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ABSTRACT

There is increasing attention for audio classification research to support various

emerging applications, including environmental monitoring, health care, and smart city.

Audio classification is an important area of research that needs more dynamic and be

adapted to possible changes in the environment, facilitate the adoption of enhancement

techniques with innovative and effective solutions. While there is an increasing amount of

audio data available for environmental audio classification, we still face significant chal-

lenges to conduct accurately deep learning in the environmental and health audio domain.

These challenges may occur due to the various field and categories, e.g., environmental,

animal sounds, noises, and human body sounds. Specifically, distortion, fracture, and

audio data noise are the primary obstacles affecting the accuracy of environmental au-

dio classification. There have been many advancements in the correct detection of audio

sounds; the audio data depending on how the features are extracted from the audio, how

modality represents the audio data, and how much noise is present in raw audio.
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With the rapid increase of environmental datasets, extracting relevant data to cre-

ate an adequate environmental sound classification is a crucial challenge. Deep learning

is an advanced and promising solution to detect, predict and classify different types of

sounds. Convolutional neural network is growing most in audio classification using en-

vironmental and health audio data. The classification technique distinguishes between

different types of sounds by capturing different patterns across time and frequency and

applying them to different features. For the neural network model to perform efficiently,

the training requires a large amount of data to get better training. Many researchers are

working on these ideas today, but the research is still not mature enough due to the lack

of available datasets. Moreover, in audio classification domains, noise in sound data or

unstructured data may affect the classifier’s performance. The data for audio classification

is too complicated to understand multiple characteristics and latent patterns of data.

We have developed unique fusion architectures based on convolutional neural net-

works for conducting multi-feature multi-modality fusion-based audio classification to

solve these problems in acoustic classification. We have proposed the multi-modality

fusion architecture with Deep Acoustics (DA) and Multimodal Deep Acoustics (MDA).

The contributions are (1) The performance with multi-modality of the input audio clips

was influenced by data issues such as noise or imbalance. (2) We have extracted various

acoustic features for the multi-features fusion network, such as Log-Mel Spectrogram,

Chromagram, and Mel Frequency Cepstral Coefficient. (3) We have developed effective

data augmentation and normalization methods to enhance the quality and comparability

of sparse audio samples with various extended features. (4) The proposed models have
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been evaluated with two types of fusion approaches: multi feature-based model fusion

and network-based fusion. Our experimental results validate the benefits of our proposed

work for audio classification tasks. Mainly, it is confirmed that our fusion models with

multi-feature and multi-modality are very efficient. In numerous benchmark datasets, the

suggested models outperformed state-of-the-art solutions, according to our comprehen-

sive testing. The suggested deep acoustic analytics approaches have been used in the

environmental sound detection and healthcare domains to detect lung and heart condi-

tions. Furthermore, our models show better results even with small network models (i.e.,

less convolutional and hidden layers, fewer trainable parameters, a smaller number of

epochs, and less time consumption) than the results of previous methods available in the

literature.
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CHAPTER 1

INTRODUCTION

The advanced technologies are essential to achieving the improvement of lifestyle

and health care. Machine learning is one of the most promising techniques used for

analytic and making cities healthy. Moreover, deep learning is a branch derived from

machine learning. It is known for allowing the computational models, which consist of

several layers of processing used to learn the data representations over multiple levels of

abstractions. It has attracted a lot of attention due to its high performance in prediction and

classification. These learning techniques are among the fastest-growing fields nowadays

in the area of audio classification.

Audio classification plays an essential role in the environmental and medical do-

main. This system monitors and detects acoustics and sounds in the environment and

improves the lifestyle. People suffer from noise problem in the environment, which af-

fects their daily routine work efficiency. On the other hand, healthcare expenditures make

the life of many people stressful nowadays. The growing expenses of health care that are

increasing with time in the United States are almost double the time as it is happening in

most developing countries around the globe.

More specifically, an extensive investigation in a partnership among researchers,

health care providers, and patients is integral to bringing precise and customized treatment

strategies in taking care of various diseases. Due to this fact, using deep learning for
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advanced analytic helps in reducing costs and improving the health care system. These

classifiers outperform humans due to the ability to ignore noise and memory issues. For

example, a traditional approach uses a stethoscope to detect different sounds from the

human body through which disease is detected. However, it takes much time to analyze

the condition manually, and there may involve a high risk of missing data by physicians.

Current work approaches for classification of audio and diseases through audio signals

are based on data obtained from costly machines, and no cost-effective real-time based

approach is addressed via deep learning. The manual process or obtaining scans has

significant drawbacks, i.e., expensive and error-prone.

The overall view of our proposed method is shown in Figure 1. A brief abstract of each

chapter is as follows:

Chapter 2: Deep Acoustic Model

Recent advances in deep learning (DL) have improved the state-of-the-art results of the

data-driven approaches and applications in a wide range of domains. However, building

robust classifiers with diverse datasets is one of the most significant challenges to deep

learning researchers. With the advent of datasets, deep learning technologies for audio

classification have recently received a lot of attention. There is increasing attention for

audio classification research that aims to support various emerging applications. One of

challenges in the research is finding the data that is publicly available and cleaning the

data that are not recorded properly and cannot be accepted if it is given as an input to a

class. Further, deep learning relies on large amounts of data. Due to limited amount of
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publicly available data, the researchers are facing difficulties in adding their input in this

field.

Contributions

• Designing and implementing the advanced normalization and augmentation tech-

niques for sound data

• Audio-based approach to design and implement an integrated deep learning net-

work model.

• Evaluation on benchmark lung sound, heart sounds, and speech emotion, and envi-

ronmental data.

Chapter 3: Multimodality for Deep Acoustics

Deep learning technologies have received significant attention for large-scale image clas-

sification in the area of computer vision. The characteristics of sounds for classification

are too complicated to understand the hidden patterns of data. The image-based sound

classification was introduced to effectively captures the diverse patterns in the dataset.

With the continuous development and innovation of algorithms for image processing in

many fields such as medical and environmental, deep learning has become an important

research direction. Specifically, distortion, fracture, and noise of audio data are the pri-

mary obstacles affecting the accuracy of environmental audio classification. Advanced

technologies are essential to achieving the improvement of lifestyle and health care.

Contributions

• Generate images from audio feature original and augmented data.
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• Construction of an integrated deep learning network.

• Multimodality based approach to network model for audio and generated image

data

• Low-cost Application of multimodality to human disease classification

• Evaluation using two heart sound, lung sound and environmental sound data.

Chapter 4: Deep Network-based Fusion for Deep Acoustics Learning

The environmental sound classification (ESC) is an important area of research that needs

more dynamic and be adapted to possible changes in the environment, facilitate the adop-

tion of enhancement techniques with innovative and effective solutions. While there is an

increasing amount of audio data available to environmental audio classification, we still

face significant challenges to conduct accurately deep learning in the environmental audio

domain. These challenges may occur in particular due to the various field and categories,

e.g., UrbanSound8k, ESC-10 and ESC-50 etc. Specifically, deep learning plays an essen-

tial role in audio classification over traditional machine learning nowadays. Convolutional

neural network is growing most in audio classification using Environmental audio data.

The data for audio classification is too complicated to understand multiple characteristics

and latent patterns of data. As new technologies like image-based audio classification

were introduced, more diverse fusion approaches.

Contributions

• Designing and Construction of models to be trained on image and audio data.
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• Fusion-based approach with single feature to deep acoustic classification.

• Evaluation for audio-based fusion approach using three benchmark datasets for

classification.

• Evaluation for image-based fusion approach using three benchmark datasets for

classification.

Chapter 5: Feature-based Fusion Learning for Deep Acoustics

There have been significant recent advances in deep learning and the potential of the

deep learning model for various medical applications. Recently, there has been increas-

ing attention for the classification of human body sounds for clinical conditions in the

medical domain. Advanced technologies are essential to achieving the improvement of

lifestyle and health care. More specifically, an extensive investigation in a partnership

among researchers, health care providers, and patients is integral to bringing precise and

customized treatment strategies in taking care of various diseases. This chapter aim to

propose a feature-based fusion model transferred from different feature-based convolu-

tional neural network models to classify lung and heart disease.

Contributions

• Multi-Feature approach using audio data.

• Designing and Construction of multi-models to be trained on generated images.

• Feature based deep network fusion to deep learning classification.
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Figure 1: Overall Workflow for Deep Acoustic Analytics

• Evaluation for image-based fusion approach using two benchmark datasets for clas-

sification.
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CHAPTER 2

DEEP ACOUSTIC MODEL

Deep learning (DL) improvements have enhanced the state-of-the-art results of

data-driven methodologies and applications in a variety of disciplines. One of the most

promising techniques for audio classification is machine learning (ML). Building strong

classifiers with a variety of datasets, on the other hand, is one of the most difficult tasks

for deep learning researchers. Deep learning approaches for audio classification have

recently gotten a lot of attention due to the availability of datasets. Audio classification

research is growing rapidly as it intends to support a variety of new applications, such as

environmental monitoring, health care, and smart cities [1, 2, 3, 4].

ML approaches have been used to detect the type of urban noise in acoustic en-

vironments in some cases. These machine learning approaches are currently the fastest

expanding areas in the field of audio classification [5, 6, 7]. DeepEar is an audio sensing

model that can also be used in acoustic contexts to classify sounds for ambient scener-

ies, emotion recognition, stress detection, and speaker identification [8]. Deep Learning

techniques based on Convolutional Neural Networks (CNN) was used for environmental

sound classification [9].

Finding publically available data and cleaning data that has been improperly recorded

and cannot be accepted as an input to a class are among of the research’s obstacles. Data

normalization, also known as feature scaling, is the process of rescaling or standardizing
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data according to data standards [10]. The first step to perform classification in the sound

domain is data preprocessing. For normalizing the sounds, the low values and high values

are rescaled in such a way that all the sound clips have an average and similar values

based on clipping the peaks. Because of directly recording audio from one source, the

audio samples may have some noise coming from the any other sounds/source that exist

in the environment. Applying normalization minimizes those factors and allows us to

recognize and classify the sounds easily via deep learning.

Large volumes of data are required for deep learning. Researchers are having

difficulty contributing to this topic due to the restricted number of publicly available data.

To deal with the issue. We presented a solution called as it Data Augmentation in the

deep learning domain. Augmentation of data [11, 12, 13] is a technique that adds various

aspects to the original audio samples, such as slowing down or speeding up the recording,

which may be useful in assessing the intended subject’s audio and removing unnecessary

noise from the sound clip. Changing the pitch of a sound can also enable the model

recognize the audible sounds that it is interested in.

To address these issues, we offer our model, which is based on a popular deep

learning network called the Convolutional Neural Network (CNN). For an effective sound

classification, we propose various advance preprocessing approaches such as normaliza-

tion and augmentation. The spectrogram features generated from the audio dataset are

used to classify the data. Noise in the audio samples, which is caused by environmental

influence, causes the classification results to vary.

The contributions of this chapter can be summarized as follows:
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• The key contribution of our work is an effective way of building an integrated clas-

sifier with advanced pre-processing techniques.

• Our methodology and model ”Deep Acoustic Model” is generic enough to be used

for multiple dataset in multiple domain.

• The data augmentation techniques were applied to generate more diverse training

data. Besides, a normalization approach was proposed for normalizing noise signals

of vast environmental and human body sound datasets.

• We extracted spectrogram features and labels of the annotated sound samples and

used them as an input to our 2D Convolutional Neural Network (CNN) model.

• A comprehensive evaluation of the proposed model has been conducted using the

four benchmark datasets mainly related to the environmental and health.

• Our work aims to assess the degree of accuracy acceptable in the multiple domain

specially in medical field by utilizing deep learning to available data.

• Our preliminary results shows that our model outperforms state-of-the-art results in

terms of learning time and accuracy. DA model improved performance compared

to the existing models. [14, 15]

2.1 Related Work

There are many existing techniques available that demonstrate the usability of

audio classification using diverse datasets. The section below has all work that has been
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done for the audio classification with diverse datsets.

2.1.1 Deep Learning for Audio Classification

The analysis of environmental sound in [16], which is close to our work, has been

performed where the authors proposed Convolutional Neural Network (CNN) to classify

environmental sounds. The architecture consists of two convolutional rectified layer unit

by applying max pooling, two fully connected hidden layers, and a softmax output layer.

The datasets used for classification were environmental science and the UrbanSound8k

dataset [17]. Random time delays and pitch shifting were used to enhance the data. Mel

Spectrograms were extracted from all audio files, re-sampled, and normalized with varied

window sizes using the librosa implementation. The classifier, one of the datasets, and

features utilized were comparable to those used in ourÂ research; however, we developed

an integrated network classification model for sound classification that included enhanced

normalization and augmentation approaches. Multiple datasets from various domains,

such as the environment and human body noises, are used to test our model. We also

compared our findings to those of other researchers.

Salamon and Bello extended the work and presented the data augmentation tech-

nique in [4] for environmental sound classification using Deep Convolutional Neural Net-

work. The deformation of audio was performed through time stretching, pitch shifting,

dynamic range compression, and background noise. Davis et al. [18] compared and tested

the UrbanSound8K data based on augmentation. Each augmentation strategy is applied

to the convolutional neural network separately, and the results are compared. We utilized

10



data augmentation on a normalized method based on two separate parameters, and the

results were significantly improved.

The main limitation of the research described in [19] is insufficient training of

data due to unavailability. For effective treatment, we have addressed the solution for low

and unclean data.Another limitation of the work in [20] shows an imbalance dataset used

for heart signals classification, and for each segment, the authors assumed only one type

of disease. Lim et al. [21] proposed a solution for emotion detection using an emotional

speech database. Convolutional neural networks, long short term memory, and time dis-

tributed convolutional neural networks were among the models utilized. Our method is

based on the audio approach and focuses on deep learning classification. Because deep

learning requires a vast quantity of data for sufficient training to achieve high accuracy

acceptable in the medical area, the method also employs advanced normalization and

augmentation techniques for efficient training.

2.1.2 Audio Feature Based Classification

The review in [22] mentioned several feature extraction and classification tech-

niques for obstructive pulmonary diseases such as COPD and asthma. The process in-

volves several traditional and deep learning classification techniques such as K-Nearest

Neighbor (KNN), Artificial Neural Network (ANN), Deep Neural Network (DNN), and

Convolutional Neural Network (CNN) and feature extraction through signals such as

Fast Fourier Transform (FFT), Short Time Fourier Transform (STFT), spectrograms, and

wavelet transform.
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Zhang et al. in [23] proposed a three-step classification for environmental sound

classification. The first stage is to show a convolutional filter, which improves in the de-

tection of energy modulation patterns and the attention method by focusing on the relevant

channel of the filters. The next phase is to introduce temporal and channel attention. This

enhances the overall performance of the Convolutional Neural Network. Finally, they

employed data augmentation in the third stage to minimize overfitting due to the lack of

data.

Dalal et al. [14] has compared four methods of machine learning approaches for

the purpose of lung sound classification using lungs dataset. They have extracted spec-

trograms, MFCC and LBP features which were given as input to the classifier. Support

vector machine, k-nearest neighbor, gaussian mixture model, and convolutional neural

network are among the techniques they used. CNN beat all other classifiers in their tests,

according to the researchers. This, however, is dependent on the batch size and epoch

count.

Rocha et al. [24] developed algorithms to detect the sounds for the clinical and

non-clinical tests that checked the environmental and chest placement of stethoscope.

They generated a database of lung sounds with 920 recordings divided into several groups

(i.e.,COPD, Healthy etc). The challenge’s second aim was to extract features and classify

the sounds based on their nature (Wheezes, Crackles or both). MFCC, spectral character-

istics, energy, entropy, and wavelet coefficients were all utilized. They also looked into

the viability of various machine learning algorithms including support vector machines

and artificial neural networks. However, because to a lack of data, they were restricted

12



in many ways. We used the same dataset and retrieved spectrogram characteristics in our

research. The audio samples contained a lot of noise due to the environmental recordings,

so we used normalization and data augmentation techniques to clean them up.

Although previous works were based on convolutional neural networks and data

augmentation techniques, where the authors used traditional techniques to classify audio

using environmental, lung and heart datasets. The benefit of our DA model is to improve

accuracy performance on the model which lacks some training in the audio-based tech-

niques and retrain the classes with low classification accuracy for diverse datasets. We

will explain our approach in detail as we further proceed with our upcoming sections.

2.2 Deep Audio Analytics

2.2.1 Pre-processing

For advanced classification, preprocessing is performed in two steps, i.e., Data

Normalization [25] and Data Augmentation [11].

13



Fi
gu

re
2:

A
n

ov
er

vi
ew

of
Pr

op
os

ed
D

ee
p

A
co

us
tic

M
od

el

14



2.2.1.1 Data Normalization

We have evaluated several different types of normalization techniques. We have

shortlisted the three best ones, which outperformed others through the evaluation. These

three best normalization techniques are (1) Root Mean Square, (2) European Broadcasting

Union Standard R128 Normalization, and (3) Peak Normalization. Each normalization

technique has been applied to the dataset before the training.

Root Mean Square Normalization The amplitude level in the Root Mean Square (RMS)

Normalization uses the average of a signal amplitude rather than the arithmetic mean of a

signal received. When using traditional calculations, such as taking the arithmetic mean

of a signal, there can be an issue because the signal amplitude can contain both positive

and negative values, which can offset each other and result in a zero amplitude. In this

case, taking into account RMS amplitude can be advantageous. The RMS level is useful

for determining signal strength based on amplitude, regardless of whether the signal is

positive or negative. For a given signal, x = x1, x2, . . . , xn, the RMS value, xrms is:

xrms =

√
x2

n
=

√
1

n
(x21 + x22 + . . .+ x2n) (2.1)

Only by determining the scaling factor that can execute the linear gain change will

we be able to normalize the signal amplitude. It is possible to scale a signal that has an

amplitude greater than 1 or less than zero 0 decibels (db). We’ll rearrange the preceding

RMS level calculation as indicated in Equation 2.2, where R has a linear scale, to apply

the linear gain adjustment.
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R =

√
1

n
[(ax1)2 + (ax2)2 + . . .+ (axn)2]

R2 =
1

n
[(ax1)

2 + (ax2)
2 + . . .+ (axn)

2]

nR2 = [(ax1)
2 + (ax2)

2 + . . .+ (axn)
2]

a2 =
nR2

(x1)2 + (x2)2 + . . .+ (xn)2

a =

√
nR2

(x1)2 + (x2)2 + . . .+ (xn)2

(2.2)

Peak Normalization Peak normalization analyzes the peak signal level in decibels rela-

tive to full scale (dBFS) and increases the loudness of the signal to the point where the

output is 0 dB maximum. The signal has large loudness peaks as a result of this feature.

Some signals stay quiet even after peak normalization, and the quality of those signals

cannot be improved further. The above 0 procedure can scale the amplitude of all incom-

ing audio signals to the point where the signal’s greatest amplitude equals 1. The output

signal based on the above scale can be calculated analytically as

out =
1

max(abs(in))
.in (2.3)

European Broadcasting Union Standard R128 Normalization

European Broadcasting Union Standard R128 Normalization focused on measur-

ing the average loudness of a program in the normalization of audio signals. This normal-

ization is commonly applied on media channels where we have heavy amount of broad-

cast material. The R128 performs normalization based on the psycho-acoustic model.
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This model performs normalization on the perception of a signal where the human audi-

bility is considered. This model commonly approaches the loudness of unit scale and is

considered better than RMS and peak in theory [26].

2.2.1.2 Data Augmentation

For data augmentation it is always important to select the deformation patterns in

such a way that their original labels are maintained and the data is augmented. After data

augmentation of the original audio samples, the augmented data is given as an input to the

neural network model. We have experimented different types of data augmentation and

concluded to experiment our results in three different ways such as time stretching, pitch

shifting, and dynamic range compression [27]. The three data augmentation techniques

are discussed below.

Time Stretching This is a data augmentation technique where the speed of the audio

sample is changed and is increased or decreased by some factors [28]. For our experi-

mentation technique, we used four types of audio samples speed, {i.e., 0.5, 0.7, 1.2 and

1.5} along with the original files, which has the speed of 1 and keeping the pitch and other

factors the same as original audio sample files.

Pitch Shifting In this technique of data augmentation, the pitch of the audio samples are

either decreased or increased by 4 values (semitones) [18]. The duration of the audio

samples is kept constant similar to the original audio samples i.e.,4 - 10 seconds. The

value changed in semitones ranged between -2, -1, 1, 2.
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Dynamic Range Compression This technique compresses the dynamic range of the au-

dio sample by four parameters [29]. Among the four parameters, three are taken from

Dolby E Standard and 1 is taken from ice cast radio live streaming server. Those are

music standard, film standard, speech, and radio.

2.2.2 Classification Model

Convolutional neural network is gaining importance in the field of deep learning

and growing very fast. It is being considered as one of the best network models for rec-

ognizing the audio features in the health domain more accurately than any other network.

CNN is also considered as the leading model in image, text and other computer vision

related fields. We have implemented the 2D CNN model using Keras framework along

with tensor board for loss and accuracy graph generations. Keras architecture is supported

both by CPU and GPU.

A convolutional neural network has two main components: a feature extractor and

a classifier. The feature extractor takes the spectrogram features from the audio signal

and sends them to a classifier for classification. The classifier is made up of various

convolutional and pooling layers, which are then activated. It also has fully connected

layers as well as some units that are hidden.

The 2D CNN architecture is shown in Figure 3 is composed of 5 layers. The

convolutional layers are the first three, followed by two fully connected layers, which are

enclosed by the max pool layer. We utilized a window size of 23 ms and a hop size of

23 ms to extract spectrogram features, and we kept the extraction to 3 seconds to make
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every piece of the sound sample acceptable. The input from the sound clips is reshaped,

and X ∈ R128x128 shape is provided to the classifier.

The reshaped features are fed into the first layer in the form of spectrograms with

24 filters. It has the dimensions of [24x1x5x5]. This layer’s stride is [4x2], and the acti-

vation function is ReLU. The second layer contains 48 filters in the shape [48x24x5x5],

as well as a [4x2] stride max-pooling layer and ReLU as an activation layer. The third

layer uses 48 filters with a receptive field of [5x5], yielding a shape of [48x48x5x5], with

ReLU activation without pooling. Finally, the fourth layer contains 64 hidden units, yield-

ing shapes [2000x64] with ReLU activation and [64x10] with softmax activation. Due to

the localized patterns, we proposed a [5x5] tiny receptive layer in the top layer.

2.3 Experimental Works and Results

The Deep Acoustic (DA) model is mainly based on the classification of sounds

along with data normalization and data augmentation techniques.

2.3.1 Dataset

Selection of dataset is a real challenge for classification in deep learning. We have

chosen four diverse dataset to evaluate our model efficiency. The description for each

dataset is in next section.
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2.3.1.1 Dataset for Lung Sounds

Working in health domain requires us to closely evaluate the dataset and come up

with the accuracy, which is almost near to what is expected to be evaluated by real physi-

cians. We came across datasets, which were not feasible for our experimentation and

faced a lot of difficulties. The best dataset that we came across were offered by R.A.L.E

[30] a Canadian Lab for medical instructions but it was not available publicly and it has

70 audio samples, which is not very useful for deep learning. Finally, we came across a

dataset, which was made public for the challenge hosted in 2017 by International confer-

ence on Bio-medical Health Informatics for lungs disease classification [24]. The dataset

is composed of total 5.5 hours of recording, which are further divided into recording sam-

ples of 126 patients. The recordings are distributed into Asthma, Chronic Obstructive

Pulmonary Disease (COPD), Healthy people, Upper Respiratory Tract Infection (URTI),

Lower Respiratory Tract Infection (LRTI) and Pneumonia disease. We followed the an-

notated text files provided by the dataset authors and separated all the data according to

the disease category. Hence, the data according to the categories obtained are given in

Table 1.

2.3.1.2 Dataset for Heart Sounds

We used heart sound on the publicly available dataset. The dataset [31] was re-

leased for a challenge. The dataset consists of different categories, i.e., Murmur, Noisy

Murmur, Normal, Noisy Normal, extrasystole, and unlabelled test. Each of the recorded
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Table 1: Original and Augmented Data Size for Lung Sounds

ID Name of Disease Data Size Augmented Data Size
1 Asthma 1 13
2 Bronchiectasis 29 377
3 COPD 785 10205
4 Health 35 455
5 LRTI 2 26
6 Pneumonia 37 481
7 URTI 31 403

Total 920 11,960

sounds is of varying length between 1 to 30 seconds. Some of the audio files have ex-

treme noise in it. The dataset was rearranged into six categories based on types and noises.

The distribution of the files is given in Table 2. We have also applied normalization and

augmentation techniques to increase and improve the number of files to train our model

better. The file distribution for original, normalized, and augmented is shown in Table 3.

Table 2: Dataset File Distribution for Original Heart Sounds

S.No. Category No. of Files
1 Extra Systole 46
2 Normal 200
3 Noisy Normal 120
4 Murmur 66
5 Noisy Murmur 29
6 Unlabelled Test 195

Total 656

2.3.1.3 Dataset for UrbanSound8k

We have considered UrbanSound8K [32] dataset, which consists of 8732 labeled

audio samples distributed in ten labeled categories such as dog bark, children playing, car
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Table 3: Dataset File Distribution and Augmented for Heart Sounds

Dataset No. of files
Original 656

Peak Normalized 656
RMS Normalized 656

Original Augmented 5904
Peak Normalized Augmented 5904
RMS Normalized Augmented 5904

Table 4: Dataset File Distribution and Augmented for UrbanSounds8k

Dataset No. of files
Original 8732

Normalized 8732
Augmented 113516

horn, street music, gunshot, air conditioner, siren, engine idling, jackhammer, and drilling.

Each audio sample is of 3 second long. The audio recordings are based on environmental

sounds which are recorded in an open environment. These audio contains a different type

of noise and distortion that are recorded with different environmental effects. The file

distribution for original, normalized, and augmented is shown in Table 4.

2.3.2 Experimental Setup

The experimental setup is important since we can observe how the experimenta-

tion was performed and what was the expected outcome based on our analysis. First, we

took the data in its original form, extracted the spectrogram features and provided the

features as an input to our network model, which has reported us accuracy. After getting

the accuracy the main aim was to improve the accuracy. For the purpose of accuracy, we
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have considered normalization to be applied on audio samples rather than the vector nor-

malization. Furthermore, we have analyzed that there could more room for improving the

accuracy, which could be realistic enough to be considered especially for health domain.

The only problem at this stage was availability of data. Deep learning needs large amount

of data to recognize and report a model accurately. For this purpose we used different

types of data augmentation techniques. Data augmentation was applied directly on the

original dataset and also on the data that was normalized. During the experimentation of

the model we kept training of data at 70% and 30% for testing, the batch size was kept at

32 and the number of epochs was fixed at 100 to avoid any over-fitting and under-fitting

issue that may report a wrong accuracy.

2.3.3 Preliminary Results

2.3.3.1 Results for Lung Sounds

It was observed during our experimentation stage that the highest accuracy achieved

by the existing research is 97% which is dependent on GPU usage and memory consump-

tion. We have used 2D CNN with normalization and augmentation techniques for clas-

sifying the models on the available data. Although the data was not enough for proper

training and testing, we were able to achieve good results with augmentation techniques.

Our model is experimented for 2D CNN classification network on the original dataset,

which reported an accuracy of approximately 83%. Further, we have applied the three

types of normalization i.e.,Peak, RMS and EBU, and obtained an accuracy of 86%, 87%

and 88% respectively. The data augmentation is considered as the trend making technique
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Figure 4: Classification Accuracy for Lung Sounds

in deep learning for small datasets.

Among all other techniques we have considered the three most common types of

augmentation techniques, such as time stretch, pitch shifting and dynamic range com-

pression, which outperformed among other techniques with signal and audio data. The

original dataset that consists of 920 audio samples were augmented and eventually 11960

audio samples were generated. The accuracy reported from the 2D CNN for the origi-

nal data augmentation was 93%. We have also applied three augmentation techniques on

normalized data and the highest accuracy achieved was 97%.
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2.3.3.2 Results for Heart Sounds

We have used a publicly available dataset for heart disease classification. Initially,

the data was not in the correct arrangement. We have re-arranged the data into six differ-

ent folders based on various categories. We adopted a strategy to execute our model on

original data, augmented data, and normalized data. Then we applied the normalization

technique to remove any type of out liars in the data. It was observed that audio improved

better. Finally, we considered applying the augmentation technique to increase the num-

ber of files with different filters. In this way, our model has more training data available.

Based on augmented the normalized data, it has increased the number of files by almost

8X times. The audio training and graphs can be seen in Figure 5
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2.3.3.3 Results for UrbanSound8k

We started with the classification of urban sound using a publicly available dataset

”UrbanSound8K”. We extracted the spectrogram features and used the 2D CNN model

and came up with an accuracy of approximately 74 - 75%. To remove noise and ob-

tain structured data, we applied normalization techniques such as RMS, Peak, and EBU.

Among the three methods, we got the best results for EBU, i.e., approximately 88% accu-

racy. To increase data for more efficient training, we have used augmentation techniques

such as Time scaling, Pitch shifting, Dynamic range compression. Finally, after aug-

mentation, our achieved accuracy was 95%. Figure 6 shows the learning performance of

original, and normalized augmented data. We can see from the figure that augmentation

has increased the accuracy of the system from a remarkable quantity.

28



Fi
gu

re
6:

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

fo
rU

rb
an

So
un

d8
k

29



2.3.4 Conclusion

In this chapter, we propose an integrated deep learning model named as Deep

Acoustic (DA) model for deep acoustic analytics. The model is based on data normaliza-

tion, data augmentation and CNN. The proposed deep acoustic analytics techniques have

been applied in the fields of environment and healthcare, i.e., Lung and Heart condition

detections, urban and environmental sounds.
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CHAPTER 3

MULTIMODALITY FOR DEEP ACOUSTICS

3.1 Introduction

Deep learning technologies have received significant attention for large-scale im-

age classification in the area of computer vision [33]. The characteristics of sounds for

classification are too complicated to understand the hidden patterns of data. The image-

based sound classification was introduced to effectively captures the diverse patterns in

the dataset [34]. With the continuous development and innovation of algorithms for image

processing in many fields such as medical and environmental, deep learning has become

an important research direction [35]. For example, in the medical field, detecting human

body sound can be challenging due to the presence of internal or external noise, as well

as ear sensitivity in determining whether a sound is normal or abnormal, which can alter

diagnosis results.

As a result, a created automated algorithm for identifying diseases through sounds

provides an efficient way for clinical diagnosis, reducing subjectivity on human body

sound. Similarly, there is an increasing amount of audio data available to environmental

audio classification, we still face significant challenges to conduct accurately deep learn-

ing in the environmental audio domain. These challenges may occur in particular due to

the various field and categories. Specifically, distortion, fracture, and noise of audio data

are the primary obstacles affecting the accuracy of environmental audio classification.
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Advanced technologies are essential to achieving the improvement of lifestyle and health

care.

As critical data is required for a useful deep learning model, publicly available data

is insufficient and uncleaned in specific domains, mainly for audio classification where

the length and size of continuously recorded sounds are challenging. The normalization

techniques play a vital role in normalizing the sound’s peak values and removing the

wanted noise from the signals without affecting the type of diseases. To address the

insufficient data, a technique known in deep learning is Data Augmentation [36]. This

technique is useful for increasing the quantity of training data. It is considered a better

method to tackle common data problem issues by adding some extra features to data files.

The main contribution of this chapter is the proposal of a multimodal classification

approach for audio and image classification based on a spectrogram feature. The spec-

trogram is a textural representation of time, phase, and frequency of sounds in the form

of an image. The multi-modal classification is useful for better learning and identifica-

tion of different sound classes through images. This basically reflect the patterns that are

not visible using sound. The techniques of image processing are applied to normalized

spectrogram feature extracted from different types sound.

The objectives and contributions of this chapter can be summarized as follows:

• We propose an integrated Multimodal Deep Acoustic (MDA) model with advanced

data pre-processing techniques for high performance.

• The pre-processing is conducted using advanced data normalization and data aug-

mentation techniques.
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• The three benchmark datasets i.e., lung, heart and environmental sounds are nor-

malized by removing the unwanted noise and adjusting the signal’s peak values.

• we have used advanced augmentation techniques to generate the data without af-

fecting the category of datasets.

• After preprocessing, we developed the spectrograms from sound datasets and used

these spectrograms features and images for audio and image classification respec-

tively.

• The proposed method increases the visualization of different types of individual

datasets and passes the images to our designed network model.

• Our preliminary results shows that our model outperforms state-of-the-art results in

terms of learning time and accuracy. MDA model improved performance compared

to the existing models.

3.2 Related Work

3.2.1 Deep Learning for Audio-Visual Classification

Chen et al. [37] proposed a novel solution for lung sounds classification by using

a publicly available dataset. The dataset was divided into three categories, i.e., wheezes,

crackles and normal. They proposed a detection method using optimized S-transformed

(OST) and deep residual networks (ResNets). They performed preprocessing on the audio

samples by using OST, which rescaled the features for ResNets.
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Rupesh et al. [22] have reviewed several features extraction and classification

techniques for pulmonary obstructive diseases such as COPD and asthma. In their review,

the feature extraction used were FFT, STFT, spectrograms and wavelet transform.

Bozkurt et al. [38] focused on segmentation and time-frequency components for

the CNN-based designs. The Mel-spectrogram and MFCC features were extracted from

heart sound data using the PhysioNet dataset [39]. They also performed the data augmen-

tation by changing the sampling rate with a random value in range.

Jannat et al. [40] proposed a solution for emotion detection using audio and video

features separately and by fusing them. They used the RAVDESS dataset to train their

model for audio emotion detection and BP4D+ multimodal emotion corpus for training

the video part of their research. They used the inception V3 convolutional neural network

in their research.

3.2.2 Visual Feature based Classification

Demir et al. [41] proposed a solution for environmental sound classification using

spectrogram extraction. They considered deep features for classification problems and

trained their network model, an end-to-end system trained on spectrogram images rather

than real audios. Feature vectors are combined using a concatenation of the fully con-

nected layers. Finally, for testing the model’s efficiency, they have provided a feature set

as an input to K nearest neighbor algorithm using ensemble voting classifier to report an

accuracy.
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Bian et al. [42] proposed the multiple networks of the Densely connected con-

volutional network (DenseNet) and Residual Neural Network (ResNet). They extracted

spectrograms and converted them to grayscale images using the cv2 library in python.

They further clipped the audio signal into small sub-signals and applied ensemble voting

to better accuracy for biased cases where the precision was dropped during the extraction

phase. They evaluated their work using Support Vector Machine and Convolutional Neu-

ral Network. Their experimentation received better results for DenseNet for the music

audio tagging problem using FMA-small and GTZAN datasets.

Toffa et al. [43] presented an audio classification model using a lightweight con-

volutional neural network-based method based on a texture feature local binary pattern

(LBP) with audio features, e.g., MFCC, GFCC. Their work with convolutional neural

network-based methods using LBP was better than classical machine learning algorithms,

e.g., SVM, random forest, and KNN, using audio features. This work is very similar to

our work in terms of the lightweight CNN-based model and the evaluation conducted with

both visual and audio feature-based classifiers.

The benefit of MDA model is to improve accuracy performance on the models,

which lacks some training in the audio-based techniques and retrain the classes with low

classification accuracy. We will explain our approach in detail as we further proceed with

our upcoming sections.
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3.3 Multimodal Acoustic Method

The diagram depicts the overall picture of our proposed method in Figure 7. The

suggested method uses a dynamic structure to extract features and parameters, minimize

redundant and inexpressive data, address the issue of limited data necessary for deep

learning, and identify classes using signal and image processing. There are three stages

to our model: 1) Sound pre-processing with data normalization and augmentation, 2)

spectrogram feature extraction for multi-modality 3) The Model of Classification. Below

are the specifics for each level.

3.3.1 Data Normalization

We already selected the top three normalization strategies for sound datasets,

namely lung and heart, following many evaluations. The methods were tested on the

training dataset, and they outperformed the other normalization methods. They are classi-

fied as 1) Root Mean Square 2) Peak 3) European broadcast Union Standard R128 (EBU).

The summary for each normalization is given below:

3.3.1.1 Root Mean Square Normalization

The RMS level is useful for identifying the signal strength based on the amplitude

regardless of the positive or negative values of the signal, where it does not work as the

arithmetic mean of a signal received. The signal amplitude normalization can only be

possible if we can figure out the scaling factor that can perform the linear gain change.

There is a possibility to scale a signal with an amplitude that is higher than 1 or less than
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zero 0 decibels (dB).

For applying the linear gain change to a given signal, x = x1, x2, . . . , xn, the RMS

value, xrms is shown in Equation 3.1, where R has a linear scale.

R =

√
1

n
[(ax1)2 + (ax2)2 + . . .+ (axn)2]

a =

√
nR2

(x1)2 + (x2)2 + . . .+ (xn)2

(3.1)
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3.3.1.2 Peak Normalization

In peak normalization, the signal has high volume peaks as it amplifies the volume

of the signal in such a manner that the output gets 0 dB maximum. Even after peak

normalization, some of the signals remain quiet, and the quality of those signals cannot

be improved further. The above 0 processes can scale the amplitude of all input audio

signals in such a way that the highest magnitude of the signals has a value of 1.

3.3.1.3 European Broadcasting Union Standard R128 Normalization

This technique focuses on measuring the average loudness of a program for the

normalization of audio signals. This model performs normalization on the perception of

a signal where the human audibility is considered. It commonly approaches the loudness

of the unit scale and is considered better than RMS and Peak in theory.

3.3.2 Data Augmentation

We used data augmentation to develop lung sound data and tested with three of

the best techniques for lungs sound data, including time stretching, pitch shifting, and

Dynamic Range Compression.

3.3.2.1 Pitch Shifting

The pitch of the audio samples is either decreased or increased by four values in

this data augmentation technique (semitones) [28]. We assume that with the pitch shifting

factor ashift, the artificial training data generated is Naug times larger than the original

lung sound data. The audio samples’ duration is kept constant similar to the original
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audio samples. For our experimentation, the value changed in semitones were in the

interval [−aShif , ashif ] for each signal. The value has changed in semitones ranged of (-2,

-1, 1, 2).

3.3.2.2 Time Stretching

Like the pitch shifting, the lungs’ data signals are stretched horizontally along the

time axis by a scaling factor astre > 0. We sampled the values in the interval [1, astre]

if astre≥ 1 or [astre, 1] along with original files while keeping the pitch and other factors

same. The four audio speed is (0.5, 0.7, 1.2, 1.5) along with original files.

3.3.2.3 Dynamic Range Compression

The audio sample is compressed using this method based on its dynamic range.

This can be accomplished by either boosting the sample or lowering the level of loud

sounds. Three of the four parameters come from Dolby E Standard, while the fourth

comes from the ice cast radio live streaming server.

3.3.2.4 Spectrogram Generation

The spectrogram is a visual representation of a signal in the time-frequency do-

main. These are generated by the application of the short-time Fourier transform(STFT)

[44]. According to the theorem, a single Fourier analysis may not see a nonstationary

signal’s spectrum variation. Hence, the spectrogram considers the stationary signal by

computing the Fourier transform of the segmented signal into slices. Hence the spectro-

gram is also called STFT, which can be calculated as:
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STFT fx (t, f) =

∫ ∞
∞

[x(t)w(t− τ)e−j2πftdt (3.2)

where x(t) is time-domain signal, τ is the time localization of STFT and w(t− τ)

is a window function to cut and filter the signal. The length of the window function must

be selected and adjusted according to the signal’s length because it affects the time and

frequency resolution [45]. We have transformed the spectrogram into a grayscale image,

where we used the image processing methods to extract the information.

Scaling Process The scaling process is applied to the spectrogram to expand the

values range between 0-255 because the range of the spectrogram is usually wide. The

method of scaling is done in a linear manner, which can be expressed as follow:

S(m,n) =
|Spec(m,n)|
max|Spec|

× 255 (3.3)

where Spec(m, n) is the value of the spectrogram and S(m, n) is the expanded value from

a spectrogram.

3.3.3 Classification Model

Convolutional neural networks have become a major trend in deep learning, with

applications in music, image recognition, computer vision, and a variety of other domains.

Convolution, pooling, and fully connected layers comprise CNN. We investigated the

power of CNN for lung disease classification in this paper. With Keras’ implementation,

we created a 2D convolutional neural network.
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Figure 8: STFT Obtained from Original Wav files a) Spectrogram Obtained from Orig-
inal Lung Sound Data, b) Spectrogram Obtained from Normalized Lung sound data, c)
Spectrogram Generated from Augmented Lung Sound Data

42



Our 2D CNN architecture is composed of 5 layers. The first three are the convo-

lutional layers enclosed by the max pool layer, followed by two fully connected layers.

We extracted Librosa features for Mel spectrograms because noise data spectrograms are

considered the best to differentiate between the type of sounds. During the extraction of

features, we have used window size and hop size of 23 ms. As the sound clips vary for

different categories, that is why we kept the extraction to 3 seconds for each datasets to

make every bit of the sound clip usable. We have reshaped the input taken from the sound

clips toX ∈ R128x128 shape. Further, we have sent these reshaped features to the classifier

for classification of sounds and images.

3.4 Experimental Works and Results

For experimentation and evaluation, we are using lung and heart sound on the

publicly available dataset. The description for each dataset is given below:

3.4.1 Dataset for Lung Sounds

The lack of publicly available data for training is a key disadvantage of lung dis-

ease classification. We used the dataset, which is the only publicly available dataset

known as the Respiratory dataset, for classification. [24]. This research used acoustic

recordings from 126 patients in Portugal and Greece. Healthy, Asthma, Chronic Ob-

structive Pulmonary Disease (COPD), Bronchiectasis, URTI, LRTI, and Pneumonia are

among the diseases represented in the recordings. In audio format, the dataset contains

the recording index, patient number, position on the chest, and instrument used to diag-

nose diseases. In addition, spectrograms were created and sorted in the same order as the
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original categories to create an image dataset. For the same task and sounds, images were

created to qualify the differences between an audio and visual dataset. The audio files for

the lungs included both clean and noisy audios.

3.4.2 Dataset for Heart Sounds

For experimentation and evaluation, we are using heart sound on the publicly

available dataset. The dataset [31] was released for a challenge. The dataset consists

of different categories, i.e., Murmur, Noisy Murmur, Normal, Noisy Normal, extrasys-

tole, and unlabelled test. Each of the recorded sounds is of varying length between 1 to

30 seconds. Some of the audio files have extreme noise in it. The dataset was rearranged

into six categories based on types and noises. We have also applied normalization and

augmentation techniques to increase and improve the number of files to train our model

better. The distribution of files is kept same as shown in Chapter 2.

3.4.3 Experimental Setup

We used advanced techniques to develop our model for data classification. We

used an NVIDIA GPU graphic card with four 11GB GPU slots and a 1080i resolution.

The RAM capacity is 16 GB. To assess the efficiency of our approach, we used publicly

available sound datasets for the lungs and heart. The experiment was carried out using

two separate approaches: audio feature-based technique and audio to visual spectrogram-

based approach. We used the same model to classify the outcomes from two different

cases stated previously. We calculated the classification accuracy by comparing the find-

ings from both situations. We also compared our training and testing accuracy scores.
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Figure 9: Spectrogram Visualization of Heart Sounds
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We used Early-Stopping in our code to avoid unfitting and overfitting and to get accurate

results for the network we developed.

3.4.4 Feature Extraction

We have used the librosa library [29] to extract the spectrograms from the audio

files. STFT is used to divide a continuous signal into segments for spectrograms. Each

audio file was in the wav format, and the lengths of the files varied. Using the librosa input

duration capability, we reduced the audio files to 3 seconds for our model. For audio clas-

sification, we extracted the features from the spectrogram and placed them in a NumPy

array. In contrast, we used the CV2 package to convert the visuals into grayscale images

for spectrogram image classification [46] for better prediction of results. The images are

then directly entered into a CNN model in shape (128,128,1) after being resized to the

correct shape for our CNN model.
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3.4.4.1 Results for Lung Sounds

We continued our research in this publication by testing the multi-modality of our

network model in a different domain, namely image-based classification. It was deter-

mined during the audio extraction process that spectrograms may be stored to a NumPy

array or directly as spectrogram images. This time, we chose images to be used in the

classification of lung sounds. The overall workflow of our image classification system is

shown in Figure 7. Images are a more visual form of a signal that can be easily inter-

preted by clinicians, whereas audio classification cannot. We did this by extracting visual

features from audio files that were 72x72 pixels in size. This ratio was retained to ensure

that the images were of the highest quality and that the images used for classification

were of the highest quality. To assess the accuracy utilizing multi-modality, the images

were downsized to 128x128x1 to fit in our network model. The accuracy testing results

we obtained were highly reliable. For the original form of the dataset in images format,

the maximum testing accuracy given was around 84%. We wanted to improve the perfor-

mance of our network model. We used data normalization, and the findings show that due

to the nature of the images, the accuracy reduced by a small amount. We transformed the

images to grayscale images during the spectrogram generation stage, and when normal-

izing was applied, the image quality declined even further, resulting in slightly reduced

accuracy. Finally, we did augmentation after the audio classification procedure. The aug-

mentation improves accuracy by a right margin that was dropped when normalization was

used since the image quality was decreased.

Augmentation, on the other hand, allowed the network model to train the images
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in numerous ways. Image classification achieves a final and highest accuracy of 95%. The

training of the model was done incredibly successfully, as shown in Figure 10, however

the accuracy reduced by a tiny difference due to the loss of image quality. Due to the

model overfitting issue, the accuracy was also reduced in the early phases.

3.4.4.2 Results for Heart Sounds

Our results are divided into two categories, i.e., Audio classification and spec-

trogram image classification. After extraction of the files’ corresponding features, it is

fed into the convolutional neural network for classification. We have used a publicly

available dataset for heart disease classification. Initially, the data was not in the correct

arrangement. We have re-arranged the data into six different folders based on various

categories. We adopted a strategy to execute our model on original data, augmented data,

and normalized data. It should also be noted that we have used the above techniques for

feature-based techniques and image-based techniques. The audio feature-based approach

seems to perform the image-based approach due to the number of images and the image’s

quality. Then we applied the normalization technique to remove any type of out liars in the

data. It was observed that audio improved even better as compared to the image. Finally,

we considered applying the augmentation technique to increase the number of files with

different filters. The image performed drastically well due to clean data, much-improved

filters, and a high training amount.

One important key that we can see from the training and loss figure is the model

overfitting. The image-based approach shows the network’s performance is better than
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audio and takes much less time than audio. We considered batch size to be 64 and the

number of epochs to be 100. While using Early Stopping, the image-based approach per-

forms better. The image’s better accuracy was reported as 96%, while 93% was reported

for audio.
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3.4.5 Comparison of audio and image techniques

Overall, we can state that, when comparing audio and image, audio can report ac-

ceptable accuracy while using more memory and reporting time. The image can complete

the same task in a relatively short time and with 80% less memory than audio, and it can

access the correctness quickly. The image may be visualized and is thought to be simple

to utilize by health practitioners.

3.4.6 Conclusion

We introduced the Multimodal Deep Acoustic Classification (MDA) model for

high-performance classification in this chapter, which is coupled with advanced data nor-

malization and data augmentation approaches. We experimented with our multi-modality

model, which proved to be quite effective.
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CHAPTER 4

DEEP NETWORK-BASED FUSION FOR DEEP ACOUSTICS LEARNING

4.1 Introduction

There is increasing attention for audio classification research that aims to sup-

port various emerging applications, including environmental monitoring, health care, and

smart city The environmental sound classification (ESC) is an important area of research

that needs more dynamic and be adapted to possible changes in the environment, facilitate

the adoption of enhancement techniques with innovative and effective solutions.

While there is an increasing amount of audio data available to environmental audio

classification, we still face significant challenges to conduct accurately deep learning in

the environmental audio domain. These challenges may occur in particular due to the

various field and categories, e.g., UrbanSound8k [17], ESC-10 and ESC-50 [16], animal

sound [47], noises, the massive volume of data [48]. Specifically, distortion, fracture,

and noise of audio data are the primary obstacles affecting the accuracy of environmental

audio classification. There have been many advancements in the correct detection of audio

sounds; the audio data depending on how the features are extracted from the audio, how

modality to represent the audio data, and how much noise is present in raw audio [49].

With the rapid increase of environmental datasets, extracting relevant data to cre-

ate an adequate classification of environmental sounds is a crucial challenge [50]. Re-

cently, substantial advances in environmental sound classification have been achieved.
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Audio classification modeling based on deep neural network architectures has gained

remarkable success with massive environmental sound data [51, 52]. Some alternative

approaches have been introduced, focusing on extracting acoustic features and generating

corresponding audio-visual datasets in audio classification [53, 54, 55].

Specifically, deep learning plays an essential role in audio classification over tra-

ditional machine learning nowadays. Convolutional neural network is growing most in

audio classification [56, 9] using Environmental audio data [17]. Sounds are to be classi-

fied by distinguishing between different types of distinct patterns across time-frequency

domain features like spectrograms [57]. In audio classification domains, noise in sound

data may affect the performance of classifiers. Normalization techniques with feature

scaling [58] was introduced to eliminate noises in the environmental sounds. Also, data

augmentation is typically used to produce more audio samples with various extended fea-

tures.

The data for audio classification is too complicated to understand multiple char-

acteristics and latent patterns of data. Ensemble learning [59] or data fusion techniques

are introduced for effective classification. Recent works are suggesting that ensemble or

fusion techniques are needed to improve the performance of audio classification. Piczak

et al. [9] observed different performance of CNN models, e.g., poor performance in the

context of various short-scale temporal structures (drilling, jackhammer, engine idling)

while excellent for one containing specific classes (playing children, air conditioner, car

horn). They suggested that ensemble averaging different approaches, such as convolu-

tional and non-convolutional, may effectively capture the diverse patterns present in the
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dataset.

As new technologies like image-based audio classification were introduced, more

diverse fusion approaches, e.g., feature-level fusion [60, 61, 23, 43], layer-based fusion

[62], modality-based fusion [63], methodology-based fusion [41], and network-level fu-

sion [64, 59], were introduced. Among various fusion techniques for audio classification,

the most popular are those based on the features. However, not much work has been

conducted on the general fusion approach, such as network-level fusion, which can be

applicable to more diverse datasets or applications.

In this chapter, we propose the Fusion-based Learning for Deep Acoustic Classi-

fication model for environmental audio classification. Our contributions can be summa-

rized as follows:

• Design an effective fusion model is designed based on the model fusion weights

learned from two models for various audio datasets, optimized by the architectural

model fusion techniques.

• Our methodology and architecture is generic enough to be used in a dual-modal pre-

sentation of audio features and spectrogram images for environmental audio classi-

fication.

• To apply the advance data augmentation techniques to combine time stretching and

pitch shifting to generate more diverse training data. Besides, a normalization ap-

proach of Root Mean Square (RMS) and peak value detection was proposed for

normalizing noise signals of vast environmental sound datasets.
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• The experiments with the fusion model show the effectiveness and robustness in

the environmental sound classification compared to state-of-the-art environmental

audio classification on UrbanSound8k [17], ESC-10, and ESC-50 [16]. Our aim is

to show that the model is significantly smaller than existing ones, especially from

the state-of-the-art environmental audio classification.

4.2 Related Work

There are many existing techniques available that demonstrate the usability of au-

dio classification using diverse datasets. The section below has all work that has been done

for the environmental sound classification and fusion techniques. The researchers have

achieved some good results based on high computation power. In contrast, we focused

on designing 2D convolutional neural network models with low computational require-

ments to arrive at a fusion model design by achieving high accuracy from datasets’ diverse

nature. The literature survey for environmental sound classification is shown in Table 5

4.2.1 Deep Learning for Audio Classification

The analysis of environmental sound in [16], which is close to our work, has been

performed where the authors proposed Convolutional Neural Network (CNN) to clas-

sify environmental sounds. The architecture consists of two convolutional rectified layer

unit by applying max pooling, two fully connected hidden layers, and a softmax output

layer. The datasets used for classification were environmental science [16] and the Ur-

banSound8k dataset [17]. The data was augmented through random time delays and pitch

shifting. Using librosa implementation, Mel Spectrograms were extracted from all audio
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files, re-sampled, and normalized with different window sizes. The classifier, data set,

and features used were similar to our experiments; however, we have created our network

classification model with fusion techniques for environmental sound classification. We

have also compared our experiments with some other similar work.

4.2.2 Audio Feature Based Classification

Abdoli et al. [51] proposed a solution for the classification of UrbanSound8K

where they have proposed an end to end solution for the 1D convolutional neural net-

work. The proposed solution is feasible for audio of any length due to splitting and

frames overlapping. They used parameter-based comparison with available state-of-the-

art researches; the highest mean accuracy reported by other researchers was 78%. Their

proposed solution achieved approximately 89% and incredibly accuracy, performing bet-

ter in low utilization of computation power.

Zohaib et al. [66] propose a solution for the environmental sounds classification

using a deep convolutional neural network. They have used three feature extraction tech-

niques, i.e., Mel Frequency Cepstral Coefficient, Mel spectrogram, and Log-Mel. Fur-

thermore, they used a Convolutional neural network of 5 layers in two different formats,

such as max-pooling (Model1) and without max-pooling (Model 2). They have also used

data augmentation to avoid overfitting. The highest accuracy they got for ESC-10, ESC-

50 & UrbanSound8K is from Log-Mel features of approximately 94%, 89%, and 95%

using Model 2 along with data augmentation.

Zhang et al. in [23] proposed a three-step classification for environmental sound
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classification. The first step is to present a convolutional filter, which helps detect en-

ergy modulation patterns and the attention mechanism, focusing on the filters’ relevant

channel. The step involves introducing temporal attention and channel attention. This

improves the performance of the Convolutional Neural Network as a whole. Finally, in

the third step, to avoid overfitting due to the low amount of data, they have used data

augmentation. Keep the above in view; they have applied these techniques to ESC-10 and

ESC-50, and DCASE16 datasets. The highest accuracy reported for ESC-10 and ESC-50

was approximately 94% and 86% and 88%, respectively.

4.2.3 Image Based Audio Classification

Demir et al. [41] proposed a solution for environmental sound classification using

spectrogram extraction. They considered deep features for classification problems and

trained their network model, an end-to-end system trained on spectrogram images rather

than real audios. Feature vectors are combined using a concatenation of the fully con-

nected layers. Finally, for testing the model’s efficiency, they have provided a feature

set as an input to K nearest neighbor algorithm using ensemble voting classifier to report

an accuracy. Their fusion technique is based on CNN and classical machine learning,

while our fusion is based on two different CNN networks. The absolute accuracy was re-

ported for two datasets, i.e., DCASE-2017, Urbansound8K, with the respective accuracy

of approximately 96% and 86%.

Mushtaq et al. [65] proposed a solution for data augmentation, which is applied di-

rectly to the audio clips rather than applying to images. They have presented their models
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built with the 7 and 9 layer CNN architecture. They have further experimented with their

models for transfer learning, freezing, and unfreezing layers. In their work, the high-

est accuracy was reported by ResNet-152 for ESC-10 and UrbandSound8K as 99.04%

and 99.49%, respectively. For ESC-10, DenseNet-161 performed better and reported an

accuracy of 97.57%.

4.2.4 Ensemble & Fusion for Audio Classification

Palanisamy et al. [64] proposed a solution for sound classification using both

weight-based and ensemble models. They also built an image model with spectrograms

using transfer learning from a model pre-trained with ImageNet. There was a significant

difference between spectrogram and ImageNet, but the transfer learning approach allowed

them to obtain reasonable classification accuracies for image-based audio classification.

During the experimentation, it was observed that weight-based model performance was

better than randomly selected model performance. The best accuracy for the model-based

approach was 91%. While using an ensemble approach, the highest accuracy achieved

was approximately 93%. The dataset selected for experimentation is GTZAN, Urban-

Sound8K, and ESC-50.

Choi et al. [68] proposed Convolutional Recurrent Neural network (CRNN) for

music classification. The model-based fusion was proposed as the last convolutional lay-

ers were replaced by Recurrent Neural Network (RNN), and both the classifiers are used

for feature extraction and summarization, respectively. Computational controlled experi-

ments were performed by changing the parameters of the networks.
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A multi-label Recurrent Neural Network was proposed by Parascandolo et al. [69]

in the shape of bi-directional long short term memory (BLSTM) recurrent neural network

for polyphonic sound event detection in real-life recordings. The model was tested for

real-life recordings, including 61 classes from different contexts such as beach, basket-

ball game, inside a bus, hallway, car, shop, restaurant, office, street, and stadium with

events. The spectral features, such as Mel spectrograms, were extracted and presented

in a sequence of frames. The dataset was augmented through time-stretching, subframe

time-shifting, and blocks mixing techniques and mapped to the model. The accuracy of

the augmented data was improved overall for the bi-directional model, which is 64.7%.

Alsouda et al. [70] have implemented an Internet of things based solution for

the detection of different noises. They have used Raspberry Pi Zero for the recording

and classification. They have used a dataset of 3000 sound samples for seven categories:

car horn, jackhammer, etc. Furthermore, they have used Support Vector Machine, Ran-

dom Forest, K-Nearest Neighbor, and Bagging Aggregation for the classification. They

achieved accuracy in the range of 88% to 94%, where each algorithm’s parameters were

kept standard.

Although previous works were based on convolutional neural networks and en-

semble learning, where the authors used traditional techniques to classify UrbanSound8K,

ESC-50, and ESC-10 audio datasets, some authors used ensemble learning for combining

two or more different models for better classification using a voting system of ensem-

ble learning. We will demonstrate a fusion-based model applied to a diverse range of

techniques, such as an audio-based approach or an image-based approach. Our proposed
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model, FDA-NET, is mostly related to audio and image-based classification, and finally,

we use fusion-based learning on the audio datasets. The benefit of FDA-NET is to im-

prove accuracy performance on the models, which lacks some training in the audio-based

techniques and retrain the classes with low classification accuracy. We will explain our

approach in detail as we further proceed with our upcoming sections.
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Table 5: Literature Survey for Environmental Sound Classification

Publication Network Feature Approach Limitation
Mushtaq et al.
[65]

ResNet-152
DenseNet-
161

Spectrogram A visual approach with 7-
and 9-layer CNN and transfer
learning

Large number of trainable pa-
rameters and high consumption
of computational power

Toffa et al.
[43]

CNN Local Binary
pattern

An audio classification model
using light weight CNN model

Low performance in terms of
accuracy

Demir et al.
[41]

CNN+SVM Short time
Fourier trans-
formation

A fusion based approach us-
ing CNN and classical machine
learning model trained on spec-
trogram images

Low performance in terms of
accuracy

Mushtaq et al.
[66]

CNN Log-Mel Mel
Spectrogram
MFCC

A visual approach and Con-
struction of CNN model and
augmentation techniques

High number of augmentation
and high consumption of com-
putational power

Palanisamy et
al. [64]

DenseNet Spectrogram An ensemble approach for the
classification of environmental
sounds using images. The data
was augmented

Low accuracy with high num-
ber of trainable parameters

Boddapati et
al. [67]

GoogLeNet Spectrogram A convolutional deep neural
network approach to classify
environmental sounds s images

High number of trainable pa-
rameters and low performance

Luz et al. [61] CNN Handcraft An ensemble approach using
CNN to classify environmental
sounds

Low accuracy and handcrafted
feature extraction require more
computational power

Zhang et al.
[23]

DCNN Spectrogram
Gammatone
Spectrogram

A fusion based approach using
deep convolutional neural net-
work on augmented audio data

Low performance in terms of
accuracy

Li et al. [60] DS-CNN Log-mel An ensemble DS-CNN model
by combining log-mel feature
and raw waveform data us-
ing Dempster-Shafer (DS) evi-
dence theory

Their fusion approach is a
feature-level ensemble that
cannot be applied to a diverse
range of techniques such as
audio-based or image-based
approaches

Piczak et al.
[9]

CNN Librosa A CNN based approach for dif-
ferent performance for differ-
ent classes

Low performance in terms of
accuracy

Piczak et al.
[16]

kNN + RF A baseline approach for envi-
ronmental sound classification

Low performance in terms of
accuracy
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4.3 Methodology

The conceptual frameworks of the fusion model, the FDA-NET model, aim to take

advantage of the strengths of the individual networks Figure 12.

We introduced three essential components to improve acoustic classification: (1)

Preprocessing with data normalization and augmentation, (2) multimodal feature extrac-

tion and representation, and (3) fusion of convolutional neural networks. First, the data

normalization and augmentation handle data issues, such as noise, imbalance, feature se-

lection. Second, the multimodal feature extraction and representation focuses on extract-

ing the spectrogram features from the audio signal and transforming them into a visual

representation. Third, the fusion techniques with convolutional neural networks were pro-

posed to build multimodal classifiers to learn and infer acoustics classification either in

acoustic or visual mode.

4.3.1 Audio and Image Feature Selection

Audio feature and feature images do not always carry the same information. Hence,

they can not be predicted in the same way. If one is talking in a visual context, it is known

that sound is transparent while the image is considered as non-transparent (opaque) [72].

With the pixel formation of a snapshot, it can always be noted that whatever is the posi-

tion of an object, it belongs to the same category. However, audio cannot quickly identify

where it belongs due to its observed frequency in spectrogram features. The audio spec-

trogram depends on the magnitude of the frequency on how the object or the combination

of objects has produced in a complex manner. Therefore, in audio, it’s challenging to
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identify the simultaneous sounds that are represented in the spectrogram features.

When a neural network uses images for classification, it considers the sharing

weights that are available from the images in two dimensions, i.e., X and Y-axis. The

image will carry the same information if it is stretched or repositioned regardless of the

position and presence. However, in audio, the two-dimensional data represents the fre-

quency and time. Suppose the audio is moved horizontally or vertically; the meaning of

the audio can changes. That being said, if the pitch of the sound increases, the voice of

a male can switch to a child, or a gunshot can change to an explosion. Even the spatial

features of the sound can change if we increase or decrease the pitch. Therefore, the in-

tentionally introduced invariance can change the meaning, and the neural network will

not perform well as it should perform on the trained and augmented data.

In the image format, the extracted pixels can assume that the image belongs to the

same class, while in audio, this is not true. Audio is composed of periodic sounds that

are composed of frequency and harmonics. The harmonics are spaced apart from each

other according to their nature. The combination of these harmonics usually determines

the sound’s timbre. Suppose we assume from the physical point of view. In that case,

the audio that is played to the audience will examine the nature of the sound only, while

images typically contain a lot of parallel static information. The image classification is

done based on the brightness, among other features.
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4.3.2 Data Normalization

Our study evaluated several normalization techniques and identified the two best

ones: Root Mean Square and Peak Normalization.

4.3.2.1 Root Mean Square Normalization

The Root Mean Square (RMS) Normalization converts digitalized signals to the

average amplitude of the signal by computing the square root of the mean squared ampli-

tudes. Suppose we use traditional calculations by taking the arithmetic mean of a signal.

In that case, there can be an issue as the signal amplitude can have some positive values

and negative values, which can be offset by each other and result in a zero amplitude.

In such a situation, considering RMS amplitude can be beneficial. The RMS level deter-

mines the signal strength using the amplitude regardless of its positive or negative values.

For a given signal, x = x1, x2, . . . , xn, the RMS value xrms is to be computed. The

signal amplitude normalization can be used only when the scaling factor is applicable to

perform the linear gain change. It is possible to scale a signal with an amplitude higher

than one or less than zero decibels (dB). As the linear gain change is applied, the RMS
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level formula is defined as shown in Equation 4.1, where R has a linear scale.

R =

√
1

n
[(ax1)2 + (ax2)2 + . . .+ (axn)2]

R2 =
1

n
[(ax1)

2 + (ax2)
2 + . . .+ (axn)

2]

nR2 = [(ax1)
2 + (ax2)

2 + . . .+ (axn)
2]

a2 =
nR2

(x1)2 + (x2)2 + . . .+ (xn)2

a =

√
nR2

(x1)2 + (x2)2 + . . .+ (xn)2

(4.1)

4.3.2.2 Peak Normalization

The peak normalization analyzes the peak signal level in decibels relative to full

scale (dBFS). For the normalization, the signal’s volume is amplified to get 0 dB maxi-

mum as the output. Thus, the signal has high volume peaks. Some signals remained the

same without sufficient improvement of signal quality even after the peak normalization.

The above 0 processes can scale the amplitude of input signals to get 1 as the highest am-

plitude. The output signal based on the above scaling can be mathematically formulated

as follows:

out =
1

max(abs(in))
.in (4.2)

4.3.3 Data Augmentation

Deep learning relies on a large amount of data for more accurate classification.

For better variety, we have experimented with several augmentation techniques, out of
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which we have selected the best two methods, i.e., Time Stretching and Pitch Shifting.

We have experimented with these techniques using the three datasets.

Time Streching In this technique, the audio sample’s speed is changed and is increased

or decreased a scaling factor astre > 0 [73]. For our experimentation technique, we used

four types of audio samples speed, i.e., {0.5, 0.7, 1.2, and 1.5} along with the original

clips, which has the speed of 1 while keeping the pitch and other factors the same as

original audio sample clips.

Pitch Shifting In this data augmentation technique, the audio samples’ pitch is either

decreased or increased by four values (semitones) [28]. We assume that with the pitch

shifting factor ashift, the artificial training data generated is Naug times larger than the

original sounds. The audio samples’ duration is kept constant similar to the original audio

samples, i.e., 3 - 5 seconds. For our experimentation, the value changed in semitones were

in the interval [−aShif , ashif ] for each signal. The value changed in semitones ranged

between {-2, -1, 1, 2}.
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4.3.4 Spectrogram Generation

The spectrogram is a visual representation of a signal in the time-frequency do-

main. These are generated by applying the short-time Fourier transform (STFT) [44].

According to the theorem, a single Fourier analysis may not see a non-stationary signal’s

spectrum variation. To overcome this issue, the spectrogram considers the stationary sig-

nal by computing the Fourier transform of the segmented signal into slices. Hence the

spectrogram is also called STFT, which can be calculated as:

STFT fx (t, f) =

∫ ∞
∞

[x(t)w(t− τ)e−j2πftdt (4.3)

where x(t) is time-domain signal, τ is the time localization of STFT and w(t − τ) is a

window function to cut and filter the signal. The length of the window function must

be selected and adjusted according to the signal’s length because it affects the time and

frequency resolution [45]. We have transformed the spectrogram into a grayscale image,

where we used the image processing methods to extract the information shown in Fig-

ure 13, Figure 14 and Figure 15. The spectrogram feature extraction is shown in a colored

format for ESC-10, ESC-50, and UrbanSound8K.
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Figure 13: Spectrogram for ESC-10 five categories
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Scaling Process The scaling process is applied to the spectrogram to expand the values

range between 0-255 because the spectrogram range is usually wide. The process of

scaling is done in a linear manner, which can be expressed as follow:

S(m,n) =
|Spec(m,n)|
max|Spec|

× 255 (4.4)

where Spec(m, n) is the spectrogram’s value, and S(m, n) is the expanded value from a

spectrogram.

4.3.5 Feature Extraction

• Audio Feature Extraction: We have used librosa features [29] to extract the spec-

trograms from the audio files arranged in different folders. Short-Time Fourier

Transform (STFT) is used to cut down the continuous signal into parts. Spectro-

grams operations such as inverse STFT and instantaneous frequency spectrogram

(IFS) are used for down streaming analysis of features [74]. For the spectrogram

features extracted from the UrbanSound8K dataset, each audio clip in ESC-50 was

in an OGG format and wav for UrbanSound8K, where each audio file’s length was

¡=5 seconds. We have cut down the audio files to 3 seconds for our model using

the librosa functionality of input duration. The spectrogram extracted features [75]

from audio files are stored in a NumPy array for input into a CNN model in shape

(128 x 128).

• Image Feature Extraction: For extracting features [76] from the image, we have

generated spectrogram images from audio files directly in a shape of (128 x 128).
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Figure 15: Spectrogram for UrbanSound8k
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After the spectrograms are generated, we convert all spectrogram into a grayscale

image using the CV2 library to predict results. We save the image into a NumPy

array and the class label using the append feature for each file. This way, we can

input our image into a CNN model in a shape of (128 x 128 x 1) after resizing it to

the desired shape that is required by our customized 2D convolution neural network

models, i.e., FDA-NET-1, FDA-NET-2, and FDA-NET-3.

4.3.6 Audio Classification Models

We have explored the power of CNN for environmental sound classification. We

have designed a 2D convolutional neural network for both audio and image-based ap-

proaches. The innovation is by applying model fusion, i.e., 1) FDA-NET-1 architecture

has three convolutional and two hidden layers, which focuses on having a kernel regular-

izer to avoid overfitting issues. 2) FDA-NET-2 is made of two convolutional layers, along

with two hidden layers. 3) FDA-NET-3 is based on the fusion of both models, which

were trained separately. The fusion was conducted on their final layer to append both

model’s parameters. As shown in the result section, the converged model achieved higher

accuracy than individual models.

More specifically, in the design of multi-modal models with CNNs, the two es-

sential components include (1) the feature extractor retrieves the spectrogram features

from the audio signals and represent them as acoustic feature vectors (for the audio-based

approach) and transform the spectrogram features into images and represent them as vi-

sual feature vectors (for the image-based approach), (2) The classifiers (FDA-NET-1, 2,
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3), which consists of multiple convolutional and pooling layers, activation and fully con-

nected layers with several hidden units, classify either the acoustic feature vectors or the

visual feature vectors into their appropriate categories.

There are two primary components of a convolutional neural network, i.e., fea-

ture extractor and classifier. The feature extractor extracts the spectrogram features from

the audio signal and passes them to a classifier to classify the spectrogram features into

their appropriate categories. The classifier consists of different convolutional and pool-

ing layers, followed by activation. It also holds fully connected layers with some hidden

units.

The mathematical form of the convolutional layers is given in Equation 4.5 and

4.6

[xli,j,k =
∑
a

∑
b

∑
c

w
(l−1,f)
i,j,k y

(l−1)
i+a,j+b,k+c + biasf ] (4.5)

[yli,j,k = σ(x
(l)
i,j,k)] (4.6)

The output layer is represented by yli,j,k where as the 3-dimensional input tensor is

denoted by i, j, k. The weights for filters are denoted by w(l)
i,j,k and σ(x(l)i,j,k) describes the

sigmoid function for linear activation. The fully connected is layer that is represented by

equation 4.7 and 4.8.

[x
(l)
i

∑
j

wl−1i,j y
l−1
j + biasl−1j ] (4.7)

[yli,j,k = σ(xli,j,k)] (4.8)

The 2D CNN architecture is composed of different layers. The initial layers are
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the convolutional layers enclosed by the max pool layer, followed by fully connected

layers. During the extraction of spectrogram features, we have used window size and hop

size of 23 ms as the sound clips vary between 3 to 5 seconds, so that we kept the extraction

to 3 seconds to make every bit of the sound clip usable. The input from the sound clips is

reshaped, and X ∈ R128x128 shape is provided to the classifier.

• FDA-NET-1: There are a total of 5 layers of convolutional, hidden, and fully con-

nected layers. The first layer in the architecture takes the reshaped features as an

input in spectrograms with 24 filters. It takes the shape of [24x1x5x5]. The stride in

this layer is [4x2] with ReLU as the activation function. The second layer has 48 fil-

ters of the shape [48x24x5x5] with [4x2] stride max-pooling layer and using ReLU

as the activation layer. The third layer also takes 48 filters with a receptive field

[5x5], resulting in shape [48x48x5x5], and the activation is ReLU without pool-

ing. Finally, the fourth layer has 64 hidden units resulting in shape [2000x64] with

ReLU activation and [64x10] with softmax activation. We considered a [5x5] small

receptive layer in the top layer due to the localized patterns. The convolutional

layers in this model go through a kernel regularizer to avoid overfitting.

This model, FDA-NET-1, performs better than the second model, FDA-NET-2, due

to Max pooling’s larger size, which is known for downsampling the features and

selecting the next layer’s essential elements. Secondly, better performance is due

to striding, which is a concept that considers data compression, i.e., the data block

considered for (2 x 2) in the first layers and (4 x 2) in the next layers is taken as

an input. It moves 1 unit ahead and provides the output volume. Hence, reducing
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the number of parameters from 4 and 8 units in the top two layers to 1 and 1 unit,

respectively. The drastic decrease of parameters in FDA-NET-1 is due to larger

Max Pooling and Strides.

• FDA-NET-2:This model has a total of 4 layers. The layers are composed of two

convolutional layers and two dense layers. The model takes spectrogram input

in the shape of X ∈ R128x128. The number of filters that the first takes are 32.

So, the shape of the first layers is [32x3x3], followed by ”ReLU” activation and

Maxpooling2D in the size of [2x2]. Similarly, the second layer takes 64 filters in

the form of [64x3x3], followed by ReLU activation and pool size [2x2]. After the

convolutional layer, we flattened the output vector for the best resolution and added

a dropout of factor 0.5 for independent learning. The padding was kept as ”valid”

for a well-structured output.

• FDA-NET-3: This model is a fusion of FDA-NET-1 and FDA-NET-2 that is con-

catenated before the final dense layer, depending on the number of classes in the

training setâthe last layer of this model uses ”Softmax” activation due to the mul-

tiple classification problem. The network was trained with more extensive training

parameters with FDA-NET-1 and FDA-NET-2, and their loss and accuracy were

computed as the training matrix. As per the working of this network model, fea-

tures were selected from FDA-NET-1 and FDA-NET-2, and the network was trained

with the features, hence, having better parameters, strides, and output data. Due to

FDA-NET-3, it can be seen that in the results that it performed better in both cases,

i.e., audios and images.
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Figure 16: Architectures: (a) FDA-NET-1, (b) FDA-NET-2, (c) FDA-NET-3

4.4 Results and Evaluation

In this section, we present the experiments’ results to verify the proposed model’s

effectiveness, FDA-NET. For comprehensive experiments, we have considered the main

matrix for overall dataset accuracy, loss, validation loss, and the total number of train-

able parameters for the three proposed models (FDA-NET-1, FDA-NET-2, FDA-NET-3).

We have conducted experiments with three proposed network models for both audio and

image-based approaches. We present the results and evaluation for different models and

strategies.

For the development and experiment of the proposed models, we used the NVIDIA

GeForce Â® GTX 1080 Ti, which is packed with 11 Gbps GDDR5X memory, and a 11
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Figure 17: Fusion Network: (a) FDA-NET-1, (b) FDA-NET-2, (c) FDA-NET-3
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GB frame buffer. The experimentations were performed in both Audio (feature) and Im-

age (audio to image spectrogram) based approaches using the three benchmark datasets

UrbanSound8K [17], ESC-10 and ESC-50 [16]. For these three datasets, we kept our

training to 80%, testing to 20%, and further split the training data into 80% training and

20% validation. The FED-NET models (two DCNN models and one fusion model) were

built using the audio and image-based approaches. For the training, the number of epochs

was observed at 50 and batch size at 128. All of the models were kept at the same param-

eters for UrbanSound8K, ESC-10, and ESC-50. We reported the accuracy performance

for the proposed models in terms of learning and loss curve graphs, testing accuracy,

confusion matrix, precision, recall, and F1-score.

The evaluation metrics were defined based on the Confusion Matrix in which TP

is True Positive, FN is False Negative, TN is True Negative, and FP is False Positive. The

following metrics were deduced from the Confusion Matrix:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.9)

Precision =
TP

TP + FP
(4.10)

Recall =
TP

TP + FN
(4.11)

F1Score =
2xPrecisionxRecall

Precision+Recall
(4.12)
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4.4.1 Datasets

4.4.1.1 Original Audio Dataset

We have conducted extensive experiments over three benchmarking datasets of

UrbanSound8K [17], ESC-10 and ESC-50 [16].

• UrbandSound8K Dataset [17]: This dataset serves as a popular benchmark for

environmental sound classification. This dataset consists of 8732 environmental

sound clips and is divided into 10-fold cross-validation. Each of the clips is 3 -

4 seconds long. The audio clips included in this dataset are labeled with different

categories.

• ESC-50 Dataset [16] : This dataset consists of 50 classes divided into 5-fold cross-

validation. All audio sounds are divided into Animals, Environment, Human, In-

door, and Urban. There is a total of 2000 sound clips. Each folder consists of 40

clips. Each clip is 5 seconds long. This dataset is also labeled and available for

download publicly.

• ESC-10 Dataset [16] : This is a publicly available dataset. There is a total of

400 audio files overall divided into ten folders. Each folder consists of 40 sound

samples with a sampling rate of 44100 HZ. The ten folders are divided into 5-fold

cross-validation. Each sound clip is 5 seconds long on average. The ESC-10 dataset

is a subset of ESC-50 dataset.
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Table 7: FDA-NET Model Architecture and Parameters

Model Convolutional
Layers

Total
Layers

Trainable
Parameters

FDA-NET-1 3 5 241,434
FDA-NET-2 2 4 3,705,930
FDA-NET-3 5 9 3,947,354

Table 8: Urban Sound and Environmental Sound Datasets

Animals Nature Human Indoor Outdoor
UrbanSound8K Dog bark

(DB)
Children playing
(CP)

Air conditioner
(AC), Drilling
(DR), Jackham-
mer (JH)

Car horn (CH),
Engine idling
(EI), Gun shot
(GS), Siren (SI),
Street music
(SM)

ESC-10 Dog Rain Crying baby Clock tick Helicopter
Rooster Sea waves Sneezing Chainsaw

Crackling fire
ESC-50 Dog Rain Crying baby Door knock Helicopter

Rooster Sea waves Sneezing Mouse click Chainsaw
Pig Crackling fire Clapping Keyboard typing Siren
Cow Crickets Breathing Door, wood

creaks
Car horn

Frog Chirping birds Coughing Can opening Engine
Cat Water drops Footsteps Washing machine Train
Hen Wind Laughing Vacuum cleaner Church bells
Insects (fly-
ing)

Pouring water Brushing teeth Clock alarm Airplane

Sheep Toilet flush Snoring Clock tick Fireworks
Crow Thunderstorm Drinking, sipping Glass breaking Hand saw

Human: Human, non-speech sounds; Nature: Natural sounds capes & water sounds;
Indoor: Interior/domestic sounds; Outdoor: Exterior/urban noises
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4.4.1.2 Audio and Image Feature Dataset

For the audio clips of the three benchmark datasets, i.e., ESC-10, ESC-50, and

Urban Sound 8K in an OGG and Wav format where each audio file was less than and

equal to 5 seconds long, ranging between 32000 HZ to 44100 HZ. We generated the au-

dio feature data with the same frame length (30ms) considering a 3s overlapping window.

The spectrogram extracted features [75] from these audio files were generated with li-

brosa, and the audio feature vectors (128 x 128) were used in building the CNN models.

The numbers of the audio data for the three different benchmark datasets are shown in

Table 25.

For the audio feature datasets, the spectrograms in the audio feature vector of size

128 x 128 were converted into the grayscale images of size 128 x 128. As it can be

seen in Table 26, the number of images is the same as the number of the audio sample.

These images are used to build the 2D convolution neural network models (FDA-NET-v1,

FDA-NET-v2, FDA-NET-v3).

4.4.1.3 Augmented Dataset

The spectrograms from the original dataset were generated and saved as an image

using the librosa library. Each spectrogram image’s dimensions were kept at 128 x 128,

which is the FDA-NET network’s input shape. The spectrogram images should be clear

and large enough for proper image-based classification. However, the nature of spectro-

grams, i.e., flipping the image of a spectrogram would change the meaning of a visual
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area may degrade the performance of classification. In this paper, we used audio aug-

mentation rather than using image augmentation. We have applied two different types of

augmentation techniques for improving accuracy, i.e., time stretch and pitch shift for dif-

ferent scales. The augmentation helped provide synthesized data for improved training.

Besides, we used data normalization for each audio clip. Thus, we applied audio-based

augmentation files that were converted into spectrogram images.

For the UrbanSound8K dataset, t-SNE shows the nearest neighbors’ visual rep-

resentation of the original data and the augmented data in Figure 18. The benchmark

dataset for UrbanSound8K, ESC-10, and ESC-50 consists of 8732, 400, and 2000 files.

After applying data augmentation, the number of files raised to 78588, 3600, and 18000

for UrbanSound8K, ESC-10, and ESC-50, respectively. Data augmentation was used to

overcome the issue of insufficient data in building deep learning models. However, the

original and augmented datasets were split into training, validation, and testing, and the

validation and testing sets were not used for training. There are some limitations of our

data augmentation approach. First, it is related to the problem of memory shortage and

computational cost. Due to a considerable volume of audio data, it was not easy to per-

form practical memory management. It was required to process the data locally so that

we could not conduct data augmentation technique during model execution [65]. Second,

we need to set consistent conditions to allow for fair performance comparison with the

state-of-the-artwork research.
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4.4.1.4 Data Split for Training and Testing

In training with the data, the number of epochs was kept as 50, while the batch

size was 128. However, for experimenting with data augmentation, we kept the batch size

was 128, and the number of epochs was kept the same as for testing the original dataset.

For training and testing our models, we have split the dataset into 80% for training while

20% for testing. The evaluation was performed on the original and augmented datasets.

For example, in the initial UrbanSound8K, the total samples are 8,732, out of which 6,985

were provided for training, and 1,747 were provided for testing. In the same fashion, the

entire files for the augmented dataset are 78,588, out of which 62,871 were designated for

training, and 15,717 were for testing. The same strategy was applied to ESC-10 and ESC-

50 datasets. For data validation, the training samples are further split into 80% training

and 20% validation.

4.4.2 Overall Evaluation

We have reported the validation and testing accuracy (Figure 20 and Table 9), the

validation of deep learning models (refer to the learning performance (Figure 21, and the

validation loss (Figure 22)). In addition, we have evaluated our 18 models (three differ-

ent benchmark datasets, three different FDA-NET, with augmented data, audio-based or

image-based approach) against Precision, Recall, and F1-Score.
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4.4.3 Results on UrbanSound8K Dataset

The t-SNE visualization for the UrbanSound8K dataset is shown for both audio

and image datasets in Figure 18. The image visualization is shown a more distinctive

distribution compared to the audio feature visualization. Furthermore, 78588 audio clips

were generated by two common types of data augmentation techniques, in two main types

of augmentation such as time stretch and pitch shift, in 4 different variations, i.e., For time

stretch, the augmentation was performed for reducing it to the factor of 0.5, 0.7, 1.2 1.5

and including one sample of the original files. Similarly, pitch shifting was applied for

raising and dropping the pitch in 4 different ways. We have split the datasets of 8732

(original) and 78588 (augmented) clips in 80% training and 20% testing. These datasets

have enough audio clips, and the training performed on this dataset can be considered

good enough for testing.

4.4.3.1 Audio-based Classification Results

According to the setting explained previously, we have obtained impressive testing

accuracy compared with state-of-the-art accuracy. FDA-NET-a1 for using the audio fea-

ture approach reported us testing the accuracy of approximately ±84%. After data aug-

mentation was applied to the original data, the number of files was generated, as shown in

Table 26. The testing accuracy reported from the augmented dataset using FDA-NET-a1

is approximately 95.82%. FDA-NET-a2 reported accuracy of approximately 89.63% for

the original dataset and 95.7% for the augmented dataset. Finally, FDA-NET-a3 reported
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Figure 20: Model Comparison for Fusion Based Environmental Classification
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a better-combined testing accuracy of 96.19% for the original dataset, while 98.53% is re-

ported for the augmented dataset. The learning performance is shown in the FDA-NET’s

model learning curves in Figure 21 and the loss graphs in Figure 22. The class-wise

accuracy for the augmented dataset is shown in Table 10, Table 11, and Table 12.
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Table 10: FDA-NET-1 Audio-based Approach: Confusion Matrix and Performance Eval-
uation on UrbanSound8K Augmented Dataset

Class AC CH CP DB DR EI GS JH SI SM
AC 1464 0 4 0 4 0 2 13 20 24
CH 2 255 0 0 3 0 0 0 1 15
CP 2 0 1451 5 4 5 2 1 48 13
DB 7 0 45 1073 3 2 0 0 13 10
DR 4 4 5 1 1338 1 0 46 2 2
EI 7 1 13 1 1 1556 1 5 4 7
GS 0 0 0 0 0 1 116 0 0 1
JH 2 0 0 0 29 1 0 1471 0 4
SI 1 3 8 1 1 0 0 2 1324 10
SM 4 3 44 2 5 2 0 4 24 1540
Precision 98.06% 95.86% 92.42% 99.08% 96.40% 99.23% 95.87% 95.40% 92.20% 94.71%
Recall 95.62% 93.07% 94.90% 93.06% 95.37% 97.49% 98.31% 97.61% 98.07% 94.59%
F1-Score 96.83% 94.44% 93.64% 95.97% 95.88% 98.36% 97.07% 96.49% 95.05% 94.65%

Table 11: FDA-NET-2 Audio-based Approach: Confusion Matrix and Performance Eval-
uation on UrbanSound8K Augmented Dataset

Class AC CH CP DB DR EI GS JH SI SM
AC 1500 1 10 0 6 11 1 0 1 13
CH 0 267 0 0 1 1 0 0 2 0
CP 13 0 1523 17 5 8 0 0 31 41
DB 11 0 24 1084 6 5 0 1 12 16
DR 6 0 4 1 1293 1 0 17 0 11
EI 14 1 10 3 5 1524 0 7 13 6
GS 1 0 0 1 3 0 119 0 1 1
JH 8 0 5 0 31 6 0 1377 0 1
SI 12 8 9 8 4 2 0 5 1337 5
SM 7 5 27 3 1 8 0 0 5 1558
Precision 95.42% 94.68% 94.48% 97.05% 95.42% 97.32% 99.17% 97.87% 95.36% 94.31%
Recall 97.21% 98.52% 93.72% 93.53% 97.00% 96.27% 94.44% 96.43% 96.19% 96.53%
F1-Score 96.31% 96.56% 94.10% 95.25% 96.21% 96.79% 96.75% 97.14% 95.77% 95.41%
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Table 12: FDA-NET-3 Audio-based Approach: Confusion Matrix and Performance Eval-
uation on UrbanSound8K Augmented Dataset

Class AC CH CP DB DR EI GS JH SI SM
AC 1593 0 0 1 0 3 0 3 17 19
CH 0 239 0 0 1 1 0 0 0 8
CP 1 0 1492 17 11 5 0 1 27 36
DB 105 0 334 724 2 4 0 0 16 4
DR 6 3 0 31 1244 1 0 12 2 3
EI 8 0 4 5 13 1546 1 3 2 2
GS 14 0 4 34 1 0 55 0 0 0
JH 2 0 3 1 89 15 0 1329 1 1
SI 0 1 61 97 0 17 0 3 1256 9
SM 16 17 32 16 10 1 0 0 11 1447
Precision 91.29% 91.92% 77.31% 78.19% 90.74% 97.05% 98.21% 98.37% 94.29% 94.64%
Recall 97.37% 95.98% 93.90% 60.89% 95.55% 97.60% 50.93% 92.23% 86.98% 93.35%
F1-Score 94.23% 93.91% 84.80% 68.46% 93.08% 97.32% 67.07% 95.20% 90.49% 93.99%
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4.4.3.2 Image-based Classification Results

The proposed model FDA-NET for the image-based approach is represented by

FDA-NET-v1, FDA-NET-v2, and FDA-NET-v3. For the image-based approach, FDA-

NETs have the same settings as for the audio-based approach. The image-based approach

was more efficient than audio, consuming less time in training the classifiers. Also, image-

based classifiers’ overall testing accuracy has outperformed the audio-based approach,

more importantly, better than most of the state-of-the-art accuracy performance. The

accuracy for UrbanSound8K on the image-based approach is shown in Table 9. The

image-based results are shown in Figure 20. For the image-based approach with the

original UrbanSond8K dataset, the testing accuracy reported is 95.8% for FDA-NET-

v1, while for the augmented dataset, it is reported as 96.9% for FDA-NET-v1. FDA-

NET-v2’s accuracy for the image-based approach is 90%, whereas, for the augmented

dataset, it is 96%. However, for FDA-NET-v3, the image-based approach’s accuracy is

97%, and 98.53% is the testing accuracy based on the augmented dataset. The overall

performance evaluation including Confusion Matrix, Precision, Recall and F1-Score is

shown in Table 13, Table 14, and Table 15.

4.4.4 Results on ESC-10 Dataset

The dataset is composed of 400 audio clips and images and 3600 augmented audio

clips and images, and each of them is arranged in 5 folders.
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4.4.4.1 Audio-based Classification Results

We conducted experiments with the FDA-NET models based on audio features

for environmental audio classification, and the results are reported in the performance test

accuracy. Table 9 shows the testing accuracy for ESC-10. The learning and loss curves

of the models are shown in Figure 21 and Figure 22. FDA-NET-a1, FDA-NET-a2 &

FDA-NET-a3 with ESC-10 dataset for the original 400 audio samples reported a testing

accuracy of 90%, 89%, 91.25% and for the augmented data a testing accuracy of 92.63%,

91.8%, and 93.47%, respectively. The testing accuracy comparison of ESC-10 for the

three models is shown in Figure 20. Table 16 - Table 18 show the augmented dataset

performance report.

4.4.4.2 Image-based Classification Results

We now present the classification results for the proposed classifier architecture,

FDA-NET-1, FDA-NET-2, and FDA-NET-3, on the image dataset derived from the ESC-

10 dataset. The 400 spectrogram images (as shown t-SNE 2D dimensional space in Fig-

ure 18) and the 3600 spectrogram images generated from the augmented audio files are

reported in Table 26. The testing accuracy for FDA-NET-v1 was reported as 93.75% for

the original dataset, while 95.27% was reported for the augmented dataset. The class-

wise accuracy for ESC-10 is shown in Table 19 - Table 21. FDA-NET-v1 is better than

FDA-NET-v2. However, FDA-NET-v2 for image-approach reports a testing accuracy

of approximately 88% and 95.5% for the original and augmented datasets, respectively.
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FDA-NET-v3 has better training due to clear features and efficient network, therefore re-

porting a better accuracy than the FDA-NET-v1 & FDA-NET-v2. The reported accuracy

for the original and augmented dataset based on FDA-NET-v3 are 96.67% and 97.5%, re-

spectively. We have obtained the highest classification results among all the tested cases.

The overall performance evaluation for ESC-10 augmented dataset’s report is shown in

Table 19 - Table 21.

4.4.5 Results on ESC-50 Dataset

This section describes the experiments we conducted to assess the impact of the

proposed FDA-NET models for environmental audio classification on the ESC-50 dataset.

The ESC-50 class categorization visualization is shown in Figure 14. The t-SNE visual-

ization in Figure 18 shows clear distinction of different classes. However, the image-based

distribution of t-SNE is better than audio’s distribution. Specifically, we conducted the

audio and image-based approaches for 2000 original audio clips and 18000 augmented

audio clips. The setting for data and networks is similar to ESC-10 Dataset Evaluation.

4.4.5.1 Audio-based Classification Results

The evaluation matrix was generated and confirmed against the prediction evalu-

ation. The accuracy was reported for testing and assessment in terms of validation and

prediction. FDA-NET-1 testing accuracy reported for ESC-50 in the original format is

85.75%, while the testing accuracy for ESC-50 in augmented form is 92%. FDA-NET-

2 obtained testing accuracy of 84% and 91% for the original and augmented datasets,

respectively. However, the highest accuracy for ESC-50 is obtained by FDA-NET-3 is
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87.25% and 93.1% for the original and augmented datasets, respectively. The accuracy

performance for all models is shown in Table 9. The audio-based performance on ESC-50

dataset in the augmented data are shown in Table 22 - Table 24.

4.4.5.2 Image-based Classification Results

We followed the grayscale feature extraction and arranged the data in the same

fashion that was set for audio data. The categories and folders remained the same as

for audio. We performed experimentation on three different models of FDA-NET-v1,

FDA-NET-v2, and FDA-NET-v3. Images for spectrogram were represented in grayscale

as input to the image-based classifiers. The image data for ESC-50 is arranged into 5

folders as the original datasets but in an image format. The performance of the visual

design was trained and tested. The visual approach seems to obtain better accuracy due

to its efficient visualization in spectrogram format. We converted images to grayscale and

further normalized the input by dividing the vectors by 255. The audio normalization and

further vector normalization allow us to obtain more precise, accurate results. It is because

removing the blam areas from the image may be influenced by accuracy performance.

The testing accuracy reported is 86.7%, 86.5% & 92.75% for FDA-NET-v1, FDA-NET-

v2 & FDA-NET-v3 for the original image dataset. For the augmented image dataset, the

same models reported the testing accuracy of 92.11%, 90.67% & 96.1%. The accuracy

performance of the image-based approach is shown in Figure 20.
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4.4.6 Comparative Evaluation

We now evaluate the FDA-NET model and compare it with other state-of-the-

art algorithms. We achieved the best overall audio classification results as compared to

seven other image-based approaches [65, 43, 66, 41, 64, 67] and six other works in an

audio-based approach [61, 23, 71, 60, 9, 16] in terms of both classification accuracy

and computational efficiency. For a more comprehensive evaluation, we compared the

accuracy and network parameter characteristics of our approach with those of both the

image and audio-based approaches in the environmental audio classification in Table 6.

Our comparison is based on architecture, the network model, the number of pa-

rameters, data augmentation, and features. The comparison is made for all three available

datasets, i.e., UrbanSound8K, ESC-10 & ESC-50. The comparison is made with the most

recent papers in 2020 until the baseline approach, where visual classification started. The

FDA-NET’s image-based approach is comparable or superior to those for the current

state-of-the-art research. Mushtaq et al. [66] proposed a transfer learning solution for

ResNet and DenseNet; they obtained the highest mean accuracy 99.49%, 99.04% and

97.30% for UrbanSound8K, ESC-10, and ESC-50, respectively. Our accuracy is slightly

low with a difference of 0.96%, 1.54% & 1.47% for UrbanSound8K, ESC-10 and ESC-

50. The accuracy difference is due to their vast network models that can take a lot of

memory and time consumption, while our models take way less time in terms of parame-

ters. Their best model has 60.19 Million trainable parameters for their ResNet model and

12.30 Million for the DenseNet model, while FDA-NET has only 3.9 Million trainable

parameters. Another critical thing to notice here is that the model performance reported
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by Mushtaq et al. [65] was the maximum validation accuracy while we reported the test-

ing accuracy. Validation accuracy is typically higher than test accuracy. The parameters

of FDA-NET are shown in Table 7.

We also compared our audio-based approach with the state-of-the-art research in

audio-based classification, as shown in Table 6. FDA-NET obtained the state-of-the-art

accuracy of 96.96%, 93.47%, and 93.1% for UrbanSound8K, ESC-10, and ESC-50, re-

spectively. For UrbanSound8K data, Piczak et al. [16] proposed a baseline approach,

while Luz et al. [61] achieved the highest accuracy of 96.16% based on an ensemble ap-

proach. Their performance with the UrbanSound8K dataset is comparable to FDA-NET

(96.96%). However, their handcrafted feature extraction method requires more computa-

tional power than our approach with the librosa spectrogram generation.

4.5 Conclusion

We have worked on three different datasets using a deep learning approach. We

have proposed an enhanced Fusion technique on two individual models, i.e., we have

combined FDA-NET-1 and FDA-NET-2 to produce FDA-NET-3. FDA-NET-3 is based

on the fusion of the other two models. Furthermore, we have considered an audio feature

for classification. We further generated spectrogram images for the above datasets in the

same format. FDA-NET-1 is five layers of CNN architecture, while FDA-NET-2 is a four

layers architecture. We have also discussed how FDA-NET-1 has fewer parameters and

better results.

The performance with the audio and image data was influenced by data issues
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such as noise or imbalance. However, we have considered applying two well-known data

augmentation techniques for improving our results, i.e., time stretch and pitch shift. For

augmentation of images, we did not consider image augmentation. Instead, we generated

spectrograms of augmented audio samples. The presented technique of the data aug-

mentation and normalization provided excellent results. Our validation studies provide

fundamental design strategies for improving the classification performance handling the

data issues.

The setup explained that the visual model performed better and outperformed all

state-of-the-art research in UrbanSound8k, and ESC-10 datasets. ESC-50 performed a

little lower because FDA-NET has fewer parameters in training, and the dataset is com-

posed of 50 categories. Hence, saving computation consumption and time. The highest

accuracy FDA-NET obtained for the visual model are 98.53%, 97.5%, and 96.1% for

UrbanSound8K, ESC-10, and ESC-50, respectively.
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Table 13: FDA-NET-1 Image-based Approach: Confusion Matrix and Performance Eval-
uation on UrbanSound8K Augmented Dataset

Class AC CH CP DB DR EI GS JH SI SM
AC 1723 1 3 4 1 40 1 13 2 2
CH 3 698 1 2 2 3 1 0 1 7
CP 0 0 1742 8 1 5 0 0 17 4
DB 5 3 5 1845 1 0 0 0 1 3
DR 8 3 2 3 1651 41 6 76 4 2
EI 27 0 6 3 0 1696 0 20 4 2
GS 0 0 0 2 2 0 698 0 0 0
JH 6 0 0 0 10 36 0 1750 0 0
SI 1 0 2 1 0 9 0 0 1677 1
SM 4 0 20 7 0 7 1 3 9 1771
Precision 96.96% 99.01% 97.81% 98.40% 98.98% 92.32% 98.73% 93.98% 97.78% 98.83%
Recall 96.26% 97.62% 98.03% 99.03% 91.93% 96.47% 99.43% 97.11% 99.17% 97.20%
F1-Score 96.61% 98.31% 97.92% 98.72% 95.32% 94.35% 99.08% 95.52% 98.47% 98.01%

Table 14: FDA-NET-2 Image-based Approach: Confusion Matrix and Performance Eval-
uation on UrbanSound8K Augmented Dataset

Class AC CH CP DB DR EI GS JH SI SM
AC 1500 1 10 0 6 11 1 0 1 13
CH 0 267 0 0 1 1 0 0 2 8
CP 13 0 1523 17 5 8 0 0 31 41
DB 11 0 24 1084 6 5 0 1 12 16
DR 6 0 4 1 1293 1 0 17 0 11
EI 14 1 10 3 5 1524 0 7 13 6
GS 1 0 0 1 3 0 119 0 1 1
JH 8 0 5 0 31 6 0 1377 0 1
SI 12 8 9 8 4 2 0 5 1337 5
SM 7 5 27 3 1 8 0 0 5 1558
Precision 95.42% 94.68% 94.48% 97.05% 95.42% 97.32% 99.17% 97.87% 95.36% 93.86%
Recall 97.21% 95.70% 93.72% 93.53% 97.00% 96.27% 94.44% 96.43% 96.19% 96.53%
F1-Score 96.31% 95.19% 94.10% 95.25% 96.21% 96.79% 96.75% 97.14% 95.77% 95.17%
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Table 15: FDA-NET-3 Image-based Approach: Confusion Matrix and Performance Eval-
uation on UrbanSound8K Augmented Dataset

Class AC CH CP DB DR EI GS JH SI SM
AC 1593 0 0 1 0 3 0 3 17 19
CH 0 239 0 0 1 1 0 0 0 8
CP 1 0 1492 17 11 5 0 1 27 36
DB 105 0 334 724 2 4 0 0 16 4
DR 6 3 0 31 1244 1 0 12 2 3
EI 8 0 4 5 13 1546 1 3 2 2
GS 14 0 4 34 1 0 55 0 0 0
JH 2 0 3 1 89 15 0 1329 1 1
SI 0 1 61 97 0 17 0 3 1256 9
SM 16 17 32 16 10 1 0 0 11 1447
Precision 91.29% 91.92% 77.31% 78.19% 90.74% 97.05% 98.21% 98.37% 94.29% 94.64%
Recall 97.37% 95.98% 93.90% 60.89% 95.55% 97.60% 50.93% 92.23% 86.98% 93.35%
F1-Score 94.23% 93.91% 84.80% 68.46% 93.08% 97.32% 67.07% 95.20% 90.49% 93.99%

Table 16: FDA-NET-1 Audio-based Approach: Confusion Matrix and Performance Eval-
uation on ESC-10 Augmented Dataset

Class Animal Natural Human Indoor Outdoor
Animal 133 4 4 1 1
Natural 2 123 5 1 3
Human 1 3 137 3 1
Indoor 0 3 8 147 0
Outdoor 2 0 7 4 127
Precision 96.38% 92.48% 85.09% 94.23% 96.21%
Recall 93.01% 91.79% 94.48% 93.04% 90.71%
F1-Score 94.66% 92.13% 89.54% 93.63% 93.38%

105



Table 17: FDA-NET-2 Audio-based Approach: Confusion Matrix and Performance Eval-
uation on ESC-10 Augmented Dataset

Class Animal Natural Human Indoor Outdoor
Animal 134 3 6 4 4
Natural 2 100 5 0 4
Human 0 0 139 4 2
Indoor 3 2 3 168 1
Outdoor 7 0 5 4 120
Precision 91.78% 95.24% 87.97% 93.33% 91.60%
Recall 88.74% 90.09% 95.86% 94.92% 88.24%
F1-Score 90.24% 92.59% 91.75% 94.12% 89.89%

Table 18: FDA-NET-3 Audio-based Approach: Confusion Matrix and Performance Eval-
uation on ESC-10 Augmented Dataset

Class Animal Natural Human Indoor Outdoor
Animal 150 3 2 4 3
Natural 6 128 1 1 0
Human 9 4 123 5 1
Indoor 3 3 3 139 2
Outdoor 10 3 15 1 101
Precision 84.27% 90.78% 85.42% 92.67% 94.39%
Recall 92.59% 94.12% 86.62% 92.67% 77.69%
F1-Score 88.24% 92.42% 86.01% 92.67% 85.23%

Table 19: FDA-NET-1 Image-based Approach: Confusion Matrix and Performance Eval-
uation on ESC-10 Augmented Dataset

Class Animal Natural Human Indoor Outdoor
Animal 148 2 1 2 1
Natural 2 131 0 1 0
Human 4 1 158 4 2
Indoor 3 3 1 136 1
Outdoor 2 2 1 1 113
Precision 93.08% 94.24% 98.14% 94.44% 96.58%
Recall 96.10% 97.76% 93.49% 94.44% 94.96%
F1-Score 94.57% 95.97% 95.76% 94.44% 95.76%
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Table 20: FDA-NET-2 Image-based Approach: Confusion Matrix and Performance Eval-
uation on ESC-10 Augmented Dataset

Class Animal Natural Human Indoor Outdoor
Animal 153 2 0 2 1
Natural 2 138 1 3 5
Human 0 0 131 0 2
Indoor 5 1 2 122 2
Outdoor 2 1 1 0 144
Precision 94.44% 97.18% 97.04% 96.06% 93.51%
Recall 96.84% 92.62% 98.50% 92.42% 97.30%
F1-Score 95.63% 94.85% 97.76% 94.21% 95.36%

Table 21: FDA-NET-3 Image-based Approach: Confusion Matrix and Performance Eval-
uation on ESC-10 Augmented Dataset

Class Animal Natural Human Indoor Outdoor
Animal 134 0 0 4 0
Natural 4 124 4 1 1
Human 1 3 159 0 0
Indoor 9 0 23 110 1
Outdoor 5 0 4 2 131
Precision 87.58% 97.64% 83.68% 94.02% 98.50%
Recall 97.10% 92.54% 97.55% 76.92% 92.25%
F1-Score 92.10% 95.02% 90.08% 84.62% 95.27%

Table 22: FDA-NET-1 Audio-based Approach: Confusion Matrix and Performance Eval-
uation on ESC-50 Augmented Dataset

Class Animal Natural Human Indoor Outdoor
Animal 739 12 7 2 20
Natural 14 685 6 5 23
Human 11 18 622 10 21
Indoor 11 8 4 661 30
Outdoor 10 8 8 8 657
Precision 94.14% 93.71% 96.14% 96.36% 87.48%
Recall 94.74% 93.45% 91.20% 92.58% 95.08%
F1-Score 94.44% 93.58% 93.60% 94.43% 91.12%
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Table 23: FDA-NET-2 Audio-based Approach: Confusion Matrix and Performance Eval-
uation on ESC-50 Augmented Dataset

Class Animal Natural Human Indoor Outdoor
Animal 702 17 32 11 10
Natural 17 639 26 13 17
Human 9 9 646 15 16
Indoor 14 10 15 644 12
Outdoor 11 14 12 9 680
Precision 93.23% 92.74% 88.37% 93.06% 92.52%
Recall 90.93% 89.75% 92.95% 92.66% 93.66%
F1-Score 92.07% 91.22% 90.60% 92.86% 93.09%

Table 24: FDA-NET-3 Audio-based Approach: Confusion Matrix and Performance Eval-
uation on ESC-50 Augmented Dataset

Class Animal Natural Human Indoor Outdoor
Animal 700 8 19 10 2
Natural 16 663 15 14 10
Human 46 23 574 9 11
Indoor 15 17 18 716 14
Outdoor 25 24 31 16 604
Precision 87.28% 90.20% 87.37% 93.59% 94.23%
Recall 94.72% 92.34% 86.58% 91.79% 86.29%
F1-Score 90.85% 91.26% 86.97% 92.69% 90.08%
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Table 25: Audio Classification Benchmark Dataset

Dataset #Class #Clip(sec) #Fold #File
ESC-10 10 1980 5 400
ESC-50 50 1080 5 2000

UrbanSound8K 10 34920 10 8732

Table 26: Audio and Image Input (Original and Augmented)

Original Input# Augmented Input#
Dataset Audio Image Audio Image
US-8K 8732 8732 78588 78588
ESC-10 400 400 3600 3600
ESC-50 2000 2000 18000 18000

Table 27: FDA-NET-1 Image-based Approach: Confusion Matrix and Performance Eval-
uation on ESC-50 Augmented Dataset

Class Animal Natural Human Indoor Outdoor
Animal 739 12 7 2 20
Natural 14 685 6 5 23
Human 11 18 622 10 21
Indoor 11 8 4 661 30
Outdoor 10 8 8 8 657
Precision 94.14% 93.71% 96.14% 96.36% 87.48%
Recall 94.74% 93.45% 91.20% 92.58% 95.08%
F1-Score 94.44% 93.58% 93.60% 94.43% 91.12%
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Table 28: FDA-NET-2 Image-based Approach: Confusion Matrix and Performance Eval-
uation on ESC-50 Augmented Dataset

Class Animal Natural Human Indoor Outdoor
Animal 702 17 32 11 10
Natural 17 639 26 13 17
Human 9 9 646 15 16
Indoor 14 10 15 644 12
Outdoor 11 14 12 9 680
Precision 93.23% 92.74% 88.37% 93.06% 92.52%
Recall 90.93% 89.75% 92.95% 92.66% 93.66%
F1-Score 92.07% 91.22% 90.60% 92.86% 93.09%

Table 29: FDA-NET-3 Image-based Approach: Confusion Matrix and Performance Eval-
uation on ESC-50 Augmented Dataset

Class Animal Natural Human Indoor Outdoor
Animal 788 4 7 11 8
Natural 6 622 13 4 6
Human 18 8 740 10 5
Indoor 38 28 18 571 2
Outdoor 15 36 14 26 602
Precision 91.10% 89.11% 93.43% 91.80% 96.63%
Recall 96.33% 95.55% 94.75% 86.91% 86.87%
F1-Score 93.64% 92.22% 94.09% 89.29% 91.49%
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CHAPTER 5

FEATURE-BASED FUSION LEARNING FOR DEEP ACOUSTICS

5.1 Introduction

There have been significant recent advances in deep learning and the potential

of the deep learning model for various medical applications. Recently, there has been

increasing attention for the classification of human body sounds for clinical conditions

in the medical domain [77, 78, 79]. Advanced technologies are essential to achieving

the improvement of lifestyle and health care. Some of these applications are ambient

assisted living systems [80], fall detection [81], voice disorders [82], and heart condition

detection [83]. These systems are useful in the early detection of different types of disease

through human body sounds, which ultimately improves healthcare. More specifically, an

extensive investigation in a partnership among researchers, health care providers, and

patients is integral to bringing precise and customized treatment strategies in taking care

of various diseases.

Recently, an electronic stethoscope, similar to the design of standard clinical

stethoscopes, was designed to enhance the quality of body sounds through filtering or am-

plification and then extract features from the sounds for the automatic diagnosis of heart

or lung conditions using deep learning algorithms. If a deep learning-based diagnosis of

heart or lung disease can increase precision and productivity, we can reduce healthcare

costs and improve healthcare quality. Moreover, deep learning is a branch derived from
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machine learning. It allows the computational models, which consist of several layers of

processing used to learn the data representations over multiple levels of abstractions. It

has attracted a lot of attention due to its high performance in classification. These learning

techniques are among the fastest-growing fields nowadays in the area of audio classifica-

tion [5]. Some studies reported that the deep learning models outperform humans due to

the ability to filter the noise and intensive learning ability [84, 85].

The expenses of health care have been rapidly increased in the United States [86].

Due to the rapid surge of medical care costs, many people cannot afford health care and

may have proper medical treatment. A physician can diagnose by using a standard clinical

stethoscope by hearing sounds from the human body. An auscultatory method has been

applied widely by physicians to examine lung sounds associated with different respiratory

symptoms. The auscultatory process has been the easiest way to diagnose patients with

respiratory diseases, such as pneumonia, asthma, and bronchiectasis [87]. However, the

sound quality is quite a noise or too weak to hear, sometimes due to the complexity of

the sound patterns and characteristics. Thus, the manual process takes much time and

effort for a physician to detect the condition utilizing a stethoscope accurately [88]. For

example, wheezing sounds could not accurately be identified in a series of the pulmonary

disease sounds [89].

5.2 Milestone

The contribution of this chapter can be summarized as follows:
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• We aim to design a feature-based fusion model transferred from the three feature-

based convolutional neural network models to classify lung and heart disease.

• We aim to show that it is more effective to classify heart or lung diseases with

images transformed from three different sound features, i.e., Spectrogram, MFCC,

and Chromagram.

• Our objective is to apply different types of data augmentation, such as Noise, Pitch-

Shift, and Time-Stretch, effectively to the audio dataset for optimal deep learning

training and testing performance.

5.3 Related Work

Human body sounds and the signal produced by these sounds play an important

role in identifying different types of diseases. The literature survey for lung and heart

sound classification is shown in Table 30 and Table 31.

5.3.1 Lung Disease Classification

Rocha et al. [24] developed classification models for the diagnosis of chest con-

ditions by using a stethoscope and for the environmental sounds. First, they created a

database of lung sounds, which consisted of 920 samples for different categories (i.e.,

COPD, Healthy, etc.). The second task of the challenge was to extract the features and

classify the sounds according to the nature of sound (Wheezes, Crackles, or both). Finally,

they conducted feasibility studies on machine learning algorithms, such as support vec-

tor machine (SVM) and artificial neural networks (ANN) using features, such as MFCC,
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spectral features, energy, entropy, and wavelet coefficients. However, they have not over-

come the data issues. Unlike this study, we extracted multiple image features from the

same datasets, improved the data issues using data augmentation techniques, and obtained

better results.

Several data augmentation techniques have been applied to classify lung diseases

using sounds [90, 91, 92, 93]. Dalal et al. [14] explored four machine learning approaches

for lung sound classification using lung dataset [30]. This study used data augmentation

and extracted Spectrogram, MFCC, and LBP features using multiple machine learning

algorithms, such as Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Gaus-

sian Mixture Model (GMM), and Convolutional Neural Network (CNN). Among these

models, CNN outperformed all other classifiers with an accuracy of approximately 97%.

However, their machine utilization was very high by applying almost 1 million or more

epochs. On the contrary, we have achieved higher accuracy than the study, with very low

machine utilization and only 100 epochs with low parameter consumption.

The review in [22] mentioned several feature extraction and classification tech-

niques for obstructive pulmonary diseases such as COPD and asthma. The process in-

volves several traditional and deep learning classification techniques, such as K-Nearest

Neighbor (KNN), Artificial Neural Network (ANN), Deep Neural Network (DNN), and

Convolutional Neural Network (CNN) and feature extraction through signals such as

Fast Fourier Transform (FFT), Short Time Fourier Transform (STFT), Spectrogram, and

wavelet transform. For example, the best accuracy for CNN was approximately 95%.
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Hai et al. [37] proposed a novel solution for lung sound classification by us-

ing a publicly available dataset. The dataset was divided into three categories such as

wheezes, crackles, and normal sounds. They proposed a detection method using op-

timized S-transformed (OST) and deep residual networks (ResNets). They performed

preprocessing on the audio samples by using OST for rescaling the features for ResNets

and utilized a visual-based approach. Their experimental results showed the best multi-

classification model with accuracy (98.7%).

Fateh et al. [94] proposed a pre-trained CNN model to extract deep features by

using the ICBHI challenge dataset. The dataset consists of crackles, wheezes, normal, and

wheezes plus crackles categories. First, they used the visual approach with spectrogram

images generated from lung sounds by extracting the features. Then, they utilized the

deep features as the input of the Linear Discriminant Analysis (LDA) classifier using

the Random Subspace Ensembles (RSE) method. As a result, their model improved the

classification accuracy from 5% compared to the existing methods.

Demir et al. [95] proposed two approaches using CNN for the classification of

lung diseases using the ICBHI lung sound dataset. The dataset consists of 4 classes with

6898 recordings. First, they converted the lung sounds to spectrogram images using the

short-time Fourier transform (STFT) method. Their first approach is classifying with the

SVM based on the features extracted from a pre-trained CNN model. Then, the pre-

trained CNN model was fined tuned using the transfer learning method for spectrogram

images. The best accuracy for the proposed first and second methods are 65.5% and

63.09%, respectively.

115



Samiul et al. [96] proposed a lightweight CNN model for detecting respiratory

diseases through lung sounds. They designed a hybrid scalogram-based approach using

the ICBHI 2017 lung sound dataset by utilizing the empirical mode decomposition (EMD)

and the continuous wavelet transform (CWT). As a result, the three-class chronic and the

six-class pathological classification accuracy were 98.2% and 98.72%, respectively, with

3M trainable parameters. However, we achieved a better accuracy with lower trainable

parameters.

Elmar et al. [97] presented an approach for multi-channel lung sound classifi-

cation using spectral, temporal, and spatial information. They proposed a convolutional

recurrent neural network (CRNN) using spectrogram features to classify lung sounds col-

lected from 16 channel recording devices. Their CRNN model obtained an F1-score of

92% for the binary classification.

Luay et al. [98] proposed homogeneous ensemble learning methods to perform

multi-class classification of respiratory diseases. They also used the ICBHI challenge

dataset, including 1176 recordings and 308 clinically obtained lung sounds. They used

entropy features for machine learning models such as SVM, KNN, and Decision Tree.

Among these three models, SVM received the best average accuracy of 98.20%.

5.3.2 Heart Disease Classification

Potes et al. [99] proposed a feature-based ensemble technique for the classification

of normal vs. abnormal heart sounds. First, they extracted 124 time-frequency features
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such as MFCC from the phonocardiogram (PCG) signals. Then, they utilized the combi-

nation of AdaBoost classifier and CNN classifier to classify the heart sounds. The overall

accuracy achieved was 86%. Zhang et al. [100] proposed a method for heart sound clas-

sification using a convolutional neural network (CNN). The spectrogram features were

extracted from the cycles of sound signals for different positions of pre-trained CNN, and

the classification model was based on a support vector machine (SVM). They reported the

precision of 77% and 71% for the two datasets with 4 and 3 classes, respectively.

Bozkurt et al. [38] focused on segmentation and time-frequency components for

the CNN-based designs. The Mel-spectrogram and MFCC features were extracted from

heart sound data using the PhysioNet dataset [39]. They also performed the data augmen-

tation by changing the sampling rate with a random value in range. The overall accuracy

achieved was 81.50%. Shu et al.[101] proposed a novel deep WaveNet model for the

classification of heart sounds. They used the dataset, composed of five categories with the

1000 PCG recordings, and obtained the overall highest training accuracy of 97%. Muqing

et al. [102] proposed a combined model with a convolutional neural network (CNN) and

recurrent neural network (RNN) based on the MFCC features for heart sound classifica-

tion. Their results for the heart sound classification with pathological or non-pathological

categories showed the accuracy of 98% with the PhysioNet database.

Acharya et al. [19] proposed Convolutional Neural Network having nine layers for

the classification of heart heartbeat signals, such as non-ectopic, supraventricular ectopic,

ventricular ectopic, fusion, and unknown beats. Oh et al. [20] developed hybrid models,

i.e., multiple layers of CNN and max-pooling and LSTM as the end layer, to extract the
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temporal information from the features from the ECG dataset and classify arrhythmia

from ECG segments. Rajpurkar et al. [103] developed a 34-layer CNN model for the

diagnosis of heart diseases such as arrhythmia with the ECG data, recorded with a single

lead heart monitor. However, some issues arise in deep learning modeling with the data,

including the limited amount of data for heart conditions, low quality with noise, and

significant data variations. We also faced similar problems and addressed them in our

work.

5.4 Methodology

We discuss the overall design goals for the FDC network (shown in Figure. 23).

The modeling process of FDC includes five stages. First, we apply data augmentation

techniques onto the audio data to handle the data issues and improve heart and lung con-

dition detection accuracy. Second, we extract the three types of unique and dominant

features inherent from the audio data, i.e., Spectrogram, Mel-frequency cepstral coeffi-

cient (MFCC), and Chromagram. Third, we convert the extracted features in the form of

the images and generate the feature vectors of the audio images in a color format. Fourth,

we feed the image feature vector into the specially designed three convolutional neural

network models (FDC-1, FDC-2, FDC-3). Finally, The fusion network model (FDC-FS)

fuses these three models to optimize the learning performance for the heart and lung sound

datasets.
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Figure 23: Fusion Based Disease Classification Architecture

5.4.1 Rationale of Design

The rationales of the FDC framework design are as follows: First, it is to enable

the effective selection of features from the heart and lung sound data, which are highly

noise and unbalanced. Second, it can transform the audio features into consistent and

reliable forms, i.e., audio images. FDC supports a multi-modality capability of audio and

image in feature extraction, modeling, and inferencing. Third, it is to design the three

different network models to effectively learn unique and dominant features. Finally, it is

to transfer learning by fusing the three network models into one model to improve the

learning performance in lung and heart condition detection.

The differences between the samples of the signals (audio) and images of the same

signals are significant, although they are from the same sources. Thus, different modeling

techniques are needed to support the multi-modality. For example, if one is talking in a

visual context, it means that sound is transparent while the image is considered as non-

transparent (opaque) [72]. The pixel formation shows that whatever is the position of an

object belongs to the same category. However, audio cannot quickly identify where it
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belongs due to its observed frequency in spectrogram features. The audio spectrogram

depends on the magnitude of the frequency. Therefore, it isn’t easy to process the object

or its combination in a sequence manner, and it is challenging to identify the simultaneous

sounds represented in the spectrogram features.

When a neural network uses images for classification, it considers the sharing

weights available from the images in two dimensions, i.e., the X and Y-axis. Thus, the

image will carry the same information if it is stretched or repositioned regardless of the

position and presence. However, in audio, the two-dimensional data represents the fre-

quency and time. Therefore, if the audio is moved horizontally or vertically, the meaning

of the audio can changes. Furthermore, even the spatial features of the sound can change

if we increase or decrease the pitch. Therefore, the intentionally introduced invariance can

change the meaning, and the neural network will not perform well as it should perform

on the trained and augmented data.

In the image format, the extracted pixels can assume that the image belongs to the

same class, while in audio, this is not true. Audio is composed of periodic sounds that

are composed of frequency and harmonics. The harmonics are spaced apart from each

other according to their nature. The combination of these harmonics usually determines

the sound’s timbre. Suppose we assume from the physical point of view. In that case, the

audio played to the audience will examine the type of sound only, while images typically

contain a lot of parallel static information. The image classification depends on image

features, such as brightness and resolution, among other features.

The design of the fusion-based FDC framework can be justified in terms of the

120



classification effectiveness in terms of three perspectives: (1) Extracting features from the

complex audio data of the time and frequent by transformation from audio to images. (2)

Designing three specific deep neural networks to optimize their learning performance de-

pending on their unique and dominant features. (3) Optimizing the learning performance

through a fusion model by combining the three different models.

5.4.2 Data Augmentation

Deep learning relies on a large amount of data for more accurate classification.

Therefore, we have utilized several augmentation techniques for better classification, out

of which we have selected the best three methods, including background noise, time-

stretching, and pitch shifting. We designed these techniques to address the problems in

the lung and heart audio classification.

5.4.2.1 Noise Distortion

We have considered adding random noise to the audio samples to avoid overfitting

during training. In this type, noise clips were randomly sampled [104] to be linearly mixed

with the input signal represented as y′. α is used to describe random weights along with

specific factors that are denoted by U as shown in Equation 5.1.

Random−Weights : α ∼U [0.001, 0.005]

Input− Signal : y′ ← (1− α) · y + α · ynoise

(5.1)
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5.4.2.2 Time Stretching

Scaling the audio data horizontally by some stretching factor such as a st > 0

helps in increasing the size of the data for efficient classification. We have applied

time stretch (st) on the audio samples, which were later converted to images. It is to

check if the meaning of the data remains the same as image data does not lose the in-

formation but changing the position of audio or slowing down the position as we gen-

erate the Spectrograms. We have considered four different types of time stretch factor

n ∈ {0.5, 0.7, 1.2, 1.5}.

5.4.2.3 Pitch Shifting

In this data augmentation technique, the audio samples’ pitch is either decreased

or increased by four values (semitones) [28]. We assume that with the pitch shifting

factor as, the artificial training data generated is Naug times larger than the original

lung or heart sound data. The duration of audio samples is kept constant like the ac-

tual audio samples, i.e., 10 - 90 seconds. For our experimentation, the value changed

in semitones were in the interval [−as, as] for each signal. Factors of pitch shift are

n ∈ {−3.5,−2.5, 2.5, 3.5} semitones.

5.4.3 Feature Extraction

We used the two datasets, i.e., lung and heart sound (for six categories for each

in the lung dataset and the heart dataset). These datasets consist of sound clips that vary

from 10 seconds to 90 seconds. However, to incorporate the consistent data in making
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Figure 24: Lung Sound Features: (1) Wav (2) Spectrogram (3) MFCC (4) Chromagram

a more accurate prediction model, we used the sliding window technique to make each

clip of 3 seconds. We extract audio features for the given input in terms of Spectrogram,

MFCC, and Chromagram. The feature vectors of the extracted features for these three

types are converted as JPG images in the dimension of [128x128] using the CV2 image

and NumPy libraries.

123



Figure 25: Heart Sound Features: (1) Wav (2) Spectrogram (3) MFCC (4) Chromagram
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5.4.3.1 Spectrogram Generation

The spectrogram is a visual representation of a signal in the time-frequency do-

main. These are generated by the application of the short-time Fourier transform (STFT)

[44]. According to the theorem, a single Fourier analysis may not see a nonstationary sig-

nal’s spectrum variation. The Fourier transform can be used to determine the frequency

and sequence of signals and their changes over time. Hence, the spectrogram considers

the stationary signal by computing the Fourier transform of the segmented signal into

slices. The spectrogram can be calculated as:

STFT fx (t, f) =

∫ ∞
∞

[x(t)w(t− τ)e−j2πftdt (5.2)

where x(t) is the time-domain signal, τ is the time localization of STFT, and w(t − τ) is

a window function to cut and filter the signal. The length of the window function must

be selected and adjusted according to the signal’s length because it affects the time and

frequency resolution [45]. The spectrogram will be converted into a grayscale image, and

the image will be used to generate a feature vector that will be feed for deep learning.

The scaling process is applied to the spectrogram to expand the values range be-

tween 0-255 because the range of the spectrogram is usually comprehensive. The method

of scaling is done in a linear manner, which can be expressed as follow:

S(m,n) =
|Spec(m,n)|
max|Spec|

× 255 (5.3)

where Spec(m, n) is the value of the spectrogram and S(m, n) is the expanded value from
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a spectrogram.

5.4.3.2 Mel-frequency Cepstral Coefficient

The Mel-frequency Cepstral Coefficient (MFCC) coefficients are a set of discrete

cosine transform (DCT) derived from a type of cepstral representation of the audio clip.

The frequency warping allows a better representation of sound by containing the dif-

ference between the cepstrum and the Mel-frequency cepstrum. It computed through

logarithmic spectrum scale after it was transformed to the Mel scale [105] calculated as:

mel(f) = 2595 log10

(
1 +

f

700

)
(5.4)

For the input signal y(n), an N-point discrete Fourier transformation (DFT) is

given as:

Y (k) =
M∑
n=1

y(n).e(
−j2πnk
M ) (5.5)

MFCCs are commonly derived as follows: first, we obtain the spectrum by taking

the Fourier to transform to a signal. Second, we map the spectrum onto the Mel scale and

then take a log-based transform of the Mel-frequency scaled spectrums. Finally, we take

the discrete cosine transform of the Mel-log-frequency scaled spectrums and amplitude

the spectrum.
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5.4.3.3 Chromagram

Chromagram features or Chromagram are Pitch Class Profile whose pitches can be

meaningfully categorized. The Chromagram technology was applied to generate a robust

set of acoustic features by capturing harmonic and melodic characteristics of music in a

signal whose pitches can be classified in the categories of lung or heart sounds. Since

the heart and lung sounds have subtle differences in pitch, Chromagram has features that

make it a good source of lung and heart sound classification.

5.4.4 Classification Model

5.4.4.1 Overview of the FDC Model

Convolutional neural network (CNN) has been recognized as a popular and pow-

erful deep neural network model in audio and image classification applications.

We have developed a fusion model based on CNN-based architecture for heart and

lung disease classification. Our model is a 2D CNN model composed of the input layer,

convolutional 2D layer, max-pooling layer, and fully connected layers. The invention is a

fusion model, FDC-FS, by combining multi-featured models, including FDC-1, FDC-2,

and FDC-3. The fusion was conducted on their final layer to append all model parameters.

There are two essential components in the design of multi-feature models with

CNNs. 1) the feature extractor collected features (Spectrogram, MFCC, and Chroma-

gram) from the audio signals and transformed the features into images to generate vi-

sual feature vectors. 2) Each model (FDC-1, FDC-2, FDC-3) was uniquely designed to
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optimize learning for the specific features (Spectrogram, MFCC, and Chromagram), re-

spectively which is composed of multiple convolutional and pooling layers, activation,

and fully connected layers with several hidden units. Finally, the fusion model was built

by composing the features from these three models. After the models were trained, the

visual feature vectors of the input signals were classified by the models into their appro-

priate categories.

The mathematical form of the convolutional layers is given in Equation 5.6 and

5.7

[xli,j,k =
∑
a

∑
b

∑
c

w
(l−1,f)
i,j,k y

(l−1)
i+a,j+b,k+c + biasf ] (5.6)

[yli,j,k = σ(x
(l)
i,j,k)] (5.7)

The output layer is represented by yli,j,k where as the 3-dimensional input tensor

is denoted by i, j, k. The weights for the filters are denoted by w(l)
i,j,k and σ(x(l)i,j,k) de-

scribes the sigmoid function for linear activation. The fully connected is the final layer

represented by Equation 5.8 and 5.9.

[x
(l)
i

∑
j

wl−1i,j y
l−1
j + biasl−1j ] (5.8)

[yli,j,k = σ(xli,j,k)] (5.9)
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Table 30: Literature Survey for Lung Sound Classification

Publication Network Feature Approach Limitation
Dalal (2018) SVM, KNN,

GMM, CNN
MFCC, LBP An ensemble-based approach

for classification lung sounds
Machine utilization was very
high by applying almost 1 mil-
lion or more epochs

Hai (2019) ResNet50 Sp A visual-based approach to
propose a detection method
using optimized S-transformed
(OST) and deep residual net-
works also known as ResNets.

Large number of trainable pa-
rameters and low data

Fatih (2020) CNN Sp Images,
Deep Features

An ensemble-based approach
for classification lung sounds

Low performance in terms of
accuracy

Demir(2020) CNN, SVM Sp, Sp Images Transfer learning method for
classification of lung diseases

Large number of trainable pa-
rameters with high computa-
tional power. Low perfor-
mance in terms of accuracy

Samiul (2020) CNN Hybrid Scalo-
gram

A lightweight CNN model for
detecting the respiratory dis-
eases through lung sounds

Trainable parameters are high

Luay (2021) SVM, KNN,
DT, KNN

Entropy fea-
tures

Examines the application of
different homogeneous ensem-
ble learning methods to per-
form multi-class classification
of respiratory diseases

Lack of deep learning perfor-
mance
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Table 31: Literature Survey for Heart Sound Classification

Publication Network Feature Approach Limitation
Potes(2016) CNN MFCC A feature-based ensemble tech-

nique for classification of nor-
mal vs abnormal heart sounds.
The combination of AdaBoost
classifier and CNN classifier to
classify the heart sounds

Low performance in terms of
accuracy

Zhang(2017) CNN+SVM SP A method for heart sound clas-
sification without segmentation
using CNN and achieved the
last classification with SVM

Low performance in terms of
accuracy

Bozkurt(2018) CNN MFCC, Mel-SP Focus on segmentation and
time-frequency representation
components of the CNN-based
designs with data augmentation
techniques

In comparison to our work low
performance in terms of accu-
racy

Wu(2019) CNN Sp, Mel-SP,
MFCC

An ensemble approach for
classification of normal and ab-
normal heart sounds

Large number of trainable pa-
rameters with low performance

Shu(2020) WaveNet Multiple fea-
tures

A novel deep WaveNet model
for classification of heart
sounds

Obtained high training accu-
racy with low data however, the
testing performance is low in
comparison

Xiao(2020) 1D CNN Raw signal w/t
band filter

A transition approach with 1D
CNN for classification of Phy-
sioNet data

Low performance in terms of
accuracy with low data

Muqing(2020) CRNN,
PRCNN

MFCC An improved feature extraction
method using MFCC. For clas-
sification of heart sounds, the
convolutional neural network
(CNN) and recurrent neural
network (RNN) models were
combined

Results obtained with balanced
dataset

Mehmat(2021) 1D CNN LBP+LTP A one-dimensional CNN ap-
proach for classification of
PhysioNet data

Low performance in terms of
accuracy
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Our fusion model FDC-FS is composed of three different models, such as FDC-

1, FDC-2, and FDC-3. They consist of the convolutional layers enclosed by the max

pool layer, followed by fully connected layers, including dropout, batch Normalization,

rectified linear units (ReLU), and LeakyReLU. During the extraction of features, we have

used the window size and hop size of 23 ms. As the sound clips vary between 3 to 5

seconds, that is why we kept the extraction to 3 seconds to make every bit of the sound

clip usable. In addition, we have reshaped the input taken from the sound clips to X ∈

R128x128 shape. Further, we have sent these reshaped features to the classifier to predict

heart or lung diseases.

5.4.4.2 FDC-1 Model

The FDC-1 model is designed for the classification based on the image feature

vector of the three audio features (Spectrogram, MFCC, and Chromagram) for the given

datasets, using convolutional neural network architecture with a total of five layers. Among

the five layers, 3 are convolutional layers, and 2 are dense layers. We considered recti-

fied linear units (ReLU) as the activation function between layers, a max-pooling is also

applied, and we have also used dropout in different layers to avoid overfitting. The total

number of trainable parameters based on the five layers of architecture is 241,174 (0.24

M). The hyper-parameters are shown in Table 32.

The first layers of the FDC-1 model consist of 24 filters with a 5*5 receptive

field. The layer is also followed by a (4*2) strided max-pooling function. The activation

function used in this layer is rectified linear units (ReLU). The second layer of FDC-1 is
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composed of 48 filters with 5*5 receptive files. It is followed by 4*2 strided Max Pooling

and ReLU activation. The padding for these layers is kept as “valid.” The third layer of

FDC-1 consists of 48 filters with 5*5 receptive fields. The layers have “valid” padding,

which is followed by the ReLU activation function. After the activation, the output is

flattened, and the dropout of factor “0.5” is applied to avoid overfitting the output from

layer to layer. The fourth layer is the first dense layer which is also called the hidden

layer. It consists of 64 hidden units followed by ReLU activation and dropout rate of 0.5

to avoid overfitting the output result to the next layer. The fifth layer is a final dense layer

that consists of output units. The output units are always equal to the number of classes

used in the dataset. The last layer is followed by the “Softmax” activation function.

5.4.4.3 FDC-2 Model

The FDC-2 model is designed for classification based on the image feature vector

of the three audio features (Spectrogram, MFCC, and Chromagram) for the given datasets.

It is based on a convolutional neural network architecture consisting of 4 layers, including

two convolutional layers, two hidden layers, and an L2 regularizer on the first layers to

reduce likelihood and bias among the inputs. In addition, this model consists of Max

Pooling to reduce unwanted features for training, dropout to avoid overfitting, ReLU, and

Softmax activation. Feature vector flattening is also considered to convert 2-dimensional

features to 1-dimensional features. The total number of trainable parameters based on the

four layers of architecture is 879,430 (0.87 M). The overall hyper-parameters are shown

in Table 33.
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In the first layers of FDC-2, the layers take 32 filters with 3*3 receptive files.

The first layers also consist of the L2 regularizer norm with the value of “0.0005.” Then,

Strided Max Pooling of 4*2 follows it. Finally, ReLU is used as an activation function.

FDC-2 takes 48 filters with 3*3 receptive filed and “valid” padding in the second layer.

It is pursued by the ReLU activation function and Max Pooling of 4*2. After all the

operations above, the 2-Dimensional input is flattened to 1-Dimensional and passed on

to the hidden layers, i.e., dense layers. A dropout follows the flatten with a rate of 0.5

to avoid overfitting the input. The third layer is the first hidden (dense) layer of FDC-2

with hidden units of 64, followed by ReLU activation and dropout with a rate of 0.5. The

fourth layer is a dense layer consisting of the output units, which is equal to the number

of classes available in the dataset. The final activation function is Softmax.

5.4.4.4 FDC-3 Model

The FDC-3 model is designed for the classification based on the image feature

vector of the three audio features (Spectrogram, MFCC, and Chromagram) for the given

datasets, focused more on in-depth training and eventually reducing the number of train-

able parameters. This model is composed of 8 convolutional layers and one dense layer.

The layers consist of padding, ReLU, softmax activation, Max Pooling, Global Average

Pooling, Batch Normalization, and dropout. The Batch Normalization is used to train the

model intensely, and in return, it standardizes the input in a layer for each mini-batch.

Hence, it has a perfect effect on the learning process, reducing the number of trainable
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parameters. The total number of trainable parameters based on the nine-layer architec-

ture given below is 362,214 (0.36 M). FDC-3 hyper-parameters are shown in Table 34 in

details.

The first and second layers of FDC-3 have 32 filters with 3*3 receptive fields and

some padding and ReLU as activation function. Both layers also consist of 2*2 strided

Max Pooling. Batch Normalization follows both layers to perform deep training and

reduce the trainable parameters. However, the second layer is following by a dropout of

0.25 to overfitting the input to the next layer. The third-to-sixth layers of FDC-3 are the

same as the first and second layers, but the third-to-sixth layers take 64 filters with 3*3

receptive fields. They use the same strided max-pooling, padding, activation, dropout,

and Batch Normalization for deep training. The seventh and eighth layers of FDC-3 take

128 filters with 3*3 receptive files, followed by the same padding and ReLU activation

function. Batch Normalization follows the activation function in both layers. However,

the eighth layer is followed by the dropout of rate 0.25. Finally, the last convolutional

layer is also followed by Global Average Pooling before the input is ready for output

classification. The ninth layer is the final and only the dense layer in this architecture,

consisting of output units equal to the number of classes in the dataset.

5.4.4.5 FDC-FS Model

The FDC-FS model is a fusion model resulting from transfer learning from all

three models (FDC-1, FDC-2, FDC-3). Its architecture is composed of the softmax acti-

vation and dense layers consisting of the output units equal to the number of classes in the
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dataset at the last layer. Therefore, FDC-FS is composed of 13 convolutional layers and

3 dense layers model, more specifically three convolutional layers from FDC-1, two con-

volutional layers from FDC-2, eight convolutional layers from FDC-3, one dense layer

from FDC-1, and one dense layer from FDC-2, and a final dense layer of an output unit.

The FDC-FS’s total trainable parameters for six classes are 1,482,806 (1.4M). Table 35

and Table 36 show the hyper-parameters of the final convolutional architecture, which is

a fusion of our novel three architectures shown in Figure. 26.

5.5 Result and Evaluation

We have conducted comprehensive experiments for the FDC models using the

lung and heart sound datasets [24, 106]. We now present the results obtained from the

experiments with the three FDC models and the fusion model (FDC-FS) using the original

and augmented datasets of the lung and heart datasets. The results includes the accuracy,

loss, and class-wise accuracy for original and augmented datasets. The experimental

results have been obtained as compared to the state-of-the-art methods.

5.5.1 Experimental Setup

We have conducted most of the experimentations using Google research collabo-

ratory with 12 GB NVIDIA Tesla K80. For the data augmentation and feature extraction,

we used the NVIDIA GeForce Â® GTX 1080 Ti, packed with 11 Gbps GDDR5X mem-

ory and an 11 GB frame buffer. The number of epochs was set at 50 while avoiding

overfitting, and a batch size of 64 was considered. However, for the training for the aug-

mented datasets, the epochs were set at 30 with a 128 batch.
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The model training was set to 80% training and 20% testing. From the 80% train-

ing data, we have further split it into 80% training and 20% validation (64% training,

16% validation, 20% testing). We have reported classification accuracies for training and

testing. The class-wise accuracy was also reported for four different models (FDA-1, 2,

3 & FS), two types of data (original and augmented), and for two different datasets (lung

and heart sound). We observed that FDC-FS performed the best compared to others.

5.5.2 Dataset

Lung Sound Dataset: The research team from Greece and Portugal created the lung

dataset [24]. There are 920 annotated recordings, ranging from 10s to 90s (the total of

5.5 hours), obtained from 126 patients using a digital stethoscope. Unfortunately, the

complete dataset was not released. Therefore, the publicly available dataset used for

lung sound classification modeling is mainly limited in data amount and sound quality.

To overcome the data issues, we applied two approaches to balance the dataset: (1) The

“Synthetic Minority Oversampling Technique (SMOTE)” replicates the same sample sev-

eral times to balance the dataset with other classes. Most of the state-of-the-art research

use SMOTE in their works. The second approach is to consider weighted average as our

testing accuracy for the models.

We further applied data augmentation techniques to generate synthesized data.

Table 37 shows the amount of the original and augmented data. We have removed the
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Asthma category having only a single recording from the dataset. The number of the orig-

inal recordings was 919 for six categories (Bronchiectasis, COPD, Health, LRTI, Pneu-

monia, URTI) while the number of augmented recordings are 10,109.

Heart Sound Dataset The heart dataset consists of 656 audio recordings for different

heart classes such as Extrastole, Murmur, Noisy Murmur, Noisy Normal, Normal, Unla-

beled test. The author of the dataset [106] made this dataset public for two challenges,

using an iPhone app and a digital stethoscope. The initial dataset has both clean and noisy

data without any data synthesis. In order to increase the accuracy of the data, data aug-

mentation techniques were added to the initial heard sound samples. After applying the

data augmentation to the initial data, the total number of files increased to 7216 as shown

in Table 38.

Figure. 27 shows the t-Distributed Stochastic Neighbor Embedding (t-SNE) visu-

alization for lung and heart sound dataset. It can be seen that the Lung dataset is very

dispersed, and classes are mixed up with each other.
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Table 32: FDC-1 Model Hyper-parameters

Layer(Type) Output Shape Param #
Conv2D (None, 124, 124, 24) 624
MaxPooling2D (None, 31, 62, 24) 0
Activation (None, 31, 62, 24) 0
Conv2D (None, 27, 58, 48) 28848
MaxPooling2D (None, 6, 29, 48) 0
Activation (None, 6, 29, 48) 0
Conv2D (None, 2, 25, 48) 57648
Activation (None, 2, 25, 48) 0
Flatten (None, 2400) 0
DropOut (None, 2400) 0
Dense (None, 64) 153664
Activation (None, 64) 0
DropOut (None, 64) 0
Dense (None, 6) 650
Activation (None, 6) 0
Total Param: 241,174
Trainable Param: 241, 174
non-Trainable Param: 0
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Table 33: FDC-2 Model Hyper parameters

Layer(Type) Output Shape Param #
Conv2D (None, 126, 126, 32) 320
Activation (None, 126, 126, 32) 0
MaxPooling2D (None, 31, 63, 32) 0
Conv2D (None, 29, 61, 64) 18496
Activation (None, 29, 61, 64) 0
MaxPooling2D (None, 7, 30, 64) 0
Flatten (None, 13440) 0
Dropout (None, 13440) 0
Dense (None, 64) 860224
Activation (None, 64) 0
Dropout (None, 64) 0
Dense (None, 6) 650
Activation (None, 6) 0
Total Parameters: 879,430
Trainable Parameters: 879,430
Non-Trainable Parameters: 0
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Table 34: FDC-3 Model Hyper-Parameters

Layer (Type) Output Shape Param #
Conv2D (None, 128, 128, 32) 320
BatchNormalization (None, 128, 128, 32) 128
Conv2D (None, 126, 126, 32) 9248
BatchNormalization (None, 126, 126, 32) 128
MaxPooling2D (None, 63, 63, 32) 0
Dropout (None, 63, 63, 32) 0
Conv2D (None, 63, 63, 32) 18496
BatchNormalization (None, 63, 63, 32) 256
Conv2D (None, 61, 61, 64) 36928
BatchNormalization (None, 61, 61, 64) 256
MaxPooling2D (None, 31, 31, 64) 0
Dropout (None, 31, 31, 64) 0
Conv2D (None, 31, 31, 64) 36928
BatchNormalization (None, 31, 31, 64) 256
Conv2D (None, 29, 29, 64) 36928
BatchNormalization (None, 29, 29, 64) 256
MaxPooling2D (None, 15, 15, 64) 0
Dropout (None, 15, 15, 64) 0
Conv2D (None, 15, 15, 64) 73856
BatchNormalization (None, 15, 15, 64) 512
Conv2D (None, 13, 13, 128) 147584
BatchNormalization (None, 13, 13, 128) 512
MaxPooling2D (None, 7, 7, 128) 0
Dropout (None, 7, 7, 128) 0
GlobalAveragePooling (None, 128) 0
Dense (None, 6) 1290
Activation (None, 6) 0
Total Parameters: 363,366
Trainable Parameters: 362,214
Non-Trainable Parameters: 1,152
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Table 35: FDC-FS Model Hyper-Parameters (1)

Layer (Type) Output Shape Param #
Input (None, 128, 128, 1) 0
Conv2D (None, 128, 128, 32) 320
BatchNormalization (None, 128, 128, 32) 128
Conv2D (None, 126, 126, 32) 9248
BatchNormalization (None, 126, 126, 32) 128
MaxPooling2D (None, 63, 63, 32) 0
DropOut (None, 63, 63, 32) 0
Conv2D (None, 63, 63, 64) 18496
BatchNormalization (None, 63, 63, 64) 256
Conv2D (None, 61, 61, 64) 36928
BatchNormalization (None, 61, 61, 64) 256
MaxPooling2D (None, 31, 31, 64) 0
DropOut (None, 31, 31, 64) 0
Conv2D (None, 124, 124, 24) 624
Conv2D (None, 31, 31, 64) 36928
MaxPooling2D (None, 31, 62, 24) 0
BatchNormalization (None, 31, 31, 64) 256
Activation (None, 31, 62, 24) 0
Conv2D (None, 126, 126, 32) 320
Conv2D (None, 29, 29, 64) 36928
Conv2D (None, 27, 58, 48) 28848
Activation (None, 126, 126, 32) 0
BatchNormalization (None, 29, 29, 64) 256
MaxPooling2D (None, 6, 29, 48) 0
MaxPooling2D (None, 31, 63, 32) 0
MaxPooling2D (None, 15, 15, 64) 0
Activation (None, 6, 29, 48) 0
Conv2D (None, 29, 61, 64) 18496
DropOut (None, 15, 15, 64) 0
Conv2D (None, 2, 25, 48) 57648
Activation (None, 29, 61, 64) 0
Conv2D (None, 15, 15, 128) 73856
Activation (None, 2, 25, 48) 0
MaxPooling2D (None, 7, 30, 64) 0
BatchNormalization (None, 15, 15, 128) 512
Flatten (None, 2400) 0
Flatten (None, 13440) 0
Conv2D (None, 13, 13, 128) 147584
DropOut (None, 2400) 0
DropOut (None, 13440) 0
BatchNormalization (None, 13, 13, 128) 512
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Table 36: FDC-FS Model Hyper-Parameters (2) (Continued)

Layer (Type) Output Shape Param #
Dense (None, 64) 153664
Dense None, 64) 860224
MaxPooling2D (None, 7,7, 128) 0
Activation (None, 64) 0
Activation (None, 64) 0
DropOut (None, 7, 7, 128) 0
DropOut None, 64) 0
DropOut None, 64) 0
GlobalAveragePoolinh2D (None, 128) 0
Concatenate (None, 256) 0
Dense (None, 6) 1542
Total Parameters: 1,483,958
Trainable Parameters: 1,482,806
Non-Trainable Parameters: 1,152

Table 37: Lung Sound Dataset: Original and Augmented Data

ID Name of Disease Ori. Data Aug. Data
1 Bronchiectasis 29 319
2 COPD 785 8635
3 Health 35 385
4 LRTI 2 22
5 Pneumonia 37 407
6 URTI 31 341

Total 919 10109

Table 38: Heart Sound Dataset: Original and Augmented Data

S.No. Category Ori. Data Aug. Data
1 Extra Systole 46 506
2 Normal 200 2200
3 Noisy Normal 120 1320
4 Murmur 66 726
5 Noisy Murmur 29 319
6 Unlabelled Test 195 2145

Total 656 7216
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5.5.3 Classification Results and Evaluations

Results on Original Lung Dataset: Based on the setup explained above, we have ob-

tained the accuracy performance for the four models (FDC-1, FDC-2, FDC-3, and FDC-

FS). FDC-FS model obtains the highest accuracy model in all three feature cases. Specif-

ically, the highest accuracy is achieved by Spectrogram 97%, while MFCC reported ac-

curacy of 91% and Chromagram reported accuracy of 95%. The learning and validation

graphs for learning and loss are shown in Figure. 28. The class-wise accuracy for all

models can be seen in Figure. 32 and Table 41.
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Table 39: Lung & Heart Condition Detection with Original Data (Testing Accuracy:
Weighted Average)

Lung Sound Classification Heart Sound Classification
Features FDC-1 FDC-2 FDC-3 FDC-FS FDC-1 FDC-2 FDC-3 FDC-FS

Spectrogram 91% 87% 84% 97% 85% 81% 73.5% 89%
MFCC 90% 93% 83% 91% 89% 91% 89% 93%

Chromagram 86% 83% 89% 95% 89% 89% 84% 92%

Table 40: Lung & Heart Condition Detection with Augmented Data (Testing Accuracy:
Weighted Average)

Lung Sound Classification Heart Sound Classification
Features FDC-1 FDC-2 FDC-3 FDC-FS FDC-1 FDC-2 FDC-3 FDC-FS

Spectrogram 99% 98.6% 98.3% 99.1% 93% 92% 95.5% 97%
MFCC 99.3% 98% 98.2% 99% 95% 93% 96% 96%

Chromagram 97% 97% 95% 98.4% 94% 93% 95% 97%
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Results on Augmented Lung Dataset: We have achieved very impressive accuracy from

the experiments with the augmented lung dataset that outperformed all state-of-the-art re-

search. The highest accuracy was conducted by the FDC-FS model, which is the fusion

of FDC-1, FDC-2, and FDC-FS. The weighted accuracy for the FDC-FS model for Spec-

trogram is 99.1%, the accuracy of 99% for MFCC, and 98.4% for Chromagram. Notably,

it has been improved approximately 2%, 8%, 3% in Spectrogram, MFCC, and Chroma-

gram, compared to the accuracy performance with the original data. The results for the

augmented lung dataset are shown in Table 40. We have also reported the class-wise

accuracy for the augmented dataset, which is visually demonstrated in Figure. 32. We ob-

tained the highest class-wise accuracy for the COPD category based on the Spectrogram

and MFCC features.

Results on Original Heart Dataset: Our experimental results are based on 50 epochs

and 64 batch sizes and the categorical cross-entropy for the data validation. The average

times taken for training the model were from 7 seconds to 1 minute for the FDC models.

The learning graphs of the heart dataset for the FDC-FS model are shown in Figure. 30.

Table 39 offers the accuracy of the heart original dataset. During the training and test-

ing, we observed that FDC-FS performed the best compared to all others; specifically, we

obtained the highest accuracy of 93% for MFCC. For the individual feature-model evalu-

ation, the highest accuracy of Spectrogram was 85% with FDC-1; for MFCC, it was 91%

with FDC-2. Chromagram was the accuracy of 89% with FDC-1 and FDC-2.

For the class-wise accuracy, the highest accuracy is reported by the FDC-FS model
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Figure 29: Accuracy for Lung/Heart Condition Detection (Original and Augmented
Datasets)
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as shown in Figure. 33 and Table 42. The heart data were unbalanced but showed con-

sistent data patterns and characteristics among categories. Thus, as the average accuracy

and weighted average accuracy were similar, we constantly reported the weighted accu-

racy strategy. As the heart data are similar to the musical dataset, MFCC and Chromagram

performed better than Spectrogram. On the other hand, Spectrogram performed very well

in FDC-FS for both the heart and lung datasets.

151



Fi
gu

re
30

:
H

ea
rt

C
on

di
tio

n
C

la
ss

ifi
ca

tio
n

(A
cc

ur
ac

y
vs

.
L

os
s)

:
Fu

si
on

N
et

w
or

k
M

od
el

(F
D

C
-F

S)
w

ith
Fe

at
ur

es
:

(a
)

Sp
ec

tr
og

ra
m

(b
)M

FC
C

(c
)C

hr
om

ag
ra

m

152



Ta
bl

e
42

:C
la

ss
W

is
e

A
cc

ur
ac

y
fo

rH
ea

rt
D

at
as

et

M
od

el
Fe

at
ur

e
C

la
ss

E
xt

ra
st

ol
e

M
ur

m
ur

N
oi

sy
M

ur
m

ur
N

oi
sy

N
or

m
al

N
or

m
al

U
nl

ab
el

ed
W

.A
V

G

FD
C

-1

Sp
ec

.
O

ri
.

69
%

89
%

50
%

97
%

85
%

79
%

85
%

A
ug

.
94

%
88

%
87

%
93

%
95

%
95

%
93

%

M
FC

C
O

ri
.

83
%

79
%

83
%

75
%

98
%

87
%

89
%

A
ug

.
99

%
93

%
96

%
96

%
98

%
90

%
95

%

C
hr

om
a

O
ri

.
10

0%
67

%
78

%
10

0%
97

%
92

%
89

%
A

ug
.

95
%

94
%

95
%

93
%

99
%

89
%

94
%

FD
C

-2

Sp
ec

.
O

ri
.

75
%

55
%

75
%

90
%

89
%

76
%

81
%

A
ug

.
93

%
91

%
89

%
94

%
93

%
91

%
92

%

M
FC

C
O

ri
.

75
%

69
%

67
%

92
%

10
0%

93
%

91
%

A
ug

.
93

%
91

%
77

%
96

%
96

%
90

%
93

%

C
hr

om
a

O
ri

.
88

%
71

%
86

%
78

%
93

%
92

%
89

%
A

ug
.

91
%

90
%

83
%

96
%

95
%

90
%

93
%

FD
C

-3

Sp
ec

.
O

ri
.

82
%

70
%

75
%

81
%

70
%

68
%

73
%

A
ug

.
97

%
96

%
10

0%
99

%
96

%
98

%
92

%

M
FC

C
O

ri
.

67
%

62
%

88
%

96
%

98
%

82
%

89
%

A
ug

.
95

%
96

%
10

0%
96

%
97

%
95

%
96

%

C
hr

om
a

O
ri

.
88

%
10

0%
75

%
66

%
84

%
89

%
84

%
A

ug
.

97
%

96
%

96
%

97
%

10
0%

96
%

95
%

FD
C

-F
S

Sp
ec

.
O

ri
.

94
%

78
%

10
0%

97
%

83
%

84
%

89
%

A
ug

.
99

%
87

%
96

%
95

%
96

%
94

%
97

%

M
FC

C
O

ri
.

67
%

82
%

10
0%

92
%

96
%

95
%

93
%

A
ug

.
97

%
94

%
96

%
97

%
98

%
92

%
96

%

C
hr

om
a

O
ri

.
67

%
10

0%
10

0%
88

%
92

%
98

%
92

%
A

ug
.

94
%

98
%

98
%

96
%

96
%

91
%

97
%

153



Results on Augmented Heart Dataset: For the augmented heart data experiments, we

observed that FDC-2 obtained the shortest training time of 42 seconds for MFCC, and

FDC-FS took the longest time of 4 minutes and 11 seconds for Chromagram. The FDC-

FS model obtained the highest accuracy of 97% with Spectrogram and Chromagram and

96% with MFCC. From the individual model evaluation, FDC-3 obtained the highest

accuracy of 96% with MFCC. It is because the FDC-3 model is bigger/deeper compared

to the other two models. The overall performance of the models is given in Table 40. The

class-wise accuracy performance is also shown in Figure. 33 and Table 42. Our results are

very competitive even with the state-of-the-art approaches, even with a small and reduced

number of measurements.
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Figure 31: Accuracy for Lung and Heart Condition Detection
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5.6 Comparison with State-of-the-Art Research

For the comparative evaluation of our frameworks, we have considered the state-

of-the-art research published in reputed journals and conferences between 2018 and 2021,

commonly used benchmark datasets from the ICBHI [24] and the heart challenge [106].

First, we have conducted a comparative evaluation of the proposed framework (FDC) with

different lung sound classification approaches [14], [37], [94], [95], [98], [96]. Second,

we have conducted a comparative evaluation of the proposed framework (FDC) with dif-

ferent heart sound classification approaches [109], [38], [102], [101], [99], [107], [100],

[108].

5.6.1 Lung Sound Classification

A comprehensive evaluation of the lung sound classification models has been con-

ducted regarding feature selection and representation, network architecture design, accu-

racy, and the number of trainable parameters on the lung and heart sound datasets. The

best state-of-the-art approach for lung classification that has obtained the highest accu-

racy of 98.20% is by [109]. However, they have mixed the ICHBI dataset with their own

recorded sounds from a local hospital, and another factor is that they are using shallow

learning models. [96] proposed methodology obtained 98.70% accuracy, their number of

trainable parameters was 3.8 M. To train their model, they needed more computational

power and time. Similarly, [37] used different features using the ResNet-50 model, which

is a massive model with over 23 M trainable parameters. It can be seen from Table 43 that

our model has shallow trainable parameters, i.e., 1.48 M, which is the lowest as compared
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to all state-of-the-art research. Thus, it requires very minimum resources (we mainly

used CoLab for training and testing) and low epochs of only 50 for training our mod-

els. The accuracy performance is also slightly better than other approaches. FDC model

also achieved the highest accuracy of approximately 99.1%. The overall comparison of

our model performance for the lung sound classification with state-of-the-art research is

shown in Table 43.

5.6.2 Heart Sound Classification

Similarly, we have conducted a comprehensive evaluation of the heart sound clas-

sification models. Based on the number of parameters for FDC-1, the total trainable

parameters are 0.24 M, and we have obtained an accuracy of 93%. In contrast, for FDC-

3, we received an accuracy of 96%, and the total parameters are 0.36 M. After applying

the fusion technique, the parameters increased to 1.48 M with an accuracy of 97%. How-

ever, our accuracy for the fused model is near to the state-of-the-art accuracy (approxi-

mately 98%). Still, some of the works have not reported the trainable parameters of their

proposed models [102]. Also, they used the dataset having additional samples equally

balanced. Therefore, it can be assumed that their trainable parameters may slightly be

higher due to their network architecture of paralleling recurrent convolutional neural net-

work (CNN), i.e., input shape, the number of layers, max-pooling, strides, the output

classification size, etc. However, our accuracy is comparable to Shuvo et al. [96], whose

accuracy is 97% with a model with 0.32 M trainable parameters. The overall comparison

of our model performance for the heart sound classification with state-of-the-art research
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is shown in Table 44.

5.6.3 Discussion

Our proposed framework demonstrated superior performance compared to the

state-of-the-art research both in lung and heart sound classification. We summarize the

primary reasons it is so well performed in lung or heart condition detection and why it

consistently achieves high performance. (i)Selection of compelling audio features to max-

imize the characteristics of lung or heart sounds. (ii) Application of data augmentation

techniques effectively to overcome the audio data issues such as the low quality and unbal-

anced datasets. (iii) Transformation of the selected audio features (Spectrogram, MFCC,

and Chromagram) to visual feature vectors to maximize the learning performance from

deep learning. (iv) Design three unique deep neural network models (FDC-1, FDC-2,

FDC-3) to discover new image patterns of audio features involved in a specific disease

in lung or heart domains. (v) The fusion model (FDC-FS) is based on the transfer learn-

ing from the three different models (FDC-1, FDC-2, FDC-3) from three unique features

(Spectrogram, MFCC, and Chromagram) in the lung or heart sound domains.

The limitations of the proposed framework are (i) The proposed framework per-

forms well in two domain lung and heart sound domains; however, there is a lack of gen-

eralization. Nevertheless, we will investigate well enough to offer scientific evidence to

explain why some models or specific features are better than others. (ii) We will develop

suitable pattern mining methods and practices for automatic network design according to

the given datasets. (iii) We will incorporate more effective transfer learning or subsequent
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knowledge distillation through the fusion networks that might be further optimized for

the excellent balance between conciseness (fusion) and detail (specific features).

5.7 Conclusion

we have developed the feature-based fusion network FDC-FS for the heart and

lung disease classification. We used the two publicly available sound datasets with dif-

ferent numbers of samples and class imbalance ratios for this study. In addition, we

performed our experimentation with the original dataset to compare our results with the

current state-of-the-art research. The experimental results confirmed the superiority of

FDC-FS that is a fusion network by combines the three unique models, i.e., FDC-1, FDC-

2, and FDC-3, built with the images of specific audio features of Spectrogram, MFCC,

and Chromagram. The accuracy reported for the lung dataset is 97% for Spectrogram,

91% for MFCC, and 95% for Chromagram. In contrast, for the heart data, the accuracy

reported is 89% for Spectrogram, 93% for MFCC, and 92% for Chromagram.

We have further improved the results by applying the data augmentation tech-

niques to the audio clips rather than images. We used three types of audio augmentation

techniques, i.e., noise, pitch shifting, and time stretching, carefully selecting the ranges

of values. As a result, the accuracy reported for the augmented lung dataset is 99.1%

for Spectrogram, 99% for MFCC, and 98.4% for Chromagram. For the heart dataset,

the reported accuracy is based on the accuracy of the dataset% augmentation is 97% for

Spectrogram, 96% for MFCC, and 97% for Chromagram. (iv) We will improve pre-

processing or data augmentation methods to help to overcome the data issues (noise and
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Figure 32: Class Wise Accuracy for Lung Condition Detection

162



Figure 33: Class Wise Accuracy for Heart Condition Detection
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data imbalance), which are common in medical research, resulting in poor performance

and sometimes bias in network design and parameter estimates.
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CHAPTER 6

NETWORK MODEL DISCUSSION

Our comparison is based on architecture, the network model, the number of pa-

rameters, data augmentation, and features. The comparison is made for the available

benchmark environmental and health datasets, i.e., UrbanSound8K, ESC-10 & ESC-50,

Heart sounds and Lung sounds. Our results are very competitive with the state-of-the-art

approaches discussed earlier, even with a small and reduced number of measurements.

6.1 Multimodal Deep Acoustic (MDA)

The performance with the audio and image data was influenced by data issues

such as noise or imbalance. However, we have considered applying well-known data aug-

mentation techniques. The MDA model performs better due to Max pooling’s larger size,

which is known for downsampling the features and selecting the next layer’s essential el-

ements. Secondly, better performance is due to striding, which is a concept that considers

data compression, i.e., the data block considered for (2 x 2) in the first layers and (4 x 2) in

the next layers is taken as an input. It moves 1 unit ahead and provides the output volume.

Hence, reducing the number of parameters from 4 and 8 units in the top two layers to 1

and 1 unit, respectively. The overall results for Multimodal Deep Acoustics are shown in

Table 45.
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6.2 Network Fusion Model (FDA-NET)

This model is a fusion of FDA-NET-1 and FDA-NET-2 that is concatenated before

the final dense layer, depending on the number of classes in the training setâthe last layer

of this model uses Softmax activation due to the multiple classification problem. The

network was trained with more extensive training parameters with FDA-NET-1 and FDA-

NET-2, and their loss and accuracy were computed as the training matrix. As per the

working of this network model, features were selected from FDA-NET-1 and FDA-NET-

2, and the network was trained with the features, hence, having better parameters, strides,

and output data.The overall results for FDA-NET model are shown in Table 46. Table 47

describes the average runtime for environmental sound classification.

6.3 Feature-Fusion Model (FDC-FS)

The FDC-FS model is a fusion model resulting from transfer learning from all

three models (FDC-1, FDC-2, FDC-3). Its architecture is composed of the softmax acti-

vation and dense layers consisting of the output units equal to the number of classes in the

dataset at the last layer. Therefore, FDC-FS is composed of 13 convolutional layers and

3 dense layers model, more specifically three convolutional layers from FDC-1, two con-

volutional layers from FDC-2, eight convolutional layers from FDC-3, one dense layer

from FDC-1, and one dense layer from FDC-2, and a final dense layer of an output unit.

The FDC-FS’s total trainable parameters for six classes are 1,482,806 (1.4M).The overall

results for FDC-FS model are shown in Table 48. Table 49 describes the average runtime

for lung and heart sound classification.
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Table 45: Overall Results for Multimodal Deep Acoustics

Lung Heart UrbanSound8k
Mode Ori. Aug Ori. Aug Ori. Aug
Audio 83% 96% 80% 93% 89% 95.80%
Image 85% 97.50% 82% 94% 92% 97%

Table 46: Overall Results for Network Fusion Model (FDA-NET)

Audio Classification Image Classification
Data Ori. Aug. Ori. Aug.
US-8K 96.19% 96.96% 97% 98.53%
ESC-10 91.25% 93.47% 96.67% 97.50%
ESC-50 87.25% 93.10% 92.75% 96.10%

Table 47: Average Runtime for Environmental Sound Classification

ESC-10 ESC-50 UrbanSound8k
Ori. Aug. Ori. Aug. Ori. Aug.

FDA-NET 1 2.1 2.9 2.5 3.01 2.99 3.21
FDA-NET 2 2.6 3.1 2.9 3.23 3.12 3.59

FDA-NET 3 2.9 3.35 3.25 3.59 3.55 3.98

Table 48: Overall Results for Feature-Fusion Model (FDC-FS)

Lung Sound Classification Heart Sound Classification
Features Ori. Aug. Ori. Aug.
Spectrogram 97% 99.10% 89% 97%
MFCC 91% 99% 93% 96%
Chromagram 95% 98.40% 92% 97%

Table 49: Average Runtime for Lung and Heart Disease Classification

Lung Heart
Ori. Aug. Ori. Aug.

FDC-1 1.41 1.78 1.32 1.56
FDC-2 1.79 2.45 1.85 2.26
FDC-3 1.65 2.15 1.66 2.01
FDC-FS 2.1 2.96 1.93 2.71
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this research, we propose novel neural network model for deep acoustics, mainly

in environment and health domain. The deep acoustics is based on classification of audio

and images. We divide our implementation of neural network objective into five main

objectives. (1) Data Normalization, (2) Data Augmentation and (3) Feature generation

(4) Construction of neural network models (5) Evaluation on bench mark datasets. As a

part of our research, we published several papers for classification of audio in a different

context during the PhD program [110, 111, 112, 113, 114, 115, 116, 117].

To achieve the objectives, our contributions can be summarized as follows:

7.1 Summary of Deep Acoustics Learning

We have designed an integrated network model with advanced normalization and

augmentation techniques for deep acoustic. We named the model as Deep Acoustics (DA)

model. The DA model is tested using the three benchmark datasets i.e., lung sounds,

heart sounds, and urbansound8k. Our model has shown significant performance interms

of accuracy and data insufficient and data imbalance issues for classification of different

types of sounds.
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7.2 Summary of Multimodality for Deep Acoustics Learning

In addition, for high-performance classification, we developed the Multimodal

classification system for deep acoustics (MDA), which combines advanced data normal-

ization and data augmentation approaches. The model has been put to the test in terms of

audio and image classification. The audio classification was shown to be a costly method

of classification, with the best accuracy for 100 epochs. Image classification, on the other

hand, produced the same results in half the time that audio did. In only 50-60 epochs, the

image classification achieved the greatest accuracy. To avoid model over-fitting, we em-

ployed Early-stopping. In health care, our proposed approach can be utilized to diagnose

lung and heart disorders using lung and heart sounds.

7.3 Summary of Network-based Fusion for Deep Acoustics Learning

Our third contribution we have worked on three different datasets using a deep

learning approach. We have proposed an enhanced Fusion technique on two individual

models, i.e., we have combined i.e., we have combined two networks to produce a third

network named FDA-NET-3. The model is based on the fusion of the other two convo-

lutional neural network models. Furthermore, we have considered an audio feature for

classification. We further generated spectrogram images for the above datasets in the

same format. The performance with the audio and image data was influenced by data

issues such as noise or imbalance. However, we have considered applying well-known

data augmentation techniques for improving our results. For augmentation of images, we

did not consider image augmentation. Instead, we generated spectrograms of augmented
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audio samples. The presented technique of the data augmentation and normalization pro-

vided excellent results. Our validation studies provide fundamental design strategies for

improving the classification performance handling the data issues. Our model is also

efficient interms of time performance and computational power.

7.4 Summary of Feature-based Fusion for Deep Acoustics Learning

Our main contribution for this objective is to design a feature-based fusion model

transferred from the three unique feature-based convolutional neural network models. Our

main goal is to show the effectiveness of our model to classify heart or lung diseases with

images transformed from three different sound features, i.e., Spectrogram, MFCC, and

Chromagram. Furthermore, our objective is to apply different types of data augmentation,

such as Noise, Pitch-Shift, and Time-Stretch, effectively to the audio dataset for optimal

deep learning training and testing performance.

7.5 Future Work

we can further enhance our results using image augmentation or by using actual

data that can be used by deep learning. Transfer learning and handcrafted audio features

can help merge different features, improving our results further. Moreover, fusing other

datasets would be a good research prospect for our research, i.e., combining audio-based

networks with a visual approach.

We will further apply the proposed models and techniques to more various datasets.

Moreover, we will take our research towards the multi-tasks classification by combining
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lung and heart models. Finally, we will extend the work for interpretable deep learn-

ing and explainable AI by providing evidence of unique patterns discovered for specific

conditions.

171



Bibliography

[1] Murat Aykanat et al. “Classification of lung sounds using convolutional neural

networks”. In: EURASIP Journal on Image and Video Processing 2017.1 (2017),

p. 65.

[2] Yandre MG Costa, Luiz S Oliveira, and Carlos N Silla Jr. “An evaluation of con-

volutional neural networks for music classification using spectrograms”. In: Ap-

plied soft computing 52 (2017), pp. 28–38.

[3] Jongpil Lee et al. “Samplecnn: End-to-end deep convolutional neural networks

using very small filters for music classification”. In: Applied Sciences 8.1 (2018),

p. 150.

[4] Justin Salamon and Juan Pablo Bello. “Deep convolutional neural networks and

data augmentation for environmental sound classification”. In: IEEE Signal Pro-

cessing Letters 24.3 (2017), pp. 279–283.

[5] Li Deng, Dong Yu, et al. “Deep learning: methods and applications”. In: Founda-

tions and Trends® in Signal Processing 7.3–4 (2014), pp. 197–387.

[6] Maryam M Najafabadi et al. “Deep learning applications and challenges in big

data analytics”. In: Journal of big data 2.1 (2015), pp. 1–21.
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grams”. In: 2019 International Conference on Systems, Signals and Image Pro-

cessing (IWSSIP). IEEE. 2019, pp. 181–186.

[77] Mohan Mishra et al. “Classification of normal and abnormal heart sounds for auto-

matic diagnosis”. In: 2017 40th International Conference on Telecommunications

and Signal Processing (TSP). IEEE. 2017, pp. 753–757.
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