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ROBUST RECEIVER DESIGN FOR RF

COMMUNICATION AND UNDERWATER

ACOUSTIC COMMUNICATION

Jun Tao

Dr. Chengshan Xiao, Dissertation Supervisor

ABSTRACT

This dissertation includes two parts: robust receiver design for wireless radio frequency

(RF) communication, and robust receiver design for underwater acoustic (UWA) commu-

nication. In the first part, four aspects including fading channel modeling, Doppler spread

estimation, channel estimation, and (turbo) equalization, are investigated for a common

digital receiver. The general methodology of study is theoretical analysis and numerical

simulation. In the second part, different receiver designs are proposed for underwater

acoustic communication, with their robustness tested by experimental data collected at

several undersea field trials.

An equivalent discrete-time channel model is the basis for robust receiver design in any

digital communication system. The work on channel modeling highlights the loss of sepa-

rability property of the discrete-time channel scattering function, a result that is commonly

overlooked. The conditions for the validity of the separability property is provided, under

which efficient channel simulators can be used.

Doppler spread contains information about fading channels, thus is an important sys-

tem parameter guiding robust receive design. A Doppler spread estimation algorithm is

proposed, for the prevailing orthogonal frequency division multiplexing (OFDM) systems

undergoing Rayleigh or Rician fading. The estimator belongs to the class of “method of

moment”, and it estimates the Doppler spread with the auto-covariance function of the

received signal power.
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Channel estimation is critical for equalization and detection. A pilot-aided channel

estimation algorithm is presented for OFDM systems with non-ideal effects including both

carrier frequency offset (CFO) and phase noise. It estimates and compensates the CFO

first, and then performs joint channel estimation and phase noise suppression with the max-

imum a posteriori (MAP) criterion. The CFO compensation and phase noise suppression

improves the channel estimation accuracy.

The work on equalization focuses on turbo (iterative) equalization, and discusses two

turbo equalization schemes for multiple-input, multiple-output (MIMO) systems. The first

scheme enhances existing linear minimum mean square error (LMMSE) turbo equalizer, by

utilizing not only the a priori information at the input of the equalizer but also the a pos-

teriori information obtained when the equalization progresses. With the new equalization

mechanism, the detection ordering matters as to the equalization performance, and has

been exploited to further enhance the detection performance. The second scheme develops

a non-linear block decision-feedback equalizer (BDFE) with reliability-based successive soft

interference cancelation (SSIC). The symbol reliability information is calculated directly

with the a priori input, incurring minimum extra cost.

UWA communication is much more challenging than RF communication due to its lim-

ited available bandwidth, long delay spread, fast temporal variation and significant Doppler

effect. Signal detection under such scenarios, is thus very difficult. The remaining part

of the dissertation discusses robust receiver design for UWA communication. Two design

schemes have been proposed. The first scheme adopts MIMO linear equalizer (LE) work-

ing with a group-wise phase compensator. It was tested with experimental data collected

at Kauai, Hawaii, in September 2005, and Saint Margarets Bay, Nova Scotia, Canada, in

May 2006. Experimental results shew that it was robust under different communication

environments. The second scheme adopts the developed MIMO turbo BDFE mentioned

above, with its robustness and performance tested by experimental data collected at the

coast of Martha’s Vineyard, Edgartown, MA, in October 2008, and Gulf of Mexico in July

2008, respectively.
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Chapter 1

Introduction

1.1 Background

Future wireless communication applications feature high transmission rate, high spectral

efficiency and high mobility, which can be achieved with Multiple-Input Multiple-Output

(MIMO) technology and Orthogonal Frequency Division Multiplexing (OFDM) technology.

For instance, in the forthcoming Third Generation Partnership Project (3GPP) Long Term

Evolution (LTE), downlink and uplink data rates are expected up to 300 mega bits per

second (Mbps) and 75 Mbps with a bandwidth of 20 mega hertz (MHz), at speeds of 350

kilometers per hour (km/h) or even up to 500 km/h.

MIMO technology greatly improves channel capacity, which is proportional to the num-

ber of transmit antennas over a flat Rayleigh-fading channel. However, it also makes signal

detection on the receiver side much more difficult than Single-Input Single-Output (SISO)

systems, due to extra spatial interference among concurrent transmission streams. OFDM

technology is advantageous in improving spectral efficiency and combating inter-symbol

interference (ISI). It is, however, very sensitive to timing offset, carrier frequency offset

(CFO), and phase noise, which destroy the orthogonality among subcarriers and cause

inter-carrier interference (ICI). Furthermore, it leads to high peak to average ratio (PAR)

imposing critical requirement on power amplifier. MIMO-OFDM technology is expected to

be a good candidate for fourth-generation (4G) wireless communication, and is attracting

vast research interests.
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Parallel to the advance in wireless radio-frequency (RF) communication, underwater

acoustic (UWA) communication also witnesses its rapid progress in the past decade. While

coherent modulations had been believed infeasible in UWA communications until early

1990’s, MIMO and OFDM technologies originating in RF communications, have been

timely introduced to UWA communications. Compared to RF communication, UWA com-

munication is much more challenging due to the harsh UWA channel conditions: first, the

available channel bandwidth is very limited due to the frequency-dependent attenuation;

second, the channel delay spread is excessively long due to the rich scattering environment;

third, the Doppler effect is significantly large due to the low propagation speed of sound

(about 1500 m/s in water); finally, the temporal variation of the UWA channel is very fast

due to the dynamics of the water mass. As a result, deployment of new technologies in

UWA communications is at the stage of field trial, and robust detection algorithms is still

highly desirable before practical real-time hardware systems can be implemented.

1.2 Objective

Based on the background introduced above, this dissertation aims to study robust re-

ceiver designs for future wireless RF communication and wireless UWA communication.

For wireless RF communication, the basic objective is to address open physical-layer chal-

lenges and develop new algorithms relating to robust signal detection. For wireless UWA

communication, the main objective is to propose robust receiver structures incorporating

new technologies, and test them with undersea trial data. The two objectives are elabo-

rated in the following.

1.2.1 Design Goals for Wireless RF Communication

• The difficulty in communications is ultimately caused by the underlying physical

channel, which distorts the transmitted signal in a random manner thus demands

proper signal detection at the receiver side. Therefore, I have started with the topic

of channel modeling for this dissertation work. The primary goal is to provide a

2



general methodology for discrete-time channel modeling of digital systems.

• For wireless mobile communications, the physical channel is modeled as Rayleigh or

Rician fading processes, which are characterized by channel scattering function. In

scattering function, Doppler spread is an important figure of merit, which contains

information about channel coherence time and mobile speed thus directly assists re-

ceiver design. This dissertation aims to develop a Doppler spread estimator for mobile

OFDM systems, under practical channel conditions.

• The third problem raised is channel estimation, which is critical for the success of

signal detection. This work addresses robust channel estimation problem for OFDM

systems in the presence of both carrier frequency offset and phase noise.

• The last topic deals with channel equalization, particularly, turbo equalization. The

primary goal is to design low-complexity, high-performance iterative equalization

algorithms targeting MIMO communication systems.

1.2.2 Design Goals for Wireless UWA Communication

• Due to the harsh condition of UWA channel, time-varying phase distortion is in-

troduced for transmitted signals in addition to symbol interference. The equalized

symbols produced by conventional equalizer, thus suffer undesirable phase rotation

and can not be reliably detected in coherent systems. One of the goals in this part

is therefore to propose robust receiver structure, which handles phase rotation and

provides robust symbol detection. The designed receiver structure is expected to

work robustly under different UWA environments.

• The advent of turbo decoding and turbo equalization technologies enables powerful

receiver design, which via iterative operations, significantly outperforms conventional

non-iterative receiver. The second goal in this part is to develop robust turbo receiver

structure for UWA communications.
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1.3 Outline

Chapter 2: In this chapter, an important issue on the modeling of equivalent discrete-

time fading channel, is discussed. The equivalent discrete-time channel incorporating trans-

mit filter, physical fading channel and receive filter, usually loses not only uncorrelated

scattering (US) property but also separability property. The lost of separability property

has commonly been overlooked in existing literature. This chapter provides theoretical

analysis and numerical simulations on the conditions under which the separability prop-

erty of the composite channel is approximately valid, so that efficient channel simulators

can be used.

Chapter 3: In this chapter, a Doppler estimation algorithm for wireless mobile OFDM

systems undergoing Rayleigh or Rician fading channel, is proposed. The new method

estimates Doppler spread based on the autocovariance of received signal power, which is

fundamentally different from existing Doppler estimations relying on either pilot symbols

or special structure of OFDM symbol. It provides robust Doppler estimations over a large

range of practical Doppler, even with very low signal-to-noise ratio (SNR). .

Chapter 4: In this chapter, channel estimation for OFDM systems in the presence of

both CFO and phase noise is studied. The estimation is performed in two steps. In the

first step, the CFO is estimated by utilizing time-frequency property of OFDM symbols.

Both integer and fractional CFO are estimated. In the second step, the estimated CFO is

compensated in the received signal before channel estimation starts. The channel estima-

tion and phase noise suppression are jointly done with the maximum a posteriori (MAP)

criterion. Simulations show that the designed channel estimator achieves near-CRLB per-

formance.

Chapter 5: In this chapter, an enhanced linear minimum mean square error (LMMSE)

turbo equalizer is proposed for MIMO systems with frequency-selective fading. Based on

the fact that the a posteriori soft information at the output of the equalizer is more reliable

than the a priori information at the input of the equalizer, the enhanced equalizer incorpo-
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rates the a posteriori soft information into the soft interference cancelation (SIC) operation

during each iteration of the turbo equalization. Specifically, once a symbol is equalized,

the obtained a posteriori information updates its a priori information, so that those un-

equalized symbols will benefit from that updating. A reliability-based ordering scheme is

also provided under the new equalization framework, so that the system performance can

be further improved. The symbol reliability is measured by using the symbol a priori prob-

ability, which is a unique byproduct of turbo detection. Therefore, the reliability-based

detection achieves extra performance gain with minimum overhead.

Chapter 6: In this chapter, a turbo block decision-feedback equalizer (BDFE) is pro-

posed for MIMO systems. The designed MIMO BDFE performs successive soft interfer-

ence cancelation (SSIC) on both inter-symbol interference (ISI) in the time domain and

multiplexing interference (MI) in the space domain. As in Chapter 5, a reliability-based

group-wise detection ordering scheme, is also proposed, to minimize the negative impacts

of error propagation that plagues conventional successive interference cancellation systems.

A low-complexity implementation of the proposed MIMO turbo BDFE is further proposed,

which takes advantage of fast matrix inversion algorithms.

Chapter 7: In this chapter, a new equalization scheme for high-rate single carrier

MIMO UWA channels, is discussed. Different from existing methods employing joint

equalization and symbol-wise phase tracking technology, the proposed scheme decouples

the interference-cancelation (IC) operation and the phase-compensation operation, leading

to a generalized equalizer structure combining an IC equalizer with a phase compensator.

The decoupling of the two functionalities guarantees robust signal detection, which is most

desirable in practical UWA applications. MIMO linear equalizer (LE) is adopted to re-

move space-time interference, and a group-wise phase estimation and correction method

is used to compensate the phase rotation. In addition, the layered space-time processing

technology is adopted to enhance the equalization performance attributing to the space

freedom in MIMO systems. The proposed equalization scheme is tested to be very robust

with extensive experimental data collected at Kauai, Hawaii, in September 2005, and Saint
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Margaret’s Bay, Nova Scotia, Canada, in May 2006.

Chapter 8: The developed MIMO turbo BDFE in Chapter 6 is tailored to enable a ro-

bust receiver design for high data rate single-carrier MIMO UWA communications. With

inter-block interference (IBI) properly removed, the MIMO BDFE is performed with over-

lapped information blocks without guard intervals, thus a high transmission data efficiency

is guaranteed and the performance degradation at the tail of each block is prevented. The

MIMO channel is treated as time invariant over each small block, and is estimated ei-

ther with pilot symbols in the training mode or with previously-detected symbols in the

decision-directed (DD) mode. The proposed receiver scheme has been tested by extensive

experimental data and proved to be robust in different transmission environments. The re-

sults for the SPACE08 experiment conducted near Martha’s Vineyard and the GOMEX08

experiment conducted at the Gulf of Mexico, are both reported.

Chapter 9: The final chapter summarizes the contribution of this dissertation, and

discusses the future works.
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Chapter 2

On Discrete-Time Modeling of

Time-Varying WSSUS Fading

Channels

2.1 Introduction

Many mobile radio communication channels can be modeled as wide-sense stationary uncor-

related scattering (WSSUS) channels [1], [2], which are fully described by a two-dimensional

Doppler-delay scattering function [3]. In rich scattering environments without line of sight,

the uncorrelated paths are usually modeled as Rayleigh processes with a Doppler spectrum

according to Clarke’s two-dimensional isotropic scattering model [4]. For an efficient sim-

ulation of Clarke’s reference model, various methods have been proposed in the literature,

which are either based on filtered white noise or the sum-of-sinusoids principle (see [5–7]

and the references therein).

Digital transmissions over linear time-varying (LTV) WSSUS channels may be com-

pactly represented and efficiently simulated using a fully discrete-time channel model that

integrates transmitter and receiver filtering together with the LTV channel into an equiv-

alent discrete-time channel impulse response [8], [9]. However, this discrete-time analog

normally loses the uncorrelated scattering property [8] while preserving the wide-sense sta-

tionary (WSS) property. For accuracy reasons, the path correlations should be taken into

account in a simulation model, or when designing a channel estimator that relies on proper

second-order statistics. Moreover, the scattering function of an LTV channel is usually
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factorized into Doppler spectrum and power delay profile. Like the uncorrelated scattering

(US) property, this separability property is also not preserved in the discrete-time model,

as it is shown in this chapter.

We first consider the overall response of a serial concatenation of two general LTV

systems and then precisely analyze the discrete-time model of a digital transmission over

an LTV channel. We further demonstrate with both theoretical analysis and numerical

simulations that the separability property is approximately preserved in most practical

cases.

2.2 Serial Concatenation of Linear Time-Varying Sys-

tems

The serial concatenation of two LTV systems a(t, τ) and b(t, τ) is shown in Fig. 2.1, where

f(t, τ) is the output of the system f at time t to a delta pulse at time t− τ .

a(t, τ) b(t, τ)
x(t) y(t) z(t)

︸ ︷︷ ︸

c(t, τ)

Figure 2.1: Serial concatenation of two LTV systems.

Let c(t, τ) be the response of the concatenation of a(t, τ) and b(t, τ), such that

z(t) =

∫

τ

c(t, τ)x(t− τ) dτ. (2.1)

We also have

y(t) =

∫

α

a(t, α)x(t− α) dα, (2.2)

z(t) =

∫

β

b(t, β)y(t− β) dβ. (2.3)

Combining (2.2), (2.3) and substituting α + β → τ gives

z(t) =

∫

τ

∫

β

b(t, β)a(t− β, τ − β) dβ x(t− τ) dτ. (2.4)
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By comparing (2.1) and (2.4), the response of the overall LTV system c(t, τ) comprising

the two LTV systems a(t, τ) and b(t, τ), where a(t, τ) is followed by b(t, τ), is obtained as

c(t, τ) , a(t, τ) ⊛ b(t, τ) =

∫

β

b(t, β)a(t− β, τ − β) dβ. (2.5)

In (2.5), we have introduced the directional convolution operator “⊛” which denotes the

serial concatenation of two LTV systems. In contrast to time-invariant systems, the order

of arrangement matters if at least one of the systems a and b is time-varying. In such a

case, the convolution “⊛” is not commutative anymore, i.e.,

a(t, τ) ⊛ b(t, τ) 6= b(t, τ) ⊛ a(t, τ) (2.6)

in general. To verify (2.6), we write down

c′(t, τ) , b(t, τ) ⊛ a(t, τ) =

∫

β′

a(t, β ′)b(t− β ′, τ − β ′) dβ ′. (2.7)

Substituting τ − β → β ′ in (2.5) leads to

c(t, τ) =

∫

β′

a(t− τ + β ′, β ′)b(t, τ − β ′) dβ ′. (2.8)

By comparison, (2.8) and (2.7) differ in general.

In [10], the conception of “jointly underspread” of two LTV systems is introduced

relying on the delay-Doppler spreading function, Sg(ν, τ), of a LTV system g(t, τ), defined

as

Sg(ν, τ) =

∫

t

g(t, τ)e−j2πνtdt. (2.9)

The (absolute) moments m
(k,l)
g of the spreading function is further defined as

m(k,l)
g ,

1

‖Sg‖1

∫

τ

∫

ν

|τ |k|ν|l|Sg(τ, ν)|dτdν (2.10)

where k, l ∈ N0, and the L1-norm is given by ‖f‖1 ,
∫
· · ·

∫
|f(x1, · · · , xn)|dx1 · · · dxn.

Approximation: The two LTV systems a(t, τ) and b(t, τ) are called “jointly under-

spread”, when m
(0,1)
a m

(1,0)
b and m

(1,0)
a m

(0,1)
b are both small. Further, the two LTV systems

are approximately commuting, i.e., a(t, τ) ⊛ b(t, τ) ≈ b(t, τ) ⊛ a(t, τ).
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2.3 Discrete-Time Modeling of Linear Time-Varying

WSSUS Channels

We now apply the previous findings to determine the correlation properties of an equivalent

discrete-time channel model that complies with the transmission model shown in Fig. 2.2.

+

p(τ)

q(τ)

g(t, τ)

x(t) s(t)

ỹ(t)

w(t)

x[m]

ỹ[k]

mTs

kT

δ

Figure 2.2: Transmission model.

Throughout this chapter we make use of the complex baseband equivalent notation.

After weighting the data sequence x[m] with the transmit pulse p(τ) periodically at a

symbol rate of 1/Ts, the resultant signal s(t) is transmitted over the LTV physical channel

g(t, τ) and white noise w(t) is added. g(t, τ) is assumed to be a WSSUS Rayleigh fading

channel according to Clarke’s isotropic scattering model [4]. The autocorrelation Rgg of

g(t, τ) is separable and given by

Rgg(t, t− ∆t; τ, τ ′) , E{g(t, τ)g∗(t− ∆t, τ ′)}

= ψ(∆t) · φ(τ)δ(τ − τ ′) (2.11)

where ψ(∆t) = J0(2πBd∆t) is the time correlation function for Clarke’s model with Bd

being the maximum Doppler spread of the channel. φ(τ) denotes the power delay profile

(PDP) with support Tg, i. e., φ(τ) = 0 for τ < 0 and τ > Tg.

After filtering with q(τ), the received signal ỹ(t) is sampled at a rate of 1/T to yield

the receive sequence ỹ[k]. The sampling rate is either chosen equal to the symbol rate or as

an integer multiple η ≥ 1 of this (Ts = ηT with oversampling factor η) to account for the
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bandwidth spread that is introduced by the channel [11]. The receive filter q(τ) may either

be a simple matched filter that is matched to the transmit pulse only, q(τ) = p∗(−τ), or a

more sophisticated pulse that maximizes the signal to noise ratio (SNR) at the sampling

instant for every channel realization or in a statistical sense.

In our model, the data bearing impulse signal

x(t) =

∞∑

m=−∞
x[m]δ(t−mTs) (2.12)

is transmitted over an effective overall channel h(t, τ) that comprises the transmit filter

p(τ), the LTV channel g(t, τ), and the receive filter q(τ)

h(t, τ) = p(τ) ⊛ g(t, τ) ⊛ q(τ)

=

∫

β

∫

α

q(β)g(t− β, α)p(τ − β − α) dαdβ (2.13)

where (2.13) follows from applying (2.5) twice. As the channel g(t, τ) is a time-varying sys-

tem, the order of arrangement is of importance and, therefore, affects the overall response

h(t, τ) along with its correlation properties.

Based on h(t, τ), we can now describe the input-output relationship of our transmission

model (see Fig. 2.2) in the discrete-time domain as follows:

ỹ[k] =

L2∑

l=−L1

h[k, l]x[k − l] + n[k] (2.14)

where h[k, l] = h(kT, lT ) is the discrete-time response at time k to an impulse with lag l.

n[k] =
∫
q(τ)w(kT − τ) dτ is a colored noise sequence in general. In (2.14), the transmit

sequence x[l] is an oversampled version of x[m] in order to allow for different rates at

transmitter and receiver

x[l] =

{

x[m], if l = ηm,

0, otherwise.
(2.15)

Although the support of g(t, τ) was assumed to be finite and causal, h(t, τ) is of infinite

duration in the strict sense, because p(τ) and q(τ) are usually band-limited filters. However,

the effective support of h(t, τ) and, therefore, h[k, l] is virtually finite, and denoted by the

range [−L1, L2], where L1 and L2 are non-negative integers.
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To assure that the discrete-time model (2.14) is equivalent to its continuous-time coun-

terpart, the statistical properties of the former should reflect those of the latter. Since the

considered transmission model is linear and g(t, τ) is a Rayleigh process, also h[k, l] will

be a (now discrete-time) Rayleigh process. As already pointed out, h[k, l] may however

be lacking some of the specific correlation properties of g(t, τ), which was assumed to be

WSSUS with separable scattering function. Using (2.13) and (2.11), the autocorrelation

of the sampled overall response h[k, l] is deduced as

Rhh[k1, k2; l1, l2] , E{h[k1, l1]h
∗[k2, l2]}

=

∫ Tg

0

φ(τ)

∫

β1

∫

β2

ψ([k1 − k2]T − (β1 − β2)) q(β1)q
∗(β2)

· p(l1T − τ − β1)p
∗(l2T − τ − β2) dβ2 dβ1 dτ. (2.16)

Since its autocorrelation depends on the difference k1 − k2 only, the discrete-time

Rayleigh process h[k, l] is still WSS. However, both the uncorrelated scattering and the

separability property are lost and the above correlation function is an unpleasant expres-

sion mixing time and delay correlations. Especially, the lack of separability prohibits the

use of efficient channel simulators for Clarke’s reference model (like [6]) as the time corre-

lation function is different from ψ([k1 − k2]T ) = J0(2πBd[k1 − k2]T ). However, as we will

see soon, when specific condition is met, the following approximation holds

Rhh[k1, k2; l1, l2] ≈ ψ([k1 − k2]T ) · ϕ[l1, l2] (2.17)

where

ϕ[l1, l2] =

∫ Tg

0

φ(τ)r(l1T − τ)r∗(l2T − τ) dτ (2.18)

with r(τ) =
∫
q(α)p(τ − α) dα being the convolution of p(τ) and q(τ).

To derive the condition under which (2.17) holds, we first study the right hand side

(RHS) of (2.17), which actually belongs to a notional transmission model that arranges

g(t, τ) and the receive filter q(τ) in reversed order. The overall impulse response h̃(t, τ) ,

p(τ) ⊛ q(τ) ⊛ g(t, τ) of such a configuration is given by

h̃(t, τ) =

∫

β

∫

α

g(t, α)q(β)p(τ − β − α) dαdβ. (2.19)
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In (2.19), the absolute time t in g(t, τ) is not being delayed [compare (2.13)], since the

time-varying channel is now the last system in the sequence. Using (2.19), it is easily

verified that the autocorrelation of the sampled response h̃[k, l] = h̃(kT, lT ) is given by

(2.17). Following this argument, we resort to the conception of “jointly underspread”

stated in Section 2.2, to find out the condition for the validness of (2.17). In this case,

the receiver filter q(τ) and time-variant physical channel g(t; τ) are “jointly underspread”,

thus approximately commutative, i.e. g(t; τ) ⊛ q(τ) ≈ q(τ) ⊛ g(t; τ), when

τ̄ (1)
q ν̄(1)

g ≪ 1 (2.20)

where τ̄
(1)
q and ν̄

(1)
g are the mean duration of the receiver filter and the mean Doppler spread

of the LTV physical channel defined, respectively, as

τ̄ (1)
q ,

∫

τ
|τ ||q(τ)|dτ
‖q‖1

(2.21)

and

ν̄(1)
g ,

∫

τ

∫

ν
|ν||Sg(ν, τ)|dνdτ

‖Sg‖1

(2.22)

From (2.21), the τ̄
(1)
q relates to the duration of receiver filter Tq, thus 1/Bq, by some

constant c1 depending on the specific filter employed, where Bq is the bandwidth of receive

filter q(τ). Similarly, from (2.22), ν̄
(1)
g relates to maximum Doppler shift Bd by some

constant c2. We thus obtain the equivalent “jointly underspread” condition for (2.20) as

Bd/Bq ≪ 1 (2.23)

Approximation: If the Doppler spread Bd of the linear time-varying channel g(t, τ)

is small compared to the bandwidth Bq of the receive filter q(τ), i. e., if Bd/Bq ≪ 1, then

the autocorrelation of the discrete-time response h[k, l] is approximately separable, and

has the form given by (2.17).

The requirement Bd/Bq ≪ 1 is well fulfilled in most practical applications. Take the

UMTS standard [12] as an example. The standard specifies a square-root raised cosine
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transmit filter with roll-off factor 0.22 and a symbol period of Ts = 260.42 ns. At a carrier

frequency of 2 GHz, for a mobile velocity of 200 km/h, and assuming a receive filter that

is equal to the transmit filter, we have Bd/Bq < 10−4.

Since the scattering function of the discrete-time channel h[k, l] is approximately sep-

arable for practical communication scenarios, every path h[k, ·] of the discrete-time model

(2.14) is a Rayleigh process with a Doppler spectrum according to Clarke’s reference model.

We may, therefore, use efficient sum-of-sinusoids simulators that have been designed for

this model. If such a simulator is able to produce uncorrelated path processes h[k, ·] (as

the one proposed in [6]), then the path correlations according to (2.17)–(2.18) can be intro-

duced by treating the impulse response h[·, l], −L1 ≤ l ≤ L2 as a vector and multiplying

this vector with a correlation matrix whose entries are given by (2.18). More on this issue

together with an extension to MIMO systems can be found in [9].

2.4 Numerical Simulations

In this section, we study the effect of Doppler spread Bd on the approximating accuracy of

channel autocorrelation given by (2.17) to the actual autocorrelation given by (2.16), with

numerical simulations.

Remark: From the right hand side of (2.17), it is easy to see that the term ϕ[l1, l2]

is independent of Doppler spread Bd, and becomes a constant once the channel tap pair

{l1, l2} is fixed. The other term, ψ([k1−k2]T ) = J0(2πBd[k1−k2]T ), however, is a function

of Doppler spread Bd and time difference ∆t = [k1 − k2]T . As a result, the approximating

autocorrelation boils down to a scaled zero-order Bessel function of the first kind, K ·J0(x),

with x = 2πBd[k1−k2]T and K = ϕ[l1, l2] being the inter-tap correlation between the l1-th

and the l2-th taps.

Based on above remark, for a fixed channel tap pair {l1, l2} and a set of pre-determined

discrete points {xi}Ni=1, an approximation autocorrelation curve can be obtained, which is

denoted as R̃hh[i] = K · J0(xi) for 1 ≤ i ≤ N . Similarly, for a given Doppler spread Bd,
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the corresponding actual autocorrelation curve can be evaluated according to (2.16), with

numerical integration. Herein, the actual autocorrelation curve is denoted by Rhh[i] for

1 ≤ i ≤ N . The normalized absolute error between Rhh[i] and R̃hh[i] is measured as

e[i] =

∣
∣
∣Rhh[i] − R̃hh[i]

∣
∣
∣

K
(2.24)

where the normalization to K takes fading channel power into account. Further, we can

define the mean and standard deviation of the error sequence {e[i]}Ni=1, respectively, as

me =
1

N

N∑

i=1

e[i], (2.25)

and

σe =

√
√
√
√ 1

N

N∑

i=1

(e[i] −me)2. (2.26)

Based on the theoretical analysis in Section 2.3, smaller Bd/Bq means better approximation

in (2.17) thus smaller approximation error e[i] (me and σe), which will be evident soon in

the simulation results.

The system parameters in [9], is adopted for the simulation. The power delay profile

(PDP) φ(τ) of the Rayleigh fading channel is a reduced six-path typical urban (TU) profile.

The transmit filter is a linearized Gaussian filter with a time-bandwidth product of 0.3, and

the receive filter is a square root raised cosine (SRC) filter with a roll-off factor r = 0.3 The

sampling period at the receiver side is the same as the symbol period at the transmitter

side, that is T = Ts = 3.69µs. For such a system configuration, the tap index l of h[k, l] is

in the range of [−L1, L2] with L1 = 1, L2 = 3. Alternative to Bd/Bq, normalized Doppler

spread defined as, B̂d = BdT , is used in the simulation noticing that Bq relates to T by

Bq = (1 + r)/T . The approximating accuracy is investigated at seven different normalized

Doppler spreads B̂d, which are listed (together the Doppler to receive filter bandwidth ratio

Bd/Bq) in Table 2.1. To evaluate the correlation curve, N = 100 equally-spaced points are

chosen with the starting point x1 = 0 and the interval ∆x , xi+1 − xi = 0.1. It is noted

that once the points have been fixed, the lag ∆t varies with Doppler spread Bd. Simulation

results are presented through Fig. 2.3 to Fig. 2.6.
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Table 2.1: Normalized Doppler spread: B̂d

B̂d 5.0×10−1 1.0×10−1 1.0×10−2 1.0×10−3 1.0×10−4 1.0×10−5

Bd/Bq 3.8×10−1 7.7×10−2 7.7×10−3 7.7×10−4 7.7×10−5 7.7×10−6

First, we study the channel autocorrelation of h[k, l] with l1 = 1, l2 = 0. The scale factor

K is computed as K = ϕ[1, 0] = 0.329. In Fig. 2.3, the approximation autocorrelation

curve and four actual autocorrelation curves with different normalized Doppler values, are

plotted. Obviously, the approximation autocorrelation gradually deviates the actual one
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hh

[i]

Approximated and actual channel autocorrelations

 

 

Norm. Doppler = 0.5
Norm. Doppler = 0.1
Norm. Doppler = 0.01
Approximation

Figure 2.3: Approximated and actual autocorrelations: l1 = 1, l2 = 0

when the Doppler spread gets large. When B̂d = 0.5, that is the Doppler spread Bd is

comparable to system bandwidth Bq, the approximation does not make sense anymore.

The normalized approximation error e[i] is shown in Fig. 2.4. From the figure, the

approximation error is negligible (or the approximation accuracy is high), when B̂d is in

the order of 10−2. Fig. 2.5 demonstrates the mean, me, and standard deviation, σe, of

normalized absolute error, e[i], at different normalized Doppler spreads. It is obvious that
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both mean and standard deviation of approximation error are close to zero when B̂d is in

the order of 10−2 or smaller.
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Figure 2.4: Normalized absolute error of autocorrelation: l1 = 1, l2 = 0

The results demonstrated through Fig. 2.3 to Fig. 2.5 for l1 = 1, l2 = 0, are also observed

with other choices of l1, l2. For example, when l1 = 0, l2 = 0 where K = ϕ[0, 0] = 0.738,

the mean and standard deviation of the approximation error is shown in Fig. 2.6, which

provides similar observation to Fig. 2.5.
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Figure 2.5: Mean and STD of normalized absolute error: l1 = 1, l2 = 0
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Figure 2.6: Mean and STD of normalized absolute error: l1 = 0, l2 = 0
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So far, numerical simulations have verified the theoretical findings in Section 2.3. The

condition Bd/Bq ≪ 1 is well fulfilled in nearly all practical systems. In multi-carrier

systems like OFDM, however, the channel Doppler spread is not always negligibly small

relative to the subcarrier bandwidth. To give an example, mobile reception of Digital

Video Broadcasting Terrestrial (DVB-T) may cause Doppler spreads up to B̂d = 0.05

at high velocities. For OFDM in matched-filter bank representation, where the receiver

is using integrate-and-dump, this number then determines the approximation accuracy.

In simulation and practical implementation, DFT processing together with a wideband

transmit pulse commonly replaces the analog filter bank. At the receiver, this has the

same effect as oversampling, as it reduces the ratio Bd/Bq by a factor equal to the number

of OFDM subcarriers.

2.5 Conclusion

Unlike time-invariant systems, LTV systems are not commutative in general. As it was

shown and discussed in this chapter, the attribute of non-commutativity may affect the

discrete-time representation of a digital transmission over WSSUS channels including trans-

mit and receive filtering. For the composite discrete-time channel, the WSS property is

preserved, but in general both the uncorrelated scattering and separability properties are

lost. In this chapter, we have provided the true and approximate representation of the

overall discrete-time channel response and have analyzed and compared their correlation

functions in detail. The approximate discrete-time channel correlation function decom-

poses into independent parts and preserves the original property of the WSSUS channel.

The approximation, which is valid if the channel Doppler spread is small relative to the

bandwidth of the receive filter, reflects the composite response of a virtual transmission

model that interchanges the order of receive filter and LTV physical channel. Under this

simplification, WSSUS channels retain a convenient representation in the discrete-time do-

main and facilitate the use of efficient channel simulators for Rayleigh and Rician channels.
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Chapter 3

Doppler Spread Estimation for

Wireless OFDM Systems

3.1 Introduction

OFDM has become the dominant information transmission technique for a number of

current and future wireless communication systems [13] – [19]. OFDM is designed pri-

marily for system with quasi-static fading, i.e., the channel keeps constant during at least

one symbol duration. To meet the ever increasing demand for broadband pervasive com-

munication, OFDM systems designed for future wireless communications are expected to

operate in an environment with high data transmission rate, high mobility, and high car-

rier frequency. High speed broadband communication dictates an operating environment

of fast time-varying and frequency-selective fading. Fast time-varying fading introduces

Doppler spread, which destroys the orthogonality among subcarriers in OFDM and causes

inter-carrier interference (ICI), which is one of the main performance degrading factors for

OFDM systems [20] – [22].

On the other hand, Doppler spread contains information about the key statistics of the

wireless channel, and it provides important guidance for system design. Doppler spread has

been utilized in single carrier systems for adaptive handoff algorithm [23], energy-efficient

routing for mobile ad hoc networks [24], mobility and resource management for wireless

multimedia networks [25], trajectory prediction for wireless networks with mobile base

stations [26]. It has also been used in OFDM-based communication systems for adaptive
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channel estimation [27], [28], adaptive power control [29], and adaptive modulation and

coding (ACM) [30]. Therefore, a good estimation of the Doppler spread is important for

the design and implementation of practical wireless communication systems.

Doppler spread estimation has received extensive attentions for single carrier commu-

nication systems [31] – [40]. However, there are very limited works on Doppler spread

estimation for OFDM systems [41] – [44]. Auto-correlation functions of frequency domain

signal [41] and time domain signal [42] are evaluated at pilot tones and used to estimate

Doppler spread. Since pilot tones only account for a small percentage of transmitted

signals, a large number of OFDM blocks are required to extract the necessary channel

statistics in the methods proposed in [41] and [42]. The algorithms in [41] and [42] re-

quire the knowledge of the channel state information, which is usually difficult to extract,

especially at high Doppler spread and low signal-to-noise ratio (SNR). In addition, the per-

formance of the algorithm in [41] is negatively affected by ICI due to its frequency domain

operation. In [43], Doppler spread is estimated by extracting the correlation between cyclic

prefix (CP) and its data counterpart within one OFDM symbol. Only the portion of the

CP that has not been corrupted can be used for estimation, which limit the applicability

of this method in practical systems. All of these works assume a simplified discrete-time

tapped-delay-line channel model with uncorrelated channel coefficients. It has been shown

in [9] and [45] (also Chapter 2) that the channel taps of equivalent discrete-time repre-

sentation of the fading channel are actually correlated due to the time span of transmit

filter and receive filter, and this correlation information is important for system design and

evaluation. Furthermore, to the best of our knowledge, all existing algorithms are designed

primarily for Rayleigh fading channels and they are unable to provide satisfactory Doppler

estimation results for frequency-selective Rician fading channel.

In this chapter, a new Doppler spread estimation algorithm that does not suffer from

any of the aforementioned limitations is proposed for broadband OFDM systems operating

under doubly-selective (time-selective and frequency-selective) Rayleigh and Rician fading

channels. The estimation is performed by collecting statistics from all the received time
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domain signals. Unlike previous methods, the new algorithm doesn’t require pilot symbols,

and can operate at the presence of both unknown channel coefficients and unknown data

symbols. It is robust to ICI and additive noise, and can provide accurate estimation of

the Doppler spread even when the SNR is as low as 0 dB. In addition, the channel tap

correlation of the equivalent discrete-time system representation is considered during the

development of the algorithm. Simulation results show that the new algorithm provides

accurate and high-efficiency estimation of the Doppler spread over a wide range of system

configurations.

3.2 System Model and Assumptions

Consider an OFDM system with block diagram shown in Fig. 3.1.

&

&

    Mapping
Coded bit
stream

   Demapping
ConstellationCoded bit

stream

S/P

P/S

&

Composite
LTV channel

     prefix/postfix
 Remove 

S/P

P/S

Add prefix/
posfix

Constellation

Channel
Estimation
/Detection

IDFT

DFT

s
(i)
k

s(i) x(i)

x(i)(n)

hc(t, τ)

v(i)(n)y(i)(n)

y(i)Y(i)

Figure 3.1: OFDM system model (only y(i)(n) is used during Doppler estimation).

For the ith (i ∈ Z+) OFDM symbol, a set of N modulation symbols, {s(i)
k }N−1

k=0 , are mul-

tiplexed onto N orthonormal subcarriers, and the obtained time-domain samples, x(i)(n),

can be expressed as

x(i)(n) =
1√
N

N−1∑

k=0

s
(i)
k e

j 2π
N
kn,−Np ≤ n < N +Nq (3.1)

where s
(i)
k ∈ S with S being the modulation alphabet set, Np and Nq are the lengths of
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cyclic prefix and cyclic postfix, respectively. Cyclic prefix and postfix are used to remove

ISI introduced by the causal part and non-causal part of the equivalent channel [9].

The modulation symbols, s
(i)
k , are assumed to be zero-mean complex random variables,

and the cross-correlation between two modulation symbols is

E

{

s
(i)
k1

[

s
(j)
k2

]∗}
= δ(k1 − k2)δ(i− j), (3.2)

where E(·) represents the operation of mathematical expectation, δ(·) is the Kronecker

delta function, and (·)∗ stands for complex conjugate. The assumption is valid for a wide

range of modulation schemes such as M-ary phase shift keying (MPSK), M-ary quadrature

amplitude modulation (MQAM), etc.

Throughout this chapter, the complex baseband transmission is considered. The time-

domain samples, x(i)(n), are passed through a transmit filter, p
T
(τ), and then transmitted

over the wireless physical channel, gc(t, τ). At the receiver, the received time domain signal

is passed through a receive filter, p
R
(τ). Define the continuous-time composite impulse

response of the channel as

hc(t, τ) = p
T
(τ) ⊗ gc(t, τ) ⊗ p

R
(τ), (3.3)

where a(τ) ⊗ b(t, τ) =
∫
b(t, α)a(τ − α)dα represents convolution of time varying signals.

For system experiencing Rician fading, gc(t, τ) can be modeled as [46]

gc(t, τ) =
g(t, τ)√
1 +K

+

√

K

1 +K
h

LOS
(t)δ(τ) (3.4)

whereK is the Rice factor, g(t, τ) is wide-sense stationary uncorrelated scattering (WSSUS)

[3] Rayleigh fading component with normalized unit energy, and the line-of-sight (LOS)

component is assumed to be h
LOS

(t) = exp(j2πfdt cos θ0+jφ0), with fd being the maximum

Doppler spread, θ0 and φ0 the angle of arrival (AOA) and the initial phase, respectively.

It’s assumed that θ0 and φ0 are uniformly distributed over (−π, π].

At the receiver, the output of the receive filter is sampled at a rate of 1/Ts. After

the removal of cyclic prefix and cyclic postfix, the received time domain samples can be

23



represented as [9]

y(i)(n) =
1√

1 +K

L2∑

l=−L1

h(i)(n, l)x(i)(n− l)+

√

K

1 +K
h(i)

LOS
(n)

P2∑

p=−P1

ρpx
(i)(n−p)+v(i)(n),

for n = 0, 1, · · · , N − 1 (3.5)

where y(i)(n) , y((iNs + n)Ts) is the nth sample of the ith received OFDM symbol, with

Ns = Np + N + Nq being the number of samples within one OFDM symbol including

prefix and postfix, and v(i)(n) is the additive white Gaussian noise (AWGN) sample with

mean zero and variance σ2. The coefficients of the non-line-of-sight (NLOS) component,

h(i)(n, l) , h((iNs + n)Ts, lTs), for l = −L1, · · · , L2, are the discrete-time version of the

continuous-time CIR, h(t, τ) = p
R
(τ) ⊗ g(t, τ) ⊗ p

T
(τ), with the non-negative integers, L1

and L2, determined by the transmit filter, receive filter, and channel power delay profile [9].

The discrete-time version of the LOS component is h(i)
LOS

(n) = h
LOS

((iNs + n)Ts). The

effects of the transmit filter and receive filter on the LOS component is summarized in

the coefficient, ρp =
∫ ∞
−∞ p

T
(s)p

R
(pTs − s)ds, for p = −P1, · · · , P2, with the non-negative

integers P1 and P2 determined by the transmit and receive filters. For energy normalized

transmit and receive filters, we have
∑P2

p=−P1
ρ2
p = 1. Specifically, ρp = δ(p) for filters

satisfying Nyquist criterion. It should be noted that, with the insertion of cyclic prefix

and postfix, the signal sample, y(i)(n), contains information contributed only from the ith

transmitted OFDM symbol, x(i)(n).

Due to the time span of the transmit filter and receive filter, the discrete-time NLOS

channel coefficient, h(i)(n, l), is generally non-causal and mutually correlated across the

delay domain l, even though the underlying physical channel is causal and experiences

uncorrelated scattering. The NLOS coefficients form a wide-sense stationary zero mean

complex Gaussian random process with auto-correlation given by [9]

E

{

h(i1)(n1, l1)
[
h(i2)∗(n2, l2)

]∗}
= Cl1,l2J0 {2πfd [(i1 − i2)Ns + (n1 − n2)]Ts} (3.6)

where Cl1,l2 is the inter-tap correlation, J0(·) is the zero-order Bessel function of the first

kind, and fd is the maximum Doppler spread. The value of Cl1,l2 is determined by transmit
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filter, channel power delay profile, and receive filter. For energy normalized composite

channel, we have
∑L2

l=−L1
Cl,l = 1.

3.3 Algorithm Development Based on Time-Domain

Signal Statistics

In this section, theoretical analysis is performed to investigate the key second-order and

fourth-order statistics of the received time-domain samples, y(i)(n), and the results are

used to facilitate the development of the Doppler spread estimation algorithm.

3.3.1 Statistics of Received Signals

Define the auto-correlation of the received time domain signal, y(i)(n), and the auto-

correlation of received signal power, |y(i)(n)|2, as

Ryy(s, u, n,m) , E

{

y(s)(n +m)
[
y(u)(n)

]∗}
(3.7a)

R|y|2|y|2(s, u, n,m) , E
{
|y(s)(n+m)|2|y(u)(n)|2

}
(3.7b)

where s, u ∈ Z+ are OFDM symbol indices, and n and m are time instant and time lag in

samples, respectively.

Substituting (3.1) and (3.5) into (3.7), we have the auto-correlations expressed in (3.8)

and (3.9), where the identities, J0 {2πfd [(s− u)Ns +m]Ts} δ(s− u) = J0(2πfdmTs)δ(s−

u), and cos {2πfd [(s− u)Ns +m] Ts cos θ0} δ(s−u) = cos(2πfdmTs cos θ0)δ(s−u), are used

in the derivation of (3.8) and (3.9). The proofs for (3.8) and (3.9) are delegated to the

Appendix A. Observing (3.8) and (3.9) reveals that both y(n) and |y(n)|2 are wide-sense

stationary since they are functions of symbol index difference s− u and time difference m,

while independent of the starting symbol index s and starting time instant n. Therefore,

we denote Ryy(s, u, n,m) , Ryy(s − u,m) and R|y|2|y|2(s, u, n,m) , R|y|2|y|2(s − u,m) in
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the sequel unless specified otherwise.

Ryy(s, u, n,m) =

[

1

N(1 +K)

L2∑

l1=−L1

L2∑

l2=−L1

N−1∑

k=0

Cl1,l2J0(2πfdmTs)e
j

2π(l2−l1+m)k
N +

K

N(1 +K)

P2∑

p1=−P1

P2∑

p2=−P1

N−1∑

k=0

ρp1ρ
∗
p2e

j2πfdmTs cos θ0ej
2π(p2−p1+m)k

N + σ2δ(m)

]

δ(s−u) (3.8)

R|y|2|y|2(s, u, n,m) =

1 + 2σ2 + σ4 + 2σ2δ(m)δ(s− u) + σ4δ(m)δ(s− u)

+
J2

0 {2πfd [(s− u)Ns +m]Ts}
(1 +K)2

L2∑

l1=−L1

L2∑

l2=−L1

|Cl1,l2|2

+
2KJ0 {2πfd [(s− u)Ns +m]Ts} cos {2πfd [(s− u)Ns +m]Ts cos θ0}

(1 +K)2
×

L2∑

l1=−L1

L2∑

l2=−L1

P2∑

p1=−P1

P2∑

p2=−P1

l1=p1,l2=p2

Cl1,l2ρ
∗
p1
ρp2

+
1

(1 +K)2N2

L2∑

l1=−L1

L2∑

l2=−L1

L2∑

l3=−L1

L2∑

l4=−L1

N−1∑

k1=0

N−1∑

k2=0
k1 6=k2

[
Cl1,l2Cl3,l4 + Cl1,l4C

∗
l2,l3J

2
0 (2πfdmTs)

]
×

ej
2π[k1(m+l4−l1)−k2(m+l3−l2)]

N δ(s− u)

+
K

(1 +K)2N2

L2∑

l1=−L1

L2∑

l2=−L1

P2∑

p1=−P1

P2∑

p2=−P1

N−1∑

k1=0

N−1∑

k2=0
k1 6=k2

Cl1,l2ρp1ρ
∗
p2
×

[

ej
2π[k1(m−l1+p2)−k2(m−l2+p1)]

N + ej
2π[k1(m−p1+l2)−k2(m−p2+l1)]

N

]

δ(s− u)

+
2KJ0(2πfdmTs) cos(2πfdmTs cos θ0)

(1 +K)2N2

L2∑

l1=−L1

L2∑

l2=−L1

P2∑

p1=−P1

P2∑

p2=−P1

N−1∑

k1=0

N−1∑

k2=0
k1 6=k2

Cl1,l2ρ
∗
p1
ρp2 ×

ej
2π[k1(m+l2−l1)−k2(m+p2−p1)]

N δ(s− u)

+
K2

(1 +K)2N2

P2∑

p1=−P1

P2∑

p2=−P1

P2∑

p3=−P1

P2∑

p4=−P1

N−1∑

k1=0

N−1∑

k2=0
k1 6=k2

ρp1ρ
∗
p2ρp3ρ

∗
p4 ×

ej
2π[k1(m+p4−p1)−k2(m+p3−p2)]

N δ(s− u) (3.9)
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Setting s− u = 0, m = 0 in (3.8), we have Ryy(0) , Ryy(s = u,m = 0) as

Ryy(0) =
1

N(1 +K)

L2∑

l1=−L1

L2∑

l2=−L1

N−1∑

k=0

Cl1,l2e
j

2π(l2−l1)k
N +

K

N(1 +K)

P2∑

p1=−P1

P2∑

p2=−P1

N−1∑

k=0

σp1σ
∗
p2
ej

2π(p2−p1)k
N + σ2

= 1 + σ2 (3.10)

Thus, the auto-covariance of the received signal power can be written as

V|y|2|y|2(s− u,m) = R|y|2|y|2(s− u,m) − E2
[∣
∣y(s)(n)

∣
∣
2
]

= R|y|2|y|2(s− u,m) − (1 + σ2)2 (3.11)

The statistics described in (3.8), (3.9) and (3.11) are expressed as functions of the Doppler

spread fd. However, the expressions of the statistics are extremely complicated, thus it

would be rather difficult, if not impossible, to directly extract the values of fd based on these

expressions. To facilitate the development of the Doppler spread estimation algorithm, we

have the following three remarks on the signal statistics.

Remark 1 : From (3.8), we observe that signals from different OFDM symbols, i.e.,

(s 6= u), are always uncorrelated regardless of the value of m. This observation is intuitive

since signals within one OFDM symbol are independent from adjacent OFDM symbols

due to the presence of cyclic prefix and cyclic postfix. For the case s = u, the auto-

correlation of the received signal samples within one OFDM symbol interval is also zero if

L < |m| < N −L, where L = L1 +L2, because both of the triple summation terms in (3.8)

are zeros in this case. For other values of m, the value of Ryy(s − u,m) is involved with

m in a very complicated way as evident in (3.8). Therefore, the auto-correlation function,

Ryy(s− u,m), is not a good candidate for Doppler estimation.

Remark 2 : When s 6= u, the auto-correlation and auto-covariance of received signal
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power in (3.9) and (3.11) can be simplified as follows

R|y|2|y|2(s− u,m) = 1 + 2σ2 + σ4 +
J2

0{2πfd[(s− u)Ns +m]Ts}
(1 +K)2

L2∑

l1=−L1

L2∑

l2=−L1

|Cl1,l2 |2 +

2KJ0{2πfd[(s− u)Ns +m]Ts} cos{2πfd[(s− u)Ns +m]Ts cos θ0}
(1 +K)2

×
L2∑

l1=−L1

L2∑

l2=−L1

P2∑

p1=−P1

P2∑

p2=−P1

l1=p1,l2=p2

Cl1,l2ρ
∗
p1ρp2 (3.12)

V|y|2|y|2(s− u,m) =
J2

0{2πfd[(s− u)Ns +m]Ts}
(1 +K)2

L2∑

l1=−L1

L2∑

l2=−L1

|Cl1,l2|2 +

2KJ0{2πfd[(s− u)Ns +m]Ts} cos{2πfd[(s− u)Ns +m]Ts cos θ0}
(1 +K)2

×
L2∑

l1=−L1

L2∑

l2=−L1

P2∑

p1=−P1

P2∑

p2=−P1

l1=p1,l2=p2

Cl1,l2ρ
∗
p1ρp2 (3.13)

It is worth pointing out that the expression in (3.13) is independent of the AWGN variance

σ2.

Remark 3 : Comparing (3.9) and (3.11) with (3.12) and (3.13), we can see that, when

s = u, there is a complicated extra term involving fd in the expressions of the auto-

correlation and auto-covariance of signal power as compared to the s 6= u case. Since it is

extremely difficult to evaluate the extra term, the s = u case is not a desirable candidate

for Doppler spread estimation.

Based on the analysis above, we conclude that the auto-covariance of signal power

evaluated at s 6= u is the most suitable candidate for Doppler spread estimation. Compared

to other cases, V|y|2|y|2(s−u,m) at s 6= u has two advantages. First, it is directly related to

the maximum Doppler spread in an expression that is easy to analyze. Second, the effect

of AWGN is completely removed, and this is highly desirable for the design of a robust

estimation algorithm.
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3.3.2 Doppler Spread Estimation

We are now in a position to develop the Doppler spread estimation algorithm based on the

auto-covariance given in (3.13). Denote

α =
1

(1 +K)2

L2∑

l1=−L1

L2∑

l2=−L1

|Cl1,l2|2, (3.14a)

β =
2K

(1 +K)2

L2∑

l1=−L1

L2∑

l2=−L1

P2∑

p1=−P1

P2∑

p2=−P1

l1=p1,l2=p2

Cl1,l2ρ
∗
p1ρp2, (3.14b)

z = 2πfd[(s− u)Ns +m]Ts, (3.14c)

then (3.13) can be written in a compact form as

V|y|2|y|2(z) = αJ2
0 (z) + βJ0(z) cos(z cos θ0) (3.15)

Since the values of α and β are unknown, (3.15) cannot be used directly for the estimation

of the Doppler spread fd. Instead, we resort to the normalized auto-covariance defined as

VN(k, z) ,
V|y|2|y|2(kz)

V|y|2|y|2(z)
=
αJ2

0 (kz) + βJ0(kz) cos(kz cos θ0)

αJ2
0 (z) + βJ0(z) cos(z cos θ0)

, (k > 1 integer) (3.16)

where k is an integer that can be adjusted to achieve better estimation accuracy. When k

is properly chosen such that kz is small, second-order approximations, J0(x) ≈ 1− x2

4
and

cos(x) ≈ 1 − x2

2
, can be employed, and this leads to the following approximation

VN(k, z) ≈
α

[

1 − (kz)2

4

]2

+ β
[

1 − (kz)2

4

] [

1 − (kz cos θ0)2

2

]

α
(
1 − z2

4

)2
+ β

(
1 − z2

4

) [

1 − (z cos θ0)2

2

] . (3.17)

To further simplify the representation, replacing cos2 θ0 with its expectation, E (cos2 θ0) =

0.5, we are able to cancel the two unknown parameters, α and β, from the expression of

VN(k, z), and the result is

VN(k, z) ≈

[

1 − (kz)2

4

]2

(
1 − z2

4

)2 (3.18)

The solution of z from (3.18) is

z = 2

√

1 − UN (k, z)

k2 − UN(k, z)
(3.19)
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where UN (k, z) =
√

VN(k, z). Let s−u = 1, m = 0, then z = 2πfdNsTs, and the estimation

for Doppler spread is obtained as

f̃d =

√
1−UN (k,z)
k2−UN (k,z)

πNsTs
=
F1(k, z)

πNsTs
(3.20)

where

F1(k, z) ,

√

1 − UN(k, z)

k2 − UN (k, z)
(3.21)

It should be noted that other values of s − u and m can also be used in Doppler spread

estimation without affecting the estimation accuracy. In this chapter, however, we fix

z = 2πfdNsTs without loss of generality.

Similarly, if we employ fourth-order approximations: J0(x) ≈ 1− x2

4
+ x4

64
and cos(x) ≈

1 − x2

2
+ x4

24
, and noting the fact that E (cos4 θ0) = 3

8
, then

VN(k, z) ≈
α

[

1− (kz)2

4
+ (kz)4

64

]2

+β
[

1− (kz)2

4
+ (kz)4

64

] [

1− (kz cos θ0)2

2
+ (kz cos θ0)4

24

]

α
(
1− z2

4
+ z4

64

)2
+β

(
1− z2

4
+ z4

64

) [

1− (z cos θ0)2

2
+ (z cos θ0)4

24

]

=

[

1 − (kz)2

4
+ (kz)4

64

]2

(
1 − z2

4
+ z4

64

)2 , (3.22)

from which z can be solved as

z = 2
√

2

√

k2 − UN (k, z) − (k2 − 1)
√

UN(k, z)

k4 − UN (k, z)
(3.23)

The Doppler spread estimation using fourth-order approximation can then be obtained

from (3.23) as

f̂d =

√
2

√

k2−UN (k,z)−(k2−1)
√
UN (k,z)

k4−UN (k,z)

πNsTs
=
F2(k, z)

πNsTs
(3.24)

where

F2(k, z) ,
√

2

√

k2 − UN(k, z) − (k2 − 1)
√

UN (k, z)

k4 − UN(k, z)
(3.25)

When Doppler spread estimation is obtained, the mobile speed can be calculated from

Doppler spread as v = fdc/fc, where c is the speed of light and fc is the carrier frequency.
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Compared to existing algorithms, the newly proposed method has the following ad-

vantages. First, the estimation of the Doppler spread doesn’t require the knowledge of

fading channel coefficients or transmitted data symbols. Thus, all of the received signals,

including both unknown data and known pilot, can be used in the estimation. Second,

the effect of additive noise is removed in the estimation process due to the employment

of the auto-covariance of received signal power. Third, the channel inter-tap correlation,

which is present in practical systems, is taken into account during the estimation process.

Fourth, the estimation is performed over time domain signals, thus it is not affected by

ICI in frequency domain.

3.4 A Practical Doppler Estimation Algorithm

Based on the theoretical analysis presented in section 3.3, a practical Doppler spread esti-

mation algorithm with low estimation latency and high computation efficiency is presented

in this section.

From the theoretical estimators given in (3.20) and (3.24), the proper operation of

the Doppler estimation algorithm requires the knowledge of the auto-covariance function,

V|y|2|y|2(s − u,m), which can be approximated using time average. To obtain an accu-

rate time-averaged approximation of the auto-covariance function, long data sequences are

needed. This will result in long estimation delay with high computational complexity. To

keep the estimation latency small while achieving satisfactory estimation reliability, we

pass the received signal power, p(i)(n) = |y(i)(n)|2, through a low pass filter to suppress the

effects of AWGN and power fluctuations. The filtered signal power can be represented by

p̂(i)(n) =

Lf∑

l=0

f(l)p(i)(n− l), (3.26)

where Lf and f(l) are the order and coefficient of the low pass filter, respectively.

The time-averaged approximation of the auto-covariance function can then be calcu-

lated by collecting the filtered signal power from M consecutive OFDM symbols, and the
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result is

V̂|y|2|y|2(s− u = l,m) =
1

(M−k)(N−m)

M−l∑

i=1

N−m−1∑

n=0

[p̂(i+l)(n +m)−p̄][p̂(i)(n)−p̄] (3.27)

where p̄ = 1
MN

∑M
i=1

∑N−1
n=0 p̂

(i)(n) is the time average of the signal power.

In addition to the auto-covariance function, another key parameter required for Doppler

spread estimation is the integer k as shown in (3.20) and (3.24). The selection of k depends

on two factors: first, kz should be small such that approximations in (3.18) and (3.22)

still hold; second, for a given Doppler spread fd, or z = 2πfdNsTs, the normalized auto-

covariance, VN(k, z), should not be too close to 1, such that enough information can be

collected from VN(k, z) for Doppler spread estimation. To meet both of the two objectives,

the value of k should adapt roughly according to the variation of Doppler spread. Therefore,

we classify the Doppler spread into three categories, “low”, “medium”, and “high”, and

different values of k are used for each of the three categories.

Classification of Doppler spread is performed at receiver by using the normalized auto-

covariance of received signal power. In (3.11), when s = u, we choose a value m such that

Tm = mTs is less than 30µs, then J0(2πfdmTs) ≈ 1 and cos(2πfdmTs cos θ0) ≈ 1 even if

fd is as high as 500Hz. In this case, the auto-covariance V|y|2|y|2(s − u = 0, m) tends to a

constant value irrelevant to fd. We denote this constant as V|y|2|y|2(Tm). Further, choose

s − u = k0, such that Tblk = k0Tsym ≈ 5ms, where Tsym = NsTs is the time duration of

one OFDM symbol including cyclic prefix and postfix. Similarly, define V|y|2|y|2(Tblk) ,

V|y|2|y|2(s − u = k0, m = 0). Then, the classification of Doppler spread can be achieved as

follows

V|y|2|y|2(Tblk)

V|y|2|y|2(Tm)







> 0.95, low,

< 0.3, high,

otherwise, medium.

(3.28)

where the classification thresholds, 0.95 and 0.3, are chosen for illustration purpose only.

Other threshold values can be obtained through optimization for different levels of “low”,

“high”, and “medium”.

Based on the Doppler spread classification given in (3.28), the value of k corresponding
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to each category is

k =







10k0, low,

k0, medium,

⌈0.1k0⌉, high.

(3.29)

The values used in (3.29) are obtained based on empirical simulation results.

With the auto-covariance function approximation in (3.27) and the values of k given in

(3.29), the Doppler spread can be estimated by substituting (3.27) and (3.29) into (3.20)

or (3.24) with second-order and fourth-order approximations, respectively. The practical

Doppler spread estimation algorithm is summarized as follows.

Step 1 : Choose {m, k0,M} such that mTs < 30µs, Tblk = k0Tsym ≈ 5ms, and MTsym <

1s.

Step 2 : Compute V|y|2|y|2(Tm) and V|y|2|y|2(Tblk). Classify Doppler spread as “low”,

“medium” or “high” according to (3.28), and select k based on (3.29).

Step 3 : Compute V|y|2|y|2(kz), V|y|2|y|2(z) and thus UN (k, z), then obtain Doppler spread

estimations f̃d and f̂d according to (3.20) and (3.24) as follows:

f̃d =







F1(10k0,z)
πNsTs,

low,
F1(k0,z)
πNsTs,

medium,
F1(⌈0.1k0⌉,z)

πNsTs,
high

(3.30)

f̂d =







F2(10k0,z)
πNsTs,

low,
F2(k0,z)
πNsTs,

medium,
F2(⌈0.1k0⌉,z)

πNsTs,
high

(3.31)

Step 4 : Take the average of f̃d and f̂d in (3.30) and (3.31) as the final Doppler spread

estimation f̄d = (f̂d + f̃d)/2.

3.5 Simulation

In this section, the performance of the proposed Doppler spread estimation algorithm in

practical OFDM systems is evaluated by performing simulations in a DVB-H system.

In the simulation, one OFDM symbol excluding cyclic prefix and postfix has a time

duration of Tu = 224µs. Sampling interval is Ts = Tu/N , where the value of N is 2048
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corresponding to the 2K-mode of DVB-H system. The lengths of the cyclic prefix and

cyclic postfix are set as Np = Nq = N/8 = 256. One OFDM frame consists of 68 OFDM

symbols, and four frames form one super-frame. The transmit filter, p
T
(τ), and receive

filters, p
R
(τ), are normalized square root raised cosine filter with roll-off factor 0.3. The

power delay profile of the wireless physical fading channel has 120 uncorrelated taps with

tap space being Ts/2. The average power of the first 40 taps ramps up linearly and the last

80 taps ramps down linearly. The equivalent Ts-spaced composite discrete-time channel,

h(n, l), has L = 63 correlated taps. The noise-suppression low pass filter has Lf = 50 taps,

and k0 = 20 is selected in (3.29) based on the above system configuration.

We first study the estimation performance in Rayleigh fading channel with Rice factor

K = 0. The mean and standard deviation of the estimated Doppler spreads obtained

with the proposed algorithm are shown in Fig. 3.2 for a system with 64QAM modulation.

For each Doppler spread, the estimation is performed over Nf = 24 consecutive OFDM

frames, which correspond to a time duration less than 0.5 second. It’s clear from the
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Figure 3.2: Doppler spread estimation (Rayleigh fading, 64QAM modulation).
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figure that the proposed algorithm provides accurate and reliable estimation of the Doppler

spread for SNR as low as 0 dB. More accurate estimations can be achieved at higher SNR.

Similar observation is obtained for system with 8PSK modulation as shown in Fig. 3.3,

which is obtained by using the same parameters as in Fig. 3.2 except the modulation

scheme. Comparing Figs. 3.2 and 3.3 we conclude that the proposed estimation algorithm

is insensitive to modulation schemes. In Fig. 3.4, the standard deviation (STD) of estimated
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Figure 3.3: Doppler spread estimation (Rayleigh fading, 8PSK modulation).

Doppler spreads is plotted as a function of the number of OFDM frames, Nf , used in one

estimation. As expected, the estimation standard deviation decreases when more OFDM

frames are used during estimation. This is intuitive because more frames lead to a better

time-averaged approximation of the auto-covariance function. The simulation results for

Rician fading with 64QAM modulations are presented in Fig. 3.5. The Rice factor is fixed

at K = 5, and the Rician channel simulator in [46] is used for the generation of Rician

fading during simulation. Comparing the results in Figs. 3.2 and 3.5, we can see that the
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Figure 3.4: STD v.s. number of frames (Rayleigh fading, 64QAM modulation).

estimation accuracy in Rician fading channel is slightly worse compared to the Rayleigh

case. The performance difference is mainly contributed by the approximations of cos(x)

and cos2(θ0) used in the derivation of (3.18) and (3.22) for Rician fading channel, yet

these approximations are not necessary for Doppler spread estimation in Rayleigh fading

channel. Even though the estimation accuracy in Rician fading channel is slightly worse

compared to the Rayleigh case, the algorithm can still obtain a very accurate estimation

of the Doppler spread, and the estimation accuracy increases with the increase of SNR as

expected. Similar results are obtained for system with other modulation schemes, and this

corroborates that the proposed method is insensitive to modulation schemes. The impact

of Rice factor on the performance of the estimation algorithm is investigated in Fig. 3.6,

where the standard deviation of the estimated Doppler spread is shown as a function of

Rice factor K at different values of Doppler spread. 8PSK modulation is used in this

example. It can be seen from the figure that the estimation accuracy degrades gradually
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Figure 3.5: Doppler spread estimation (Rician fading, 64QAM modulation).

with the increase of K. As analyzed before, the performance degradation is mainly due to

extra approximations involved in the LOS component of the fading during the estimation

process.

3.6 Conclusion

An accurate low latency Doppler spread estimation algorithm was presented in this chapter

for OFDM systems with fast time-varying frequency-selective Rayleigh and Rician fading.

The algorithm doesn’t require pilots in the transmitted signal, and was developed by

analyzing the statistical properties of received signals containing unknown transmitted

data symbols and unknown channel fading. The estimation is performed with the auto-

covariance function of the power of the received time domain signals. Since the algorithm

operates in the time domain, its performance is not affected by the ICI induced by the time

variation of fading channel within one OFDM symbol. In addition, a practical algorithm
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was proposed for accurate and high efficiency Doppler estimation. Extensive simulations

have shown that the new algorithm works well for doubly-selective Rayleigh and Rician

fading channels at SNR as low as 0 dB.
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Chapter 4

Channel Estimation for OFDM

Systems with CFO and Phase Noise

4.1 Introduction

As mentioned in Chapter 3, OFDM system has emerged as one of the most promising

communication technologies for both wireless and wireline communications [13] – [19].

OFDM achieves broadband communication by multiplexing a large number of narrow-band

data streams onto mutually orthogonal subcarriers via fast Fourier transform (FFT). The

adoption of FFT greatly reduces the implementation cost due to the advancement in digital

signal processing (DSP) and very large scale integrated circuit (VLSI). Compared to single

carrier system, OFDM has higher spectral efficiency and is less sensitive to intersymbol

interference (ISI). However, the performance of OFDM system is very sensitive to carrier

frequency offset (CFO) and phase noise. CFO is caused by Doppler shift, and/or frequency

mismatch between oscillators at transmitter and receiver; phase noise is the phase difference

between carrier and local oscillator (LO) [47]. The CFO and phase noise, if not properly

estimated and compensated, will cause amplitude reduction and phase drift in equalized

symbols, and introduce inter-carrier interference (ICI), thus degrade the performance of

OFDM systems [48] – [57].

CFO and phase noise estimations for OFDM system have attracted considerable atten-

tions during the past decade [48] – [57]. A large number of algorithms have been developed

for CFO estimation, where CFO can be estimated by utilizing either specially designed
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training symbols [48], [49], redundant information contained in cyclic prefix (CP) [50], [51],

or null subcarriers embedded in one OFDM symbol [52], [53]. Works on phase noise esti-

mation and suppression for OFDM systems can be found in [54] – [57]. In [54], a carrier

recovery (CR) scheme is performed in the time domain with the aid of CR pilot tones for

the estimation and compensation of phase noise. In [55] and [56], phase noise is estimated

by using a parametric frequency-domain model of the received OFDM signal. In [57], phase

noise cancellation is achieved via approximate probabilistic inference.

The proper operation of coherent OFDM system demands the joint estimation of CFO,

phase noise, and channel state information. In [58], the CFO is estimated and compensated

before channel estimation, and phase noise is suppressed by passing the estimated channel

impulse response through a low-pass filter originally designed for additive noise suppression.

In [59], joint CFO and channel estimation for MIMO OFDM system is performed by

relying on null-subcarrier and non-zero pilot symbols hopping from block to block. This

specifically designed pilot pattern enables the decoupling of CFO estimation and channel

estimation. However, the optimum solution in [59] requires exhaustive line search, which

leads to high computational complexity. The CFO, timing error and channel impulse

response (CIR) for a multiuser orthogonal frequency division multiple access (OFDMA)

uplink transmission are estimated in [60] with maximum likelihood (ML) criterion. Again,

the ML solution in [60] requires exhaustive search over a multi-dimensional grid spanned by

CFOs and timing errors from multiple users. Even though simplifications can be performed

to reduce the search effort for the optimum solutions, the computational complexity is still

high. A joint CFO/phase noise/CIR estimator (JCPCE) is presented in [61]. Similar

to [59] and [60], the JCPCE suffers from high computational complexity due to the non-

closed-form estimation of CFO. To reduce the complexity of JCPCE, a modified JCPCE

(MJCPCE) algorithm with closed-form CFO estimation is developed in [61] by adopting

a special training symbol structure as proposed in [48]. The MJCPCE algorithm requires

the knowledge of channel length, which is usually not available at receiver before channel

estimation. In addition, its practical value is seriously limited by the fact that it can only
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estimate CFO with value less than the frequency space between two adjacent subcarriers.

We present in this chapter an enhanced algorithm for the efficient estimation of CFO,

phase noise, and channel state information. The new algorithm doesn’t suffer from any of

the aforementioned limitations. The CFO estimation is developed by exploring the time-

frequency properties of two consecutive training symbols with structures similar to those

used in [49]. The new method renders an accurate estimation of CFO in the presence of both

unknown frequency selective fading and phase noise. More importantly, the CFO can take

arbitrary values, as against the limitation imposed by MJCPCE that CFO must be less than

the subcarrier space [61]. With the estimated CFO, the phase noise and frequency selective

fading are jointly estimated based on the maximum a posteriori (MAP) criterion. In

particular, the channel is estimated in terms of frequency-domain channel transfer function

(CTF), and it is different from the time-domain CIR estimation method used in MJCPCE.

The adoption of CTF instead of CIR leads to an estimator with lower complexity and

better accuracy. In addition, it eliminates the requirement for a priori knowledge of channel

length, which is usually unavailable at receiver before channel estimation. The Cramer-Rao

lower bound (CRLB) for the mean square error (MSE) of CTF estimation is derived to

benchmark the performance of the proposed algorithm. Simulation results show that the

new channel estimator can achieve a performance close to CRLB.

The remainder of this chapter is organized as follows. In Section 4.2, an OFDM system

model with CFO and phase noise distortion is presented. In Section 4.3, a CFO estimation

method is first developed by exploring the time-frequency structure of the training symbols,

then a joint phase noise and CTF estimation algorithm is developed based on the CFO-

compensated signals. Simulation results are presented in Section 4.5, and Section 4.6

concludes the chapter.
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4.2 System Model

Baseband OFDM signal can be obtained by performing normalized inverse discrete Fourier

transform (IDFT) on a group of modulated symbols, s =
[
s0 , s1, · · · , sN−1

]
∈ C1×N , at the

transmitter, as

xn =
1√
N

N−1∑

k=0

s
k
ej2π

kn
N ,−Np ≤ n < N (4.1)

where N is the number of subcarriers, Np ≥ L is the length of cyclic prefix (CP), with L

being the length of the equivalent discrete-time CIR, {h
l
}L−1
l=0 . The adoption of CP removes

ISI, and it enables the conversion of linear channel convolution to circular convolution,

which leads to simple equalization at receiver.

We consider slow frequency selective fading in this chapter. The CIR is assumed to

be constant over one slot duration, which contains two OFDM training symbols followed

by multiple OFDM data symbols [61]. The OFDM training symbol is generated by al-

ternatively transmitting pilot symbols and zeros in the frequency domain. Without loss

of generality, it is assumed that N/2 pilot symbols are transmitted on the even-indexed

subcarriers and zeros on the odd-indexed subcarriers. The time-domain representation of

the OFDM training symbol can then be expressed as

xn =
1

√

N/2

N/2−1
∑

k=0

s
2k
e
j2π kn

N/2 ,−Np ≤ n < N (4.2)

where {s
2k
}N/2−1
k=0 are pilot symbols, and the normalization factor, 1√

N/2
, is used in (4.2)

to maintain constant OFDM symbol energy. The transmission of zeros on odd-indexed

subcarriers results in a N
2
-point IDFT in (4.2). In addition, it is clear from (4.2) that the

time-domain OFDM training symbol has two identical halves, i.e., {xn}N/2−1
n=0 is exactly the

same as {xn}N−1
n=N/2. This property of the training symbol will be exploited to assist CFO

estimation.

At the receiver, after the removal of CP, we have the time-domain samples of the
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received OFDM training symbol as

yn = ej(2π
nǫ
N

+φn) (hn ⊗ xn) + vn

= ej(2π
nǫ
N

+φn) 1
√

N/2

N/2−1
∑

k=0

s
2k
H

2k
ej2π

kn
N/2 + vn (4.3)

where n = 0, 1, · · · , N−1, ⊗ denotes circular convolution, vn is the additive white Gaussian

noise (AWGN) with variance σ2, ǫ is the CFO normalized with respect to subcarrier space

1
NTs

, with Ts being the sampling period at receiver, φn is the phase noise distortion, and

the frequency-domain CTF, H
2k

, is defined as

H
2k

=

L−1∑

l=0

h
l
e−j2π

2kl
N , 0≤k≤N/2−1. (4.4)

It should be noted that the circular convolution in the first equality of (4.3) is due to the

insertion of the CP, and the relationship described in (4.3) is valid as long as Np ≥ L.

Define E = diag
{
1,ej2πǫ/N , · · ·, ej2π(N−1)ǫ/N

}
, P = diag

{
ejφ0 , ejφ1 , · · ·, ejφN−1

}
, S =

diag
{
s0 , s2, · · ·, sN−2

}
andH=

[
H0, H2 , · · · , HN−2

]t
, then (4.3) can be represented in matrix

format as

y = EPF̃hSH + v (4.5)

where y =
[
y0, y1, · · ·, yN−1

]t
, v =

[
v0 , v1 , · · ·, vN−1

]t
, (·)t and (·)h stand for transpose and

Hermitian transpose, respectively, and F̃ =
[

F
N/2
,F

N/2

]

∈ C N
2
×N with F

N/2
being the

N
2 -point DFT matrix. The (k, l)-th element of F

N/2
is

(

F
N/2

)

k,l
= 1√

N/2
e
− j2π(k−1)(l−1)

N/2 .

The statistical properties of phase noise depend on specific receiver implementations

[47]. For receiver equipped with a phase-locked loop (PLL), the phase noise can be mod-

eled as a zero-mean colored stationary Gaussian process [47]. When the system is only

frequency-locked, the phase noise is modeled as a zero-mean, nonstationary Wiener pro-

cess [62]. Since PLL is necessary for a coherent receiver, the stationary Gaussian process

model, which has been extensively used in the literature [54, 57, 61, 63], is adopted in this

chapter. In this case, φ=
[
φ

0
, φ

1
, · · · , φ

N−1

]t
has a multivariate Gaussian distribution of

φ ∼ N (0
N
,Rφ), where the mean vector, 0

N
, is a size N × 1 all zero vector, and Rφ is
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the covariance matrix of φ. The value of Rφ can be calculated with the specifications of

phase-locked voltage controlled oscillator (VCO) [62].

4.3 Development of Estimation Algorithm

In this section, the CFO estimation exploring the time-frequency structure of the train-

ing symbols, is first discussed. After that, a joint channel estimation and phase noise

suppression method using MAP criteria is developed, with the CFO-compensated signal.

4.3.1 CFO Estimation in The Presence of Fading and Phase

Noise

Based on the training symbol property, xn = xn+N/2, for n = 0, · · · , N/2 − 1, the received

time-domain training samples, yn and yn+N/2, are the same except a phase difference, in

the absence of additive noise and phase noise [c.f. (4.3)],

y∗nyn+N/2 = |yn|2ejπǫ. (4.6)

Obviously, (4.6) is a periodic function of ǫ with period 2z, where z is an integer. Thus, the

CFO can be estimated by measuring the phase difference between y1 =
[

y0, y1,· · ·, yN/2−1

]t

and y2 =
[

y
N/2
, y

N/2+1
,· · ·, y

N−1

]t

, up to an ambiguity, 2z. In [61], CFO estimation with

additive noise and phase noise rejection is performed in the time domain by measuring the

phase difference between y1 and y2, and the result can be written as

ǫ̂ =
1

π
∡

[

yh1 (Y1R∆
Yh

1 + 2σ2I
N/2

)−1y2

]

(4.7)

where ∡a ∈ (−π, π] returns the phase of the complex-valued number a, Y1 = diag {y1}

with diag {a} being a diagonal matrix with the vector a on its diagonal, I
N/2

is a size N/2

identity matrix, and R
∆

= 2R
N/2

− Υ − Υt, with R
N/2

∈ C N
2
×N

2 and Υ ∈ C N
2
×N

2 being

sub-matrices of Rφ expressed as follows

Rφ =

[
R

N/2
Υ

Υt R
N/2

]

. (4.8)
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The CFO estimation described in (4.7) implies that the estimated CFO satisfies |ǫ̂| < 1.

When the actual CFO is larger than subcarrier space, or |ǫ| > 1, it fails to solve the

ambiguity 2z with z being a nonzero integer, as indicated by (4.6). In other words, if we

denote CFO as ǫ = ǫ0 + 2z with |ǫ0 | < 1, then only the fractional CFO, ǫ0 , is estimated

from (4.7).

We propose to estimate the integer part of the CFO, 2z, in the frequency domain by

utilizing two consecutive OFDM training symbols. From (4.3), the received samples of the

first and second OFDM training symbols can be written as

y1,n =

√

2

N
ej2π

nǫ
N ejφn

N/2−1
∑

k=0

s
1,2k
H

2k
ej2π

kn
N/2 + v1,n (4.9a)

y2,n =

√

2

N
ej2π

(n+N+Np)ǫ

N e
jφ

n+N+Np

N/2−1
∑

k=0

s
2,2k
H

2k
ej2π

kn
N/2 + v2,n (4.9b)

where n= 0, 1, · · · , N−1 for both y1,n and y2,n . The ratio of the two training sequences,
{
s

1,2k

}
N/2−1

k=0
and

{
s

2,2k

}
N/2−1

k=0
, is set to be equal to a predefined pseudo-noise (PN) sequence

{α
k
}N/2−1

k=0
, i.e., s

2,2k
/s

1,2k
= α

k
.

Fractional CFO, ǫ0 , is estimated with (4.7) and then compensated in y1,n and y2,n ,

respectively, and it leads to the following approximation

ŷ1,n ≈
√

2

N

N/2−1
∑

k=0

s
1,2k
H

2k
ej2π

(k+z)n
N/2 + v̂1,n (4.10a)

ŷ2,n ≈
√

2

N
ej4π

zNp
N

N/2−1
∑

k=0

s
2,2k
H

2k
ej2π

(k+z)n
N/2 + v̂2,n (4.10b)

where v̂1,n and v̂2,n are the noise components after fractional CFO compensation, and the

approximation, ej[φn+2πn(ǫ0−ǫ̂0)/N] ≈ 1, is used in the above equations based on the fact that

the combined disturbance of phase noise and residual CFO are usually small in practice [54].

It should be noted that the approximation used in (4.10) is only for the convenience of

integer CFO estimation. The actual phase noise will be estimated and compensated during

channel estimation described in the next subsection. It’ll be shown in simulation that the

integer CFO 2z can be accurately estimated even with the approximation used in (4.10).
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The estimation of 2z is performed in the frequency domain. Performing N -point DFT

on ŷ1,n and ŷ2,n leads to

Ŷ
1,k

=
√

2s
1,(k−2z)

N
H

(k−2z)
N

+V̂
1,k

(4.11a)

Ŷ
2,k

=
√

2ej4πzNp/Ns
2,(k−2z)

N
H

(k−2z)
N

+V̂
2,k

(4.11b)

where (·)N denotes modulus N operation, Ŷi,k and V̂i,k are the DFTs of ŷi,n and v̂i,n,

respectively, for i = 1, 2. There is a phase difference, ej4πzNp/N , between Ŷ
1,k

and Ŷ
2,k

in

the frequency domain, and the phase difference is independent of the subcarrier index k.

Define the metric used to estimate z as

M(z) =

∣
∣
∣
∣
∣
∣

N/2−1
∑

k=0

Ŷ ∗
1,2k+2z

α∗
k
Ŷ

2,2k+2z

∣
∣
∣
∣
∣
∣

(4.12)

where (·)∗ denotes complex conjugate. With M(z) defined in (4.12), the estimated value

of z is obtained as

ẑ = arg max
z∈I

M(z). (4.13)

The estimation of the CFO, ǫ = ǫ
0
+ 2z, can then be expressed as ǫ̂ = ǫ̂0 + 2ẑ.

It should be noted that with the estimation method derived from (4.11) and (4.12), the

value of the integer CFO, z, must satisfy |z| < N/4, due to the fact that both Ŷ1,k and Ŷ2,k

in (4.11) are periodic functions of z with period N/2. In a practical OFDM system, it is

reasonable to assume that the CFO (proportional to 2z) is much less compared to OFDM

signal bandwidth (proportional to N). Therefore, the additional restriction of |z| < N/4

can be met in most practical OFDM systems.

An alternative null-subcarrier based suboptimum integer CFO estimation algorithm was

presented in [52] by transmitting zeros on not only odd subcarriers, but also part of the

even subcarriers of the pilot symbol. While the method requires only one pilot symbol, the

reduction in the number of non-null even-indexed subcarriers leads to inferior estimation of

the overall channel impulse response. Simulation results show that the algorithm proposed

in this chapter obtains a more accurate estimation of CFO compared to that in [52] at low

signal-to-noise ratio (SNR).
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4.3.2 Joint Phase Noise and CTF Estimation

With the estimated CFO ǫ̂, we are able to construct Ê= diag
{
1, ej2πǫ̂/N , · · ·, ej2πǫ̂(N−1)/N

}
,

as the CFO compensation matrix. Multiplying both sides of (4.5) with Êh leads to

ỹ = PeffF̃
hSH + ṽ (4.14)

where ỹ = Êhy, and Peff = (∆E)P is the effective phase noise matrix after CFO com-

pensation, with ∆E=diag
{
1, ej2π∆ǫ/N , · · ·, ej2π∆ǫ(N−1)/N

}
being a phase rotation matrix due

to CFO estimation error ∆ǫ = ǫ− ǫ̂. The equivalent noise ṽ = Êhv is still AWGN with

covariance matrix σ2I.

The effective phase noise matrix can be alternatively represented as Peff =diag {φeff},

where φeff =
[

φ0, φ1 + 2π∆ǫ
N
, · · · , φ

N−1
+ 2π∆ǫ(N−1)

N

]t

. The vector φeff has a multivariate

Gaussian distribution of φeff ∼ N (0,Rφeff
). The covariance matrix, Rφeff

, depends on the

variance of the residual CFO ∆ǫ. At high SNR, the variance of ∆ǫ can be approximated

by [48], [49]

σ2
∆ǫ =

1

π2 · (N/2) · γ (4.15)

where γ denotes SNR in linear scale. Therefore, the covariance matrix of φeff can be

accurately approximated as Rφeff
= Rφ+

8
N3γ

T, where T=bbt with b = [0, 1, · · · , N−1]t.

Noting the fact that the scaling factor 8
N3γ

of T is inversely proportional to N3, while the

maximum element in T is in the order of N2, we conclude that the effect of residual CFO

on phase noise is negligible for practical values of N . As a result, it is reasonable to assume

that φeff has the same distribution as φ, i.e. φeff ∼N (0,Rφ). Simulation results show

that the assumption of φeff ∼N (0,Rφ) is valid under both low SNR and high SNR, and

it doesn’t apparently affect the accuracy of the proposed channel estimation method.

The MAP criterion is adopted for the joint estimation of φeff and H. From (4.14). The

a posteriori probability (APP) density of φeff and H can be written as

p (φeff,H|ỹ) = p (ỹ|φeff,H)p(φeff) p (H) /p (ỹ) (4.16)
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where it is assumed that φeff and H are mutually independent. In practice, the a pri-

ori knowledge of channel is usually unavailable, so it is reasonable to treat H as an un-

known constant during channel estimation, thus p(H) = 1. From (4.16), the negative

log-likelihood function can be written as

L (φeff,H)=−log p (φeff,H|ỹ)

=−log p (ỹ|φeff,H)−log p(φeff)+log p(ỹ). (4.17)

Discarding irrelevant constants and noting that p (ỹ) is irrelevant to specific values of φeff

and H, we define the cost function for the MAP criterion as

J (φeff,H) =
1

σ2

∥
∥
∥ỹ − PeffF̃

hSH

∥
∥
∥

2

+
1

2
φeff

tR−1
φ φeff (4.18)

where ‖a‖2 = aha for a column vector a.

Solving ∂J (φeff,H)/∂H∗ = 0 leads to the optimal estimation of the CTF vector, H,

as

Ĥ =
1

2
S−1F̃Ph

effỹ. (4.19)

The solution in (4.19) requires the knowledge of the effective phase noise matrix Peff.

When Peff is ideally estimated, the channel estimator given by (4.19) is a minimum variance

unbiased estimator (MVUE) for H [64].

To estimate Peff, substituting (4.19) into (4.18) yields

J (φeff) =
1

σ2
ptBp∗ +

1

2
φeff

tR−1
φ φeff (4.20)

where p = ejφeff , B = Ỹh
(

I
N
− 1

2
F̃hF̃

)

Ỹ, and Ỹ = diag {ỹ}. Using the approximation of

p = ejφeff ≈ 1
N

+ jφeff for small φeff [54], and solving ∂J (φeff)/∂φeff = 0, we have the

optimal estimation of φeff as

φ̂eff =
[
Re (B) +

(
σ2/2

)
R−1
φ

]−1
Im (B)1

N
(4.21)

where Re(·) and Im(·) are the real part and imaginary part operators, respectively, and 1
N

denotes an N × 1 all-one column vector. Obviously, the estimation of φ̂eff is independent
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of the modulation data matrix S, which, on the other hand, is required by the MJCPCE

method in [61]. The independence of the estimation on S leads to a much simpler form

of estimator, which requires less computational complexity and no a priori knowledge

of transmitted modulation symbols, compared to the phase noise estimator provided by

MJCPCE method.

The estimated value of φ̂eff can then be substituted back into (4.19) to obtain an

estimate of the CTF vector Ĥ. Eqn. (4.19) provides estimation of H ∈ C N
2
×1, which is the

CTF of even-indexed subcarriers. The estimation of normalized CTF on all subcarriers

can be calculated from Ĥ as

Ĥfull =
√

2/NF
N

[(

Fh
N/2

Ĥ
)t

0t
N/2

]t

(4.22)

where F
N

is the N -point normalized DFT matrix with the (k, l)-th element being (F
N
)k,l =

1√
N
e−j2π(k−1)(l−1)/N , F

N/2
is the N

2 -point normalized DFT matrix, and 0
N/2

is an all zero

column vector with size N/2. Furthermore, the time-domain CIR, h = [h0 , h1, · · · , hL−1
]t,

can be estimated by performing IDFT over the estimated CTF vector Ĥ as [c.f. (4.4)]

ĥ =
√

2/NFh
1:L

Ĥ (4.23)

where F
1:L

∈ C N
2
×L contains the first L columns of the N

2 -point DFT matrix F
N/2

. In case

that the channel length L is unknown, the matrix F
1:L

can be replaced by F
N/2

. Replacing

F
1:L

with F
N/2

leads to an estimated CIR with N/2 channel taps, where the first L channel

taps are exactly the same as those estimated by using F
1:L

, and the remaining N/2 − L

channel taps contain pure noise. In this case, the estimation accuracy can be improved

by either directly discarding channel taps with negligible power [65], or applying noise

reduction algorithm [66].

Compared to the MJCPCE method presented in [61], the algorithm proposed in this

chapter has three main advantages. First, the new algorithm can accurately estimate CFO

with arbitrary values, while the method in [61] can only estimate CFO with value less

than subcarrier space. Second, estimating the frequency-domain CTF instead of the time-

domain CIR leads to a simpler estimator with lower computational complexity. Third,

49



the knowledge of channel length L is not required during CTF estimation, whereas the

estimation procedure in [61] depends on L. The estimation method discussed above can

be easily extended to single input multiple output (SIMO) system with independent CFO,

phase noise and fading channel on different receive antenna.

4.4 CRLB for OFDM Channel Estimation

The CRLBs of the mean square error for the estimation of the frequency-domain CTF, H

and Hfull, and the time-domain CIR, h, are derived in this section.

In the absence of CFO and phase noise, the log likelihood function, log p(y|H), can be

calculated from (4.5) as

log p (y|H)=c− 1

σ2

(

y − F̃hSH
)h (

y − F̃hSH
)

(4.24)

where c is a constant independent of y and H. The CRLB for the estimation of H can

then be calculated as

CRLB (H) = tr







[

E

{[
∂

∂H∗[logp(y|H)]

][
∂

∂H∗[logp(y|H)]

]h
}]−1







=
σ2

2
tr

{{
E

[
ShS

]}−1
}

(4.25)

where tr {·} denotes trace of a square matrix, and E {·} denotes mathematical expectation.

Based on (4.22) and (4.25), it is easy to obtain the CRLB for the estimation of normalized

Hfull as

CRLB (Hfull)=
2

N
×CRLB (H)=

σ2

N
tr

{{
E
[
ShS

]}−1
}

. (4.26)

Similarly, from (4.23) and (4.25), the CRLB for the estimation of the CIR vector h is

obtained as

CRLB (h) =
σ2

N
tr

{{
FH

1:L
E
[
ShS

]
F

1:L

}−1
}

. (4.27)

If the modulation symbols are equiprobable and independent, i.e., E
[
ShS

]
= σ2

sI, then

(4.26) and (4.27) can be simplified to

CRLB (Hfull) =
1

2
· σ

2

σ2
s

(4.28)
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CRLB (h) =
L

N
· σ

2

σ2
s

. (4.29)

We conclude this section by the following two remarks.

Remark 1: From (4.28) and (4.29), we find CRLB(Hfull) 6=CRLB(h) when N 6=2L. The

difference is due to the fact that the estimation of h in (4.23) depends on the knowledge

of channel length L, while Hfull is estimated without the knowledge of L.

Remark 2: From (4.19), the channel estimation MSE can be evaluated as

E

[∥
∥
∥H − Ĥ

∥
∥
∥

2
]

=
σ2

2
tr

{

E

[(
SSh

)−1
]}

(4.30)

which is equal to CRLB given by (4.25) when constant modulus modulation scheme, such

as phase shift keying, is adopted. In other words, if Peff is ideally estimated, then CRLB for

the estimation of Ĥ can be achieved for systems with constant modulus modulation. On

the other hand, for non-constant modulus modulation scheme, the MSE in (4.30) is always

larger than the CRLB bound in (4.25). This means that, even the obtained estimator

is still MVUE, the CRLB can never be reached for system with non-constant modulus

modulations. Therefore, in terms of channel estimation, constant modulus modulation

schemes are preferable compared to non-constant modulus modulation schemes under the

same energy constraint.

4.5 Simulation

Simulation results are presented in this section to verify the performance of the proposed

algorithm. System parameters similar to those used in [61] are adopted here for comparison

purpose: the number of subcarriers is N=64, and the system sampling rate is fs=20MHz,

leading to a subcarrier space of ∆f = fs/N = 312.5KHz. Phase noise is simulated by

passing a white Gaussian process through a one-pole Butterworth low-pass filter with

3dB bandwidth fo = 100KHz. The covariance matrix of phase noise Rφ is calculated

as (Rφ)m,n = (πφrms/180)2 exp {−2πfo|m− n|/fs}. Fractional CFO ǫ0 is generated as a

uniform distribution over (-1,1), and integer CFO z is taken randomly from [−zm, zm]
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with |zm| < N/4. The frequency selective fading has a power delay profile (PDP) of

1.2257×e−0.8l (0≤ l<L), which is normalized to unit energy. The CP lengthNp is selected so

that ISI is avoided among OFDM symbols. Unless otherwise specified, QPSK modulation

is adopted and φrms is set as 6o in the simulations. The PN sequence {α
k
}N/2−1

k=0
is generated

randomly from the set {1, j,−j,−1}.

We first investigate the accuracy of CFO estimation. The channel length is chosen as

L = 8. The integer CFO is in the range of [−14, 14] ⊂ [−(N/4 − 1), N/4 − 1], with N/4−1

being the maximum integer CFO that can be estimated by the proposed method. Fig. 4.1

plots the residual CFO, ∆ǫ = ǫ−ǫ̂, at different SNRs. For each SNR, 300 independent CFO

estimations are performed at the presence of phase noise. From the figure, it is obvious

that the residual CFO, ∆ǫ, is consistently less than 0.2. This observation indicates that

the proposed algorithm can accurately estimate the integer part of the CFO without error,

i.e., ẑ = z, at the presence of unknown frequency selective fading and phase noise.
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Figure 4.1: CFO estimation error (ǫ0 ∈ (−1, 1), z ∈ [−14, 14], QPSK).

The 1000-times averaged absolute residual CFO |∆ǫ| is shown in Fig. 4.2 as a function
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Figure 4.2: Average |∆ǫ| versus SNR (ǫ0 ∈ (−1, 1), z ∈ [−14, 14], QPSK).

of SNR, with Np = N/4 and Np = N/8, respectively. For comparison purpose, the results

obtained with the CFO estimation method in [52] are also shown in this figure. For fairness

of comparison, the power of the pilot symbol used in the method of [52] is maintained the

same as the pilot symbol in our proposed method. As expected, the average absolute CFO

estimation error for both methods decreases monotonically with the increase of SNR. The

proposed method is better than [52] at low SNR. When SNR is high, the residual CFO,

|∆ǫ|, from both methods is very small and thus has negligible impact on the subsequent

channel estimation.

The performance of joint phase noise and CTF estimation algorithm is studied in the

next example, where the channel length is set as L = 10 and Np = N/4. We first consider

the case that |ǫ|< 1, and the performance of systems with arbitrary ǫ is discussed in the

next example. Fig. 4.3 illustrates the MSE and the corresponding CRLB of the estimated

normalized CTF, Ĥfull, in the presence of phase noise. The results from MJCPCE method
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[61], and the proposed algorithm neglecting phase noise are also shown in the figure for

comparison. Obviously, the new algorithm achieves a performance that is very close to

CRLB. As expected, the estimation performance degrades when phase noise is ignored.

For the MJCPCE method, it has been shown in [61] that its MSE performance is very

close to the CRLB when |ǫ|<0.4. However, its performance degrades when the range of ǫ

is extended to (−1, 1), as evidenced in Fig. 4.3. The performance degradation of MJCPCE

method is caused by phase flipping introduced during CFO estimation. Phase flipping

refers to the case that −π is estimated as π, or vice versa, when the phase difference

πǫ in (4.6) approaches −π or π. The performance of MJCPCE method suffers greatly

from phase flipping, even in system with only fractional CFO. Due to phase flipping, the

inclusion of CFO estimation and compensation in MJCPCE results in worse performance

compared to the case that CFO is not estimated at all. Phase flipping also happens in

the proposed method. However, the incorrectly estimated fractional CFO caused by phase

flipping can be easily corrected by integer CFO estimation. Therefore, the performance

of the proposed method is not affected by phase flipping. Similar results are observed for

CIR estimation, as shown in Fig. 4.4. We repeat the simulations for system with 8PSK

modulation, and observe that the proposed algorithm performs consistently well and has

better performance than MJCPCE method. Finally, we note that the unresolvable residual

common phase rotation (RCPR), which means the phase noise can be estimated accurately

but differs from the actual one by a constant phase rotation, also exists in the proposed

method, as in [61]. Detailed analysis for the cause of RCPR is referred to [61].

The next example demonstrates channel estimation performance when integer CFO z is

introduced in addition to fractional CFO, ǫ0. The maximum integer CFO is set as zm = 4.

The MSE results along with the CRLB of CIR estimation are presented in Fig. 4.5. As

expected, the MJCPCE method, which neglects the integer CFO, doesn’t function properly

under such system configuration. The proposed scheme, on the other hand, consistently

works well regardless of the presence of integer CFO.

The uncoded bit error rates (BER) obtained from different channel estimation algo-
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Figure 4.3: CTF estimation MSE versus SNR (QPSK, ǫ0 ∈ (−1, 1), z = 0).
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Figure 4.4: CIR estimation MSE versus SNR (QPSK, ǫ
0
∈ (−1, 1), z = 0).
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Figure 4.5: CIR estimation MSE versus SNR (QPSK, ǫ0 ∈ (−1, 1), z ∈ [−4, 4]).

rithms are compared in Fig. 4.6. The phase noise has a standard deviation of φrms =10o.

Each slot consists of 52 OFDM symbols with the first two as training symbols. Each

BER point is obtained by simulating 1,000 slots. The BER curve for system with ideal

channel estimation is plotted as a reference. The performance of the system with the pro-

posed channel estimation method is only 0.5 dB away from the system with ideal channel

estimation. This corroborates the MSE results presented in the previous figures.

4.6 Conclusion

A new channel estimation algorithm for OFDM system with CFO and phase noise was

presented in this chapter. The CFO is estimated by a hybrid time-frequency estimation

method. Specifically, the fractional part of the CFO is estimated by identifying phase

difference between the time-domain samples from the same training symbol, while the

integer part of the CFO is estimated by utilizing the frequency-domain samples residing

on the same subcarrier but belonging to different training symbols. Simulation results
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Figure 4.6: BER versus SNR (ǫ0 ∈ (−1, 1), z = 0, QPSK).

show that the integer part of the CFO can be estimated without error even at low SNR.

With the CFO-compensated signal, a joint phase noise and CTF estimation algorithm was

developed by employing the MAP criterion over the time-domain samples. Compared to

the CIR estimation algorithm in the literature, the new algorithm has lower complexity and

better accuracy, and it can operate without the knowledge of channel length in the time

domain. Simulation results show that the joint phase noise and CTF estimation algorithm

achieve a MSE performance close to CRLB. The proposed estimation method can be easily

extended to single input multiple output (SIMO) OFDM system with independent fading

channels.
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Chapter 5

Enhanced MIMO LMMSE Turbo

Equalization

5.1 Introduction

Turbo equalization is a powerful receiver technique that improves system performance by

iteratively exchanging extrinsic soft information between a soft-decision equalizer and a

soft-decision channel decoder. Optimum turbo equalization can be performed by using

the soft-output Viterbi algorithm (SOVA) [67] – [69], or the Bahl-Cocke-Jelinek-Raviv

(BCJR) algorithm [70]. Both SOVA and BCJR are trellis-based algorithms, and their

computational complexity in a soft-decision equalizer grows exponentially with the channel

length, L, and the modulation level, Q. The complexity gets prohibitively high when L

and Q are large.

A large number of low-complexity turbo equalization algorithms have been developed

during the last decade to trade-off complexity with performance for both SISO systems

[71] – [76] MIMO systems [79] – [78]. In [71] – [73], a linear minimum mean square

error (LMMSE) filter combined with soft-interference cancelation (SIC) is used to replace

the BCJR-based optimum maximum a posteriori (MAP) equalizer for SISO systems. A

decision-aided equalization (DAE) is proposed in [74]. DAE utilizes decisions from the

pervious iteration for interference cancelation in the current iteration, and it has similar

operation as [71]. A similar idea is adopted in [75], where the equalizer tap coefficients

are adaptively updated taking account of the suboptimality of the previously estimated
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symbols. The result in [75] is extended to an infinite-length MMSE turbo equalization

in [76]. The turbo detection scheme proposed in [73] has been extended to MIMO systems

[77], [78]. In [79], pre-filtering is employed to reduce the number of channel trellis states so

that the BCJR-based equalization can be performed with reduced complexity for MIMO

systems.

The turbo equalizer in [71] performs SIC by subtracting tentative soft decisions of the

interfering symbols from the received samples. The tentative soft decisions are calculated

from the a priori information at the input of the equalizer, and we denote it as a priori

soft decision in this chapter. While only binary modulation is considered in [71], LMMSE

turbo equalization with high-order constellation is investigated in [73]. The result of [71]

has also been extended to MIMO systems undergoing frequency-selective fading [77].

In this chapter, we propose an enhanced LMMSE turbo equalizer for a spatially mul-

tiplexed MIMO system with frequency-selective fading. The turbo equalizer needs to deal

with both the inter-symbol interference (ISI) due to time dispersion of the fading, and the

spatial multiplexing interference (MI) among the data streams transmitted by different

antennas. Existing LMMSE turbo equalizers [71] – [77] perform SIC (with respect to both

ISI and MI) by completely relying on the a priori soft decisions of the interfering symbols.

Motivated by the fact that the a posteriori soft information at the output of the equalizer

has better quality than the a priori information, we propose to improve the SIC perfor-

mance by continuously updating the soft decisions with the a posteriori information of the

already equalized symbols, and such soft decision is denoted as a posteriori soft decision.

Since the a posteriori soft decision of a given symbol will affect the SIC of all the subse-

quent symbols to be equalized [80], [81], the order in which the symbols are equalized has

significant impact on the performance. We propose a reliability-based detection ordering

scheme, where symbols with more “reliable” soft input will be equalized before those with

less “reliable” soft input. The reliability information can be extracted from the a priori

soft information, which is a unique byproduct in the turbo equalization process, thus can

be obtained at minimum extra cost. Simulation results demonstrate that, compared to
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the existing turbo equalization methods, the proposed new turbo equalization scheme can

achieve better performance at a faster converging rate .

5.2 Conventional MIMO LMMSE Turbo Equalization

Consider a MIMO system with N transmit antennas and M receive antennas as shown in

Fig. 5.1. At the transmitter, N bit streams, with an,k being the k-th information bit of

...... ...
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Channel

...

Channel

Channel
Encoder

Encoder
Symbol
Mapper

Symbol
Mapper

ISI...

a1,k b1,k c1,k s1,k

aN,k bN,k cN,k sN,k

Π

Π
r1,k

rM,k

v1,k

vM,k

Figure 5.1: A MIMO transmission system

the n-th stream, are independently encoded, interleaved, and modulated, and the outputs

of the encoder, interleaver, and symbol mapper (modulator) are denoted by bn,k, cn,k, and

sn,k, respectively. For a Q-ary modulation with the constellation set S = {χq}Qq=1, every

log2Q coded bits are mapped onto one modulation symbol, i.e., the group of coded bits,

{cn,(k−1)log2Q+p}log2Q
p=1 , are mapped to the modulation symbol sn,k. The modulated symbols

on the n-th branch are transmitted by the n-th transmit antenna in the form of length-Np

packet as, s(n) = [sn,1, · · · , sn,Np]
t ∈ SNp×1, where (·)t denotes matrix transpose.

The signal received by the m-th receive antenna at the time instant k is represented by

rm,k =

L−1∑

l=0

N∑

n=1

hm,n(l)sn,k−l + vm,k (5.1)

where {hm,n(l)}L−1
l=0 is the length-L discrete-time channel impulse response (CIR) between

the n-th transmit antenna and the m-th receive antenna, and vm,k is the k-th sample of the

zero-mean additive white Gaussian noise (AWGN) with variance σ2
v at the m-th receive

antenna. Stacking {rm,k}Mm=1 into a column vector, rk = [r1,k, r2,k, · · · , rM,k]
t ∈ CM×1, leads
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to

rk =

L−1∑

l=0

Hlsk−l + vk (5.2)

where

Hl =






h1,1(l) · · · h1,N (l)
...

. . .
...

hM,1(l) · · · hM,N(l)




 ∈ CM×N , (5.3)

sk−l = [s1,k−l, s2,k−l, · · ·, sN,k−l]t ∈ CN×1, (5.4)

vk = [v1,k, v2,k, · · · , vM,k]
t ∈ CM×1. (5.5)

The received samples are first processed by an SIC unit, then passed through a LMMSE

equalizer in the form of a tapped-delay-line filter as shown in Fig. 5.2. The MIMO

LMMSE equalizer is defined by (K1 +K2 + 1) tap coefficient vectors, wn,k(l) ∈ CM×1, for

l = −K1, · · · , K2, where K1 and K2 are positive integers that delimit the index range of

the LMMSE tap coefficients. Since there are M received samples at each sampling instant

for a MIMO system as shown in (5.2), each tap coefficient of the LMMSE equalizer is a

M × 1 vector instead of a scalar as in the original LMMSE scheme presented in [71].

From Fig. 5.2, the equalization of sn,k is performed over a time window of [k−K2, k+

K1], which contains a total of (K1 +K2 + 1)M samples from all the M receive antennas.

Define the received sample vector that corresponds to the equalization window as

yk =
[
rtk−K2

, rtk−K2+1, · · · , rtk+K1

]t

= Hxk + zk (5.6)

where H ∈ CM(K1+K2+1)×N(K1+K2+L) is expressed as

H =






HL−1 · · · H0 0
. . .

. . .

0 HL−1 · · · H0




 (5.7)

and xk ∈ CN(K1+K2+L)×1, zk ∈ CM(K1+K2+1)×1 are denoted, respectively, as

xk =
[
stk−K2−L+1, · · · , stk+K1

]t
(5.8)
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and

zk =
[
vtk−K2

, · · · ,vtk+K1

]t
. (5.9)

Both SIC and LMMSE equalizer are designed based on the a priori soft information at

the input of the equalizer. Define the a priori mean, s̄n,k, and the a priori variance, σ2
n,k,

respectively, as

s̄n,k =

Q
∑

q=1

χqP (sn,k = χq) (5.10a)

σ2
n,k =

Q
∑

q=1

(χq − s̄n,k)
2P (sn,k = χq) (5.10b)

where, according to [73], the symbol a priori probability P (sn,k = χq) can be obtained

from the bit a priori probabilities as P (sn,k = χq) =
∏log2Q

p=1 P
[
cn,(k−1)log2Q+p = cq,p

]
, with

{cn,(k−1)log2Q+p}log2Q
p=1 and {cq,p}log2Q

p=1 being the mapping bits of sn,k and χq, respectively.

The a priori probability P (cn,k) of the coded bit is calculated directly with the input bit

a priori log-likelihood ratio (LLR) Λa(cn,k), which is the interleaved output of the soft

channel decoder in a turbo equalizer [73].
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In the conventional LMMSE equalizer in [71], the SIC is performed by subtracting the

a priori mean of the interfering symbols from rk as

r̃k = rk −
L−1∑

l=0

Hls̄
(n,k)
k−l (5.11)

where s̄
(n,k)
j = [s̄1,j , · · · , s̄N,j]t when j 6= k, and s̄

(n,k)
k = [s̄1,k, · · ·, s̄n−1,k, 0, s̄n+1,k, · · ·, s̄N,k]t.

It can be seen that the a priori mean of the symbols are used during the SIC.

The output of the SIC passes through the tapped-delay-line filter, which produces the

equalized symbol as

ŝn,k =

K2∑

l=−K1

wh
n,k(l)r̃k−l = wh

n,kỹn,k (5.12)

where (·)h denotes matrix Hermitian transpose, and wn,k = [wh
n,k(K2), · · · ,wh

n,k(−K1)]
h ∈

C(K1+K2+1)M×1. The vector ỹn,k = [r̃tk−K2
, · · · , r̃tk+K1

]t can also be calculated as ỹn,k =

yk − Hx̄n,k, with

x̄n,k = [s̄
(n,k)
k−K2−L+1; · · · ; s̄

(n,k)
k+K1

] ∈ CN(K1+K2+L)×1 (5.13)

where [a;b] means stacking two column vectors, a and b, vertically into a single column

vector.

Based on the MMSE criterion, the equalizer coefficient vector can be calculated as

wh
n,k = E[|sn,k|2]hhn × {Σk + [E(|sn,k|2) − σ2

n,k]hnh
h
n}−1 (5.14)

where hn is the [N(K2 + L− 1) + n]-th column of H. The matrix Σk is defined as

Σk , Cov[y(k),y(k)]

= Hdiag{σ2
1,k−K2−L+1, · · ·, σ2

N,k−K2−L+1, | · · · |σ2
1,k,

· · ·, σ2
N,k, | · · · |σ2

1,k+K1
, · · ·, σ2

N,k+K1
}Hh+σ2

vI (5.15)

where Cov(·) is the auto-covariance operation, I is an identity matrix of size M(K1 +K2 +

1), and diag{·} returns a diagonal matrix. Without loss of generality, the power of the

modulation symbol is set as E[|sn,k|2] = 1, then the equalizer vector can be simplified as

wh
n,k = hhn{Σk + [1 − σ2

n,k]hnh
h
n}−1 (5.16)
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Figure 5.3: Enhanced MIMO LMMSE turbo equalizer structure.

For turbo equalization, the equalized symbol in (5.12) will be translated into soft in-

formation in the form of extrinsic LLR Λe(cn,k), which will be used as the input for the

soft-decision channel decoder. The soft-decision channel decoder then generates new ex-

trinsic information fed back to the turbo equalizer to launch the next iteration. In this

work, we focus on the enhanced design of the turbo equalizer, and the details on turbo

detection are referred to [77].

5.3 Enhanced MIMO LMMSE Turbo Equalization

The block diagram of the enhanced MIMO LMMSE turbo equalizer is shown in Fig. 5.3.

5.3.1 SIC Using a posteriori Soft Decisions

The SIC is performed by subtracting soft decisions of the interfering symbols from the

received samples. In conventional turbo equalization [71] – [77], the soft decision is in the

form of the a priori mean as shown in (5.10a) and (5.11), which is calculated from the soft

information at the input of the equalizer. The performance of SIC depends heavily on the

quality of the soft decision. Intuitively, the soft information at the output (the a posteriori

information) of the equalizer should have a better fidelity compared to that at the input

(the a priori information).

Since the equalization is performed on a symbol-by-symbol basis, the a posteriori infor-

mation of the already equalized symbols can be used during the SIC for all the subsequent
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symbols to be equalized. It is expected that extra performance gain can be achieved by

performing SIC with the a posteriori information given its better quality.

The a posteriori information can be obtained by analyzing the statistical properties

of the equalizer output ŝn,k (c.f. (5.12)). Similar to [71] and [73], it is assumed that

the conditional probability density function (PDF) p(ŝn,k|sn,k = χq) is Gaussian, with

the conditional mean, µn,k(q) , E[ŝn,k|sn,k = χq], and conditional variance, σ2
n,k(q) ,

Cov(ŝn,k, ŝn,k|sn,k = χq), as

µn,k(q) = E[wh
n,kỹn,k|sn,k = χq]

= wh
n,k E[(Hxk + zk − Hx̄n,k)|sn,k = χq]

= χqw
h
n,khn (5.17)

and

σ2
n,k(q) = wh

n,kCov(ỹn,k, ỹn,k|sn,k = χq)wn,k

= wh
n,kCov(yk,yk|sn,k = χq)wn,k

= wh
n,k[Σk − σ2

n,khnh
h
n]wn,k (5.18)

where the two identities Cov(ahx, ahx) = ahCov(x,x)a and Cov(x+ a,x+ a) = Cov(x,x)

are used for the evaluation of (5.18). The a posteriori probability can then be calculated

as

P (sn,k = χq|ŝn,k) =
p(ŝn,k|sn,k = χq)P (sn,k = χq)

p(ŝn,k)
(5.19)

where P (sn,k = χq) is the a priori probability obtained at the equalizer input, and p(ŝn,k)

can be obtained by using
∑Q

q=1 p(sn,k = χq|ŝn,k) = 1.

With (5.19), define, respectively, the a posteriori mean and the a posteriori variance of

sn,k as

šn,k =

Q
∑

q=1

χqP (sn,k = χq|ŝn,k) (5.20a)

σ̌2
n,k =

Q
∑

q=1

(χq − šn,k)
2P (sn,k = χq|ŝn,k) (5.20b)
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We propose to use the a posteriori mean given in (5.20a) as the a posteriori soft decision,

which will be used during the SIC in a similar way as described in (5.12). With the progress

of the equalization, the a priori soft decision, s̄n,k, will be replaced by the a posteriori soft

decision, šn,k, once sn,k is equalized. As a result, the soft decision vector, s̄
(n,k)
j , is constantly

updated with more reliable a posteriori decisions. Therefore, the SIC in the newly proposed

scheme is performed with a combination of the a priori and a posteriori soft decisions. We

will show with simulations that the system benefits from the mixed a priori and a posteriori

SIC due to the better quality of the a posteriori soft decisions.

5.3.2 Reliability-based Detection Ordering

In conventional turbo equalization [71] – [77], the order in which the symbols are detected

does not affect the detection performance, since only a priori statistics as shown in (5.10)

are used during the equalization, and they remain unchanged during the entire packet.

With the newly proposed SIC scheme, the detection order matters as to the equalization

performance, because the quality of the a posteriori soft decision of a given symbol will

affect the SIC operation of all the subsequent symbols to be equalized. A high-quality soft

decision will positively affect the equalization of the subsequent symbols. Optimal detection

ordering was discussed for space-time detection [80], [81], where additional operations need

to be performed to determine the order of the detection.

To minimize the overhead during equalization, we propose to determine the detection

order by using the a priori information at the equalizer input. Define the symbol a priori

reliability as

ρn,k = 1/σ2
n,k (5.21)

where σ2
n,k is the symbol a priori variance given in (5.10b). Such a definition of “reliabil-

ity” is motivated by the fact that the variance of a random variable (RV) measures the

expected squared deviation of the RV from its mean, which is used as the a priori soft

decision. A lower a priori variance means the soft decision is closer to its true value, thus
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a higher reliability of the a priori soft decision. We sort ρn,k over an entire data packet in

a descending order as

ρ = [ρ<1>, ρ<2>, · · · , ρ<NNp>]t (5.22)

such that ρ<m> ≥ ρ<n> for m < n, and < · > is an index mapping operator

< · >: {1, · · · , NNp} → {(1, 1), · · · , (N,Np)} (5.23)

The equalization will be performed in an order that is determined by the ordered vector

ρ, i.e., ∀m < n, s<m> will be equalized before s<n> given that the a priori information of

s<m> has a higher reliability. The reliability-based ordering scheme will improve the quality

of the a posteriori soft decision, and accelerate the convergence of the turbo equalization

scheme.

5.3.3 Low-Complexity Enhanced MIMO LMMSE Turbo Equal-

ization

Similar to the conventional turbo equalization method [77], the equalizer coefficient vector,

wn,k, of the newly proposed method needs to be updated for each symbol as shown in (5.16),

where the computation involves inversion of a matrix of size M(K1 +K2 + 1).

We propose a low-complexity approximation of the enhanced MIMO LMMSE turbo

equalization, where the equalizer taps are calculated for every block of Nb symbols instead

of for every symbol. The low-complexity equalizer coefficient vector is given as

w̄n =

[

1

Np

Np∑

k=1

[Σk +
(
1 − σ2

n,k

)
hnh

h
n]

]−1

hn (5.24)

Once a block of symbols are equalized with the constant equalizer taps given in (5.24),

the obtained a posteriori soft decisions of the block will replace the corresponding a priori

soft decisions in the subsequent SIC operations. In this case, each block is considered as

a “generalized layer” in the sense that it may contain symbols at any time instant k and

from any transmitter with index n. The complexity for updating the equalizer coefficient

is then determined by the number of layers R = NtNp/Nb.
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5.4 Simulation Results

We study a 2 × 2 MIMO system with quadrature phase shift keying (QPSK) modulation.

The data is transmitted in packets. Each packet carries Np=2, 000 information bits, which

are encoded by a rate 1/2 non-systematic convolutional code with a constraint length 4

and a generator polynomial [G1, G2] = [17, 13]oct. The Proakis type C channel [82] is

used to construct the 2 × 2 MIMO channel as h1,1 = [0.227, 0.460, 0.668, 0.460, 0.227],

h1,2 = h1,1 × exp(jπ/4), h2,1 = h1,1 × exp(j3π/4), and h2,2 = h1,1 × exp(j7π/4). The

equalizer parameters K1 and K2 are set as K1 = 2L,K2 = L, with L = 5. For each

investigated signal-to-noise (SNR) point, 100 packets are simulated for the bit error rate

(BER) evaluation.

In Fig. 5.4, we compare the BER performance of the proposed MIMO LMMSE turbo

equalization with that of the original method [77], using symbol-based equalizer coeffi-

cients adaptation. We have two observations on the results. First, as expected, the BER

improves consistently as the iterations progress in both cases. Second, the proposed turbo

equalization outperforms the method of [77] in all the iterations. At the BER level of 10−3,

the proposed method achieves a 1 dB performance improvement over [77] after the 4-th

iteration.

For the low-complexity turbo equalization discussed in 5.3.3, its performance with the

original SIC (which depends completely on the a priori soft decision) and with the newly

proposed SIC (which uses a combination of the a priori and a posteriori soft decisions) are

also compared, and the result is shown in Fig. 5.5. For the proposed SIC, we have chosen

the block size as Nb = 250. It can be seen from the figure that the low-complexity turbo

equalization also benefits from the proposed SIC, which leads to better BER performance

than the original SIC in all the iterations.
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Figure 5.4: BER comparison between conventional and proposed equalization schemes
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5.5 Conclusion

An enhanced MIMO LMMSE turbo equalization scheme was proposed in this chapter. The

new turbo equalization performs SIC by continuously replacing the a priori soft decision

with the more reliable a posteriori soft decision as the equalization progresses. The em-

ployment of the a posteriori soft decisions also enables us to take advantage of the order

of detection, as an additional degree-of-freedom during the equalization process. We pro-

posed a reliability-based detection ordering scheme, where the symbol reliability is defined

as the inverse of the a priori mean, which is a natural byproduct of turbo equalization

and can be obtained with minimum extra cost. With the enhanced MIMO LMMSE turbo

equalization, considerable performance gain over existing turbo equalization methods was

observed in the simulation results.
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Chapter 6

MIMO Turbo Block Decision

Feedback Equalization

6.1 Introduction

In last chapter, we have proposed an enhanced turbo equalization based on conventional

linear equalization for MIMO systems. The conventional nonlinear equalization technolo-

gies have actually also been developed into their turbo versions. In [83], a joint coding and

decision feedback equalization (DFE) scheme is proposed, where the DFE employs two

transversal filters corresponding to the soft feedback from both the equalizer output and

the channel decoder. In [84], soft feedback equalizer is proposed where the soft output of

the equalizer is fedback for canceling the causal part of the ISI, and it is different from the

turbo DFE using hard-decision feedback in [72]. Recently, a turbo detection structure em-

ploying block decision feedback equalizer (BDFE) was proposed in [126] for SISO systems.

The non-linear structure of BDFE achieves better bit error rate (BER) performance than

both LMMSE equalization and conventional DFE [125]. The turbo equalization in [126]

has enabled a low-complexity sequence-based log-likelihood ratio (LLR) calculation leading

to near-optimum performance.

In this chapter, we propose a new BDFE-based turbo equalization scheme with reliability-

based successive soft interference cancellation (SSIC) for MIMO systems. In a spatially-

multiplexed MIMO system with frequency selective fading, the interference among the

transmitted symbols arises from two sources: the inter-symbol interference (ISI) due to
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the time dispersion of the fading, and the spatial multiplexing interference (MI) among the

data streams transmitted by different antennas. Therefore, the turbo equalizer for MIMO

systems needs to deal with both time-domain ISI and space-domain MI. The proposed

MIMO BDFE performs SSIC on both ISI and MI with previously detected soft-decision

symbols. One of the main performance limiting factors of SSIC is error propagation, where

an erroneously detected soft symbol will negatively affect the detection of all the subsequent

symbols. Therefore, the order in which the symbols are detected during SSIC is critical to

the system performance. To minimize error propagation while maintain the mechanism of

successive interference cancelation, we propose a reliability-based group-wise detection or-

dering scheme. With the new scheme, an entire block is divided into multiple groups, over

which symbols with higher reliability will be detected before those with lower reliability.

The knowledge of symbol reliability is obtained from the symbol a priori probability at the

input of the soft-decision equalizer, and it is a unique byproduct in the turbo equalization

process.

A low-complexity implementation of the MIMO BDFE is also presented. The instanta-

neous BDFE filter matrices that are updated for each symbol are replaced by filter matrices

that stay constant for all the symbols within one block, and this greatly reduces the com-

putational complexity. It is shown that the adoption of the constant equalizer matrices

does not apparently degrade the detection performance. In addition, following the model

in [125], we present an alternative system model that incorporates all the received samples

over one block in a zero-padding block transmission mode. The alternative model leads

to two advantages: first, the detection performance is improved because more information

is incorporated during the equalization process; second, it leads to a “windowed block-

Toeplitz” structure of the channel matrix, which is desirable for developing fast algorithm

for equalizer matrices calculation.

The rest of this chapter is organized as follows. Section 6.2 introduces the MIMO block

transmission model and the basics of MIMO turbo detection. The theoretical analysis for

the MIMO turbo BDFE together with the reliability-based detection ordering scheme is de-
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veloped in Section 6.3. Section 6.4 presents a low-complexity implementation of the MIMO

turbo BDFE. Simulation results are presented in Section 6.5 and Section 6.6 concludes the

chapter.

Notation: The superscripts, (·)t and (·)h, represent the matrix transpose and Hermi-

tian transpose, respectively. The matrix IN is an identity matrix of size N . The M × N

complex matrix space is represented by CM×1. E(·) is the mathematical expectation oper-

ator. The matrix diag{d1, d2, · · · , dM} is a M ×M diagonal matrix with diagonal elements

d1, d2, · · · , dM . trace (A) returns the trace of the matrix A. The operator a ≪ k denotes

the left circular shift of the vector a by k locations.

6.2 System Description

Consider a N ×M MIMO system as shown in Fig. 6.1, with N and M being the number

of transmit antennas and receive antennas, respectively.

At the transmitter, N bit streams, with an,k being the k-th information bit of the n-th

stream, are multiplexed onto the N transmit branches. The n-th bit stream is encoded,

interleaved, and modulated. The outputs of the encoder, interleaver, and symbol mapper

(modulator) are denoted by bn,k, cn,k, and xn,k, respectively. For a Q-ary modulation with

the constellation set S = {χq}Qq=1, every log2Q coded bits are mapped onto one modulation

symbol, i.e., the group of coded bits, {cn,(k−1)log2Q+p}log2Q
p=1 , are mapped to the modulation

symbol xn,k. The modulation symbols on the n-th branch are transmitted via the n-th

transmit antenna in the form of a length-Nb block as, x(n) = [xn,1, xn,2, · · · , xn,Nb
]t ∈

SNb×1. To avoid inter-block interference (IBI), guard intervals (GI) are inserted among

the transmitted blocks. The GI is implemented as zeros padded at the beginning of each

block.
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Figure 6.1: A MIMO communication system with turbo detection.

At the receiver side, the received block at the m-th receive antenna can be written as

ym,k =

L−1∑

l=0

N∑

n=1

fm,n(l)xn,k−l + vm,k (6.1)

for k = 1, 2, · · · , Nb + L − 1, where fm,n(l) is the l-th tap of the equivalent discrete-time

channel between the n-th transmit antenna and the m-th receive antenna, L is the channel

length, and vm,k is the zero-mean additive white Gaussian noise (AWGN) with variance σ2
v .

With zero-padding block transmission, xn,k = 0 for k ≤ 0. It is assumed that the channel

is constant over one block.

Stacking the received samples from all the receive antennas at time k into a vector, we

have

yk =
L−1∑

l=0

Flxk−l + vk (6.2)
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where yk = [y1,k, · · · , yM,k]
t ∈ CM×1, xk−l = [x1,k−l, · · · , xN,k−l]t ∈ SN×1, and vk =

[v1,k, · · ·, vM,k]
t∈CM×1 are the received sample vector, transmitted symbol vector, and noise

vector, respectively, and the (m,n)-th element of the channel matrix, Fl ∈ CM×N , is fm,n(l).

Stacking {yk}Nb+L−1
k=1 into a column vector, as y =

[
yt1,y

t
2, · · · ,ytNb+L−1

]t ∈ CM(Nb+L−1)×1,

leads to

y = Fx + v (6.3)

where x =
[
xt1, · · · ,xtNb

]t ∈ SNNb×1, v =
[
vt1,v

t
2, · · · ,vtNb+L−1

]t ∈ CM(Nb+L−1)×1, and the

channel matrix, F ∈ CM(Nb+L−1)×NNb , is denoted by

F =















F0 0 0 0 · · · 0 0
...

. . .
. . .

. . .
. . .

. . .
...

FL−1 · · · · · · F0 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 0 · · · FL−1 · · · · · · F0
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 · · · 0 FL−1















. (6.4)

The channel matrix in (6.4) possesses a block-Toepliz structure that is desirable for fast

algorithm implementation.

For a MAP-based detection, the detector calculates the LLR of the information bit as

follows

Λ [an,k] , ln
P [an,k = 0|y]

P [an,k = 1|y]

= ln

∑

∀a:an,k=0

p(y|a)
[

∏

∀n′,k′:k′6=k ifn′=n

P (an′,k′)

]

∑

∀a:an,k=1

p(y|a)
[

∏

∀n′,k′:k′6=k ifn′=n

P (an′,k′)

]

︸ ︷︷ ︸

Λe[an,k]

+Λa[an,k] (6.5)

where Λa[an,k] = ln
P [an,k=0]
P [an,k=1]

is the a priori LLR of an,k. The computation of (6.5) has a

complexity on the order of O
(
QNNb

)
[87], and it becomes prohibitively high when N andNb

are large. A reduced-complexity detection scheme is shown in the bottom part of Fig. 6.1,
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which performs separate equalization and decoding. The MIMO equalizer produces soft

decisions for all the N transmitted streams. At the n-th output branch, the extrinsic LLR,

Λe [cn,k] = Λ [cn,k] −Λa[cn,k], of the code bit is deinterleaved into Λe [bn,k], which is used as

the a priori soft input of the channel decoder. The decoder calculates the extrinsic LLR,

ΛD
e [bn,k] = ΛD [bn,k]−Λe [bn,k], for each code bit by exploiting the code trellis structure and

the a priori information Λe [bn,k]. The extrinsic LLR at the output of the channel decoder

is interleaved into ΛD
e [cn,k], which is then fed back to the soft-decision equalizer as the a

priori LLR for the next iteration. Successive iterations are performed until convergence is

achieved. In the final iteration, the decoder calculates the LLR Λ [an,k] of the information

bit and outputs the corresponding hard decision, ân,k. In practice, the MAP-based channel

decoder is commonly adopted with moderate number of trellis states resulting in acceptable

complexity. The MAP-based equalizer, however, may incur a prohibitive complexity in the

order of O
(
QNL

)
especially for large channel length L. We next develop a sub-optimum

soft-decision MIMO equalizer that can approach the performance of the optimum MAP

equalizer, but at a much lower complexity.

6.3 MIMO Turbo BDFE with Reliability-based SSIC

In this section, a soft-decision MIMO BDFE is developed by employing a new reliability-

based SSIC.

6.3.1 Reliability-based SSIC

The reliability information of a symbol is extracted from the a priori statistics of the

symbol at the input of the equalizer. Define the a priori mean and the a priori variance

of a symbol, xn,k, as

x̄n,k =

Q
∑

q=1

χqP (xn,k = χq), (6.6a)

σ2
n,k =

Q
∑

q=1

(χq − x̄n,k)
2P (xn,k = χq), (6.6b)
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where P (xn,k = χq) is the symbol a priori probability, and it can be obtained from the

bit a priori probabilities as, P (sn,k = χq) =
∏log2Q

p=1 P
[
cn,(k−1)log2Q+p = cq,p

]
, where the bit

sequence, {cq,p}log2Q
p=1 , is mapped to the symbol χq.

The a priori mean and a priori variance will be used by the reliability-based SSIC,

which achieves better performance than conventional SIC from two perspectives. First,

the reliability-based SSIC performs interference cancellation by subtracting tentative soft

decisions instead of hard decisions of the interfering symbols. Using soft decision during

SSIC will reduce the effects of error propagation, thus leads to a better system performance.

Second, during the reliability-based SSIC, the symbols are ordered based on their reliability,

such that more reliable symbols are detected before less reliable symbols, to further reduce

the negative effects of error propagation.

We propose to measure the symbol reliability by using the symbol a priori variance as

defined in (6.6b). The variance of a random variable (RV) measures the expected squared

deviation of the RV from its mean. A lower a priori variance thus means less uncertainty

in the soft decision, thus a better reliability. Therefore, we define the a priori reliability

measure for the symbol xn,k as

ρn,k =
1

σ2
n,k

. (6.7)

With the reliability information, the detection ordering can be determined. Instead of

sorting ρn,k over the entire block, we propose a group-wise detection ordering scheme based

on the considerations of both performance and complexity. As to detection performance,

the SIC should be performed among neighboring symbols that mutually interfere with each

other. For symbols that are further apart in the time domain, their mutual interference

will be very small. As a result, a global ordering of all the symbols might group unrelated

symbols together and destroy the SIC mechanism. In the proposed group-wise ordering

scheme, adjacent symbols are clustered into the same group, thus SIC is always guaranteed.

As to complexity, a local ordering within a small group demands much less computations

than the global ordering over the entire block.
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With the group-wise ordering scheme, the reliability information is first divided into Ng

groups with size NNr as

G1 = {ρ1,k, · · · , ρN,k}Nr
k=1,G2 = {ρ1,k, · · · , ρN,k}2Nr

k=Nr+1,

· · · ,GNg = {ρ1,k, · · · , ρN,k}NgNr

k=(Ng−1)Nr+1 (6.8)

where Nb = NgNr. Sorting ρn,k within each of the Ng groups in an ascending order, leads

to

G′
i = [ρ〈O(i−1)NNr+1〉, ρ〈O(i−1)NNr+2〉, · · · , ρ〈OiNNr 〉], for i = 1, 2, · · · , Ng (6.9)

such that ρ〈O(i−1)NNr+1〉 ≤ ρ〈O(i−1)NNr+2〉 ≤ · · · ≤ ρ〈OiNNr 〉, where the ordered index set,

{O(i−1)NNr+1, · · · , OiNNr}, is a permutation of the index set, {(i− 1)NNr + 1, · · · , iNNr},

and 〈·〉 is an index mapping operator defined as

〈·〉 : 〈j〉 = (n, k) with j = (k − 1)N + n (6.10)

Stack the ordered reliability information of all the groups into a column vector as

ρ = [ρ〈O1〉, ρ〈O2〉, · · · , ρ〈ONNb
〉]
t, (6.11)

The reliability-based ordering leads to an alternative system representation

y = Hx′ + v (6.12)

where x′ = [x〈O1〉, x〈O2〉, · · · , x〈ONNb
〉]
t, H = [fO1 , fO2, · · · , fONNb

], with fj being the j-th

column of the channel matrix F. In (6.12), the symbols in x′ are ordered based on their

respective a priori reliability, ρn,k, in an ascending order within their own groups. Such a

reliability based ordering will benefit the MIMO BDFE with SSIC as shown in Fig. 6.2.

During the detection of the symbol x〈Og〉, a feedforward filter, Cg ∈ CNNb×M(Nb+L−1),

and a zero-diagonal strict upper triangular feedback filter, Dg ∈ CNNb×NNb , are adopted,

leading to

x̃′
g=Cg

(
y −Hx̄′

g

)
−Dg

(
x̂′−x̄′

g

)
+x̄′

g (6.13)
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Figure 6.2: Soft-decision MIMO BDFE (when x〈Og〉 is equalized).

where x̄′
g = [x̄〈O1〉, · · · , x̄〈Og−1〉, 0, x̄〈Og+1〉, · · · , x̄〈ONNb

〉]
t is the ordered a priori mean vector

with the g-th element being zero, x̂′ = [x̂〈O1〉, · · · , x̂〈ONNb
〉]
t is the ordered tentative soft

decision vector, and x̃′
g is the ordered vector at the output of the MIMO BDFE. The

tentative soft decision is defined as the a posteriori mean at the output of the equalizer, as

x̂〈Og〉 =

Q
∑

q=1

χqP (x〈Og〉 = χq|y). (6.14)

where P (x〈Og〉 = χq|y) is the symbol a posteriori probability at the output of the MIMO

BDFE. The calculation of P (x〈Og〉 = χq|y) is discussed in Subsection 6.3.3. Using soft

decision during interference cancelation will partly reduce the negative effects of error

propagation.

The upper triangular structure of Dg determines that the interference cancellation is

performed successively by following the reverse order of the elements in x′, i.e., the last

element in x′ is detected first, and the first element in x′ is detected last. With the reliability

based ordering described in (6.11) and (6.12), symbols with higher a priori reliability is

detected before those with lower reliability, and this will significantly reduce the negative

impacts of error propagation plaguing most SIC receivers.
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6.3.2 Calculation of Cg and Dg

With the common assumption of perfect decision feedback [82], i.e., x̂′ = x′, the error

vector of BDFE can be written as

eg = Cg

(
y − Hx̄′

g

)
− (Dg + INNb

)
(
x′ − x̄′

g

)
(6.15)

Minimizing the mean square error, σ2
eg

, E
[
ehgeg

]
, with the orthogonality principle,

E

[

eg
(
y −Hx̄′

g

)h
]

= 0, leads to

Cg = RgΣ
′
gH

h
[
HΣ′

gH
h + σ2

vIM(Nb+L−1)

]−1
(6.16)

where Rg = Dg + INNb
, and Σ′

g = diag{σ2
〈O1〉, · · · , σ2

〈Og−1〉, 1, σ
2
〈Og+1〉, · · · , σ2

〈ONNb
〉} is the

ordered a priori covariance matrix with the g-th element being 1.

Combining (6.15) and (6.16) leads to

eg = Rgǫg (6.17)

with

ǫg = Σ′
gH

h
[
HΣ′

gH
h + σ2

vIM(Nb+L−1)

]−1 (
y − Hx̄′

g

)
−

(
x′ − x̄′

g

)
(6.18)

The autocorrelation matrix of ǫg can be calculated as

Σǫg = Σ′
g − Σ′

gH
h
[
HΣ′

gH
h + σ2

vIM(Nb+L−1)

]−1
HΣ′

g

=

[

Σ′
g
−1

+
1

σ2
v

HhH

]−1

(6.19)

where the second equality is obtained with the identity (A+CBCh)−1 = A−1−A−1C(B−1+

ChA−1C)−1ChA−1. Based on (6.17) and (6.19), the autocorrelation matrix of eg can be

expressed by

Σeg = Rg

[

Σ′
g
−1

+
1

σ2
v

HhH

]−1

Rh
g . (6.20)

Since σ2
eg

= trace(Σeg), the minimization of the mean square error is equivalent to mini-

mizing trace(Σeg). In addition, the solution that minimizes trace(Σeg) should also satisfy
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the successive interference cancellation constraint, i.e., Rg = Dg+ INNb
needs to be an

upper triangular matrix with unit diagonal elements. The solution satisfying the above

conditions is found as [88]

Rg = Uh
g (6.21)

where Ug ∈ CNNb×NNb is a lower triangular matrix with unit diagonal elements. The

matrix Ug ∈ CNNb×NNb is obtained from the Cholesky decomposition of Σ′
g
−1 + 1

σ2
v
HhH as

Σ′
g
−1

+
1

σ2
v

HhH = Ug∆gU
h
g (6.22)

where ∆g ∈ CNNb×NNb is a diagonal matrix. The solution for the feedforward and feedback

equalizer matrices can then be obtained as

Cg = Uh
gΣ

′
gH

h
[
HΣ′

gH
h + σ2

vIM(Nb+L−1)

]−1
(6.23a)

Dg = Uh
g − INNb

(6.23b)

6.3.3 Calculation of Extrinsic LLR Based on Equalized Symbols

The calculation of the extrinsic LLR at the MIMO BDFE output is discussed in this

subsection. With the MIMO BDFE structure described above, we can obtain an equivalent

equalization model as (c.f. (6.15))

zg , Cg(y − Hx̄′
g) = Rg

(
x̂′ − x̄′

g

)
+ eg. (6.24)

From (6.24), the g-th element in zg can be represented by

zg = x〈Og〉 +

NNb∑

l=g+1

rg,l
[
x̂〈Ol〉 − x̄〈Ol〉

]
+ eg (6.25)

where rg,l is the (g, l)-th element of Rg with rg,l = 1 when g = l. The a posteriori

probability (APP) of x〈Og〉 conditioned on zg is

P
(
x〈Og〉|zg

)
=
p
(
zg|x〈Og〉

)
P

(
x〈Og〉

)

p (zg)
. (6.26)
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With the common approximation that eg in (6.25) is a zero-mean complex Gaussian random

variable, we have the conditional probability

p
(
zg|x〈Og〉

)
≈ 1

πα2
g

exp

{

−|βg|2
α2
g

}

(6.27)

where βg = zg − x〈Og〉 −
∑NNb

l=g+1 rg,l
[
x̂〈Ol〉 − x̄〈Ol〉

]
. Since Σeg = ∆−1

g , the variance of eg is

α2
g = δ−1

g,g with δg,g being the g-th diagonal element of ∆g. To determine (6.26), the symbol

a priori probability, P
(
x〈Og〉

)
, can be calculated based on the bit a priori probabilities at

the input to the equalizer, and are initialized as P
(
x〈Og〉

)
= 1

Q
during the first iteration.

The value of p(zg) can be obtained by using the normalization
∑Q

q=1 P
(
x〈Og〉 = χq|zg

)
= 1.

Once the symbol APP p
(
x〈Og〉|zg

)
is obtained, the bit APP

{
cng,(kg−1) log2Q+p

}log2Q

p=1
of

the symbol x〈Og〉, can be calculated as follows

P
[
cn,(k−1) log2Q+p = b|zg

]
=

∑

x〈Og〉∈S(b)
p

P
(
x〈Og〉|zg

)
(6.28)

where 〈Og〉 = (ng, kg), S(b)
p , {χq|χq ∈ S : cq,p = b} with b ∈ {0, 1}, for p = 1, · · · , log2Q.

The LLR of the code bit can then be calculated as

Λ
[
cng,(kg−1) log2Q+p

]
= ln

∑

x〈Og〉∈S(0)
p

P
(
x〈Og〉|zg

)

∑

x〈Og〉∈S(1)
p

P
(
x〈Og〉|zg

) . (6.29)

The extrinsic bit LLR is obtained by subtracting the a priori LLR, Λa

[
cng,(kg−1) log2Q+p

]
,

from (6.29). The bit extrinsic LLR will then be de-interleaved and used as the a priori

input to the channel decoder.

Finally, since it is computationally expensive to calculate the sequence-based symbol

APP P (x〈Og〉|y), the symbol APP p
(
x〈Og〉|zg

)
is treated as an approximation of P (x〈Og〉|y),

and is then used for calculating the tentative soft decision, x̂〈Og〉, as described in (6.14).

6.4 Low Complexity MIMO Turbo BDFE

One of the main computational burdens of the proposed algorithm comes from the calcu-

lation of the equalizer matrices in (6.23a) and (6.23b), which need to be updated for each
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symbol. The calculation of the matrices Cg and Dg involves one Cholesky decomposition

in (6.22) and one matrix inversion in (6.23a), resulting in a computational complexity in

the order of O((NNb)
3). The overall complexity over the entire BDFE block is then in

the order of O((NNb)
4), which is prohibitively expensive when N or Nb gets large. It is

desirable to develop a low-complexity implementation that does not apparently sacrifice

the performance of the MIMO BDFE. We propose to reduce the computation complexity

of the MIMO BDFE from two perspectives described as follows.

First, the symbol-dependent equalizer matrices, Cg and Dg, are replaced with constant

symbol-independent matrices, C and D, to achieve a low-complexity approximation of

the MIMO turbo BDFE. A close observation on (6.23) reveals that the symbol-wise filter

updating is solely due to the dependence on the second-order a priori information Σ′
g.

Therefore, computational complexity can be significantly reduced by replacing Σ′
g with

the constant autocorrelation matrix Σ′ = diag{σ2
〈O1〉, σ

2
〈O2〉, · · · , σ2

〈ONNb
〉}, which leads to the

constant filter matrices, C and D, for all the symbols to be equalized. It is demonstrated

through simulations that employing constant equalizer matrices for all the symbols does

not apparently degrade the equalization performance.

Second, fast matrix inversion algorithm is employed to further reduce complexity. The

calculation of the constant feedforward matrix C requires one matrix inversion, as

C = RΣ′Hh
[
HΣ′Hh + σ2

vIM(Nb+L−1)

]−1

=
1

σ2
v

R

[

Σ′−1
+

1

σ2
v

HhH

]−1

Hh. (6.30)

With the Cholesky decomposition, Σ′−1 + 1
σ2

v
HhH = U∆Uh, (6.30) can be simplified to

C =
1

σ2
v

∆−1U−1Hh (6.31)

Since ∆ is a diagonal matrix, it is easy to calculate ∆−1. As of U−1, it was pointed out

in [89] that there is no need to evaluate it explicitly. Instead, based on the fact that the

matrix U is a lower triangular matrix with unit diagonal, the back-substitution method
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can be employed to solve the following linear system

UA =
1

σ2
v

Hh (6.32)

where A ∈ CNNb×M(Nb+L−1) is the unknown matrix to be solved. Once A is obtained, the

feedforward matrix C can be calculated as

C = ∆−1A (6.33)

The low complexity algorithm for performing one iteration of the MIMO turbo BDFE is

summarized in Table 6.1.

6.4.1 Complexity Comparison with MIMO Turbo LE

The computational complexities of the LE and the proposed low-complexity BDFE for a

N×M MIMO system are compared in this subsection. It is assumed that the transmission

block size is Nb, and all the MN subchannels have the same length L. The complexity is

measured by the number of complex multiplications (CM). For both equalization methods,

the main complexity arises from two source: the calculation of equalizer taps, and the

calculation of LLR.

For BDFE, the complexity of calculating constant feedforward and feedback BDFE

matrices C and D is dominated by the Cholesky decomposition, which incurs computation

in the order of O((NNb)
3), with an exception when F = H (refer to (6.3) and (6.12)).

When F = H, the property of block-Toepliz structure of F in (6.4) can be utilized, which

reduces the complexity of Cholesky decomposition to the order of O((NNb)
2) [89]. The

complexity of LLR calculation lies mainly in the filtering operation in (6.24)–(6.25), and the

conditional probability evaluation operation in (6.27). Over an entire block, the filtering

operation induces a complexity in the order of O(MNNb(Nb + L − 1) + N2N2
b ), and the

conditional probability evaluation in (6.27) incurs a complexity in the order of O(QN2N2
b ).

For LE, it is assumed that the linear equalizer has K = K1 + K2 + 1 tap vectors

(each with size M) spanning over the index range [−K1, K2]. For fairness of comparison, a
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Table 6.1: Low-complexity MIMO turbo BDFE algorithm

INPUT:

- received signal vector y as shown in Eqn. (6.3),
- a priori LLR Λa

[
cn,(k−1)log2Q+p

]
of all coded bits in the block

(1 ≤ p ≤ log2Q, 1 ≤ n ≤ N, 1 ≤ k ≤ Nb).

INITIALIZATION:

- Compute the a priori mean x̄n,k and a priori variance σ2
n,k of

all symbols according to Eqns. (6.6a) and (6.6b),
- Calculate the symbol a priori reliability ρn,k=1/σ2

n,k, and sort
ρn,k in ascending order according to (6.11),

- Based on the ordering {O1, O2, · · · , ONNb
}, formulate the

ordered system model y = Hx′ + v as Eqn. (6.12),
- Calculate autocovariance matrix Σ′ of the ordered vector x′, and

perform Cholesky decomposition Σ′−1
+ 1
σ2

v
HhĤ=U∆Uh,

- Obtain feedback equalizer matrix D = Uh − INNb
, and calculate

feedforward equalizer matrix C according to (6.31)– (6.33),
- Initialize the soft-decision symbol vector x̂′ to be zero.

MIMO TURBO BDFE ALGORITHM:

FOR g = NNb TO 1 DO
Set the mean of x〈Og〉 in x̄′ as zero, to obtain x̄′

g,
Calculate zg = C

(
y − Hx̄′

g

)
,

FOR q = 1 TO Q
Calculate P

(
x〈Og〉 = χq|zg

)
according to Eqn. (6.26), (6.27).

END
FOR p = 1 TO log2Q

Calculate bit LLR Λ
[
cng,(kg−1)log2Q+p

]
according to (6.29),

Then calculate bit extrinsic LLR Λe

[
cng,(kg−1)log2Q+p

]
,

END
Calculate x̂〈Og〉 based on P

(
x〈Og〉 = χq|zg

)
, and update

the tentative soft-decision symbol vector x̂′.
END

OUTPUT:

Extrinsic LLR of coded bits Λe

[
cn,(k−1)log2Q+p

]

(1 ≤ p ≤ log2Q, 1 ≤ n ≤ N, 1 ≤ k ≤ Nb)

constant equalizer is adopted. For each transmission stream, the calculation of the constant

equalizer taps involves matrix inversion of size N(K + L− 1). The overall complexity for

85



calculating equalizer taps is thus in the order of O(N4(K +L− 1)3). The LLR calculation

also includes the filtering operation and the conditional probability evaluation, requiring

overall complexities in the order of O(MN2NbK(K +L− 1)) and O(QN2Nb(K +L− 1)),

respectively.

From the analysis above, the complexity of BDFE is determined by the system block

size Nb, and the complexity of LE is closely related to the channel length L and the system

parameters K (K1 and K2). The complexity comparison between BDFE and LE is then

determined by the system parameters Nb, L and K. Since block transmission is primarily

designed for fast-fading environment [125], the choice of block size Nb shall not be too large

so as to guarantee the time-invariant assumption of the channel. In this case, the proposed

BDFE has comparable complexity to LE. For example, for the choice Nb = 100, L = 15

and K1 = K2 = L, both BDFE and LE have complexities in the order of O(106). It is

noted that once the block size is fixed, the complexity for BDFE remains nearly unchanged

within a large range of channel length. The complexity of LE, however, is cubic in the

channel length and will get very high for large channel length L.

6.5 Simulation Results

Simulation results are presented in this section to demonstrate the performance of the

proposed MIMO turbo BDFE with reliability-based SSIC. The data is organized in packets.

Each packet is independently encoded by a rate 1/2 non-systematic convolutional code with

a constraint length 4 and a generator polynomial [G1, G2] = [17, 13]oct. The encoded packet

is further divided into blocks for transmission. The MIMO turbo BDFE is operated over

blocks, and the MAP convolutional decoding is performed over an entire packet.

First we compare the performance of the BDFE with fixed and reliability-based SSIC.

A 2× 2 MIMO system using QPSK modulation is studied. The simulations are performed

under two scenarios. In the first scenario, complex MIMO channel is adopted. Each

of the subchannels has a length of L = 5 with exponential power delay profile (PDP)
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exp(−0.4l)(0 ≤ l ≤ L− 1). Each packet carries 2,000 symbols (or 2,000 information bits),

which are divided into 20 blocks with size Nb = 100. For the group-wise detection ordering,

Nr = 5 is selected so that each block is divided into Ng = 20 groups. The MIMO channel

remains constant over each packet while changes from packet to packet. In the second sce-

nario, real MIMO channel is employed. The MIMO channel is generated with the Proakis

Type A channel [82] as h1,1 = [0.04,−0.05, 0.07,−0.21,−0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07],

h1,2 = h1,1 ≪ 3, h1,2 = h1,1 ≪ 6, h1,2 = h1,1 ≪ 9, where hm,n denotes the subchannel be-

tween the n-th transmit antenna and the m-th receive antenna. Each packet carries 1,000

symbols (or 1,000 information bits), which are divided into 10 blocks with size Nb = 100.

For the group-wise detection ordering, Nr = 10 is selected so that each block is divided into

Ng = 10 groups. During the simulation, 200 packets are simulated for both scenarios. The

simulation results are shown in Fig. 6.3 and Fig. 6.4, respectively. From the two figures,

it is apparent that extra gains have been obtained for the second and third iterations, by

utilizing the a priori reliability information for detection ordering. In the first iteration,

there is no a priori reliability information available, so the BDFE with reliability-based

SSIC has the same performance as the original BDFE with fixed SSIC.

87



2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

2× 2 MIMO (QPSK, Exponential PDP with L=5)

 

 

Fixed SSIC, Iter. 1
Relibility−based SSIC, Iter. 1
Fixed SSIC, Iter. 2
Relibility−based SSIC, Iter. 2
Fixed SSIC, Iter. 3
Relibility−based SSIC, Iter. 3

Figure 6.3: BER comparison between fixed and reliability-based SSIC (complex channel)
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Figure 6.4: BER comparison between fixed and reliability-based SSIC (real channel)
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Next we compare the performances of the proposed turbo BDFE and the turbo LE [77].

A 2×2 MIMO system with 8PSK modulation is considered, where the MIMO channel has

a uniform PDP with a channel length of L = 10. Each packet carries 6,000 symbols (or

9,000 information bits), which are divided into 60 blocks with block size Nb = 100. In the

simulation, 50 packets are simulated. The parameters K1 and K2 are set as K1 = K2 = L

for LE. The BER results of the two equalization schemes are compared in Fig. 6.5. From

the figure, the proposed BDFE significantly outperforms LE and has achieved more than

2 dB gain in all three iterations.
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Figure 6.5: 2 × 2 MIMO: BER comparison for LE and BDFE (8PSK)

Fig. 6.6 compares the performance of the proposed BDFE with the optimum MAP

equalizer in a 2×2 MIMO system. Constant MIMO channel with length L = 3 is adopted,
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which is generated with the Proakis type B [82] channel as h1,1 = [0.407, 0.815, 0.407],

h1,2 = [0.815, 0.407, 0.407], h2,1 = [0.407, 0.407, 0.815], and h2,2 = [0.407,−0.407, 0.815].

With BPSK modulation, the trellis structure of the MIMO MAP equalization hasQN(L−1) =

16 states. Each packet carries 2,000 symbols (or 2,000 information bits), and the block size

is Nb = 100. The result shown in Fig. 6.6 is simulated with 300 packets. It is observed

from the results that when the BER equals to 10−2, the MIMO BDFE is within 0.5 dB

from the optimum MAP equalizer, while the LE algorithm is about 1 dB from the MAP

equalizer. In addition, only marginal performance improvement is observed by increasing

the number of iterations from 4 to 5. Obviously, the proposed BDFE achieves a BER

performance close to the optimum MAP equalization.
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Figure 6.6: BER comparison among LE, BDFE and MAP equalization (BPSK)

90



6.6 Conclusion

A new turbo block decision feedback equalizer with reliability-based successive soft inter-

ference cancelation was proposed for MIMO systems. Compared to existing low-complexity

turbo detection schemes, the proposed scheme has two advantages. First, it takes advan-

tage of the degree-of-freedom in the detection ordering of SSIC, and introduces a reliability-

based SSIC to reduce error propagation. Second, it utilizes the non-linear BDFE structure,

which can achieve a better performance than the linear equalization structure with a simi-

lar complexity. In addition, the reliability information was obtained from the soft a priori

information that is unique to turbo equalization. It was demonstrated through simulations

that the proposed MIMO BDFE has a better BER performance and a faster converging

rate compared to existing low-complexity algorithms, while retaining similar computation

complexity.
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Chapter 7

Channel Equalization for MIMO

Underwater Acoustic

Communications

7.1 Introduction

Underwater acoustic (UWA) channel is recognized as one of the most challenging channels

in practical use [90]. The obstacles imposed by the water media on acoustic propagation are

reflected in four aspects. First, the available channel bandwidth is very limited due to the

frequency-dependent attenuation. For example, in medium-range UWA communications,

the bandwidth is on the order of a few tens of kilohertz. Second, the channel delay spread is

very long due to the rich scattering environment. For instance, it could be over several tens

of milliseconds (ms), leading to an equivalent discrete-time channel with several tens or

even hundreds of channel taps in contrast to less than twenty taps in radio frequency (RF)

communications. Third, the Doppler effect is very significant due to the low propagation

speed of sound (about 1500 m/s in water). On one hand, the motion-induced Doppler

shift causes a normalized carrier frequency offset (CFO) on the order of 10−4 to 10−3,

compared to 10−8 to 10−6 in RF channels. On the other hand, the motion-induced waveform

compression or dilation, incurs non-negligible symbol offset requiring signal resampling.

Finally, the temporal variation of the UWA channel is very fast due to the dynamics of the

water mass, which imposes difficulty on both channel estimation and phase tracking.

In the past three decades, significant progress has been achieved in UWA communi-
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cations [91] – [103]. Earlier UWA communications adopted non-coherent frequency-shift

keying (FSK) technology which enabled simple energy-based signal detection combating

the unpleasant effect of channel reverberation [91]. The drawback of FSK lies in its low

transmission rate and also low bandwidth efficiency. The partial coherent modulation

of differential phase shift keying (DPSK) was then chosen to achieve a bandwidth effi-

ciency between non-coherent and fully coherent systems. It was until early 1990’s, UWA

transmission using the bandwidth-efficient coherent modulation appeared in [92]. Differ-

ent from FSK, coherent transmission adopting modulations like phase shift keying (PSK)

and quadrature amplitude modulation (QAM) requires proper cancelation of inter-symbol

interference (ISI) and compensation of phase distortion in signal detection, both tasks

become very difficult under hash UWA channel conditions. Passive-phase conjugation

(PPC) [93] and time reversal (TR) [94] technologies, both having different principles from

equalization, have been proposed to mitigate ISI. The detection using PPC technology,

however, has poor performance when only a small number of receiving hydrophones are

available [95]. As a result, equalization technology is more commonly adopted for coherent

detection. Generally, equalization can be performed in either time-domain (TD) [96] – [100]

or frequency-domain (FD) [101] – [103]. In [96], [97], the classic joint design of decision

feedback equalizer (DFE) and phase-locked loop (PLL) has been proposed, and its iterative

implementation can be found in [98]. In [99], by coupling PPC technology with a single-

channel DFE, the correlation-based DFE is proposed and tested to be robust to different

acoustic environments. The phase rotation is tracked with PLL technology. In [100], lin-

ear equalization combined with proper phase compensation has been proposed to minimize

error propagation due to decision feedback. In [101], single-carrier frequency-domain equal-

ization (SC-FDE) followed by phase compensation is proposed for single-carrier systems,

and the frequency-domain equalization for multiple-carrier orthogonal frequency division

multiplexing (OFDM) systems has been proposed in [102], [103]. In [102], equalization is

performed with adaptive channel estimation and phase tracking method. In [103], pilot-

aided channel estimation is adopted for equalization, and a two-step Doppler compensation
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is adopted to remove phase rotation. While FD equalization enables low-complexity im-

plementation even over highly-dispersive channel, it usually requires extra guard intervals

(GI) among transmission blocks, which sacrifices the data transmission efficiency. More-

over, the inherent sensitivity of OFDM systems to carrier frequency offset, makes the robust

detection very challenging especially with moving transceivers.

Despite the diverse equalization schemes, the demonstrated data rate of UWA commu-

nication is relatively low due to the natural limitation on the available channel bandwidth.

In recent years, researchers have started to explore the spatial structure of the oceans to

fundamentally improve the transmission rate. In the past years, MIMO UWA communica-

tions have been investigated in [104] – [108]. In [104], the number of the available degrees

of freedom in the UWA channel is studied. In [105], coherent MIMO transmission has

been presented, using a time reversal approach. In [106], the joint DFE and PLL scheme

originally proposed in [96] for single input multiple output (SIMO) systems has been ex-

tended to MIMO cases. In [107], turbo linear equalization has been used for MIMO UWA

communication. The FD equalization schemes proposed in [101] and [103] have also been

extended to MIMO systems in [108] and [109], respectively.

In this chapter, we propose a new time-domain MIMO equalization scheme for sin-

gle carrier UWA communications. Different from conventional schemes performing joint

equalization and phase tracking [92], [96], [97], [98], [106], where the requirement for care-

ful tuning of DFE and PLL parameters makes the system less stable [90], the new scheme

decouples the interference-cancelation functionality and phase-synchronization functional-

ity leading to a generalized equalizer structure consists of an interference-cancelation (IC)

equalizer and a phase compensator. MIMO linear equalizer (LE) is adopted to achieve

low-complexity equalization and also to avoid the error propagation in DFE especially un-

der harsh channel conditions. A novel group-wise phase estimation and correction method

proposed in [110], which is insensitive to noise disturbance, is used to compensate phase

rotations in the equalized symbols. The proposed equalization scheme has been adopted

in a layered receiver structure for UWA communications, and has been tested by high-
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rate MIMO experimental data measured off the northwestern coast of Kauai, Hawaii, in

September 2005, and by both moving-source and fixed-source SIMO experimental data

measured at Saint Margaret’s Bay, Nova Scotia, Canada, in May 2006. We have achieved

successful equalization in both experiments.

The rest of the chapter is organized as follows. In Section 7.2, a general MIMO UWA

system model is given. Based on the system model, MIMO channel estimation is intro-

duced in Section 7.3, as the basis for equalizer design. The new MIMO equalization scheme

is then developed in Section 7.4, where the MIMO IC equalization, the group-wise phase

estimation and compensation, and the layered space-time processing technology are dis-

cussed, respectively. Section 7.5 reports the results on experimental data processing, and

conclusion is drawn in Section 7.6.

7.2 MIMO UWA System Model

For a MIMO UWA communication system employing N transmitting transducers and M

receiving hydrophones, the baseband discrete-time signal received at the m-th hydrophone

is represented as

ỹm(k) =
N∑

n=1

L−1∑

l=0

h̃n,m(k, l)x̃n(k − l)ejφ̃n,m(k) + ṽm(k) (7.1)

where x̃n(k) is the effective transmission symbol of the n-th transducer observed at the

receiver, h̃n,m(k, l) and φ̃n,m(k) are the l-th complex fading coefficient and the phase drift

of the time-varying subchannel between the n-th transducer and the m-th hydrophone,

and L is the channel length. The phase drift is a combining effect of the average Doppler

shift, f̄n,m, the instantaneous Doppler, fn,m(k), and the coarse synchronization phase error,

θn,m, and can be expressed as φ̃n,m(k) = 2π
[
f̄n,m + fn,m(k)

]
kTs + θn,m, where Ts is the

symbol interval. The term ṽm(k) is the sample of a zero-mean additive white Gaussian

noise (AWGN) with power σ2
v , on the m-th hydrophone. For practical UWA channels, the

fading coefficient h̃n,m(k, l) usually changes slower than the instantaneous phase φ̃n,m(k),

so it is appropriate to treat them separately [106].
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The average Doppler shift f̄n,m is caused by the relative motion between the transmitter

and the receiver, while the instantaneous Doppler fn,m(k) modeled as a zero-mean time-

varying random variable comes from the dynamics of the oceans. When the transmitter-

receiver relative motion is non-negligible, it causes the transmitted signal to be compressed

or dilated at the receiver side [111], [112]. In this case, the effective transmission symbol

x̃n(k) in (7.1) is not exactly the same as the originally transmitted symbol xn(k), where

xn(k) ∈ S with S = {χq}Qq=1 being the modulation constellation of size Q. As a result,

compensation of the average Doppler shift f̄n,m and re-sampling of the received signal,

herein named as Doppler preprocessing, are necessary before signal detection can be per-

formed. An efficient average Doppler shift estimation method has been provided in [111].

After Doppler preprocessing, the signal model in (7.1) becomes

ym(k) =
N∑

n=1

L−1∑

l=0

hn,m(k, l)xn(k − l)ejφn,m(k) + vm(k) (7.2)

where ym(k), hn,m(k, l), φn,m(k) and vm(k) are the received sample, the fading coefficient,

the phase drift and the additive noise after Doppler preprocessing, respectively. The phase

term, φn,m(k), may contain residual Doppler shift effect due to non-ideal Doppler shift

estimation and compensation. The noise vm(k) is still zero-mean AWGN with variance

power σ2
v .

7.3 Channel Estimation for MIMO UWA Communi-

cations

As the basis for equalizer design, channel estimation for UWA communications is devel-

oped in this section. In training mode, MIMO channel estimation is performed with pilot

symbols {pn(k), 0 ≤ k < Np}Nn=1 from all N transducers. We assume that the time du-

ration of the pilot sequences is less than the channel coherence time, in which case the

fading coefficient hn,m(k, l) in (7.2) can be treated as approximately time-invariant, i.e.,

hn,m(k, l) ≈ hn,m(l). The assumption is appropriate in many UWA communications. Then
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(7.2) can be represented in matrix form as

ym=

N∑

n=1

Φn,mPnhn,m + vm (7.3)

where ym = [ym(L−1), ym(L), · · · , ym(Np−1)]t ∈ C(Np−L+1)×1 is the received sample vector

at the m-th hydrophone with (·)t denoting matrix transpose operation,

Pn =








pn(L−1) · · · pn(1) pn(0)
pn(L) · · · pn(2) pn(1)

...
. . .

. . .
...

pn(Np − 1) · · · pn(Np − L+ 1) pn(Np − L)








(7.4)

is the n-th pilot matrix, and Φn,m = diag
{
ejφn,m(L−1), ejφn,m(L), · · · , ejφn,m(Np−1)

}
, hn,m =

[hn,m(0), hn,m(1), · · · , hn,m(L−1)]t, and vm = [vm(L− 1), vm(L), · · · , vm(Np − 1)]t are the

phase drift matrix, the fading coefficient vector, and the noise vector, respectively. The

operator diag{·} returns a diagonal matrix. It is still difficult to estimate hn,m and Φn,m

simultaneously from (7.3), due to the separation of Φn,m and hn,m by Pn on the right hand

side. To proceed, we rewrite Φn,m as

Φn,m=ejφn,m(I)×diag
{
ej[φn,m(L−1)−φn,m(I)], ej[φn,m(L)−φn,m(I)], · · ·, ej[φn,m(Np−1)−φn,m(I)]

}
(7.5)

where the index I in φn,m(I) is determined as I = ⌈(Np + L − 2)/2⌉ with ⌈x⌉ denoting

the smallest integer larger than x. The instantaneous phase drifts {φn,m(k)}Np−1
k=L−1 in (7.5)

could be significant. However, the differential phase drifts {φn,m(k)−φn,m(I)}Np−1
k=L−1 will

be insignificant over a short period of time. Thus (7.5) can be approximated by Φn,m ≈

ejφn,m(I)INp−L+1 with Ij being an identity matrix of order j. Then (7.3) can be approximated

by

ym ≈
N∑

n=1

Pn

[
ejφn,m(I)hn,m

]
+ vm

= Phm + vm. (7.6)

where P = [P1,P2, · · · ,PN ] and hm =
[
ejφ1,m(I)ht1,m, e

jφ2,m(I)ht2,m, · · · , ejφN,m(I)htN,m
]t

.

From (7.6), the minimum mean square error (MMSE) estimation of hm is given by

ĥm =
(
PhP + σ2

vINL
)−1

Phym (7.7)
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where (·)h denotes matrix Hermitian transpose. The estimation in (7.7) is performed on

all M hydrophones to obtain MIMO channel estimation. It is noted that to guarantee the

system equation (7.6) not to be under-determined, a minimum of Np≥ (N+1)L−1 pilot

symbols are required for each of the N transducers. Last, the same channel estimation

procedure discussed above will also be adopted in the decision-directed mode, where the

previously detected symbols instead of the pilot symbols are used for channel estimation.

7.4 New Equalization Scheme for MIMO UWA Com-

munication

A new equalization scheme is discussed in this section, where the conventional equalization

is first adopted to cancel the space-time interference among transmitted symbols, and

then a novel phase estimation and compensation method is applied to remove the phase

rotations in the equalized symbols. The layered receiver structure adopting the proposed

equalization scheme is then demonstrated.

7.4.1 MIMO Equalization for Space-Time Interference Cancela-

tion

With the estimated MIMO channel, MIMO equalization can be performed. MIMO linear

equalizer is adopted in this chapter. In this case, the k-th equalized symbol of the n-th

transmission stream (from the n-th transducer), is given by

x̂n(k) =
M∑

m=1

K2∑

q=−K1

c(q)n,m ym(k − q) (7.8)

where K1, K2 are nonnegative integers, and c
(q)
n,m denotes the q-th linear equalizer coefficient

corresponding to the received sample of the m-th hydrophone for equalizing symbols of the

n-th stream. Without loss of generality, the same values of K1, K2 are used for all (n,m)

pairs, resulting in N×M×(K1+K2+1) equalizer taps in total.

Collecting the equalized symbols at time k, {x̂n(k)}Nn=1, of all N streams in a vector,
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leads to the matrix-form equalization model as

x̂(k) = Cy (7.9)

where x̂(k) = [x̂1(k), · · · , x̂N (k)]t ∈ CN×1, y = [yt(k −K2), · · ·,yt(k), · · · ,yt(k +K1)]
t ∈

CM(K1+K2+1)×1 and C=
[
c(K2), c(K2−1), · · ·, c(−K1)

]
∈ CN×M(K1+K2+1) with y(k − q) ∈ CM×1

and c(q) ∈ CN×M defined, respectively, as

y(k − q) = [y1(k − q), y2(k − q), · · · , y
M

(k − q)]t (7.10a)

c(q) =









c
(q)
1,1 c

(q)
1,2 · · · c

(q)
1,M

c
(q)
2,1 c

(q)
2,2 · · · c

(q)
2,M

...
... · · · ...

c
(q)
N,1 c

(q)
N,2 · · · c

(q)
N,M









. (7.10b)

To solve the equalizer matrix C in (7.9), the mean squared error (MSE) is applied leading

to the cost function defined as follows

J(C) = E
[
‖x(k) − x̂(k)‖2] (7.11)

where ‖a‖ is the Euclidean norm of vector a, and E[·] denotes mathematical expectation.

By minimizing J(C) in (7.11), the MMSE MIMO LE matrix is solved as

CMMSE = E
[
x(k)yh

] {
E

[
yyh

]}−1
(7.12)

which is further simplified as

CMMSE = RhHh

(

HHh +
1

β
IM(K1+K2+1)

)−1

= Rh

(

HhH +
1

β
IN(K1+K2+L)

)−1

Hh (7.13)

where the derivation details are referred to the Appendix. In (7.13), the definitions of

the channel matrix H, the normalized transmission symbol correlation matrix R, and the

signal-to-noise ratio (SNR), are referred to (B.4), (B.6b), and (B.7), respectively. Since R

is constant, the MIMO LE matrix only depends on the knowledge of MIMO channel and

SNR.
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Remark: in (7.13), two alternative solutions for the MIMO LE matrix C are provided.

In the first solution (first equality), matrix inversion of order M(K1 +K2 + 1) is required.

In the second solution, matrix inversion of order N(K1 +K2 +L) is involved. Since matrix

inversion is the main source of the computational complexity, the solution with smaller-

order matrix inversion is always favored in practical MIMO systems.

With the designed LE matrix in (7.13), equalization can then be performed. Substitut-

ing (7.2) into (7.9), the equalized symbol of the n-th stream (or the n-th element in x̂(k))

is expressed as

x̂n(k) =
M∑

m=1

[
K2∑

q=−K1

N∑

i=1

L−1∑

l=0

c(q)n,mhi,m(k − q, l)xi(k − q − l)ejφi,m(k−q)

]

+ ηn(k) (7.14)

where ηn(k) =
∑M

m=1

∑K2

q=−K1
c
(q)
n,mvm(k − q) is the collection of additive noise {vm(k)}Mm=1

in the equalized symbol. As we can see from (7.14), the triple summation in the square

bracket is the m-th hydrophone’s contribution to the equalized symbol of the n-th stream.

Therefore, we have the following definition

αn,m(k)xn(k) + ξn,m(k) ,

K2∑

q=−K1

N∑

i=1

L−1∑

l=0

c(q)n,mhi,m(k−q, l)xi(k−q−l)ejφi,m(k−q) (7.15)

where αn,m(k) denotes the scaling factor which is usually a complex value closely related

to the equalizer taps c
(q)
n,m and instantaneous phase rotation ejφi,m(k−q), and ξn,m(k) denotes

residual interference from symbols other than xn(k). With above definition, (7.14) is

simplified as

x̂n(k) =
M∑

m=1

αn,m(k)xn(k) + ξn(k) + ηn(k)

= |γn(k)| ej∠γn(k)xn(k) + ζn(k) (7.16)

where γn(k) =
∑M

m=1 αn,m(k) is the diversity combining gain of M hydrophones, ξn(k) =
∑M

m=1 ξn,m(k) is the overall residual interference, and ζn(k) = ξn(k) + ηn(k) is the effec-

tive noise consists of the residual interference and additive noise in the equalized symbol.

Obviously, regardless of the effective noise, the equalized symbol x̂n(k) in (7.16), is an
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amplitude-scaled and phase-rotated version of the original symbol xn(k). The phase rota-

tion ∠γn(k) is a complicated term caused by phase drift φn,m(k). For systems employing

coherent modulation schemes like phase shift keying (PSK), the phase rotation is hostile

and must be compensated, which is the topic of the next subsection.

7.4.2 Group-wise Phase Estimation and Compensation

The group-wise phase estimation and correction method proposed in [110] is adopted to

handle the phase rotations in the equalized symbol x̂n(k), as shown in (7.16). The motiva-

tion for the group-wise phase estimation and correction method comes from the fact that

the instantaneous phase drift φn,m(k) changes gradually while not arbitrarily from time to

time due to the nature of ocean waters. In other words, the rotating phase ∠γn(k) tends

to be a constant over a small group of Ns consecutive equalized symbols. The procedure

for performing the group-wise phase estimation and compensation algorithm is presented

in the following.

Initialization: For the equalized data block of size Nb, designate the first Nts symbols

{xn(k)}Nts
k=1 as the training symbols for phase reference and determine the initial phase

ψn(0) by

ψn(0) =
1

Nts

Nts∑

k=1

[∠x̂n(k) − ∠xn(k)] . (7.17)

Then, partition the remaining Nb−Nts symbols into Ng groups, each having Ns symbols,

except that the Ng-th group may have less than Ns symbols. Further, for a M-ary PSK

(MPSK) modulation constellation SM =
{

exp
[
j(m−1)2π

M

]}M

m=1
, define a phase quantization

function Q [·] as follows

Q [φ] =
2(m− 1)π

M
,

(2m−3)π
M

≤ φ < (2m−1)π
M

m = 1, 2, · · · ,M.
(7.18)

Set g = 1.

Step 1: Compensate the phase of the g-th group data by e−jψn(g−1), yielding

x̂n(g, k) = x̂(Nts + (g−1)Ns+k)e
−jψn(g−1), k = 1, 2, · · · , Ns. (7.19)
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Step 2: For each symbol in the g-th group, calculate its phase deviation from the

corresponding nominal phase as

ϕn(g, k) = ∠x̂n(g, k) − Q [∠x̂n(g, k)] , k = 1, 2, · · · , Ns. (7.20)

Step 3: Calculate the average phase deviation and estimate the rotating phase, re-

spectively, for the g-th group as

∆ψn(g) =
1

Ns

Ns∑

k=1

ϕn(g, k) (7.21)

ψn(g) = ψn(g−1) + ∆ψn(g). (7.22)

Step 4: Increment g by 1, repeat Step 1 – 3 till g = Ng.

After estimating the phases for the Ng groups, we can compensate the phase rotation

in the equalized symbols on group basis as

x̌n(g, k) = x̂n(g, k)e
−jψn(g),

k = 1, 2, · · · , Ns

g = 1, 2, · · · , Ng
(7.23)

The phase-compensated symbol x̌n(g, k) is then ready for detection. It is pointed out that

if the last group has less than Ns symbols, then the calculation through (7.19)–(7.23) needs

to be carried out based on the actual number of symbols. Finally, the group-wise phase

estimation method takes the advantage of insensitivity to noise perturbations, due to the

averaging operation in (7.21).

7.4.3 Layered Space-Time Processing

Layered space-time processing was first proposed in [113], for frequency-flat fading chan-

nels. It was extended to frequency-selective fading channels in [114]. The basic idea of

the layered time-space processing is to detect multiple data streams one by one in a spe-

cific order [115], so that the overall detection performance of all streams can be improved

compared to joint detection.

In [114], the layered time-space processing is operated with the ordered successive in-

terference cancelation (OSIC), where the transmitted streams are detected in an order
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that strong streams are detected earlier than weak streams, and each stream is processed

with the interference from all previously detected streams already canceled out. For a

MIMO UWA communication system using space-time trellis coding (STTC) [116], a layered

receiver structure adopting the proposed equalization scheme discussed above is demon-

strated in Fig. 7.1, where N stages each detecting one of the N transmission streams,

are included. At each stage, channel equalization and phase compensation are operated

separately.
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Figure 7.1: Layered MIMO receiver architecture adopting the proposed equalization.

The key for the success of OSIC-based space-time processing lies in the successive

interference reconstruction and cancelation. For a detection order {o1, o2, · · · , oN} with

on denoting the index of the stream detected at stage n(1 ≤ n ≤ N), the constructed

interference of the on-th stream after it is detected, is given as

Îon,m(k) =

L−1∑

l=0

hon,m(k, l)x̄on(k), (1 ≤ m ≤M) (7.24)

where x̄on(k) = x̃on(k)ej[∠x̂on(k)−∠x̃on(k)] with x̂on(k) and x̃on(k) being the equalized symbol

and the detected symbol of the on-th stream, respectively, as shown in Fig. 7.1. The

reconstructed interference of the on-th stream is then canceled out as

y(n)
m (k) = y(n−1)

m (k) − Îon,m(k), (1 ≤ m ≤ M) (7.25)
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where y
(n)
m (k) denotes the received signal with the interference of the previous n streams

already subtracted out, and is ready to be used for detecting the on+1-th stream. When

detecting the o1-th stream, we have y
(0)
m (k) = ym(k). The procedure in (7.24)–(7.25) is

repeated until all streams are detected.

7.5 Experimental Results

The layered receiver structure adopting the proposed equalization scheme as shown in

Fig. 7.1, has been tested by two undersea experiments: Makai05 and Unet06. We present

the details on data processing for both experiments in this section.

7.5.1 Results of Makai05 Experiment

Single-band (SB) and multi-band (MB) MIMO underwater experiments were conducted

off the northwestern coast of Kauai, Hawaii, in September 2005. In MB experiment, six

signal bands each having a symbol rate of 2 kilo-symbols per second (ksps) were used. The

adoption of MB transmission aims to reduce the equivalent symbol-spaced channel length

(thus reduce the equalization complexity), while still achieve a high data rate. Its spectral

efficiency, however, is lower than SB transmission due to the insertion of guard bands

among multiple signal bands. Signal detection for MB transmission has been presented

in [106], and no results for SB transmission has been previously reported yet.

In this chapter, we focus on SB experiment, which further includes low band (LB)

transmission and high band (HB) transmission. In LB transmission, the carrier frequency

was fc = 32 kHz and the symbol interval was 0.1 ms. The occupied channel bandwidth

was fb = 14 kHz due to the use of a pulse shaping filter with roll-off factor 0.4. In HB

transmission, the carrier frequency was fc = 37.5 kHz and the symbol interval was 0.05

ms. The occupied channel bandwidth was fb = 25 kHz due to a pulse shaping filter with

roll-off factor 0.25. The modulations included BPSK, QPSK and 8PSK for both LB and

HB transmissions. The transmitter was a ten-transducer array with 2 meters separation

between adjacent transducer elements and was deployed over the side of the Kilo Moana
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research vessel. The receiver consisted of eight hydrophones with 2 meters separation

between adjacent hydrophone elements, and was allowed to drift freely. The transmission

range was 2 kilometers (km).

In Fig 7.2, the signalling for a two-transducer transmission is shown. From the figure,

STTC

Tx 1

Tx 2
Mapping
Symbola s

s1

s2

x1

x2Π

Π

Figure 7.2: Signalling at the transmitter in Makai05 experiment.

the binary stream a is input to the symbol mapping module with the output modulation

symbol stream denoted by s. The symbol stream s is then encoded by space-time trellis

coding, and the encoded stream is de-multiplexed into two sub-streams s1 and s2 for two

transducers. In this experiment, the four-state BPSK, four-state QPSK, and eight-state

8PSK STTC codes provided in [116] were used, all for two-transducer transmission. Symbol

interleavers (
∏

) were optionally used to transform s1 and s2 into x1 and x2 (s1 = x1 and

s2 = x2 when symbol interleaving was not applied). For the transmission with more than

two transducers, the grouped STTC was used, with the details referred to [106].

The symbol stream was transmitted in packets. In Fig. 7.3, the MIMO packet struc-

ture is shown. From the figure, the packet consists of three parts: the first part contains

12 seconds

Data payload from selected transducers Tx system resync.

0.4 s

4.2 seconds 4.8 seconds 3 seconds

0.2 s Gap

Tx 1

Tx 10

Figure 7.3: MIMO packet structure in Makai05 experiment.

a sequence of probe signals transmitted by transducer one to transducer ten, plus a 0.2-

105



second clear time. Each probe signal has a duration of 0.4 seconds and contains a linear

frequency modulation (LFM) signal for synchronization. The second part contains data

payload transmitted simultaneously by designated transducers depending on the experi-

mental configuration. It has a time duration of 4.8 seconds. At the receiver side, part of

the transmitted symbols will be used as pilot symbols for channel estimation, which will

become evident shortly. The last part is a 3-second clear time used for transmission system

re-synchronization. The whole packet has a time duration of 12 seconds.

The signal detection procedures for LB transmission and HB transmission are similar,

and we present the details for LB transmission without loss of generality. As mentioned

above, the LFM signal contained in the probe signal is used for packet synchronization due

to its good correlation property. Moreover, the channel length L can also be estimated with

the LFM signals by measuring the span of the significant LFM correlation [100]. In Fig. 7.4,

an example of the normalized LFM correlation is depicted. It’s clearly shown that there
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Figure 7.4: An example of normalized LFM correlation.

exists a correlation peak indicating the synchronization point. The significant correlation
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spans a range about 10 ms, over which most of the channel energy is concentrated. The

channel length is thus estimated as L = 100, in terms of LB symbol interval Ts = 0.1 ms.

Once the packet synchronization was achieved, the MIMO channel was initially es-

timated using pilot symbols located at the front of the data payload with the method

described in Section 7.3. For the channel length of L = 100 requiring a minimum training

length of 299 with two-transducer MIMO transmission, a larger pilot length Np = 600

was selected so as to obtain an accurate channel estimation and also mitigate the effect

of additive noise. Such choice of pilot length corresponds to a time duration of 60 ms,

which is less than the channel coherence time about 200 ms corresponding to a maximum

Doppler spread between 2 ∼ 3 Hz in this experiment. The approximation of phase drift in

(7.6) is also appropriate in this case, since the maximum possible differential phase drift

is less than π
8
. Figs. 7.5 and 7.6 show two examples of the estimated channel impulse re-

sponses (CIRs) for the two-transducer eight-hydrophone MIMO transmissions with BPSK

and QPSK modulations, respectively. Obviously, all subchannels are sparse with two

0 5 10
0

0.5

1

CIR: Tx 1 to Rx 1

0 5 10
0

0.5

1

CIR: Tx 1 to Rx 4

A
m

pl
itu

de

0 5 10
0

0.5

1

CIR: Tx 1 to Rx 8

Time (ms)

0 5 10
0

0.5

1

CIR: Tx 2 to Rx 1

0 5 10
0

0.5

1

CIR: Tx 2 to Rx 4

A
m

pl
itu

de

0 5 10
0

0.5

1

CIR: Tx 2 to Rx 8

Time (ms)

Figure 7.5: Estimated channel impulse responses for 2× 8 MIMO with BPSK modulation.
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Figure 7.6: Estimated channel impulse responses for 2×8 MIMO with QPSK modulation.

distinct peaks over the depicted delay spread. The estimated MIMO channel with 8PSK

modulation was similar to that depicted in Fig. 7.6, and is not shown for brevity. The

estimated channel was also used to determine the detection order in the layered space-time

processing. For each stream (transducer), its related channel energy is defined as the sum-

mation of all related subchannel energies. Then a simple ordering criteria is to compare

the related channel energies among streams, and the stream having larger related channel

energy is detected earlier.

Periodic pilot sequences were inserted to divide the data payload into frames, and each

frame was artificially partitioned into blocks for processing, as shown in Fig 7.7. We chose

the block size Nb=200, corresponding to 20 ms. The initial MIMO channel estimation was

employed to detect the block following the first pilot sequence, using the layered detection

scheme. In each layer, Nb symbols of the corresponding stream were first equalized. The LE

parameters K1 and K2 in (7.8), were selected as K1 =K2 =L−1. An interesting observation

was that using smaller K2 < L only slightly degraded the equalization performance while
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Figure 7.7: Partition of the transmitted data payload for block detection at the receiver.

decreased the computational complexity considerably. The Nb equalized symbols were

then fed into the phase compensation unit, as shown in Fig. 7.1. In the operation of group-

wise phase estimation and correction, the group size Ns = 20 was used, and there were

Ng = 10 groups in one block. After phase compensation, the Nb symbols were detected.

The detected symbols together with the equalized symbols were also used to construct the

interference of the detected stream, which was subtracted out of the received signal for

detecting the next stream. The block processing was finished when all N streams were

detected. To effectively track the time variation of MIMO channel, Np previously detected

symbols (part of them could be pilot symbols) of all streams were used to re-estimate the

channel, as shown in Fig 7.7. The updated channel was then used to detect the current data

block in a similar way mentioned above. The channel re-estimation and detection procedure

continued until the next pilot sequence started. The insertion of periodic pilot sequences

aimed to combat possible error propagation of decision-directed channel re-estimation, and

the new frame was processed in the same way as the previous one. The frame size was

selected to achieve a tradeoff between detection performance and training overhead. In

the processing, we selected Nf = 16, 000 which incurred only 5% overall training overhead,

comparing to 20% training overhead with conventional algorithms [106,117]. Once an entire

packet was detected, the N symbol streams were de-interleaved (if the symbol interleaver

was used) and then sent to the STTC decoding and symbol demapping module to produce

the decoded information bit stream, as shown in Fig. 7.1. The STTC decoding was easily

implemented with Viterbi algorithm.

In Fig. 7.8, the sequence of estimated CIRs obtained during packet detection are de-
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picted, where the temporal variations of the four subchannels are clearly shown over the

depicted time interval within one packet. In Fig. 7.9, the scatter plot shows two chan-

Figure 7.8: Demonstration of channel variation within one packet.

nels (hydrophone one and hydrophone eight) of received baseband signal, and the equal-

ized and phase-corrected BPSK symbols of transducer one for a 2 × 8 MIMO packet. In

the bottom-left subfigure, the phase rotations in the equalized symbols are obvious when

comparing with the phase-corrected symbols shown in the bottom-right subfigure. The

phase-corrected symbols have been properly classified into two clusters centered at the two

nominal BPSK modulation symbols −1 and +1. Similar observations are found with the

equalized and phase-corrected QPSK and 8PSK symbols, as depicted in Fig. 7.10. All

demonstrations have therefore verified the necessity and effectiveness and of the phase

compensation operation.

From the available experimental data, we had eight 2 × 8 BPSK packets, three 2 × 8

QPSK packets, and two 2 × 8 8PSK packets for LB transmission. We processed all these

packets with the proposed detection scheme, and the bit error rate (BER) results for

the 2 × 8 MIMO transmission with BPSK, QPSK and 8PSK modulations are listed in
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Figure 7.9: Received baseband signal, equalized and phase-corrected BPSK symbols

Table 7.1 through Table 7.3. It is noted that symbol interleaving was applied only to

even-indexed packets in all three tables. From these tables, we make three observations.

First, the BER performance degrades when the size of the constellation size increases, by

comparing the average uncoded BERs listed in the last lines of the three tables. Second,

the average uncoded BERs of the two streams are comparable with BPSK modulation,

while the first stream has better average uncoded BER than that of the second stream

with QPSK and 8PSK modulations. This phenomenon is well explained by the fact that

the two streams have similar related channel energy in BPSK case as shown in Fig 7.5.

In contrast, stream one has a larger related channel energy than stream two in QPSK

case, as shown in Fig. 7.6. Third, the BER performance of all packets are improved with

STTC decoding. The even-indexed packets has more significant improvement after STTC
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Figure 7.10: Equalized and phase-corrected QPSK and 8PSK symbols

decoding than the odd-indexed packets, due to the use of symbol interleaving.

We finally presented the results for HB transmission. The channel length was measured

as L = 150 compared to L = 100 with LB transmission, due to the smaller symbol interval

in this case. The BER results for HB transmission is shown in Table 7.4 with BPSK

modulation. The average uncoded BER is on the order of 5 × 10−3, which is not as good

as that of Table 7.1 due to the increased transmission rate.

7.5.2 Results of Unet06 Experiment

SIMO UWA communication experiments with both moving-source transmission and fixed-

source transmission were conducted at Saint Margaret’s Bay, Nova Scotia, Canada, in May
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Table 7.1: BER of LB 2 × 8 MIMO with BPSK modulation

Packet Uncoded BER Uncoded BER Uncoded BER BER after
index of Tx 1 of Tx 2 of Tx 1&2 STTC decoding

1 2.800e-3 4.178e-3 3.489e-3 2.000e-4
2 4.237e-4 1.695e-4 2.966e-4 0
3 1.556e-3 9.333e-4 1.244e-3 1.111e-4
4 1.316e-4 5.482e-4 3.399e-4 0
5 2.412e-4 1.096e-4 1.695e-4 6.579e-5
6 4.240e-5 1.271e-4 8.475e-5 0
7 8.114e-4 5.044e-4 6.579e-4 6.579e-5
8 1.059e-4 6.360e-5 8.475e-5 0

Mean 7.645e-4 8.294e-4 7.954e-4 5.533e-5

Table 7.2: BER of LB 2 × 8 MIMO with QPSK modulation

Packet Uncoded BER Uncoded BER Uncoded BER BER after
index of Tx 1 of Tx 2 of Tx 1&2 STTC decoding

1 1.656e-3 1.756e-1 8.863e-2 6.984e-2
2 1.126e-4 1.707e-2 8.592e-3 1.374e-3
3 1.351e-4 1.498e-3 8.164e-4 2.252e-5

Mean 6.346e-4 6.472e-2 3.268e-2 2.375e-2

Table 7.3: BER of LB 2 × 8 MIMO with 8PSK modulation

Packet Uncoded BER Uncoded BER Uncoded BER BER after
index of Tx 1 of Tx 2 of Tx 1&2 STTC decoding

1 8.213e-3 1.614e-1 8.481e-2 2.508e-2
2 1.669e-2 1.199e-1 6.831e-2 1.265e-2

Mean 1.245e-2 1.407e-1 7.656e-2 1.887e-2

Table 7.4: BER of HB 2 × 8 MIMO with BPSK modulation

Packet Uncoded BER Uncoded BER of Uncoded BER of BER after
index of Tx 1 of Tx 2 of Tx 1&2 STTC decoding

1 1.190e-4 1.212e-3 6.656e-4 1.082e-4
2 9.740e-5 7.359e-4 4.167e-4 0
3 1.840e-4 1.190e-3 6.872e-4 7.576e-5
4 7.325e-3 7.993e-3 7.659e-3 1.064e-3
5 6.494e-5 1.027e-2 5.168e-3 4.361e-3
6 1.447e-2 2.103e-2 1.775e-2 2.597e-4

Mean 3.710e-3 7.072e-3 5.391e-3 9.781e-4
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2006. For moving-source transmission, the transmitter was deployed 21 meters deep in the

water and towed at a speed up to 4 knots. The communication distance was ranging from

1 km to 3 km. For fixed-source transmission, the transmitter was suspended in water at 21

meters depth and 44 meters above the sea bottom, and the transmission range was fixed as

3.06 km. The receiver consisted of eight hydrophones arranged unequally on a 1.86-meters

vertical array, which was suspended 30 meters deep in the water. QPSK modulation was

used with a symbol rate of 4 ksps. The carrier frequency was fc = 17 kHz.

The structure of the transmission packet is depicted in Fig. 7.11. It starts with a LFM

Gap (1023) (40397)
Data payload

15 seconds
10.1 seconds

LFMELFMB Gap Gap
m-seq.

Figure 7.11: SIMO packet structure in Unet06 experiment.

signal named LFMB, and ends with another LFM signal called LFMB. A m-sequence of

length 1023 is embedded in the packet, and the data payload carries 40397 symbols. The

whole packet has a time duration of 15 seconds.

Without loss of generality, the processing details on moving-source packets are pre-

sented. As before, packet synchronization was achieved and the channel length L was

estimated, both with the help of LFMB signal. The equivalent symbol-spaced channel

length was estimated as L=20 in moving-source transmission. The LFMB signal together

with the LFME signal determined the received packet duration, which was used to estimate

the average Doppler shift [111]. In Table 7.5, Doppler shift estimations are listed for seven

moving-source packets. For each packet, the estimation was performed independently on

each of the eight channels (hydrophones). Obviously, the Doppler shift is non-negligible

compared to the carrier frequency of 17 kHz. The visual demonstration of the Doppler

effect resorts to the channel scattering function, which was estimated with the m-sequence

attributing to its sensitivity to Doppler spread. In the left subfigure of Fig. 7.12, the scat-

tering function of the first moving-source packet in Table 7.5 is demonstrated. It is obvious
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Table 7.5: Doppler shift estimation in moving-source transmission (Hz)
X

X
X

X
X

X
X

X
X

X
XX

Channel
Packet

1 2 3 4 5 6 7

1 15.98 15.71 12.44 10.80 10.79 11.25 8.29
2 15.98 15.71 12.44 10.80 10.79 11.25 8.38
3 15.98 15.71 12.44 10.80 10.79 11.25 8.02
4 15.98 15.71 12.44 10.80 10.79 11.25 8.02
5 15.98 15.71 12.44 10.80 10.79 11.25 8.46
6 16.16 15.71 12.44 10.89 10.79 11.25 8.36
7 15.98 15.71 12.44 10.80 10.79 11.25 8.26
8 15.98 15.71 12.44 10.80 10.79 11.25 8.29

that the Doppler spectrum centers around the average Doppler shift. For comparison, the

scattering function for a fixed-source packet is also shown in the right subfigure. Since

there is no relative transceiver motion, the Doppler spectrum centers around zero in this

scenario. The average Doppler shift was compensated in the moving-source packet before

detection started.
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Figure 7.12: Channel scattering functions.

For the channel length of L = 20 requiring a minimum training length of 39 with SIMO

transmission, a larger training length Np = 200 was selected. This choice of training length

corresponds to a time duration of 50 ms, which is less than the channel coherence time about
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200 ms for a maximum Doppler spread between 2 ∼ 3 Hz, as shown in Fig. 7.12 (in moving-

source case, the Doppler shift demonstrated in the left subfigure will be compensated). The

maximum differential phase drift in this case is less than π
8

and the approximation for phase

drift in (7.6) is appropriate. Similar to MIMO case, the received packet was partitioned

into blocks for processing with a block size of Nb = 400, which is 0.1 seconds of time

duration. Only one pilot sequence at the head of the data payload was used to obtain the

initial MIMO channel, and the last Np = 200 symbols in the previously-detected block was

used to re-estimate the channel, leading to the partition structure shown in Fig. 7.13. In

...
symbols

previous

block
Last Info....

40397

Info.
block 2symbols

Pilot
block 1

Info.

symbols
previous

block i
Info.

current blockNp NpNp

NbNb Nb Ne

Figure 7.13: Partition of the transmitted data payload for block detection at the receiver.

the group-wise phase estimation and compensation, the group size of Ns=40 was selected,

and there were Ng=10 groups in one block.

The scatter plots in Fig. 7.14 and Fig. 7.15 demonstrates the equalized and phase-

corrected QPSK symbols for moving-source packet. From Fig. 7.14, the phase rotations in

Figure 7.14: Equalized QPSK symbols
using eight channels in Unet06 experi-
ment.

Figure 7.15: Phase-corrected QPSK
symbols using eight channels in Unet06
experiment.
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Table 7.6: Average uncoded BER for Unet06 experiment
Number of Moving Fixed

combining channels Source Source

1 3.027e-1 3.135e-1
2 2.778e-1 2.139e-1
3 2.083e-2 1.064e-2
4 1.017e-2 1.740e-3
5 3.455e-3 1.490e-4
6 7.399e-4 1.366e-4
7 7.222e-4 6.621e-5
8 6.248e-4 3.104e-5

the equalized symbols are even more significant compared to the MIMO results shown in

Fig. 7.9 and Fig. 7.10. Regardless of the different experimental environments, the reason

lies in the adoption of larger block size of Nb = 400, compared to Nb = 200 used in

MIMO case, during detection. The selection of larger block size decreases the complexity

for channel adaption, while increases the accumulation of phase rotations in the equalized

symbols. From Fig. 7.15, the symbols are well classified after phase correction, which

indicates that the adopted phase estimation and compensation algorithm is effective and

robust under different channel conditions.

The uncoded BER results for UNet06 experiment are listed in Table 7.6. In total,

seven moving-source packets and six fixed-source packets were processed. The processing

procedure for fixed-source packets was similar to that of moving-source packet, except that

the channel length was L = 60 in this case. The listed BERs are averaged ones over all

packets. To demonstrate the diversity gain, the results corresponding to different number

of combining channels, are all shown. Two observations are made. First, the fixed-source

transmission has better uncoded BER performance than the moving-source transmission,

due to the absence of Doppler shift in the received signal. Second, it is obvious that the

uncoded BER decreases when the number of channels used increases due to the increased

diversity gain. When all eight channels are used, the best uncoded BER is achieved for

both transmissions.
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7.6 Conclusion

We have demonstrated a new time-domain MIMO equalization scheme for high data rate

single-carrier underwater acoustic communications, where the separate interference cance-

lation and phase compensation operations has been performed during detection. MIMO

linear equalization was operated in an ordered successive interference cancelation fashion

to achieve enhanced performance. A novel group-wise phase estimation and compensation

algorithm was used to remove the phase distortion in the equalized symbols. MIMO chan-

nel was estimated with pilot symbols in training mode and was tracked using previously-

detected symbols in decision-directed mode, incurring no more than 5% training overhead,

compared to 20% ∼ 30% in existing receiver designs. The proposed equalization scheme

was tested by extensive experimental data measured off the northwestern coast of Kauai,

Hawaii, in September 2005, and at Saint Margaret’s Bay, Nova Scotia, Canada, in May

2006. Processing results has shown the effectiveness and robustness of the proposed new

equalization scheme under different UWA transmission conditions.
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Chapter 8

Turbo Detection for MIMO

Underwater Acoustic

Communications

8.1 Introduction

The advent of turbo decoding [118] and turbo equalization [67] technologies enable powerful

receiver design. Compared to non-turbo methods, turbo decoding and equalization signif-

icantly improve the detection performance via iterative operations. Turbo equalization for

underwater acoustic communications has been first proposed in [119], where a joint maxi-

mum a posteriori probability (MAP) tubo equalizer and turbo decoder has been adopted

for signal detection. The scheme has been tested by experimental data with a symbol rate

of 2.5 kilo-symbols per second (ksps), for both BPSK and QPSK modulations. The MAP

turbo equalization has a high complexity even using complexity-reducing technology like

per-survivor processing (PSP), then a low-complexity turbo decision-feedback equalizer

(DFE) has been proposed and tested by a short-range multichannel UWA transmission

with 5 kHz channel bandwidth [120]. Turbo DFE has also been studied in [98] recently,

for short-range, high carrier frequency, high data rate UWA communications. This design

circumvents channel estimation and updates the equalizer taps adaptively for every sym-

bol using least mean square (LMS) algorithm. Turbo DFE for MIMO systems has been

proposed in [106], for a multi-band transmission. Turbo equalization using linear equalizer

(LE) [72] has also been applied to UWA communications [107], [121] – [124]. In [121], the
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turbo LE has been applied to long-range UWA communications, where QPSK modula-

tion has been used with a rate of 4 ksps. In [123], long-term experimental testing with

abundant experimental results has been reported to verify the effectiveness of the turbo

LE scheme. In [107], turbo LE for MIMO UWA communications has also been proposed,

while its application to mobile scenarios is studied in [124].

Block decision-feedback equalizer (BDFE), which provides better equalization perfor-

mance than its conventional DFE counterpart, has been proposed in [125] for SISO sys-

tems. It is especially suitable for communications over fast time-variant channels, where

the channel is treated as time invariant only over a short period of transmission block,

i.e., the channel is block fading. The turbo versions of BDFE has also been developed

in [126] and [127] (also refer to Chapter 6) for SISO and MIMO systems, respectively. In

this chapter, the turbo BDFE is applied to MIMO UWA communications, which leads to

a robust iterative receiver structure with two unique features. First, with proper cance-

lation of inter-block interference (IBI), the operation of the turbo BDFE doesn’t require

a real block transmission, so guard intervals among blocks are avoided to achieve high

data transmission efficiency. Moreover, the BDFE is operated with overlapped blocks,

i.e., the equalized symbols at the tail of previous block is equalized again in the current

block. In this way, performance degradation in the equalized symbols at the end of each

block is prevented. Second, block-wise channel adaptation has been proposed, using ei-

ther pilot-aided channel estimation method or decision-directed channel tracking method.

Compared to the symbol-wise adaptive channel estimation methods in [106], [123], the fine

tuning of adaptive parameters is avoided and robust channel estimation can be obtained

under different UWA transmission environments. The proposed receiver design is tested

by extensive undersea field trial data collected in the SPACE08 experiment conducted at

Martha’s Vineyard, Edgartown, MA, in October 2008 and in the GOMEX08 experiment

launched at the Gulf of Mexico in July 2008, respectively.
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8.2 Transmitter Design and Data Structure

Consider an N ×M MIMO underwater acoustic communication system, with N and M as

the number of transmit transducers and receive hydrophones, respectively. At the trans-

mitter side, N bit streams are independently encoded, interleaved, modulated and then

transmitted by the N transducers. Fig. 8.1 depicts the signalling on the n-th transmit

branch, with an,k, bn,k, cn,k, and sn,k being the information bit, the encoded bit, the inter-

leaved bit and the modulation symbol, respectively.

Encoder
Channel Signal

Modulator Former

an,k bn,k cn,k sn,k
Π

burst

Figure 8.1: Transmit signalling for the n-th transducer.

Convolutional channel encoder and random interleaver (Π) are used throughout this

chapter. The modulator employs QPSK, 8PSK and 16QAM modulation schemes, with the

constellation sizes being 4, 8 and 16, respectively. For a constellation set S = {χq}Qq=1 of

size Q, every log2Q coded bits are mapped onto one modulation symbol, i.e., the group

of coded bits, {cn,(k−1)log2Q+p}log2Q
p=1 , are mapped to the modulation symbol sn,k. The signal

former unit assembles the input modulation symbols with auxiliary signals, and sends out

transmission bursts in specific format. Without loss of generality, a transmission burst of

the SPACE08 experiment, is demonstrated in Fig. 8.2. From the figure, the burst begins
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Figure 8.2: The burst structure of the n-th transmit branch in SPACE08 experiment.

with a head linear frequency modulation (LFM) signal named LFMB, followed by three

packets with QPSK, 8PSK and 16QAM modulations, and ends with a tail LFM signal

named LFME. The LFM signals (LFMB and LFME) serve multiple purposes including

121



coarse synchronization, Doppler shift estimation and channel length measurement on the

receiver side, attributing to their unique correlation properties. Each packet includes a

m-sequence of length 511, and a data payload consists of 30,000 modulation symbols. The

m-sequence is sensitive to Doppler spread, thus can be used for evaluating the channel

scattering function. The structure of the data payload will be evident in the next section.

The format of the transmission burst used in GOMEX08 experiment is similar to that

shown in Fig. 8.2, except that each burst contains length-variable packets of the same

modulation.

8.3 MIMO Receiver Architecture

In UWA communications, front-end preprocessing including synchronization, Doppler shift

estimation and compensation, and waveform re-sampling, is usually required before signal

detection can be performed [111]. After preprocessing, the discrete-time baseband signal

received at the m-th hydrophone is expressed by

ym,k =

N∑

n=1

L−1∑

l=0

hm,n(k, l)sn,k−l + vm,k (8.1)

where sn,k−l is the transmitted symbol of the n-th transducer, hm,n(k, l) is the l-th coef-

ficient of the subchannel between the n-th transducer and the m-th hydrophone at time

k, and vm,k is the zero-mean additive white Gaussian noise (AWGN) sample on the m-th

hydrophone with power σ2
v . For a packet-wise channel encoding, a whole packet of received

samples of all M hydrophones, are collected in a vector y for detection.

Fig. 8.3 depicts the structure of the proposed MIMO receiver, where the soft-decision

MIMO BDFE iteratively exchanges soft log-likelihood ratio (LLR) information with N

maximum a posteriori (MAP) decoders, each corresponding to one transducer, through

the interleavers (Π) and the de-interleavers (Π−1). In the current iteration, the MIMO

BDFE performs block-wise equalization, and outputs the bit LLRs, {Λ(cn,k)}Nn=1, for a

whole packet, which are further de-multiplexed onto N branches. On the n-th branch, the

extrinsic LLR Λe (cn,k) is obtained by subtracting the a priori LLR ΛD
e (cn,k) (provided by
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the n-th MAP decoder in previous iteration) out of Λ(cn,k). The extrinsic LLR Λe (cn,k) is

de-interleaved into Λe (bn,k), which is then delivered to the n-th MAP decoder as its a priori

LLR input. The LLR feedforward process is represented in the compact mathematical form

as Λe (bn,k) = Π−1
[
Λ(cn,k) − ΛD

e (cn,k)
]
. The n-th MAP decoder generates the current LLR

ΛD (bn,k) using the classic BCJR algorithm [70]. To start the next iteration, the feedback

LLR is generated as ΛD
e (cn,k) = Π

[
ΛD (bn,k) − Λe (bn,k)

]
, similar to the generation of

feedforward LLR. The LLRs {ΛD
e (cn,k)}Nn=1 of N branches are finally multiplexed and

sent to the MIMO BDFE for the next iteration of equalization. Detection performance is

gradually improved over iterations and the final hard decisions {ân,k}Nn=1 are made after

convergence.
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Figure 8.3: MIMO receiver using turbo BDFE.

As shown above, the mechanism of MIMO BDFE requires the received packet to be

partitioned into blocks for equalization. A specific partition of the received packet is

determined by the structure of the transmitted data payload, as shown in Fig. 8.2. To

guarantee signal detection under harsh UWA channel conditions, several features have

been introduced in the partition scheme, leading to the partition structure illustrated in

Fig. 8.4. First, Np pilot symbols are inserted periodically for every Nf symbols, where Nf
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is properly selected so that tradeoff between the detection performance and the training

overhead η = Np

Nf
×100% is achieved; Second, to account for the signal-to-noise ratio (SNR)

degradation in the equalized symbols at the tail of each block [125], the overlapped block

partition is adopted, for which Novlp symbols at the tail of previous block will be equalized

again in the current block; Third, to effectively track the time variation of the channel, Np

previously detected symbols are used to perform decision-directed (DD) channel tracking.

The length Np is selected so that accurate channel estimation or tracking is obtained while

the corresponding time duration doesn’t exceed the channel coherence time.

... ... ...
current block

Info. Info.
block 1 block 2 block i

Info.
Pilot blockPilot block

symbolspreviousNpNp

NbNb

Nb

Novlp

Nf

Figure 8.4: The partition structure of the transmitted data payload.

8.4 Experimental Results

The proposed MIMO receiver using turbo BDFE was tested by two undersea trials of UWA

communications. The first trial named SPACE08, was conducted at the coast of Martha’s

Vineyard, Edgartown, MA, in October 2008. The second trial named GOMEX08, was

conducted at the Gulf of Mexico, in July 2008.

8.4.1 Results of SPACE08 Experiment

In this experiment, QPSK, 8PSK and 16QAM were used with a symbol interval of 0.1024

milliseconds (ms). The carrier frequency was fc = 13 kHz. The transmit filter was a square-

root raised cosine filter with roll-off factor β = 0.2, thus the occupied channel bandwidth

was 11.7188 kHz. The transmitting equipment consisted of four transducers, numbered 0

through 3. Transducer 0 was fixed on a stationary tripod, and was about 4 meters above
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the sea bottom. Transducers 1–3 were evenly mounted on a vertical array with the inter-

transducer spacing being 50 centimeters (cm). The top transducer in the array was about 3

meters above the sea bottom. The receiving equipment consisted of six sets of hydrophone

arrays, which were placed at six different locations. A detailed description about the six

hydrophone arrays, is given in Table 8.1. It is noted that for the two cross arrays S1 and

S2, each “leg” of the cross consists of 16 hydrophones. The top hydrophone of each array

was approximately 3.3 meters (m) above the sea bottom. Finally, the water depth of this

experiment was about 15 meters.

Table 8.1: Description on hydrophone arrays
Array Range Orientation Number of Hydrophone

Name/Type (m) hydrophones spacing (cm)

S1/Cross 60 Southeast 16 3.75
S2/Cross 60 Southwest 16 3.75

S3/Vertical 200 Southeast 24 5
S4/Vertical 200 Southwest 24 5
S5/Vertical 1000 Southeast 12 12
S6/Vertical 1000 Southwest 12 12

Fig. 8.5 demonstrates a complete “burst” received at the first hydrophone of array S6

in the top half, with the segment of QPSK packet zoom out in the bottom half. The

waveforms contain transmitted signals from two transducers. From the figure, bursty

interferences can be observed in the received signal. The power spectrum density (PSD)

of the received QPSK packet, is depicted in Fig. 8.6. Obviously, the dynamic range of the

PSD is very large (more than 30dB), over the channel bandwidth of about 12 kHz centered

at the carrier frequency fc = 13 kHz. This observation verifies the serious frequency-

dependent attenuation of UWA channels on received signals. The bursty interference in

the time domain and the uneven signal attenuations in the frequency domain, both make

the signal detection very challenging.

As mentioned before, coarse synchronization can be achieved by detecting the LFM

correlation peaks. The channel length L is estimated by measuring the span of the signif-
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icant LFM correlation [100]. The LFMB signal used in this experiment was a down-chirp

with initial and final frequencies being 18 kHz and 8 kHz, respectively. The LFME signal

was a up-chirp with reverse initial and final frequencies of LFMB. Either LFMB signal or

LFME signal can be used for synchronization. In Fig. 8.7, an example of normalized LFM

correlation is demonstrated for a two-transducer 1000 m transmission. It’s clearly shown

that there are two separate correlation ridges corresponding to the two transducers, and

both peaks can be used for coarse synchronization. The first correlation ridge is zoom out

in the subfigure, and the time span of the significant correlation is about 10 ms. In other

words, most of the channel energy is concentrated within 10 ms corresponding to a channel

length of L ≈ 100 in terms of the symbol interval Ts = 0.1024 ms.

The channel estimation example is shown in Fig. 8.8, for a two-transducer 200 m trans-

mission with QPSK modulation. It is shown that the impulse responses (IRs) of the

subchannels are sparse and nonhomogeneous, and some are non-minimum phase. The

observation verifies the previous claim that UWA channels are very difficult for robust

communications.

When synchronization and channel estimation are obtained, signal detection can be

performed. The choices of those parameters illustrated in Fig. 8.4 including the block size

Nb, the pilot block size Np, and the block overlapping size Novlp, are critical for successful

detection. An analysis of the channel scattering function obtained with m-sequence, reveals
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Figure 8.8: Estimated channel.

that the maximum Doppler spread is about 5 Hz corresponding to a channel coherence

time about 100 ms. Accordingly, the parameters has been chosen as Nb=200, Novlp = 50

and Np = 600, during the detection. Such choice of Nb and Np doesn’t violate the time-

invariant assumption on the channel. The frame size Nf will be discussed shortly. Before

the detection results are listed, the visual demonstrations of the turbo equalization with

8PSK and 16QAM modulations, are first provided in Fig. 8.9 and Fig. 8.10, respectively.

In both figures, the soft-decision symbols at the outputs of the equalizer and the MAP

decoder, are plotted. It is obvious that the performance is increasingly improved when

iterations progress, for both equalizer and decoder. At each iteration, the MAP decoding

further improves the equalization performance.

Figure 8.9: Demonstration of turbo
equalization over iterations (8PSK mod-
ulation)

Figure 8.10: Demonstration of turbo
equalization over iterations (16QAM
modulation)

For 200 m transmission, thirty S3 files and fifteen S4 files recorded in two days, has been
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obtained during the SPACE08 experiment. Each file contains four bursts, corresponding

to 1 × 12, 2 × 12, 3 × 12 and 4 × 12 MIMO transmissions. Each burst consists of three

packets with QPSK, 8PSK, and 16QAM modulations, as shown in Fig. 8.2. All forty-

five 2 × 12 packets with QPSK and 8PSK modulations, have been processed. For QPSK

packets, Nf = 4500 has been used, incurring a training overhead of 14%. For 8PSK packets,

Nf = 3000 leading to a training overhead of 20%, has been applied. The detection results

are listed in Table 8.2. From the table, all forty-five QPSK packets have achieved zero bit

error rate (BER), requiring no more than four iterations. For 8PSK modulation, twenty-

five packets have achieved zero BER within five iterations, and the average BERs for the

remaining twenty packets are 7.071 × 10−4 and 7.522 × 10−4, respectively, for the first

transducer and the second transducer.

Table 8.2: Results of 2 × 12 MIMO (200 m)
Number of iterations Number of Number of
to achieve zero BER packets (QPSK) packets (8PSK)

1 20 0
2 15 6
3 6 7
4 4 6
5 - 6

For 1000 m transmission, fifteen valid files (five S5 files and ten S6 files) has been

recorded. For the remaining nineteen files, four of them has been corrupted by very strong

interference and the other fifteen ones have too weak signal to be detected (due to possible

transducer malfunction). We have selected Nf = 3000 incurring 20% training overhead, for

both QPSK and 8PSK modulations. The results are listed in Table 8.3. From the table,

all QPSK packets have achieved zero BER, as 200 m transmissions. Five 8PSK packets

have achieved zero BER, and the average BERs for the remaining ten 8PSK packets are

1.003 × 10−4 and 1.489 × 10−3, respectively, for the first and second transducers. Next,

an example of detecting 16QAM packet is presented in Table 8.4. Zero BER has been

achieved after three iterations. Last, the results for the 3 × 12 and 4 × 12 packets with
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QPSK modulation, are given in Table 8.5 and Table 8.6. The training overhead are 24%

and 34.7%, respectively. In both cases, zero BERs are achieved after three iterations.

Table 8.3: Results of 2 × 12 MIMO (1000 m)
Number of iterations Number of Number of
to achieve zero BER packets (QPSK) packets (8PSK)

1 9 0
2 5 2
3 1 3

Table 8.4: BER of 2 × 12 MIMO (1000 m, 16QAM)
Transducer Iter. 1 Iter. 2 Iter. 3 Iter. 4

1 1.298e-2 5.556e-5 0 0
2 3.296e-2 4.981e-3 0 0

Table 8.5: BER of 3 × 12 MIMO (1000 m, QPSK)
Transducer Iter. 1 Iter. 2 Iter. 3 Iter. 4

1 9.333e-4 0 0 0
2 3.053e-2 2.333e-4 0 0
3 8.927e-2 1.800e-3 0 0

Finally, some interesting results for 60 m transmission are reported. At this commu-

nication range, the richest multipath happens compared to the other two ranges, due to

the physical geometry. The signal detection is thus the most difficult in this case, in terms

of channel conditions. Due to the tough channel condition, a training overhead of 28%

with Nf = 2100 has been adopted. In Table 8.1, it is shown that cross arrays have been

deployed in this scenario, so packets received by horizontal and vertical hydrophone arrays

are both available. For convenience, we call the two types of packets as horizontal packet

and vertical packet, respectively. From the point view of physics, signal reception using

horizontal hydrophone array is extremely difficult, if not impossible, given that the acoustic

signals are transmitted from vertical transducer array through horizontal communication
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Table 8.6: BER of 4 × 12 MIMO (1000 m, QPSK)
Transducer Iter. 1 Iter. 2 Iter. 3 Iter. 4

1 1.318e-3 0 0 0
2 1.600e-2 1.364e-4 0 0
3 6.577e-2 1.455e-3 0 0
4 1.100e-2 0 0 0

channels. However, the proposed turbo equalization still works with horizontal packets,

with the BER results listed in Table 8.7. From the table, all three horizontal packets (two

S1 packets and one S2 packet) with QPSK modulation, achieve BER in the order of 10−4

to 10−3. Compared with horizontal packets, vertical packets are easier for detection. For

the five (two S1 packets and three S2 packets) processed vertical packets, four packets have

achieved zero BER and the remaining one has obtained a BER in the order of 10−4, with

five iterations.

Table 8.7: BER of 2 × 12 MIMO with horizontal hydrophone array (60 m, QPSK)
Packet Tx 1 Tx 2

1 4.167e-4 9.259e-4
2 1.852e-4 3.796e-3
3 4.991e-3 4.861e-3

8.4.2 Results of GOMEX08 Experiment

In this experiment, the transmission distance was 1.7 to 2 kilometers (km) and the symbol

interval was 0.25 ms. The occupied channel bandwidth is 4.8 kHz, due to the use of

a transmit filter with roll-off factor β = 0.2. The carrier frequency was fc = 17 kHz.

The transmitting equipment was a one-meter linear array consisted of four equally-spaced

transducers, and was located about 50 m deep in the sea. The receiving equipment was a

two-meter linear array consisted of eight unequally spaced hydrophones, and was fixed 50

m deep in the sea. The number of packets in one transmission burst was 48, 24 and 12,

corresponding to packet sizes of 1024, 2048 and 4096, respectively.
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The channel length was measured as L = 80 in this trial, and a block size of Nb = 150

was adopted during detection. The overlapping length was selected as Novlp = 40. An

example of the estimated channel is demonstrated in Fig. 8.11. The channel characteristics

shown in Fig. 8.8, is again observed in this experiment.
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Figure 8.11: Estimated channel impulse responses for GOMEX08 experiment.

The experimental results for 2 × 8 MIMO transmission with QPSK modulation, are

presented. For three bursts with packet size 2048 and three bursts with packet size 4096,

the number of turbo iterations for achieving zero BER, are given in Table 8.8 and Table 8.9,

respectively. From both tables, most of the packets require no more than three iterations

to achieve zero BER. The proposed turbo receiver is thus robust to different transmission

environments.

8.4.3 Comparison with Existing Approach

Without loss of generality, we compare the proposed MIMO BDFE with the conventional

MIMO DFE, which has been adopted in [106]. Both simulation and experimental com-
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Table 8.8: Num. of iter. for achieving zero BER (2 × 8, QPSK, packet size = 2048)
X

X
X

X
X

X
X

X
X

X
XX

Burst idx
Pkt idx

1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 1 1 1 1 2 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 3 2
3 1 2 1 1 1 1 1 1 2 3 1 1

X
X

X
X

X
X

X
X

X
X

XX

Burst idx
Pkt idx

13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 2 1 1 1
2 1 1 1 1 1 4 1 1 1 1 1 2
3 1 1 3 3 1 1 1 1 1 1 1 1

Table 8.9: Num. of iter. for achieving zero BER (2 × 8, QPSK, packet size = 4096)
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
hh

Burst index
Packet index

1 2 3 4 5 6 7 8 9 10 11 12

1 4 2 1 1 4 3 1 4 2 1 1 3
2 1 2 3 2 2 1 1 1 3 3 1 2
3 1 1 1 1 2 5 3 2 2 1 2 1

parisons are provided. In the simulation, a 2 × 4 MIMO system is considered. Each

packet carries Npkt = 10, 000 information bits, which are encoded by a rate 1/2 non-

systematic convolutional encoder with a constraint length 4 and a generator polynomial

[G1, G2] = [17, 13]oct. After QPSK symbol mapping, the whole packet is divided into

blocks of size Nsym = 100 for transmission. The eight subchannels are randomly generated

and normalized, with a channel length of L = 20. The simulation result comparison, is

demonstrated in Fig. 8.12. It is obvious that the proposed MIMO BDFE outperforms

both conventional MIMO LE and MIMO DFE, and the observation is consistent with that

demonstrated in [125] for SISO systems. The experimental result comparison is shown in

Fig. 8.13, where the BER with the first iteration of equalization is compared. Obviously,

MIMO BDFE consistently produces better BER than MIMO DFE, for the ten 2 × 12

SPACE08 packets with QPSK modulation.
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Figure 8.13: Experimental result com-
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8.4.4 Complexity Discussion

The primary design goal for the receiver lies in its robustness, it is also important to

consider the detection complexity though. For the proposed receiver scheme, there are two

main complexity sources: the MIMO channel estimation, and the calculation of BDFE

equalizer matrices.

For both computational sources, the complexity can be considerably reduced by using

fewer hydrophones for diversity combining. To demonstrate that, we have reprocessed

all forty-five 200 m packets with two transducers and QPSK modulation, using four and

six hydrophones for diversity combining, respectively. In each case, two sets of results

corresponding to 14% and 20% training overheads, are presented, as shown in Table 8.10.

From the table, most packets still require no more than three iterations to achieve zero

BER for all four sets of results, as Table 8.2. In this sense, using fewer channels of received

signal maintains the same detection performance while reduces the detection complexity

dramatically. All fifteen 1000 m packets with two transducers and QPSK modulation,

have also been reprocessed using six-hydrophone combining and 20% training overhead as

in Table 8.3. The new detection results are listed in Table 8.11. From the table, similar

conclusion can be drawn as the 200 m case. Last, the four-transducer packet in Table 8.6

has also been reprocessed with six-hydrophone combining, and the BER results are listed
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in Table 8.12. Obviously, the BER performance only degrades slightly in the first two

iterations, and zero BER is again achieved after three iterations for all transducers.

Table 8.10: Results for 2 × 6 and 2 × 4 MIMO (200 m, QPSK)
Number of iter. to # of packets (6 Rx) # of packets (4 Rx)
achieve zero BER 14% ovhd 20% ovhd 14% ovhd 20% ovhd

1 5 19 0 0
2 30 16 13 31
3 4 4 25 7
4 5 5 6 6
5 1 1 1 1

Table 8.11: Results for 2 × 6 MIMO (1000 m, QPSK)
Number of iterations Number of
to achieve zero BER packets

1 6
2 6
3 2
4 1

Table 8.12: BER of 4 × 6 MIMO (1000 m, QPSK)
Transducer Iter. 1 Iter. 2 Iter. 3 Iter. 4

1 1.773e-3 9.091e-5 0 0
2 2.414e-2 1.864e-3 0 0
3 7.823e-2 8.318e-3 0 0
4 1.627e-2 2.273e-4 0 0

The complexity of the MIMO channel estimation, determined by the channel length L

and the frequency of channel adaptation, can also be reduced. A close observation on the

estimated channels shown in Figs. 8.8 and 8.11, reveals the sparse property of the channel

impulse response, thus the time-varying sparse channel estimation method proposed in [128]

can be adopted, incurring a computational complexity of O((NL)2). On the other hand,

the channel adaptation can be performed for every several consecutive blocks instead of
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for every block or every symbol, when the channel coherence time is larger than the block

period.

8.5 Conclusion

A new MIMO receiver has been proposed for high data-rate single-carrier underwater

acoustic communications. The new scheme has powerful detection capability with high

transmission efficiency, attributing to the superior equalization performance and flexible

operation of the proposed turbo block decision-feedback equalizer. It is also robust to

different UWA channel conditions, in light of the adopted block-wise channel adaptation

method. The merits of the proposed scheme have been tested by extensive undersea trial

data, measured in two different UWA experiments SPACE08 and GOMEX08. Experimen-

tal results for transmission ranges including 60 m, 200 m, 1000 m, and 1.7 ∼ 2 km, are all

reported. It has been shown that most of the experimental packets required no more than

three iterations of turbo equalization to achieve error-free detection, rendering the proposed

MIMO turbo receiver a good candidate in high-performance UWA applications. Moreover,

interesting results with vertical-array transducers and horizontal-array hydrophones UWA

communications have also been presented to demonstrate its practical feasibility.
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Chapter 9

Conclusion

This dissertation focuses on the robust receiver designs for future wireless RF commu-

nications and wireless UWA communications. This final chapter summarizes its main

contributions and briefly discusses the future works.

9.1 Contribution

Main contributions for wireless RF communications are summarized as follows:

• First, this dissertation points out that the assumption of separability property on

equivalent discrete-time channel model is invalid, which has been commonly over-

looked in existing literature. The conditions under which the separability property

approximately holds, is then provided based on both theoretical analysis and numer-

ical simulations. Separability property enables usage of efficient channel simulators.

• Second, a new Doppler estimation algorithm is proposed for broadband mobile OFDM

systems. The new estimator belongs to the class “method of moments” and esti-

mates Doppler spread based on the fourth-order statistics of the received time-domain

OFDM signal. Compared to existing Doppler estimation algorithms, which rely ei-

ther on pilot symbols or special structure of OFDM symbol, the new estimation

method can make use of all transmitted data including pilot symbols and unknown

information symbols. It provides good performance with low estimation latency even
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under very low SNR. It also works with OFDM systems undergoing Rician fading,

which to the best of our knowledge, has not been investigated before.

• Third, channel estimation and carrier frequency offset (CFO) estimation for OFDM

systems with phase noise is studied. The CFO is estimated utilizing time-frequency

property of OFDM symbols, and is then compensated before channel estimation. The

channel is jointly estimated in the form of transfer function with the phase noise,

using MAP criterion. The frequency-domain channel estimator has much simpler

form than time-domain estimator, while maintains the same performance.

• Finally, turbo equalization for MIMO systems is extensively studied. Two MIMO

turbo equalization schemes have been proposed. The first scheme enhances existing

MIMO LMMSE turbo equalizer by incorporating a posteriori information of already

equalized symbols into the equalization of remaining symbols yet to be equalized.

Under the new equalization framework, the degree-of-freedom of detection order can

be utilized. A novel reliability-based detection ordering scheme is proposed to further

improve the performance of the new LMMSE equalization method. The second

scheme adopts non-linear block decision feedback filter (BDFE), which provides extra

gain over linear equalization by relying on successive soft interference cancelation

(SSIC). Similar to the enhanced LMMSE equalization, a reliability-based group-wise

detection ordering is also proposed for the MIMO BDFE, to minimize the negative

effects of error propagation during SSIC.

Main contributions for wireless UWA communications are summarized as follows:

• First, a new time-domain MIMO equalization scheme has been proposed for high

data rate single-carrier underwater acoustic communications. The new scheme per-

forms separate interference cancelation and phase compensation operations. MIMO

linear equalization was operated in an ordered successive interference cancelation

fashion to achieve enhanced performance. A novel group-wise phase estimation and
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compensation algorithm was used to remove the phase distortion in the equalized

symbols. MIMO channel was estimated with pilot symbols in training mode and

was tracked using previously-detected symbols in decision-directed mode, requiring

smaller training overhead compared to existing receiver designs. The proposed equal-

ization scheme was tested by extensive experimental data measured off the north-

western coast of Kauai, Hawaii, in September 2005, and at Saint Margaret’s Bay,

Nova Scotia, Canada, in May 2006.

• Second, a MIMO turbo receiver has been proposed for high data-rate single-carrier

underwater acoustic communications. The new scheme has adopted the MIMO turbo

BDFE equalization proposed in Chapter 6. The merits of the proposed scheme have

been tested by extensive undersea trial data, measured in two different UWA exper-

iments SPACE08 and GOMEX08. Experimental results for different transmission

ranges are all reported. The demonstrated good performance of the turbo receiver

renders it a good candidate in high-performance UWA applications.

9.2 Future Works

Based on the presented work in this dissertation, new research directions in the future are

briefly introduced.

First, parallel to single-carrier systems, turbo equalization for multicarrier OFDM sys-

tems will also be investigated, especially for emergent fractional sampling (FS) OFDM

systems.

Second, MIMO-OFDM UWA communication will be another research topic worthy of

study. Due to the harsh UWA channel conditions, OFDM symbol detection is expected to

encounter new challenges.
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Appendix A

Proof of (3.8) and (3.9)

The auto-correlation function of the received time domain OFDM signal is calculated as

Ryy(s, u, n,m) = E

{

y(s)(n + m)
[

y(u)(n)
]∗}

= E










1√

1+K
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√

K
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

 δ(s − u) (A.1)

where x(i)(n) defined in (3.1) is used in the derivation of the last equality, thus (3.8) is

proved.

The proof of equation (3.9) relies on the two identities: E{v1v2v3} = 0 and E{v1v2v3v4} =

E{v1v2}E{v3v4}+E{v1v3}E{v2v4}+E{v1v4}E{v2v3}, where v1, v2, v3 and v4 are zero-mean

Gaussian random variables. With the identities, (3.9) can be derived based on the defini-

tion of auto-covariance function. The details are omitted here for brevity.
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Appendix B

Calculation of MIMO LE Matrix

The MIMO LE matrix given in (7.12) has implicit forms which are difficult for evalua-

tion. Therefore, it is desirable to provide explicit solutions directly relating to the channel

knowledge. To achieve that, we first represent y(k − q) of (7.10a) in the following form

y(k − q) =

L−1∑

l=0

H(l)x(k − q − l) + v(k − q) (B.1)

where x(k − q − l) = [x1(k−q−l), · · ·, xN(k−q−l)]t, v(k − q) = [v1(k−q), · · ·, vM(k−q)]t,

and

H(l) =








ȟ1,1(l) ȟ2,1(l) · · · ȟN,1(l)

ȟ1,2(l) ȟ2,2(l) · · · ȟN,2(l)
...

... · · · ...

ȟ1,M(l) ȟ2,M(l) · · · ȟN,M(l)








(B.2)

with ȟn,m(l) = hn,m(l)ejφn,m(I) being the effective channel coefficient combining the fading

tap with phase drift. Herein, the index I is determined as I=⌈(2k+K1−K2)/2⌉ similar to

that in (7.5), and the approximation leading to (7.6) is also used to validate (B.1). Then,

we are able to express y ∈ CM(K1+K2+1)×1 in (7.9) as

y = Hx + v (B.3)

where H ∈ CM(K1+K2+1)×N(K1+K2+L) is given in the following

H=








H(L− 1) H(L− 2) · · · H(0) 0 0 · · · 0

0 H(L− 1) H(L− 2) · · · H(0) 0 · · · 0
...

...
. . .

. . .
. . .

. . .
...

...
0 0 · · · 0 H(L− 1) H(L− 2) · · · H(0)








(B.4)
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and x = [xt(k−K2−L+1),xt(k−K2−L+2), · · · ,xt(k+K1)]
t ∈ CN(K1+K2+L)×1 is a vector

containing transmission symbols of all N transducers during the period [k−K2−L+1, k+

K1], and the noise vector is defined as v = [vt(k−K2), · · · ,vt(k+K1)]
t ∈ CM(K1+K2+1)×1.

Now, by substituting y in (7.12) with (B.3), we obtain

CMMSE = E
[
x(k)xh

]
Hh

{
HE

[
xxh

]
Hh + E

[
vvh

]}−1
(B.5)

In (B.5), we still need to evaluate E
[
xxh

]
, E

[
x(k)xh

]
. Herein, the assumption that the

transmitted symbols are uncorrelated both spatially and temporally, is used. In this case,

we have E[xi(k)xj(l)] = σ2
xδ(i− j)δ(k− l) with σ2

x being the power of transmission symbol

xn(k), and

Rx , E
[
xxh

]
= σ2

xIN(K1+K2+L)∈ CN(K1+K2+L)×N(K1+K2+L) (B.6a)

Rh ,
1

σ2
x

E
[
x(k)xh

]
=

[
0N×(K2+L−1)N IN 0N×K1N

]
∈ CN×N(K1+K2+L) (B.6b)

Defining the SNR β as

β =
σ2
x

σ2
v

(B.7)

and combining (B.6), we finally express the LE matrix in (B.5) as follows

CMMSE = RhHh

(

HHh +
1

β
IM(K1+K2+1)

)−1

= Rh

(

HhH +
1

β
IN(K1+K2+L)

)−1

Hh (B.8)
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