
Arsenic, classified as a human carcinogen, is 
a pervasive, naturally occurring mineral
[International Agency for Research on Cancer
2004; U.S. Environmental Protection
Agency (EPA) 2001]. A common route of
exposure is through groundwater, where
arsenic leaches in from surrounding rock.
Countries with high endemic arsenic in
groundwater have provided evidence of an
association between arsenic and non-
melanoma skin cancer (NMSC) as well as
precursor skin lesions such as hyperkeratosis.
For example, ecologic studies in Taiwan
reported a dose–response relationship
between arsenic in groundwater and preva-
lence of skin conditions, including NMSC
(Chen et al. 1985; Hsueh et al. 1995; Tseng
et al. 1968). A cohort study in this same area
also observed a dose–response relationship
with incidence of NMSC (Hsueh et al.
1997). Moreover, an association between
NMSC and arsenic in drinking water was
reported for studies in Silesia, Argentina,
Mexico, and Chile (Bergoglio 1964; Cebrian
et al. 1983; Guo et al. 1997; Jackson and
Grainge 1975; Zaldivar 1974). 

However, in the United States, arsenic con-
centrations in drinking water are much lower.
Municipal water is regulated by the U.S. EPA,
with the standard presently set at 10 µg/L (U.S.
EPA 2001); however, private sources of water
(defined as serving fewer than 15 households or
25 individuals) are not required to meet this
standard. In New Hampshire, approximately
40% of residents have a private source of drink-
ing water (Karagas et al. 2002). A previous
analysis of NMSC and arsenic exposure in New
Hampshire found an elevated risk associated
with the highest concentrations of exposure
(Karagas et al. 2001). 

It has been hypothesized that arsenic acts
as a skin carcinogen by enhancing the effects of
ultraviolet (UV) radiation (Hartwig 1998;
Rossman 2003). In vitro studies have demon-
strated that arsenic inhibits the ligation
(Hartwig 1998; Hartwig et al. 1997; Lee-Chen
et al. 1992) and incision steps of nucleotide
excision repair (NER), even at low concentra-
tions (Hartwig 1998; Hartwig et al. 1997).
Others have shown inorganic arsenic to be
only weakly mutagenic, whereas DNA damage
and mutation frequency after exposure to both

arsenic and UV radiation is more than additive
(Danaee et al. 2004). Although many biologic
pathways may be disrupted by arsenic
exposure, including interfering with the cell
cycle activities of p53 or inhibiting base exci-
sion repair through reduced DNA ligase III or
poly-(ADP-ribose)polymerase activity (Li and
Rossman 1989a, 1989b, 1991; Vogt and
Rossman 2001; Yager and Wiencke 1997), the
most compelling candidate for NMSC among
Caucasians is the NER pathway, given the
specificity of NER to repair damage from
exposure to UV radiation.

Epidemiologic studies have examined the
relationship of polymorphisms in the NER
genes Xeroderma pigmentosum groups A and D
[XPA and XPD; Unigene accession numbers
P23025, S10888, respectively (Unigene
2007)] and cancer risk. The A23G poly-
morphism in XPA (rs1800975), located four
nucleotides upstream of the start codon, has
been reported to influence the risk of lung can-
cer and NMSC (Butkiewicz et al. 2004; Miller
et al. 2006; Park et al. 2002; Popanda et al.
2004; Wu et al. 2003). This polymorphism is
located in the Kozak sequence, and coding
changes in this region are thought to influence
protein levels (Kozak 1987, 1996). In fact,
having one or more copies of the wild-type
G allele for this polymorphism has been
reported to lead to significantly higher DNA
repair capacity (DRC), as determined by the
host-cell reactivation assay (Wu et al. 2003).
The reduced repair phenotype has been associ-
ated with risk of NMSC and other cancers
(Berwick and Vineis 2000; Wei et al. 1994).
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BACKGROUND: Arsenic exposure may alter the efficiency of DNA repair. UV damage is specifically
repaired by nucleotide excision repair (NER), and common genetic variants in NER may increase risk
for non-melanoma skin cancer (NMSC). 

OBJECTIVE: We tested whether polymorphisms in the NER genes XPA (A23G) and XPD (Asp312Asn
and Lys751Gln) modify the association between arsenic and NMSC. 

METHODS: Incident cases of basal and squamous cell carcinoma (BCC and SCC, respectively)
were identified through a network of dermatologists and pathology laboratories across New
Hampshire. Population-based controls were frequency matched to cases on age and sex. Arsenic
exposure was assessed in toenail clippings. The analysis included 880 cases of BCC, 666 cases of
SCC, and 780 controls.

RESULTS: There was an increased BCC risk associated with high arsenic exposure among those
homozygous variant for XPA [odds ratio (OR) = 1.8; 95% confidence interval (CI), 0.9–3.7]. For
XPD, having variation at both loci (312Asn and 751Gln) occurred less frequently among BCC and
SCC cases compared with controls (OR = 0.8; 95% CI, 0.6–1.0) for both case groups. In the stratum
of subjects who have variant for both XPD polymorphisms, there was a 2-fold increased risk of SCC
associated with elevated arsenic (OR = 2.2; 95% CI, 1.0–5.0). The test for interaction between XPD
and arsenic in SCC was of borderline significance (p < 0.07, 3 degrees of freedom). 

CONCLUSIONS: Our findings indicate a reduced NMSC risk in relation to XPD Asp312Asn and
Lys751Gln variants. Further, these data support the hypothesis that NER polymorphisms may
modify the association between NMSC and arsenic. 
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We have previously demonstrated that this sin-
gle polymorphism captures risk information
for the XPA haplotype in NMSC, and that the
A allele is associated with reduced risk of both
basal and squamous cell carcinomas (BCC and
SCC, respectively) (Miller et al. 2006). 

Polymorphisms in XPD have also been
associated with DRC and NMSC susceptibil-
ity, with particular emphasis on two non-
synonymous polymorphisms: Asp312Asn
(G→A; rs1799793) polymorphism in exon 10
and Lys751Gln (A→C; rs13181) in exon 23.
The wild-type alleles for these polymorphisms
were found to have better DRC than the vari-
ants as determined by the host-cell reactiva-
tion assay (Spitz et al. 2001), although other
studies containing fewer subjects did not
observe the same relationship between these
polymorphisms and DNA repair (Duell et al.
2000; Lunn et al. 2000; Moller et al. 1998).
However, when these polymorphisms were
examined jointly (i.e., haplotypes), alleles with
multiple variants were consistently observed at
greater frequency among controls than BCC
or SCC cases (Han et al. 2005; Lovatt et al.
2005). However, the evidence was less strong
when these polymorphisms were investigated
singly (Dybdahl et al. 1999; Festa et al. 2005;
Vogel et al. 2001). Results from Denmark
have consistently found a nonsynonymous
polymorphism at codon 156 to be associated
with NMSC (Dybdahl 1999; Lovatt et al.
2005; Vogel et al. 2001, 2005).

The hypothesis that XPD polymorphisms
interact with arsenic in skin lesions has been
tested in Bangladesh, where substantially ele-
vated groundwater levels of arsenic occur. In this
previous study (Ahsan et al. 2003), the increased
risk of hyperkeratosis associated with arsenic
exposure was stronger among those with the
Lys/Lys genotype. In the current study we have
extended these observations to test whether two
polymorphisms in XPD, and variation in XPA,
modify the skin cancer risk associated with
arsenic in a U.S. Caucasian population.

Materials and Methods

Study population. Cases of primary invasive
SCC and BCC were identified through a col-
laboration with dermatologists and patholo-
gists serving the population of New Hampshire
(Karagas et al. 1999). We selected New
Hampshire residents between 25 and 74 years
of age who were diagnosed with SCC or
BCC between 1 July 1993 and 30 June 1995
(series 1) and between 1 July 1997 and
30 March 2000 (series 2). Participants were
required to have an identifiable telephone
number and speak English to be eligible. We
identified all potentially eligible cases of SCC
and, for efficiency, randomly selected a sample
of BCC cases (stratified on age, sex, and ana-
tomic site to ensure representativeness of the
entire BCC group) in ratios of approximately

2:1 in the first series and 1:1 in the second
series. Potential controls less than 65 years of
age were chosen from the New Hampshire
Department of Transportation driver’s license
files of state residents, and those 65 years and
older were identified through the Center for
Medicare and Medicaid Services files of New
Hampshire residents enrolled in Medicare.
Controls were frequency-matched to the com-
bined BCC and SCC case distribution on sex
and age (25–35, 36–45, 46–50, 51–59, 60–64,
65–69, 70–74 years). The Committee for the
Protection of Human Subjects of Dartmouth
College approved the study, and participants
provided written informed consent according
to the approved protocol. Participants were
interviewed, usually in their home, to obtain
information on demographic factors (e.g., eth-
nicity, education), sun exposures (e.g., number
of severe sunburns), and UV sensitivity (e.g.,
tendency to tan or burn). To minimize poten-
tial reporting biases, interviewers and partici-
pants were blinded to study hypotheses, and
interviewers were blinded to case–control status
of participants. More detailed information on
data collected in the interview is provided else-
where (Miller et al. 2006).

Toenail arsenic. To obtain a biomarker of
ingested arsenic, toenail clippings from study
participants were obtained. Arsenic was mea-
sured using instrumental neutron activation
analysis at the University of Missouri Research
Reactor Center. This method has been
described in detail by Nichols et al. (1998).
Briefly, samples first were washed to remove
external contamination. Quality controls con-
sisted of matrix-matched samples with known
content and analytical blanks. The coefficient
of variation between assays was 8% (Karagas
et al. 2001). The detection limit for arsenic was
0.001 µg/g. All samples were blinded to
case–control status.

Genotyping. At the time of interview, blood
specimens were collected for DNA extraction.
In cases where it was not possible to collect a
blood specimen, a buccal specimen was
retrieved. To extract buccal cell DNA, mouth-
wash rinses were centrifuged at 3,200 rpm for
15 min to pellet buccal cells, followed by a
wash of 15 mL TE (Tris–EDTA) buffer and
spinning for 15–20 sec to resuspend pellet.
DNA was extracted from buffy coat and buccal
cell pellets with QIAamp DNA extraction kits
(Qiagen, Valencia, CA). ABI Taqman chem-
istry was used to genotype the three NER poly-
morphisms on an ABI7000 (XPA: G→A (–4)
(rs1800975); XPD: Asp312Asn (rs1799793)
and Lys751Gln (rs13181)). Taqman primers,
probes, and conditions are available upon
request. For quality assurance, positive and
negative controls were used in each genotyping
run, and 20% of samples were imbedded
duplicates. Laboratory personnel were blinded
to case–control status. 

Statistical analysis. All analyses were con-
ducted separately for BCC and SCC cases. The
genotype frequency for each polymorphism was
tested for Hardy-Weinberg equilibrium.
Unconditional logistic regression models gener-
ated odds ratios (ORs) and 95% confidence
intervals (CIs) to examine the relationship
between each NER polymorphism in the two
case groups compared with controls. Multi-
variate models controlled for age and sex, along
with number of severe sunburns, and a pigment
score. The pigment score was generated as a
multivariate confounder score (Cook and
Goldman 1989; Miettinen 1976). A higher
pigment score was consistent with lighter pig-
mentation, which leads to higher UV exposure
in keratinocytes (target cells for NMSC). As
described by Miller et al. (2006), the pigment
score summarized the contribution of multiple
potential risk factors, including skin reaction to
first hour of intense sunshine (tan only, mild
burn then tan, burn), skin reaction to repeated
sun exposure (deep tan, moderately tan, mild
tan and peel, freckling or no tan), hair color
(dark brown/black, light brown, red, blond),
eye color (brown/black, green/hazel, blue/gray),
skin color (medium/dark, light), and number of
moles on back (0, 1, 2–4, ≥ 5) into a single
variable. This score was included in the models
of interest as quartiles, as determined by the
distribution in controls. 

We modeled the main effects of the NER
polymorphisms with genotypes dichotomized
as homozygous wild-type compared with het-
erozygous and homozygous variant. Based on
prior work in which we observed an elevated
risk at the upper end of the exposure distribu-
tion (Karagas et al. 2002), we dichotomized
exposure at ≤ 0.286 µg/g to examine gene–
environment interactions. The joint effects
between the polymorphisms and arsenic were
modeled, using the homozygous wild-type low
arsenic (≤ 0.286 µg/g) as the reference cate-
gory and the ORs and 95% CIs for the
remaining genotype–arsenic categories were
estimated. To test for statistical interaction,
logistic models included separate terms for
arsenic and genotype and also contained their
cross products. The likelihood ratio tests were
conducted leaving off the cross products and
comparing the –2 log likelihoods from these
models. Further, it has been suggested that
arsenic-induced NMSC may be more likely to
develop on low-UV exposure regions of the
skin (Castren et al. 1998; Tapio and Grosche
2006). To examine this in our data, tumors
were determined to occur on a high UV-expo-
sure site (e.g., head or neck) or a sun-protected
site. However, our results did not differ by
tumor location (data not shown). Statistics
were generated using SAS (version 9.1; SAS
Institute Inc., Cary, NC). All tests were two-
sided, and a p-value of 0.05 was considered
statistically significant.

Applebaum et al.

1232 VOLUME 115 | NUMBER 8 | August 2007 • Environmental Health Perspectives



A total of 1,181 BCC, 833 SCC, and
1,066 controls participated in the study (par-
ticipation in series 1: 82% of cases and 69%
of controls; participation in series 2: 81% of
cases and 76% of controls). Subjects provided
DNA samples from blood and/or buccal spec-
imens (86% of series 1 and 85% of series 2
subjects). Ninety-eight percent of subjects
provided toenail samples. Because the etiol-
ogy for NMSC may vary by race and because
of the low numbers of non-Caucasians identi-
fied, we restricted this analysis to Caucasians.
Only Caucasians with both genotyping and
toenail arsenic data available were included in
this analysis (780 controls, 880 BCC, and
666 SCC). 

Results

The majority of BCC and SCC cases were
male and overall were approximately 60 years
of age. After adjusting for age and sex, the
number of severe sunburns was significantly
higher among both BCC (p < 0.01) and SCC
(p < 0.01) cases than controls, and pigment
score also was higher among NMSC case
groups than controls (BCC, p < 0.01; SCC,
p < 0.01) (Table 1). There were no meaning-
ful differences in the distribution of these
characteristics for subjects who provided
DNA and toenail specimens compared with
those who did not (data not shown). 

For all three polymorphisms, the distribu-
tion of the genotypes in controls was in Hardy-
Weinberg equilibrium. The main effect models
for NER genotypes are presented in Table 2.
In the XPA A23G polymorphism model, BCC
and SCC cases were less likely than controls to
carry one or two copies of the variant A allele
(BCC: OR = 0.8, 95% CI, 0.7–1.0; SCC:
OR = 0.8, 95% CI, 0.7–1.0), and these differ-
ences were of borderline significance, as
described previously (Miller et al. 2006).
Similarly, for the Asp312Asn polymorphism in
XPD, genotypes containing the variant allele
were less frequent in both case groups, and this
was of borderline significance (BCC: OR =
0.8, 95% CI, 0.7–1.0; SCC: OR = 0.8, 95%
CI, 0.6–1.0). However, the Lys751Gln in this
same gene suggested no association with either
BCC or SCC (BCC: OR = 0.9, 95% CI,
0.7–1.1; SCC: OR = 0.9, 95% CI, 0.7–1.1). 

Estimates of the joint effects of genotypes
and arsenic are provided in Table 3. For XPA,
subjects with homozygous wild-type genotypes
and high arsenic (> 0.286 µg/g) had an ele-
vated risk for BCC compared with the
homozygous wild-type with lower arsenic
(XPA: OR = 1.8; 95% CI, 0.9–3.7), although
the test for interaction was not statistically sig-
nificant (p = 0.24). The test for interaction sug-
gested that the two polymorphisms in XPD
were the stronger modifiers of the association
between arsenic and NMSC; the Asp312Asn
polymorphism–arsenic interaction was of

borderline significance for SCC (p = 0.08), and
the Lys751Gln polymorphism–arsenic interac-
tion was statistically significant for SCC (p =
0.03). For these two polymorphisms, the risk
of SCC was stronger among carriers of the
variant with high arsenic compared with the
homozygous wild-type with high arsenic.

We examined the degree of linkage dis-
equilibrium between these XPD polymorphisms
among controls and found Asp312Asn and
Lys751Gln did co-segregate (D´ = 0.68).
Therefore, we generated logistic models to
examine how combinations of alleles at these
polymorphisms influenced the risk of NMSC

NER and arsenic interactions in skin cancer
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Table 1. Selected characteristics of basal cell carcinoma (n = 880) and squamous cell carcinoma (n = 666)
cases and controls (n = 780) on whom toenail arsenic and genotype data were available.

Characteristic Controls [n (%)] BCC [n (%)] SCC [n (%)]

Sex
Male 478 (61.3) 498 (56.6) 423 (63.5)
Female 302 (38.7) 382 (43.4) 243 (36.5)

Mean age (years ± SD) 61.2 ± 10.5 58.8 ± 11.1 64.1 ± 8.7
Severe sunburnsa

0–2 471 (61.3) 402 (46.2) 311 (47.4)
≥ 3 297 (38.7) 469 (53.8) 345 (52.6)

Pigment scoreb,c

Quartile 1 195 (25.0) 83 (9.4) 66 (9.9)
Quartile 2 197 (25.3) 173 (19.7) 114 (17.1)
Quartile 3 198 (25.4) 244 (27.7) 179 (26.9)
Quartile 4 190 (24.4) 380 (43.2) 307 (46.1)

aMissing sunburn information: 12 controls, 9 BCC, 10 SCC. bPigment score was generated using a multivariate confounder
score and combined data on the following pigment factors: skin reaction to first hour of intense sunshine; skin reaction to
repeated sun exposure, hair color, eye color, skin color, and number of moles on back; higher pigment score represented
lower pigmentation and melanin production. cThe distribution of pigment score in controls represents the average for the
pigment score in controls as generated separately for BCC and SCC.

Table 2. Association between nucleotide excision repair polymorphisms and NMSC.

Gene, polymorphism Controls [n (%)] BCC [n (%)] OR (95% CI)a SCC [n (%)] OR (95% CI)a

XPA, A23G n = 773 n = 868 n = 662
GG 347 (44.9) 428 (49.3) Referent 322 (48.6) Referent
AG, AA 426 (55.1) 440 (50.7) 0.8 (0.7–1.0) 340 (51.4) 0.8 (0.7–1.0)
A allele frequency (%) 34.1 30.8 31.1

XPD, Asp312Asn n = 728 n = 782 n = 631
Asp/Asp 301 (41.4) 347 (44.4) Referent 286 (45.3) Referent
Asp/Asn, Asn/Asn 427 (58.7) 435 (55.6) 0.8 (0.7–1.0) 345 (54.7) 0.8 (0.6–1.0)
Asn frequency (%) 35.1 33.8 32.9

XPD, Lys751Gln n = 753 n = 854 n = 644
Lys/Lys 322 (42.8) 395 (46.3) Referent 289 (44.9) Referent
Lys/Gln, Gln/Gln 431 (57.2) 459 (53.8) 0.9 (0.7–1.1) 355 (55.1) 0.9 (0.7–1.1)
Gln frequency (%) 34.8 33.3 33.4

aOdds ratios controlled for age, sex, severe sunburns, and pigmentation.

Table 3. Joint effects of toenail arsenic measurements and nucleotide excision repair polymorphisms on
risk of NMSC.

Toenail arsenic Controls BCC SCC 
Gene, polymorphism (µg/g) [n (%)] [n (%)] OR (95% CI)a [n (%)] OR (95% CI)a

XPA, A23G n = 773 n = 868 n = 662
GG ≤ 0.286 334 (43.2) 399 (46.0) Referent 309 (46.7) Referent

> 0.286 13 (1.7) 29 (3.3) 1.8 (0.9–3.7) 13 (2.0) 1.1 (0.5–2.6)
AG, AA ≤ 0.286 401 (51.9) 413 (47.6) 0.8 (0.7–1.0) 323 (48.8) 0.8 (0.7–1.1)

> 0.286 25 (3.2) 27 (3.1) 0.9 (0.5–1.6) 17 (2.6) 0.8 (0.4–1.6)
p-Value for interactionb 0.24 0.79

XPD, Asp312Asn n = 728 n = 782 n = 631
Asp/Asp ≤ 0.286 282 (38.7) 320 (40.9) Referent 276 (43.7) Referent

> 0.286 19 (2.6) 27 (3.4) 1.3 (0.7–2.4) 10 (1.6) 0.6 (0.3–1.3)
Asp/Asn, Asn/Asn ≤ 0.286 409 (56.2) 411 (52.6) 0.8 (0.7–1.0) 326 (51.7) 0.8 (0.6–1.0)

> 0.286 18 (2.5) 24 (3.1) 1.2 (0.6–2.2) 19 (3.0) 1.2 (0.6–2.4)
p-Value for interactionb 0.82 0.08

XPD, Lys751Gln n = 753 n = 854 n = 644
Lys/Lys ≤ 0.286 303 (40.2) 368 (43.1) Referent 280 (43.5) Referent

> 0.286 19 (2.5) 27 (3.2) 1.2 (0.6–2.2) 9 (1.4) 0.6 (0.2–1.3)
Lys/Gln, Gln/Gln ≤ 0.286 416 (55.3) 431 (50.5) 0.8 (0.7–1.0) 336 (52.2) 0.8 (0.6–1.0)

> 0.286 15 (2.0) 28 (3.3) 1.6 (0.8–3.2) 19 (2.9) 1.6 (0.8–3.4)
p-Value for interactionb 0.31 0.03

aOdds ratios controlled for age, sex, severe sunburns, and pigmentation. bFrom test of interaction with 1 df.



(Table 4). The lower frequency of the variant
alleles among the BCC and SCC cases relative
to contols reported earlier for each polymor-
phism, only existed when there was at least one
variant allele at both codons 312 and 751
(BCC: OR = 0.8, 95% CI, 0.6–1.0; SCC:
OR = 0.8, 95% CI, 0.6–1.0). Examining
gene–environment interaction with the com-
bined XPD genotype revealed a borderline sig-
nificant interaction for SCC (Table 5, p for
interaction = 0.07, 3 df). Among subjects with
one or more variants at both of the XPD poly-
morphisms, there was a 2-fold risk of SCC
(OR = 2.2; 95% CI, 1.0–5.0) or those with
high arsenic (> 0.286 µg/g) relative to those
with lower arsenic. 

Discussion

Previous analyses of this population have
found arsenic was a potential risk factor for
NMSC in the United States (Karagas et al.
2001, 2002), and the current analysis suggests
that the relationship between arsenic and
NMSC may be modified by NER polymor-
phisms. Having at least one variant at both
XPD polymorphisms was observed less fre-
quently in both BCC and SCC cases than in
controls. Among these carriers of variants at
multiloci, subjects with toenail arsenic
> 0.286 µg/g had twice the risk of SCC com-
pared with those with lowest arsenic exposure.
The results from the XPA analysis suggested
that an elevated risk of BCC from exposure to
high arsenic may occur in subjects homo-
zygous wild-type for the A23G polymorphism. 

Previous studies have examined the XPD
codon 751 polymorphism in relation to
benign keratoses. In a study of residents of
Bangladesh, Ahsan et al. (2003) examined the
relationship between urinary arsenic, XPD
Lys751Gln, and risk of hyperkeratosis, a

potential precursor lesion for NMSC. The
investigators found a statistically significant
trend for increased arsenic-associated hyper-
keratosis among those with the Lys/Lys geno-
type and a weaker dose response for subjects
with one or two copies of the XPD codon 751
variant allele. In West Bengal India, investiga-
tors reported suboptimal DNA repair (as
measured by frequency of chromosomal aber-
rations and aberrant cells) among arsenic-
exposed subjects with the Lys/Lys genotype
compared with those with one or more vari-
ant alleles (Banerjee et al. 2007). Those with
the Lys/Lys genotype also were at greater risk
of hyperkeratosis. However, there are several
key differences between the studies in Asia
and ours from the United States. First, the
minor allele frequency was higher in
Bangladesh (50%) and India (40%) than in
U.S. Caucasians (30%) (Ahsan et al. 2003;
Banerjee et al. 2007; Shen et al. 1998; Spitz
et al. 2001). Pigmentary differences influence
the amount of UV radiation exposure that
reaches keratinocytes, which may alter the
nature of the arsenic–gene interaction. In
addition, the differences in arsenic dose may
underlie the population differences in
gene–environment interaction, as studies have
shown that the reaction of cells to arsenic
exposure differs by dose (Andrew et al. 2006;
Barchowsky et al. 1999; Del Razo et al.
2001). These differences in dose are dramatic;
arsenic in drinking water in Bangladesh
ranges from 10 to 2,040 µg/L (Tondel et al.
1999), whereas in New Hampshire the range
is considerably lower (0.01–180 µg/L among
controls) (Karagas et al. 1998). Finally,
although hyperkeratosis may be a precursor
lesion for some types of keratinocyte malig-
nancies, in particular SCC, it is not a malig-
nant end point. Our study included incident,

histologically confirmed invasive squamous
cell carcinomas.

There are a number of ways that arsenic
may interfere with the NER pathway and
removal of DNA lesions, such as pyrimidine
dimers and 6,4-photoproducts from UV radia-
tion (Danaee et al. 2004; Hartwig 1998, 1997;
Lee-Chen et al. 1992; Rossman 2003). First,
NER proteins have zinc fingers, where zinc is
surrounded by four cysteine and/or histidine
residues containing sulfhydryl groups (Mackay
and Crossley 1998). Arsenic has a high affinity
for sulfhydryl groups, which would allow
arsenic to bind to the repair proteins.
Consequently, this would inhibit the ability of
NER proteins to repair DNA damage, and as a
result, increase the risk of cancer. The 312 and
751 polymorphisms in XPD alter the acidity of
the amino acids on the protein. If these non-
synonymous polymorphisms change protein
structure, this could influence arsenic–protein
binding, which may explain the mechanism of
XPD polymorphism effect modification. 

Another hypothesis involves the expression
of NER genes. Arsenic has been demonstrated
to reduce the expression of NER genes,
including the incision proteins ERCC1 and
XPF (Andrew et al. 2003). This reduced
expression could decrease DRC, a phenotype
which has been linked to cancer susceptibility,
including skin cancer (Brockmoller et al.
2000; Wei et al. 1994). The polymorphisms
we studied in XPA and XPD have already been
linked to influencing DRC (Hemminki et al.
2001; Qiao et al. 2002a; Spitz et al. 2001; Wu
et al. 2003). If arsenic influenced gene expres-
sion levels and therefore DRC, the polymor-
phisms may further amplify the association
between arsenic and NMSC.

We observed that, among those not
exposed to high arsenic, subjects with genotypes
containing the variant allele were at reduced
risk for NMSC. This is consistent with other
studies of NMSC and polymorphisms in DNA
repair genes (Han et al. 2005, 2004; Marin
et al. 2004; Nelson et al. 2005; Popanda et al.
2004; Sanyal et al. 2004; Shen et al. 2001).
Keratinocytes are thought to have a greater
apoptotic response to DNA damage than other
cell types (Bowen et al. 2003). As a result, kera-
tinocytes containing the variant allele, which
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Table 4. Combination of XPD polymorphisms Asp312Asn and Lys751Gln and risk of NMSC in BCC (n = 771),
and SCC (n = 617), and controls (n = 710).

Controls BCC SCC 
XPD 312 XPD 751 [n (%)] [n (%)] OR (95% CI)a [n (%)] OR (95% CI)a

Asp/Asp Lys/Lys 236 (33.2) 271 (35.2) Referent 221 (35.8) Referent
Lys/Gln, Gln/Gln 60 (8.5) 72 (9.3) 1.0 (0.7–1.6) 60 (9.7) 1.1 (0.7–1.6)

Asp/Asn, Asn/Asn Lys/Lys 55 (7.8) 79 (10.3) 1.1 (0.7–1.7) 53 (8.6) 1.0 (0.6–1.6)
Lys/Gln, Gln/Gln 359 (50.6) 349 (45.3) 0.8 (0.6–1.0) 283 (45.9) 0.8 (0.6–1.0)

aOdds ratios controlled for age, sex, severe sunburns, and pigmentation.

Table 5. XPD polymorphisms Asp312Asn and Lys751Gln, toenail arsenic, and risk of NMSC in BCC (n = 771), SCC (n = 617), and controls (n = 710).

Toenail arsenic (µg/g) XPD 312 XPD 751 Controls [n (%)] BCC [n (%)] OR (95% CI)a SCC [n (%)] OR (95% CI)a

≤ 0.286 Asp/Asp Lys/Lys 219 (30.9) 249 (32.3) Referent 214 (34.7) Referent
Lys/Gln, Gln/Gln 58 (8.2) 67 (8.7) 1.0 (0.7–1.5) 57 (9.2) 1.0 (0.6–1.5)

Asp/Asn, Asn/Asn Lys/Lys 53 (7.5) 77 (10.0) 1.1 (0.7–1.7) 52 (8.4) 1.0 (0.6–1.5)
Lys/Gln, Gln/Gln 347 (48.9) 328 (42.5) 0.8 (0.6–1.0) 267 (43.3) 0.7 (0.6–0.9)

> 0.286 Asp/Asp Lys/Lys 17 (2.4) 22 (2.9) 1.1 (0.6–2.2) 7 (1.1) 0.5 (0.2–1.2)
Lys/Gln, Gln/Gln 2 (0.3) 5 (0.7) 2.6 (0.5–14.7) 3 (0.5) 1.4 (0.2–8.9)

Asp/Asn, Asn/Asn Lys/Lys 2 (0.3) 2 (0.) 1.1 (0.1–7.7) 1 (0.2) 0.4 (0.03–6.2)
Lys/Gln, Gln/Gln 12 (1.7) 21 (2.7) 1.6 (0.7–3.4) 16 (2.6) 1.7 (0.7–3.8)

p-Value for interactionb 0.61 0.07
aOdds ratios controlled for age, sex, severe sunburns, and pigmentation. bFrom test for interaction (3 df) between arsenic and the combined XPD polymorphisms at codons 312 and 751.
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may have suboptimal DNA repair compared
with the wild-type (described earlier), are more
likely to undergo apoptosis due to insufficient
repair of DNA damage, which can reduce the
risk of NMSC (Nelson et al. 2002). However,
when subjects are exposed to higher concentra-
tions of arsenic, there may be interference with
cell machinery that influences DNA damage
burden and the apoptotic threshold. As a result,
cells with the variant allele may have more
DNA damage that is not repaired and be
unable to undergo apoptosis, resulting in an
increased risk of NMSC.

We chose to examine the relationship
between arsenic, NER, and NMSC with these
particular polymorphisms because previous
studies found that they influenced susceptibil-
ity to various cancers. However, there are
many other polymorphisms in XPA and XPD,
which raises the question of whether other
polymorphisms could influence these associa-
tions and should be analyzed simultaneously.
For XPA, we previously conducted a haplo-
type analysis, accounting for coding through-
out the gene (Miller et al. 2006). These results
suggested that the association with NMSC
susceptibility was captured by the A23G poly-
morphism and that haplotypes accounting for
variation across XPA did not contribute more
information. Therefore, we focused on the
A23G polymorphism for this gene. For XPD,
we chose to focus on two nonsynonous poly-
morphisms. We observed that the 312 and
751 polymorphisms in XPD were in linkage
disequilibrium, which has been reported by
other investigators (Butkiewicz et al. 2001;
Caggana et al. 2001; Han et al. 2005; Hou
et al. 2002; Qiao et al. 2002b; Spitz et al.
2001; Vogel et al. 2001). In addition, the
combined genotype data for the two polymor-
phisms suggested that having coding changes
at both loci together influenced risk of NMSC
more than just one coding change. Therefore,
our results suggest that these polymorphisms
should be considered together and may iden-
tify individuals who are more susceptible to
the carcinogenicity of arsenic. At this point we
do not know how additional coding variation
in XPD would influence this finding.

By using toenail measurements of arsenic,
we have a measure of arsenic intake through
all routes of exposure. A limitation of this
measure is that it reflects exposure at one
point in time. As previously reported, this
New Hampshire population was relatively
stable, with over half of subjects using the
same water system for at least 15 years
(Karagas et al. 2001). In our study popula-
tion, arsenic in toenails measured 3–5 years
apart were correlated (Karagas et al. 2001),
and in the Nurses’ Health Study measure-
ments 6 years apart were correlated (Garland
et al. 1993). In addition, because our arsenic
measurements were blinded to case status,

exposure misclassification would result in
attenuated estimates. 

Our findings provide additional support
for the co-carcinogenic action of arsenic via
the NER pathway. Additional work is needed
to further define the biologic mechanism
underlying the interaction, as well as confirm
these results in a second population. We chose
to focus on a particular mechanism of arsenic
co-carcinogenicity with UV radiation in order
to identify individuals who may be most sus-
ceptible to the effects of arsenic. More research
is needed to determine how chronic exposure
to low concentrations of arsenic in ground-
water as experienced in the United States
contributes to the risk of NMSC.
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