

UNIVERSITY OF MISSOURI

COLLEGE OF AGRICULTURE

COLUMBIA, MISSOURI

AGRICULTURAL EXPERIMENT STATION

SPECIAL REPORT 4

FEBRUARY, 1961

James A. Roth and Earl M. Kroth

Soil fertility experiments in 1950 emphasized the importance of an adequate and balanced supply of plant nutrients in crop production. All of the experiments, except those of soybeans, indicated that yields may be profitably increased by the application of the proper fertilizer.

The 1960 growing season started out cold and wet which necessitated replanting. In some fields a third planting of cotton was made. Good planting seed became scarce and in some instances the best adapted cotton varieties were not available. In one soil fertility experiment the combination of Verticillium wilt and a susceptible variety limited the response to fertilizer treatment.

Soil fertility experiments were conducted at the Sikeston Experiment Field, Bragg City Experiment Field and with eight cooperators where the soils represented the major types of Southeast Missouri. Soil tests and mechanical analyses were made on the soil at each location.

Chemical soil tests are intended to reveal deficiencies in nutrient levels of soils which can be corrected by heavy plowdown applications of fertilizers. Soil tests are not designed to show the amount of starter fertilizers necessary. Starter fertilizers are usually justified, as the release of nutrients from the soil is slow during wet and cool seasons such as 1960.

Nitrogen appears to be the most needed fertilizer element for cotton. It is frequently difficult to determine the correct time of application and the proper amount to add. High rates of nitrogen without phosphate and potash may produce unfavorable results depending upon release of nutrients from the soil. The results indicate that approximately 50 pounds of nitrogen banded by the row was ample in the sandy soils. Whereas on the heavy soils, 50 to 100 pounds of nitrogen were efficient applications. The very few experiments having rates higher than 100 pounds of nitrogen per acre show that these rates are justified only on the heavier clay soils similar to that of the Bragg City Experiment Field.

The application of 50+50+50 banded by the cotton row has produced high yields on the sandy soil where moisture is not a limiting factor. Irrigation on the sandy soils has been a very profitable operation over the past 5 years where ample fertilizer has been applied. The practice of growing rye and vetch cover crops on these soils decreases the need for nitrogen and is very beneficial in supplying organic matter and preventing wind erosion. The heavier soils, "mixed" (loam) and "gumbo" (clay) usually contain medium to high amounts of plant foods according to soil test. Due to their cold and wet nature, and slow release of plant nutrients, in the spring a starter fertilizer supplying 50+50+50 aids the early growth of the cotton plant. An additional 40 to 50 pounds of nitrogen has produced optimum yields when sidedressed at the time of blooming.

The source of nitrogen influences the yields of cotton. Ammonium nitrate and ammonium sulphate have been consistent in their performances on the various soil types. The other sources have not been as reliable although in some instances have produced equally well as the above two mentioned.

The crop response to equivalent amounts of fertilizer is greatly influenced by the method in which it is applied. The application of 48+48+48 in a narrow band near the seed or under the bed on the heavier soils has been most effective. Banding near the seed on the sandy soils at time of planting has produced best results. Broadcasting and plowing down has not given as good results as the banding applications.

Trace element mixture applied at the rate of 50 pounds per acre has increased the yield of cotton at several locations. Further research is necessary to determine the individual soils where the application of trace elements may be necessary or will be a profitable practice for economical cotton production.

Cotton has a low calcium requirément, but limestone is often necessary for the most efficient use of other fertilizer nutrients. Lime needs are best determined by soil tests.

Irrigation has increased the effectiveness of fertilizers in extremely dry years and has improved yields of cotton on clay and clay loam soils. Supplemental water has been used profitably immediately after planting to obtain a stand where soil has become too-dry for the germination of seed. Additional research will be necessary to evaluate the place of irrigation as it is related to efficient use of plant nutrients and maturity of the cotton crop.

The requirements of corn, soybeans and small grains for fertilizer nutrients have been studied for several years on different soil types. On sandy soils nitrogen gives best results when applied at planting time or sidedressed later. Results have shown that nitrogen plowed down in the fall does not give as much response as when applied in the spring.

Yields of soybeans have not been greatly increased by use of fertilizer applications. A 25+25+25 starter fertilizer has given moderate returns. Further research on soybean nutrition is needed before large returns can be expected from chemical fertilizers. (Projects 267, 268, 357).

SUMMARY OF SOIL TESTS

Chemical soil tests determine the fertility level of a soil and indicate the quantities of plant nutrients that should be applied as fertilizers to produce optimum crop yields. According to the Missouri system these nutrients are to be applied as a basic or a plow down application. The chemical tests are not designed to determine the amount or kind of starter fertilizer to apply.

Soil organic matter or humus supplies most of the nitrogen and much of the phosphorus used by crops on unfertilized fields. It is an important source of supply of these nutrients on fertilized fields as well. The nutrients in humus are released most rapidly during warm moist weather and slowly when soils are cold and wet. For this reason starter fertilizers are most beneficial during cool, wet springs. Sandy soils contain small amounts of organic matter, hence have a small reserve supply of nitrogen and phosphorus and require larger amounts of fertilizer applications than do silt or clay soils for good crop yields. Maintaining an adequate amount of organic matter in the soil is one objective of good soil management. Cover crops and plowing down of crop residues are good management practices for maintaining organic matter in soils.

Chemical soil tests have shown that a majority of the soils of Southeast Missouri contain large quantities of phosphorus and potassium. However, experiments have shown that in the majority of cases additional amounts of these elements applied in soluble form and concentrated in an area close to the seed will hasten maturity and increase yields of cotton.

• The calcium and magnesium contents of a large percentage of soils in Southeast Missouri have been adequate for cotton production. Only where soil tests have shown a low value has there been a response from liming. It is known that a low calcium level may decrease the availability of other plant nutrients. Cotton grown on soils with a pH of 4.5 and 4.2 has responded to the application of limestone. The high level of magnesium in some of these soils has indicated a need for calcium limestone rather than dolomite (contains magnesium as well as calcium).

The relative quantities of sand, silt, and clay in a soil influence the ease with which it is tilled as well as its water and nutrient holding properties. Soil containing 30 per cent or more of clay is hard to till even though it contains a large amount of sand. Soils high in sand are droughty and the best yields of cotton have been obtained where they do not contain more than 80 to 85% of sand and silt combined. The composition of the soil on the Sikeston Experiment Field is excellent from the standpoint of crop production.

SUMMARY OF COTTON RESPONSE TO SOIL TREATMENTS

Clay and Clay Loam Soils

(All yields expressed as pounds of lint cotton per acre).

	Bragg	City	Frencl	n&Maddor	r Pfe:	ffer	Orto	on	Le	e	Rot	h Ro	oth-Su	ib s oil
	Irrig	ated	No Wa	ater	No Wa	ater	No Wa	ater	No Wa	ater	Irriga	ated 1	Irriga	ited
	lst.		lst.		lst.	Tot.	lst.	Tot.	lst.	Tot.	lst.	Tot.	lst.	Tot.
			Pick	Lint	Pick	Lint	Pick	Lint	Pick	Lint	Pick	Lint	Pick	Lint
Comparison of Starter	Fertil	izer												
No Fertilizer	175	279	447	801	505	602	426	426	212	630	376	431	420	485
25+25+25	260	300	738	1072	751	780	601	601	262	750	524	593	.502	548
50+50+50	464	509	409	775	814	878	684	684	194	855	610	704	585	661
100+100+100 (15-15-15	5) 285	383	379	899	670	745	584	584	155	828	733	900	739	826
100+50+50	319	435	584	1034	669	746	672	672	208	919	648	790	684	804

The application of starter fertilizers increased yields of cotton in 1960 on the clay soils in Southeast Missouri. In all but one of the above experiments 50+50+50 produced a profitable yield and at two locations where the cotton was irrigated higher rates of fertilizer were justified.

ŪΊ

Starter fertilizer applied close to the seed early in the season provided an ample supply of plant nutrients when the release of plant nutrients was slow from these heavy soils. Experimental results indicate that starter fertilizer should be banded under the bed before rebedding or placed close to but not in contact with the seed at planting time.

Rate of Nitrogen Applica	tion													
No Fertilizer	175 2	279	447	801	505	602	426	426	212	630	376	431	420	485
0+100+100	90 1	158	420	809	509	653	435	435	158	593	492	608	308	347
25+100+100		374	555	805	580	696	553	553	159	636	685	782	583	615
50+100+100	569 6	555	512	811	671	740	582	582	168	818	620	752	792	861
100+100+100	379 5	561	740	1113	684	774	639	639	135	825	571	689	882	972
50+0+0	272 3	342	469	95Ô	503	608	507	507	153	643	581	693	495	552
100+0+0	376 5	505	517	864	732	768	467	467	178	730	568	705	604	705

The higher rates of nitrogen in most cases were justified in 1960 providing ample phosphate and potash was included in the fertilizer application. Previous results indicate over a period of 3 years at Bell City and 4 years at Bragg City, that the 100 pound rate of nitrogen produced the highest yield, with a slight delay in maturity at Bell City.

Clay and Clay Loam	Bragg City	Frenc	h-Maddo	x Pfe	ffer	Orto	on	Le			oth		-Subsoil
Soils	Irrigated	No 1	Water	No W	ater	No Wa		NO W		the second se			<u>gate</u> d
	1st Tot	. 1st	Tot.	lst	Tot.		Tot.		Tot.		Tot.		Tot.
	Pick Lin	t Pick	Lint	Pick	Lint	<u>Pick</u>	Lint	Pick	Lint	<u>Pick</u>	<u>Lint</u>	<u>Pick</u>	<u>Lint</u>
Rate of Phosphate Ap	oplication												
No Fertilizer	175 279	447	801	505	602.	426	426	212	630	376	431	420	485
100+0+100	467 649	425	929	746	856	599	599	213	900	677	828	770	9 0 5
100+25+100	473 571	628	1089	788	897	613	613	189	871	863 3	1021	880	991
100+50+100	483 601	575	1101	652	806	598	598	201	920	875 3	1026		1003
100+100+100	379 561	740	1113	684	774	639	639	135	825	571	689	882	972

Phosphorus applied as a starter fertilizer at rates of 25 to 50 lbs. of P2O5 per acre increased yields of lint cotton in 1960. These increases were noted at both pickings. Higher rates of phosphorus in general were not profitable and in some instances depressed yields.

The soils of Southeast Missouri usually contain ample phosphate according to chemical soil tests but experiments over the last 5 years indicate that a starter fertilizer which includes phosphorus is necessary for optimum yields.

Rate of Potash Applica	tion													
No Fertilizer	175	279	447	8 0 1	505	602	426	426	212	630	376	431	420	485
100+100+0	398	488	601	862	769	829	602	602	138	707	493	580	399	449
100+100+25	572	688	510	756	580	670	516	516	182	866	493 460	528	464	546
100+100+50	592	687	558	906	929	984	547	547	168	843	610	696	751	834
100+100+100	379	561	740	1113	684	774	639	639	135	825	571	689	882	972

From 50 to 100 lbs. per acre of potash in the starter fertilizer gave profitable increases in yield in 1960 on the clay and clay loam soils of Southeast Missouri. According to soil tests, the need for basic treatments of potash were not indicated. Results obtained in past seasons agree with those obtained in 1960. An application of 50 to 100 lbs. of potash in the starter fertilizer should be used on the heavy clay soils for the most profitable yields of cotton.

Trace Mineral Applicati	on													
No Fertilizer	175	279	447	801	505	б02	426	426	212	630	376	431	420	485
100+100+100	379	561	740	1113	684	774	639	639	135	825	571	689	882	972
100+100+100+50 # Traces	412	568	710	1133	797	877	690	690	204	834	566	682	870	991
100+100+100 (15-15-15)	285	383	379	899	670	745	584	584	155	828	733	900	739	826
100+100+100+Traces	391	483	557	984	629	711	637	637	180	894	770	913	722	815
*(12-12-12-TM)						-								

*Trace elements added to 12-12-12 in process of granulation.

The application of trace elements separate from the standard starter fertilizer increased yields slightly on all but one soil in 1960. Combining the trace elements with the fertilizer at time of granulation and applying this as starter fertilizer did not give the same results as applying the trace elements in a separate operation. Past years' experiments have shown that applying trace elements to claypan soils has been beneficial though the extent of yield increase has frequently been small. Ģ,

Sandy and Sandy Loam Soils	Bur Irrig First Pick		Gardi <u>Irri</u> First <u>Pick</u>	ner gated Total <u>Lint</u>	Sikes Experimén <u>No W</u> First <u>Pick</u>	t Field
Comparison of Starter Fertilizer						
No fertilizer 25+25+25 50+50+50 100+100+100 (15-15-15) <u>100+50+50</u> Starter fertilizers gave profita The available nutrient level on the Sil that no significant increases was obtain	keston E					
Rate of Nitrogen Application						
No fertilizer 0+100+100 25+100+100 50+100+100 100+100+100 50+0+0 100+0+0 The application of 50 pounds of r on sandy soils. The response from the in 1960 there were profitable returns balanced with phosphorus and potash fr high resulting from previous good managed	100 pou from a l om a com	nd rate is .00 pound p plete fert	s usually per acre	unpred: applica	ictable. tion when	However, properly
Rate of Phosphate Application						
No fertilizer 100+0+100 100+25+100 100+50+100 The applications of phosphorus up the Sikeston E periment Field. The add Gardner cooperative plot. Highest yie phosphorus in the starter fertilizer. P ₂ O ₅ depressed yields on the Burge and	dition c lds on t Increas	of 50 pound the Burge p sing phosph	ls P ₂ O ₅ w plot were norus fro	ere suf: obtain m 50 to	ficient on ed with no 100 pound	the s of

phosphorus in the starter fertilizer. Increasing phosphorus from 50 to 100 pounds of P_2O_5 depressed yields on the Burge and Gardner fields. In general, starter fertilizer for use on sandy soils should contain 25 to 50 pounds P_2O_5 per acre for best results with cotton.

-7-

Sandy and Sandy Loam Soils		rge gated Total Lint	Gardı Irri; First Pick	ner gated Total Lint	Experime	eston ent Field <u>Mater</u> Total <u>Lint</u>
Rate of Potash Application						
No fertilizer 100+100+0 100+100+25 100+100+50 Yields of lint cotton on sandy s Yields were depressed by the 100 pound These results confirm those of previou applied in a starter fertilizer when c	applica s years	ations of K that about	x_{20} on the 50 pound	e Burge a ds of po	and Gardn tash shou	er soils.
Trace Mineral Application						
No fertilizer 100+100+100 100+100+100+50 lbs. Traces 100+100+100 (15-15-15) 100+100+100+TM(12-12-12-TM)* *Trace elements added to 12-12-12 in p	643 675 795 573 717 rocess (705 785 906 733 859 of granulat	514 359 414 343 337	820 682 853 733 617	583 948 724 507 678	797 1104 986 806 951

Cotton yields were increased in 1960 from the trace minerals, applied separately from the other fertilizer nubrients. Mixing the trace elements with the other fertilizer elements at the time of granulation did not give this response.

SOIL TEST CORRELATION

Bragg City									
Location:	One mil	e south	ı of Bra	agg City	Τ				
Soil Type:	Sharke	y Clay							Salt
Soil Test:	OM	Р	K	<u>Mg</u> 800	Ca	pН	H	CEC	pН
Topsoil:	2.1	232	500	<u>80</u> 0	6200	6.1	2.0	21.5	<u>рн</u> 5.9
Subsoil:	1.5	140	260	760	5700	5.4	3.5	21.2	6.3
Rex cotton	replant	ed May	28.	·		-			-

Soil Treatment	Lint 1st. Pick	2nđ.	% Lint lst. Pick	% Lint Turn Out	Bolls Per Pound	Staple	Height of Plant Inches	Lb s. Lint Per Acre	Increase Over Check
No Treatment 0-100-100 25-100-100 50-100-100 @100-100-100 @100-25-100 @100-25-100 @100-0-100-50 @100-100-50 @100-100-25 @100-100-25 @100-100-50 \$100-100-100-TM **100-100-100 50-0-0 @100-0-0	179869923372284091526 2534445534091526 388772284091526	104 886 1588 1588 1989 19446 1980 1997 1297 1297	637778678878888987878787878787887887878787	37.475937931 376.75937931 366.66.18 3777666.18 377777.25 377777.25	888766774323736804932 7777777767777777777777777777777777777	1 3/32 1 1/16 1 1/8 2 1 3/32 1 3/32 1 3/32 1 3/32 1 3/32 1 3/32 1 3/32 1 3/32 1 3/32 1 1/8 2 1 1/8 2 1 1/8 2 1 1/16 1 3/32 1 1/8 3/32 1 1/8 3/3 1 1/8 3/3 1 1/8 3/3 1 1/8 3/3 1 1/16 1 1/8 3/32 1 1/16 1 1/	18 19 1222422 22222 22222 22222 22222 22222 22222 2222	21365181197889053325 7575660748880038840 5660748880038840	- 121 9762 28922 29922 32908 329708 2004 1504 164 164 1636 220 2005 220 2005 2005 2005 2005 2005

@ 50 pounds nitrogen applied at planting and 50 pounds sidedressed in July.

* Trace minerals added to fertilizer in process of granulation.

** 15-15-15 at planting.

-9-

SOIL TEST CORRELATION

Cooperator Location:		-		Parma. N	lissouri				
Soil Type: Soil Test:		ey Clay P			Ca	σH	н	CEC	Salt
Topsoil: Subsoil:	2.0	208 50	<u>K</u> 420 440	<u>Mg</u> 670 640	6700 6100	<u>pH</u> 5.6 6.0	<u>H</u> 4.0 3.0	24.1 21.5	<u>рН</u> 5.б 6.0
Fox cotton			110	0.10	0100	0.0	5.0	21.)	0.0

Soil Treatment	Lint lst. Pick	Lint 2nd. <u>Pick</u>	% Lint lst. Pick	% Lint Turn Out	Bolls Per Pound	Staple	Height of Plant Inches	Lb s. Lint Per Acre	Increase Over Check
No Treatment 0-100-100 25-100-100 50-100-100 @100-100-100 @100-50-100 @100-25-100 @100-0-100-50 @100-100-50 @100-100-25 @100-100-25 @100-100-50 \$100-100-100-TM **100-100-100 50-50-50 *100-100-100 \$50-0-0 @100-0-0 \$50+100+100 +500# Fine Lime +50# Traces	59014728690941990325 667679578766270325	98 146 91 169 1590 1500 497 25568 7038 108	8789898898747336090356 98889899998989898	38357064671259387043 37888988878888888988 38889888788888888988 388898887888888889888 388898888888888	777776665562986294272 7777665562986294272	1/8 1/8 11/8 11/8 11/8 11/8 11/8 11/8 1	22222222222222222222222222222222222222	666777888889688777767677 88889688777767677 76753888896887777677677	51 98 1754 22954 2522 254 2276 2276 149 1651 151

@ 50 pounds nitrogen applied at planting and 50 pounds nitrogen sidedressed in July

* Trace minerals added to fertilizer in process of granulation.

** 15-15-15 at planting.

SOIL TEST CORRELATION

Cooperator	: Dona	ld Frend	ch and	W. D. N	laddox				
Location:	Five m	iles sou	ith of	Malden	on Highw	ay 25	and one	mile east	of
	Mt. Gi	lean Cer	netery	•					
Soil Type:	Shark	ey Clay	Loam						Salt
Soil Test:		P	K	<u>Mg</u> 520	Ca	<u>рн</u> 5.7	<u>н</u> 3.0	CEC	<u>рн</u> 5.2
Topsoil:	1.9	3 <u>0</u> 2	195	520	4600	5.7	3.0	16.9	5.2
Subsoil:	0.7	232	130	700	4300	6.0	2.5	16.3	5.5
Delfos cot	ton rep	lanted N	lay 14	•					

Soil Treatment	Lint lst. Pick	2nd.	% Lint lst. Pick	% Lint Turn Out	Bolls Per Pound		Height of Plant Inches	Lint Per	Increase Over Check
No Treatment 0-100-100 25-100-100 90-100-100 @100-100-100 @100-50-100 @100-25-100 @100-0-100 @100-100-50 @100-100-50 @100-100-0 50-50-50 25-25-25 100-100-100-TM **100-100-100 50-0-0 @100-0-0	447 42052005200 5510058580198479997 56455647557697	3322345453223344542884 58597336148616407017	5566665546803977290 5566665546675655446	15336268 318 3574 0644 333333333335555555555555555555555555	7376723128321238207	$ \begin{array}{c} 1 & 3/16\\ 1 & 3/16$	3797977746649701118 3333377746649701118	801 809 805 1133 1133 1108 99066 8772 1034 99066 7772 10344 98990 805 10344 98904	8 4 10 312 332 300 288 128 105 -45 61 -26 271 233 183 98 149 63
@ 50 lbs. nitrogen	applie	ed at	plant	ing and	1 50 1	lb s. side	dressed	in Ju	aly

* Trace minerals added to fertilizer in process of manufacture.

SOIL TEST CORRELATION

Cooperator: Location:			th eas t of	Ponte	amentile	Miggor	ากร้		
				-0100	150 V I I I I I		L		G . 7 /
Soil Type:	Sh ar k e y	ст а у	Loam						Salt
Soil Test:	OM	P	K	Mg	Ca	μH	H	CEC	τH
Topsoil:	3.2	276	470	<u>Mg</u> 860	7000+	<u>pH</u> 7.2	0.5	22.2	<u>pH</u> 6.9
Sub soil:	2.2	302	395	960	7000+	7.2	0.5	22,5	7.0
Fox #4 Cott	on plant	ed Ma	y 5					-	

Soil Treatment No Treatment	Lint 1st. Pick 426	% Lint Turn Out 36.5	Bolls Per Pound 77	<u>Staple</u> 1 1/16	Height of Plant Inches 24	Lbs. Lint Per <u>Acre</u> 426	Increase Over Check
0-100-100 25-100-100 50-100-100 100-100-100 100-50-100 100-50-100 100-25-100	4532 558290 558390 55999 5199 5199	36.5 37.5 37.5 37.5 37.3 37.9 37.9 37.9 37.9 37.9 37.9 37.9	73 75 73 69 77 76 77 79	1 1/16 1 3/32 1 3/32 1 3/32 1 3/32 1 3/32 1 1/16 1 1/16 1 3/32	29 28 29 32 28 30 30 30	43532908395566556556555655555555555555555555555	9 127 156 213 264 172 187 173
100-100-50 100-100-25 100-100-0 50-50-50 25-25-25 100-50-50 *100-100-100-TM **100-100-100 50-0-0	547 516 6802 6801 672 5807 596	36.5 36.8 36.8 37.7 36.7 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37	72 76 77 74 73 76 72 74 74	1 1/16 1 1/16 1 1/16 1 1/16 1 3/32 1 1/16 1 1/16	31 30 31 39 30 31 31 31	547 512 6802 6801 6738 500 500 500	121 90 176 258 175 246 211 158 81
100-0-0 50+50+50 (Liquid 8-8-8) 50+50+50 (Liquid 8-8-8) 50 lb.N Sidedressed	467 58 3 577	36.7 35.7 37.2	77 76 73	1 3/32 1 3/32 1 3/32	31 35 32	467 583 577	41 157 151
(Liquid 32-0-0)							

* Trace minerals added to fertilizer in process of granulation.

SOIL TEST CORRELATION

IRRIGATED

Cooperator: James Roth Location: Two miles north Soil Type: Sharkey Clay I Soil Test: OM P Topsoil: 1.5 262 Subsoil: 1.2 205	east o oam <u>K</u> 220 185	f Mald <u>Mg</u> 90 86	Ō	M iss ou <u>Ca</u> 3600 4300	ri <u>pH</u> 6.0		<u>H</u> 1.0 1.5	<u>CEC</u> 14.1 16.0	Sa lt pH 6.4 6.2
Soil Treatment	Lint 1st. Pick	Pick	lst. Piek		Bolls Per Pound	Staple		Per Acre	Increase Over Check
No Treatment 0-100-100 25-100-100 @100-100-100 @100-25-100 @100-25-100 @100-0-100-25 @100-100-50 @100-100-25 @100-100-25 @100-100-25 @100-100-25 @100-100-25 @100-100-100-7M **100-100-100-TM **100-100-100 50-50-50 *100-100-100 \$100-0-0 @100-0-0 @100-0-0 @100-0-0 @100-0-0 \$100-100-100 \$100-100-100 \$100-100-100 \$100-100-100 \$100-25-25-25 \$100-50-50 *100-100-100 \$100-25-25-25 \$100-50-50 \$100-100-100 \$25-25-25 \$100-50-50 \$100-100-100 \$25-25-25 \$100-50-50 \$100-100-100 \$25-25-25 \$100-50-50 \$100-100-100 \$100-100-100 \$25-25-25 \$100-50-50 \$25-25-25 \$100-50-50 \$25-25-25 \$100-100-100 \$25-25-25 \$100-50-50 \$25-25-25 \$100-50-50 \$25-25-25 \$100-100-100 \$25-25-25 \$100-100-100 \$25-25-25 \$100-50-50 \$25-25-25 \$100-100-100 \$25-25-25 \$100-50-50 \$25-25-25 \$100-50-50 \$25-25-25 \$100-100-100 \$25-25-25 \$100-50-50 \$25-25-25 \$25-25-25 \$100-50-50 \$25-25-25 \$25-25	34665370030480318825 9124765370030480318825 1030480318825 1030480318825 10304803188825	556 972 1197 1151 1551 1551 1551 1550 149 1437 1060 139 139	87182335528757824141660 2 a	6922781642419001084292 0 6907768778779789777768 66001084292 0 6001084292 0 6001000000000000000000000000000000000	87766646794974674195547 5	1 3/32 33/32 1 3/32 1 3/32 1 3/32 1 3/32 1 3/32 1 3/32 1 3/32 1 3/32 1 3/32 1 1/16 1 1/16 1 1/16 1 1/16 1 3/32 1 3/32 1 3/32 1 3/32	216588968977777479875689 2222222237773479875689 30	467758826186880430035329 1022925757999677667758 1022928680430035329 75757999677667758	- 7711815075793292924218 1216586673248 3207579329292924218 346673248 3207579329292924218 3207579329292924218 3207579329292924218 3207579329292924218 3207579329292924218 3207579329292924218 3207579329292924218 3207579329292924218 3207579329292924218 3207579329292924218 320757932929292924218 320757932929292924218 320757932929292924218 3207579329292929292924218 320757932929292929292929292929292929292929292
18+72+72 500# Fine Lime 50#N (Sidedress-Amo Nit)	600	119	83	36.6	72	1 3/32	25	719	288

@ 50 lbs. nitrogen applied at planting and 50 lbs. sidedressed in July

* Trace minerals added to fertilizer in process of manufacture.

SOIL TEST CORRELATION ON SUBSOIL

IRRIGATED

<u>рн</u> 6.6 6.4

H 1.5 1.5

<u>CEC</u> 15.9 16.1

Salt

рH 6.3 6.2

Cooperator	James	Roth				
Location:	Two mile	s nor	theast	of	Malden,	Missouri
Soil Type:	Sharkey	Clay	Loam			
Soil Test:	OM	P	K		Mg	Ca
Topsoil:	1.1	264	320)	<u>Mg</u> 960	4000
_	0.7	74	175)	960	4050

<u>Soil Treatment</u> No Treatment 0 100-100 25-100-100 ©100-100-100 @100-100-100 @100-25-100 @100-25-100 @100-25-100 @100-100-50 @100-100-50 @100-100-25 @100-100-25 @100-100-25 @100-100-0 50-50-50 25-25-25 100-50-50 *100-100-100-TM **100-100-100 50-0-0 @100-0-0 100#N (Sidedress-28% Liq) 18+72+72 (Starter) 18+72+72 (Starter)	L1812083220700149524295416	2nd.k 2nd.k 65 92 90 12 13 88 57 40 37 71 93 50 13 53 10 10 10 10 10 10 10 10 10 10	L1P L1P L1P L1P L1P L1P L1P L1P L1P L1P	Turn Out 36.92278 390.2278 397.388 377.38 377.397.38 397.37 397.38 397.37 397.38 397.37 397.38 397.37 397.38 397.37 397.38 397.37 397.38 397.37 397.38 397.37 397.38 397.37 397.38 397.37 397.38 397.37 397.38 397.37 397.38 397.37 397.38 397.37 397.38 397.37 397.38 397.37 397.37 397.38 397.37 397.37 397.38 397.37 377.37 377.37 377.37 377.37 377.37 377.37 377.37 377.37 377.37 377.37 377.37 377.37	Bolls Peound 80 776664639497463419554	<u>Staple</u> 1 3/32 1 3/32 1 3/36 1 3/36 1 3/32 1 3/36 1 3/32 1 3/36 1 3/36 1 3/32 1 1/36 1 3/32 1 1/36 1 3/36 1 1/166 1 1 1/166 1 3/32 1 1 1 1/166 1 1 1 1/166 1 1 1/166 1 1 1 1 1/166 1 1 1 1 1/166 1 1 1 1 1/166 1 1 1 1 1 1/166 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Height of Plant 23 20 22 29 29 29 29 29 29 29 29 29 29 29 29	Lir e A48475121315469184562509 99034491845625079 99854658885764	Increa & Over Check - 138 1306 3767 5029166 3190 3767 5029166 3190 33417 22856
50#N (Sidedress-Amo Nit) 18+72+72 (Starter)	449	70	87	36.2	67	1 1/8	23	51 9	34
50#N (Sidedress-28% Liq) 18+72+72	548	79	87	36.0	65	1 3/32	23	627	142
500# Fine Lime 50#N (Sidedress-Amo Nit)	497	65	88	36.6	72	1 3/32	25	562	77

@ 50 lbs. nitrogen applied at planting and 50 lbs. sidedressed in July

* Trace minerals added to fertilizer in process of manufacture.

SOIL TEST CORRELATION

Cooperator:									
Location:	One mil	le south	of	Qulin,	Missouri				
Soil Type:									Salt
Soil Test:	OM	P	Κ	Mg	Ca	<u>pH</u>	H	CEC	τH
Topsoil:	1.8	154	2 <u>3</u> 0	<u>Mg</u> 820	<u> </u>	6.0	<u>н</u> 2.5	16.2	<u>рН</u> 5.5
Subsoil:	1.0	50	230		3700	5.0	5.5	18.6	4.5
DPL # 15 Cc		lanted Ma	ay		•	-			-

Soil Treatment	Lint 1st. <u>Pick</u>	Lint 2nd. Pick	% Lint lst. Pick	% Lint Turn Out	Bolls Per Pound	Staple	Height of Plant Inches	Lb s. Lint Per Acre	Increase Over Check
No Treatment 0-100-100 25-100-100 50-100-100 100-100-100-TM 100-50-100 100-25-100 100-100-50 100-100-50 100-100-50 25-25-25 100-50-50 *100-100-100-TM **100-100-100 50-0-0 100-0-0	212 158 1568 1304 28 208 208 208 208 208 208 208 208 208	43770009275491814302	3222122240103530944	0 2 3 4 0 5 8 1 3 4 8 1 7 2 0 3 3 9 8 9 8 9 8 8 8 8 8 8 9 9 8 9 8 9 8	777699202100389103-3 7777777766777-3	1/8 3/38 1/8 1/8 1/8 1/8 1/8 2 2 1/8 2 2 1/8 2 2 2 1/8 2 2 2 2 1/8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4237910088009409727 3333910088009409727	65688540103675094830 988787988675094830	- -37 188 1954 2941 2136 7250 247 2236 7250 268 168 100
* Trace minerals	added t	o fert	;ilize	r in p	rocess	of manuf	acture.	•	

* Trace minerals added to fertilizer in process of manufacture.

SOIL TEST CORRELATION

Cooperators									
Location:	Three	miles s	outh of	Malden,	Missor	ıri			
Soil Type:	Dexte	r Sandy	Loam						Salt
Soil Test:	OM	Р	K	Mg	Ca	pН	H	CEC	Ηq
Topsoil:	0.9	238	220	<u>Mg</u> 360	<u>Ca</u> 700	<u>pH</u> 6.5	<u>H</u> 2.0	5.7	<u>рн</u> 5.8
Subsoil:	0.7	125	205	340	300	5.7	2.5	4.9	5.0
Rex cotton	replan	ted May							-

Soil Treatment	Lint lst. <u>Pick</u>	Lint 2nd. <u>Pick</u>	% Lint lst. <u>Pick</u>	% Lint Turn Out	Bells Per Pound	Staple	Hei ht of Plant Inches	Lbs. Lint Per <u>Acre</u>	Increase Over <u>Check</u>
No Treatment 0-100-100 25-100-100 50-100-100 @100-100-100 @100-25-100 @100-25-100 @100-100-50 @100-100-50 @100-100-25 @100-100-25 @100-100-0 50-50-50 *100-100-100-TM **100-100-100 50-0-0 @100-0-0	6431 56614 767948 5667 7667662 76677 6677 5888 888	62195017353579402058	99988880120064864863	1493341453406786716 8877675555666555667	62325544360255422 6886666666667766777	1 3/32 1 1/8 1 1/8 1 1/8 1 1/8 1 1/8 1 1/8 2 1/3 2 2 2 6 2 1 1/8 2 1 1/8 2 2 1 1/8 2 2 2 6 2 1 1/8 2 2 2 2 6 2 1 1/8 2 2 2 1 1/8 2 2 2 2 1 1/8 2 2 2 1 1/8 2 2 2 2 1 1/8 2 2 2 1 1/8 2 2 2 1 1/8 2 2 2 1 1/8 2 2 2 1 1/8 2 2 1 1/8 2 2 2 1 1/8 2 2 2 1 1/8 2 2 1 1/8 2 2 1 1/8 2 2 1 1/8 2 2 2 1 1/8 2 2 2 1 1/8 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 2	2822220044466102148974 32233364466102148974	76787978889877478879956910113176935691011317693569101131769356	-735 1080146 2946566686 1368686 1354801 15801 15801 2371

@ 50 lbs. nitrogen applied at planting and 50 lbs. sidedressed in July

* Trace minerals added to fertilizer in process of manufacture.

SOIL TEST CORRELATION

Cooperator: Char Location: Matthew	les Gar vs. Mis							
Soil Type: Dexter	r Śandy	Loam		-				Salt
Soil Test: OM	P	K	Mg	Ca	pH	H	CEC	pН
Topscil: 1.3	195	320	<u>Mg</u> 280	<u>Ca</u> 1 <u>35</u> 0	6.4	2.0	7.0	<u>рн</u> 5.6
Subsoil: 0.9	103	150	230	1000	б.4	2.0	5.7	5.6
Fox #4 cotton repl	lanted	May 23						

Soil Treatment	Lint lst. Pick		% Lint lst. Pick	% Lint Turn Out	Bolls Per Pound	Staple	Height of Plant Inches	Lb s. Lint Per Acre	Increase Over Check
No Treatment 0-100-100 25-100-100 50-100-100 100-100-100 100-25-100 100-25-100 100-0-100 100-100-50 100-100-50 100-100-50 25-25-25 100-100-0 50-50-50 *100-100-100-TM **100-100-100 50-0-0 100-0-0		3058 3058 3058 3058 3058 3058 3058 3058	66555444455455455455555555555555555555	34.20110045423333333333333333333333333333333333	76666666666666666666666666666666666666	1 1/8 1 1/8 1 1/8 1 1/8 1 1/8 1 1/8 2 1 1/8 1 1/8 2 1 1 5/78 2 2 1 1 5/78 2 2 1 1 5/78 2 1 1 5/78 2 2 1 1 5/78 2 1 1 5/78 2 1 5/78 2 1 1 5/78 2 1 5/78 2 1 5/78 2 1 5	42758973322527550931	8772868592064499974778868888898898899888988988988988988988988	$ \begin{array}{r} -53\\ -78\\ 36\\ -138\\ 33\\ 72\\ 0\\ 6\\ 84\\ 4\\ 9\\ 29\\ 97\\ 4\\ -203\\ -87\\ 8\\ 173 \end{array} $

* Trace minerals added to fertilizer in process of granulation.

SOIL TEST CORRELATION

Cooperator	: Sikes	ston Exp	perimen	t Field					
Location:	One mil	le sout	h of Si	keston,	Missouri				
Soil Type:	Dexter	· Sandy	Loam						Salt
Soil Test:		P	K	<u>Mg</u> 190	Ca	pН	H	CEC	рH
Topsoil:	1.6	236	570	190	<u>Ca</u> 1600	<u>рн</u> 6.3	<u>н</u> 3.0	8.4	<u>рн</u> 5.6
Subsoil:	1.0	142	300	280	1400	5.6	3.0	8.1	5.2
Delfos Cott	ton plar	nted Ap	ril 26						

Soil Treatment	Lint lst. <u>Pick</u>	Lint 2nd. Pick	% Lint lst. Pick	% Lint Turn Out	Boll s Per Pound	Staple	Height of Plant Inches	Lbs. Lint Per <u>Acre</u>	Increase Over Check
No Treatment 0-100-100 25-100-100 9100-100-100 @100-100-100-TM @100-50-100 @100-25-100 @100-100-50 @100-100-50 @100-100-50 \$100-100-0 \$25-25-25 100-50-50 *100-100-100-TM **100-100-100 50-0-0 @100-0-0 @ 50 lbg pitporen	567991849669677997887768318770387787768318773877887788773877387738773877387738	2143 1496 1562 1562 1685 1882 1827 203984 1827 203984 1827 203984 1827 203984 1827 203984 1827 203984	778867888788888877676665	66000094711800991994 55666645455555445444 556666454555554454444	66555555655687087891 677098687087891 677098687087891	1 5/32 7/32 1 7/32 1 7/32 1 7/32 1 7/32 1 3/16 1 7/32 1 1 5/32 1 1 5/32 1 1 5/32 1 1 5/32 1 1 5/32 1 1 5/32 1 1 1 1 1 1 5/32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	57779917454536675590 33779917454536675590 3475590	76200460915494431612 19099099775850612 199977798866	- 995 14537 29537 29537 20823 20824 208444 208444 20844 20844 20844 20844 20844 20844 20844 20844 20844 2084

@ 50 lbs. nitrogen applied at planting and 50 lbs. sidedressed in July

* Trace minerals added to fertilizer in process of manufacture.

SOURCE OF NITROGEN

Topsoil: 1.6 2	south andy <u>P</u> 36 42	n of S Loam <u>K</u> 570 300	ikesto <u>Mg</u> 190 280		ss ouri <u>Ca</u> 600 400	<u>рн</u> 5.3 5.6	<u>н</u> 3.0 3.0	CEC 8.4 8.1	Salt pH 5.6 5.2
l	int st. <u>ick</u>		% Lint lst. Pick	% Lint Turn Out	Bolls Per Pound	Stapl	Height of Plant <u>e Inche</u> s	Lint Per	Increase Over <u>Check</u>
No Treatment 5	83	214	73	35.6	61	1 5/3	2 35	797	-
0+100+100 6	43	183	78	35.6	61	1 7/3	2 37	826	29
100+100+100 (Anhydrous) 7	78	217	78	35.0	56	1 5/3	2 40	995	198
100+100+100 (Urea) 8	826	242	77	35.0	58	1 3/1	6 39	1068	271
	48	156	86	36.0	56	1 3/1	6 39	1104	307
100+100+100 (Sodium Nitrate) 7	0 4	209	77	34.3	56	1 <u>3</u> /1	6 40	913	116
100+100+100 (Amo Sulphate) 8	311	228	78	35.8	56	1 5/3	2 40	1039	242
Cooperator: Joe Bu Location: Three mi			of Mol	_					
Soil Type: Soil Test: <u>OM</u> Topsoil: 0.9 2	P 38 25	<u>K</u> 220 205	Mg 360 340	$\frac{c}{7}$	00	<u>pH</u> 6.5 5.7	<u>н</u> 2.0 2.5	<u>CEC</u> 5.7 4.9	Salt <u>pH</u> 5.8 5.0
Soil Type: Soil Test: <u>OM</u> Topsoil: 0.9 2 Subsoil; 0.7 1	P 38 25	220	<u>Mg</u> 360	2) 7 2) 3 % Lint 1st.	00	6.5 5.7 Bolls Per	2.0	5.7 4.9 Lbs. Lint Per	pH 5.8 5.0
Soil Type: Soil Test: <u>OM</u> Topsoil: 0.9 2 Subsoil; 0.7 1 Rex cotton planted	P 38 25	K 220 205 Lint 1st.	<u>Mg</u> 360 340 Lint 2nd.	2) 7 2) 3 % Lint 1st.	00 00 % Lint Turn	6.5 5.7 Bolls Per	2.0 2.5	5.7 4.9 Lbs. Lint Per	pH 5.8 5.0 Increase Over
Soil Type: Soil Test: <u>OM</u> Topsoil: 0.9 2 Subsoil; 0.7 1 Rex cotton planted <u>*Soil Treatment</u>	P 38 25	K 220 205 Lint lst. Pick	Mg 360 340 Lint 2nd. Pick	% Lint lst. Pick	% Lint Turn Out	6.5 5.7 Bolls Per Pound	2.0 2.5 <u>Staple</u>	5.7 4.9 Lbs. Lint Per <u>Acre</u>	pH 5.8 5.0 Increase Over
Soil Type: Soil Test: <u>OM</u> Topsoil: 0.9 2 Subsoil; 0.7 1 Rex cotton planted <u>*Soil Treatment</u> No Treatment	P 38 25	Lint 1st. Pick 643	<u>Mg</u> 360 340 Lint 2nd. <u>Pick</u> 62	C 7 3 Lint 1st. Pick 91	% Lint Turn Out 36.1	6.5 5.7 Bolls Per Pound 66	2.0 2.5 <u>Staple</u> 1 3/32	5.7 4.9 Lbs. Lint Per Acre 705	pH 5.8 5.0 Increase Over Check
Soil Type: Soil Test: <u>OM</u> Topsoil: <u>0.9</u> 2 Subsoil; <u>0.7</u> 1 Rex cotton planted <u>*Soil Treatment</u> No Treatment <u>0+100+100</u> 100# N (Anhydrous	P 38 25	K 220 205 Lint 1st. Pick 643 581	<u>Mg</u> 360 340 Lint 2nd. <u>Pick</u> 62 51	20 7 20 3 % Lint 1st. Pick 91 92	00 00 Lint Turn Out 36.1 38.9	Bolls Per Pound 66 57	2.0 2.5 <u>Staple</u> 1 3/32 1 1/8	5.7 4.9 Lbs. Lint Per Acre 705 632	pH 5.8 5.0 Increase Over Check - -73
Soil Type: Soil Test: <u>OM</u> Topsoil: 0.9 2 Subsoil; 0.7 1 Rex cotton planted <u>*Soil Treatment</u> No Treatment 0+100+100 100# N (Anhydrous Ammonia)	P 38 25	K 220 205 Lint 1st. Pick 643 581 616	Mg 340 240 Lint 2nd. Pick 62 51 238	20 7 3 % Lint 1st. Pick 91 92 72	00 00 Lint Turn Out 36.1 38.9 38.9	6.5 5.7 Bolls Per Pound 66 57 57	2.0 2.5 <u>Staple</u> 1 3/32 1 1/8 1 1/16 1 1/16 1 1/16 1 1/16	5.7 4.9 Lbs. Lint Per Acre 705 632 854	<u>pH</u> 5.8 5.0 Increase Over <u>Check</u> - -73 149 71 95
Soil Type: Soil Test: <u>OM</u> Topsoil: <u>0.9</u> 2 Subsoil; <u>0.7</u> 1 Rex cotton planted <u>*Soil Treatment</u> No Treatment 0+100+100 100# N (Anhydrous Ammonia) 100#N (Urea) 100#N (Ammonium	P 38 25 May	K 220 205 Lint 1st. Pick 643 581 616 555	Mg 360 340 Lint 2nd. Pick 62 51 238 221	2) 7 7 Lint 1st. Pick 91 92 72 72	00 00 Lint Turn <u>Out</u> 36.1 38.9 38.9 38.9 38.3	6.5 5.7 Bolls Per Pound 66 57 57 61	2.0 2.5 <u>Staple</u> 1 3/32 1 1/8 1 1/16 1 1/16	5.7 4.9 Lbs. Lint Per Acre 705 632 854 776	pH 5.8 5.0 Increase Over Check - -73 149 71

* All plots 18+72+72 starter banded at planting

SOIL FERTILITY EXPERIMENT - COTTON - 1960 SOURCE OF NITROGEN

Bragg City Experin Location: One mil Soil Test: OM Topsoil: 1.9 Subsoil: 1.5			- <u>M</u> e 76		Ca 6200 6200	<u>рН</u> 6.3 5.8	<u>н</u> 3.0 2.5	CEC 22.2 21.6	
Soil Treatment	Lint lst. <u>Pick</u>	Lint 2nd. <u>Pick</u>	% Lint lst. Pick	% Lint Turn Out	Bolls Per Pound	Staple	Height of Plant Inches	Lbs. Lint Per <u>Acre</u>	Increase Over Check
No Treatment	96	52	65	38.7	91	1 3/32	15	148	
0+100+100	111	57	66	36,7	79	1 3/32	19	168	20
100+100+100 (a nhydrou s amm)	111	91	56	37.3	72	1 1/16	21	202	54
100+100+100 (urea)	264	108	71	34.0	75	1 1/8	22	372	224
100+100+100									
(amm. nitrate)	361	99	78	37.8	73	1 1/8	21	460	312
100+100+100 (sodium nitrate)	238	157	60	38.3	76	1 3/32	23	395	247
100+100+100 (amm. sulphate)	357	78	82	37.2	75	1 3/32	22	435	287

Ammonium nitrate continues to be the most reliable source of nitrogen in the production of cotton. Ammonium sulfate has given good results on most soil types. Urea has a tendency to delay the maturity as compared to the other sources but has produced satisfactorily on the heavier soils. Anhydrous ammonia is a good source, providing the application is made so that the ammonia is retained by the soil. Poor soil conditions that prevent efficient retention of ammonia have probably been responsible for some of the less satisfactory results have been obtained.

SOIL FERTILITY EXPERIMENT - COTTON - 1960 TRACE ELEMENTS

Bragg City				a					
Location:	One mile	south	of Bragg	City					
Soil Type:	Sharkey	Clay							Salt
Soil Test:	OM	P	K	<u>Mg</u> 800	Ca	$\mathbf{p}\mathbf{H}$	H	CEC	<u>p</u> Ħ 5.7
Topsoil:	2.1	232	400		6200	<u>рн</u> 5.9	3.0	22.3	5.7
Subsoil:	1.7	144	280	760	5000	5.8	2.5	21.0	5.7
Rex cotton	replanted	i May 1	.7.						

*Soil Treatment	Lint 1 s t. <u>Pick</u>	Lint 2nd. Pick	lst.	% Lint Turn Out	Bolls Per Pound	Staple	Height of Plant Inches	Lb s. Lint Per Acre	Over
No Traces	463	142	77	36.0	67	1 1/16	24	605	
150# Traces (less iron)	481	128	79	37.8	67	1 3/32	22	609	4
150# Traces (less copper)	456	121	79	37.1	66	1 3/32	23	577	-28
150# Trace s (less zinc)	444	77	85	36.9	67	1 3/32	23	521	-84
150# Traces (less manganese)	448	159	74	37.3	64	1 1/16	24	б07	2
150# Traces (less boron)	434	154	74	36.8	64	1 3/32	26	588	-18
150# Traces (less magnesium)	457	125	79	37.5	65	1 3/32	24	582	-23
150# Traces (complete mix)	424	168	72	37.5	63	1 3/32	25	592	-13

* 100+50+50 applied to all plots.

SOIL FERTILITY EXPERIMENT - COTTON - 1960 TRACE ELEMENTS

280

Salt

pН

5.6

5.2

CEC

8.4

8.1

5.6

3.0

1400

Sikeston Experiment Field Location: One mile south of Sikeston, Missouri Soil Type: Dexter Sandy Loam Soil Test: OM Ρ Κ Mg Ca pН Η 570 1.6 236 190 1600 6.3 3.0 Topsoil:

300

142

1.0

Subsoil:

Soil Treatment	Lint 1st. <u>Pick</u>	Lint 2nd. Pick	lst.	% Lint Turn Out	Bolls Per Pound	Staple	Height of Plant Inches	Lint Per	Inc reas e Over Check
No Treatment	58 3	214	73	35.6	61	1 5/32	35	797	
No Traces	587	187	76	35.2	60	1 3/16	32	774	-23
150# Traces (less iron)631	256	71	35.4	58	1 3/16	43	887	90
150# Traces (less copper)	744	204	79	35.4	57	1 3/16	34	948	151
150# Traces (less Zinc)	699	242	74	35.8	57	1 3/16	40	941	144
150# Traces (less Mn)	817	207	80	35.6	60	1 5/32	40	1024	227
150# Trace s (less Boron)	757	219	78	35.3	59	1 3/16	45	9 76	179
150# Traces (less Mg)	796	151	84	34.4	56	1 3/16	43	947	150
150# Traces (complete mixture) 500# Fine Lime	761 768	200 224	79 77	35.0 35.8	59 57	1 3/16 1 5/32	40 37	961 992	164 195
	,00		1 1	J. C				<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

* 50+50+50 starter added to all plots at time of planting except no treat+ ment plot.

The two preceding experiments were established to test the need for individual trace elements in cotton production. This was a survey type of study intended to serve as a guide for more detailed research. The data from Bragg City show no consistent response to any of these elements. The plots at Sikeston show increases from trace elements other than manganese. Results from other experiments have been so variable that application of trace elements is not indicated, as a regular practice. It appears desirable for tests to be conducted by individual planters on their own land.

COMPARISON OF DRY AND LIQUID FERTILIZERS

Cooperator									
Location:	Three m	iles so	outh of	Malden,	Missou	ıri			
Soil Type:	Dexter	sandy	loam						Salt
Soil Test:	OM	Р	K	Mg	Ca	pH	H	$\frac{CEC}{5.7}$	pĦ
Topsoil:	0.9	238	220	<u>Mg</u> 360	<u>Ca</u> 700	<u>pH</u> 6.5	<u>H</u> 2.0	5.7	<u>рН</u> 5.8
Subsoil:	0.7	125	205	340	300	5.7	2.5	4.9	5.0
Rex cotton	planted	May							

Soil Treatment	Lint lst. Pick	Lint 2nd. <u>Pick</u>	lst.	% Lint Turn Out	Bolls Per Pound	Staple	Height of Plant Inches	Lint Per	Increase Over Check
No Treatment	643	62	91	36.1	66	1 3/32	32	705	-
50+50+50 (Dry)	622	119	84	36.6	70	1 3/32	33	741	36
50+50+50 (Liquid)	707	185	79	37.8	75	1 3/32	34	892	187
100+50+50 (Dry)	716	120	86	35.8	65	1 1/8	34	836	131
100+50+50 (Liquid)	765	154	83	36.5	71	1 3/32	34	919	214

Comparison of	Ammonium	Nitr	ate ar	nd Liqui	ld Nit	crogen Sid	le Dre	ssed	
*50#N-(32% Liquid)	б14	132	82	33.4	75	1 1/8	38	746	41
*50#N-(Amo Nitrate)	647	134	83	33.1	74	1 3/32	42	781	76
*100#N-(32% Liquid)	596	135	82	342	73	1 5/32	45	731	26
*100#N-(Amo Nitrate)	660	158	81	35.2	77	1 1/8	42	818	113

* 18+72+72 applied as starter at planting.

Liquid vs. dry fertilizers: Mixed liquid and dry fertilizers of the same ratio were compared at the same rate of nutrient application per acre. Both types of materials increased yields but there was no significant difference in the response.

Ammonium nitrate and 32 percent liquid nitrogen (non-pressure) were applied at the same rates of nitrogen per acre. There was no difference in the amount of response.

ANHYDROUS AMMONIA

Bragg City									
Location:	One mi	le sout	h of E	ragg Ci	ty				
Soil Type:	Shark	ey Clay	τ						Salt
Soil Test:		P	K	<u>Mg</u> 880	Ca	<u>рн</u> 6.3	H	CEC	<u>рн</u> 6.2
Topsoil:	2.6	3 <u>7</u> 0	.320		6200		1.5	21.1	
Subsoil:	1.7	160	260	840	6200	5.6	2.0	21.3	6.3
Dixie King	Cotton	replar	nted Ma	y 17.					

Soil Treatment	Lint lst. <u>Pick</u>	Lint 2nd. Pick	lst.	% Lint Turn Out	Bolls Per Pound	Staple	Height Of Plant Inches	Lint Per	Increase Over Check
No Treatment	183	25	88	35.7	74	1 1/16	22	208	
100#N Anhydrou s (4 knives)	286	123	70	37.1	72	1 1/16	28	409	201
100#N Anhydrou s (3 kniv es)	269	130	67	36.2	67	1 1/16	26	399	191
50#N Anhydrous (4 knives)	345	171	67	36.1	63	1 3/32	28	516	308

Spacing of anhydrous ammonia knives: Anhydrous ammonia was applied to the heavy soil at Bragg City. The application made with two knives per row (one-half the quantity per knife) produced about 100 pounds more lint cotton than where all of the ammonia was applied with one knife per middle.

The time and rate of application of complete fertilizer was included in an experiment at Sikeston. The starter application of 100+100+100 produced the highest yield, compared to split applications of this and higher rates of the complete fertilizer.

	° One mi	ment Field le south of ev Clav	Bragg City							Salt		
Soil Test Topsoil Subsoil	2: 0) L: 2 L: 1		320 760 6	<u>Ca</u> 200+ 200+		н .2 .7	<u>н</u> 2.0 2.5	2	<u>EC</u> 1.1 1.7	рН 6.3 5.6		
Plowdown	Starter	Soil Trea <u>Side dress</u> Bedded G	Comments	Lint 1st. Pick	2nđ.	% Lint lst. Pick	Turn	Bolls Per Pound	Staple	Height of Plant Inches	Lint Per	Ov
48+48+48	48+48+ 8 12+12+12	36+36+36	No Treatment Broadcast and rebed	167 517 354 340	31 77 105 66	84 87 77 84	38.2 36.3 37.3 36.7	79 74 69 76	1 3/32 1 1/8 1 1/8 1 1/8 1 1/8	17 21 23 21	198 594 459 406	3 2 2
	12+12+12 48+0+48 48+48+0 48+48+48	40# N July	Broadcast and rebed Banded and rebed Banded and rebed Side dressed next to row	359 392 477	77 135 84 156	83 74 85 77	37.6 36.9 37.1 36.9	80 74 73 72	1 1/8 1 3/32 1 1/8 1 1/8	21 24 22 24	436 527 561 682	2 3 3 4
48+48+48 48+48+48	48+48+48 48+48+48	80# N July 40# N July	Side dressed next to row Side dressed in middle Wide band under bed Narrow band under bed	· 440 507 499 449	124 131 51 38	78 79 91 92	37.2 36.2 36.5 37.4	71 73 80 72	1 3/32 1 3/32 1 3/16 1 3/16	27 24 21 19	564 638 550 487	3 4 3 2
	48+48+48		Broadcast and Harrow in before planting	347	61	85	377	78	1 1/8	20	408	2
48+48+48		48+48+48	Plowdown fertilizer in band under bed Plow down fertilizer in	469	116	80	36.3	71	1 3/32	24	585	3
40140140	48+48+48		band under bed Liquid 8-8-8	549 479	123 100	82 83	37.3 36.5	70 69	1 1/8 1 1/8	24 24	672 579	4 3
			Starter Liquid 8-8-8 Sidedress liquid uran Starter liquid 8-8-8	631	157	80	36.9	70	1 1/8	27	788	5
	401 101 10	Flat Plan	Sidedress liquid uran	592	183	76	36.4	69	1 3/32	26	775	5
	48+48+48 12+12+12	36+36+36	No treatment	147 458 406	51 98 155	74 82 72	38.3 37.3 37.9	80 68 77	1 1/8 1 5/32 1 1/8	20 19 21	198 556 561	3 3
36+36+36 48+48+48	12+12+12			372 334	58 78	87 72	37.7 37.0	76 80	1 1⁄/8 1 5/32	22 21	430 412	2

Methods of Fertilizer Application

				Bragg		Bell City	Malde	en
С.	il Treatment			1960 Tot.	4 yr.	3yr.	4 yr. a	
00	II Treatment			Lint	Ave. Tot.	Ave.	Non-irr.	Irr.
Dad an an				Ш Т []Γ		Tot.	Total	Total
Bed on or	940	Cida dasa a a	Commonto	Deadad	Lint	Lint.	Lint	Lint
Plowdown	Starter	Sidedress	Comments	Dedded	Ground	Bedded Ground	Flat Pla	anted_
No Treatment	48+48+48			198 Foli	256	662	244	347 675
		26126126		594 450	514 467	724	503	675
48+48+48	12+12+12	36+36+36	Ducedeagt and webed	459	407 285	685	392	649
	10110110		Broadcast and rebed	406	385 447	709	413	556 589 607
36+36+36	12+12+12			436		746	405	589
0+48+0	48+0+48			427	499	772	440	607
0+0+48	48+48+0	holl N T 7		561	504	757	374	575
	48+48+48	40# N-July	Sidedressed next to row	682	610	797	400	605
	48+48+48	80# N-July	Sidedressed next to row	564	564	869	413	598 587
10 10 10	48+48+48	40# N-July	Sidedressed in middle	638	582* 582**	748	413	587
48+48+48			6" wide band under bed	550 487	502** 520 * *			
48+48+48	10.10.10		1" Narrow band under bed	407	539**			
10 10 10	48+48+48		Broadcast and harrow in before planting	408	365*	682		
48+48+48	48+48+48		Band under bed and starter	585	529		395 458	534
48+48+48	48+48+48	48+48+48	Band under bed, starter and sidedress	672	593	832	458	549
	48+48+48		Liquid 8-8-8	579		744	458	582
	48+48+48	40# N-July	Starter liquid 8-8-8, Sidedress Uran	788	718			
	48+48+48	80# N-July	Starter Liquid 8-8-8, Sidedress Uran	775				
				<u>Flat</u> F	<u>lanted</u>			
No Treatment				198	290			
	48+48+48			556	480			
	12+12+12	36+36+36		561	482			
36+36+36	12+12+12			430	417			
48+48+48				412	351			

-

~ . .

* 3 year average ** 2 year average

The method and placement of a given amount of fertilizer influences the yield of lint cotton. Applying the fertilizer (48+48+48) under the bed prior to planting and as a starter produced high yields over a 3 to 5 year period on the heavier soils of southeast Missouri.

Application of 48+48+48 starter plus 40 to 80 pounds of nitrogen, sidedressed, produced maximum yields. Placing this nitrogen near the row or between the rows gave similar response.

-26-

TIME AND RATE OF FERTILIZER APPLICATION

Sikeston Expe									
Location: Or	ne mile	south o	f Sikes	ton, Mi	ssouri				
Soil Type: 1	Dexter S	andy Lo	a m						Salt
Soil Test:	OM	P	K	Mg	Ca	рH	H	CEC	рH
Topsoil:	1.6	236	5 <u>7</u> 0	<u>Mg</u> 190	<u>Ca</u> 1600	<u>рн</u> 6.3	3.0	8.4	<u>рн</u> 5.6
Subsoil:	1.0	142	300	280	1400	5.6	3.0	8.1	5.2
Delfos cotton replanted May									

<u>Soil Tr</u> Starter	eatment Side Dress	Lint 1st. Pick	Lint 2nd. Pick	% Lint lst. Pick	% Lint Turn Out	Boll s Per Pound	Staple	Height of Plant <u>Inche</u> s	Lb s. Lint Per Acre	Increase Over Check
No Treatment		58 3	214	73	35.6	бі	1 5/32	35	797	
None	50+50+50	479	237	67	34.5	59	1 3/16	40	716	-81
25+25+25	50+50+50	764	181	81	35.5	58	1 3/16	34	945	148
25+25+ 2 5	75+75+7 5	734	207	78	35.6	59	1 3/16	33	941	144
25+25+25	150+150+150	651	247	73	35.4	58	1 3/16	36	898	101
12+48+48	33+0+0	607	177	77	35.0	59	1 5/32	37	784	-13
12+48+48	66+0+0	75 3	177	81	35.8	60	1 5/32	34	930	133
18+72+72	33+0+0	754	161	82	35.4	59	1 5/32	38	915	118
18+72+72	66+ 0 +0	774	145	84	35.2	59	1 3/16	39	919	122
18+72+72	100+0+0	7.92	170	82	35.3	56	1 5/32	44	962	165
50+50+50	None	587	187	76	35.2	57	1 3/16	36	774	-23
100+100+100	None	948	156	86	36.0	56	1 3/16	39	1104	307

Soil Treatment and Land Grading

Considerable interest has developed among farmers of southeast Missouri in land grading for irrigation and improvement of drainage. In providing the grade desired, deep cuts and fills are frequently necessary. Questions arise as to what effect this operation may have on crops that follow and on the fertilization program. The results given below give yields of lint cotton from a field (loam) which was put to grade in 1958. There was little difference between yields obtained on the no-treatment plots for the two-year period. The filled and cut portions of the field responded equally well to the fertilizer applications.

This field has about the same clay content in its subsoil as in the original topsoil, which may account for the favorable results. Had the subsoil contained more sand, the results may not have been as good. This points to the need for a thorough survey of the subsoil before land grading, where deep cuts are to be made. Chemical soil tests of the exposed subsoil will aid in determining the fertilizer applications required after grading.

Soil Treatment and Land Grading (Loam Soil-Roth Farm)

	1959 <u>Total</u> <u>Filled</u>	Lint Cut	1960 <u>Total I</u> Filled) <u>Lint</u> Cut		verage Lint Cut
No Fertilizer	577	484	431	485	504	485
25+25 25	778	589	593	548	685	568
50+50+50	864	732	704	661	784	697
100+100+100	752	840	900	826	826	833
100+50+50	877	885	790	804	834	845

FINE LIME AND GYPSUM

Cooperator Location:	: Bragg One mile	City E south	xperime of Bra	nt Fiel gg City	đ				
Soil Type:	Sharkey	clay							Salt
Soil Test:	OM	P	3 <u>60</u>	<u>Mg</u> 800	Ca	pH	H	CEC	<u>pH</u> 6.1
Topsoil:	2.5	280	360		6200	<u>рн</u> 6.3	2.0	21.3	6.1
Subsoil:	1.5	46	290	760	6200	5.5	2.5	21.5	5.3
Rex cotton	replante	d May	28						

Soil Treatment	Lint 1st. Pick	Lint 2nd. <u>Pick</u>	% Lint Turn Out	Bolls Per Pound	Staple	Height of Plant Inches		Increase Over Check
No Treatment	119	118	36.9	79	1 1/8	18	237	
60+60+60	367	124	37.3	70	1 1/8	25	491	254
60+60+60 (2 ton dolomite 1956)	278	116	37.2	69	1 1/8	24	394	157
60+60+60 (1000# Gypsum 1956)	360	131	37.3	70	1 3/32	26	491	254
60+60+60 (300# Fine Lime Annually)	313	151	37.3	70	1 3/32	25	464	227
60+60+6 0 (Liquid 10-10-10)	295	9 8	37.9	67	1 1/8	25	393	156

Limestone applications for cotton: Applications of different liming materials were made on four soils to study the influence of source, rate of application, and fineness of grind. At the Bragg City field (pH 6.2) the addition of 3 and 6 tons of fine calcium limestone in 1958 increased the yield of lint cotton in 1960 by 56 and 115 pounds of lint cotton per acre, respectively. Little response was obtained from dolomitic stone at these rates, but a 12 ton application increased yields 61. pounds per acre. There was no response at the Bragg City field to gypsum applied in 1956. There was little response from lime applied before cotton at the other three locations. These results, together with those obtained in previous years indicated that there may be little direct effect of lime on cotton yields the first year. When soils are very acid (below pH 5), or very low in calcium, the efficiency of absorption of fertilizer nutrients (particularly phosphorus) by cotton is decreased in a long-time soil fertility program. The residual acidity from nitrogen will make soils more acid and increase the need for liming materials. When cotton is grown in sequence with soybeans or other legume crops, there can be a secondary effect on cotton production through greater fixation of nitrogen by the legume bacteria and an increase in soil organic matter.

SOIL FERTILITY EXPERIMENT - COTTON - 1960 RATE AND SOURCE OF LIMESTONE

Cooperator	: Bragg	City E	xperime	nt Fiel	đ				
Location:	One mile	e south	of Bra	gg City	r			•	
Soil Type:	Sharkey	/ clay							Salt
Soil Test:	OM	P	K	Mg	Ca	ъH	H	CEC	рH
Topsoil:	2.5	260	450	<u>Mg</u> 760	<u>Ca</u> 6200	<u>рН</u> б.2	1.5	20.7	<u>pH</u> 6.2
Subsoil:	1.5	128	220	800	6200	5.5	2.5	21,6	5.6
Dixie King	cotton 1	replant	ed May	17			-		-

* Soil Treatment	lst.		lst.	% Lint Turn Out	Bolls Per Pound	<u>Staple</u>	Height of Plant Inches		Increase Over Check
No lime	406	67	86	35.5	61	1 3/32	28	473	
3 ton fine lime	472	57	89	35.7	61	1 1/16	28	529	56
6 ton fine lime	532	56	90	35.5	62	1 3/32	27	588	115
12 ton fine lime	506	51	91	36.2	58	1 3/32	26	557	84
3 ton dolomite lime	426	52	89	35.0	57	1 3/32	27	478	5
6 ton dolomite lime	407	56	88	35.6	61	1 3/32	27	463	-10
12 ton dolomite lime	481	53	90	36.0	66	1 1/16	28	534	бі

* Fertilizer applied to all plots 100+50+50. Limestone applied in October 1958, disced in and bedded.

CORN SOIL FERTILITY EXPERIMENTS

Soil fertility experiments with corn were conducted at three locations in southeast Missouri. Two of the locations on the sand and clay soils included experiments which were part of a regional project of the North Central States on the response of corn to time and rate of application of different sources of nitrogen. Results from this test indicate an 80-pound application of nitrogen per acre was more profitable than a 40-pound application. Side dressing the nitrogen on this sandy soil gave approximately the same increases in yield as plowing the nitrogen down before planting. On the clay loam soil the yields were much higher, with 80 pounds of nitrogen per acre side dressed giving a yield increase of 86 bushels per acre. Side dressing the nitrogen was superior on this soil. The test on the Kalkbrenner farm indicated a 50+50+50 starter fertilizer was probably the most profitable combination in 1960.

Fertilize	r Treatments	for Corn	
	Kalkbrenner	Farm-Waver	ly loam
	Weight		Increase
	per ear	Yield	over check
Soil Treatment	Lbs.	Bu.	<u> </u>
None	.503	88	_
0+100+100	.501	82	-6
100+100+100	•552	107	19
200 1 100+100	•553	121	33
150+100+100+Traces	•559	115	27
150+50+100	•573	114	26
150+0+100	.570	126	38
150+100+50	.603	127	39
50+50+50	.564	119	31 23
25+25+25	•584	111	
150+0+0	.563	119	31
150+100+0	•549	107	19

14,000 plants per acre

Source, Rate, and Time of Application of Nitrogen for Corn

		Burge Farm-Sa	undy loam hcrease	Roth Farm	<u>1-Clay loam</u> Increase
Soil	Time of	Yield or	ver check	Yield	over check
<u>Treatment*</u>	<u>Application</u>	<u> </u>	Bu.	_ <u>Bu.</u> _	Bu.
None 40 lbs.N-		26		45	
nitrate 80 lbs.N-	Spring	50	24	72	27
nitrate 40 lbs.N-	Spring	59	33	111	67
ammonia 80 lbs.N-	Spring	43	17	72	27
ammonia 40 lbs.N-	Spring	57	31	111	66
nitrate 80 lbs.N-	Sidedress	50	24	102	57
nitrate 40 lbs.N-	Sidedress	58	32	131	86
ammonia 80 lbs.N-	Sidedress	43	17	90	45
ammonia	Sidedress received a ba	55 asic treatment	29 5 of 0+87+87	124	79

Effect on Corn Yields of Methods of Applying Anhydrous Ammonia in Comparison With Effect of Ammonium Nitrate

Burge Farm-Sandy loam soil

Soil Treatment	Bushels of Grain
50 lbs. N-Anhydrous* 100 lbs.N-Anhydrous* 150 lbs.N-Anhydrous* 100 lbs.N-Anhydrous** 150 lbs.N-Anhydrous** 50 lbs.N-Anhydrous** 50 lbs.N-Ammonium nitrate 100 lbs.N-Ammonium nitrate 200 lbs.N-Ammonium nitrate 200 lbs.N-Ammonium nitrate 100 lbs.N-Urea Starter fertilizer 18+72+72 *Two knives on each side of row. **One knife per row in middle	54 46 46 56 8 63 61 61 61

The application of anhydrous ammonia on a sandy loam soil was more effective with one knife per row than two knives per row. It is not as difficult to hold the ammonia in a sandy loam soil as in a soil of high clay content.

Highest yields were obtained on this sandy loam soil with 100 pounds of nitrogen either from ammonium nitrate or urea side dressed in late May.

SOYBEAN SOIL FERTILITY EXPERIMENTS

Soil fertility experiments with soybeans were conducted at two locations in 1960. A trace element study was included at the Bragg City experiment field with fertilizer (50+50+50) and fine lime. No increases in yield from these trace mineral additions were obtained. Molybdenum added to the soybean inoculant depressed yields at the Sikeston field. The application of 50+50+50 did not increase the yield of soybeans over no-treatment on either field.

Yield of SoybeansTreatmentSikeston Experiment FieldInoculant only33 bu.Inoculant+ molybdenum30Inoculant only+50+50+5034Inoculant only+50+50+50+Traces34

SMALL GRAIN SOIL FERTILITY EXPERIMENTS

The application of fertilizer to small grain continued to be a very efficient and profitable operation in southeast Missouri. Starter fertilizer (6-24-24) at 150 pounds per acre, applied at seeding, with additional nitrogen in the spring has consistently produced profitable increases in wheat yields.

A soil fertility experiment with rice was conducted at the Portageville Experiment Station, but because of irregularities in stand on a portion of the area no conclusions could be drawn. SOIL FERTILITY EXPERIMENT - WHEAT - 1960

Soil Trea Starter	atment Top dress	Date	(1)Bragg City Exp Field	(2) Kalk- brenner	(3) Sikeston Exp. Field
No Treatmen 36+36+36 36+36+36 36+36+36 9+36+36 9+36+36 9+36+36 9+36+36 9+36+36 9+36+36 9+36+36 9+36+36 9+36+36 9+36+36 9+36+36 9+36+36 9+36+36 9+36+36 9+36+36 9+36+36 None No	None 33# N 66# N 86#	March March March March March March March (Amo Sulfate) March (Urea) March (J2% Liquid) March January 1 February 15 March 15 April 15 May 1 March January 1 (4) February 15 (4) April 1 (4) January 1 (5) February 15 (5) April 1 (5) March March March March March March March March March	180689385238340581854074562192 16831199994314766911999999924519	568292172120 56866666666777 7666 889 889 873685810 77666 889 8755 87 87 95557 87 95557	41.90887517462190077837053811268 9995434353565260161. 90808995434353565260161.

- (1) "Gumbo" or Sharkey Clay soil located $\frac{1}{2}$ mile south of Bragg City Vermillion wheat planted October 21, 1959.
- (2) Waverly Silt Loam soil located 6 miles southeast of Poplar Bluff Knox wheat planted October 20, 1959.
- (3) Dexter Sandy Loam located 1 mile south of Sikeston Vermillion wheat planted October 22, 1959.
- (4) Phosphate approximately 100% water soluble.
- (5) Phosphate approximately 50% water soluble.
- All nitrogen topdressed ammonia nitrate except as indicated.