalog was

generated with a consistent source detection algorithm using SExtractor applied to the

F160W (H-band) 2-orbit depth CANDELS mosaic image produced for each field. These

authors used profile template fitting [91] to provide uniform photometry and spectral en-

ergy distributions (SEDs) for each galaxy at wavelengths spanning 0.4µm to 1.6µm, sup-

plemented by ground-based data [87] and spitzer/IRAC photometry (3.6µm to 8.0µm)

from the S-CANDELS survey [92] . Each photometric object was assigned a flag (Phot-

Flag) to identify plausible issues using a robust automated routine described in [86]. We
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use PhotFlag = 0 to remove objects with contaminated photometry due to nearby stars,

image artifacts or proximity to the F160W coverage edges. This cut removes ∼ 3 − 5%

of raw photometric sources depending on the field. We also use the stellarity index from

SExtractor (Class star ≥ 0.95) to eliminate bright star-like sources. We estimate that this

additional cut removes active compact galaxies that makeup ∼ 1.3% of our total desired

mass-limited sample. We note that including these galaxies has no significant impact on

our conclusions. We tabulate the total raw and good photometric source counts for the

five CANDELS fields in Table 1.

1.2.1.2 Redshifts & Stellar Masses

We use the CANDELS team photometric redshift and stellar mass catalogs avail-

able for each field. For the CANDELS UDS and GOODS-S fields, the redshifts are

published in [93], and the masses are found in [94]. For the remaining fields, we use

the catalogs: GOODS-N [88], COSMOS [89], and EGS [90]. As discussed extensively

in [93], photometric redshift probability distribution functions P (z) were computed for

each galaxy by fitting the SED data. This exercise was repeated by six participants (#ID

4, 6, 9, 11, 12, and 13 in [93]) who performed SED fitting using different codes (EAZY,

HyperZ) and template sets (BC03, PEGASE, EAZY). Additional detailed discussion on

individual code functionality and their respective fitting priors can be found in [93]. A

team photometric redshift (zphot) was computed for each source equal to the median of

the six P (z) peak redshifts. When compared to a known spectroscopic sample, these
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photometric redshifts have an outlier removed RMS scatter σz ∼ 0.029 (see [93] for def-

inition). Additionally, spectroscopic redshifts (zspec) are also available for small subsets

of galaxies in each field. The best available redshift zbest is cataloged as either the team

zphot or the good quality zspec measurements when available, which are defined by the

flag q zspec = 1 [93]. Note that the compilation of redshifts included in our analysis

sample does not include grism redshifts. We limit our selection of massive galaxies to

0.5 ≤ zbest ≤ 3.0, and we employ a redshift bin size ∆z = 0.5 to probe evolution be-

tween 5 and 11 Gyr ago using five roughly equal co-moving volumes ranging between

7 × 105 Mpc3 − 1.3 × 106 Mpc3. We exclude redshifts zbest < 0.5 since this volume is

∼ 10 times smaller (∼ 1.3× 105 Mpc3).

The stellar masses (Mstellar) were estimated for each source by fitting the multi-

band photometric data to SED templates with different stellar population model assump-

tions1 fixed to the object’s zbest. The team stellar mass (see [94, 95]) for each source is

chosen as the median of the estimates based on the same assumptions of IMF [96] and

stellar population templates [97]. Using the median mass estimate, we select a mass-

limited (Mstellar ≥ 5 × 109M�) sample of 14,513 potential companion galaxies in a

redshift range 0.5 ≤ zbest ≤ 3 (for breakdown, see Table 1). As described in the next

section, this provides a sample with high completeness.

1Each model is defined by a set of stellar population templates, Initial Mass Function (IMF), Star For-
mation History (SFH), metallicity and extinction law assumptions; see [95]
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1.2.1.3 0.5 ≤ z ≤ 3.0 Sample Completeness

We demonstrate the completeness of massive CANDELS galaxies with redshifts

0.5 ≤ z ≤ 3.0 by adopting the method introduced in [89, 98]. Briefly, [98] computes a

stellar-mass limit as a function of redshift, above which nearly all the galaxies are observ-

able and complete. They do so by estimating the limiting stellar-mass (Mstellar,lim) distri-

butions for the 20% faintest sample population2, where Mstellar,lim of a galaxy is the mass

it would have if the apparent magnitude (Hmag) is equal to the limitingH-band magnitude

(Hlim). We estimate the Mstellar,lim by following Nayyeri17 relation between the observed

galaxyMstellar and itsMstellar,lim as log10(Mstellar,lim) = log10(Mstellar)+0.4(Hmag−Hlim)

(see [89]) and use the published H-band 5σ limiting magnitudes [20, 21, 86, 89, 90].

In Figure 29, we show the normalized cumulative distributions of Mstellar,lim for

the 20% faintest CANDELS log10(Mstellar/M�) ≥ 9.7 galaxy samples3 in narrow (∆z =

0.25) redshift slices at z > 1. At all redshift bins up to z = 2.25, we find that all the galax-

ies in our mass-limited sample have Mstellar > Mstellar,lim, which implies 100% complete-

ness. At redshifts 2.25 < z < 2.75 and 2.75 < z < 3, we find that the desired sample

selection is > 95% complete and 90% complete, respectively. Additionally, we test the

impact of surface brightness on the measured stellar-mass completeness by analyzing

the effective H-band surface brightness (SBH) distributions of our desired mass-limited

log10(Mstellar/M�) ≥ 9.7 galaxy sample at five redshift bins between 0.5 < z < 3. We

2By considering the 20% faintest galaxy sample of the apparent magnitude distribution at each red-
shift bin, only those galaxies with representative mass-to-light ratios close to the Hlim are used towards
estimating the Mstellar,lim (see for additional details [98]).

3We compute the distributions independently for the five CANDELS fields and present the mean of them
at each redshift slice. We find that the behavior of individual field distributions is not significantly different
from each other and with the mean distribution.
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use a H-band surface brightness limit SBH = 26.45 mag/arcsec2 based on the model-

galaxy recovery simulations by [16] and find that 100% and > 95% of our desired galax-

ies have SBH < 26.45 mag/arcsec2 at redshifts 0.5 < z < 2 and 2 < z < 3, respectively.

This implies that even the population that constitutes lowest 10% of the SBH distribution

(low surface brightness galaxies; hereby LSB galaxies) in our desired sample can be ro-

bustly detected up to z = 3. As the LSB galaxies only make up a small fraction (less

than 10%) of our desired mass-limited sample, we expect that a smaller completeness

among these LSB galaxies will not have an significant impact on the close-pair statistics

presented in this study. These tests permit us to robustly search for major companions

associated with log10(Mstellar/M�) ≥ 10.3 galaxies unaffected by significant incomplete-

ness. We include the breakdown of Nm = 5698 massive galaxies per CANDELS field in

Table 1.

1.2.2 SDSS

1.2.2.1 Redshifts & Stellar Masses

To anchor evolutionary trends to z ∼ 0, we employ redshifts and stellar masses

from Sample III of the SDSS Group Catalog described in [99]. Briefly, this catalog con-

tains ∼ 400, 000 galaxies spanning a redshift range 0.01 < z < 0.2 from the ∼ 4500

square degree sky coverage of the SDSS Data Release 4 (DR4) [84]. [99] computed

(g − r) color-based Mstellar estimates using the [100] SED fitting based mass-to-light

ratio calibrations and K-corrections from the NYU-VAGC [101]. For consistency, these

masses were corrected by −0.1 dex to convert from a ‘diet’ Salpeter IMF to a [96] IMF
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Figure 1: Stellar-mass completeness of the log10(Mstellar/M�) ≥ 9.7 CANDELS galaxy
sample. We show the normalized cumulative distributions of the limiting stellar masses
(Mstellar,lim) for the 20% faintest galaxies of the desired mass-limited sample (dashed
lines), color-coded according to their respective redshift slices (∆z = 0.25) at z ≥ 1
(see § 1.2.1.3 text for details). We show our desired mass limit in solid vertical black line
and we mark the 90% completeness in solid horizontal black line. At the highest redshift
slice (2.75 < z < 3), we find that 90% of the galaxies with log10(Mstellar/M�) ≥ 9.7
have their limiting stellar masses smaller than the desired major companion mass limit,
implying that the CANDELS mass-limited sample of log10(Mstellar/M�) ≥ 9.7 galaxies
is at least 90% in the desired redshift range of this study 0.5 ≤ z ≤ 3.0.
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basis as in CANDELS. Besides the IMF, [100] assumed similar exponentially declining

star formation histories as the CANDELS team Mstellar participants, but used PÉGASE

stellar population models [102] in contrast to [97], respectively (for details, see [95]).

However, [103] explored the impact of these model assumptions and found that both

PÉGASE and [97] yield similar results in terms of [100] color and mass-to-light ratio

calibrations. In addition for a sample of galaxies with SDSS+GALEX photometry, [104]

found good agreement between SED fitting-derived stellar masses and independent SDSS

photometry-based estimates. Hence, we conclude that the CANDELS and SDSS stellar

mass estimates are not systematically different.

We select Sample III galaxies within a redshift range 0.03 ≤ z ≤ 0.05 and sky area

1790 sq.deg (RA = 100 deg−210 deg & DEC = 17 deg−69 deg) to match the CAN-

DELS sample in volume and resolution. Using these cuts, we find 9183 galaxies with

log10(Mstellar/M�) ≥ 9.7. We present the SDSS selection information in Table 1. We

are aware of more recent datasets than the SDSS-DR4; e.g.,the SDSS-DR7 [105] has an

improvement in photometric calibration from 2% (DR4) to 1% (DR7). However, owing

to the contribution from ∼ 20% random and ∼ 25% model dependent systematic uncer-

tainties for [100] Mstellar estimates, we argue that these small photometric improvements

have no significant impact on our results. Hence, we use the SDSS-DR4 because it is

readily available and it meets our volume and resolution requirements.
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Figure 2: Stellar mass distributions for galaxies in the SDSS group catalog [99] for four
narrow redshift slices (see legend). The stellar mass at which the mass distribution turns
over owing to the r < 17.77 mag criteria for the SDSS spectroscopic target selection [106]
is given by the vertical dashed lines. The solid black line indicates our desired stellar mass
limit of the companion galaxies (Mstellar = 5×109M�). We find that companion galaxies
are highly complete at z ≤ 0.05.
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Table 1: Galaxy Sample Information. Columns: (1) name of the field/survey; (2) the

total number of sources in photometry catalog before (after) applying good-source cuts

described in Section 1.2.1.1; (3) the redshift range of interest in our study, used to select

the mass-limited sample counts in (4,5), where the subsets with spectroscopic redshift

information are given in parenthesis.

Name Phot

Sources

Redshift Range log10(Mstellar/M�) ≥

9.7

log10(Mstellar/M�) ≥

10.3

(1) (2) (3) (4) (5)

UDS 35932

(33998)

z ∈ [0.5, 3.0] 3019 (260) 1223 (141)

GOODS-S 34930

(34115)

z ∈ [0.5, 3.0] 2491 (892) 942 (403)

GOODS-N 35445

(34693)

z ∈ [0.5, 3.0] 2946 (494) 1133 (209)

COSMOS 38671

(36753)

z ∈ [0.5, 3.0] 3232 (11) 1307 (9)

EGS 41457

(37602)

z ∈ [0.5, 3.0] 2825 (199) 1093 (72)

CANDELS

(Total)

186,435

(177,161)

z ∈ [0.5, 3.0] 14,513 (1856) 5698 (834)

SDSS-DR4

(1790 sq.

deg)

141,564 z ∈ [0.03, 0.05] 9183 (8524) 4098 (3859)
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1.2.2.2 z ∼ 0 Sample Completeness

The [99] sample is magnitude-limited (r < 17.77 mag) due to the SDSS spec-

troscopic target selection; this provides a ∼ 90% zspec completeness [106]. Yang et al.

included additional redshifts from supplementary surveys to improve the incompleteness

due to spectroscopic fiber collisions [107]. As such, our z ∼ 0 sample selection has

92.8% zspec completeness (Table 1). Nevertheless, several merger studies demonstrate

that the SDSS spectroscopic incompleteness grows with decreasing galaxy-galaxy sep-

aration [43, 48]. We account for this issue and provide detailed corrections in § 1.3.2.

In addition, we demonstrate the stellar mass completeness of log10(Mstellar/M�) ≥ 9.7

galaxies by employing the method by [108]. In Figure 2, we show the stellar mass dis-

tributions for narrow redshift intervals (∆z = 0.006) at z ≤ 0.05. We find that the

r < 17.77 mag limit produces a turnover in counts at different masses as a function of

redshift. At z ≤ 0.05, the mass at which the distributions turn over (become incomplete)

is well below our limit of log10(Mstellar/M�) = 9.7. This indicates that our mass-limited

sample is highly complete for selecting possible major companions in a complete sample

of Nm = 4098 massive galaxies with log10(Mstellar/M�) ≥ 10.3 and 0.03 ≤ z ≤ 0.05

(see Table 1).

1.2.3 Selection of Massive Galaxies Hosting Major Companions

1.2.3.1 Projected Separation

With our well-defined mass-limited samples for CANDELS and SDSS in hand,

we start by identifying the massive (Mstellar ≥ 2 × 1010M�) galaxies hosting a major
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projected companion satisfying 1 ≤ M1/M2 ≤ 4 and a projected physical separation

of 5 kpc ≤ Rproj ≤ 50 kpc. The choice of Rproj ≤ 50 kpc is common in close-pair

studies [18, 60, 109] which is supported by the numerical simulation results showing

that major bound companions with this separation will merge within . 1 Gyr. Addi-

tionally, source blending from smaller separations (. 1.2 kpc) can cause incomplete-

ness at z & 0.04 for SDSS and at z & 2.5 for CANDELS. Thus, we adopt a lower

limit of Rproj = 5 kpc (∼ 4× the resolution), which also corresponds to the typical

sizes of log10(Mstellar/M�) ≥ 9.7 galaxies at 2.0 ≤ z ≤ 2.5. In summary, we find

Nproj = 318 and Nproj = 2451 unique ( duplicate resolved) massive galaxies hosting ma-

jor projected companions in SDSS (0.03 ≤ z ≤ 0.05) and CANDELS (total of all five

fields at 0.5 ≤ z ≤ 3.0), respectively. We tabulate the breakdown of Nproj by redshift per

each CANDELS field in Table 2.

1.2.3.2 Plausible Physical Proximity (SDSS)

We note that projected proximity does not guarantee true physical proximity as

foreground and background galaxies can be projected interlopers. A common and ef-

fective method to define physical proximity is to isolate systems with a small velocity

separation, which indicate that the host and companion galaxies are plausibly gravitation-

ally bound. For the SDSS sample, we employ the common criteria ∆v12 = |v1 − v2| ≤

500 km s−1 [5,60,62], where v1 and v2 are the velocities of the host and companion galax-

ies, respectively. Merger simulations find that systems that satisfy ∆v12 ≤ 500 km s−1

typically merge within 0.5−1 Gyr [110]. Other studies show that close-pair systems with
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∆v12 > 500 km s−1 are not likely to be gravitationally bound [64, 111]. However, owing

to spectroscopic redshift incompleteness (see § 1.2.2.2), we are only able to apply this ve-

locity selection to a subset of galaxies from § 1.2.3.1 which have spectroscopic redshifts.

In doing so, we find Nphy = 106 massive galaxies hosting a major projected companion

(in § 1.2.3.1) meeting ∆v12 ≤ 500 km s−1 criteria in the SDSS (0.03 ≤ z ≤ 0.05) sample.

We describe the statistical correction for missing major companions due to spectroscopic

incompleteness in § 1.3.2.

1.2.3.3 Plausible Physical Proximity (CANDELS)

Most galaxies in the CANDELS catalogs do not have a spectroscopic redshift.

Hence, we use a proximity method based on photometric redshifts and their uncertainties

(σz) to select plausible, physically close companions [6,16,112]. As described in § 1.2.1.2,

each galaxy’s zphot value is the median of the peak values (zpeak) of multiple photometric

P (z) distributions computed by the CANDELS team. However, the P (z) data was not

thoroughly analyzed to derive zphot errors for all of the CANDELS fields. Thus, we

compute σz values from a single participant P (z) dataset that produces zpeak values that

are consistent with the published team zbest values. This is necessary to achieve zphot

errors that are consistent with the zbest and stellar masses (calculated with zbest) that we

use in this study. We find that the S. Wuyts4 photometric redshifts produced the best match

to zbest after testing all participant P (z) data. The Wuyts P (z) distributions for each

CANDELS galaxy were computed using the photometric redshift code EAZY [113] and

4Method 13 as specified in [93].
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PÉGASE [102] stellar synthesis template models. We optimize5 the P (z) for each galaxy

and use this distribution to compute the uncertainty (σz) defined as the 68% confidence

interval of the photometric redshift zphot (see [114] for details).

In Figure 3, we show the photometric redshift uncertainties (σz) as a function of

zbest for each galaxy in our sample (Mstellar ≥ 5 × 109M�). We find that the σz distri-

butions in the CANDELS fields are qualitatively similar to each other. We find the σz

distributions have small scatter up to z ∼ 1.5 with their medians typically ranging be-

tween 0.02 ≤ σz,med ≤ 0.05, and much larger scatter at z & 1.5 with the medians ranging

between 0.06 ≤ σz,med ≤ 0.08. This large scatter is because the observed filters no longer

span the 4000Å break, which leads to larger uncertainties during template SED-fitting

(for additional details, see [114]). For each CANDELS field, we show the 80% and 95%

outlier limits of the redshift normalized error [σz/(1 + zbest)] distribution and present

their values in Table 3. While the 95% clipping limit rejects extreme outliers typically

with zbest > 1.5, the 80% limit does a reasonable job representing the upper envelope

of the σz distribution at all redshifts. Therefore, to exclude galaxies with large zphot er-

rors, we elect to exclude those σz above the 80% clipping limit. Hereafter, we define the

large-error zphot as unreliable.

For each galaxy in our CANDELS sample, we adopt the [6] (hereafter, B09) red-

shift proximity criteria given by :

∆z2
12 ≤ σ2

z,1 + σ2
z,2 , (1.1)

5We shift the P (z) distributions and raise them to a power such that when compared to the test set of
spectroscopic redshifts (zspec), the 68% confidence interval of the P (z) should include zspec 68% of the
time. A detailed description is given in [114]
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where ∆z12 = (zbest,1−zbest,2) is the redshift difference of the host and companion galax-

ies, and σz,1 and σz,2 are their photometric redshift errors, respectively. It is important to

note that projected pairs containing widely separated galaxies in redshift space that have

large zphot errors can satisfy Equation 1.1. Hence, we apply the redshift proximity cri-

teria only to those galaxies with reliable photometric redshifts. In summary, we select

Nphy = 504 massive galaxies hosting major companions satisfying 5 kpc ≤ Rproj ≤ 50

kpc, 1 ≤ M1/M2 ≤ 4, and Equation 1.1. We present the breakdown of Nphy in each

redshift bin per CANDELS field in Table 2.

In § 1.3.1, we describe a statistical correction to add back a subset of galaxies

excluded because of an unreliable σz that could be statistically satisfying the redshift

proximity criteria. Additionally, owing to the possibility that some companion galaxies

may satisfy the close redshift proximity criterion by random chance, we discuss the sta-

tistical correction for random chance pairing in § 1.3.3.3. We acknowledge the mismatch

between the redshift proximity methods that we employ for the SDSS and CANDELS. In

§ 1.4, we test the impact of this mismatch and find that it does not significantly impact our

results and conclusions.

1.3 Frequency of Major Merging

To track the history of major merging, we start by analyzing the fraction of mas-

sive (Mstellar ≥ 2× 1010M�) galaxies hosting a major companion selected in § 1.2.3. The
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Figure 3: Photometric redshift uncertainties (σz) as a function of zbest for galaxies with
Mstellar ≥ 5 × 109M� in each CANDELS field. The σz values are the 1σ photometric
redshift errors from the optimized P (z) distributions originally derived by S. Wuyts (see
text for details). In each panel, we show the 80% and 95% outlier clipped limits of
the redshift normalized uncertainty σz/(1 + zbest) distribution in solid and dashed lines,
respectively. We present these limits in Table 3.
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major companion fraction6 is

fmc(z) =
Nmc(z)

Nm(z)
, (1.2)

where at each redshift bin, Nmc is the number of massive galaxies hosting a major com-

panion after statistically correcting the Nphy counts (see § 1.3.1 and 1.3.2), and Nm is the

number of massive galaxies. The companion fraction fmc is commonly used in the liter-

ature, and is the same as fmerg used by [16]. We use the samples described in § 1.2.3 to

derive Nmc(z) separately for the five redshift bins in CANDELS (0.5 ≤ z ≤ 3.0) and for

the SDSS z ∼ 0 anchor. We then discuss the application of a correction to account for

galaxies satisfying the companion selection criteria by random chance. Finally, we char-

acterize the companion fraction and use an analytical function to quantify the redshift

evolution of fmc during 0 < z < 3.

1.3.1 Deriving Nmc(z) for CANDELS

For redshifts 0.5 ≤ z ≤ 3, we compute Nmc corrected for incompleteness owing

to unreliable photometric redshifts as

Nmc = Nphy + C1Nproj,unreliable , (1.3)

where Nphy is the number of massive galaxies with reliable zphot values that host a major

companion (§ 1.2.3.3), Nproj,unreliable is the number of galaxies hosting major projected

companions that are excluded because of unreliable zphot values (§ 1.2.3.1), and C1 is

the correction factor used to statistically add back a subset of excluded galaxies that are

6While the companion fraction is related to the pair fraction, it is important to be clear that it is not the
same (see § 1.5.1).
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expected to satisfy the redshift proximity criteria we employ. We estimate C1 as

C1 =
Nphy

Nproj −Nproj,unreliable

. (1.4)

To study fmc(z) from the overall sample and also its field-to-field variations, we calculate

Nmc for five ∆z = 0.5 bins separately for each CANDELS field and for the total sam-

ple using counts tabulated in Table 2. For example, in the 0.5 ≤ z ≤ 1 bin, CANDELS

contains 671 massive galaxies with reliable zphot values hosting a major projected com-

panion. This results in C1 = 193/671 = 0.29 and a corrected count of Nmc = 230; i.e.,

we add back 29% of the previously excluded galaxies at these redshifts. We tabulate C1

and Nmc values in Table 2. We also note no significant difference in the computed Nmc

values whether we use an 80% or 95% σz clipping limit (§ 1.2.3) to remove unreliable

photometric redshifts.

1.3.2 Deriving Nmc(z) for SDSS

To achieve an accurate low-redshift anchor for the fraction of massive galaxies

hosting a major companion meeting our ∆v12 ≤ 500 km s−1 velocity separation criterion,

we calculate Nmc corrected for the SDSS spectroscopic incompleteness that varies with

projected separation using ∆Rproj = 5 kpc bins as follows:

Nmc = Nphy +
9∑
i=1

(C2Nproj,nospec)i . (1.5)

For each of nine bins between Rproj = 5 − 50 kpc, we compute a correction factor C2,i

necessary to add back a statistical subset of the Nproj,nospec galaxies in the bin that lack

spectroscopic redshifts but that we expect to satisfy the ∆v12 ≤ 500km s−1 criterion. Fol-

lowing the same logic as in Equation 1.4, we estimate this correction at each ∆Rproj bin
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based on the counts of spectroscopic galaxies hosting a major projected companion and

the fraction that satisfy ∆v12 ≤ 500 km s−1. Owing to our well-defined sample volume

(0.03 < z < 0.05), the total sample of spectroscopic hosts with plausible physical com-

panions (§ 1.2.3.2) is limited to Nphy = 109 over the nine separation bins. To reduce ran-

dom errors from small number statistics, we use a larger redshift range (0.01 ≤ z ≤ 0.05)

and SDSS footprint (∼ 4000 deg2), to calculate the correction factor at each ∆Rproj bin:

C2,i =

(
N ′phy

N ′proj −N ′proj,nospec

)
i

. (1.6)

In Figure 4, we plot C2 and the factors in Equation 1.5 as a function of Rproj using

this larger sample (emphasized with a prime). For example, in the 20 ≤ Rproj ≤ 25 kpc

separation bin, we find 119 massive galaxies hosting a major projected companion, of

which 35 have small velocity separations and 44 lack spectroscopic redshifts. This results

in a 47% correction (C2 = 35/75 = 0.47) at this separation. We find the probability for a

small-separation pair (Rproj = 5 kpc) to satisfy ∆v12 ≤ 500 km s−1 (despite lacking the

redshift information) is 85% (C2 = 0.85) and this rapidly decreases to ∼ 30% (C2 ∼ 0.3)

at Rproj = 30 kpc, and remains statistically constant between Rproj = 30 − 50 kpc. This

correction is important since the spectroscopic incompleteness N ′proj,nospec/N
′
proj ranges

from >0.6 (∼ 5− 10 kpc) to 0.2 (∼ 45− 50 kpc) over the separations we probe, which is

in agreement with trends published in Figure 2 from [48].
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Table 2: Detailed breakdown of variables involved in estimating the fmc and fmc,c at

five redshift bins between 0.5 ≤ z ≤ 3. Columns: (1) name of the CANDELS field;

(2) the CANDELS team zbest bin; (3) number count of massive (logMstellar/M� ≥ 10.3)

galaxies; (4) number of massive galaxies hosting a major projected companion (§ 1.2.3.1),

those of which that have unreliable photometric redshift values are shown in parenthesis;

(5) number of massive galaxies with reliable zphot that host a major projected companion

satisfying redshift proximity (Equation 1.8) as described in § 1.2.3.3; (6) the correction

factor computed using Equation 1.4; (7) the number of massive galaxies hosting a major

companion after statistically correctingNphy for incompleteness owing to unreliable zphot

values from Equation 1.3; (8) correction factor to account for random chance pairing as

described in § 1.3.3.3; (9) the fraction of massive galaxies hosting a major companion

(major companion fraction); (10) random chance pairing corrected fmc, as described in

§ 1.3.3.3.

Name Redshift Nm Nproj NphyC1 Nmc C3 fmc

(%)

fmc,c

(%)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

0.5 ≤ z ≤ 1 256 132 (16) 44 0.38 50 20± 5

1 ≤ z ≤ 1.5 304 130 (23) 34 0.32 41 14± 4

UDS 1.5 ≤ z ≤ 2 290 130 (30) 25 0.25 33 11± 4

2 ≤ z ≤ 2.5 216 80 (31) 14 0.29 23 11± 4

2.5 ≤ z ≤ 3 157 82 (42) 3 0.07 6 4± 3

0.5 ≤ z ≤ 1 216 107 (21) 32 0.37 40 18± 5

1 ≤ z ≤ 1.5 252 116 (14) 34 0.33 39 15± 4

GOODS-S 1.5 ≤ z ≤ 2 213 87 (22) 15 0.23 20 9± 4

2 ≤ z ≤ 2.5 138 56 (14) 3 0.07 4 3± 3

2.5 ≤ z ≤ 3 123 57 (15) 5 0.12 7 6± 4

0.5 ≤ z ≤ 1 333 195 (33) 56 0.35 67 20± 4

1 ≤ z ≤ 1.5 278 140 (27) 40 0.35 50 18± 4
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GOODS-N 1.5 ≤ z ≤ 2 209 99 (20) 15 0.19 19 9± 4

2 ≤ z ≤ 2.5 191 83 (17) 6 0.09 8 4± 3

2.5 ≤ z ≤ 3 122 61 (16) 5 0.11 7 6± 4

0.5 ≤ z ≤ 1 448 244 (38) 40 0.19 47 11± 3

1 ≤ z ≤ 1.5 270 128 (37) 1 0.01 1 1± 1

COSMOS 1.5 ≤ z ≤ 2 350 157 (75) 15 0.18 29 8± 3

2 ≤ z ≤ 2.5 153 86 (54) 0 0.0 0 0± 0

2.5 ≤ z ≤ 3 86 36 (22) 6 0.43 15 18± 8

0.5 ≤ z ≤ 1 224 120 (19) 21 0.21 25 11± 4

1 ≤ z ≤ 1.5 304 137 (19) 36 0.31 42 14± 4

EGS 1.5 ≤ z ≤ 2 331 171 (50) 39 0.32 55 17± 4

2 ≤ z ≤ 2.5 167 94 (18) 23 0.3 28 17± 6

2.5 ≤ z ≤ 3 67 35 (13) 2 0.09 3 5± 5

0.5 ≤ z ≤ 1 1477 798

(127)

193 0.29 230 0.15 16± 2 13± 2

1 ≤ z ≤ 1.5 1408 651

(120)

145 0.27 173 0.17 12± 2 10± 2

All fields 1.5 ≤ z ≤ 2 1393 644

(197)

109 0.24 155 0.18 11± 2 9± 2

2 ≤ z ≤ 2.5 865 399

(134)

46 0.17 63 0.25 7± 2 5± 2

2.5 ≤ z ≤ 3 555 271

(108)

21 0.13 38 0.22 7± 2 5± 2

1.3.3 Redshift Evolution of Major Merging Frequency

We use the corrected counts of massive galaxies hosting a major companion to

compute the companion fraction (fmc; see Equation 1.2) in the SDSS and CANDELS. We
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Figure 4: The number of massive galaxies hosting a major companion in projected pairs
as a function of projected separation from the SDSS: total (N ′proj; bold line), the subset
of galaxies with no spectroscopic redshift information (N ′proj,nospec; dashed line), and the
subset of galaxies satisfying ∆v12 ≤ 500 km s−1 (N ′phy; thin line). The prime signifies
that the quantities are derived using a larger SDSS sample spanning 0.01 ≤ z ≤ 0.05 and
∼ 4000 deg2 (see § 1.3.2) for nine Rproj bins between 5 − 50 kpc. The correction factor
C2 per Rproj bin (Equation 1.6) is given by the red circles connected by a red solid line.
The error bars represent 95% binomial confidence of C2.
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Figure 5: Left-panel: The redshift evolution of the major companion fraction fmc shown
for the five CANDELS fields UDS (star), GOODS-S (left triangle), GOODS-N (right tri-
angle), COSMOS (pentagon), EGS (cross). The combined CANDELS fractions in five
redshift bins (circles) and the SDSS low-redshift anchor (square) include 95% binomial
confidence limit error bars. To place our finding in the context of common, close-pair-
based evolutionary trends found in the literature, we plot the shaded region (red) encom-
passing a common range of power-law slopes fmc = 0.06(1 + z)1−2 at 0 < z < 1.5.
Right-panel: The random chance corrected fractions (fmc,c) for the five CANDELS ∆z
bins (open circles) are compared with the fmc(z) from (a). For fmc,c, the binomial errors
and scatter of C3 (see S 1.3.3.3) are added in quadrature. Best-fit curves to the compan-
ion fraction (fmc) evolution data (see Equation 1.7 and § 1.3.3.2 for details) are shown in
solid (fmc) and dashed (fmc,c) lines, respectively. In the case of SDSS, since the correc-
tion C3 ∼ 0.01, we only plot fmc for simplicity. From this figure, we conclude that the
major companion fraction increases strongly from z ∼ 0 to z ∼ 1, and decreases steeply
towards z ∼ 3 (see text for details).
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Table 3: Photometric redshift uncertainty outlier limits that are used to determine reliable
zphot values for each CANDELS field. Columns: (1) name of the CANDELS field; (2,3)
the 80% and 95% outlier clipped limits of the redshift normalized uncertainity σz/(1 +
zbest) distributions for galaxies in the mass-limited (Mstellar ≥ 5 × 109M� sample for
redshifts 0.5 ≤ z ≤ 3.0 as shown in Figure 3.

Name 80% limit 95% limit
(1) (2) (3)

UDS 0.033 0.051
GOODS-S 0.038 0.058
GOODS-N 0.04 0.061
COSMOS 0.024 0.037

EGS 0.041 0.062

compare field-to-field variations of fmc in CANDELS, quantify the redshift evolution of

the fmc from z = 3 to z = 0, and measure the impact of random chance pairing on the

observed major companion fraction evolutionary trends.

1.3.3.1 Field-to-Field Variations

In Figure 5(a), we plot fmc(z) for the combined CANDELS fields and compare

this with the individual fractions from each field at each redshift; these are also tabulated

in Table 2. Despite noticeable variations between the fractions derived from each CAN-

DELS field owing to small-number statistics, we find fair agreement between multiple

fields at each redshift. We note that the combined CANDELS sample and three individual

fields (UDS, GOODS-S, and GOODS-N) show consistent trends with the highest merger

fractions at z ∼ 1, which then steadily decrease with increasing redshift. The EGS and

COSMOS companion fractions exhibit different behavior with redshift, the former peaks

at z ∼ 2 while the latter has no trend with redshift owing to a lack of galaxies host-

ing major companions in two different redshift bins. We compute the cosmic-variance
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(σCV) on the combined CANDELS fmc(z) values using the prescription by [115]. For

log10(Mstellar/M�) & 10 galaxies at 0.5 < z < 3.0 populating the five CANDELS fields

each with an area of 160 arcmin2 such that their cumulative area matches that of the total

CANDELS coverage (5×160 = 800 arcmin2), we find that the number counts of galaxies

hosting major companions have σCV ranging from 11% (z = 0.75) to 18% (z = 2.75)7.

While most of the individual CANDELS-field fractions are consistent with the σCV within

their large uncertainties (owing to small sample size), few fmc values (e.g., at z > 1.5 for

the COSMOS and EGS fields; see Figure 5a) are significantly above the possible cosmic-

variance limits.

1.3.3.2 Analytical Fit to the Major Companion Fraction Evolution

To characterize the redshift evolution of the companion fraction during 0 < z < 3,

we anchor the combined CANDELS fmc(z) measurements to the SDSS-derived data

point at z ∼ 0. As shown in Figure 5(a), the low-redshift fraction is ∼ 3× lower than

the maximum fmc ∼ 0.16 value at 0.5 < z < 1, which then decreases to fmc ∼ 0.07

at 2.5 < z < 3. This suggests a turnover in the incidence of merging sometime around

z ∼ 1, in agreement with some previous studies [116, 117]. Previous close-pair-based

studies at z ∼ 0 find fractions fmc ∼ 2% ± 0.5% [60, 111, 118], but they used criteria

that are different from our fiducial selection. Similarly, many empirical, close-pair-based

studies in the literature broadly agree that fmc rises at 0 < z < 1.5 but with a range of

7We take into account that σCV is smaller for multiple, widely separated fields when compared to the
σCV of a single contiguous field. For additional details, see [115]
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evolutionary forms (1 + z)1∼2 owing to varying companion selection criteria (for discus-

sion, see [18]). After normalizing for these variations, we note that our SDSS-based fmc

is in good agreement with previous close-pair-based estimates, and our rising trend (see

shaded region, Figure 5a) between 0 < z < 1.5 is in broad agreement with other empiri-

cal trends. In § 1.5, we will present detailed comparisons to other studies by re-computing

fmc based on different companion selection choices that match closely with others.

All studies that measured redshift evolution of merger frequency at 0 < z < 1.5,

irrespective of the methodology, have used the power-law analytical form f(z) ∝ (1+z)m

to represent the best-fit of f(z). This functional form cannot be used to represent the

observed rising and then decreasing fmc(z) for redshift ranges 0 < z < 3. Therefore, fol-

lowing [117] and initially motivated by [119], we use a modified power-law exponential

function given by

fmc(z) = α(1 + z)m expβ(1+z) . (1.7)

As demonstrated in Figure 5(a), this analytic function provides a good fit to the observed

evolution. The best-fit curve to the fractions derived from the SDSS and CANDELS

measurements from our fiducial companion selection criteria has parameters α = 0.5 ±

0.2, m = 4.5± 0.8, and β = −2.2± 0.4. We note that we will apply this fitting function

for different companion selection choices throughout our comparative analysis described

in § 1.4.
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1.3.3.3 Correction for Random Chance Pairing

Finally, we note that a subset of massive galaxies hosting a major companion

(Nmc) can satisfy the companion selection criteria by random chance. To account for this

contamination, we apply a statistical correction and recompute the counts for the com-

bined CANDELS sample per redshift bin as Nmc,c = Nmc(1 − C3) in each redshift bin.

To compute C3, we generate 100 simulated Monte-Carlo (MC) randomized datasets8. We

define C3 in each redshift bin as the ratio of massive galaxy number counts hosting major

companions which satisfy our projected separation and photometric redshift proximity

criteria in the MC datasets ( by random chance) to the measured Nmc ( 1.3.1 and § 1.3.2).

For example, in redshift bin 1 < z < 1.5, we find that 17% of Nmc = 173 galaxies

statistically satisfy the companion selection criteria by random chance. We tabulate C3

values at each redshift for CANDELS in Table 2. We repeat this process for the SDSS

(0.03 < z < 0.05) and find a very small correction of ∼ 1% (C3 ∼ 0.01). This demon-

strates the very low probability for two SDSS galaxies to satisfy both the close projected

separation and stringent spectroscopic redshift proximity (∆v12 ≤ 500 km s−1) criteria.

In Figure 5(b), we compare the random chance corrected fractions fmc,c = Nmc,c/Nm

at each redshift bin from CANDELS, to the uncorrected fmc values copied from the left

panel. Owing to the insignificant 1% correction at z ∼ 0, we anchor both the corrected

and uncorrected fits to the same SDSS data point. We find that fmc,c(z) follows the same

evolutionary trend as fmc(z), in which the best-fit curve rises to a maximum fraction at

z ∼ 1 and then steadily decreases to z = 3. At all redshifts, fmc,c is within the statistical

8We generate these datasets by randomizing the positions of each galaxy in the log10(Mstellar/M�) ≥
9.7 mass-limited sample and repeating the selection process in § 1.2.3
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errors of fmc. The qualitatively similar redshift evolutionary trends of fmc(z) and fmc,c(z)

is due to the nearly redshift independent amount of statistical correction for random pair-

ing (|∆f |/fmc ∼ 20%) at 1 < z < 3. This is because of the nearly invariant angular

scale in this redshift range, which results in similar random chance pairing probabilities.

We note that some previous close-pair-based studies have applied this random chance

correction [5, 6], while others have not [63].

1.4 Impact of Close-Companion Selection Criteria on Empirical Major

Companion Fractions

So far, we have discussed the derivation and redshift evolution of the major com-

panion fraction fmc based on our fiducial selection criteria described in § 1.2.3. As illus-

trated in Table 5, previous studies have employed a variety of criteria to select compan-

ions. In this section, we study the impact of different companion selections on fmc(z)

derived from our sample. We systematically vary each criterion (projected separation,

redshift proximity, and stellar mass ratio versus flux ratio) individually, while holding the

other criteria fixed to their fiducial values. Then, we compare each recomputed fmc(z) to

the fiducial result from Figure 5. In § 1.3.3.3, we show that applying a statistical correc-

tion for random chance pairing will produce companion fractions that are∼ 20% lower at

each redshift interval between 0.5 ≤ z ≤ 3. Therefore, we focus the following compara-

tive analysis on uncorrected fractions and note that our qualitative conclusions are robust

to whether or not we apply this correction.
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1.4.1 Projected Separation

To quantify the impact that changing only the criterion for companion projected

separation will have on fmc(z), we compare fractions based on the fiducial Rproj = 5 −

50 kpc selection to those derived from two common criteria: Rproj = 14−43 kpc [16,62]

and Rproj = 5 − 30 kpc [60, 63]. For each case, we hold all other companion selection

criteria fixed such that we are strictly comparing fractions of major (stellar mass-selected)

companions in close redshift proximity that are found within projected annular areas of

2/3 and 1/3 the fiducial selection window (2475π kpc2), respectively.

In Figure 6, we plot the fiducial and non-fiducial fmc(z) data and their best-fit

curves. The key result from this figure is the observed redshift evolution of major com-

panion fractions shown in Figure 5 are qualitatively robust to changes in the projected

separation criterion. For each case, we find the fractions increase from low redshift to

z ∼ 1, then turn over and decrease fairly steadily to z = 3. Quantitatively, the non-

fiducial fractions are well fit by the same fmc(z) functional form as the fiducial results

(see Table 4). Owing to the size of the best-fit confidence intervals, the redshifts of the

peak fractions are statistically equivalent. Larger samples of massive galaxy-galaxy pairs

at redshifts 0.5 < z < 1.5 are needed to place stringent constraints on the peak or turnover

redshift.

Besides the overall fmc trends with redshift, we find that both smaller projected

separation criteria select smaller fmc values than the fiducial selection does, as we expect.

Despite being a factor of two smaller in projected area, the conservative Rproj = 5 −

30 kpc criterion coincidentally produces fractions that are statistically matched to those
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from the largerRproj = 14−43 kpc selection criterion at most redshift intervals. Only the

0.5 < z < 1 bin has unequal companion fractions between the two non-fiducial criteria.

The coincidental finding of similar fractions using different projected separation criteria

is consistent with an increased probability of physical companions at smaller projected

separations [7, 8].
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Figure 6: Comparison of the redshift evolution of the major companion fractions based on
three projected separation criteria: Rproj = 5−50 kpc (fiducial; black symbols, solid line),
Rproj = 14− 43 kpc (grey symbols, dashed line), and Rproj = 5− 25 kpc (open symbols,
dot-dashed line). Best-fit curves for each fmc(z) spanning 0 < z < 3 are a modified
power-law exponential (Equation 1.7; see § 1.3.3.2 for details). The low-redshift fractions
are from the SDSS (squares) and the z > 0.5 fractions are from CANDELS (circles).The
error bar on each fmc data point represents 95% binomial confidence limit. The non-
fiducial fmc data points are offset by a small amount within each redshift bin for clarity.
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Table 4: Modified power-law exponential function parameter values for best-fit models
to major companion fraction evolution fmc(z) based on different selection criteria; our
fiducial criteria are given in bold. Columns: (1) major companion definition – stellar
mass ratio 1 ≤ M1/M2 ≤ 4 (MR), or H-band flux ratio 1 ≤ F1/F2 ≤ 4 (FR); (2)
projected separation Rproj criterion; (3) redshift proximity method applied to CANDELS
samples – Equation 1.7 adopted from B09, Equation 1.8 modified from [63], or ‘Hybrid’
version of B09 (see text for details); and (4–6) best-fit parameter values (α, m and β) and
their 1σ confidence limits for the model function given in Equation 1.7.

Major com-
panion defi-
nition

Rproj Redshift
Proximity

α m β

(1) (2) (3) (4) (5) (6)
MR 5− 50kpc B09 0.5± 0.2 4.6± 0.9 −2.3± 0.5
MR 14− 43 kpc B09 0.7± 0.5 6.2± 1.4 −3.1± 0.8
MR 5− 30 kpc B09 0.4± 0.1 5.4± 0.8 −2.6± 0.4
MR 5− 50 kpc modM12 0.5± 0.2 4.6± 0.9 −2.2± 0.5
MR 5− 50 kpc hybB09 0.4± 0.1 3.8± 0.7 −1.9± 0.4
FR 5− 50 kpc B09 0.1± 0.1 2.1± 1.2 −0.5± 0.6
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1.4.2 Redshift Proximity

Following a similar methodology as in § 1.4.1, we quantify the impact that chang-

ing only the criterion for redshift proximity will have on fmc(z). As described in § 1.2.3.2,

we apply selections based on photometric redshifts and their uncertainties only to CAN-

DELS data, and we anchor our evolutionary findings to stringent velocity-separation-

based companion fractions at z ∼ 0 from the SDSS. As such, we first compare CAN-

DELS fractions (0.5 < z < 3) based on our fiducial B09 selection given in Equation 1.1 to

fractions based on two other related methods. Then we demonstrate that the low-redshift

fraction from the SDSS changes very little (∆f/ffid < 5%) if we select major companions

using simulated photometric redshift errors that are similar in quality to the CANDELS

σz values, rather than use our fiducial selection criterion (∆v12 ≤ 500 km s−1).

In Figure 7, we plot fmc(z) data and best-fit curves for our fiducial selection and

two additional methods. In each non-fiducial case, we hold the projected separation and

mass ratio selection criteria fixed to our fiducial choices. The first method is a simple

overlapping of the host and companion galaxy 1σ photometric redshift errors

|∆z12| ≤ σz,1 + σz,2 . (1.8)

This criterion is modified from [63] who used redshift overlap at the 3σ level. As with

fiducial selection, we apply this criterion only to those galaxies with reliable photometric

redshifts (see § 1.2.3.2). Second, we incorporate available spectroscopic redshifts for

the host and/or companion galaxies from CANDELS into a ’hybrid’ of our fiducial B09

redshift proximity selection as follows:

a) if both galaxies have zspec data, then the pair must satisfy ∆v12 ≤ 500 km s−1;
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b) or if only one galaxy has zspec data, then zspec must be within zphot± σz limit of the

other galaxy;

c) otherwise use B09 criterion.

As with changing the project separation for selecting close companions, the key

takeaway from Figure 7 is the redshift evolution trends for fmc(z) are robust to slight

modifications in the redshift proximity criterion. Both non-fiducial companion fractions

peak in the lowest-redshift CANDELS bin, the decline at z > 1 and their redshift evolu-

tion anchored to the SDSS z ∼ 0 fraction are well fit by the same functional form with

statistically equivalent best-fit parameters (see Table 4). Besides the similar evolutionary

trends, we notice that the modified Man et al. criterion results in fmc values that are sys-

tematically ∼ 11 − 24% higher than the fiducial fractions between 0.5 < z < 3. This is

expected since simple photometric redshift error overlap (Equation 1.1) is less stringent

than a quadrature overlap; e.g., two galaxies with σz = 0.06 must have photometric red-

shifts within ∆z12 = 0.12 compared to 0.085 (fiducial). On the other hand, the hybrid B09

method yields 9− 17% smaller major companion fractions than fiducial at 0.5 < z < 1.5

owing to the availability of zspec data for a fair fraction of CANDELS galaxies and the

stringent ∆v12 criterion for this subset, but nearly identical fractions at z > 1.5 for which

the spectroscopic-redshift coverage becomes quite sparse.

We close our redshift proximity analysis by quantifying changes in the fmc(0)

measurement from the SDSS data if we employ either the B09 or modified Man et al.

photometric redshift error overlap criteria. We opt to generate simulated zphot and σz
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for the SDSS sample such that these values mimic the quality of the CANDELS pho-

tometric data. First, we construct the combined σz/(1 + zphot) distribution from all five

CANDELS fields (see Fig. 3), apply a 3σ outlier clipping, and fit a normalized probability

density function (PDF) to this distribution such that the area under the curve sums up to

unity. Note that this PDF is the probability for each σz/(1 + zphot) value and is different

from P (z) discussed in § 1.2. For each galaxy, we set its SDSS redshift to zphot and we

assign it a σz value drawn randomly from the PDF distribution. Then, we repeat our close

companion selections and find fmc(0) = 0.057 (B09) and 0.061 (modified Man et al.).

The relative change in each fraction is roughly 3% compared to our fiducial selection of

close velocity separation.

One can argue that actual zphot data from the SDSS ugriz photometry will pro-

duce larger redshift errors and higher companion fractions. Yet, the motivation of this

exercise is to quantify the difference between tight spectroscopic velocity separation ver-

sus photometric redshift proximity selection matched to the z > 0.5 data, not to make

our z ∼ 0 companion fraction more uncertain. We note that if we repeat this analysis

by resampling each SDSS galaxy redshift from a PDF defined by its simulated σz, we

find smaller major companion fractions since this effectively makes the redshift proxim-

ity worse (larger) and we demonstrated that companions have high probability of small

velocity separations for the SDSS. Either way, all the SDSS fmc anchors are significantly

lower than the companion fractions at z ∼ 1, which means the turnover trend in fmc(z) is

a robust result.
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Figure 7: Comparison of the redshift evolution of the major companion fractions fmc(z)
based on three redshift proximity criteria applied to z > 0.5 galaxies from CANDELS:
our fiducial (Equation 1.1; black circles, solid line) adopted from B09; Equation 1.8 (grey
circles, dashed line) modified from [63]; and a hybrid of the B09 criterion plus close
velocity separation for the subset of CANDELS galaxies with spectroscopic redshifts
(open circles, dot-dashed line). All three best-fit curves (Equation 1.7) to the z > 0.5 data
are anchored to the same fmc(0) point (square symbol) based on SDSS companions with
∆v12 ≤ 500 km s−1 velocity separation. The error bars are defined as in Figure 6.
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1.4.3 Stellar Mass vs Flux Ratios

Our fiducial choice for selecting major companions is the stellar mass ratio cri-

terion: 1 ≤ M1/M2 ≤ 4. Some previous studies, in which galaxies lack stellar mass

estimates, have used observed-band flux ratios of 1 ≤ F1/F2 ≤ 4 as a proxy for select-

ing major companions [7, 14]. [120] and B09 speculated that flux-ratio selection could

preferentially lead to inflated companion counts especially at z & 2 owing to increasing

star formation activity. Two recent studies found conflicting trends in fmc(z) estimates

between z & 1 and z = 3 [16, 63]. Here we quantify the impact that changing the major

companion selection from 4:1 stellar mass ratio (MR) to 4:1 flux ratio (FR) has on com-

panion fractions for massive galaxies in CANDELS and the SDSS while holding all other

selection criteria fixed to fiducial values.

In Figure 8, we compare the fiducial MR-based fmc(z) to fractions based on H-

band (CANDELS) and r-band (SDSS) 4:1 flux ratios. We find the FR-based major com-

panion fractions follow starkly different evolutionary trends compared to MR-based frac-

tions at z & 1. At 0 < z < 1, the FR and MR fractions both increase with redshift

and agree within their 95% confidence limits. However, FR produces increasingly larger

fractions from z ∼ 1 to z = 3 that diverge away from the fiducial fmc(z) trends and grow

1.5 − 4.5 times greater than MR-based fractions at these redshifts. We attempt to fit the

FR-based fmc(z) with the same function form (Eq. 1.7) that we employ for MR fraction

redshift evolution, but the best-fit parameter values (see Table 4) for the steadily increas-

ing fractions between 0 < z < 3 are statistically consistent with a simple power law since

the FR fractions do not peak nor turn over at z > 1. Therefore, we refit the FR fraction
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evolution with a power law and find fmc(z) = 0.07(1 + z)1 for 0 < z < 3.

To better understand the striking differences between the FR and MR fmc(z)

trends, we analyze stellar mass ratios and flux ratios of CANDELS and SDSS close-pair

systems that satisfy our fiducial 5 − 50 kpc separation and redshift proximity selections

(see § 1.2.3.2) in Figure 9. At z < 1, we find good agreement between MR and FR values

for a majority of major and minor (M1/M2 > 4) close-pair systems. The agreement sug-

gests that r-band (H-band) flux ratios are a good approximation for stellar-mass ratios at

z ∼ 0 (0.5 < z < 1). In detail, 80% (72%) of SDSS (CANDELS) pairs are considered

major pairs according to both FR and MR criteria. We find 17% (25%) of FR-based major

pairs have a > 4 : 1 (minor) stellar mass ratio, and only 3% of MR-selected major pairs

have minor flux ratios at z < 1.

In the bottom four panels of Figure 9, we notice that the FR-based major compan-

ion selection suffers a steadily increasing contamination by minor companions according

to CANDELS stellar mass ratios. This contamination rises from 40% at 1 < z < 1.5 to

over three-quarters in the highest redshift interval. In contrast, our fiducial selection of

major companions maintains a very small (∼ 5%) constant contamination of F1/F2 > 4

pairs between 1 < z < 3. This analysis clearly demonstrates that FR selection results

in inflated major companion counts at z & 1, confirming the result that significantly dif-

ferent mass-to-light ratio properties of the companion galaxies at z > 1 may be the main

cause of the contamination by minor companions [16].
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Figure 8: Comparison of the redshift evolution of major companion fractions fmc(z)
based on our fiducial selection (stellar mass ratio 1 ≤ M1/M2 ≤ 4; black symbols,
solid line) and based on H-band flux ratios (1 ≤ F1/F2 ≤ 4; open points; slightly offset
in z direction for clarity). Best-fit curves to the flux-ratio fraction evolution are shown
for modified power law (Eq. 1.7, dashed line) and a simple power law (dot-dashed line;
fmc(z) = 0.07(1+z)1). The data symbols distinguishing CANDELS and SDSS fractions,
and the error bars are the same as in Fig. 6. The flux ratio selection results in larger frac-
tions at z > 1 and an increasing power-law redshift dependence in contrast to the fmc(z)
derived from stellar-mass ratios.
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Figure 9: Stellar-mass-ratio vs. H-band flux-ratio for the close-pair systems satisfying
our fiducial projected separation (5 − 50 kpc) and redshift proximity choices for SDSS
(∆v12 ≤ 500 km s−1; z ∼ 0; top left) and CANDELS (B09; 0.5 ≤ z ≤ 3; rest of the
panels). We show the pairs that satisfy our fiducial mass-ratio criterion (1 ≤ M1/M2≤4)
in large-black points , those having a M1/M2 > 4 but satisfy the flux-ratio criterion
(1 ≤ |F1/F2| ≤ 4) in large-grey points, the remaining points in small-grey markers.
To visualize the contamination from minor pairs (M1/M2 > 4), introduced by the flux-
ratio criterion in each redshift panel, we show the percentage of pairs that satisfy either
mass-ratio or flux-ratio selection that fall in each of the three quadrants. We notice that
the contamination increases steadily from z ∼ 0 to z = 3, causing inflated fmc values
observed in Figure 8 (see § 1.4.3 for discussion).
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Table 5: Compilation of companion selection criteria employed by previous empirical

close-pair-based studies. Columns: (1) names of the studies – presented in the order of

their mention in Figure 10; (2) the choice of projected separation Rproj annulus; (3) the

criterion to choose major companions, where µ12 = M1/M2 is the stellar mass ratio (MR),

flux-ratio (FR) is given by F1/F2, and the luminosity ratio (LR) is given by L1/L2; (4) the

choice of redshift proximity criterion to select companions in plausible close pairs, where

∆z12 is the photometric redshift difference z1−z2, ∆v12 is the spectroscopic velocity dif-

ference, LOS is the statistical correction for line-of-sight projections, and CDF (z1, z2) is

the cumulative probability of the galaxies involved in a close pair; (5) the applied selec-

tion criterion to select the primary galaxy sample, which is either a stellar mass-limited or

flux-limited selection; (6) the redshift range in which the study presented their findings.

We divide the table into two parts, where studies based on mass ratios are above the solid-

dashed line and vice-versa. [121] employed a redshift proximity where ∆z12/1+z1 < 0.1

for z < 1 and ∆z12/1 + z1 > 0.2 when z1 > 1. The dagger represents that the studies

derived a ‘pair’ fraction rather than the companion fraction (fmc), see § 1.5.1 for details.

Study Rproj

selection

[kpc]

Major

Compan-

ion

Redshift

Proximity

Primary galaxy se-

lection

Redshift

(z)

(1) (2) (3) (4) (5) (6)

[15] ∈ [5, 30] MR∈
[1, 4]

2σ zphot error

overlap

Mstellar ≥ 1010M� ∈ (0.5, 2)

[6]† ∈ [5, 30] MR∈
[1, 4]

∆z2
12 ≤

σ2
z,1 + σ2

z,2

Mstellar ≥ 1010M� ∈ [0.4, 1.4]

[17]† ∈ [5, 30] MR∈
[1, 4]

CDF (z1, z2) Mstellar ≥ 1010M� ∈ (0, 2)

[67] ∈ [14, 43] MR∈
[1, 4]

|∆z12|/1 +

z1 < 0.2

Mstellar ≥ 1010.5M� ∈ [0.4, 2]
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[121] ∈ [14, 43] MR∈
[1, 4]

see caption Mstellar ≥ 1010.7M� ∈ [0.4, 2]

[16] ∈ [14, 43] MR∈
[1, 4]

same as

Newman+12

Mstellar ≥ 1010.8M� ∈ [0, 3]

[5] ∈ [5, 30] LR∈ [1, 4] ∆v12 ≤
500 km s−1

MV < −19.8− 1.0z ∈ [0.1, 1.2]

[6]† ∈ [5, 30] FR∈ [1, 4] LOS Mstellar ≥ 1010M� ∈ [0.4, 1.4]

[63] ∈ [5, 30] FR∈ [1, 4] 3σ zphot error

overlap

Mstellar ≥ 1011M� ∈ [0, 3]

[122] ∈ [5, 30] FR∈ [1, 4] LOS Mstellar ≥ 1011M� ∈ [1.7, 3]

[62] ∈ [14, 43] LR∈ [1, 4] ∆v12 ≤
500 km s−1

−21 < MB + 1.3z <

−19

∈ [0, 1.2]

[123]† ∈ [14, 43] LR∈ [1, 4] ∆v12 ≤
500 km s−1

MV < −20− 1.1z z = 0.5,

z = 0.8

[16] ∈ [14, 43] FR∈ [1, 4] same as

Newman+12

Mstellar ≥ 1010.8M� ∈ [0, 3]

1.5 Discussion

Our extensive analysis of the full CANDELS sample and a well-defined selec-

tion of SDSS galaxies in the preceding sections provides a new baseline for the evolving

frequency of massive galaxies with close major companions (and of major mergers by ex-

trapolation) spanning epochs from the start of cosmic high noon to the present-day. In this

section, we present a comprehensive comparison of our measurements to those from pre-

vious studies by taking advantage of our analysis of varying the companion selection cri-

teria from § 1.4. We derive the empirical major merger rates based on a constant observ-

ability timescale and find significant variation in the rates depending on our stellar-mass
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ratio or H-band flux-ratio choice. We discuss plausible reasons for these variations by re-

computing merger rates based on theoretically-motivated, redshift-dependent timescale

prescriptions. Finally, we describe the need for detailed calibrations of the complex and

presumably redshift-dependent conversion factors required to translate from fractions to

rates, which is key to improve major merger history constraints.

1.5.1 Comparison to previous empirical close-pair-based studies

We compare our CANDELS+SDSS major companion fractions from to the re-

sults from previous stellar-mass and flux selected, empirical close-pair-based studies tab-

ulated in Table 5. We note that some studies quote fraction of pairs (fpair), which is the

fraction of close-pair systems among a desired massive galaxy sample of interest. This

is different from the companion fraction fmc. To correctly compare to previous studies

which used a fpair definition, we derive a simple conversion between the two definitions

by separately computing the ratio of fmc/fpair = 1.5, which is constant for the CANDELS

and SDSS samples at 0 < z < 1.5. Overall, our fmc(z) results are in good agreement with

previous studies when we properly convert the published pair fractions into companion

fractions. We separate our comparisons into stellar mass-ratio and flux-ratio based studies

in Figure 10. For each set of comparisons, we further split them into matching 5− 30 kpc

and 14−43 kpc projected separation selections. We discuss each comparison with respect

to any differences in the details of the redshift proximity selection.
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1.5.1.1 Stellar Mass-Ratio Selected Studies

We use the 5 − 30 kpc and 14 − 43 kpc fractions from § 1.4.1 (Figure 6) and plot

them in Figure 10 alongside previous studies that employed a similar projected separation

criterion and 4:1 stellar mass-ratio selection (1 ≤ M1/M2 ≤ 4). We start our discussion

by comparing to the studies that employed a Rproj = 5 − 30 kpc criterion. [15] stud-

ied major close pairs among galaxies more massive than 1010M� over the redshift range

0.5 < z < 2.5, and found an un-evolving fraction (∼ 10%). We agree with these esti-

mates within their quoted uncertainties; however, we acknowledge that the consistency

at 2 < z < 2.5 is because of their large error bar (> 50%). We also note that [15] used

a 2σz overlap as their redshift proximity, which is less restrictive than our modified [63]

redshift proximity criteria in Equation 1.8. Based on our analysis in § 1.4.2, this implies

that the [15] fractions may be over-estimated. Next, we compare to B09 who studied

5 − 30 kpc pairs among log10(Mstellar/M�) ≥ 10 galaxies between 0.4 < z < 1.4 us-

ing a redshift proximity that we have adopted as our fiducial choice. It is important to

note that B09 elected a 4:1 Ks-band flux ratio as their fiducial major companion selection

criterion. However, in their analysis, they found that 80% of their flux-ration-selected

companions also met < 4 : 1 stellar-mass ratio major companion selection. To appro-

priately compare to B09 pair fractions, we include a 0.8 multiplicative factor to covert

them to mass-ratio-based fmc. We find that their estimates are on average smaller than

our fractions, marginally agreeing at 0.7 < z < 1.4, and disagreeing at 0.4 < z < 0.7.

We now compare to the most recent study by [17], who analyzed close pairs

(Rproj = 5− 30 kpc) among a sample of log10(Mstellar/M�) ≥ 10 galaxies at 0 < z < 2
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from the UDS, VIDEO, GAMA, and COSMOS datasets. In Figure 10, we show all their

pair fractions, except for an upper-limit of 17.5% from COSMOS at 1.5 < z < 2 and

convert them to fmc. We find excellent agreement between GAMA-survey-based, spec-

troscopically derived fraction at 0 < z < 0.2 and our SDSS-based fraction at z ∼ 0. For

the same GAMA sample, they also computed the fractions using photometric redshifts

and found an average of∼ 5% at 0 < z < 0.2. We separately computed the SDSS fmc us-

ing B09 redshift proximity and matching their Rproj = 5− 30 kpc selection, and find that

our fraction fmc(0) ∼ 2.8% is ∼ 1.8 times smaller and marginally disagrees within their

quoted uncertainties. At 0.2 < z < 1, we find that Mundy17 fractions are in good agree-

ment with our fmc(z), except for their COSMOS-survey-based value at 0.2 < z < 0.5,

which is marginally smaller than our fmc. At 1 < z < 1.5, their fraction (∼ 15%) is in

disagreement with our findings, while their upper-limits are consistent with our results.

Overall, we demonstrate good agreement with [17].

Now, we discuss our comparison to the studies that employed a Rproj = 14 −

43 kpc separation selection. We start with [67], who studied major (<4:1 stellar-mass

ratio) close pairs among log10(Mstellar/M�) & 10.5 galaxies at 0.4 < z < 2, and found

a diminishing redshift evolution of the fractions. We find disagreement with the [67]

fractions at 0.4 < z < 1.2, where our fmc are higher by 25%, however, we show good

agreement within their diminished fractions at 1.2 < z < 2. We note that our sample is

almost two times larger than their galaxy sample, and a likely reason for this discrepancy

is that their uncertainties may have been under-estimated. Next, we compare to [121],

who quantified major companion fraction among log10(Mstellar/M�) & 10.7 galaxies,
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and found that fmc is flat (at ∼ 10%) at 0.4 < z < 2. We find good agreement with their

findings within the quoted uncertainties and in that redshift range.

Finally, we compare to a recent study by [16] who study a massive galaxy sample

of log10(Mstellar/M�) & 10.8 galaxies to constrain major companion fractions at 0 <

z < 3 using two separate datasets, namely 3D-HST and UltraVISTA. Firstly, we find that

our fmc(z) values are in excellent agreement with the [16] 3D-HST estimates over their

redshift range, which is not surprising as 3D-HST covers 75% of the CANDELS fields.

We find that the [16] UltraVISTA fractions follow an increasing trend that is qualitatively

similar to our fmc(z) at 0 < z < 1, however, we notice that the former fractions are

quantitatively smaller than the latter. At z > 1, we find that the UltraVISTA fractions

are in good agreement with our results, except at z ∼ 2.25, where our fmc is two times

smaller. Overall, we note that our companion fractions are in good agreement with [16]

estimates. Moreover, [16] applied a parabolic fitting function to their UltraVISTA major

companion fractions and report that their redshift evolution may be peaking around z ∼

1 − 1.5, in contrast to our fractions that peak around 0.5 < z < 1 and diminish up

to z = 3. This may be a consequence of more-massive galaxies experiencing growth

earlier in cosmic-time than the less-massive population, which is often referred to as the

galaxy-downsizing phenomenon. In summary, we conclude that our stellar-mass ratio

based major companion fractions fmc(z) are in good agreement with previous empirical

close-pair-based estimates, once they are closely-matched in selection criteria.
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1.5.1.2 Flux Ratio Selected Studies

We separately derive the major companion fractions forRproj = 5−30 and 14−43

kpc selections using H-band (r-band) flux ratio selection for CANDLES (SDSS) and

plot them in Figure 10 along side some published studies that used a similar projected

separation and < 4 : 1 flux (luminosity) ratio selection (see Table 5). First, we discuss

the comparison to those studies that employ Rproj = 5 − 30 kpc. We start with [5], who

studied close pairs using a V -band luminosity-limited galaxy sample at 0.2 ≤ z ≤ 1.2,

and found that the companion fraction evolves as fmc ∝ (1 + z)3.1. We find that [5]

estimates are ∼ 2 times smaller than our results at 0.5 < z < 1, however, they start to

converge at z < 0.5 and z > 1, and agree with our fmc ∼ 10% at z = 1.2. We note that [5]

uses a smaller separation annulus of Rproj = 5− 20 kpc, and in addition they also apply a

random chance pairing correction. Based on our analysis from § ??, we note [5] fractions

may be systematically smaller, and most plausibly are causing the observed discrepancy

at 0.5 < z < 1.0.

We now compare to B09, and remind our reader that they used a 4:1 flux-ratio as

their fiducial major companion criterion. We find good agreement with the [6] estimates

at 0.7 < z < 1.4, but find marginal disagreement at 0.4 < z < 0.7. Next, we compare

to [63], who analyzed close pairs among log10(Mstellar/M�) ≥ 11 galaxies using 4:1 H-

band flux-ratio criterion at 0 < z < 3, and found fairly high fractions up to z = 3. We find

good agreement with their fractions over the full redshift range, however, we acknowledge

that a proper comparison with our highest-redshift bin results is not possible owing to their

large uncertainty.
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Finally, we compare to [14,122], who analyzed the incidence of close companions

which satisfy a 4 : 1 H-band flux ratio selection among a GOODS NICMOS survey

sample of log10(Mstellar/M� > 11) galaxies at 1.7 < z < 3. [14] reports that the fraction

of galaxies hosting a nearby major companion evolves steeply with redshift as f ∝ (1 +

z)3 (dashed line in Figure 10b), reaching up to f = 0.19 ± 0.07 (1.7 < z < 2.3) and

f = 0.40 ± 0.1 (2.3 < z < 3), with a total fraction of f = 0.29 ± 0.06. While we find

consistent agreement at 1.7 < z < 2.3, we note that their fractions are a factor of two

higher at 2.5 < z < 3. Similarly, we also find that their total fraction, which spans over

1.7 < z < 3, is also larger by a factor of two when compared to our total fmc at 2 < z < 3.

Although we qualitatively agree with the strongly increasing redshift evolution of [14],

we note that our fmc(z) trend is shallower with a simple power-law slope of m ∼ 1

(see Figure 8). We argue that the steeply increasing fraction evolution by [14] may be a

consequence of the increased contamination from minor companions by their flux-ratio

selection (see § 1.4.3). Also, significant field-to-field variance due to their small sample

size and the use of a relatively less restrictive line-of-sight contamination correction may

be contributing towards the observed (factor of two) disagreement to our fractions.

We now focus our comparisons to studies that employ a Rproj = 14 − 43 kpc

selection (see Table 5). We start our comparison with [62], who studied close pairs among

luminosity-limited sample of galaxies at 0.12 < z < 1.1. We find that our fractions

are only marginally consistent with their results at z < 0.5 and disagree with them at

0.5 < z < 1 as our fractions are ∼ 2 times larger than their values. We note that [62]

used a stringent spectroscopic redshift proximity criterion of ∆v12 ≤ 500 km s−1, which
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may be the reason for their smaller fractions and the observed discrepancy. Nevertheless,

we notice that [62] fractions start to converge with our estimates at z > 1, which may be

due to the rising minor-companion contamination by flux-ratio selection leading to larger

fractions. We now compare to [124], who study a spectroscopically confirmed sample of

close pairs among B-band luminosity-limited galaxy sample to quantify pair fractions at

two redshifts z = 0.5 and z = 0.8. We find that our fmc estimate at z = 0.5 is marginally

higher than their fraction, but is in good agreement at z = 0.8. Also, we qualitatively

agree with their increasing redshift evolutionary trend of the fractions at 0.5 < z < 0.8.

Finally, we compare to [16], who also derived 4:1 H-band flux-ratio based com-

panion fractions for log10(Mstellar/M�) & 10.8 galaxies spanning 0.1 < z < 3 among

the 3D-HST and UltraVISTA datasets. We find that our fmc(z) values trace very closely

with the [16] 3D-HST estimates and are in excellent agreement within the uncertain-

ties. We also find that [16] UltraVISTA estimates qualitatively agree with the increasing

redshift evolution of our flux-ratio selected fmc(z). However, we notice that their esti-

mates at z < 0.5 are marginally smaller than our fmc extrapolation between z ∼ 0 and

0.5 < z < 1. In summary, we conclude that our H-band flux-ratio based fmc(z) are in

good agreement with previous empirical studies once we match closely the choices of

companion selection criteria.

1.5.2 Major Merger Rates

As outlined in the Introduction, empirical merger rates provide a fundamentally

crucial measure of the importance of major merging in the evolution of massive galaxies.
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Figure 10: Comparison of major companion fractions from CANDELS+SDSS to those
from previous studies that employed 4:1 stellar-mass ratio (a) and 4:1 flux-ratio (b) selec-
tions. In both panels, we outline the fmc measurements data points as rectangles where
their height represents the 95% binomial confidence limits per redshift bin (width of the
rectangles). The data-points of previous empirical studies are given in the panel keys
(see Table 5). We compare fractions based on different projected separation criteria as
follows: 5 − 30 kpc (solid-red line; open-red markers), and 14 − 43 kpc (blue-dashed
line, filled-blue markers). We find our major companion fraction estimates are in good
agreement with previous empirical constraints when the companion selection criteria are
closely matched. We off-set multiple fields from [17] by a small amount, and show the
upper-limits in filled markers with bold arrow for clarity.

Our new major companion fractions from CANDELS+SDSS allow us to place clearly-

defined new constraints on the evolution of major merger rates between z = 3 and z = 0.

Here, we elect to focus on a straightforward comparison of merger rates derived from

our major companion fractions with the largest systematic differences: stellar mass-ratio

versus flux-ratio selection. Then we compare our merger rates to several recent empirical

studies and cosmologically-motivated predictions that employ similar companion selec-

tion criteria as we do.

The major merger rate based on close-companion (pair) statistics is defined as the
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number of major galaxy-galaxy merger events per unit time per selected galaxy (see [16]):

Rmerg,pair =
Cmerg,pair × fmc

Tobs,pair

[Gyr−1] , (1.9)

where Tobs,pair is the average observability timescale during which a galaxy-galaxy pair

satisfies a given selection criterion, and the multiplicative factor Cmerg,pair attempts to ac-

count for the fact that not all such companions will merge within the Tobs,pair interval [18].

It is clear that the Cmerg,pair and Tobs,pair factors are crucial assumptions involved in con-

verting observed companion fractions into merger rates. As such, these factors are a major

source of systematic uncertainty in merger rate calculations. A few analyses of theoreti-

cal simulations have provided fairly broad guidelines for these key assumptions. [13] find

that different merger timescale assumptions can induce up to a factor of 2 uncertainty

in the merger rates. Others have attempted to constrain the fraction-to-rate conversion

factors and quote limits of Cmerg,pair = 0.4 to 1 [125, 126]. Despite the need for im-

proved constraints on these key merger rate factors, attempts to calibrate Cmerg,pair and

Tobs,pair in detail with regard to changing companion selection criteria and as a function

of fundamental galaxy properties such as redshift and stellar mass, are lacking.

In practice, previous empirical studies have used merger rate factors that span a

wide range. For example, some studies have adopted Cmerg,pair = 1 for simplicity [16],

while others have employed an intermediate value of 0.6 [18] based on limits from sim-

ulations. Similarly, some empirical studies adopt their Tobs,pair values based on analyti-

cal fitting function provided by [125], while others adopt values provided by [127] that

range from 0.3 to 2 Gyr depending on the close-companion selection criteria. For the

major merger rate calculations below, we make a simple assumption that these factors
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are constant over all redshifts and masses we probe. We adopt Cmerg,pair = 0.6 and

Tobs,pair = 0.65 Gyr, which is suitable for our fiducial Rproj = 5− 50 kpc criterion [127].

Exploring the detailed impact of these assumptions is beyond the scope of this paper.

However, in § 1.5.3.2, we test two theoretically motivated redshift-dependent timescale

prescriptions to re-derive the merger rates and discuss their implications.

In Figure 11, we show the major merger rate evolution during 0 < z < 3, which

we derive from CANDELS+SDSS major companion fractions for stellar mass-ratio (MR)

and flux-ratio (FR) selections with matched fiducial projected separation and B09 redshift

proximity criteria. Holding aside the factor-of-two systematic uncertainty contribution

from Tobs,pair to merger rate calculations, we find both the MR and FR-based merger

rates evolutionary trends mimic their respective fmc(z) trends discussed in § ??, which is

expected given our simplistic fraction-to-merger-rate conversion factors. We notice that

both the MR and FR selections yield consistent major merger rates at z < 1, where they

increase strongly from ∼ 0.05 (z ∼ 0) to ∼ 0.15 Gyr−1 (0.5 < z < 1). At z > 1, the

different selections have divergent merger rates. The MR-based merger rates decline with

redshift to z = 3, indicating a turnover at z ∼ 1. In contrast, the inflated companion

fractions owing to contamination by minor companions, the flux-ratio selection yields

1.5−4.5 times larger rates between 1 . 3 with an increasing power-law trendRmerg,pair ∝

(1 + z)1.

Next, we compare our empirical MR-based merger rates to previous empirical es-

timates (Figure 11). For z ≤ 1.5, we compare to [18] who compile close-pair fractions

from several observational stellar-mass and luminosity-selected studies (magenta line)
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and found strongly increasing major merger rate evolution with redshiftR ∝ (1+z)1.7−2.1,

which qualitatively agrees with both our MR and FR rate evolutions over this redshift

range. The [18] merger rate evolutions have systematically smaller normalization than

ours because their compilation includes close-pair-based fractions that may be systemati-

cally smaller than our fmc due to the use of different selection criteria. For example [5,62]

use a stringent proximity selections (see § 1.5.1.2, and Table 5) and [60] uses a stringent

major companion selection criterion 9. For merger rates at 0.5 < z < 3, we compare our

fiducial MR-based merger rate to a recent study of close pairs by [16]. We find that our

individual Rmerg,pair data points agree well with the man16 results (blue) within the mea-

surement uncertainties at these redshifts. Yet, our standalone rising-diminishing merger

rate evolution disagrees with the [16] flat trend. If we were to extend their rates to z ∼ 0,

we would disagree with them; however, we note that [16] do not attempt to anchor to a

low-redshift (for their 3D-HST sample), as such, claim a flat trend with redshift in agree-

ment with [17]. Recently, [17] in conjunction with Duncan et al., in prep find that the [27]

semi-analytic model mock light-cones accurately reproduce a flat pair-fraction trend that

is consistent with the recent findings by [16, 128], and the results of this work. Em-

ploying an un-evolving close-pair observability timescale assumption, [17] reports a flat

major merger rate evolution. Our fiducial MR-selected merger rates shown in Figure 11

agree with the [17] result, which is not surprising owing to the assumption of constant

observability timescale.

Here, we discuss our comparison to theoretical major merger predictions. Since

9 [60] selects major companions using a 2:1 luminosity ratio as opposed to our 4:1 criterion from a
luminosity-limited galaxy sample at z ∼ 0.
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these are based on stellar-mass ratios, we refrain from comparing them to our FR-based

rates. [13] provides a comprehensive analysis of major galaxy-galaxy merging using

ΛCDM motivated simulation and Semi-Analytic Modeling to derive major merger rate

predictions, and quantified systematic error contribution from various theoretical model-

dependent assumptions. We find that the [13] major merger rate evolution of massive

(log10(Mstellar/M�) ≥ 10.3) galaxies (R = 0.04(1 + z)1.35; green line in Figure 11),

within a factor of two uncertainty, agrees qualitatively and quantitatively with our MR-

based rates up to z < 1.5. At z > 1.5, our fiducial MR-selected, diminishing merger rate

trend disagrees with the [13] predictions. We also compare our merger rates to a recent

theoretical prediction by [19] from the Illustris numerical hydrodynamic simulation [129].

We note that their log10(Mstellar/M�) ≥ 10.3 galaxy merger rates (black line in Figure 11)

follow an even stronger increasing redshift dependence (R ∝ (1 + z)2.4−2.8) than the [13]

predictions, which also agrees qualitatively with our fmc(z) trend at z < 1.5. However,

at z < 1.5, we note that the [130] predictions are smaller than our empirical estimates.

Similar to the conclusion from the [13] comparison, our fiducial MR-based merger rates

disagree with predictions from [130] at z > 1.5. We present further discussion on the

plausible reason for the observed discrepancy of flat vs. rising merger rate evolution in

§ 1.5.3.2.

Being the primary driver for galaxy-galaxy merging, halo-halo merger rates serve

as a ceiling for both empirical measurements and theoretical galaxy merging predictions,

and their qualitative trend is expected to mimic the galaxy merger rates closely. We
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find that our empirical MR-selected merger rate trend broadly agrees with the analyti-

cal merger rates of Mhalo ∼ 1012M� dark-matter halos (R ∝ (1 + z)2.5; brown line in

Figure 11) predicted by [24–26] (also see [131]) at z ≤ 1 but starts to deviate significantly

at z > 1. Since the translation from a halo-halo merger rate to a galaxy-galaxy merger

rate depends on the redshift-dependent mapping of galaxies onto their respective dark-

matter halos (halo-occupation statistics), the galaxy merger rates are expected to follow

a shallower redshift evolution than the ones set by the halo merger rates (for discussion,

see [13]). Although different assumptions of halo-occupation models may contribute up to

a factor of two uncertainty in the theoretically predicted galaxy merger rates (e.g., [132]),

they all hint towards a rising incidence with increasing redshift. As such, a deviation

of more than factor of five (e.g., see redshift bin 2 < z < 3 in Figure 11) between the

constant timescale-based fiducial MR-selected empirical rates (diminishing) and the an-

alytical halo merger rate evolution (rising; R ∝ (1 + z)2.5) is puzzling. Based on this

analysis, we conclude that a straight-forward MR-based estimation of major merger rates

using a constant fraction-to-merger-rate observability timescale (Tobs,pair = 0.65 Gyr) are

in disagreement with the theoretical predictions at z > 1.5. We discuss the implications

of these conclusions in § 1.5.3.

1.5.3 Implications of the Disagreement between Simplistic Empirical Merger Rates

and Model Predictions

So far, we have demonstrated that major merger rates based on a rather straight-

forward MR-selection start to disagree with theoretical predictions of major galaxy-galaxy
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Figure 11: Comparison of CANDELS+SDSS galaxy-galaxy major merger rates
Rmerg,pair(z) (number of mergers per galaxy per Gyr) for massive (Mstellar ≥ 2×1010M�)
galaxies at 0 < z < 3, to rates from previous empirical studies and theoretical model
predictions. We show the Rmerg,pair(z) computed using major companion fractions
(fmc) based on fiducial projected separation (5 − 50 kpc) and redshift proximity (CAN-
DELS: Equation 1.1; SDSS: ∆v12 ≤ 500 km s−1) split into stellar mass-ratio (filled
points; solid line) and flux ratio (open points; dashed line) for CANDELS (circles) and
SDSS (square). We employ simplistic assumptions for fraction-to-rate conversion fac-
tors Tobs,pair = 0.65 Gyr and Cmerg,pair = 0.6, and show the variation of Rmerg,pair(z)
for Cmerg,pair = 0.4 to 0.8 in red-shading. The error-bars on the data points indicate
their 95% binomial confidence limits, solely based on the observed number counts. The
solid (dashed) magenta line is the empirical merger rate evolution from [18] for stellar-
mass (luminosity) limited selections, the empirical merger rate from [16] is shown in
solid blue line along with its blue shaded uncertainty. We compare to theoretical galaxy-
galaxy major merger rate predictions of Mstellar ≥ 2 × 1010M� galaxies by [13] (solid
green lines), [130] (solid black), and to the analytical halo major merger rate prediction of
Mhalo ∼ 1012M� dark-matter halos by [24–26] (R ∝ (1 + z)2.5; dashed brown line). We
strongly advise against trusting flux-ratio-based galaxy merger rates despite their agree-
ment with the theoretical models, owing to the notable contamination from non-major
mergers (see § 1.4.3). Our fiducial mass-ratio based empirical major merger rates show
broad agreement up to z ∼ 1.5, but demonstrate a strong tension at z > 2 when compared
to previous empirical and theoretical constraints.
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merging at z & 1.5. This indicates there may be one or many redshift-dependent ef-

fects plaguing the key variables (Cmerg,pair, fmc, and Tobs,pair) in Equation 1.9, causing

the observed merger rates to disagree with simulations. Here, we first investigate for

plausible systematic under-estimation of fmc values at z & 1.5 as a reason for the ob-

served discrepancy by testing if we are missing close companions by not choosing the full

zphot PDF when applying the B09 redshift proximity. Then, we discuss another possibil-

ity that the simplistic, constant value assumptions of Tobs,pair may be incorrect, and test

two theoretically-motivated, redshift-dependent Tobs,pair prescriptions to re-derive merger

rates. We also elaborate on the remnant formation times, which is a key difference be-

tween the merger rates measured in theoretical simulations and empirically calculated

close-pair-based rates, and comment on how it may be affecting the data-theory compari-

son.

1.5.3.1 Are We Missing Companions by Not Accounting for the Full zphot PDFs?

One plausible reason for the z > 2 data-theory discrepancy may be that the

adopted B09 redshift proximity criterion (Eq. 1.1) is missing plausible physical close-

pair systems because we are using only the 1σ photometric uncertainties and not the full

zphot PDF. To test if this is the case we carry out a simple test, where we start by simpli-

fying Equation 1.1 as ξ = ∆z12/
√
σ2

z,1 + σ2
z,2; therefore, our fiducial criterion equates to

ξ ≤ 1. The distribution of ξ values for physical close-pair systems is Gaussian, assuming

σz values are Gaussian. Therefore, using ξ ≤ 1 is equivalent to selecting 68% of the
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full ξ distribution. Ideally, if one assumes the contribution from non-physical pairs (here-

after called as the background) per ξ bin is negligible, as much as 32% of the close pairs

(thereby companions) can be missed when using ξ ≤ 1. For this exercise, we allow for a

non-zero background to properly estimate the missing pairs at five redshift bins between

0.5 < z < 3.0.

We begin with the cumulative distribution function (CDF) of ξ for all the close-

pair systems selected using our fiducial Rproj = 5 − 50 kpc projected separation crite-

rion. To avoid errors from small number statistics, we do not limit close-pair systems

with a stellar-mass-ratio selection. However, we require that both the host and com-

panion galaxies to be brighter than H = 25 mag to exclude large ξ values from affect-

ing the statistics. We now model CDF with a Gaussian integral function in conjunction

with a constant background contribution, following the fitting formula: N(ξ ≤ c) =

A/
√

2π
∫ c

0
exp−x

2/2 dx + Bc. Here, N(ξ ≤ c) is the number of close-pair systems that

satisfy a cutoff significance (c) as ξ ≤ c, and the variables A and B are the contributions

from plausible physical close pairs and the background, respectively. For demonstrative

purposes, we present the fits to the CDF and their best-fit parameter values of A and B

in Figure 14 for two redshift bins between 1.5 < z < 3. At each redshift bin, we de-

fine the ratio (A/2)/N(ξ ≤ 1) as the multiplicative correction factor to our fiducial fmc

that corrects for the missing close-pair systems due to Method I. When the background

is negligible (B ∼ 0), the correction factor is ∼ 1.44. However, if B is significant, then

the correction factor may become less than unity. In Figure 15, we plot the corrected fmc

alongside the fiducial fractions. We note that fractional change in the major companion
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fraction after applying the correction factor is less than 5% at 0.5 < z < 2. However, at

z > 2 we find the relative contribution from the background starts to dominate the Gaus-

sian contribution and therefore causes the fiducial fmc to decrease by more than 10%.

Despite these changes, we note that the overall corrected fmc(z) values do not signifi-

cantly deviate from the fiducial fmc(z) values. Therefore, we conclude that we are not

missing close pairs (thereby companions), by using 68% photometric-redshift errors for

our fiducial redshift proximity criteria.

1.5.3.2 Evolving Observability Timescale and Remnant Formation Times

It is evident by now that the close-pair observability timescale (Tobs,pair) is a key

parameter that dictates the measurement of merger rates. Yet, a wide range of values can

be found in the literature (see § 1.5.2), often assumed to be constant over a wide range

of redshifts. Therefore, with the growing evidence [16, 17] for flat or possibly dimin-

ishing close-pair-based fractions at 1 < z < 3, it is expected that a constant timescale

assumption-based merger rates to disagree with the continually rising merger-rate trends

from the theoretical predictions. A possible implication of this disagreement is that the

timescale may be evolving with redshift, such that an ongoing merger can be observed

as a close pair for a shorter period at earlier cosmic times. This may not be surprising

as simulation-based merging-timescale calibrations [125, 126], motivated by dynamical

friction time for a satellite DM-halo to merge with the parent, are complex functions

that depend on key merger properties such as the mass ratio, galaxy mass, Rproj, and
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Figure 12: Comparing the redshift evolution of major merger rate of Mstellar ≥ 2 ×
1010M� galaxies based on our fiducial close-pair timescale assumption Tobs,pair =
0.65 Gyr copied from Figure 11 (solid red line, shading) to rates from different timescale
choices. We show the rates based on [126] scaling relation Tobs,pair ∝ H(z)−1/3 in red
dotted line, and [128] relation Tobs,pair ∝ (1 + z)−2 in red dot-dashed line (starting at
z0 = 1). We also plot the theoretical merger rate predictions shown in Figure 11.
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H(z)−1/3 (H(z) = H0E(z); H0 is the present-day Hubble constant; E(z) is the evo-

lution of H0 as a function of redshift). Moreover, the dynamical timescale based on

simple cosmological arguments is also redshift dependent, and can be approximated as

T ∝ (1 + z)−1.5 [128]. However, as per the discussion in [128], any processes that can

act faster than the dynamical timescale and may impact the variables of close companion

selection criteria, which in turn can change the Tobs,pair. In this context, the galaxies are

undergoing a rapid transformation concerning their stellar-mass assembly, owing to rapid

ongoing star-formation [133] at z > 1. [128] found that this rapid mass assembly can

shorten the close-pair observability timescale towards earlier redshifts, which evolves as

T ∝ (1 + z)−2 at z > 1. Moreover, they measured the close-pair fractions within the

Illustris simulation [129] and inferred that the timescale should evolve as T ∝ (1 + z)−2

to match the intrinsic merger rates trend from [130].

In Figure 12, we re-compute the merger rates for the fiducial mass-ratio based

companion fractions by adopting the two evolving timescale assumptions Tobs,pair ∝

H(z)−1/3 and Tobs,pair ∝ (1 + z)−2 from [126, 128], respectively. Since [128] asserts

that the close-pair observability is mainly dynamical time dominated at z < 1, which

results in an un-evolving timescale value, we choose to evolve the Tobs,pair only at z > 1

when re-computing the merger rates. We find that the major merger rates based on [126]

evolving timescale still does not sufficiently agree with the theoretical predictions. On the

other hand, when we use simulation-tuned snyder17 prescription of Tobs,pair ∝ (1 + z)−2,

we find that the merger rates agree closely to model predictions of [13, 130], and closely

mimic the [25, 26] halo-halo merger rates. The fact that our evolving timescale based
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empirical merger rates agree with the theoretical predictions from [130] implies a very

good agreement between our fmc(z) and [128] fractions. Additionally, we argue that

the disagreement between [17, 27] flat merger rate evolution and the [13, 130] theoretical

predictions (see § 5.2) may be due to the un-evolving close-pair observability timescale

assumption. These results imply that an evolving timescale assumption may be more ap-

propriate when measuring merger rates at z > 1, and it may be necessary to explain the

discrepancy between a constant timescale based rates and theoretical model predictions.

Additionally, we also stress the difference in the measured quantities between the

simulations and empirical close-pair-based studies. In theoretical simulations, a merger is

counted towards the intrinsic merger rate when the merging process is concluded, when

the remnant of the progenitor galaxies is formed, and therefore it is an instantaneous mea-

sure. On the other hand, the close-pair method probes future merging systems, within

some time-frame after observing them. [128] found that the remnant formation time also

evolves as (1 + z)−2, which is defined as the time prior to the formation of the remnant,

when the merger is observed as a close pair. We follow Section 4.1 in [128] and com-

pute instantaneous remnant formation rates at z > 1, which is conceptually similar to the

instantaneous merger rates quoted by the simulations. We find that remnant formation

rate follows an increasing redshift trend, which is in qualitative agreement with finding

by [128]. We acknowledge that a comprehensive analysis of the empirical and theoretical

measurement methods is necessary to make quantitative data-theory comparisons confi-

dently. However, it is beyond the scope of the current study to fully address them. We

reserve further discussions on this analysis to an accompanying work (Chapter 3).
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1.5.3.3 Checking Consistency of CANDELS team Redshifts to Single Participant

Estimates

In § 1.2.3.2, we have discussed adopting the σz values based on single participant

P (z) as the photometric-redshift errors of zphot to be able to apply the redshift proximity

criterion successfully. To choose an appropriate participant for this analysis, we test the

consistency of redshift estimates from six participants to the CANDELS team zphot values

for the sample of log10(Mstellar/M� ≥ 9.7) galaxies. We find the redshifts based on S.

Wuyts P (z)s agree best with the CANDELS team zphot and available zspec values, where

the median (of the CANDELS five fields) outlier fraction10 of 1.5% and 3%, respectively.

This agreement is key to our analysis, and thus we choose the S. Wuyts σz values centered

on their redshifts to estimate the σz for the CANDELS team zphot values. For simplicity,

in Figure 13, we only show the S. Wuyts redshift estimates vs. team zphot.

1.5.4 Future Work

So far, we have discussed plausible evolutionary observability timescale prescrip-

tions that may be necessary when deriving merger rates at z > 1. While this may be true,

Cmerg,pair is another key parameter in Equation 1.9 which may also depend on the com-

panion selection criteria. In fact, recent studies (e.g., [109,134]) find that Cmerg,pair varies

as a function of Rproj, redshift, and local over-density (often represented by δ). Although,

a redshift-dependent timescale prescription sufficiently brings empirical and theoretical

merger rates to agreement, it is possible that Tobs,pair may be a simultaneous function of

10It is defined as the fraction of log10(Mstellar/M� ≥ 9.7) galaxies that are outliers. We consider a
galaxy to be an outlier if (zparticipant − zphot)/(1 + zphot) > 0.1
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Figure 13: Comparison between the single participant (S. Wuyts) P (z)-based redshifts
(zwuyts) to the CANDELS team zphot values for log10Mstellar/M� ≥ 9.7 galaxies (black
squares) and those with spectroscopic redshifts (red squares) for five CANDELS fields.
In each panel, the top portion of the figure compares both redshift estimates with one-to-
one correspondence (red) line , and the bottom portion visualizes the redshift normalized
scatter defined as ζ = (zwuyts − zphot)/(1 + zphot) centered on zero. We find that the S.
Wuyts redshift estimates best match to the CANDELS team values with a median outlier
fraction of 1.5% and 3% for zphot and zspec samples, respectively (see text in Appendix B
for details).
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several key close-pair variables. As such, these conversion factors may be better repre-

sented asC ′merg,pair = Cmerg,pair(z,Rproj, δ), T ′obs,pair = Tobs,pair(z,Rproj,M1/M2,Mstellar, δ),

where C ′merg,pair and T ′obs,pair are the evolving prescriptions of Cpair and Tobs,pair, re-

spectively. To fully quantify the interplay among the companion selection criteria and

the fraction-to-merger-rate conversions, it is important to derive detailed calibrations for

C ′merg,pair and T ′obs,pair using large-scale cosmological simulations.

Furthermore, it has been speculated that stellar-mass ratio may be a poor repre-

senter of ongoing “significant” mergers, owing to the dominant cold-gas contribution to

the total baryonic mass (gas+stellar mass) of the galaxy at z ∼ 2 − 4 [16, 18]. If this

is true, a galaxy merger with M1/M2 > 4 may in fact be significant if the total baryonic

(stellar+cold gas) mass ratio of the galaxies is considered (M1,bar/M2,bar ≤ 4). This may

cause for many of the mergers that can be significant contributors to several aspects of

galaxy evolution to be missed because of the selection bias. Empirical confirmation of

this speculated selection bias deserves a dedicated analysis of its own.

Semi-Analytic Models (SAMs) are showing a great promise as the testing grounds

for many galaxy evolution related questions (e.g., [59, 135]). Three studies, [136–138]

have independently developed SAMs based on Bolshoi-Plank N-body simulation [139]

and produced mock datasets that mimic observational data in the five CANDELS fields.

Additionally, multiple realizations of each CANDELS mock field are also made avail-

able. We will take advantage of the intrinsic merger history information and apply close

pair analysis on these mock datasets to derive the necessary calibrations. With the help of

multiple realizations per field, we will be able to quantify the impact of sample variance
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Figure 14: The cumulative distribution functions (CDFs) of ξ = ∆z12/
√
σ2
z,1 + σ2

z,2

(from Eq. 1.1) for projected pairs satisfying our fiducial 5 kpc ≤ Rproj ≤ 50 kpc selection
(blue dashed, narrow line) as described in § 1.5.3.1 for two redshift bins: 1.5 < z < 2
(left) and 2.5 < z < 3 (right). In each redshift-bin panel, following the equation
N(ξ ≤ c) = A/

√
2π
∫ c

0
exp−x

2/2 dx + Bc, the best-fit curve to the CDF is shown in
narrow solid-red line. The break-down of the best-fit curve into Gaussian and background
contributions are shown in bold solid-black and bold-dashed lines, respectively, and we
print the best-fit values (A and B) in each panel.

towards close-pair statistics and merger rates. Also, by introducing realistic, CANDELS-

like random and systematic errors onto simulated zphot and Mstellar quantities, we will

carry out a comprehensive investigation of their impact on the measured merger rate evo-

lution. These calibrations and analyses will help fill the gaps in our understanding of the

merger rate measurements and will provide most up-to-date major merger rate constraints

with future state-of-the-art telescopes. We will discuss this in our Chapter 3.
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Figure 15: Comparing the redshift evolution of the fiducial major companion fraction
fmc(z) (filled circles; copied from Figure 5) to the fractions after correcting for full ξ =

|∆z12|/
√
σ2
z,1 + σ2

z,2 distribution usage (open circles; see § 1.5.3.1 for details) . For this
exercise, we anchor both CANDELS fmc(z) to the same fiducial selection based SDSS
data-point at z ∼ 0. The error-bars correspond to 95% binomial confidence limits on the
fmc.
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1.6 Conclusions

In this work we analyze a large sample of nearly 9800 massive (Mstellar ≥ 2 ×

1010M�) galaxies spanning 0 < z < 3 using the five Hubble Space Telescope CAN-

DELS fields (totaling ∼ 0.22 deg2) and volume-matched region of the SDSS surveys to

quantify the redshift evolution of major companion fraction fmc(z). We adopt a fidu-

cial selection criteria of projected separation (5 ≤ Rproj ≤ 50 kpc), redshift proximity

∆z12 ≤
√
σ2
z,1 + σ2

z,2 (CANDELS) and ∆v12 ≤ 500 km s−1 (SDSS), and stellar mass-

ratio major companion selection criterion 1 ≤M1/M2 ≤ 4 (MR).

Our key result is the MR-based major companion fraction increases from 6% (z ∼

0) to ∼ 16% (0.5 < z < 1) and decreases to ∼ 7% (2.5 < z < 3), indicating a turnover

at z ∼ 1 with power-law exponential (Equation 1.7) best-fit values α = 0.5 ± 0.2, m =

4.6± 0.9, and β = −2.3± 0.5. We perform comprehensive tests demonstrating that these

evolutionary trends are robust to changes in companion selection criteria except for H-

band flux ratio (FR) selection, where FR-based fmc(z) agree with MR-based fractions up

to z ∼ 1, but disagree at z > 1 as they increase steadily with redshift as fmc(z) ∝ (1+z)1

up to z = 3, confirming previous speculations [6, 120]. This disagreement is due to

increasing contamination of FR selection by minor companions (MR> 4) from 40% at

1 < z < 1.5 to over three-quarters at 2.5 < z < 3, confirming the result by [16] that

significantly different mass-to-light ratio properties of the companion galaxies at z > 1

may be the main cause for the contamination by minor companions.

We compute major merger rates for MR and FR-based fractions by using a con-

stant fraction-to-merger-rate conversion Cmerg,pair = 0.6 and a non-evolving close-pair
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observability timescale Tobs,pair = 0.65 Gyr [127]. We find that the MR-based rates fol-

low an increasing trend with redshift up to z ∼ 1.5, after which they decline up to z ∼ 3.

On the other hand, the FR-based rates follow a rising trend with redshift over our full

redshift range 0 < z < 3. We also re-compute the MR-based rates using two additional

theoretically-motivated, redshift dependent timescales: Tobs,pair ∝ H(z)−1/3 [126] and

Tobs,pair ∝ (1 + z)−2 [128].

If recent cosmologically-motivated merger simulations are representative of na-

ture, our results indicate the strong need for improved understanding of how MR and FR

estimates trace the galaxy mass (gas+stars) and halo mass ratios of merging systems as

a function of redshift. This analysis underscores the strong need for detailed calibrations

of these complex, presumably evolving prescriptions of Cmerg,pair and Tobs,pair to con-

strain the empirical major merger rates confidently. In addition, Cmerg,pair and Tobs,pair

may be evolving not only as a function of redshift, but also stellar-mass, companion se-

lection criteria (Rproj, M1/M2), and environment (local over-density), which we pursue

through a comprehensive analysis of close-pair statistics using mock datasets from the

Semi-Analytic Models in Chapter 3.

Finally, we recompute fmc(z) for different companion selections and we find good

agreement with previous empirical estimates when we match their companion selection

criteria. This confirms the report by [18] that part of the reason for the observed study-

to-study differences is due to close-pair selection mismatch. Additionally, our compre-

hensive analysis of the impact of different selection criteria and statistical corrections on

fmc(z) measurements yields the following results:
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• The redshift evolution of major companion fractions is qualitatively robust to changes

in projected separation criterion, with smaller Rproj resulting in lower fractions as

expected. However, the 5− 30 kpc selection (1/2 the area of 5− 50 kpc selection)

yields similar results to 14− 43 kpc criterion owing to the increased probability of

physical companions at smaller projected separations.

• Moreover, the redshift evolution of major companion fractions is qualitatively ro-

bust to changes in redshift proximity criterion. While the modified man2012 (§ 1.4.2)

proximity-based fractions are systematically ∼ 11 − 24% higher than the fiducial

values, the hybrid B09-based proximity (§ 1.4.2) yields 9 − 17% smaller major

companion fractions at 0.5 < z < 1.5 and nearly identical values at z > 1.5 when

compared to fiducial B09 (Equation 1.1) based fractions, owing to the sparsity of

spectroscopic-redshift coverage in CANDELS at these redshifts.

• We recompute the SDSS fmc(0) evolutionary anchor using the modified man2012

and B09 redshift proximity criteria applied to simulated zphot errors similar to those

for z > 0.5 CANDELS galaxies. We find the recomputed z ∼ 0 companion

fractions are statistically equivalent (∆f/ffid ∼ 3%) to the fiducial fmc(0) val-

ues, which demonstrates a high probability of small velocity separations (∆v12 ≤

500 km s−1) for companions in 5− 50 kpc projected pairs in the SDSS.

• When major companion fractions are corrected for random chance pairing, we find

negligible corrections (1%) for SDSS owing to our stringent ∆v12 ≤ 500 km s−1

proximity selection, and approximately equal corrections of ∼ 20% at 0.5 < z < 3
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for CANDELS. Importantly, our key results regarding the evolutionary trends of

major companion fractions are qualitatively the same with or without this statistical

correction.

• We also demonstrate that the B09 redshift proximity method does not exclude close-

pair systems owing to our use of a simple 68% confidence limit to represent the full

zphot PDF.

• Finally, we demonstrate that MR-selected merger rates using un-evolving prescrip-

tions of Cmerg,pair and Tobs,pair agree with the theoretical predictions at z < 1.5 but

strongly disagree at z & 1.5. If we re-compute our MR-based rates using an evolv-

ing, dynamical-time motivate timescale by jiang14, we find the merger rates are

still lower than and disagree with the theoretical merger rate predictions at z > 1.5.

However, if we use a redshift-dependent timescale Tobs,pair(z) ∝ (1 + z)−2 moti-

vated by [128], our MR-based rates agree with the theory at redshifts 0 < z < 3.
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CHAPTER 2

STUDYING THE PHYSICAL PROPERTIES OF TIDAL FEATURES I.

EXTRACTING MORPHOLOGICAL SUBSTRUCTURE IN CANDELS

OBSERVATIONS AND VELA SIMULATIONS
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DOI: 10.1093/mnras/stz872

Abstract

The role of major mergers in galaxy evolution remains a key open question. Ex-

isting empirical merger identification methods use non-parametric and subjective visual

classifications which can pose systematic challenges to constraining merger histories. As

a first step towards overcoming these challenges, we develop and share publicly a new

Python-based software tool that identifies and extracts the flux-wise and area-wise signif-

icant contiguous regions from the model-subtracted “residual” images produced by pop-

ular parametric light-profile fitting tools (e.g., GALFIT). Using Hubble Space Telescope

(HST) H-band single-Sérsic residual images of 17 CANDELS galaxies, we demonstrate

the tool’s ability to measure the surface brightness and improve the qualitative identi-

fication of a variety of common residual features (disk structures, spiral substructures,

plausible tidal features, and strong gravitational arcs). We test our method on synthetic

HST observations of a z ∼ 1.5 major merger from the VELA hydrodynamic simulations.

We extract H-band residual features corresponding to the birth, growth, and fading of tidal

78



features during different stages and viewing orientations at CANDELS depths and reso-

lution. We find that the extracted features at shallow depths have noisy visual appearance

and are susceptible to viewing angle effects. For a VELA z ∼ 3 major merger, we find

that James Webb Space Telescope NIRCam observations can probe high-redshift tidal

features with considerable advantage over existing HST capabilities. Further quantitative

analysis of plausible tidal features extracted with our new software hold promise for the

robust identification of hallmark merger signatures and corresponding improvements to

merger rate constraints.

2.1 Introduction

Merging of two similar-mass (stellar-mass ratio ≤ 4 : 1) galaxies is often referred

to in the literature as major merging. Identifying and quantifying the rate at which galax-

ies experience such mergers (merger rates) over cosmic history is a key step to empirically

quantify the role of major mergers in galaxy evolution. Conceptually, two broad observa-

tional approaches are employed to quantify major merging, namely: (1) close-pair meth-

ods and (2) morphological methods. These approaches yield redshift-evolutionary trends

that broadly agree with theoretical merger rate predictions that major mergers become

more frequent with increasing redshift out to z < 1.5. However, both methodologies

suffer from unique, yet analogous systematic biases from selection effects and uncertain

observability timescale assumptions, making it difficult to interpret the merger rates at

z > 1.5. [127] investigated the effects of such systematics in binary merger simulations

using non-parametric identifiers of plausible merging (e.g., Gini-M20 and CAS metrics).
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In this study, we attempt to help overcome the subjective identification of ‘hallmark’

merger signatures (e.g., tidal arms, tails, bridges, and extended fans) and to robustly quan-

tify their observability timescales – the largest sources of uncertainty towards merger rate

estimation in morphology-based methods – by developing a new public Python analy-

sis tool to extract and quantify the morphological substructure of galaxies. When applied

to both empirical and simulated data, this tool will facilitate future efforts to calibrate the

observables associated with galaxy merging signatures and lead to improved merger rate

constraints.

Substantial efforts have attempted to constrain major merger rates as a function

of cosmic time using empirical “merger fractions” based on close-pair statistics, typically

identifying galaxy-galaxy pairs in close physical proximity [17, 140] or by measuring

clustering statistics [7, 8]. This method leverages on the long-standing idea (supported

by numerical expectations) that galaxies in close proximity become gravitationally bound

and merge into a more-massive system [111, 125, 141–143]. Many previous close-pair-

based works broadly agree that merger rates grow more frequent at earlier cosmic times

during the redshift range 0 . z . 1.5, albeit with a wide range of redshift dependencies∝

(1+z)0.5−3 [3–5,61,62,109,144–146]. Such variance is largely caused by different study-

to-study close-pair selection assumptions [18]. In [140], we systematically quantified the

effect of different close pair selection choices on the derived merger fractions.

Recent efforts extend the close pair method to higher redshifts and find that merger

rates may be un-evolving or diminishing with increasing redshift between 1.5 ≤ z ≤

3 [15–17, 140]. These measurements disagree with theoretical predictions of steadily
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increasing merger rates from z = 0 to z = 3 [13, 130]. Leveraging recent simulation-

based work by [128], observational studies argue that the data-theory discrepancy at z >

1.5 may be due to the assumption of simplistic (non-evolving) close-pair observability

timescale employed in merger rate calculations [140, 147]. What is needed is a thorough

analysis of the observability timescale evolution for both close-pair and morphological

methods. In a related study (Chapter 3), we are constraining the close-pair observability

timescale as a function of different pair selection variables. The residual feature extraction

tool that we introduce in this paper will aid new efforts to constrain the morphological

feature observability timescales.

Besides merger rates derived from close pairs, rates based on morphology have

also been measured motivated by simulations showing that merging galaxies exhibit mor-

phologically disturbed appearance [69,70,148]. These merger constraints can be broadly

categorized into rates based on visual identification of disturbed morphologies [42, 149,

150] and quantitative metrics of large-scale galaxy asymmetries or morphology such

as CAS (first introduced by [151, 152] and used by [78, 116, 153], and Gini-M20 in-

troduced by [154] and applied extensively by [9, 10]. Early morphology-based studies

find a broad range of merger rate evolutions R ∝ (1 + z)2−5 at z . 1.5 [18], albeit

with significant study-to-study scatter where some studies find no redshift dependence

of merger rates [9, 79], and sometimes finding up to 25% − 50% of their samples to

be merging [116]. These studies suffer from low-number statistics due to small-volume

pencil-beam surveys, redshift-dependent systematic biases induced by cosmological sur-

face brightness dimming and strong morphological k-corrections when using rest-frame
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UV images, which can impact the purity and completeness of merger selection. Although

the advent of large Hubble Space Telescope (HST) surveys like CANDELS [20, 21] alle-

viate some issues, the observability timescales for morphology-based methods are highly

uncertain and may be varying with redshift.

A possible solution to overcome the systematic, purity, and timescale related chal-

lenges faced by the aforementioned morphology-based approaches is to employ more

focused morphological signatures as merger identifiers. For example, [155] used the

presence of multiple-nuclei separated by . 8 kpc to select merging galaxies during a

narrow window straddling the early and post-merger stages ([few hundred Myr timescale;

[18]), while aiming to minimize the contamination from spurious non-merging interlop-

ers. Tidal features are a specific sub-class of morphological substructures that are pre-

dicted to be prevalent among merging galaxies [148, 156, 157]. A fruitful technique for

improving the detection of faint and transient tidal features is through the analysis of

residual images 1 either by visual inspection [42,43] or quantitative parameters [73,159].

In fact, galaxy light-profile fitting is a popular step employed in many large surveys to

provide key insights into the structural (size, shape) evolution of galaxies [121,160,161].

In this context, our novel tool is designed to analyze the by-product residual images from

galaxy image fitting routines and extract useful information about additional (often com-

plex) substructures.

Detailed objective distinction of hallmark tidal features from other non-merging

signatures (e.g., lopsided disks, asymmetric or one-armed spiral structures) is yet to be

1Produced by subtracting the best-fit light profile of the host galaxy using tools such as GALFIT [158].
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achieved. Existing empirical merger-identification methods only provide a plausible in-

dication of tidal signatures and do not attempt to quantitatively capture key information

such as structure (length, width, and pitch), morphology (e.g., tails and fans), color, and

stellar mass of the features. Furthermore, constraining the role of observational effects

(e.g., depth, cosmological surface-brightness dimming) and observability timescales Tobs

for hallmark tidal features is an open question, and is a key hurdle in achieving robust

tidal-feature-based merger rates.

As a first step towards quantitatively identifying and extracting tidal signatures

of galaxy merging, in this study, we introduce a new technique and its corresponding

public Python software pipeline2 to extract and quantify residual substructures and we

demonstrate its application with a select sample of 16 CANDELS galaxies that exhibit a

range of merging and non-merging morphological substructures. We also test our tech-

nique’s ability to identify plausible interaction signatures by applying it to mock Hubble

Space Telescope (HST) observations of a galaxy merger from the VELA zoom-in hydro-

dynamic simulations Ceverino14,zolotov15. We structure this paper as follows: In § 2.2,

we introduce our CANDELS test galaxy sample and their GALFIT-derived data prod-

ucts, followed by a brief description of a galaxy merger from the VELA hydro-dynamic

simulation and the generation of its mock HST observations. In § 2.3, we describe the

step-by-step methodology of our residual substructure analysis pipeline, and we apply

this method to the select CANDELS galaxies in § 2.4. In § 2.5, we apply our methodol-

ogy to mock observations of a merger simulation and investigate the role of image depth

2The data products discussed in this chapter along with the software are publicly available at https:
//github.com/AgentM-GEG/residual_feature_extraction
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and viewing angle on the feature extraction process. In § 2.6, we present possible appli-

cations and limitations of our method. We present our conclusions in § 2.7. Throughout

this work, we adopt the [162] cosmological framework (H0 = 67.7 km s−1 Mpc−1), and

use the AB magnitude system [85].

2.2 Data and Test Samples

To develop and demonstrate our novel method for extracting and quantifying

residual substructures, we use HST/WFC3 H-band (F160W) images and single-Sérsic

GALFIT residual images from [160] for a select sample of galaxies from the CANDELS

survey [20,21] that exhibit different residual substructures including plausible tidal signa-

tures. To explore the application of our method for repeatable identification and extraction

of bonafide tidal features, we also analyze mock images derived from a merging galaxy

from the VELA zoom-in simulations [164].

2.2.1 CANDELS Data

We make use of the H-band Sérsic-fitting data products from [160] (hereafter

vdW12) for galaxies bright thanH = 24.5 mag in the CANDELS survey. Briefly, vdW12

used GALFIT [158] to generate an image-cube containing the original image used for fit-

ting, the best-fit model image with the Sérsic model information stored in its header, and

the residual (original−model) image. Following standard procedures outlined in [165],

vdW12 used SExtractor [166] to extract sources from the CANDELS imaging [21],

estimated the background sky, and determined GALFIT parameter input values, and pro-

duced a rectangular image cutout of each galaxy based on its SExtractor parameters: x, y
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Figure 16: Visualization of our demonstrative galaxy sample (§ 2.2.1, Table 6) hosting dif-
ferent residual features – Clean ( consistent with the background; top-row, middle panel),
plausible gravitational arc residual from [163] (top row, right panel), spiral arms (second
row), left-over disk (third row), and plausible interaction signatures (forth row). We also
visually illustrate each panel with a template, where for each galaxy, we show theH-band
(F160W) image (left) and its corresponding single-Sérsic residual ( model-subtracted) im-
age from vdW12 (right). We also report the official CANDELS identification number, the
5 kpc physical scale at the galaxy’s best-available redshift (zbest), and stellar mass.
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centroid, long side length of five (5) times the Kron radius, and orientated by the position

angle θ. In practice, the postage stamp images typically have sides 20 − 30 times the

galaxy’s effective size (re). To ensure optimal galaxy profile fitting with GALFIT, vdW12

masked neighboring objects 4 mag fainter than the central galaxy and simultaneously fit

all remaining objects in the image cutout.

The methodology we describe in § 2.3 starts with the vdW12 image cubes for a

select sample of 16 galaxies from an ongoing effort (HST-AR 15040; PI: McIntosh) to vi-

sually characterize the H-band residual substructures hosted by CANDELS galaxies with

9.8 . log10(Mstellar/M�) . 11 and 0.5 . z . 2.5. As shown in Table 6, these galaxies

sample different kinds of residual features: disk (4 galaxies), spiral arms (4 galaxies),

plausible tidal signatures (7 galaxies), and gravitational strong-lensing arc (1 galaxy). We

also note that our galaxies span two observational depth regimes – CANDELS/Wide (HST

2-orbit; 6 galaxies) and CANDELS/Deep (HST 10-orbit; 10 galaxies) depths as described

in [20, 21]. For each galaxy in our sample, we extract residual substructures using the

images with best-available depth, unless otherwise specified. In Figure 16, we provide

example postage-stamps of our test set galaxies and their respective residual features to

be extracted and analyzed in this paper. For reference, we also show an example ‘clean’

(i.e., visually no left-over) residual image.
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Table 6: Test sample of galaxies hosting different residual substructures which we use to

demonstrate our feature extraction technique. Columns: (1) the CANDELS field identifier

– UDS, GOODS-South (GDS), GOODS-North (GDN), EGS, followed by the galaxy’s

official CANDELS identification number; (2–3) celestial coordinates in degrees; (4) the

best-available redshift for the galaxy (see for details [93]); (5) the stellar mass [94,95]; (6)

the type of residual substructure hosted by the galaxy; (7) the observational depth based

on the official CANDELS exposure maps as described in [21]. † denotes that galaxy is

involved in a close-pair system. ‡ indicates that we use the galaxy to demonstrate a deep

vs. shallow feature-extraction comparison.

ID R.A. Decl. zbest Stellar

Mass

Residual

Feature

Obs.

Depth

(1) (2) (3) (4) (5) (6) (7)

UDS

4165

34.580786 −5.25419 0.985 10.63 spiral shallow

UDS

24437†
34.339863 −5.149623 1.823 11.2 plausible

tidal

shallow

GDS

4608†
53.081307 −27.871586 1.067 10.84 plausible

tidal

deep‡

GDS

14637

53.04408 −27.785048 1.045 10.11 plausible

tidal

deep‡

GDS

14876

53.11879 −27.782818 2.309 10.91 plausible

tidal

deep‡

GDS

16440†
53.050929 −27.772409 1.033 10.63 plausible

tidal

deep

GDS

18160

53.163589 −27.758952 1.095 10.82 spiral deep

GDS

18959

53.202349 −27.751279 1.113 10.91 disk deep
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GDN

7220

189.172373 62.191548 1.019 11.03 spiral deep

GDN

14758†
189.358539 62.241522 1.021 9.8 plausible

tidal

deep

GDN

19863

189.154657 62.274604 2.482 10.55 plausible

tidal

deep

EGS

1690

215.092284 52.922091 1.081 10.7 spiral shallow

UDS

10713

34.275997 −5.22157 0.627 11.11 lensing arc shallow

EGS

10518

214.877124 52.819527 1.192 10.72 disk shallow

EGS

12782

215.20786 53.064729 1.103 10.19 disk deep

EGS

27018

215.006664 52.996171 1.244 10.51 disk shallow

2.2.2 VELA Datasets

To demonstrate our new methodology on the extraction of residual substructure

signatures hosted by a galaxy-galaxy major merger, we apply it to mock images from

VELA#013 of the VELA zoom-in hydro-dynamic simulations [164, 167]. Briefly, in this

simulation baryonic physics4 are solved in conjunction with gravitational N-body interac-

tions using the Adaptive Refinement Tree (ART) code [168–170] with spatial resolution
3The VELA simulation-suite comprises of 35 intermediate-mass galaxies (log10(Mstellar/M�) ∼ 10 at

z ∼ 2) and they are referred using an ID starting from 01 to 35.
4The VELA simulations include many physical prescriptions related to galaxy evolution – gas cooling,

star formation, ISM metal enrichment, photo-ionization heating from the Ultra-Violet background radiation,
stellar-mass loss, stellar feedback, tracing of smooth cosmological accretion of other galaxies and gas.
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of 17.5 pc to 35 pc. The VELA simulation-suite has been extensively used in the context

of galaxy morphology such as elongated galaxies [82,171], giant clumps [172–174], com-

paction [167,175,176], galaxy spin and size Jiang18, H-alpha morphology [177,178], and

structural parameters [179]. Starting at a cosmological scale factor a = 0.125 (z ∼ 7),

the simulation information is recorded at equal increments of ∆a = 0.01, which approx-

imately corresponds to a time frame ∆t = 100 Myr at z = 2. For the merging system

VELA 01, we use the information during 15 time intervals spanning 0.37 ≤ a ≤ 0.47

(1.7 . z ≤ 1.1), bracketing roughly 0.6 (0.8) Gyr before (after) the coalescence stage

(occurring at a = 0.41; z = 1.44). We note that this system experiences a gas-rich, major

merger (stellar mass ratio ∼ 1.33 : 1, gas mass ratio ∼ 1 : 1) resulting in post-merger

stellar and gas masses of log10 (Mstellar/M�) = 10.05 and log10 (Mgas/M�) = 9.55,

respectively.

At each time step, we use mock HST WFC3/F160W observations of the merg-

ing system generated using the methodology described in [179, 180]. Briefly, they use

the raw-simulation information at each time-step and assign stellar population synthesis

model-informed (e.g., [96,97]) spectral energy distributions (SEDs) to the stellar particles

using SUNRISE [181,182] with dust scattering and absorption assuming a dust-to-metals

ratio of 0.4 [183] and a Milky Way-like dust grain size distribution (Rv = 3.1; [184,185]).

At each time-step, they integrate this 3-dimensional data onto a 2D camera plane to pro-

duce an idealized image at 19 (camera) orientation angles (for details see Table 1 in [176]),

which are then convolved with the point spread function (PSF) generated by Tiny Tim

(WFC3/F160W; [186]) to reach desired spatial resolution. These mock idealized images
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Figure 17: Flow diagram illustrating our detailed step-by-step residual substructure ex-
traction process, which is divided into three main parts (orange boxes), described in their
respective sub-sections (§ 2.3). We refer to the key steps (red text) when presenting our
method in § 2.3.

are available on MAST5 [180].

To match the empirical CANDELS F160W 5σ limiting surface-brightness sensi-

tivities at both Wide (25.25 mag arcsec−2) and Deep (26.25 mag arcsec−2) depths, we add

Gaussian random noise to the F160W PSF convolved images of VELA 01. This process of

generating mock HST CANDELS images from simulated data products is often referred

to as CANDELization Huertas-Company18 and we call the resultant depth-matched im-

ages as CANDELized images. We apply GALFIT to the VELA 01 CANDELized images

to generate single-Sérsic residual images consistent with the vdW12 empirical data at

each time step, viewing angle, and depth realization for a total of 380 unique residual

images.

5https://archive.stsci.edu/prepds/vela/
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Figure 18: Visualization of the dual masking scheme described in § 2.3.1 for an exam-
ple galaxy (GDS 14637; at the center of image; see Table 6). Top left: WFC3/F160W
(1.6µm) image with faint source detections shown with white outlines. Top right: single-
Sérsic based residual image from vdW12. Bottom left: mask generated by step#1 for
measuring background sky in unmasked regions (white; pixel values= 1); masked re-
gions are shown in black (pixel value= 0). Bottom right: mask generated by step#2 for
extracting residual substructure.
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2.3 Methodology

We demonstrate our residual substructure extraction method by analyzing the

GALFIT-based residual images of a selective sample of galaxies hosting different left-

over substructures (§ 2.2.1). We organize the functionality of our method into three main

objectives as follows. Starting with a H-band original image, we generate two masks to

facilitate estimation of local-sky background (σbkg) and residual feature extraction. Next,

we estimate σbkg in the smoothed single-Sérsic-based residual image and search (in prox-

imity to the galaxy-of-interest) for contiguous-pixel regions that satisfy a sky-significance.

Finally, we identify the flux-wise significant regions whose areas are larger than a pixel-

contiguity area threshold (Athresh) informed using noise-only Monte-Carlo (MC) simu-

lations to quantify their H-band surface brightness. We present a detailed flow-chart of

our residual extraction process in Figure 17 and label the key steps to be discussed in this

section.

We acknowledge that our methodology is closely dependent on the outputs gen-

erated by different software routines such as GALFIT and Source Extractor. Although

these software are extensively used in the astronomy community, their specific function-

ality may change in the future updated versions. In this context, we emphasize that our

modular algorithmic approach described in § 2.3 and illustrated in the flow chart (Fig-

ure 17) can be treated as a road map for future applications using the updated or new

versions of the software analogous to GALFIT or Source Extractor.
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Table 7: Source extraction configuration parameters to inform our masking routine.
Columns: (1) name of the parameter; (2) value employed in this study.

Parameter Value Used
(1) (2)

DETECT THRESH 0.7
MIN AREA 7

DETECT NTHRESH 32
DEBLEND MINCONT 0.0001

CONV FILTER 2D Tophat (radius = 5)

2.3.1 Masking

We devise a dual masking scheme to facilitate the extraction and isolation of resid-

ual substructures at radii outside the each galaxy center. This requires robust estimation

of the local-sky background, detection of faint sources not fit by vdW12, and a defini-

tion of galaxy center. The magnitude criterion imposed by vdW12 to mask nearby faint

objects (§ 2.2.1) is a reasonable choice in the context of quantifying galaxy structural

properties. However, such faint un-fit sources can have comparable surface brightness to

our desired faint residual substructure (e.g., tidal features). In addition, central galactic

regions may house complex substructures (especially in young post-mergers) that may

not be well represented by a Sérsic profile and may lead to significant central left-over

light [e.g., ][]Hopkins09 that can obscure the detection of faint tidal features of interest.

2.3.1.1 (Step#1) Generate sky mask

We start by performing faint source detection within the postage stamp of the

galaxy (original image) using a python-based implementation (SEP; [187]) of the standard

source-extraction tool SExtractor [166]. We find that the source extraction parameter
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values provided in Table 7 yield optimal identification of small faint sources in the images,

without deblending faint extended features (e.g., plausible tidal signatures) into separate

objects6. Compared to the SExtractor configurations used to generate the CANDELS

source catalogs (e.g., see [86, 87]), we employ a smaller convolution filter size (five vs.

nine) for better detection of smaller and fainter sources.

In the top panels of Figure 18, we demonstrate the thorough detection of all faint

sources seen in the vdW12 residual image of an example galaxy (GDS 14637; center of

image). Hereafter, we use this galaxy to demonstrate all of our analysis steps outlined in

the flow-chart (Figure 17). In the bottom left panel, we provide the resultant background

sky mask. Masked regions are shown in black (pixel value= 0). The unmasked regions

(white) represent the sky contribution in the vicinity of the galaxy, which use during our

feature extraction in § 2.3.2.

2.3.1.2 (Step#2) Generate residual extraction mask

We also generate a mask for extraction of residual substructures within a physically-

motivated proximity of Rproj < 30 kpc from the centroid of the galaxy-of-interest. This

corresponds to nearly five (ten) times the effective size of late (early) type galaxies at

z ∼ 1 [161]. We find that this extraction radius encompasses all faint residual substruc-

ture for the galaxies in our sample. As shown in Figure 18 (bottom-right panel), we mask

contributions from the central core regions of each galaxy residual so that we extract only

outer features. We define the inner masking by an ellipse centered on the galaxy, with

6A small value of DETECT THRESH ensures that the resultant segmentation maps envelop the outer-
most light of the sources An alternative to this step is to use a higher detection threshold value and grow the
resultant segmentation regions to fully encompass the extended light.
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semi-major and semi-minor axes equal to 1.5 times those of the SExtractor detection el-

lipse from step#1, and orientation along the SExtractor position angle. Finally, we also

mask any faint companions from step#1 that fall within the Rproj < 30 kpc extraction

region. In summary, we use this mask during the extraction of residual substructures

(§ 2.3.2).

2.3.2 Final Extraction of Residual Features

We start the feature extraction process by analyzing a Boxcar-smoothed version of

the residual image (top-left panel; Figure 19) to facilitate the robust identification of faint

features. We utilize the masks described in § 2.3.1 to identify all unmasked pixels within

the residual extraction mask region that are significantly above the background sky. Then,

we identify contiguous groupings of such pixels to define unique residual features.

2.3.2.1 (Step#3) Identify flux-wise significant pixels

The first step in extracting residual features is to quantify the background sky. We

compute the background σbkg as the standard deviation of the best-fit Gaussian profile

representing the normalized distribution of pixel values in the unmasked regions of the

smoothed residual image after applying the sky mask (§ 2.3.1). In Figure 19 (top-right

panel), we show the sky pixel-value distribution (blue histogram) with its corresponding

Gaussian curve. We denote the 2σbkg with a vertical dashed line.

Next, we apply the residual extraction mask and identify all unmasked pixels in

the smoothed-residual image (red histogram in Figure 19, top-right panel). In Figure 19

(bottom-left panel), we plot all such pixels satisfying a fiducial flux-wise significance cut
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Figure 19: Visualization of the residual feature extraction steps described in § ?? for an ex-
ample galaxy (shown in Figure 18). Top-left: 2D Boxcar kernel-smoothed (3 pix× 3 pix;
side length ∼ 0.18′′) residual image with the inner and outer residual feature mask re-
gion boundaries (step#1) given in solid white, and faint-source masking (step#2) shown
as dashed white outlines. Top-right: the normalized pixel-value distribution of the sky
background (blue histogram) in units of electrons/sec, its corresponding best-fit Gaussian
curve (dashed-blue curve), and 2σbkg value (vertical blue line) are compared to the dis-
tribution of pixel values from the residual extraction region (red histogram). Bottom-left:
the pixels residing in the residual extraction region satisfying a flux-wise significance cut
fpix > 2σbkg (step#3) are color coded according to their unique contiguity (described in
detail in § 2.3.2.2; step#4). Bottom-right the final residual features (red shading) after
rejecting smaller area regions as described in § 2.3.3 (steps#5 and #6); the feature surface
brightness and its 68% confidence level are given.
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fpix > 2σbkg, where fpix is flux value of the pixel. Visually, we observe one large flux-

wise significant residual feature and many small areas of > 2σbkg pixels. We note that a

less stringent significance cut of fpix > 1σbkg increases both the number of small pixel

groupings and the typical area per pixel-group, albeit with decrease in the overall signal-

to-noise ratio. On the other hand, a more strict fpix > 3σbkg cut identifies fewer pixels

(with high signal-to-noise), but with significant structural discontinuities ( an extended

feature is broken into multiple smaller regions). As such, we elect to use fpix > 2σbkg as

our fiducial criterion for flux-wise significant pixels in our analysis.

2.3.2.2 (Step#4) Identify contiguous-pixel regions

To isolate and separate larger, contiguous residual substructures from smaller

groupings of flux-wise significant pixels, we use a python-based 2D pixel-connectivity al-

gorithm skimage: label [188,189]. This tool assigns unique identification number

to each contiguous pixel region using a binary image in which all the flux-wise significant

pixels are set to unity and the remainder are set to zero. In Figure 19 (bottom-left panel),

we show the contiguous flux-wise significant pixels (color coded regions).

Next, we compute the area and enclosed flux of these contiguous regions using a

companion module skimage: regionprops7 [190, 191]. Re-affirming our visual

interpretation, we find a contiguous substructure with large area (shown in green) in the

immediate vicinity of our example galaxy and many regions with smaller areas (Figure 19;

bottom-left panel). We note that correlated-noise fluctuations can cause several pixels to

7The module computes cumulative flux per unique contiguous region in the residual image at their
respective pixel coordinates.
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be flux-wise significant and contiguous by random chance. We quantify this effect and

reject such spurious regions in the following section.

2.3.3 Final Feature Selection

We isolate the final, flux-wise and area-wise significant residual features follow-

ing a MonteCarlo approach. We estimate an area threshold (Athresh) based on a noise-

only pixel contiguity expectation and select those flux-wise significant contiguous fea-

tures with areas larger than Athresh.

2.3.3.1 (Step#5) Quantify area threshold Athresh

As a first step to quantify an area threshold above which the noise contribution to

pixel contiguity is minimum, we generate 200 Boxcar smoothed images with Gaussian

noise matching the σbkg value from step#3. In each random-noise image, we identify

contiguous regions satisfying our fiducial flux-wise significance and quantify their area

(as described in § 2.3.2.1). In Figure 20, we show an example smoothed random noise

image (left panel) and its corresponding flux-wise significant contiguous regions (right

panel; color coding). We notice that the noise-generated contiguous areas visually mimic

the smaller area regions identified in step#4 (Figure 19; bottom-left panel). Combining

the result of 200 MonteCarlo iterations for our example galaxy, we find an extraction area

threshold Athresh = 20, where > 99% of the contiguous pixel regions in smoothed noise-

only images have areas smaller than 20 pixels. We repeat this MonteCarlo process for all

galaxies in our analysis that span different CANDELS fields and find a range of Athresh

values between 17 to 23 pixels, owing to varying field-to-field noise properties.
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2.3.3.2 (Step#6) Identify and Quantify Final Residual Features

To select final significant features, we identify the contiguous regions with areas

larger than the threshold set by the noise properties ( A > Athresh). We then quantify the

surface brightness of the final feature regions (µfeat) as:

µfeat = −2.5 log10(F ) + zp+ 2.5 log10(A′) [mag arcsec−2] , (2.1)

where F is the cumulative flux (in Jansky) of all the regions satisfying our criteria,

zp = 8.9 is the zero-point magnitude, and A′ is the cumulative area of all these sig-

nificant contiguous regions in units of arcsec2. We also report the photometric error on

the quantified surface brightness by adding the noise from σbkg and Poisson noise from the

feature in quadrature. In Figure 19 (bottom-right panel; shading), we show the final resid-

ual features (an extended tidal-tail structure) and quantify its H-band surface brightness

to be µfeat = 25.5± 0.3 mag arcsec−2.

2.4 Application to CANDELS Galaxies

In this section, we demonstrate the application of our residual substructure extrac-

tion method on example CANDELS galaxies hosting a range of features – disk, spiral, and

plausible interaction signatures (see Table 6). We also illustrate the role of image depth

by comparing results at HST 2-orbit and 10-orbit depths for three galaxies (GDS 4608,

GDS 14637, and GDS 14876).
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Figure 20: Visualization of the pixel contiguity by random chance (step#5). Left panel:
the Boxcar smoothed random noise image for one randomly chosen MonteCarlo iteration
generated as described in § 2.3.3. Right panel: the contiguous pixel regions satisfying our
fiducial flux-wise significance cut fpix > 2σbkg (color coding).

2.4.1 Extracting disk and spiral features

In Figure 21 (top-two rows), we show the results of applying our feature extrac-

tion method on galaxies visually identified to be hosting residual disk structure. In the

cases of EGS 10518 and GDS 18959, we find similar looking, inclined disk-like residual

structures, whereas the residuals of EGS 27018 and EGS 12782 exhibit circular features

(likely owing to their face-on orientation). We also note hints of clump-like substructures

embedded within the disk feature of EGS 12782. We find that these features have surface

brightness measures ranging between 23.4− 24.5 mag arcsec−2. Re-affirming our visual

interpretation, we find that our method extracts features that are consistent with a residual

disk, likely owing to an underlying bulge+disk morphology being fit with a single-Sérsic

model.
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Figure 21: Example residual feature extraction and quantification for select CANDELS
galaxies exhibiting disk structure (top-two rows) and spiral substructure (bottom-two
rows). For each galaxy, we show the original WFC3/F160W (1.6µm) image (left) and
include the official CANDELS ID and a 5 kpc physical scale; the single-Sérsic residual
image from vdW12 (center); and the extracted residual features (solid-black outlines with
red shading) overlaid on its respective original image (right), and we include the feature
surface brightness measurement.
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In Figure 21 (bottom-two rows), we show the results of our feature extraction on

galaxies hosting residual spiral substructures (EGS 1690, GDS 18160, UDS 4165, and

GDN 7220). We extract two-arm spiral patterns for all the four galaxies and find their

surface brightness ranges between 23.6 − 24.9 mag arcsec−2. We note that the spiral

substructures exhibited by GDS 18160 and GDN 7220 are visually apparent (despite hav-

ing fainter surface brightness) than EGS 1690 and UDS 4165, owing to the difference in

their observational depths (deep vs. shallow; see Table 6). We also note that all except

GDN 7220 appear to be hosting a central bar. Extracting such spiral substructures with our

method will help future analyses quantify their physical parameters such as pitch angle,

bar structure.

2.4.2 Extracting plausible tidal features

In Figure 22, we show the results of our feature extraction method on galaxies ex-

hibiting plausible tidal interaction signatures. These galaxies broadly fall into one of the

following four categories – i) close-pair systems in which both galaxies exhibit plausible

signatures of tidal interaction (GDN 14758, UDS 24437, and GDS 4608); ii) close-pair

systems in which only one galaxy exhibits a plausible interaction feature (GDS 16440 and

GDS 14637 ); one example galaxy experiencing a plausible minor interaction (GDS 14786);

and one plausible post-merger system (GDN 19863). The extracted residual substructures

in these examples highlight our visual interpretations.

First, we apply our feature extraction method to each galaxy in the three exam-

ple close-pair systems with plausible dual interaction signatures. We note that all three

102



Pl
au

si
bl

e 
Ti

da
l F

ea
tu

re
 E

xt
ra

ct
io

n 
Co

m
pa

ri
so

n 
fo

r S
am

e 
Ob

je
ct

s 
at

 D
iff

er
en

t D
ep

th
s

CANDELS/Deep CANDELS/Wide

Pl
au

si
bl

e 
Ti

da
l F

ea
tu

re
 

Ex
tr

ac
ti

on
 o

n 
di

st
in

ct
 

ob
je

ct
s

Figure 22: Example residual structure extraction and quantification for select CANDELS
galaxies hosting plausible tidal signatures. For each galaxy, we show the original image,
single-Sérsic residual image, and the extracted residual features using the same format
as in Figure 21. For three example galaxies (bottom three rows), we compare the feature
extraction process at CANDELS Deep (HST 10-orbit; left panels) and Wide (HST 2-orbit;
right panels) depth configuration.
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pairs have |∆z|/(1 + z) ≤ 0.025 and residual substructure consistent with theoretical

predictions for tidal features produced by major mergers [192]. We find a striking struc-

tural similarity between the features exhibited by UDS 24437 – UDS 23110 pair (z ∼ 1.8)

and the GDS 4608 – GDS 4529 pair (z ∼ 1), such that each close pair hosts two tidal

arms and an overlapping region between the host and companion galaxy. These broad

and extended features are similar to those found in observations and simulations of major

mergers between spheroid-dominated galaxies [42]. The residual substructure midway

between each galaxy core in these two pairs may be a stellar bridge or may be an artifact

of the simultaneous Sérsic fitting of two galaxies in very close proximity. In contrast, each

galaxy in pair GDN 14758–GDN 14516 appears to have two tidal arms which are thin and

clumpy in some places. The characteristics of the latter tidal arms are likely the result of

interacting disk-dominated galaxies.

Next, we demonstrate the feature extraction on two pairs in which only one galaxy

exhibits plausible interaction signatures. GDS 14637 has a single arm-like residual that

is similar in appearance to the broad and extended tidal arms discussed above. In con-

trast, GDS 16440 shows two arm-like features, where one extends outward away from the

host and is aligned with a nearby (compact) galaxy (at right) with a spectroscopic redshift

difference of only |∆cz| ∼ 100 km s−1 from GDS 16440. This picture is consistent with

theoretical merger simulations (e.g., Figure 6 from [192]) of a disk-dominated galaxy ex-

periencing a major merger with a nearby compact companion. We note that GDS 16440

has a clear inner spiral pattern that extends to a radius of R ∼ 5–10 kpc. Despite its

point-like appearance suggesting a plausibly interaction-fueld AGN, the companion has
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no known X-ray detection to corroborate this suggestion. Finally, we acknowledge the

possibility that the extracted arm-lke features of GDS 16440 may be extensions of the in-

ner spiral structure, yet, their diffuse appearance and physical extent out to R > 25 kpc

is much more consistent with tidal interaction signatures. Admittedly, quantitatively dis-

tinguishing spiral versus interaction features is critical for robust identification of galaxy

merging. While beyond the scope of this work, we believe that further quantification

of extracted residual features will provide improved methods for distinguishing distinct

physical processes.

Finally, we demonstrate our residual feature extraction technique on two addi-

tional galaxies with plausible signs of tidal activity. First, GDS 14786 shows a minor

companion galaxy with a narrow ∼ 10 kpc tail-like feature, consistent with numerical

predictions of features caused by minor mergers [192,193]. Second, GDN 19863 appears

to have two tidal-tail residuals, each extending ∼ 10 kpc from the galaxy center. One is

much fainter than the other. Multiple faint tidal tails are found briefly after coalescence in

simulations of major mergers.

2.4.3 Role of Depth during Feature Extraction

To illustrate the role of imaging depth on the extraction and quantification of dif-

ferent plausible tidal features, we compare the results of residual substructures extracted

from deep (CANDELS/Deep) and shallow (CANDELS/Wide) images for three exam-

ples in Figure 22. We perform this comparison on the following examples from § 2.4.2:

GDS 4608 (close-pair system where both galaxies show plausible tidal arms), GDS 14637
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(close-pair system where on galaxy shows plausible interaction feature), and GDS 14876

(galaxy experiencing a plausible minor interaction).

We find that the morphologies of the extracted residuals at a shallow 2-orbit depth

are qualitatively similar to their 10-orbit depth counterparts in all the three cases, albeit

with noticeably noisy visual-appearance. We note that the features extracted from the

shallow depth images tend to be confined to the brighter surface brightness (by 0.3 −

0.5 mag arcsec−2) regions of the same features extracted from the deep images. The shal-

low residuals are also lower in signal-to-noise when compared to features extracted at a

deeper depth. This is expected as an increase in noise per pixel reduces the structural

contiguity, owing to the reduction in number of pixels meeting flux-wise significance cut,

thereby, resulting in a less significant yet brighter surface brightness. Although we re-

calibrate the feature extraction employing a larger area threshold value for shallow depth

images, we notice additional small faint sources in the nearby projected vicinity that are

contaminating the extracted features. This is because such faint sources are not signifi-

cantly detected during the source extraction and masking steps, but are extracted from the

residuals by our method. This deep-shallow comparison highlights the role of observa-

tional depth in identifying faint, high-redshift plausible tidal signatures.

2.5 Extracting Tidal Features in a major merger from cosmological simulation

In this section, we demonstrate the application of our residual substructure extrac-

tion method on synthetic HST images of a major merger from the VELA simulation [164].
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We extract the residual features and quantify their areas during 10 time steps of the merg-

ing process spanning 1.7 . z ≤ 1.1 (∆t ∼ 1.4 Gyr), each at 19 viewing orientation

angles, and two observational depth configurations matching empirical CANDELS obser-

vations (Wide and Deep). We note that the first pericentric passage and the coalescence

stages occur at z = 1.63 and z = 1.44, respectively. To visually comprehend the quanti-

tative trends, we also discuss the qualitative appearance of example extracted features at

one fixed viewing orientation.

2.5.1 Quantitative Analysis of Extracted Features

In Figure 23, we show the median extracted feature areas as a function of time

before and after the coalescence stage (t = 0 Gyr) for CANDELS Wide and Deep depths

at all 19 viewing angles. We also quantify the detection probability as the percentage of

viewing sightlines during which we detect features with their areas larger than the Athresh

and µfeat brighter than the limiting surface brightness (Wide – 25.25 mag arcsec−2; Deep

– 26.25 mag arcsec−2). We find the deep and shallow extracted residuals follow quali-

tatively similar trends in terms of their changing prominence (i.e., feature area) during

different pre- and post-merger stages. Owing to coarse time resolution (∼ 150 Myr) be-

tween each time step, we are only able to discuss broad trends and differences between

the deep and shallow results.

At deeper image depth, we detect residual substructure at nearly all viewing angles

and time steps. Prior to first pericentric passage (t = −0.46 Gyr), the feature area is

minimal (A = 3 ± 1Athresh). At first pericentric passage, we find a plausible increase in
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the feature prominence, albeit with a large spread between different viewing orientations.

This increase clearly peaks at the next time step 150 Myr later, hinting at the formation of

tidal interaction-triggered features. If true, these features abruptly diminish in significance

(by a factor of two) at t = −0.15 Gyr, after which extracted feature areas steadily increase

through the coalescence stage until they peak at 300 Myr later with a value 3–7 times

greater than the initial minimum. This temporal behavior strongly implies the presences

of tidal merger signatures. During the three time steps that follow (0.47 ≤ t ≤ 0.79), we

note that the feature prominence follows a stochastic rising and falling trend with a range

of area values between those of coalescence and the last maximum, or even slightly more

at some viewing angles. As we discuss later, these stochastic fluctuations during different

time steps correspond to noticeable changes in the visual appearance of the extracted

residual features.

In the case of shallow depth images, we typically find a similar temporal time evo-

lution trend, albeit with some key distinctions. First, we note that the trends at shallow

depths are shifted to systematically smaller areas when compared to the same features

observed in deeper images. This is because of the decreased signal-to-noise per pixel

causing less number of contiguous pixels to satisfy our feature extraction criteria. Next,

contrary to what we observe in deeper images, we find no increase in the prominence of

the extracted feature at the t = −0.31 Gyr time step following first pericentric passage.

This is consistent with the idea that tidal interaction features are faint and their detec-

tion is highly sensitive to image depth. Indeed, we find the detection probability of any

residual substructure in the shallow images is less than 50% until after first passage, and
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only reaches unity at the coalescence stage when the first noticeable increase in feature

area occurs. During t > 0 Gyr, we note that post-merger time steps with detection prob-

ability < 100% correspond to smaller feature areas. Likewise, maximum feature areas

correspond to high detection probability. These subtle trends highlight the role played

by viewing lines-of-sight during the detection of certain merger features, especially in

shallow depth images. Nevertheless, during the time steps with high detection probabil-

ities (irrespective of the depth), we note that the viewing angles can induce a scatter of

20− 40% in the measured feature prominences.

2.5.2 Qualitative Interpretation of Extracted Features

To illustrate the temporal quantitative trends shown in Figure 23, we discuss the

qualitative appearances of the features extracted from one example viewing orientation.

We show the extracted features at shallow and deep depths alongside their idealized im-

ages during 10 time steps in Figure 24. We discuss the extracted features from different

image depths with respect to the distinct structures evident in their idealized (no noise

added) images, and we compare the morphologies of the features extracted from the

VELA mock data to those from CANDELS images of plausible merging systems shown

in Figure 22.

During the first two time steps (t ≤ −0.46 Gyr), we extract small residual struc-

tures in both deep and shallow images that correspond to faint sources in proximity to

the merging galaxies within their idealized images. At t = −0.31 Gyr (∼ 150 Myr after

the first pericentric passage), we extract features at deeper depths that correspond to the
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Figure 23: Area of the extracted residual features with A ≥ Athresh and µfeat brighter than
a depth-dependent limiting surface brightness, as a function of time since the coalescence
phase from the synthetic mock observations of a galaxy merger simulation. We normalize
the feature area with Athresh value employed for each CANDELS depth – Wide (filled
points) and Deep (open points). At a fixed time step and depth, we show the median
feature normalized area with a star; its corresponding standard deviation across different
viewing orientations is shown with a error-bar. In blue, we give the detection probability
which is defined as the percentage of camera angles during which the extracted residual
features satisfy our area and surface brightness criteria at shallow depth (dashed line) and
deep depth (solid line). We emphasize the first pericentric passage and coalescence stages
with red and cyan shading, respectively.
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Figure 24: Extracted residual features during the 10 time steps shown in Figure 23 from a
galaxy merger simulation (VELA; see text for details). At each time step (left to right), we
present the idealized (noise-less) mock HST WFC3/F160W images for one viewing an-
gle (cam00; top), the CANDELS/Wide depth images (middle), and the CANDELS/Deep
depth images (bottom). The extracted features are shown with red shading for the shallow
and deep data. For each trio of images, we indicate the 5 kpc physical scale and the time
elapsed since (or prior to) the coalescence stage (z = 1.44; t = 0 Gyr).
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interaction debris surrounding the merging galaxies in the idealized images. However,

we do not detect these features in shallow depth images, which aligns with the noticeable

difference in feature prominence at t = −0.31 Gyr in Figure 23. Just prior to coalescence

(t = −0.15 Gyr), we extract a small feature midway between the two merging galaxies

at both depths, which corresponds to a plausible bridge-like structure in the idealized im-

age. We find similar excess-light features in the extracted residuals for UDS 24437 and

GDS 4608 in Figure 22. Yet, interestingly, the VELA merger does not exhibit tidal arms

during its close-pair stage, which is in contrast to all three example plausible interacting

systems (GDS 4608, UDS 24437, and GDN 14758).

Starting at coalescence (t = 0 Gyr), we extract features at both depths that high-

light the birth of a post-merger tidal-arm that grows in area over the next∼ 300 Myr. This

feature is similar in appearance to the single arm-like structure we extract from one of the

two example CANDELS pairs in which only one galaxy has a plausible interaction sig-

nature (GDS 14637; Fig. 22). As such, GDS 14637 is also consistent with a post-merger

in close proximity to another galaxy. At t = 0.47 Gyr, we extract two narrow tail features

with clumpy visual appearance in the deep image, which resemble the plausible post-

merger signature we extract for GDN 19863. This picture is consistent with the theoretical

expectations that major gas-rich mergers produce diffuse tidal features with clumpy knots

Fensch17. We note that we only marginally detect a fraction of this tidal feature in the

shallow depth image, which aligns with the abrupt decrease in feature prominence noted

in Figure 23. Finally, during the last two time steps in both shallow and deep images we

extract a large and extended plausible tidal loop or two-tailed feature (at t = 0.63 Gyr)
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that becomes less prominent at t = 0.79 Gyr. The changes in these features during the

last two time steps illustrate the stochastic fluctuations in the extracted feature areas we

find for all viewing angles in Figure 23. This exercise illustrates the interplay between

interaction/merger feature extraction and observational depth.

2.6 Discussion

So far, we have presented the development of a residual substructure extraction

tool and discussed its application to example galaxies from the CANDELS survey and

mock CANDELized observations of a galaxy merger simulation. In this section, we dis-

cuss several additional possible applications of our residual extraction method.

2.6.1 Possible Applications

We present some possible applications of our residual feature extraction method

towards improving popular structural-fitting routines, studying multi-wavelength prop-

erties of different single-component Sérsic residual features (e.g., disk structures from

host bulge+disk systems) and substructures (e.g., spiral arms, plausible interaction sig-

natures), and extracting strong gravitational arcs.

2.6.1.1 Improving structural fitting

An important step in many galaxy structural-fitting studies (e.g., [161, 194]) is

to choose the number of required parametric components during GALFIT modeling (or

other similar tools), starting with a simple single-Sérsic model and advancing to more

complex models (e.g., bulge+disk) including even the inclusion of Fourier modes (e.g.,
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to model spiral features). For upcoming large-scale surveys, developing machinery to

make such decisions is key for automated structural modeling for very large samples.

One way to approach this is to use machine learning to inform the number of parametric

components required to best represent a galaxy morphology [195]. Alternatively, we

propose that our method can be used to inform additional residual components and repeat

GALFIT with updated number of components.

2.6.1.2 Multi-wavelength application

Empirical studies often perform multi-wavelength decomposition of galaxy struc-

ture into their bulge and disk components to separately inform their physical parameters

(e.g., stellar mass, color; [196, 197]), which can provide key insights into the physics of

galaxy evolution. We propose that extending our feature extraction method to multiple

wavelengths can inform the physical properties for disk, central bulge, spiral arms, and

interaction signatures. Furthermore, recent studies are developing resolution-element-

based spectral energy distribution fitting in conjunction with spectroscopic measurements

to produce maps of physical parameters (stellar-mass, star formation rates; [198]. Using

our method in conjunction with these semi-resolved maps can enable future investiga-

tions to study structurally-resolved properties (e.g., colors, star-formation, chemical com-

position, kinematics) of different galactic substructures, especially for tidal features (e.g.,

see [199]).
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2.6.1.3 Extracting Gravitational Arcs

Yet another possible application of our method is the extraction of strong gravi-

tational lensing arcs. Strong gravitational lensing provides an unique opportunity to ob-

serve the otherwise inaccessible high-redshift universe. Several previous studies have

used strong lensing to study cosmology, the physical properties of lensing systems, and

the properties of distant background lensed sources (e.g., [200–202]). Identifying and

extracting the gravitational lensing signatures is a key step in such works, which of-

ten use GALFIT to subtract the host galaxy light to unearth such lensing features (e.g.,

[203, 204]).

In Figure 25, we show the result of our feature extraction method on an exam-

ple CANDELS strong-lensing candidate (UDS 10713), which is identified using a ma-

chine learning based classification scheme by [163]. We use the galaxy’s single-Sérsic

residual image by vdW12 and extract significant contiguous substructure above a 3σbkg

threshold (instead of our fiducial 2σbkg). We find arc-like features with surface brightness

µfeat = 24.3± 0.2 mag arcsec−2 in close vicinity to the galaxy, which qualitatively aligns

with the blue-arc in its corresponding false-color RGB image (at roughly 10 o’clock).

However, we note that the single-Sérsic residual of UDS 10713 shows excess galactic

light and additional sources in its projected proximity, which are contributing to the sur-

face brightness of our extracted features. Isolating such contaminants is beyond the scope

of this current work and we recommend that future studies should employ more complex

Sérsic models for better galactic light subtraction and use multi-wavelength information
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Figure 25: Example extraction of a candidate strong lensing arc hosted by the CAN-
DELS galaxy UDS 10713 (center of the image), identified by [163]. First panel: the
WFC3/F160W (1.6µm) original image with the official CANDELS ID and a 5 kpc phys-
ical scale. Second panel: the single-Sérsic residual image by vdW12. Third panel: the
extracted residual features (shading) overlaid on the original image; the signal-to-noise
is indicated with the color-bar. Fourth panel: false-color F160W–F125W–F606W RGB
image of UDS 10713; strong lensing arc appears at the top-left of UDS 10713.

of the features for better automated lensing feature detection and extraction. Further-

more, future works can extend our residual extraction method to galaxy cluster environ-

ments where strong lensing can be more prevalent (usually with high magnifications) as

a means to derive cluster mass measurements.

2.6.2 Future Prospects with the James Webb Space Telescope

In preparation to probe high-redshift galaxy merging using the James Webb Space

Telescope (JWST), we analyze synthetic JWST observations of a different merger in the

VELA cosmological simulation suite (VELA 21), which experiences a major merger

(post-merger stellar mass log10(Mstellar/M�) = 10.5; stellar-mass ratio ∼ 3 : 1) at

z ∼ 3.2 (coalescence). In Figure 26, we compare and contrast the feature extraction

process on its mock JWST and HST observations.

116



Motivated by our simulated observations of a major merger in § 2.5, we focus this

exercise on one specific merger stage z = 3 (∼ 120 Myr after coalescence), where we ex-

pect the galaxy to exhibit tidal features. We generate idealized mock HST WFC3/F160W

and JWST NIRCam/F277W images using the process described in § 2.2.2. We add Gaus-

sian noise to them such that they match the CANDELS/Deep depth and the proposed

Cosmic Evolution Early Release Science Survey (CEERS; PI: S. Finkelstein, JWST PID:

1345) depth 8, respectively. Finally, we generate the single-Sérsic residuals by apply-

ing GALFIT to the HST and JWST noise-added images following vdW12, and apply our

feature extraction technique on these residuals (§ 2.3).

While we detect no significant residual features at CANDELS/Deep HST depth,

we extract extended tidal-fan features in the NIRCam/F277W JWST CEERS depth im-

age, which mimic the structures exhibited by our example CANDELS close-pair system

(GDS 4608; see Figure 22). Our demonstration asserts the capabilities of JWST to probe

faint tidal features out to high-redshifts with considerably less exposure time and at a

longer rest-frame wavelengths than the current extremes accessible to HST. This will

enable future studies to probe high-redshift merging systems that are key towards under-

standing the role of galaxy merging in galaxy evolution.

2.7 Conclusions

As a first step towards quantitatively identifying ‘hallmark’ signatures of galaxy

merging (e.g., tidal arms, tails, bridges, and extended fans), in this paper, we introduce a

8The proposed depth of the CEERS survey reaches greater than a 10σ point-source and 5σ extended-
source sensitivity of 28mag with a ∼ 2800 second exposure in NIRCam/F277W.
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Figure 26: A simulated massive post-merger at z = 3 (VELA 21; see text for details) with
mock CANDELS/Deep HST imaging (top row), and mock JWST-ERS CEERS imaging
(bottom row). In each row, we present the synthetic noise-added images matching their
respective empirical depths (left), the corresponding single-Sérsic GALFIT residual im-
ages (middle), and the extracted feature (if detected) shown with red shading (right). This
figure demonstrates that JWST will enable us to probe tidal features out to high redshifts
in a considerably smaller amount of exposure time and at longer rest-frame wavelengths
when compared to HST.
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new analysis tool to extract and quantify residual substructures hosted by galaxies. Our

method analyzes residual images produced by any standard light-profile fitting tools and

extracts contiguous features that are significant above the sky background and a noise-

only expectation of pixel-contiguity. When applied to both empirical and simulated data,

this tool will facilitate future efforts to calibrate the observables associated with galaxy

merging signatures and provide improved merger rate constraints.

We apply our residual feature extraction method to single-Sérsic residual images

of 16 select galaxies from the CANDELS survey (see Table 6 and [160]) and extract differ-

ent structures hosted by these galaxies – disk structures (4 galaxies), spiral substructures

(4 galaxies), and plausible interaction/merger-triggered tidal features (8 galaxies). The

main conclusions of our empirical exercise are:

•We extract residual disk features and two-armed spiral substructures for all ex-

ample galaxies visually identified as hosting disk and spiral features, respectively.

•We extract plausible structurally-similar, dual tidal interaction signatures hosted

by three example close-pair systems, two close-pair systems where only one galaxy ex-

hibits plausible interaction signatures, one system experiencing a plausible minor merger

event, and one galaxy hosting plausible post-merger signature.

• To illustrate the role of imaging depth during feature extraction, we compare

the residual substructures extracted from deep (HST 10-orbit) and shallow (HST 2-orbit)

images of three example galaxies hosting plausible tidal features. We find that the features

extracted at shallow depths are qualitatively similar but noisier in appearance compared

to their deeper counterparts owing to the limited sensitivity of shallow CANDELS data to
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only the higher-surface brightness substructure of the features.

We also apply our tool to synthetic HST observations of a galaxy merger from

the VELA hydro-dynamic simulations [164]. We extract the residual features and quan-

tify their areas during 10 time steps of the merging process spanning 1.7 . z ≤ 1.1

(∆t ∼ 1.4 Gyr), each at 19 viewing orientation angles, and two observational depth con-

figurations matching empirical CANDELS observations (Wide and Deep). We also illus-

trate the qualitative appearance of these residual features at one fixed orientation. The

main conclusions of our theoretical exercise are:

•We find that the features typically rise in prominence (feature area) ∼ 150 Myr

after the first pericentric passage (z = 1.63; time since coalescence t = −0.46 Gyr),

which visually correspond to close-pair interaction signatures. These features abruptly

diminish by a factor of two in significance during t = −0.15 Gyr before coalescence.

• Starting with the coalescence stage (z = 1.44; t = 0 Gyr), we extract post-

merger features that grow in prominence until peaking at 3− 7 times the initial minimum

value after 300 Myr. These stages visually represent the birth and growing prevalence of

tidal arm features. At later time steps 0.47 ≤ t ≤ 0.79 Gyr, the feature prevalence follows

a stochastic rising and falling trend, where the extracted tidal features appear structurally

fragmented and clumpy appearance.

• Imaging depth and viewing orientation play a key role in detecting certain

merger features. At deep image depths, we extract all the features at nearly all viewing an-

gles (∼ 100% detection probability). However, the same features in shallow depth images

are detected at ∼ 50 − 75% of the viewing sightliness during −0.46 ≤ t ≤ −0.15 Gyr
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prior to coalescence. They only reach 100% detection probability at t > 0 Gyr, when the

first noticeable increase in feature prominences occur. Additionally, the temporal trends

in shallow depth images are shifted to systematically smaller areas than their deeper depth

counterparts. At a fixed depth, the measured feature prominences between different view-

ing orientations can vary by 20− 40%.

While the application of feature extraction method provides important insights

about the onset and evolution of tidal features hosted by an example galaxy major merger

from the VELA hydro-simulations, we caution the extrapolation of our quantitative (e.g.,

observability timescales) and qualitative (e.g., tidal feature shapes) interpretations to a

general sample of mergers. This is because the strength and appearance of tidal debris

may depend on the intrinsic properties of merging galaxies such as: stellar mass-ratio,

redshift (driven by the evolution gas-fractions), merger orbital configurations (e.g., pro-

grade vs. retrograde approach). Moreover, it is also important to note that the tidal feature

observability carried out in a cosmological context may differ from a similar exercise on

idealized binary-merger simulations.

Lastly, we discuss two additional possible future applications of our general pur-

pose tool. First, we illustrate the extraction of strong gravitational arcs in a candidate

strong lensing system identified by [163]. Second, we demonstrate the future prospect of

using our method to probe high-redshift tidal features by applying it to synthetic JWST

observations of a z ∼ 3 simulated major merger. We find that JWST can probe faint,

high-redshift tidal features with a smaller exposure time investment and longer rest-frame
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wavelengths (2.7µm) than HST/WFC3 H-band 10-orbit (i.e., CANDELS/Deep) observa-

tions.
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CHAPTER 3

MAJOR CLOSE-PAIR FRACTION CALIBRATIONS USING MOCK

REALIZATIONS FROM SEMI-ANALYTICAL MODELS

Unpublished

Abstract

Observational selection effects may be one of the primary reasons for the study-

to-study close-pair frequency measurements during the key epoch of galaxy growth 1 <

z < 3, yet their impact is poorly constrained. In this study, we analyze the redshift

evolution of the close-pair frequency and quantify the impact of different observational

effects (photometric redshifts and their uncertainties, stellar-mass errors, sample com-

pleteness, and survey area sizes) using mock light cone data from the leading SantaCruz

Semi-Analytical Model (SC SAM). Our main findings are that (i) Only∼ 30−35% of the

pairs selected by common photmetric redshift proximity criteria have small relative veloc-

ities ∆v ≤ 500 km s−1; (ii) The observed major pair counts require a relative reduction of

5−25% to account for the impact of stellar-mass errors and to accurately represent the true

major counts; (iii) a relative increment of 10− 35% at z ∼ 2− 3 is required to correct the

observed photometric redshift based pair fractions for sample completeness at a typical

CANDELS survey depth setting; (iv) A typical pair fraction variation of ∼ 0.01 − 0.015

is expected among CANDELS-UDS sized fields (∼ 160 arcmin2). By applying these

calibration corrections for observational effects, we compute latest CANDELS close-pair
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fractions among ∼ 9500 massive galaxies (log10(M?,can/M�) ≥ 10) during 0.5 < z < 3.

We find that the calibrated CANDELS pair fraction evolves mildly from ∼ 6% to ∼ 9%

during 0.5 < z < 1.5 and remains considerably flat at ∼ 9% over 1.5 < z < 3.

3.1 Introduction

Major galaxy merging (mass ratio < 4) is a fundamental aspect of the hierarchi-

cal structure-growth scenario of the Universe. As such, it is theoretically predicted to

contribute to the empirically well-documented stellar-mass growth of high-mass galaxies

(e.g., Mstellar > 1011Msun), enhance global galactic star-formation, and facilitate central

super-massive black hole growth and triggering. Observationally quantifying the major

merger frequency and its evolution is a key methodological step in empirically verifying

the “merging – galaxy evolution” connection. Several studies over the past two decades

have quantified the redshift evolution of major merger incidence at z . 1.5 using close-

proximity galaxy pairs [3–6, 144], and more recent works have extended the technique’s

use out to z ∼ 3− 6 [16,17,140,147,205]. These studies broadly agree that major close-

pair fractions (fpair) increases moderately to strongly during 0 < z . 1.5, albeit with

some study-to-study variations owing to differences in pair selection choices (see [140]

for discussion). However, the empirical results at 1 < z < 3 vary considerably between

moderately rising [205] to flattening or diminishing diminishing trends [15, 16, 140], de-

spite choosing closely-matching pair-selection criteria. These variations may be due to

important observational biases that dominate during the 1 < z < 3 regime such as the

photometric redshift and stellar-mass measurement uncertainties, sample incompleteness,
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intrinsic number count variance from field-to-field. The impact of such observational ef-

fects on the measurement of fpair evolution is yet to be systematically explored and doing

so is a crucial step towards robustly quantifying the close-pair statistics during the key

epoch of galaxy evolution. To address some of these key open questions, In this study,

we carryout a detailed systematic calibration of the impact of such observational effects

by analyzing the redshift evolution of fpair within the mock galaxy light cone data based

on the SantaCruz Semi-Analytical Model [136, 206, 207] with realistic CANDELS sur-

vey [20, 21] like observational effects. This comprehensive analysis and its methodolog-

ical framework will enable future studies to derive robust pair statistics out to z ∼ 3 and

beyond.

Major galaxy-galaxy mergers are theoretically expected as a natural consequence

of the gravitationally driven dark-matter halo merging in a hierarchical structure growth

paradigm of the universe. Theoretical galaxy evolution simulations advocate for the im-

portance of major mergers in driving key aspects of galaxy growth and transformation

such as bulid-up of massive elliptical galaxies [28, 31, 32], enhancement of star for-

mation [33–35], and growth and triggering of central super-massive black hole activity

(SMBH) [13, 37–39]. Many empirical studies have attempted to validate these theoreti-

cal expectations and have indeed found that major mergers can explain the stellar-mass

and number density buildup of massive galaxies at z < 1 [7, 43, 44], enhancement of

SF [46,150] and SMBH activity [47–49]. However, some studies have also found contra-

dicting results of weak or no merger-SF-AGN connection [50, 51, 54, 56], suggesting that

alternate physical processes may be at simultaneous play (e.g., Violent Disk Instabilities
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(VDI); [57, 58]), indicating that the role of major mergers in galaxy evolution remains a

key open question. Robust empirical identification of major merging systems and quanti-

fying their frequency (i.e., fpair) is an important step in such studies and biases with this

step can significantly hinder the ability to correctly interpret the merging – galaxy evolu-

tion connection. As such, accurately quantifying the major merger frequency is crucial to

address the role played by mergers in galaxy evolution.

Motivated by theoretical simulation predictions that similar-mass galaxies in close

physical proximity interact gravitationally and coalesce into a more massive system, many

studies have used close pairs as a reliable probe for identifying ongoing or future ma-

jor mergering systems. These studies commonly select host (1) galaxies that have at

least one companion (2) meeting a set of selection criteria: a) proximity in 2D projected

distance (Rproj); b) proximity in redshift (∆z12 = z1 − z2) or relative velocity space

(∆v12 = v1− v2); c) stellar-mass ratio (M1/M2). A wide range of choices have been em-

ployed in the literature for these criteria. For Rproj, an annular region is often chosen with

Rproj ∈ [Rmin, Rmax], where the minimum (Rmin) and the maximum (Rmax) projected

separation ranges between ∼ 0 − 14 kpc [14, 16] and ∼ 30 − 140 kpc [60, 61], respec-

tively. To ensure that the host and companion lie in close (plausible) physical proximity,

it is a standard practice in the literature to either choose stringent spectroscopic veloc-

ity difference (commonly, ∆v12 ≤ 500 km s−1, e.g., [5, 62]) when data is available or

use photometric redshift error (σz) weighted differences (∆z12/σz; e.g., [6,16,128,140]).

Finally, the choices for the stellar-mass ratio based major pair selection ranges between
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M1/M2 ≤ 2 [64] and M1/M2 ≤ 5 − 6 [65, 147], where the most common choice be-

ing M1/M2 ≤ 4 (see [140]). Such variation in pair selection choices yielded a range of

fpair(z) evolutionary trends ∝ (1 + z)0.5−3 at 0 < z < 1.5. Indeed, through a systematic

analysis of close-pair selection effects, [140] suggested that the variations between dif-

ferent studies can be explained by their use of systematically stringent/lenient selection

criteria. However, despite using closely matched pair selection criteria, recent measure-

ments of fpair(z) evolution at z > 1.5 vary from moderately increasing to flat, or dimin-

ishing trends [16, 17, 67, 140, 147, 205], highlighting the strong need to understand the

study-specific observational selection effects at play.

Photometric redshift (zphot) based close-pair proximity selection is a common

technique used by high redshift pair studies, where the zphot uncertainties play a cru-

cial role. For e.g., [6] impose ∆z2
12 ≤ σ2

z,1 + σ2
z,2 and [128] uses ∆z12 ≤ σz,1(1 + z1),

where σz,1 and σz,2 are the 1σ host and companion redshift uncertainties, respectively.

These zphot based criteria translate to a redshift-dependent relative velocity separation se-

lection, where a ∆z . 0.02(1 + z) corresponds to ∆v . 18, 000 km s−1 (see [128]). The

accuracy of photometric redshift estimations vary amongst different studies and is depen-

dent on several survey-related and methodological aspects (e.g., number of wavelength

bands, template-fitting assumptions, etc). For e.g., [17] reports σz ∼ 0.01 − 0.05 for

different survey fields in their study (also see [205]), and [140] reports σz ∼ 0.03 for the

CANDELS fields. Such study-to-study differences in the zphot uncertainties could lead

to systematic variations in the fpair measurements, and this motivates the strong need to

quantify and calibrate their impact.
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In simultaneity to the zphot uncertainties, the galaxy’s stellar mass plays a crucial

role in the selection of the primary, mass-limited host-galaxy sample, and in selecting

major, similar-mass companions using a stellar-mass ratio M1/M2 criterion. Systematic

and random uncertainties of stellar mass can impact the selection of primary host sam-

ple and major pair selection by scattering the galaxies into/out of the selection function

boundaries, thereby impacting the subsequent pair frequency measurements. Therefore,

study-to-study variations in stellar-mass uncertainty properties could be contributing to

the differences in close pair frequency measures, and this highlights the strong need to

calibrate their impact.

The choice of the stellar-mass limited host galaxy sample selection employed by

several close-pair studies closely ties with the sample’s stellar-mass/detection complete-

ness as a function of redshift. It is a common practice to select a mass limit for the

host sample such that their corresponding potential companion galaxy sample is highly

complete in the redshift range of study. For e.g., [140, 205] choose log10Mstellar/M� ≥

10.3 for their host galaxy sample, where their corresponding M1/M2 ≤ 4 companions

(log10Mstellar/M� ≥ 9.7) are & 90% complete out to z ∼ 3. While, majority of studies

assume that the high host and companion sample completeness will have minimal impact

on the resultant close-pair frequency measures and do not apply an explicit correction

to them, some recent studies (e.g., [205]) have applied a stellar-mass function based sta-

tistical correction for missing pairs due incompleteness. Quantifying the direct impact

of sample incompleteness on the measured close-pair statistics and deriving systematic

correction calibrations are crucial to accurate pair frequency measures at high redshift
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(z ∼ 2− 3, and beyond), where such completeness effects might be especially dominant

in current common extra-galactic survey settings.

Different pair studies in the literature have used ground-based and space-based

observations of different survey fields of interest, which have a wide range of sky area

and redshift coverage. Intrinsic variations in the galaxy number counts can occur due to

cosmic sample variance, which can become a dominant source of uncertainty especially

for smaller fields and at high redshifts [115]. Such variations in the number counts of host

and companion samples can directly impact the close-pair incidence statistics, and this

may be one of the contributing effects towards study-to-study pair frequency variation

at z > 1.5. This motivates the need for deriving detailed calibrations of the impact of

intrinsic sample variance when deriving close-pair statistics.

Semi-analytical models (SAMs) of galaxy evolution offer a powerful way towards

understanding several key aspects of the galaxy formation and development physics.

Conceptually, the SAM framework involves assuming analytical prescriptions for bary-

onic physics (e.g., star formation, stellar and black-hole feedback, stellar evolution, etc)

and forward models them using the merger histories of dark matter haloes (often re-

ferred to as merger trees) derived from large N-body simulations. Decades of research

has yielded several novel SAMs following different assumptions for baryonic physics

[27, 136–138, 206, 208–210], and more recent works have updated their frameworks with

new modeling assumptions as informed by recent advancements in hydro-dynamic sim-

ulations and empirical observations [211–213]. The Santa-Cruz Semi Analytical Model
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(SC SAM; e.g., [136,206,207]) is a leading galaxy evolution framework used by many ob-

servational studies [59,135] to physically interpret various aspects of galaxies and provide

forecasts for future studies with upcoming surveys [213, 214]. Recent studies have lever-

aged the power of the SAMs frameworks to build mock light cone catalogs of galaxies

and constructed observational celestial footprints that mimic popular surveys [215, 216].

Such SAM light cone data enables a direct path towards measuring the close-pair statistics

and a systematic quantification of the impact of different observational selection effects

in a realistic observational setting.

In this work, we analyze the redshift evolution of the close-pair frequency using

the mock light cone data of SC SAMs over 0.5 < z < 3.0 while assuming commonly-used

pair selection criteria . By systematically incorporating CANDELS-like observational ef-

fects such as photometric redshifts and their uncertainties, stellar-mass errors, sample

completeness, and survey area sizes, we assess their impact on the pair frequency mea-

surements and derive detailed correction calibrations. We also compute latest empirical

CANDELS pair frequency evolution during 0.5 < z < 3 by appropriately correcting for

the observational effects.

This work is structured as follows: In Section 2, we provide a description of the SC

SAM raw light cone catalogs and discuss our methodology of applying the CANDELS-

like observational effects (photometric redshifts and their errors, stellar-mass errors, sam-

ple completeness curves). We also briefly discuss the CANDELS survey photometric and

high-level data products (redshifts and stellar masses). In Section 3, we discuss different

close-pair selection criteria explored in this study and derive the redshift evolution of the
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close-pair frequency with and without the different incorporated observational effects. We

also systematically quantify the impact of each observational effect and provide statistical

correction calibrations. In Section 4, we derive the latest empirical CANDELS close-pair

frequency evolution measurement after applying the appropriate correction calibrations

derived in Section 3. Finally, we discuss our main conclusions in Section 5.

3.2 Raw Santa-Cruz SAM Mock Data and Derived Parameters

To better understand and quantify the role of observational systematics when mea-

suring close-pair fractions, we analyze galaxy-galaxy close pair fractions in mock light

cone catalogs generated by the SantaCruz Semi-Analytic Model (SC SAM; [136]). In

this section, we introduce with the raw SC SAM light cone mock data and discuss the

derived parameters with realistic CANDELS survey like observational effects such as

photometric redshifts and their errors, stellar masses uncertainties, and detection com-

pleteness limits.

3.2.1 Santa-Cruz SAM Raw Light cone Catalogs

We use the SC SAM based mock light cone catalogs generated to match the celes-

tial footprints of the CANDELS survey by [136]. Briefly, the SC SAM model maps the

baryonic physics onto root dark-matter halo information drawn from the Bolshoi-Planck

N-body simulations [217]. For details regarding different analytical prescriptions used in

the SC SAM, we refer the reader to [137, 218]. Following the framework by [125], this

SC SAM information is further processed to create eight light cone realizations sampling

different sight lines of the N-body simulation box. These light cones are then used to
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Figure 27: Left-panel: H-band magnitude vs. photometric redshift uncertainty σz,can/(1+
zphot,can) for all the galaxies (with good data; PhotFlag= 0) from the CANDELS UDS
field (red points), with their medians and 1σ error bars in bins of H-band magnitude
(∆H160w = 0.5mag). We also show the analogous quantity σz,mock/(1 + zmock) and
for Mstellar ≥ 2.5 × 109M� galaxies from the one mock SantaCruz SAM lightcone
(blue contours) assigned based on the CANDELS galaxies information (see Sec 3.2.1).
Right-panel: We show the variation of mock photometric redshift estimates (zmock) from
the true simulated redshifts (zsim) for the SAMs galaxies: (zmock − zsim)/(1 + zsim)
as a function of zmock (blue contours). For reference, we show analogous information
(zphot,can− zspec)/(1 + zspec) for all galaxies in the CANDELS fields with available spec-
troscopic redshift information (red points). In both the panels, the contours levels corre-
spond to counts of 50, 68, 90, 95, and 99 percentile levels of the 2D histogram number
counts in the respective parameter space.
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generate emulated galaxy mock catalogs spanning the celestial footprint setting of the

five CANDELS fields (UDS, GOODS-S, GOODS-N, COSMOS, and EGS), and sky co-

ordinates (RA and DEC) are assigned to each galaxy in the mock catalog. Alongside

this information, each galaxy in the mock catalog holds its true simulated redshift (zsim),

stellar-mass (Mstellar,sim), and apparent magnitude in HST WFC3/F160W (H-band; Hsim),

which we use throughout this analysis.

We note that the raw SC SAM mock catalogs span ∼ 5− 8 times larger sky area

than the native CANDELS field footprint sizes. In conjunction with eight different real-

izations, this amounts to 64 unique CANDELS UDS field sized regions, which enables

us with ample statistical power when measuring the close pair statistics and directly as-

sessing their field-to-field variations. Therefore, for our analysis, we choose CANDELS

UDS field mock catalogs, and note that choosing mock data from a different field (e.g.,

CANDELS GOODS-S) does not impact the results discussed in this work.

3.2.2 Derived Parameters from Mock Data

To quantify the effect of different observational effects on the measured redshift

evolution of close-pair fractions, we mimic the photometric redshift errors, stellar-mass

systematic and random measurement errors, and detection incompleteness onto the mock

lightcone catalogs.

3.2.2.1 Photometric Redshifts and their uncertainties

Photometric redshifts uncertainties (σz) are commonly used in the close-pair stud-

ies to isolate plausible physical pairs by imposing a zphot-based proximity selection [6,16,
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140,205]. While the effects of different redshift proximity selection choices was explored

in [140], a comprehensive look into the role of σz on measured pair fractions is yet to

be explored. To quantify the effect of zphot errors in selecting primary galaxy samples

for close-pair analysis and quantifying the pair fractions, we incorporate the statistical

behavior of CANDELS photometric redshift properties such that their σz/(1 + zphot) dis-

tributions are mimicked by the SC SAM mock galaxies. To achieve this, we use the latest

CANDELS photometric redshift data (zphot,can) produced by [114]. Briefly, the CAN-

DELS photometric redshifts were computed by different teams using different codes and

template-fitting prescriptions, which were then complied by [93] to derive a “CANDELS-

team” redshift as the median of all individual team’s zphot,can values. Building on initial

efforts by [93], [114] used a hierarchical Bayesian approach to combine individual par-

ticipant’s zphot,can probability density functions (PDFs) for each galaxy and derived more

accurate point estimates and self-consistent zphot uncertainties (σz,can).

In Figure 27 (left-panel), we show the σz,can/(1+zphot,can) as a function of the HST

CANDELS H-band magnitude (H160w,can) for all the galaxies (with good data; PhotFlag =

0) in the CANDELS UDS field. For each galaxy in the SC SAM mock lightcone data,

we use its H-band magnitude (H160w,sam) to assign a σz/(1 + zphot) value by randomly

sampling the CANDELS σz,can/(1 + zphot,can) distribution in bins of ∆H160w = 0.5 mag.

We then apply the sampled SAM redshift uncertainty (σz,sam) to the true SC SAM red-

shift (zsam) of each galaxy and then generate its corresponding SAM photometric red-

shift zphot,sam value by re-sampling a Gaussian distribution centered on the true redshift

zsam and with a standard deviation of σz,sam. In Figure 27 (left-panel), we also show the
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σz,sam/(1 + zphot,sam) vs H160w,sam for log10(M?,sam/M�) & 9.4 galaxies1 and illustrate

how they statistically mimic the CANDELS distribution in this parameter space. In Fig-

ure 27 (right panel), we show the redshift normalized difference between the assigned

zphot,sam and zsam as a function of zphot,sam for SAM galaxies in the left panel in con-

junction with analogous (zphot,can − zspec) quantity for all CANDELS galaxies with good

quality zspec information. From this diagnostic, we illustrate that our zphot,sam and σz,sam

assignment also self-consistently mimics the empirical CANDELS (zphot− zspec) param-

eter space.

3.2.2.2 Stellar-mass errors

Stellar-mass measurements of galaxies play a critical role in selecting massive

galaxy samples of interest for close-pair analysis. Moreover, the stellar-mass ratioM1/M2

is also an important variable used to select major pairs (M1/M2 ≤ 4). To understand the

role played by stellar-mass errors on the pair fraction measurements, for each galaxy in

our SAM mock catalog, we mimic an empirically constrained, redshift dependent stellar-

mass systematic (µlogM ) and a Gaussian scatter (σlogM ) derived by [219] as:

µlogM = −0.044
z

1 + z
+ 0.041 [dex], (3.1)

and

σlogM = min[0.07 + 0.07z, 0.3][dex], (3.2)

where we select either σlogM = 0.07+0.07z, or σlogM = 0.3, whichever is the minimum

value at a given redshift.
1We choose this sub-sample as they are potential < 4 : 1 companions to log10(M?,sam/M�) ∼ 10

galaxies.
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For each galaxy in our mock lightcone, we fold in the redshift errors simultane-

ously by assigning a µlogM and σlogM based on its zphot,sam. Assuming a log-normal

Gaussian centered at log10Mstellar,sim + µlogM and a standard deviation of σlogM , we

randomly assign a mock stellar-mass log10(Mstellar,mock) for each galaxy. In Figure 28

(left-panel), we show the log10(Mstellar,sim)− log10(Mstellar,mock) behaviour of a subset of

galaxies (0.5 < z < 1.0 and |zmock−zsim| < 0.1) as a function of log10(Mstellar,sim/M�) in

the SC mocks. We note that the median offset and standard deviations are consistent with

prescription given by equations 3.1 and 3.2. During our close-pair analysis ( § 3.4), we

quantify the impact of using log10Mstellar,mock on the selection of primary galaxy samples

and major pair selection.

3.2.2.3 Detection Completeness

To understand the role of missing pairs due to source detection completeness lim-

its while measuring the pair fraction, we incorporate empirically-motivated, magnitude-

dependent detection completeness limits to our mock lightcones, which conceptually

translate into stellar-mass dependent completeness limits. We use the H-band magnitude

based completeness fractions of the CANDELS fields by [205] at two survey configu-

rations: Wide1 and Wide2. Briefly, Wide1 configuration corresponds to the shallowest

mode of CANDELS observations with a 80% magnitude completeness limit ( H80 =

25.3 mag), whereas the Wide2 scenario is at a moderate depth with H80 = 25.8 mag.

Note that ∼ 57% of the CANDELS fields have been observed at a Wide2 setting, how-

ever, with considerable amount of area ( ∼ 20%) in Wide1 configuration (see [205]).
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Figure 28: The difference between the true and realistically mimicked observed stellar
masses (log10Mstellar,sim − log10Mstellar,mock) in bins of log10Mstellar,sim at 0.5 < z < 1.0
for galaxies that satisfy |zmock − zsim| < 0.1 in the SantaCruz SAM mock lightcones
(red background points). We show the running medians and standard deviation of the
difference in 0.25 dex bins of log10Mstellar,sim (black points with errorbars).

To assign completeness probabilities to galaxies across a wide range of magni-

tudes in our mock catalogs, we analytically approximate their completeness fractions us-

ing a modified (reverse) sigmoid function of the form:

c =
1

1 + p× exp [q(Hmag − r)]
. (3.3)

We choose this parametric functional form because it mathematically follows the general

shape of the common completeness functions in the literature (e.g., see [16, 140, 205]).

The parameters p, q conceptually control the decaying shape of the completeness curve,

whereas the r parameter controls the shift along the magnitude axis. An alternative to our

approach is to use the empirical completeness curves with spline interpolation between
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the magnitude bins and directly adopting them onto the simulated data. However, we

expect our adopted choice of the modified sigmoid function will have a minimum impact

on our analysis results.

In Figure 29 (left-panel), we show the CANDELSH-band completeness limits for

the Wide1 and Wide2 configurations from [205]. We perform least-square fit to this data

with equation 3.3 and find best-fit (p, q, r) parameters (2.5, 2.0, 27.0) and (2.5, 2.0, 26.5)

for Wide1 and Wide2 configurations, respectively. In Figure 29, we show the best-fit com-

pleteness curves alongside the CANDELS survey completeness estimates [205]. For both

the Wide1 and Wide2 configuration based best-fit completeness curves, we also quote

the 80% completeness magnitude H80 by substituting their corresponding best-fit p, q, r

values in equation 3.3 and equating it to a completeness value = 0.8.

We assign detection probabilities to each galaxy in our SC-SAM mock catalogs

at two CANDELS-survey depth configurations (Wide1 and Wide2) by substituting the

galaxy’s simulated H-band magnitude Hsim and their corresponding best-fit (p, q, r) val-

ues in equation 3.3. In Figure 29 (right panel), we show the fraction of galaxies that are

missed due to the detection completeness fraction within three stellar-mass bins log10(Mstellar/M�) ∈

[9.4, 10] for CANDELS Wide1 and Wide2 depth configurations. Our notable finding

based on this figure is that up to ∼ 10% (∼ 5%) of the log10(Mstellar/M�) ∈ [9.4, 9.7]

galaxies, which are potential major companions to log10(Mstellar/M�) ∼ 10, can be

missed at the 1.5 < z < 3 in the CANDELS Wide1 (Wide2) configuration. We also

find that nearly all log10(Mstellar/M�) > 9.4 galaxies are retained at z < 1 irrespective of

the depth configuration, however, at z > 1, the completeness limits start to show an effect
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Figure 29: Left-panel: Extended source detection completeness as a function of H-
band magnitude by [205] for two survey depth configurations: Wide1 (sky blue dashed
line) and Wide2 (dark blue dashed line). We also show the best-fit reverse sigmoid
function (equation 3.3) to their respective empirical completeness in solid lines, and report
the best-fit equation 3.3 parameters (p, q, r) and magnitude limit at which the detection
completeness is 80% (H80) in the legend. Right-panel: Fraction of galaxies in three
stellar-mass bins log10(Mstellar/M�) ∈ [9.4, 10] (red, blue, and green colors) that are
missed due to the incorporated source detection completeness (completeness fraction)
as a function of redshift for CANDELS Wide1 (solid lines) and Wide2 (dashed lines)
configurations. The error bars correspond to the standard deviation of the completeness
fraction from 100 bootstrap resamplings.

on these trends, where ≤ 5% of the log10(Mstellar/M�) ∈ [9.7, 10] galaxies are missed at

2.5 < z < 3 in the Wide1 configuration. Furthermore, we also note that the effect of

incorporated completeness limits is less severe for a deeper, Wide2 configuration, which

is expected because it has better detection completeness at fainter magnitude limits. In

§ 3.3.2.3, we investigate how the missing of potential major companions as a function of

different survey depth settings affects the pair fraction measurements.

3.3 Impact of Observational Effects on Close-pair Measurements

To quantify the impact of observational effects on the pair fraction measurements,
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first we discuss five commonly employed pair selection criteria explored in our analysis,

and the computation of fpair(z). Next, we quantify the impact of the observational effects

(photometric redshifts and their uncertainties, stellar-mass systematic and random mea-

surement errors, source detection completeness, and intrinsic field-to-field variations) by

assessing the detection of close pairs and measuring the fpair in SC-SAM mocks with and

without such observational effects.

3.3.1 Close-pair selection functions & fpair derivation

To assess the impact of different observational effects for different pair selection

criteria, we analyze close pairs within the SC-SAM mock light cone data for a selective

set of five commonly employed pair selection functions shown in Table 8.

Table 8: Close-pair selection criteria explored in our analysis. All the following selections

use a common stellar-mass ratio based major-pair selection criterion M1/M2 ≤ 4. For

each selection, we indicate the information used for redshift and stellar mass.

Selection Stellar-mass Limit Proj. Distance Physical Proximity Information

used

log10(Mstellar/M�) Rproj ∈ [kpc] ∆v or ∆z

A ≥ 10 [5, 50] ∆v≤500

km/s

zsim &

Mstellar,sim

B ≥ 10 [5, 30] ∆v12≤500

km/s

zsim &

Mstellar,sim

C ≥ 10 [5, 50] ∆z12≤√
σ2
z,1 + σ2

z,2

zmock &

Mstellar,mock
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D ≥ 10 [5, 50] ∆z12/(1+

z) ≤
0.05

zmock &

Mstellar,mock

E ≥ 10.7 [5, 50] ∆v12≤500

km/s

zsim &

Mstellar,sim

Briefly, our selection criteria spans two stellar-mass limited choices log10(Mstellar/M�)≥

10 and log10(Mstellar/M�) ≥ 10.7 , two projected distance selectionsRproj ∈ [5−30] kpc

and ∈ [5− 50] kpc, one stellar-mass ratio based major-pair selection M1/M2 ≤ 4. Addi-

tionally, we also explore three physical proximity choices – spectroscopic velocity differ-

ence ∆v12 ≤ 500 km s−1 [5], photometric redshift proximity: ∆z12 = |z1−z2|/(1+z) ≤

0.05 [128] (hearafter S17 criteria) and ∆z12 ≤
√
σ2
z,1 + σ2

z,2 [6] (hearafter B09 criteria).

Following the standard practice in the literature, we quantify the number of mas-

sive galaxies that have a major companion in close physical proximity (Npair) in each

redshift bin for a chosen close-pair selection criteria, and compute the close-pair fraction

as:

fpair(z) =
Npair(z)

Nm(z)
, (3.4)

where Nm is the number of massive galaxies satisfying one of the aforementioned stellar-

mass limit. We also compute the 68.3% binomial confidence limits for the fpair using the

number counts of Npair and Nm.
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3.3.2 Impact of Observational Effects

We analyze close pairs among the SC-SAM mock catalogs with realistically mim-

icked observational effects to quantify the impact of photometric redshift uncertainties,

stellar-mass errors, source detection completeness, and intrinsic field-to-field pair frac-

tion variations.

3.3.2.1 Impact of Photometric Redshift Errors in Selecting Physical Proximity Pairs

The choice of the redshift proximty selection can impact the quantification of

close-pair counts, especially during the epochs where redshift uncertainties are high (z &

1.5). Conceptually, photometric redshift proximity criteria selects pairs that have small

redshift separations permitted within the redshift uncertainties of the paired host and com-

panion galaxies. The typical photometric redshift errors translate to several∼ 1000 km s−1

in relative velocity differences, especially at high redshifts (z & 1.5 − 2), thereby lead-

ing to a systematically higher number of selected close pairs than the stringent ∆v12 ≤

500 km s−1 selection. In Figure 30 (left panel), we show the velocity difference ∆v12

vs absolute redshift difference |∆z12| for close pairs at 0.5 < z < 1. In this figure, we

visually demonstrate how several pairs with a typical redshift difference ∆z ≤ 0.05 at

0.5 < z < 1.0 have high relative velocities (∆v12 > 500 km s−1).

To understand the impact of photometric redshift proximity criterion in identifying

∆v12 < 500 km s−1 pairs, we quantify a redshift proximity calibration weight factor

(wzprox):

wzprox =
Npair [(B09 or S17) and∆v12 ≤ 500 km s−1]

Npair [B09 or S17]
. (3.5)
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Conceptually, in the the above equation, wzprox translates to the fraction of pairs se-

lected using either B09 or S17 photometric redshift selection that also satisfy ∆v12 ≤

500 km s−1.

In Figure 30 (right panel) we show wzprox as a function of redshift and find that

only∼ 35% of the B09 or S17 selected pairs at z ∼ 1 have small velocities (< 500 km s−1)

and thewzprox falls to 30% at z ∼ 3. We also note that thewzprox values for B09 proximity

selection are higher than the S17 criterion at z . 2, however, they converge to the same

values at z & 2. This behavior is a consequence of both B09 and S17 redshift proximity

selections probing the same ∆v12 pairs at z & 2. Our finding highlights that the choice

of redshift proximity selection, especially based on photometric redshifts and their uncer-

tainties can bear significant systematic offset in terms of selecting gravitationally-bound

pair counts by up to ∼ 3 times. In § 3.5, we demonstrate the application of this wzprox(z)

correction to empirical pair fraction data from CANDELS to infer an expected empirical

∆v12 ≤ 500 km s−1 pair fraction measurement.

3.3.2.2 Quantitative Accuracy of Stellar-Mass Uncertainties in Choosing True Ma-

jor Pairs

In addition to the photometric redshifts and their uncertainties, incorporating re-

alistic observational systematic and random uncertainties for stellar-masses can result in

some major pairs to not satisfy the major pair criterion (M1/M2 ≤ 4), and some to falsely

satisfy it. To quantify the extent of this effect, we measure the accuracy of mock stellar-

mass ratio [M1/M2]mock ≤ 4 criterion in selecting pairs that intrinsically satisfy the sim-

ulated stellar-mass ratio criterion [M1/M2]sim ≤ 4. We quantify the major pair correction
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Figure 30: Left-panel: Velocity difference ∆v12 vs. the absolute mock photometric
redshift difference ∆z12 for major close pairs during 0.5 < z < 1 from the SC-SAM
mocks. We also indicate ∆v12 = 500 km s−1 using the vertical line. Right panel: The
fraction of pairs selected based on photometric redshift proximity selections: i) ∆z12 ≤√
σ2
z1 + σ2

z2 (olive-green line; B09 criteria) and ii) ∆z12 ≤ 0.05(1 + z1) (cyan line; S17
crietria) that satisfy spectroscopic velocity difference ∆v12 ≤ 500 km s−1 as a function of
redshift between 0.5 < z < 3.0.

weight wmaj as the multiplicative factor to the mock major pair counts to account for false

positives and false negatives as:

wmaj =
TP − FP + FN

TP + FP
, (3.6)

where the TP, FP, and FN are true positives, false positives, and false negatives, respec-

tively. They are defined as follows:

TP = Npair([M1/M2]mock ≤ 4 | [M1/M2]sim ≤ 4)

FP = Npair([M1/M2]mock ≤ 4|[M1/M2]sim > 4).

FN = Npair([M1/M2]mock > 4|[M1/M2]sim ≤ 4),

(3.7)

where Npair(condition1|condition2) is the number of pairs satisfying condition 1, given

that they already meet condition 2. Conceptually, TP pairs satisfy both the mock and
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simulated stellar-mass ratio criteria (M1/M2 ≤ 4). FP pairs have their mock mass ra-

tios [M1/M2]mock < 4, but have their simulation [M1/M2]sim > 4. Similarly, FN pairs

are those which have their simulation [M1/M2]sim < 4, but have a mock mass ratio

[M1/M2]mock > 4.

In Figure 31 (left-panel), we show a demonstrative visualization of the pairs in the

simulation mass ratio (using Mstellar,sim) vs. mock stellar-mass ratio (using Mstellar,mock)

parameter space, satisfying Rproj ∈ [5, 50] kpc and ∆v12 ≤ 500 km s−1 (using zsim in

the 0.5 < z < 1.0 redshift bin. In this example, we find that ∼ 15% of the simulated

major pairs ([M1/M2]sim ≤ 4) are scatter to [M1/M2]mock > 4 mock mass ratios. We

also note that ∼ 17% of the mock major pairs [M1/M2]mock ≤ 4 are contaminant minor

pairs ([M1/M2]sim > 4). Using equations 3.6 & 3.7, we find that this corresponds to a

wmaj = 0.8, indicating that the mock pair counts at 0.5 < z < 1 need to be reduced by

20% to accurately represent the simulation pair counts.

In Figure 31 (right-panel), we show the wmaj as a function of redshift for the three

redshift proximity selections (∆v12, B09, and S17). Our generalized interpretation of this

suggests that wmaj follows a flat trend with redshift and ranges between ∼ 0.75 − 0.95

depending on the redshift bin. Additionally, we also note that the wmaj values based on

∆v12 criteria are systematically lower at each redshift bin than the photometric redshift

proximity selections (B09 and S17), likely as a consequence of propagating redshift errors

into Mstellar,mock assignment. Furthermore, the wmaj values when using the B09 and S17

are consistent with each other at all redshifts, indicating that the wmaj measurement is less

sensitive to the nature of photometric redshift proximity selection used.
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Figure 31: Left-panel: The mock stellar-mass ratio [M1/M2]mock vs. simulation mass
ratio [M1/M2]sim for a sample of pairs satisfying ∆v12 ≤ 500 km s−1 and Rproj ∈ [5 −
50 kpc] (Selection A, see Table 8) at 0.5 < z < 1.0. We divide the axes into four quadrants
(colored points) based on [M1/M2]mock ≤ 4 and [M1/M2]sim ≤ 4 lines and indicate the
number of pairs per quadrant in text. Right-panel: The redshift evolution of the major pair
correction factor wmaj (see equations 3.6 & 3.7) for pairs satisfying ∆v12 ≤ 500 km s−1

(red lines), ∆z12 ≤
√
σ2
z1 + σ2

z2 (B09 criteria; olive-green lines), and ∆z12 ≤ 0.05(1+z1)
(S17 criteria, cyan lines). The errorbars of wmaj correspond to its 1σ binomial confidence
limits.

Within the assumed Mstellar error budget incorporated into our mock light cones,

our findings imply that the observed major pair counts require a reduction of ∼ 5− 25%

to accurately represent the true major pair counts and account for false contaminant minor

pairs and missed major pairs due to the stellar-mass errors. It is that this important effect

be taken into account when empirically quantifying the pair fractions and in § 3.5 we show

an application of the wmaj correction factors to CANDELS pair fraction data.

3.3.2.3 Impact of Detection Completeness on the fpair(z)

To quantify the impact of sample completeness on the pair fraction measurements,

we incorporate the magnitude-dependent detection probabilities for each galaxy in the SC

mock light cone catalogs (see § 3.2.2.3). We propagate this information to quantify the
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pair fraction with completeness (f ′
pair), such that both host and companion galaxies in a

pair are deemed “detected” as per a weighted coin-toss based rejection sampling, where

detection and non-detection (1−detection) probabilities are assigned using the complete-

ness equation 3.3. We then quantify completeness correction weight factor (wcomp) as

the ratio of pair fraction measurements with and without the incorporated completeness

effects (f ′
pair/fpair).

We quantify the wcomp as a function of redshift for three selections A, C, and D

(see Table 8), and assess thewcomp dependence on the nature of the imposed completeness

function by quantifying wcomp as a function of H80 values spanning H80 ∈ [24, 26] mag.

We achieve this by changing the r parameter between 25 . r . 27 in equation 3.3 and

fixing the p, q variables to their best-fit values. Conceptually, in this step we preserve the

overall shape of the completeness function by holding the p, q values constant and shifting

the overall completeness function to higher/lower H80 values by changing the r values.

We quantify wcomp as a function of H80 as follows:

wcomp(z,H80) =
f

′
pair

fpair

(z,H80), (3.8)

where the f ′
pair and fpair are the SC-SAM mock data based pair fraction measurements

with and without incorporating the detection completeness effects, respectively.

In Figure 32 (top-left panel), we show the wcomp as a function of H80 for pair se-

lection A (see Table 8) at five redshift slices between 0.5 < z < 3 (see figure legend),

highlighting the sole effect of source-detection completeness on the measured pair frac-

tions. For pair selection A, we find that the wcomp ∼ 1 for both Wide1 (H80 = 25.3 mag)
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and Wide2 H80 = 25.8 mag) CANDELS-depth configurations at z . 1.5. This sug-

gests that nearly all expected close pairs are detected at the Wide1 and Wide2 depths, and

the detection completeness effects have a minimal impact on the fpair measures at these

epochs. However, at z & 2, the incorporated incompleteness starts to show its notable

effect where the some lower-mass companions are no longer detected. As a result, for the

Wide1 configuration, we find that the wcomp ∼ 0.9 and wcomp ∼ 0.8 at z ∼ 2 and z ∼ 3,

respectively. We also note that the impact of detection completeness effects are less severe

for the deeper Wide2 depth configuration with wcomp ∼ 0.9 only at z ∼ 2.5− 3.

To assess the impact of sample completeness alongside other observational effects

such as photometric redshifts and stellar-mass uncertainties, we analyze the wcomp as a

function of H80 for pair selections C and D, and show it in Figure 32. We find that at a

fixed redshift slice (e.g., at z ∼ 3 and H0 = 25.3 mag), the wcomp for selection C case

has a smaller value (∼ 0.65) than for the selection D (∼ 0.8). This effect although exists

at H0 = 25.8 mag, it is less severe with wcomp,obs ∼ 0.8 vs. ∼ 0.9 for selections C and D,

respectively.

Our results based on Figure 32 conceptually suggest that regardless of the pair

selection choices, thewcomp depends strongly on theH-band detection completeness limit

for a fixed stellar-mass selected sample, and the mock pair fractions need to be corrected

by a relative fpair amount of 10 − 20% depending on the redshift. They also illustrate

the simultaneous and compound interplay between the redshift proximity and detection

incompleteness limits on the measurement of pair fractions. We encourage future close-

pair studies to incorporate the wcomp trends shown in Figure 32 for their specific pair
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selection functions and survey detection limits to correct for the effect of incompleteness

on the measurement of pair fractions.

Figure 32: The pair fraction completeness correction wcomp as a function of the 80%
H-band detection completeness limit for three pair selections A, C, and D (see Table 8),
which adopt the following redshift proximity selections: i) ∆v12 ≤ 500 km s−1 (top-left
panel), ii) ∆z12 ≤

√
σ2
z1 + σ2

z2 (top-right panel), and iii) ∆z12 ≤ 0.05(1 + z1) (bot-
tom panel), respectively. In each panel, we show the wcomp trends at five redshift slices
indicated by different colored lines (see legend in first panel).

3.3.2.4 Impact of Field-to-Field Pair Fraction Variations

The pair fraction measurements can vary from field to field owing to the intrinsic

variations in the host and companion galaxy number counts from sample variance, and this

may explain the fpair differences between different previous empirical studies, especially
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among those that probe smaller survey volumes. To quantify this effect and provide

calibration corrections for future empirical studies, we measure the fpair at 0.5 < z < 3.0

for five pair selections (A,B,C,D, and E in Table 8) using 64 unique mock fields (sized

∼ 160 arcmin2 each) sampled from the multiple realisations of ∼ 8× larger SC-SAM’s

CANDELS-UDS mock light cone footprints (see § 2.2).

To quantify the field-to-field variation of the pair fraction measurement, we gen-

erate 1000 bootstrap resamplings of the fpair values per redshift bin for each of our pair

selections. We then compute their corresponding standard deviations σ(fpair), and mea-

sure the field-to-field variance of pair fractions as the median σ(fpair) value across 1000

bootstraped values.

To investigate the dependence of σ(fpair) on the choice of projected distance and

stellar-mass limit, in Figure 33 (left panel), we show the median σ(fpair) measurements

along with their errorbars for the pair selections A, B, and E. For selection A, we find

that σ(fpair) increases from ∼ 0.7% to ∼ 1.5% between 0.5 < z < 3.0. For selection B,

which has a smaller projected distance annulus (5− 30 kpc) when compared to selection

A, we find that σ(fpair) values are systematically lower by ∼ 2×, albeit with similar

redshift dependence. On the other hand, for a selection E, which adopts a more massive

galaxy selection (log(Mstellar/M�) ≥ 10.7) than selection A, σ(fpair) remains flat over

0.5 < z < 3 at ∼ 0.5% and is ∼ 2− 3 times smaller than the selection A.

Observational effects such as the photometric redshift and stellar-mass uncertain-

ties can aggravate the galaxy number count variations by scattering of galaxies in and out

of the redshift, stellar-mass, stellar mass-ratio criteria, thereby subsequently impacting
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the fpair measurements. In Figure 33 (right panel), we assess the σ(fpair) for selections A,

C, and D, which span the ∆v12 ≤ 500 km s−1, B09, and S17 redshift proximity selection

choices, respectively (see Table 8). We find that σ(fpair) for both selection C and D are

higher than selection A by ∼ 1.5 − 2 times, reaffirming our aforementioned motivation

statement. We also find that a selection D that adopts a liberal redshift proximity selection

S17 has a systematically higher σ(fpair) value than selection C that uses the B09 criterion.

Our investigation provides important calibrations for pair fraction field-to-field variations

and offers key insights into their dependence on key pair selection variable choices.

Figure 33: Left-panel: Field-to-field “true” pair fraction variation σfpair,sam as a function
of redshift (0.5 < z < 3.0) for log10(M?,sam/M�) > 10, Rproj = 5 − 50 kpc (filled
markers; red solid lines) and 5 − 30 kpc (open markers, magenta dotted lines), and for
log10(M?,true/M�) > 10.7, 5− 50 kpc (open markers, brown dashed lines). Right-panel:
Field-to-field variance of the “observed” close-pair fraction σ(fpair,sam,obs) as a function
of redshift for ∆z12 ≤ 0.05(1 + z1) (cyan line; S17 criteria) and ∆z12 ≤

√
σ2
z1 + σ2

z2

(olive line; B09 criteria). For comparison, we also show the corresponding σ(fpair,true)
from the left panel (red line). In both panels, we show the median and standard deviation
of the σ(fpair,∗) from 1000 bootstrap resamplings of fpair values in CANDELS-UDS sized
fields (∼ 160 arcmin2). For details, see § 3.3.2.4.
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3.4 Close-Pair Fractions in SC-SAM Mocks

To assess the redshift evolution of the pair fraction fpair(z), with and without

various realistic observational selection effects, we analyze close pairs within the SC-

SAM using a selective set of five pair selection criteria (see Table 8), spanning common

choices adopted in the literature for stellar-mass, projected distance, redshift proximity.

3.4.1 fpair(z) for Pair Selections A, B, and E

To assess the pair fraction evolution in the SC-SAM mocks without any observa-

tional effects, we quantify the fpair(z) for selections A, B, and E, using the simulation

information for redshift, and stellar-mass zsim and log10Mstellar,sim, respectively. The se-

lections A and B only differ in their choice of projected distance annulus (5 − 50 kpc

vs. 5 − 30 kpc, respectively), whereas the selections A and E differ in their choice

of stellar-mass limit to select massive galaxy samples (log10(Mstellar/M�) ≥ 10 vs.

log10(Mstellar/M�) ≥ 10.7, respectively).

To assess the fpair(z) for two stellar-mass limit selected samples of massive galax-

ies, in Figure 34 (left panel), we show the fpair(z) for selections A and E, and find that

the pair fraction for log10(Mstellar/M�) ≥ 10 galaxies rises from ∼ 3% to ∼ 10% during

0.5 ≤ z ≤ 3. On the other hand, fpair for more massive galaxies with log10(Mstellar/M�) ≥

10.7 evolves weakly with redshift from 0.5% to 1%, which is∼ 5− 10 times smaller than

fpair values for selection A. This systematic fpair(z) difference between selections A and

E is a direct consequence of the steep shape of the stellar-mass function of SC-SAM

galaxies at high-mass end, where at the number density of log10(Mstellar/M�) ≥ 10.7
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Figure 34: Left-panel: The fpair(z) for two selections A and B using different mass-
limited samples log10(Mstellar/M�) > 10 (red solid line) and log10(Mstellar/M�) > 10.7
(brown solid line). Right-panel: The fpair,sam(z) evolution for pair selections A and B,
which use two projected distance selections: 5 − 50 kpc (solid red lines) and 5 − 30 kpc
(solid magenta lines), respectively. The transparent outer boundary to each opaque line
corresponds to the 1σ binomial confidence level of fpair.

galaxies is smaller than the log10(Mstellar/M�) ≥ 10 counterparts.

To assess the impact of using different projected distance annulus choice on the

fpair(z) trends, in Figure 34 (right panel), we show the fpair(z) for selections A and B,

which use Rproj = 5 − 30 kpc and Rproj = 5 − 50 kpc, respectively. We find that the

fpair(z) evolution for both these selections evolves similarly, albeit with a systematic off-

set where fpair for selection B is smaller than the selection A values. Such a difference

is expected as as a larger selection annulus yields in a larger Npair at each redshift bin,

yielding higher fpair values. This result is consistent with a similar analysis discussed in

Chapter 1 [140].
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3.4.2 fpair(z) for Pair Selections C and D

To quantify the impact of observational effects such as photometric redshift, stellar-

mass uncertainties, and detection completeness on the pair fraction measurements, we

assess the fpair(z) in the SC-SAM mocks for pair selections C and D (see Table 8), using

the mock derived quantities for redshift and stellar masses zmock and log10Mstellar,mock,

respectively. Briefly, these two pair selections differ in their choice of the redshift prox-

imity (B09 vs. S17). For comparison purposes, we assess the fpair(z) trends for selections

C and D in conjunction with the selection A fpair(z) measurements.

In Figure 35, we show the fpair(z) evolution for selections C and D, alongside

the pair fraction evolution for selection A (from Figure 34). We find that the fpair(z)

for both selections C and D rises from ∼ 6 − 7% at z ∼ 0.5 to ∼ 15% at z ∼ 3.

This evolutionary trend is qualitatively comparable to the fpair evolution for selection

A, however, the fpair(z) values for selections C and D are ∼ 3 times larger than the

selection A ones. As discussed in § 3.3.2.1, this is a consequence of the photometric

redshift proximity criteria selecting high velocity pairs (> 500 km s−1). We also notice

that regardless of the selection choice, all the three trends (selections A, C, and D) stay

flat at z > 1.5 relative to the rising pair fractions at z < 1.5. This is especially interesting

as recent empirical (e.g., [205]) and theoretical (e.g., [128]) close pair studies find similar

flattening of pair fractions at z & 1.5. We also note that the selection D fpair(z) stays

systematically higher than the selection C values at z . 2.5, suggesting that the selection

C (using B09 redshift proximity) is more restrictive than selection D in that redshift range.

However, we find that the selection C and selection D fpair values become nearly equal
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at z & 2, owing to the B09 and S17 criteria probing similar redshift difference (∆z12)

pairs when the typical photometric redshift uncertainty of the galaxies at z > 2 makes the

B09 criterion behave quantitatively equivalent to the S17 selection (also see discussion

in § 3.3.2.1). Our results based on Figure 35 illustrate that using photometric redshift

proximity selections can inflate the derived pair fractions, where a significant portion of

the identified pairs can be high relative velocity contaminant pairs.

Figure 35: Redshift evolution of the close-pair fraction fpair(z) during 0.5 < z < 3.0. We
show the fpair evolution for pair selection C (olvie-green line) and D (cyan line), which
use B09 and S17 redshift proximity criteria, respectively. For comparison purposes, we
also show the fpair)(z) trend of pair selection A (red line,same as in Figure 34). The
transparent lines encompassing the medians are 68.3% binomial confidence levels of pair
fraction values.
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3.5 Application of Pair-Fraction Caibrations to the CANDELS Pair Fractions

Thus far, we measured the redshift evolution of pair fractions in the SantaCruz

SAM mock lightcones with realistically mimicked observational effects, and derived com-

prehensive calibrations that quantify the effect of photometric redshift and stellar mass

errors, detection completeness, and field-to-field variance of the measured pair fractions.

As a demonstrative application exercise for future close-pair studies to use calibrations

derived in our work, we derive latest major close pair fractions fpair among a massive

sample in the five CANDELS fields, and apply the corrections to derive calibrated CAN-

DELS pair fraction evolution measurements.

3.5.1 CANDELS Data

For our demonstrative application of observational selection effect calibrations,

we derive latest CANDELS close-pair fraction among a sample of of 9540 massive galax-

ies log10(Mstellar/M�) > 10 spanning 0.5 < z < 3 from the five CANDELS legacy

fields: UDS, GOODS-N, GOODS-S, COSMOS, EGS.

We use the H-band (HST/WFC3 F160W) based source catalogs for each CAN-

DELS field by [220] (UDS), [87] (GOODS-S), [88] (GOODS-N), [89] (COSMOS), [90]

(EGS) and the latest photometric redshift information for them (zphot) data by [114].

In addition to the aforementioned details regarding the zphot compilation (see § 3.2.2.1),

[114] also compiled public spectroscopic redshift (zspec) data and defined a “best” avail-

able redshift estimate (zbest) for each CANDELS galaxy using zspec wherever available.

Additionally, we use the CANDELS “team” stellar-mass estimates compiled by [94, 95]
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which were generated by median combining individual mass estimates (of ten partic-

ipants) based on different prescriptions for SED-fitting assumptions (see [95]). For our

empirical analysis, we search for close companions hosted by 9540 massive galaxies (with

photometric good data; PhotFlag= 0) satisfying log10(Mstellar/M�) ≥ 10 and spanning

0.5 ≤ zbest ≤ 3.0.

3.5.2 Raw fpair(z) in CANDELS

Using the CANDELS data described in § 3.5.1, we analyze close pairs among

massive galaxies (log10(Mstellar/M�) > 10) satisfying pair selection C in Table 8. We

quantify the raw (i.e., uncorrected for observation effects) CANDELS pair fraction evo-

lution as a function of redshift (fpair(z)) using the equation 3.4 and show it in Figure 36.

We find that the fpair increases from ∼ 0.08 (at z . 1.5) to ∼ 0.11 (at z & 1.5). At

1.5 ≤ zbest ≤ 3.0, we find that the fpair(z) evolution is consistent with being flat. Later

in this section, we will correct the raw CANDELS fpair(z) for observational effects using

calibrations from Section 3.4 to derived calibrated empirical pair fraction evolution.

It is important to note that the trends shown in Chapter I are not to be directly

compared with those shown in Figure 36, as in Chapter I, we use a different quantity –

the fraction massive galaxies in major pairs (fmp) that is different (but analogous) from

fpair,can. The main difference between fmp and fpair is that in the former case both primary

and companion galaxies are counted towards the numerator in equation 3.4 while simul-

taneously imposing a stellar-mass limit for massive galaxy selection on both of them.

In an ideal scenario where every primary galaxy hosts a massive and major companion,
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fmp ∼ 2fpair,can. However in practice, the ratio of fmp and fpair,can is redshift dependent

owing to imposition of a fixed mass cut on a redshift dependent stellar-mass function. For

example, while the companion galaxies satisfy the stellar-mass cut at z . 1.5, an increas-

ing number of galaxy pairs at higher redshifts (z ∼ 2− 3) are between a massive primary

galaxy and a less-massive one (with 4 : 1) that do not necessarily satisfy the massive

galaxy stellar-mass cut; In such cases fmp ∼ fpair,can. Moreover, at a fixed redshift bin,

the fmp definition tends to probe similar (or nearly-equal) mass companions for galaxies

near the edge of mass cut.

3.5.3 Corrected fpair(z) in CANDELS

We derive the calibrated CANDELS pair fraction evolution fpair,corr(z) by apply-

ing SC-SAM based pair fraction calibrations (§ 3.3) to the raw CANDELS fpair values

from above as:

fpair,corr(z) = (
wmaj × wprox

wcomp

)× fpair(z). (3.9)

Briefly, wmaj accounts for the effect of stellar-mass systematic and random measurement

uncertainties in selecting true major pairs (i.e., [M1/M2]sam ≤ 4 : 1; § 3.3.2.2), wzprox

statistically corrects photometric redshift proximity selection to spectroscopic velocity

difference criterion (§ 3.3.2.1), and wcomp corrects for missing pairs due to detection in-

completeness (§ 3.3.2.3). Additionally, we propagate the effect of field-to-field pair frac-

tion variation (§ 3.3.2.4) by adding the 1σ binomial fpair errors and σ(fpair) in quadrature.

We first derive the corrected, photometric redshift based CANDELS fpair,corr using

equation 3.9 and wmaj calibration from § 3.3.2.2, wcomp calibration for CANDELS Wide2
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depth configuration (§ 3.3.2.3), and by settingwzprox = 1. We also add the binomial errors

of raw CANDELS fpair and the σ(fpair) derived in § 3.3.2.4 in quadrature. In Figure 36,

we show the corrected CANDELS fpair,corr(z) and find that the statistical calibrations

systematically lower the raw CANDELS fpair values, where the dominant contribution

is from wmaj. After correcting for observational effects, we find that the corrected pair

fraction fpair,corr evolves weakly at 0.5 . z . 1.5, and is consistent with being flat at

∼ 10% during 1.5 ≤ zbest ≤ 3.0.

Leveraging our wzprox calibration (§ 3.3.2.1) for selection C, we infer the redshift

evolution of spectroscopic pair fraction in CANDELS by multiplying the above corrected

photometric redshift based fpair,corr with wzprox for selection C (from § 3.3.2.1). We find

that the CANDELS inferred spectroscopic pair fraction remains flat at ∼ 2.5% during the

entire redshift range 0.5 ≤ zbest ≤ 3.0.

3.5.4 Implications of Corrected Pair Fraction Evolution Measurements

Thus far, we quantified the impact of common observational selection effects on

the measurement of close-pair fraction measurements, and derived calibration corrections

for them. We applied these corrections to empirical pair fractions from the CANDELS

survey to derive the latest calibrated fpair(z) measurement over 0.5 < z < 3.0. A key

observation of our work is that the overall calibrated pair fractions are systematically

smaller than the uncorrected fpair. Here, we discuss the implications our results on the

overarching role and contribution of galaxy mergers towards stellar-mass assembly of

high-mass galaxies.
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Figure 36: Redshift evolution of the major (< 4 : 1) close pair fraction fpair(z) among ∼
9500 massive galaxies from the CANDELS survey (blue filled points with 68% binomial
errors) using pair selection C from Table 8. We also show the corrected pair fraction
evolution fpair,corr(z) (open blue markers) after applying the major pair correction (wmaj;
from Figure 31), detection incompleteness (wcomp; from Figure 32), and field-to-field pair
fraction variation in CANDELS-sized fields (σ(fpair); from Figure 33). We also infer
the spectroscopic (∆v12 ≤ 500 km s−1) pair fraction evolution (open red markers) after
additionally correcting the open blue points with wzprox from Figure 35. Note that the
errors on the open points are quadrature sum of binomial confidence limits and σ(fpair).

Assuming the pair observability timescales doesn’t depend on the observational

effects, an overall systematic reduction in the fpair(z) can lower the resultant major merger

rate evolution. Conceptually, the consequence of major mergers on the stellar-mass growth

can be thought of as mass deposition by the companion galaxy onto the host galaxy.

As such, a systematically smaller merger rate would reduce the stellar-mass accretion

rate caused major mergers. Recent theoretical works (e.g., [216]) have found that ma-

jor mergers are a dominant source of external stellar-mass accretion and that they play
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an increasingly important role in building up the present-day (z ∼ 0) high-mass galax-

ies (log10(Mstellar/M�) ≥ 11). However, if the observational selection effect corrected

merger rates are to be used, then the major merger contribution to the build-up of such

high-mass galaxies will be reduced. We reserve the detailed analysis on this topic for

future work.

3.6 Conclusions

In this work, we analyze the redshift evolution of the close-pair fractions fpair

using the mock light cone data of SantaCruz SAMs during 0.5 < z < 3.0, while as-

suming commonly-used pair selection criteria from the literature, and using the intrinsic

simulation information of the galaxies (redshift – zsim; stellar-mass – Mstellar,sim. Simul-

taneously, we also quantify the pair fraction evolution fpair by systematically incorpo-

rating realistic CANDELS-like observational effects such as photometric redshifts and

their uncertainties, stellar-mass errors, sample completeness, and survey area sizes. We

quantify the impact of such observational effects and derive detailed calibration correc-

tions for them. Finally, we also compute latest empirical pair fraction evolution among

log10(Mstellarr/M�) ≥ 10 galaxies during 0.5 < z < 3 using the CANDELS survey, by

appropriately applying the calibrations derived in this study to the raw CANDELS pair

fraction measurements. The key analysis items and their results are as follows:

• The pair fraction evolution fpair(z) for massive galaxies with log10(M?sam/M�) >

10 in the SC SAM mocks satisfying a relative velocity selection ∆v12 ≤ 500 km s−1

evolves moderately with redshift from ∼ 3% to ∼ 10%, albeit with considerably
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flattening behavior at z & 2. On the other hand, the fpair(z) evolution for a heavier

stellar-mass limited sample of log10(M?sam/M�) > 10.7 galaxies is systematically

smaller with 5−10 times lower pair fraction values than the less-massive selection.

• The fpair measurements for a wider annular selection (Rproj ∈ [5, 50] kpc) are sys-

tematically higher than a smaller projected distance selection Rproj ∈ [5, 30] kpc,

however, they follow a comparable redshift evolutionary trends.

• The pair fraction evolution fpair(z) using two photometric redshift proximity based

selections (B09 and S17, see § 3.3.1) and using incorporated photometric redshift

errors evolves consistently from ∼ 6 − 7% (at z ∼ 0.5) to ∼ 15% (at z ∼ 3),

albeit with a considerable flattened trend during 2 < z < 3. Furthermore, these

photometric redshift selected pairs have large velocity separations (> 500 km s−1).

• To assess the impact of photometric redshift selection choices on the pair fraction

measurements, we quantify the proximity correction factor (wprox) as the fraction

of photometric redshift proximity selected pairs (for B09 and S17 selection) that

satisfy a small (true) velocity separation ∆v12 ≤ 500 km s−1. We find that wprox

for both B09 and S17 selections falls from ∼ 0.35 (at z ∼ 0.5) to ∼ 0.3 (z ∼ 3),

indicating that only ∼ 30 − 35% of the photometric proximity pairs have small

velocity differences indicative of gravitationally-bound pairs.

• To calibrate for the effect of stellar-mass systematic and random uncertainties on

the selection of ‘true” mass ratio pairs ([M1/M2]sim ≤ 4), we quantify the major

pair correction factor (wmaj). We find that wmaj ranges between ∼ 0.75 − 0.95
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depending on the redshift bin (0.5 < z < 3) and redshift proximity selection cases

(∆v12 vs. B09 or S17). Our findings indicate that the observed major pair counts

require a relative reduction of 5−25% to accurately represent the true major counts.

• We quantify the impact of sample completeness on the fpair(z) measurements by

measuring the completeness correction factor (wcomp) as the ratio of pair fractions

with and without imposed completeness function (f ′pair/fpair). We assess thewcomp

as a function of redshift and survey completeness limits (H80; see § 3.2.2.3) for red-

shift proximity selections (∆v12, B09, or S17). We find that a relative pair fraction

correction is 10 − 20% at z ∼ 2 − 3 for ∆v12 based pairs, whereas it is up to

∼ 10 − 35% for the B09 and S17 selection cases at a typical CANDELS depth

configuration (see § 3.3.2.3). Our exercise highlights the compound dependence of

redshift proximity selection choices on the wcomp, and its strong dependence on the

survey depth limits (see Figure 32).

• Leveraging the 64 unique CANDELS-UDS sized fields from the larger SC-SAM

footprint, we assess the field-to-field pair fraction variation (σ(fpair); see § 3.3.2.4)

for different redshift proximity, stellar-mass, and projected distance choices. We

find that the variation of the σ(fpair) among log10(M?,sam/M�) ≥ 10 galaxies and

Rproj ∈ [5, 50] kpc rises moderately with redshift from 0.01 (z ∼ 0.5) to 0.015

(z ∼ 3). We also find that σ(fpair) follows a similar rising trend with redshift for a

smaller annular separation of Rproj ∈ [5, 30] kpc, but with∼ 1.5× smaller values at

each redshift bin (see Figure 33). On the other hand, we find that the σ(fpair) values

for a heavier mass selection of log10(M?,sam/M�) ≥ 10.7 galaxies stay constant
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around ∼ 0.005 over 0.5 < z < 3.

• The field-to-field variation of the σ(fpair) when using the B09 and S17 redshift

proximity selections also follow a moderately rising redshift trend, ranging between

0.01− 0.02, and are systematically higher (∼ 1.5− 2×) than the σ(fpair) values at

a fixed stellar-mass and projected selection case. Our analysis results highlight that

the intrinsic pair fraction variation from field to field is also a complex function of

the pair selection choices.

• Finally, we use the CANDELS data to identify major close pairs (M1/M2 ≤ 4)

among ∼ 9500 massive galaxies with log10(M?,can/M� ≥ 10) during 0.5 < z < 3.

We quantify the raw CANDELS close-pair fractions using the B09 photometric

redshift proximity selection and then compute the latest, calibrated CANDELS

close-pair fractions (fpair,corr) after applying the major pair (wmaj), sample com-

pleteness (wcomp), and field-to-field variation (σ(fpair)) corrections derived using

the SC SAM mocks. We find that fpair,corr evolves mildly from ∼ 6% to ∼ 9%

during 0.5 < z < 1.5 and remains considerably flat at ∼ 9% over 1.5 < z < 3.

By additionally applying the proximity correction (wprox), we statistically infer the

spectroscopic pair fraction evolution (satisfying ∆v ≤ 500 km s−1) and find that it

remains flat at ∼ 2.5− 3% over the redshift range 0.5 < z < 3.

Our comprehensive close-pair analysis in the Santa-Cruz Semi-Analytical Model

based light cones provides key insights into the role of observational effects when measur-

ing close-pair statistics, and offers statistical calibration corrections to account for them.
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These systematically-derived calibrations will help future close-pair studies to derive ro-

bust pair fraction measurements, and will help better understand the role of mergers in

various aspects of galaxy evolution. Moreover, the methodological framework of this

work will enable future close pair studies to calibrate observational effects at z > 3 in

preparation for upcoming telescope surveys (e.g., with James Webb Space Telescope).
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CHAPTER 4

CHARACTERIZATION OF RESIDUAL MORPHOLOGICAL SUBSTRUCTURE

USING SUPERVISED AND UNSUPERVISED DEEP LEARNING

Unpublished, Interdisciplinary (CSEE) Research Focused Work

Abstract

As a Deep Learning (DL) based exploratory exercise towards demonstrating the

inter-disciplinary focus of this dissertation, we develop supervised CNN and unsupervised

variational CAE (CvAE) networks to characterize different kinds of residual substructures

hosted by a large sample galaxies from the CANDELS survey. We use the single-Sérsic

profile fitting based residual images of 9973 bright and massive galaxies (H < 24.5 mag

and Mstellar ≥ 109.5M�) spanning 1 < z < 3 from the CANDELS survey, and their

visual-based classification labels (five classes) indicating the nature of residual substruc-

tures hosted within them. Using our unique data pre-processing approach, we prepare

our residual image data such that the input images to our DL networks only comprise

the “galaxy of interest”, and augment the data set such that our training sample spans

uniformly across different residual characteristics and relative viewing angles. We train

a 5-layer deep supervised CNN network and a 3-layered unsupervised CvAE framework

on our data and extract the learned deep latent space features for each case. We assess

the latent space using Principle Component Analysis (PCA) along with qualitative (i.e.,
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visual based) labels and independently quantified metrics of residual strength (signifi-

cant pixel flux – SPF , Bumpiness – B, and Residual Flux Fraction – RFF ). We also

employ an unsupervised Gaussian Mixture Modeling (GMM) based clustering and Sup-

port Vector Classification (SVC) to identify groupings (and their decision boundaries) in

PCA space that correspond to similar residual substructure. We find that our supervised

CNN latent features in PCA space correlate with the SPF values and distinguish between

qualitatively strong and weak residual substructures. While our unsupervised CvAE la-

tent space also correlates with visual and quantitative residual characteristics, it lacks

clear discriminatory power (compared to supervised CNN) when characterizing different

residual substructures.

4.1 Introduction

Major galaxy merging (mass ratio < 4) is a fundamental aspect of the hierarchi-

cal structure-growth scenario of the Universe. As such, it is theoretically predicted to

contribute to the empirically well-documented stellar-mass growth of high-mass galaxies

(e.g., Mstellar > 1011M�), enhancing global galactic star-formation, and facilitating cen-

tral super-massive black hole growth and triggering. Observationally identifying major

mergers is a key methodological step in empirically verifying the “merging – galaxy evo-

lution” connection. Commonly, close-pair and morphological methods are used to iden-

tify major mergers, among which quantitative metrics (e.g., CAS, G −M20 parameters)

and qualitative visual classification of galaxy images or light-profile subtracted residual

images (e.g., from GALFIT) are frequently-employed approaches to assess the presence
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of disturbed morphological substructure. While these methods yield broadly-consistent,

rising merger frequency evolution measurements out to z ∼ 2, each approach selects from

a distribution of merger stages (e.g., pre-coalescence vs. late-stage), and suffers from sys-

tematic selection biases caused by cosmological surface-brightness dimming, different

observability timescales, and subjective interpretation of low surface-brightness signa-

tures. Advancements in machine learning has enabled recent efforts to overcome some

of these biases through supervised frameworks and unsupervised deep learning (DL) net-

works to better identify mergers out to z ∼ 3 and accelerate visual classifications. In

this study, we develop two new public unsupervised and supervised DL frameworks and

demonstrate their applicability on GALFIT-based residual images of ∼ 10, 000 massive

galaxies spanning 1 < z < 3 to perform automated residual substructure characteriza-

tion and accelerate visual classification of especially interpretive classes (e.g., plausible

hallmark tidal features) that impose subjective assessment of physical processes. The ma-

chine learning tools developed in this work are timely in the era of big-data astrophysics

and applicability to large-scale surveys by upcoming telescope facilities.

Galaxy-galaxy mergers are theoretically predicted to happen as a natural conse-

quence of the hierarchical, gravitation-driven merging of dark-matter halos. Numerical

simulations predict galaxy merging as an important pathway for several key aspects of

galaxy evolution such as stellar-mass growth and buildup of massive galaxies [28,31,32],

enhancement of star-formation [33–35], growth and triggering of central super-massive
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black hole [13,37–39]. Indeed, many observational studies on these fronts have found ev-

idence for a strong “merger-galaxy evolution” connection supporting the theoretical pre-

dictions [7, 43, 44, 47, 48]. However, some studies have also found contradictory results

that contest the hypothesized strong role of mergers in galaxy evolution [50, 51, 54, 56],

hinting at alternate physical processes that may be at simultaneous play (e.g., Violent

Disk Instabilities and Cold-flow accretion; [57, 58, 221])). This highlights that the role of

major mergers in galaxy evolution is a key open question, and robustly identifying major

merging systems and quantifying their incidence is a key methodological step.

Motivated by the long-standing numerical expectation based idea that galaxies in

close physical proximity will interact gravitationally and merge into a more-massive sys-

tem, several studies over the past two decades have used close-proximity pairs as probes

for ongoing or future merging systems and quantified their incidence over a wide red-

shift range 0 . z . 6. These broadly agree that close pair frequency rises between the

redshifts 0 . z . 1.5, albeit with a wide range of redshift dependencies ∼ (1 + z)0.5−3

[3,4,16,17,61,109,140,144,146,205], owing to the differences in employed pair selection

choices. In Chapter I (also [140]), we quantified the effects of different close-pair selec-

tion choices on the derived pair fractions. However, despite using closely matched pair

selection criteria, recent measurements of fpair(z) evolution at z > 1.5 vary from mod-

erately increasing to flat, or diminishing trends [16, 17, 67, 140, 147, 205]. In Chapter III,

we quantified the impact of important study-to-study variant observational effects such as

photometric redshifts and their errors, stellar-mass uncertainties, sample incompleteness,

and intrinsic field-to-field pair fraction variations, and found that they can contribute to
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the observed differences during z & 1.5.

Simultaneously, several studies have also used morphological methods to identify

merging systems, motivated by the theoretical merger simulation predictions that merging

galaxies exhibit morphological disturbances induced by gravitational tidal forces during

the interaction. Most morphology-based studies often adopt subjective visual identifica-

tion of disturbed morphology [42, 149, 150] or quantitative metrics of large-scale galaxy

morphology such as Gini-M20 [9, 10, 154], CAS [75, 76, 78, 151, 152] parameters. These

morphology based studies find a wide range of (often strongly evolving) merger frequency

evolutionary trends ∝ (1 + z)2−5 at z . 1.5 [18], albeit with some finding no redshift

dependence [9, 79], and some noting ∼ 25 − 50% merger fractions at z ∼ 2 − 3 [116].

Such variations are due to morphological-study specific systematic effects such as small

number statistics owing to narrow pencil-beam surveys, redshift dependent cosmologi-

cal surface brightness dimming, morphological k-corrections when using bluer rest-frame

wavelengths, that can impact the completeness and purity of the selected merger samples.

Some recent studies have used latest Hubble Space Telescope (HST) based data (e.g.,

CANDELS survey [20,21]) in conjunction with more focused indicators of mergers (e.g.,

multiple nuclei in close proximity, faint and transient tidal features; [155,222]) as a means

to evade from some of such systematics.

Tidal features are theoretically predicted to be prevalent among merging galax-

ies [148, 156, 157, 192], and previous studies have identified galaxies hosting merging
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activity by detecting tidal features using qualitative visual inspections [42, 43] and quan-

titative residual metrics [159, 223] of the residual images produced by parametric light-

profile fitting software (e.g., GALFIT; [158]). However, these studies often rely on the

subjective visual interpretations of human classifiers that can be time intensive and non-

repeatable (especially for large-scale surveys), or use quantitative metrics that only indi-

cate the plausibility of tidal signatures and do not quantitatively capture their key prop-

erties (strength, shape, color, etc). In an attempt to overcome some of these pitfalls, in

Chapter II ( [222]), we developed a more direct quantitative way to extract and quantify

the strengths of residual substructure, including tidal features hosted by CANDELS galax-

ies. However, the sample used to demonstrate our feature extraction tool is still based on

select galaxies identified through visual inspection. This motivates the strong need to

develop automated methods for characterizing residual substructures and providing an

accelerated path towards performing a more focused visual/quantitative assessment of

galaxies hosting highly interpretive signatures (e.g., tidal features). One methodological

avenue that has seen recent booming advancements in the field of image-based automated

characterization is Deep Learning.

Deep learning (DL) conceptually allows the user to automatically extract low-

level pixel features (often referred to as latent space) by iteratively adjusting a series

of tuneable parameters within the “deep” layers such that the DL network attempts to

achieve an overall global (user-defined) goal. This automated extraction of latent space

can be broadly categorized into these approaches – user-guided (i.e., supervised) learning,

unguided (unsupervised) learning, and sparsely-guided (semi-supervised) learning. The
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extracted latent space can be used for further regression/classification tasks or for dimen-

sionality reduction purposes. Many recent studies have adopted DL frameworks for vari-

ous astronomical applications such as galaxy morphology classifications [176, 224–226],

gravitational lens finding [163, 227, 228], galaxy merger identifications [229, 230]. Sev-

eral of these morphological or merger related DL-based studies often train Convolutional

Nueral Networks (CNNs; for supervised learning; [231, 232]) or Convolutional Autoen-

coders (CAE; for unsupervised learning; [233]) on the single or multi-wavelength band

images of galaxies from the telescopic imaging. However, such an approach may not be

ideal in the case of galaxy merger identifications where their signatures are faint and are

sub-dominant when compared to the global galactic light profile. As such, devising DL

networks to train on the residual images (after subtracting the galactic light profile) may

be much more fruitful, yet this approach is relatively unexplored. Only recently, [234] de-

veloped Generative Adversarial Networks to model multi-band galaxy images and used

the resultant model-subtracted images to identify “anomalous” galaxies. Moreover, it is a

common practice among large astronomy survey science communities to run light-profile

fitting software (e.g., GALFIT; [158]) and generate residual images for a large galaxy

samples. Therefore, analyzing residual images using DL frameworks remains a worth-

while exploratory path, which can provide provide insightful information and automated

assessment of the morphological substructure hosted by large galaxy samples.

In this DL-based exploratory study, we develop supervised CNN and unsupervised

variational CAE (CvAE) networks to characterize different kinds of residual substructures
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hosted by a large sample of ∼ 10, 000 massive and bright galaxies from the HST CAN-

DELS survey spanning 1 < z < 3. Our analysis focuses primarily on these networks’

deep latent space extraction and we use Principle Component Analysis (PCA) to assess

the extracted latent space of our galaxies using qualitative (i.e., visual based labels) and

quantitative metrics. We also explore unsupervised clustering in dimensionality-reduced

PCA space and assess the supervised and unsupervised DL networks’ ability to automat-

ically distinguish different residual substructures at a latent space level.

We structure this chapter as follows – In § 4.2, we describe our main CANDELS

massive and bright galaxy sample selection, its corresponding imaging data products,

and visual characteristic catalogs of residual images used for training and assessment of

our DL models. In § 4.3, we describe our training and testing sample construction, data

augmentation steps, imaging data preparatory steps involving creation of scaled “object-

only” residual images that serve as inputs to our DL frameworks, and computation of

independent residual quantitative metrics used for latent space assessments. In § 4.4, we

introduce our supervised and unsupervised architectures and discuss their training and

optimization strategy. In § 4.5, we analyze the deep latent space from our supervised

and unsupervised frameworks using PCA, followed by unsupervised clustering in PCA

space, and assess of our networks’ abilities to characterize different residual substructure

features. Finally, we present our concluding statements in § 4.6.

4.2 CANDELS Data

To implement our supervised and unsupervised DL frameworks for an automated
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residual substructure characterization, we use HST/WFC3 H-band (F160W) images and

GALFIT-based single-Sérsic model-subtracted residual images by [160] for a sample of

10, 046 massive galaxies (Mstellar ≥ 109.5M�) spanning the key epoch of galaxy evolution

1 < z < 3. For training our supervised model and independently assessing the learning

of our unsupervised network, we also use residual characteristic flags based on visual

inspection from an ongoing effort (HST-AR 15040; PI: McIntosh).

4.2.1 Source Catalogs and Sample Selection

To select our main galaxy sample used in this work, we use the source catalogs

and high-level science data products from the CANDELS survey [20, 21], which spans a

total sky area of ∼ 800 arcmin2 over five HST legacy fields – UDS, GOODS-S, GOODS-

N, COSMOS, and EGS. We use the standard source extraction [166] based photometric

source catalogs generated using the HST H-band (2-orbit) imaging by [86–90] for the five

fields, respectively. Each identified source in these catalogs are provided with a quality

flag (PhotFlag) following a robust automated routine by [86] to identify contaminated

sources due to their proximity to nearby stars or image edges. We use a PhotFlag= 0 to

exclude such contaminant sources (∼ 3− 5% of the overall identified sources). To ensure

that our sources have robust structural parameter fits and reliable visual characterization of

residual substructure (as discussed later in this section), we enforce a H-band magnitude

cut and select sources that are brighter than H = 24.5 mag.

For these H-band bright sources, we then use the latest best-available redshift

(zbest) information by [114], who used bayesian methods to combine the photometric
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redshift probability distributions from several participants in a previous CANDELS-team

effort [93], and provided latest photometric redshifts and their uncertainties while giving

precedence to the relatively more precise HST Grism or spectroscopic redshifts wher-

ever available. Additionally, we also use the CANDELS-team stellar-mass estimates

(Mstellar) generated by [94, 95], who performed SED-fitting of multi-band photometric

data spanning optical to near-IR wavelengths over a range of template-fitting codes and

physical parameter assumptions (see [95]). Using the redshift (zbest) and stellar-mass

(Mstellar) information, we select our main galaxy sample of 10, 046 massive galaxies with

Mstellar ≥ 109.5M� and H < 24.5 mag, and spanning a redshift range 1 ≤ zbest ≤ 3.

4.2.2 Imaging Products and GALFIT Residuals

We use the H-band structural fitting data by [160], who used a popular light-profile

fitting software GALFIT [158] to model the galaxy’s structural parameters identified in

the CANDELS source catalogs. Briefly, [160] employed the standard procedures out-

lined in [165] and used the CANDELS H-band image mosaics [21] in conjunction with a

comprehensive SExtractor [166] routine to identify sources, make postage stamp cutouts,

mask unwanted sources1, compute initial structural parameter guesses, compute a robust

sky-background, and fit each source with a single Sérsic profile. For each CANDELS

galaxy, [160] generated an image-cube using GALFIT [158], which contains the original

image used for fitting, the model image with the best-fit structural parameter information

1 [160] masked neighbouring sources 4mag fainter than the primary object, and all remaining sources
were simultaneously fit.
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stored in its header, and the residual (original−model) image. In Figure 37, we show ex-

ample H-band original images of our galaxies along with their corresponding residuals

by [160]. In a later section (§ 4.3), we further process each galaxy’s residual images to

prepare them for our DL-based analysis.

Figure 37: Visualization of the H-band original images (left in each column pair) and their
corresponding residual images (right panel in each column pair) for example CANDELS
galaxies from our main sample, generated by performing single-Sérsic light-profile fitting
using GALFIT [158] by [160].
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4.2.3 Visual Inspection of Residual Substructure

To guide the training of our supervised DL network with user-defined labels that

describe the residual substructure and qualitatively assess the outcomes of our unsu-

pervised approach, we construct a catalog of visually-identified residual characteristics

hosted for our main galaxy sample. Briefly, we visually inspected all the residual im-

ages, following a process in which at least three human classifiers simultaneously in-

spected each galaxy’s original and residual images to characterize the visual nature of

the hosted residual substructure. This information is validated by an expert and is further

processed using a 2/3rd majority voting to generate a catalog of residual characteristics

for our galaxy sample. We broadly bin them into five classes that span a range of residual

feature characteristics and qualitative strengths, and an additional quality check flag indi-

cating plausible fit-quality issues. In Table 9, we show the definitions used while visually

inspecting our sample residual images and we report the percentage breakdown of dif-

ferent residual characteristic groupings. Briefly, the “Clean” residuals have no significant

left-over light and are consistent with a background noise appearance. The “General”

residuals have strong left-over light, usually corresponding to a disk or spiral shape, or

clumpy substructure associated with the overall disk or spiral morphology of the galaxy.

Peculiar residuals also have strong under-fit residuals, however, they are usually asym-

metric and align with the overall disturbed morphological structure of the galaxy. The

“Core” residuals have a bright point-like under-fit structure towards the central region of

the galaxy. Finally, “Asymmetric” residuals have concentrated or diffuse non-symmetric

signatures with or without the presence of central excess.
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Table 9: Breakdown of the five residual characteristic classes based on the visual inspec-

tion of our 10, 046 massive galaxy sample from the CANDELS survey. Columns: (1)

Name of the residual characteristic; (2) Adopted definition of the residual characteristic

for the visual inspection; (3) Number of galaxies in the sample with the corresponding

residual characteristic; (4) Percentage contribution of the residual characteristic out of

10, 046 galaxies.

Residual

Characteristic

Definition Sample Size Percentage

(1) (2) (3) (4)

Clean The residual has no apparent features

or structures pertaining to the galaxy

and is consistent with the background

noise.

3815 38.0%

General The residual hosts strong left-over

light with either a symmetric disk or

spiral-like structure, or clumpy under-

fit substructure associated to underly-

ing plausible disk or spiral galaxy mor-

phology.

608 6.0%

Core The residual contains one or more

bright point-like grouping of pixels

near to the central region (by eye) of

the galaxy, and no excess away from

the galaxy’s central region.

1958 19.5%
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Asymmetric The residual contains concentrated or

diffuse, asymmetric excess light out-

side the central region of the galaxy,

with or without the presence of central

excess light.

3043 30.3%

Peculiar The residual contains strong asymmet-

ric excess light with or without mul-

tiple central point excess that aligns

with the overall disturbed morphology

of the galaxy.

512 5.1%

Fit-Quality

Issue

The galaxy’s residual region of interest

is very close to the image edges or arte-

facts, or is dominated/contaminated by

a nearby star’s light.

110 1.1%

We note that a dominant portion of our main sample are qualitatively Clean and

Asymmetric residuals (∼ 38% and ∼ 30%, respectively), and ∼ 19% of our sample hosts

cored residuals (see Table 9). A sub-dominant, but notable fraction of our sample (∼ 11%)

are within the General and Peculiar classes, hosting qualitatively strong residual charac-

teristics. In Figure 38, we show example original and residual images of our galaxies per

residual characteristic class, where different residual substructures as per the class-wise

definitions are visually evident. We note that the visual inspection based residual charac-

teristics information used in this work is preliminary and pending full validation by an

expert. While a future fully-validated sample could change the results discussed here,

our current analysis and methodological framework are meant to serve as an informative
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exercise to aid the full validation of our residual characterization exercise.

Figure 38: An example view of our galaxies and their hosted residual substructure. In
each column pairs, we show HST WFC3/F160W H-band original images (left) and their
corresponding GALFIT-based residual images from [160] (right) for five example galax-
ies per class.

4.3 Data Preparation

Thus far, we have discussed the selection of our main galaxy sample and their

imaging and cataloged data products. To prepare this data for our DL analysis, we car-

ryout the following key pre-processing steps – i) generation of residual image cutouts

which only contain information corresponding to the “galaxy-of-interest” (GOI); ii) con-

struction of training and testing sub-samples and generating data augmentation applied

training sample; iii) computation of independent residual metrics to aid the assessment of

the learning of our DL frameworks.
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4.3.1 Creating Object-Only Image for Training and Testing Samples

Each galaxy’s image may contain other objects in it’s field of view, which are not

the main focus of the residual characteristics for the GOI (by design at the center of

the image, see [160]). Furthermore, such interlopers may confuse the low-level, feature

learning of the DL model. Therefore, we process the residual images such that only the

pixel data corresponding to the GOI is preserved and the rest is matched with the sky

background.

In Figure 39, we visually demonstrate the steps involved in the generation of

object-only images for one example galaxy. We first identify sources using SEP [187],

which is a python adaptation of the standard source extraction software SExtractor [166].

We adopt the source-extraction settings used in [222], where we use a 2D Tophat convolu-

tion kernel (radius= 5 pix), a minimum source significance of 0.75, and a minimum area

of 7 pix. These adopted settings help identify small and faint sources, and enable their

segmentation regions to encompass the light reaching far out from the galaxy’s center.

This enables robust quantification of sky background and masking of close projected-

sky proximity interlopers (see [222] for more details). We then use the segmentation

region map generated during the source-extraction step (top-center panel in Figure 39)

to generate a binary GOI-mask (top-right in Figure 39), where the pixels corresponding

to the GOI are set to one, and rest all other interlopers including the sky background

are set to zero. Simultaneously, we also generate a generate a binary sky-mask (middle

center panel in Figure 39) by making all the source segmentation regions to zero, and

the background to one. We then generate a source-masked, background sky-only image
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by multiplying the sky-mask with the residual image (center-right panel). We randomly

sample 5 × 5 pixel regions from this background sky image to construct a contiguous

background-sky image (bottom-left panel) matching the residual image size, where the

native small-scale pixel-to-pixel correlation information is preserved. We then gener-

ate the GOI residual image (bottom-center panel) by multiplying the GOI-mask with the

residual image data. Finally, we generate an “object-only” residual image (bottom-right

panel) by adding the GOI residual image and the GOI-masked background-sky image

(background-sky × GOI-maskc), where GOI-maskc is the complement (inverted) image

of the GOI-mask.

Following the standard practice used in DL-based literature (e.g., [224,227,230]),

we use the cutouts of the object-only images as inputs to our DL frameworks. As will be

discussed in § 4.4, our DL-based frameworks are inspired by the shallow network archi-

tecture of [235], and therefore we choose 50 pix × 50 pix as our cutout dimensions cen-

tered at the GALFIT-based centroid values provided by [160], which is slightly smaller

than [235] cutout size choice (64 pix × 64 pix). Our cutout dimensions correspond to

3 arcsec on the side (∼ 26 kpc at z ∼ 2) and is at least ∼ 5× the size of ∼ 90% of the

galaxies in our sample. We visually randomly inspected our 50 pix×50 pix cutout images

and found that a majority of them encompass the bulk of the galaxy’s residual substruc-

ture within them. However, it is worth noting that some galaxy’s residuals exceed outside

our cutout size, which may impact the learning of the DL frameworks. To test for this,

we repeated our analysis using a 64 × 64 pix input image size and found no significant

differences in the results and conclusions discussed in this chapter. Therefore, we resort
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to using our initial 50 pix × 50 pix cutout size choice as it is relatively faster to train our

model and offers slightly lower dimensionality exploration space for our network.

One possible alternative to our approach (i.e., using object-only residual image)

is to use just the GOI-only residual image (bottom-center panel of Figure 39) as inputs to

our networks. However, this may impose unforeseen priors on the model learning, where

the network focuses more on the shapes of GOI segmentation regions. To avoid such

biases, we adopt a object-only based approach that is free from the GOI segmentation

shape information.

Figure 39: Visual illustration of our preprocessing step to prepare our residual images for
the DL framework. We show the original image, source extraction based segmentation
map highlighting the detected sources, residual image, region of interest corresponding
the central galaxy in the image, and the GOI region of the residual image with a 50 pix×
50 pix postage stamp size for reference.
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Finally, it is a standard practice in the DL-based studies (e.g., [235]) to normal-

ize the input data so that the learning of the deep latent-space vectors are well behaved

(i.e., bound and normalized). To conserve the underfit-overfit (i.e., dark-bright structures)

appearance of input residual images, we choose to normalize our data to span between

[−1, 1] using the linear transformation scheme – MaxAbs, where the maximum absolute

value of the data sample is set 1. We tested various available non-linear data transforma-

tion schemes2 (e.g., PowerTransformer, QuintileSclaer, etc) and found that

the choice of data scaling has no impact on the results discussed in this work.

4.3.2 Training-Testing Samples and Data Augmentation

We sub-divide our main sample information of 10, 046 galaxies and their corre-

sponding object-only images into training and testing sub-samples using a commonly-

employed splitting ratio of 80%− 20%, yielding 7948 training and 1987 testing galaxies.

In Figure 40, we show the class-wise distribution of our total parent sample, subdivided

into training and testing samples. We also quote the fractional contribution of each class

towards the data sets. From this figure, we illustrate the class-wise proportionate sam-

pling of the training and testing data from the main parent sample. However, a class-wise

imbalance in the parent sample, where certain classes (e.g., Clean, Asymmetric) dom-

inate in numbers, propagates into the training and testing sample construction. Such

an imbalance in the training sample will lead to class-specific biasing of the DL model

2see https://scikit-learn.org/stable/auto_examples/preprocessing/plot_
all_scaling.html#sphx-glr-auto-examples-preprocessing-plot-all-scaling-py
for more details
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learning. Furthermore, despite our galaxy sample hosting a diversity of the residual sub-

structures (see Figure 38), inclination-induced effects (e.g., similar substructure viewed

at different inclinations) can induce a dataset-specific bias and a lack of stochasticity at

the deep latent-space level, which may limit their generalized applicability to other data

sets. Data augmentation using sample-specific invariant properties (e.g., rotation, bright-

ness/intensity) is a popular choice in the literature to alleviate from such biases (e.g.,

see [176, 225]). Conceptually, data augmentation provides a robust low-level learning by

inducing a data-level stochasticity, by generating additional training samples perturbed

randomly by changing one or more of their invariant properties.

Motivated by a similar methodology employed in [235], we adopt the data aug-

mentation step on our training (object-only) image sample such that each image is aug-

mented with a random horizontal flip and random rotation by 45 deg. We generate our

“augmented” training image sample such that each residual characteristic class contains

5000 images, which are randomly sampled from a large pool of augmented realizations of

our parent sample object-only images. In total, our augmented training sample amounts

to 25000 images. In Figure 41, we show an example visualization of this data augmen-

tation step for example residuals from our training sample. In Figure 40, we also show

the uniform class-wise distribution of augmented training sample alongside the lopsided,

non-augmented raw training set. We use the augmented training images to train both of

our supervised and unsupervised DL networks.

It is worth noting that although our augmentation step enables data-level stochas-

ticity, it does not alleviate the underlying human subjectivity of residual characterization,
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which is especially relevant to our supervised learning case. Recent advancements in the

DL literature has proposed various ways to account for human classifier biases and errors.

For e.g., Bayesian convolutional neural networks (e.g., [236]) have the capability to in-

corporate the biases during learning phase and propagate it through to the output posterior

class-probability distributions. It is beyond the scope of this current work to investigate

the role of human subjectivity on our analysis results, and we leave this for future work.

Figure 40: The histograms of our five residual characteristic classes among our par-
ent sample of ∼ 10, 000 galaxies (black), training sub-sample (red), testing sub-sample
(blue), and augmented training data sets (magenta). For each class, we also show its
fractional contribution to the data set with respective colored text.
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Figure 41: Example visualization of our data augmentation step (see § 4.3.2). For three
example residual images from our sample, we show five random horizontal flip and 45 deg
rotation steps.

4.3.3 Residual Quantitative Metrics

In addition to the visual-based residual characterization information, we also de-

rive additional residual quantification metrics: Significant Pixel Flux (SPF), commonly-

used quantities in the literature – Bumpiness (B; [237]), and Residual Flux Fraction

(RFF; [159]) to assess the extracted latent space of our supervised and unsupervised ap-

proaches and independently interpret their learning (see § 4.5). We describe the derivation

of these metrics for our parent galaxy sample as the following.

The cumulative flux of significant pixels above the sky background serves as a

straight-forward quantitative indicator for the strength of left-over residual light. As such,

for each galaxy in our sample, we quantify the SPF among the pixels corresponding to

the GOI that satisfy > 3σ significant above the background as:

SPF =
∑

x,y∈GOI

| fpix>3σ(x, y) |, (4.1)
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where fx,y is the flux of the pixel corresponding to pixel coordinate (x, y), and the GOI

region is the product of the binary GOI mask (top-right panel in Figure 39) and the resid-

ual data. In Figure 42, we show an example visual illustration of the SPF calculation.

For each galaxy, we identify sources in the original image using a python-based imple-

mentation SEP [187] of a standard source-extraction software SExtractor [166]. We

generate a binary sky mask such that all the source segmentation regions are set to zero

and the background sky regions are set to unity (top-right panel in Figure 42). We then

generate a binary GOI mask as described in § 4.3.2 and produce a GOI residual region by

multiplying the GOI mask with the residual data (bottom-left panel in Figure 42). We ex-

tract the distribution of background sky pixels from the background sky image (sky mask

× residual image), and fit it with a Gaussian to derive its upper and lower 3σ bounds. We

select the pixels in GOI residual region that have f(x, y) > 3σ and f(x, y) < 3σ, and

derive its SPF value as the cumulative absolute flux sum of these pixels. For the example

shown in Figure 42, the total positive flux of > 3σ pixels is 7.56 e/s (native, exposure

time normalized image units) and the total negative flux is −3.73 e/s, which corresponds

to a SPF = 11.28 e/s.

We also quantify the Bumpiness ( [237]) parameter, which conceptually quantifies

the strength of second-order light-profile moments and deviations of galaxy’s structure

from a smooth parametric model. It is defined as the ratio of the residual rms to the

best-fit sérsic mean model:

B =

√
(1/N)

∑
(x,y)∈GOI [R2

s(x, y)− σ2
sky]

(1/N)
∑

(x,y)∈GOI [S(x, y)]
, (4.2)

whereRs is the smoothed residual image after convolution with a 2D BoxCar filter of size
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3× 3 pix, σ2
sky is the variance of background sky computed using the best-fitted Gaussian

to the background-sky distribution in the above SPF calculation steps, S is the best-fit

sérsic model generated by [160], and N is the number of pixels corresponding to the GOI

segmentation region (i.e., white regions in GOI-mask panel of Figure 39).

Finally, we also compute the Residual Flux Fraction (RFF; [159]), which con-

ceptually quantifies the additional residual light that cannot be accounted by background

noise fluctuations. It is defined as:

RFF =

∑
x,y∈GOI R(x, y)− 0.8×

∑
x,y∈GOI σsky∑

x,y∈GOI S(x, y)
, (4.3)

where R is the residual image, 0.8 ×
∑
σsky is the expectation of residual light from

Gaussian noise fluctuations, and S is the best-fit light profile model. In § 4.5), we assess

the deep latent space features of our trained DL models in conjunction with SPF , B, and

RFF metrics to interpret their learning.

4.4 Proposed Deep Learning Models

To better automate the characterization of residual galactic substructures and im-

prove the identification of plausible merging signature hosting galaxies, we develop two

frameworks – i) a supervised Convolutional Neural Network (CNN) model; ii) an unsu-

pervised Convolutional variational Autoencoder (CvAE) model – to learn the latent space

features describing the variety of residual substructures hosted by our sample of∼ 10, 000

massive galaxies from the HST CANDELS survey. In this section, we describe the archi-

tecture of our CNN and CvAE frameworks and discuss their training and optimization

strategy.
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Figure 42: Visual illustration of our Significant Pixel Flux (SPF) calculation using an
example galaxy image (top-left) from our sample. We show the source-masked image
(top-right) and the Region of Interest (ROI; bottom-left) highlighting the Galaxy of In-
terest (GOI). We show the histograms of pixel fluxes (bottom-right) in the ROI (green),
the sky background distribution (dashed black) fit with a Gaussian (solid black) and their
lower and upper 3σ bounds with blue and red vertical lines, respectively. We highlight
those pixels that are above and below the 3σ bounds in bottom-left panel with their re-
spective colors. For this example, SPF= 11.28.
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4.4.1 Supervised Framework

The architecture of our supervised framework is inspired from the CNN-based

classifier developed by [224]. In Figure 43, we show the visual overview of our super-

vised CNN-based framework. Briefly, our network takes the “object-only” residual image

stamps as single channel inputs (i.e., one object-only image per sample), followed by three

sets of Convolutional and MaxPooling layers for feature extraction, and two Dense Fully-

Connected layers. Given that our input data is scaled and spans [-1,1], we choose a “Tanh”

activation function for all the convolutional layers, whose resultant activations also span

[-1,1]. For our deep latent space feature layer, we choose to extract 512 vectors, motivated

by a separate dimensionality reduction exercise, where we apply a direct PCA decompo-

sition of the object-only training images and find that 512 eigen vectors hold & 90% of

the explained sample variance (i.e., > 90% of information is captured by reduced, 512

dimensions). We choose Tanh activation for this Dense layer and a softmax activation

for the final classification layer (of size 5) such that the output is probabilistic prediction

per target class (here visual residual class labels) that sums up to unity. Following the

standard practices to avoid over-fitting scenarios, we introduce a 50% dropout layer af-

ter each Convolutional+MaxPooling block, which conceptually omits (randomly) half of

the layer features from propagating further. We experimented with different dropout per-

centage values and found that using lower values (e.g., ∼ 5− 10%) resulted in worsened

model performance with reduced testing set accuracy due to overfitting. Furthermore, we

also introduce a Gaussian Noise layer with a standard deviation σ = 0.02 at the entrance

of the network to facilitate learning of latent space that is less susceptible to image noise
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patterns, and ensures that the network never sees the exact same image during model

training. Using a higher value for the entrance random noise layer (e.g., σ ∼ 0.1) induces

too much stochasticity into the network and leads to an oscillating model convergence

(i.e., cyclic learning-unlearning patterns).

To optimize our supervised CNN model during the training, we use categorical

cross-entropy loss function with Adam optimizer [238] with starting learning rate of 10−4.

We train our network with the augmented training sample of 25000 images for a maximum

of 100 epochs in batch sizes for weight updation of 32 images, and decay the learning

rate by 2× for every 1/3rd of the total steps to aid the model convergence. Our model

achieved an accuracy of ∼ 95% after 75 training epochs and it yielded a testing accuracy

of∼ 75%. We note that the model achieves an accuracy of ∼ 91% on the Clean class, but

the overall (lower) testing accuracy is due to considerable cross-class confusion between

the Peculiar, General, and the Asymmetric classes. We acknowledge that this stage needs

further improvement and will one of the main items of future work. In the later section,

we assess the latent space features learned by our CNN model.

4.4.2 Unsupervised Framework

There are several approaches to learning the deep latent space in an unsuper-

vised fashion, amongst which Autoencoders, specifically Convolutional Autoencoders

(CAE; [233]) are a popular option. Briefly, they comprise of an Encoder-Decoder frame-

work, where the objective is to learn the dimensionality-reduced latent space vectors via
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Figure 43: Overview of our supervised CNN (top) and unsupervised Convolutional Vari-
ational Autoencoder (bottom) frameworks used to analyze the galactic residual substruc-
tures (see § 4.4.1 & § 4.4.2). For both networks, we also visually illustrate our analysis of
the latent space features using Principle Component Analysis and unsupervised clustering
(see § 4.5).

iterative adjusting of layer weights such that the output reconstruction (by a Decoder net-

work) matches closely to the input image. Motivated by this ideology, we implement an

unsupervised Convolutional Autoencoder based framework to learn the deep latent space

that characterizes different galactic residual substructures. Specifically, we adopt a Con-

volutional Variational Autoencoder (CvAE), which is an improvement over the simple

CAE, where the network learns a distribution of latent space vectors described by a unit

Gaussian distribution instead of simple latent space point vector, which makes the learned
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latent space less sensitive to unknown nuisance in the input images. In practice, we no-

ticed that the output reconstruction from the CvAE is qualitatively (i.e., by visually by

eye) closer to the input images than CAE counterparts (which are often more “blurry” in

appearance).

We model our CvAE framework based on the previously mentioned supervised

CNN architecture (see § 4.4.1). In Figure 43 (bottom panel), we show our CvAE archi-

tecture, where our Encoder network involves three 2D Convolutional layers, whose end

features are flattened and passed to a fully-connected, latent space feature layer of size 512

(following our aforementioned PCA-based suggestions). We then connect this latent fea-

ture layer to two more fully-connected layers (each of size 512) to describe the mean (µl)

and variance (σ2
l ) of the latent space features (l), which are then passed to a custom unit

Gaussian Sampling layer. The output of this layer (and the encoder network) is a latent

space feature vector of size 512, where each feature is sampled from the Gaussian(µl,σ2
l ).

Our decoder network starts with an input layer of size 512 (i.e., matching the En-

coder output size), followed by three 2D transpose convolutional layers that mirror the

sizes of our encoder networks’ convolutional layers. We use ReLu activation function for

all the layers in the Encoder-Decoder framework, except for the output layer of the de-

coder network where we use the Tanh activation. Finally, similar to our CNN framework,

we also introduce a Gaussian Noise layer (σ = 0.02) at the start of the encoder framework

to enable latent-space features that are less susceptible to image noise patters. It is worth

noting that we do not use feature dropout in between the convolutional layers (unlike in

our CNN framework), as in doing so, the output reconstructions qualitatively deviated
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considerably from their input counterparts, where dropping features resulted in blurrier

reconstructions.

To optimize our network during the training, we jointly minimize the input im-

age reconstruction loss and the Kullback-Leibler (KL) divergence loss of the latent space

feature distribution. Conceptually, our optimization process corresponds to requiring the

reconstructed outputs to be closer to the input images while simultaneously ensuring that

their underlying latent space features (describing the input-output images) are also closely

matched. Our total loss function, which is the summation of the image reconstruction loss

and the KL-divergence loss is as follows:

Ltotal = Lrecon + LKL, (4.4)

where we choose Lrecon as the mean-squared error (MSE) between the input (I) and the

reconstructed image (Î) as:

Lrecon =
1

N

∑
i,j

(I − Î)2. (4.5)

The KL divergence loss of the latent space vectors (l) with mean (µl) and variance (σ2
l ) is

given by:

−0.5× [1 + log10(σ2
l )− µ2

l − exp{log10(σ2
l )}] . (4.6)

To optimize our CvAE network during the training, we adopt the same strategy as in our

supervised approach (see § 4.4.1) with the Adam optimizer and an initial learning rate of

10−4 with a decay factor of two every 1/3rd of the steps over a maximum of 100 training

epochs. In Figure 44, we show the input-reconstructed image pairs of example galaxy
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residuals from the testing data. We notice that the overall visual structure of reconstructed

residuals is preserved, albeit with a globally “smoothed” appearance.

Figure 44: Example visualization of our unsupervised Convolutional Variational Autoen-
coder network’s input (top) and reconstruction (bottom) images.

4.5 Discussion: Assessment of Supervised and Unsupervised Latent Space using

PCA and Unsupervised Clustering

Thus far, we have developed two DL frameworks, a supervised CNN and an un-

supervised CvAE network, and trained them on our augmented training image sample of

residual images to learn the latent space representations of different residual substructure

characteristics spanning in our data set. In this section, we assess the supervised and unsu-

pervised latent space features with Principle Component Analysis (PCA; [239,240]) along

with supplemental, independently derived quantitative metrics (SPF, B, and RFF). We

also explore unsupervised clustering algorithms and Support-Vector Machines [241, 242]

to identify classification boundaries in the PCA space that can distinguish different resid-

ual structures.
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Figure 45: Visualization of principle component axes of the supervised latent space color
coded with five residual class labels (left panel). In the right panel, we show the PC1 vs.
PC2 only for the Clean, Peculiar, and General Classes.

4.5.1 PCA Analysis of Supervised CNN Latent Space

Using our trained CNN network, we extract the latent space features representing

the unaugmented training image set by running them through the network (with frozen,

trained weights) and extracting information from the fully-connected layer penultimate

to the classification output (see Figure 43). We then run PCA on these latent features

using the python-based implementation scikit-learn [243] and extract three top-

most information bearing eigen components capturing & 90% of the explained variance.

In Figure 45 (left panel), we show the training sample projected in the first two princi-

ple component axes (PC1 vs. PC2) and color code their corresponding visual residual

class labels. We notice that the Clean vs. Peculiar and General classes appear distinctly

separate (by eye) in the PCA space, where the bulk of Clean class objects are clustered
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alongside the “left-arm” and the Peculiar and General classes are along the “right-arm” in

the apparent “U” shape of the PC1 vs. PC2 distribution. This distinction can be clearly

seen in the right panel of Figure 45, where we show the PC1 vs. PC2 distribution for

peculiar and general classes (i.e., galaxies hosting strong residuals) as these objects are

of particular scientific interest, in the context of merging induced tidal features. On the

other hand, we notice that the core and asymmetric classes lie in the “saddle” region of

the PC1 vs. PC2 distribution (PC1 ∈∼ [0, 1]), and are considerably overlapping with

the peculiar and general classes (at PC1 & 1). Our results based on Figure 45 conceptu-

ally illustrate that the CNN learns a higher-order measure of residual strength (especially

along PC1) and uses it as a primary leverage to characterize residual substructures into

strong, intermediate, and clean groupings. This is intuitive as the CNN’s learning mimics

that of a human’s interpretation of the residual strengths when characterizing them.

To test our above interpretation that the PC1 vs. PC2 may be correlated with a

measure of quantitative residual strength, we assess the learned latent space with inde-

pendently quantified measures of residual strength – SPF , B, and RFF . In Figure 46,

we show the PC1 vs. PC2 distribution for the Clean, Peculiar, and General residual classes

along with their quantitative metrics SPF , B, and RFF . We find that all the three quan-

tities correlate distinctly with the with the PC1 and weakly with the PC2 axis. More

notably, we find a strong bimodal correlation of PC1 and PC2 with the SPF , where the

objects with PC & 0.5 have higher SPF with∼ 10−100× than the objects at PC1 . 0

(log10(SPF ) ∼ −0.5 to − 1.5). We also note a relatively weaker, but noticeable correla-

tion with the Bumpiness and Residual Flux Fractions, where the PC & 0.5 have higher
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B and RFF values than the objects spanning PC . 0. Our observations based on Fig-

ure 46 conceptually suggest that the latent space learned by our CNN network physically

corresponds to a combination of different residual strength metrics.

It is worth noting that the training sample distribution along the third principle

component (PC3) is nearly identical to the PC2 distribution. As a result, our analysis

of the above trends in PC1 vs. PC3 space are very similar to the PC1 vs. PC2 based

conclusions. Therefore, we just focus on the PC1 vs. PC2 space to make our main points.

Figure 46: The supervised CNN based latent space visualized in the PCA eigen axes for
a subset of classes (Clean, Peculiar, and General; shown in Figure 45) and color coded by
different residual quantitative metrics – log10(SPF ) (left panel), Bumpiness (B; middle
panel), and Residual Flux Fraction (RFF ; right panel).

4.5.2 PCA Analysis of Unsupervised CvAE Latent Space

Using our encoder frontend of the trained unsupervised CvAE network, we ex-

tract the latent space features corresponding to our unaugmented training image sample.

Analogous to our supervised case, we then perform PCA analysis on these latent vectors

and analyze trends in the first two principle components PC1 and PC2. In Figure 47 (left

panel), we show the PC1 vs. PC2 distributions for all five visual residual classes, and only
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Figure 47: Visualization of the unsupervised CvAE latent space in the PCA eigen axes
(PC1 vs. PC2), where each data point is color coded by its visual residual class label (left
panel). In the right panel, we only show the Clean, Peculiar, and General classes.

focus on the Clean, Peculiar, and General classes in its right panel. Immediately, we no-

tice that the overall structure of the PC1 vs. PC2 distribution is less distinctive and more

contiguous than our supervised case, where the Clean, Core, and Asymmetric classes fol-

low a continuum with no distinguishing correlation across PC1 and PC2 axes. These

results conceptually suggest that although our unsupervised CvAE framework learns a

residual strength equivalent measure, it lacks the additional discriminatory information

from the visual-based residual characterizations. Nevertheless, it is worth noting that the

distribution of General and Peculiar classes along the PC1 axis fall towards the lower

tail-end (PC . −2) of the gaussian-like distribution of the Clean class objects.

Similar to our supervised latent space exercise discussed in § 4.5.1, we also assess

the unsupervised latent features in PC1 vs. PC2 with the residual quantitative metrics
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(SPF , B, and RFF ). In Figure 48, we show the PC1 vs. PC2 for our Clean, Peculiar,

and General Classes and color code each data point based on their SPF , B, and RFF

values. We find a bimodality in the SPF values along the PC1 axis, where PC1 & 2

(PC1 . −2) have smaller (larger) SPF values, where there is continuum of objects with

intermediate SPF value during −2 . PC1 . 2. Similarly, we notice a weak correlation

between the B and RFF quantities and PC1, where smaller PC1 values correspond to

higher B and RFF measures. It is worth mentioning that there is no distinct correlation

between the three metrics and the PC2 axis. Our exercise illustrates that the unsupervised

CvAE latent space is only somewhat informative (relative to our supervised case) in terms

of distinguishing different residual characteristics, where only one informative eigen axis

(PC1) correlates with (independent) physical measures of residual strength.

Figure 48: Visualization of the unsupervised CvAE latent space in PCA eigen axes along
with residual quantitative metrics SPF , B, and RFF following a similar layout as in
Figure 46.

4.5.3 Unsupervised Clustering of the CNN and CvAE Latent Features in PCA Space

To assess the discriminatory power of our supervised and unsupervised latent

space features to naturally distinguish between different residual characteristics, we in-

vestigate unsupervised clustering in their corresponding PCA space along with Support
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Vector Classifiers (SVC; [244]). There are various popular unsupervised clustering tech-

niques to identify data-driven natural clusters in N-dimensional parameter space such as

k-means clustering [245,246], Spectral Clustering [247], Density based spatial clustering

(DBscan; [248]), and Gaussian Mixture Modeling (GMM, [249]). For our exercise, we

choose the posterior probability based cluster assignment approach – GMM, informed

by a preliminary k-means clustering assessment of the data distribution in PC1 vs. PC2

space.

First, we repeatedly run k-means clustering on the principle components of the

supervised CNN latent features with different number of permissible clusters (k ∈ [1, 15])

and compute the “inertia” as the sum of squared distances of the data points to their nearest

cluster centers. In Figure 49 (left panel), we show the k-means inertia for different number

of clusters, which falls sharply up to an optimal value of k = 6 clusters and shifts to a

more gradual fall off. This test to find data-driven optimal number of clusters is dubbed

the “Elbow” method. Using this information, we run the unsupervised GMM clustering

on our CNN latent features in PC1 vs. PC2 space and identify 6 clusters.

In Figure 49 (right panel), we show the PC1 vs. PC2 space with data points color

coded based on their GMM identified cluster labels (ngmm,cnn). We notice that the clus-

ters ngmm,cnn = 2, 4 have been naturally identified, which quantitatively correspond to

residuals with high and low SPF values, respectively. We also find that the clusters

ngmm,cnn = 0, 1, 5 span the intermediate region between the ngmm,cnn = 2, 4 clusters,
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which also quantitatively correlate to intermediate SPF values. Finally, our method iden-

tified the ngmm,cnn = 3 cluster data as “outliers” to the remaining clusters. To visually as-

sess the GMM-based clusters, in Figure 50, we show the residual images of the randomly

selected GMM-based cluster members. Interestingly, we notice that ngmm,cnn = 2 indeed

hosts galaxies with strong and often interesting residual characteristics, and the residuals

of the ngmm,cnn = 4 objects are nearly “clean” in appearance. On the other hand, we

notice that the residuals of objects spanning the clusters ngmm,cnn = 0, 1, 5 host weaker

(compared to ngmm,cnn = 2), diffuse asymmetric signatures. Finally, we find that a ma-

jority of the ngmm,cnn = 3 residuals host distinct (yet visually-similar) central residual

patterns, with no obvious signatures outside the central region. Our exercise suggests that

the supervised CNN model learns latent space which can be segregated into qualitatively

and quantitatively similar residual characteristics. To automatically identify quantitative

boundaries amongst the identified GMM clusters, we use the SVC with a radial-basis

function kernel (γ = 0.7 and C = 1). In Figure 49, we show the SVM-based classifica-

tion boundaries of the GMM clusters. Our GMM-based cluster identities and SVM-based

classification boundaries can be further used to refine/validate our visual residual class

characteristics used for training purposes.

Following a similar approach to our supervised case, we run an initial k-means

inertia test for our unsupervised CvAE latent features in PCA space, and find that it al-

lows an optimal k = 2 clusters (see Figure 51. Using this information, we run GMM-

based clustering to identify 2 clusters in the CvAE-based PCA space (see right panel in
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Figure 49: Left panel: The sum of squared distances between the data points using k-
means clustering technique as a function of number of permissible clusters, indicating
a transition from a sharp to gradual fall off at an optimal number of 6 clusters. Right
panel: We show unsupervised Gaussian Mixture Modeling based clustering of the PCA
embedding of the CNN latent features, where the GMM identified clusters are labelled
with unique color coding (see color bar).

Figure 51). After running an SVC classifier with a “Linear” kernel (owing to the simplis-

tic nature of the PC1 vs PC2 distribution), we find that these two GMM-based clusters

(ngmm,vae) are split roughly at PC1 ∼ 0, where ngmm,vae = 1 (= 0) cluster quantitatively

corresponds to objects with smaller (larger) SPF values, respectively (see Figure 48).

In Figure 52, we visually show example residual images randomly sampled per GMM-

identified cluster. We find that the ngmm,vae = 0 residuals host a mixture of visually

strong and intermediate strength residuals, and the ngmm,vae = 1 residuals are mostly

“clean” with some hosting weak diffuse signatures. This exercise reaffirms our previ-

ous discussion that the unsupervised latent features are less informative and lack clear

discriminatory power in terms of characterizing residual substructure.
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Figure 50: Visualization of the residual images sampled randomly from the GMM-based
clusters identified in the supervised CNN-based PCA space (in Figure 49). We outline the
row pairs with borders corresponding to the color coding used in Figure 49, except for the
second and third rows, which are random samplings from multiple clusters (GMM labels
= 0, 1, 5). On each residual image, we indicate the GMM cluster label.

4.6 Conclusions

In this chapter, we carryout a Deep Learning (DL) based exploratory study of the

residual substructures hosted by a large sample of ∼ 10, 000 massive and bright galax-

ies from the Hubble Space Telescope (HST) CANDELS survey spanning a redshift range
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Figure 51: Same as Figure 49, but for our unsupervised CvAE latent features in PCA
space.

1 < z < 3. We develop supervised Convolutional Neural Network (CNN) and unsu-

pervised Convolutional Variational Autoencoder (CvAE) frameworks to primarily extract

the deep latent space features representing the different residual substructure characteris-

tics. We analyze the latent space using Principle Component Analysis in conjunction with

independently quantified metrics of residual strength. We assess the DL-based latent fea-

tures’ ability to distinguish different residual characteristics by using Gaussian Mixture

Modeling (GMM) based unsupervised clustering and Support Vector Classifiers (SVC).

The key methodological steps and their corresponding results are as follows:

• We select a sample of 9973 massive galaxies (Mstellar ≥ 109.5M�) spanning 1 <

z < 3 from the CANDELS survey that are also HST H-band bright (H < 24.5 mag)

and have good photometric data (PhotFlag= 0). For this sample, we procure the

single-Sérsic profile-fitting based residual images generated by [160], carryout a

visual-based characterization of different residual features hosted by them, and

compile them into five residual classes – Clean, Core, Peculiar, Asymmetric, and
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Figure 52: Following the similar layout as in Figure 50, we show the residual images
sampled randomly from the GMM-based clusters identified in the unsupervised CvAE
based PCA space.

General.

• We prepare our sample’s residual images to serve as inputs to our DL networks by

pre-processing them such that the resultant image set comprises of postage-stamp

cutouts of the raw residual images which have been modified to contain only the

“galaxy of interest”. We split our main sample into training and testing subsets,

and augment our training data to span equi-proportionately across the five residual

characteristic classes. Finally, we derive three residual metrics that quantitatively
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describe their strengths: Significant Pixel Flux (SPF ), Bumpiness (B), and Resid-

ual Flux Fraction (RFF ), which we use in our analysis to assess the latent space

features of our DL networks.

• We implement a 5-layer deep CNN network and train it on the augmented training

image sample and visual-based residual class labels as targets. We extract the latent

space features from the pre-classification fully-connected layer and perform PCA

analysis on it. We assess the latent features in the first two principle component axes

and find that the Clean vs. Peculiar and General classes are distinctly separable,

while the remaining Core and Asymmetric classes lie intermediate to them with

considerable (by eye) overlap.

• By correlating the supervised CNN-based latent features in PCA space with the

residual quantitative metrics (SPF , B, and RFF ), we find that the PC1 eigen

axis correlates strongly with SPF and relatively weakly with B and RFF , where

objects with PC1 & 1 have higher values in all three metrics, and vice-versa.

• Informed by a k-means clustering inertia test on the supervised CNN-based latent

features in PCA space, we identify 6 clusters (ngmm,cnn) using GMM and find sepa-

rating decision boundaries using SVC. We find that ngmm,cnn = 2 group exclusively

contains objects hosting strong symmetric and asymmetric residuals, whereas the

ngmm,cnn = 3, 4 clusters host centrally dominant and “Clean” residuals, respec-

tively. On the other hand, the clusters ngmm,cnn = 0, 1, 5 comprise weaker diffuse
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residual signatures. We find that our CNN-based latent space offers promise to-

wards naturally distinguishing different residual characteristics.

• We also implement an unsupervised CvAE with 3-layered Encoder-Decoder frame-

work and train it on our augmented training image data. We extract the learned

latent space features from the encoder network and perform PCA on it. We assess

this latent space in the prominent PCA eigen axes PC1 vs. PC2 and find that its

overall visual-class wise distribution follows a continuum, where the Peculiar and

General classes appear as outliers to the Clean distribution, and the Asymmetric

and Core classes substantially overlap with the remaining remaining.

• We correlate the unsupervised latent features in PCA space with the quantitative

residual metrics (SPF , B, and RFF ) and find that only the PC1 eigen axis corre-

lates strongly with the SPF values and weakly with B and RFF values.

• Using a k-means inertia test, we find that the CvAE-based latent features are best

described by utmost 2 clusters. We apply GMM-based clustering to identify 2 clus-

ters in the PCA axes and define a decision boundary using a SVC classifier. We

find that the two identified clusters (ngmm,vae) are split at PC1 ∼ 0, where the

ngmm,vae = 0 (= 1) cluster hosts a mixture of strong and intermediate strength

residuals (clean and weak residuals), respectively. We find that our unsupervised

CvAE based latent features although offer some insights, lack clear discriminatory

power when characterizing residual substructure.
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Our methodological framework and the informative results from our supervised and un-

supervised DL models offers a promising path towards implementing automated methods

for residual feature assessment. These are especially essential in the context of future

large-scale telescope surveys.
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CHAPTER 5

SUMMARY AND FUTURE WORK

As a key step towards better identifying galaxy mergers and quantifying their

merger rate history, in this dissertation work, we carryout a comprehensive analysis of

close-proximity galaxy pairs and plausible merging induced tidal features (and in general

galactic substructures) using forefront observational data from the Hubble Space Tele-

scope (HST) and realistic mock observations from leading theoretical simulations. Here,

we briefly summarize the overarching outcomes of our analysis and discuss important

open questions and plans for future work.

5.1 Close-pair method based work

5.1.1 Summary

Two decades of close-pair based merger rate measurements vary by up to a factor

of five, especially during the early epoch of rapid galaxy development (∼ 7 − 11 Billion

years ago), highlighting that the merger contribution to galaxy growth remains poorly

constrained. In Chapter 1, we constrain the major merger rate evolution of similar-mass

(mass ratio< 4), massive (logMstellar/M� ≥ 10.3) galaxies over ∼ 11 Gyr in cosmic

history by analyzing the incidence of major close pairs among a large sample of ∼ 9800

massive galaxies from the HST-CANDELS survey. A key result of this analysis is that

the redshift evolution of the pair fraction fpair(z) at z & 1.5 − 3 is likely flat or even
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diminishing (Figure 10). Furthermore, we also find that the major merger rate evolution

measurement based on our empirical fpair(z) values and a commonly-used, non-evolving

assumption for the close-pair observability timescale Tobs,pair disagree up to a factor of

five with theoretical merger rate expectations at 2 < z < 3 (Figure 11). We conclude

that systematic errors on Tobs,pair are a dominant source of uncertainty (up to 50%, also

see [18]) while measuring the merger rates, and a physically-motivated, evolving Tobs,pair

may be required to explain the merger rate evolution discrepancy (Figure 12).

Recent pair fraction measurements made by different close-pair studies vary sub-

stantially during 1.5 . z . 3 despite choosing similar pair selection choices, suggesting

that study-dependent observational effects may be at play. In Chapter 3, we quantify

the impact of common observational selection effects such as photometric redshift un-

certainty (σz), stellar-mass errors (σlogMstellar
), sample completeness (c), and survey field

area (Asurvey). We derive calibrations for them by analyzing close pairs among theo-

retical mock light cones generated using the leading SantaCruz Semi-Analytical Model

(SC-SAM) with realistic HST-CANDELS survey like observational setting. A key re-

sult of our work is that SC-SAM calibrated empirical fpair(z) measurement based on the

HST-CANDELS survery is considerably flat during 1.5 < z < 3 (Figure 36). Our re-

sults indicate that the previous fpair(z) measurements need to be systematically lowered

to correct for the substantial impact of observational selection effects at z & 2.

5.1.2 Future Work

Despite active research on the topic of pair observability timescales, it remains
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Figure 53: A conceptual illustration of our future steps to constrain the close-pair and tidal
feature observability timescale by tracking mergers from the Horizon-AGN cosmological
simulation [250].

a key open question in the field of galaxy merger rate quantification. As such, one of

the key motivations moving forward is to robustly quantify the Tobs,pair values as a func-

tion of key physical parameters that govern the pair criteria – redshift (z), stellar-mass

(Mstellar), stellar-mass ratio (M1/M2), pair projected distance (Rproj), and physical prox-

imity (∆z or ∆v). A direct and intuitive way of quantifying the Tobs,pair is to “follow”

mergers during their close-pair stages using merger simulations that span a wide range

of selection criteria (e.g., stellar-mass, mass ratio, etc). For example, [127] carried out a

series of idealized binary merger simulations and quantified a Tobs,pair for different mass
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ratio, projected distance selections, and assessed the impact of gas fractions on the mea-

sured timescales. Although this work has been the basis for many empirical merger rate

studies using close pairs, their timescale values were constant (i.e., didn’t vary as function

of merger parameters) and they were computed in a controlled scenario of merging and

not in a cosmological context. Another less-direct approach to infer the Tobs,pair is to use

both the close-pair fractions and the intrinsic merger rates from the SAMs (e.g., [215])

or cosmological simulations (e.g., based on Illustris simulation [129] by [128]). However

robustly estimating the true galaxy merger rate in the simulations can be quite challeng-

ing, especially in the case of semi-analytic assumptions of different physical mechanisms

(including merging; see Chapter 3).

Robustly quantifying Tobs,pair requires a systematic analysis of a large sample of

mergers from cosmological simulations. For our future work, we aim to quantify a

thorough statistical prescription of the Tobs,pair evolution as a function of merger prop-

erties using 106 simulated mock observations of 104 major mergers from the Horizon-

AGN [250] cosmological simulation, where each simulated merger is viewed at high-

resolution timesteps (∆t ∼ 20 Myr). In Figure 53 (left panel), we visually illustrate a key

timescale measurement methodological step, where we will track each simulated merger

in our sample to measure the cumulative time during which it satisfies a close-pair se-

lection window (i.e., Tobs,pair). After computing the Tobs,pair values for all the mergers in

our sample, we will analyze evolutionary trends of Tobs,pair as a function of key merger

properties (z, Mstellar, M1/M2, and ∆z) and provide best-fitting model prescriptions that

describe the Tobs,pair evolution for common pair-selection choices used in the literature.
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The outcomes of this work will yield improved merger rate measurements and will enable

future theories to better incorporate the major merger contribution into galaxy evolution

framework and provide improved modeling of the massive galaxy growth.

In the case of our SAM-based close-pair calibration analysis of observational

selection effects discussed in Chapter 3, we focused on one specific model of galaxy

evolution (i.e., the SC SAM) and adopted one observational survey setting (HST CAN-

DELS). However, the derived pair fraction calibrations can vary among different SAM

models, driven by their intrinsic variations in their resultant stellar-mass functions (num-

ber density of galaxies as a function stellar mass) at fixed redshifts. Furthermore, the

pair fraction corrections derived in Chapter 3 are also a simultaneous function of the

study-dependent variables σz, σlogMstellar
, c, and Asurvey. Therefore, a key motivation for

future work is to assess the variability of different close-pair corrections by repeating our

Chapter 3 analysis on mock light cones from different SAMs (e.g., Carnegie SAM [137],

SAGE SAM [138]), and derive calibration corrections over for a grid of σz, σlogMstellar
,

c, and Asurvey values that are common among different existing observational surveys.

The outcomes of this work will help future empirical studies to derive an improved and

calibrated measurement of close-pair fraction evolution, which will yield accurate merger

rate history constraints.

5.2 Tidal feature based work

5.2.1 Summary

Isolating plausible tidal signatures of merging can help improve identification of
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interacting, merging, and post-merger systems. In Chapter 2, we developed a new Python-

based software tool that identifies flux-wise and area-wise significant contiguous regions

and extracts the different galactic substructures hosted within the model-subtracted “resid-

ual” images produced by popular parametric light-profile fitting tools (e.g., GALFIT). We

demonstrated the applicability of our software by measuring the surface brightness of a

variety of common residual features (disk structures, spiral substructures, plausible tidal

features, and strong gravitational arcs) hosted by 17 galaxies using their HST-CANDELS

survey H-band single-Sérsic residual images (Figures 21 & 22). We also showcase our

tool’s ability to track quantitative properties of tidal features using synthetic HST observa-

tions of a z ∼ 1.5 major merger from the VELA hydrodynamic simulations (Figure 24).

Our new software provides a promising approach to overcoming the subjectivity of iden-

tifying mergers via the presence of tidal features and a more direct way to extract and

quantify their strength.

To overcome the subjective identification of merging related features and provide

an automated and repeatable way of identifying them, in Chapter 4, we explore super-

vised Convolutional Neural Networks (CNNs) and unsupervised auto-encoders (CvAE)

frameworks to characterize different kinds of residual substructures hosted by a sample of

∼ 10, 000 bright and massive galaxies from the HST CANDELS survey ( Figure 43). We

assess the latent space learned by our CNN and CvAE frameworks using Principal Com-

ponent Analysis (PCA) along with qualitative (i.e., visual based) labels of residual sub-

structure and independently quantified metrics of residual strength (significant pixel flux –

SPF , Bumpiness – B, and Residual Flux Fraction – RFF ). We find that our supervised
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CNN latent features in PCA space can distinguish between qualitatively strong and weak

residual substructures (Figure 45), whereas the unsupervised CvAE latent space lacks

clear discriminatory power (compared to supervised CNN) when characterizing different

residual substructures ( Figure 47). Our DL-based exploratory exercise demonstrating the

inter-disciplinary focus of this dissertation work serves as a key initial step for our future

investigations to address the key open questions pertaining to tidal feature based merger

identification.

5.2.2 Future Work

The tidal observability timescale Tobs,tidal during which mergers host detectable

tidal signatures is an important parameter when quantifying morphology-based merger

rates. Yet, the tidal observability timescales remain poorly constrained and there is

a strong need to systematically quantify them as a function different merger properties

(e.g., z, Mstellar, M1/M2). Furthermore, the relationship between the observed properties

of tidal features (e.g., strength, shapes) and the physical properties of merging galaxies

causing them remains poorly understood. With this as the primary motivation for our

future work, we aim to quantify the strength and timescales of tidal features hosted by

simulated merging galaxies by analyzing them with feature extraction software developed

in Chapter 2.

A conceptually straight-forward way to quantify Tobs,tidal is to apply quantitative

(or qualitative) indicators of tidal features on a suite of merger simulations and identify

the timescales over which the features are detected by the indicators. For example, [127]
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also analyzed the G − M20 metrics among a (small) suite of idealized binary merger

simulations and quantified a timescale over which they satisfied a selection window in

G −M20 space. However, [251] found that non-parametric quantities such as G −M20

and CAS do not effectively capture merging signatures (no better than a random guess),

further complicating the issue. For our future work, we will track the strength of tidal

features hosted by our 104 simulated mergers from the Horizon-AGN [250] cosmological

simulation using our residual feature extraction software (Chapter 2). In Figure 53 (right

panel), we visually illustrate our key tidal feature timescale measurement step. We will

quantify the Tobs,tidal for each simulated merger as the cumulative time during which the

extracted tidal feature surface brightness (flux per unit sky area) is brighter than a de-

tection threshold set by observational survey image depth. Finally, we will also analyze

the evolutionary dependence of Tobs,tidal and the feature surface brightness on the merger

properties (z, Mstellar, M1/M2) and provide their best-fit model prescriptions. The out-

comes of this work will produce comprehensive tidal timescale prescriptions and will

enable future studies to derive accurate tidal feature based merger rate measurements.

To understand the relationship between the observed properties of tidal features

and merger properties, we will explore the application of supervised and unsupervised

DL-based methods on the extracted tidal feature shapes and strengths of 104 simulated

merger sample from the Horizon-AGN simulation such that the trained DL networks will

predict merger progenitor properties based on observed tidal features. In Figure 54, we

conceptually illustrate our supervised CNN and unsupervised CvAE based frameworks,

which are inspired from our exploratory exercise discussed in Chapter 4. We will apply
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Figure 54: An overview of our future deep-learning based supervised Convolutional Neu-
ral Network (top) and unsupervised Convolutional Auto-Encoder (bottom) frameworks to
map the observed properties of tidal features to the intrinsic properties of merging pro-
genitor systems (z, Mstellar, and M1/M2).

the feature extraction software (from Chapter 2) to our Horizon-AGN simulated merger

sample to obtain their 2D tidal feature maps, and will train the CNN and CvAE frame-

works to predict the properties of their merging systems. The outcomes of this work will

improve our understanding of the relationship between tidal feature shape-similarity and

the merging progenitor properties for the first time. This will help future studies to better

quantify the major merger contribution to stellar-mass growth of high-mass galaxies.

5.3 Concluding Statements

Our efforts using observational and simulation based data in this dissertation work

help improve existing merger identification methodologies (close pairs and tidal features)
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and serve as important stepping stones towards improving constraints of the cosmic his-

tory of the rate of major mergers between comparable high-mass galaxies. The method-

ological framework and pipeline tools developed while meeting several of these research

objectives are timely for upcoming large-scale surveys and latest cosmological simula-

tions to further aid automated galaxy merger identification. The outcomes of our current

work serve as foundational pillars for our future goals, which are the next key steps to-

wards improving our understanding of the role of mergers in the overarching context of

galaxy development.
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[76] C. López-Sanjuan et al., Astronomy and Astrophysics 501, 505 (2009), arXiv:

0905.2765.

[77] Z. Z. Wen and X. Z. Zheng, ApJ 832, 90 (2016).

[78] C. J. Conselice, S. Rajgor, and R. Myers, Monthly Notices of the Royal Astronom-

ical Society 386, 909 (2008), arXiv: 0711.2333.

[79] P. Cassata et al., MNRAS 357, 903 (2005).

[80] A. Dekel, R. Sari, and D. Ceverino, ApJ 703, 785 (2009).

[81] M. Cacciato, A. Dekel, and S. Genel, MNRAS 421, 818 (2012).

[82] D. Ceverino, J. Primack, and A. Dekel, MNRAS 453, 408 (2015).

[83] D. G. York et al., 120, 1579 (2000).

[84] J. K. Adelman-McCarthy et al., ApJ Supplement Series 162, 38 (2006).

[85] J. B. Oke and J. E. Gunn, ApJ 266, 713 (1983).

[86] A. Galametz et al., ApJ Supplement Series 206, 10 (2013), arXiv: 1305.1823.

226



[87] Y. Guo et al., ApJ Supplement Series 207, 24 (2013), arXiv: 1308.4405.

[88] G. Barro et al., ApJ Supplement Series 243, 22 (2019).

[89] H. Nayyeri et al., ApJ Supplement Series 228, 7 (2017).

[90] M. Stefanon et al., ApJ Supplement Series 229, 32 (2017).

[91] V. G. Laidler et al., 119, 1325 (2007).

[92] M. L. N. Ashby et al., ApJ Supplement Series 218, 33 (2015).

[93] T. Dahlen et al., ApJ 775, 93 (2013), arXiv: 1308.5353.

[94] P. Santini et al., ApJ 801, 97 (2015), arXiv: 1412.5180.

[95] B. Mobasher et al., ApJ 808, 101 (2015).

[96] G. Chabrier, 115, 763 (2003).

[97] G. Bruzual and S. Charlot, MNRAS 344, 1000 (2003).

[98] L. Pozzetti et al., 523, A13 (2010).

[99] X. Yang et al., ApJ 671, 153 (2007).

[100] E. F. Bell, D. H. McIntosh, N. Katz, and M. D. Weinberg, ApJ Supplement Series

149, 289 (2003), arXiv: astro-ph/0302543.

[101] M. R. Blanton et al., The Astronomical Journal 129, 2562 (2005), arXiv: astro-

ph/0410166.

227



[102] M. Fioc and B. Rocca-Volmerange, 326, 950 (1997).

[103] R. S. de Jong and E. F. Bell, Astrophysics and Space Science Proceedings 3, 107

(2007).

[104] J. Moustakas et al., ApJ 767, 50 (2013).

[105] K. N. Abazajian et al., ApJ Supplement Series 182, 543 (2009).

[106] M. A. Strauss et al., 124, 1810 (2002).

[107] M. R. Blanton et al., 125, 2276 (2003).

[108] M. Cebrián and I. Trujillo, MNRAS 444, 682 (2014).

[109] L. de Ravel et al., arXiv:1104.5470 [astro-ph] (2011), arXiv: 1104.5470.

[110] C. J. Conselice, ApJ 638, 686 (2006).

[111] D. R. Patton et al., ApJ 536, 153 (2000).

[112] A. W. S. Man, A. Zirm, and S. Toft, arXiv:1112.3764 [astro-ph] (2011), arXiv:

1112.3764.

[113] G. B. Brammer, P. G. van Dokkum, and P. Coppi, ApJ 686, 1503 (2008), arXiv:

0807.1533.

[114] D. Kodra, The Galaxy Morphology-Density Relation at High Redshift with Can-

dels, PhD thesis, University of Pittsburgh, 2019.

[115] B. P. Moster, R. S. Somerville, J. A. Newman, and H.-W. Rix, ApJ 731, 113 (2011).

228



[116] C. J. Conselice, M. A. Bershady, M. Dickinson, and C. Papovich, 126, 1183 (2003).

[117] C. J. Conselice, S. Rajgor, and R. Myers, MNRAS 386, 909 (2008).

[118] D. L. Domingue, C. K. Xu, T. H. Jarrett, and Y. Cheng, ApJ 695, 1559 (2009).

[119] R. G. Carlberg, ApJ 359, L1 (1990).

[120] K. Bundy, M. Fukugita, R. S. Ellis, T. Kodama, and C. J. Conselice, ApJ 601,

L123 (2004).

[121] A. B. Newman, R. S. Ellis, K. Bundy, and T. Treu, ApJ 746, 162 (2012), arXiv:

1110.1637.

[122] A. F. L. Bluck et al., ApJ 747, 34 (2012).
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