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ABSTRACT 

Aerocapture is a technique of employing a single atmospheric pass to inserts a spacecraft 

from a hyperbolic orbit, approaching from deep space, into an elliptical (captured) orbit 

around its destination planet.  After atmospheric flight and energy dissipation, propulsive 

maneuvers are needed to be performed to place the spacecraft in a target orbit.  The exo-

atmospheric propulsive maneuvers require much less propellant consumption compared to 

conventional orbit capture methods.  This research aims to develop a new analytical 

predictor-corrector (APC) guidance method for the Earth-aerocapture problem in order to 

provide near-optimal performance in terms of exo-atmopheric velocity impulses required 

to establish the desired target orbit.  The optimal aerocapture problem is analyzed using 

the bang-bang bank control structure.  This thesis presents a bank-modulation APC 

guidance algorithm consisting of two phases: descent phase (lift-up) and ascent phase (lift-

down) to mimic the optimal bang-bang bank angle structure.  The APC guidance relies on 

open-loop and closed-loop bank control laws during the descent and ascent phases, 

respectively.  Using the parameterizations of the aerodynamic acceleration effects and the 

flight-path angle term as a function of altitude, a closed-form expression of atmospheric 

exit velocity is obtained.  Two separate scenarios (Fourier curve fitting and exponential 

curve fitting) are implemented to parameterize the aerodynamic acceleration effects, while 

the flight-path angle is parameterized with a single term exponential function.  After the 

bank-switching (from open-loop to closed-loop control) is reached, the bank angle is 

continuously commanded in the ascent phase to track the reference flight-path angle profile 

and achieve desired exit conditions.  A bank-reversal logic is developed to minimize the 

difference between the inclination of the post-atmospheric orbit and the desired target 
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inclination.  Using large dispersions in the vehicle parameters, entry state, and atmospheric 

density, Monte-Carlo simulations are executed to test the performance and robustness of 

the proposed APC guidance algorithm.  The simulation results reveal that the well-

developed APC guidance algorithm provides the robustness and near-optimal performance.   
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CHAPTER 1 - INTRODUCTION 

1.1 Background and Motivation 

Aerocapture is a cost-effective orbital insertion maneuver to capture a spacecraft using 

aerodynamic forces during a single atmospheric pass.  For a successful aerocapture, the 

spacecraft should enter the atmosphere within the acceptable aerocapture entry corridor, 

and then it should be guided by utilizing aerodynamic forces during the atmospheric flight 

phase.  The kinetic energy is reduced by flying the interplanetary spacecraft through the 

atmosphere because of aerodynamic drag force. Diminishing orbital energy enables the 

vehicle to transition from a higher-energy orbit to a lower-energy orbit.  This lower-energy 

orbit has a periapsis radius that is within the planet’s atmosphere.  To prevent re-entry into 

the atmosphere (almost one revolution later), a propulsive maneuver is needed to raise the 

periapsis radius.  If more orbit-insertion maneuvers, such as apoapsis correction and plane-

change impulsive maneuvers, are required for achieving the desired target orbit, they are 

typically performed during the post-aerocapture orbit. 

Aerocapture has been investigated for a few decades.  Although aerocapture has not yet 

been applied on a space flight mission, it is one of the promising technologies for future 

science missions thanks to the fact that it requires less propellant mass to accomplish an 

orbit transfer task when compared to the conventional propulsive maneuver.  This 

technology gives the opportunity to reduce the cost and mass of the interplanetary 

spacecraft.  The use of aerocapture can result in saving significant amounts of propellant; 

hence, additional science payload mass could be delivered to the destination or total vehicle 

launch mass could be reduced by using a smaller launch vehicle for the mission.  
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References [1-7] present studies that demonstrate the potential benefits of using 

aerocapture for interplanetary missions.   

Aerocapture is a subcategory of aeroassist maneuver, along with aerobraking.  For a 

aerobraking mission, firstly a spacecraft is needed to be inserted into a highly elliptical 

capture orbit from a hyperbolic approach orbit by using a propulsive burn, and then 

multiple low-density atmospheric passes at periapsis causes the apoapsis to gradually 

shrink, and eventually make the orbit circular [8, 9].  Although both techniques utilize the 

atmospheric drag to slow down the spacecraft, aerocapture provides some advantages over 

aerobraking, such as better fuel efficiency, single pass (shorter operational time), and less 

chance of failure.  Aerocapture applications are more suitable for the outer planet missions 

[6].  On the other hand, aerocapture requires a heavy aeroshell to protect the vehicle from 

heat.  The previous works related to aerocapture guidance are represented in the following 

section.  

1.2   Prior Work 

In recent decades, aerocapture has been one of the most popular subjects among 

interplanetary mission researchers.  Different guidance techniques have been developed 

for solving the aerocapture problem.  There is no doubt that the onboard guidance system 

requires a closed-loop algorithm to successfully complete aerocapture mission in the 

presence of significant modelling and environmental dispersions.  Closed-loop guidance 

techniques can be broadly classified as implicit and explicit guidance method [10].  Implicit 

guidance methods attempt to track a predefined reference trajectory, while explicit 

guidance methods solve repeatedly the system equations of motion onboard in order to re-

compute an optimal or near-optimal trajectory from the present state to a target state.  For 
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onboard computational cost, the use of the implicit guidance method has advantages over 

the explicit guidance method. This is because most of the guidance calculations are made 

for possible scenarios before a mission begins.  The explicit guidance scheme, on the other 

hand, provide a better guidance accuracy for the more difficult scenarios with unpredictable 

modelling and atmospheric uncertainties.  An implicit guidance scheme was developed by 

Gurley in the 1990s for Mars aerocapture [11].  Gurley examined the use of pitch attitude 

modulation to track the energy of a reference trajectory.  Ro et al. [12] developed a Mars 

terminal-point controller (TPC) guidance method. TPC is based on a calculus of variation 

approach and uses a reference trajectory generated offline. In [12], the controller gains 

were computed in a feedback guidance loop to steer the vehicle to a desired target state.  

References [13, 14] present other TPC guidance methods that used angle-of-attach as a 

control variable for Neptune and Mars aerocapture, respectively.   

The most common explicit aerocapture guidance algorithms studied in the past are 

Analytical Predictor Corrector (APC) and Numerical Predictor Corrector (NPC) methods.  

References [15-28] have employed APC guidance schemes that make use of analytical 

approaches to predict the exit condition of the current vehicle state.  Peng et al. developed 

three different APC guidance schemes based on lift-modulation (via bank angle) [15] and 

drag-modulation (via ballistic coefficient) [15, 16] control systems for Mars aerocapture.  

The algorithm used in the lift modulation mode was divided in two phases: near-

equilibrium glide and exit phases.  The bank angle in lift modulation is commanded for 

tracking of the reference path determined according to drag and altitude-rate error 

feedback.  Using a piecewise linear function between flight-path angle and velocity 

resulted in a closed-loop drag continuous control in [15], while the single- and two-ballistic 
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coefficient switching scenarios are analyzed in [16].  References [17-19] also present 

various semi-analytical predictor-corrector techniques that are based on drag error and 

altitude rate.  The proposed semi-analytical guidance algorithm in [19] was tested for 

aerocapture at several planetary exploration destinations including Earth, Mars, Titan, 

Neptune, and Venus.  References [21-23] employ Hybrid Predictor Corrector Aerocapture 

Scheme (HYPAS) that consists of two phases during atmospheric flight; equilibrium-glide 

phase where a spacecraft flies at a constant flight-path angle (FPA) by modulating bank 

angle, followed by a constant altitude-rate phase that corrected control variable to steer the 

spacecraft to desired predicted state.  Hamel and Lafontaine [24] improved the robustness 

and accuracy of this APC guidance method for Mars aerocapture by running a scale height 

adaptation algorithm that used the density estimation.  CNES and NASA teams developed 

an energy controller (EC) guidance for Mars Sample Return mission [25].  The purpose of 

the EC method is to minimize the difference between the target exit energy and the 

predicted exit energy by making analytical assumptions.   

The NPC guidance designs rely on numerical integration of the governing equations of 

motion [29-38].  In order to predict the exit state, the on-board computer of the spacecraft 

numerically simulates the trajectory from the present point to an exit state.  By using the 

PredGuide+A aerocapture guidance scheme, Lafleur [29] investigated the apoapsis 

targeting mode (single-impulsive maneuver) and Δ𝑉-minimization mode (two-impulsive 

maneuver) for Lunar return cases.  Both the apoapsis targeting and Δ𝑉-minimization modes 

seek a constant bank angle profile for the remainder of atmospheric flight phase to achieve 

the desired exit state.  Lu et al. [30] employed a bang-bang bank angle profile to minimize 

the post-exit propellant consumption for Earth aerocapture problem.  The guidance 
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algorithm consists of two phases.  They selected a 15-95 deg bang-bang bank profile 

instead of using a 0-180 deg (full lift-up during first phase and full lift-down during second 

phase) to balance between performance and guidance robustness.  The bank angle remained 

constant (at 15 deg) during the first phase.  The switching time from first phase to second 

phase was found by using Brent’s and golden-section methods [39] for two different 

modes.  In the second phase, a constant bank angle magnitude was sought at each guidance 

cycle to reach the desired apoapsis.  In Ref. [31], this bang-bang control structure was 

tested using two Mars-aerocapture scenarios for three different entry vehicles.  Putnam and 

Braun [33] developed three drag modulation control systems (single-stage jettison, two-

stage jettison, and continuously-variable) for aerocapture at Venus, Mars, and Titan. 

The APC, NPC, TPC, and EC guidance algorithms were compared by a CNES-NASA 

collaborative working group for accuracy, robustness, loads, and complexity criterions in 

Ref. [40].  According to the results of the comparison of four criterions, the TPC algorithm 

achieved the highest ranking, followed by the APC, EC, and NPC algorithms.  The TPC 

was presented as the best general algorithm thanks to slightly better in robustness and 

complexity criterions.  On the other side, the APC algorithm was ranked first in accuracy 

and loads criterions.  The NPC guidance method have highest onboard computational 

requirements.  It should be noted that the CNES/NASA study was published in 2012. Since 

then, a large number of studies has been conducted to improve these guidance algorithms.  

It is therefore useful to re-compare these methods by including newly developed guidance 

algorithms.    
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1.3   Thesis Outline 

Chapter 2 describes the formulation of aerocapture guidance problem after giving a brief 

description of the spacecraft used in this thesis.  This chapter includes Orion MPCV’s 

equations of motion, transforming the Earth-relative state variables into inertial system, 

and impulsive in-plane and out-of-plane orbital maneuvers transporting the Orion MPCV’s 

from a post-atmospheric orbit to a desired target orbit.  

Chapter 3 focuses on the bang-bang aerocapture optimization problem.  This chapter also 

introduces the Fmincon algorithm used to minimize the post-exit Δ𝑉 (required to achieve 

the target orbit) for the bang-bang bank control structure.  The goal of this chapter is to 

figure out the optimal bang-bang solutions which will be compared to the proposed APC 

guidance scheme.  

Chapter 4 presents the analytical aerocapture guidance algorithm.  Atmospheric flight 

phase is separated into two phases: descent (open-loop bank) and ascent (closed-loop bank) 

phases.  During the ascent phase, the analytical prediction of exit velocity is achieved by 

using a Fourier curve fitting (scenario 1) or an exponential curve fitting (scenario 2) method 

to parameterize the aerodynamic acceleration effects.  This chapter also describe the 

switching point (from open-loop to closed-loop bank phase) and bank reversal criteria.   

Chapter 5 presents numerical results of this research.  This chapter begins with Monte-

Carlo dispersions, followed by nominal and off-nominal simulated trajectories for scenario 

1 and scenario 2.  It then provides a comparison of APC and NPC methods for the same 

Earth aerocapture mission.  Lastly, this chapter evaluates the response of the APC guidance 

method to the entry condition with a wide range of FPA.   
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Finally, Chapter 6 gives a summary and conclusion of the thesis.  This chapter also includes 

some key findings of the proposed APC guidance algorithm.  

The main objective of this study is to design a novel APC guidance algorithm that provides 

near-optimal performance in terms of post-exit propulsive burn.  The secondary goal is to 

improve the robustness of the algorithm with respect to atmospheric modeling uncertainty.  

In addition to these goals, it is important to provide near-optimal performance at 

inexpensive computational resources.   
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CHAPTER 2 – SYSTEM MODELS 

2.1   Vehicle Description 

The spacecraft model used in the aerocapture guidance problem is the Orion multi-purpose 

crew vehicle (MPCV).  The vehicle was built for manned exploration of the Moon and 

further interplanetary missions [41].  Figure 2.1 shows a concept of the Orion MPCV 

consisting of crew module (provides a safe habitat for the crew during spaceflight missions) 

and service module (provides support systems to the crew module in space).  The crew 

module separated from the service module before the atmospheric entry is the only 

compartment that fulfill the aerocapture maneuver.  While the crew module (CM) is a 

reusable space capsule, the service module (SM) usually burns up in the atmosphere before 

reaching the surface.    

  

Fig. 2.1  Orion MPCV Model [42] 
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Table 2.1 represents some specifications of the Orion CM [29, 30].  The lift and drag 

coefficients of the vehicle were assumed to be constant for highly hypersonic Mach 

numbers [3, 43].  The Orion CM has a heavier and larger than Apollo command module.  

The capsule has bank angle rate and acceleration limits.   

Table 2.1: Vehicle Specifications 

Parameter Value 

Lift coefficient 0.3699 

Drag coefficient 1.37 

Mass 8983.4 kg 

Reference area 19.86 m2 

Bank angle rate limit 15 deg/s 

Bank angle acceleration limit 5 deg/s2 

 

2.2   Equations of Motion 

The equations of three-dimensional motion of a spacecraft are described under the 

following assumptions: the Earth is an oblate spheroid and is rotating with constant angular 

velocity, and the atmosphere is at rest with respect to the Earth: 

sinr V =                                                            (1) 

cos sin

cos

V

r

 



=                                                          (2) 

             

cos cosV

r

 
 =                                                        (3) 
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2sin cos cos cos (sin cos cos cos sin )rV D g g r         = − − − + −          (4) 

21
cos cos sin cos 2 sin cosr
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       

  
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 
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  




+ 


                                (6) 

where 𝑟 is the radial distance from the center of the Earth to the vehicle’s center of mass, 

𝜃 is the longitude, 𝜙 is the latitude, 𝑉 is the Earth-relative velocity, 𝛾 is the flight-path 

angle of the Earth-relative velocity vector, 𝜓 is the heading angle (measured clockwise 

from north to the projection of the Earth-relative velocity vector onto the local horizontal 

plane), 𝜎 is the bank angle (which is the only control variable), 𝜔 is the angular velocity of 

the Earth, and rg  and g  are the radial and latitudinal components of the acceleration of 

gravity, respectively.  The aerodynamic lift and drag accelerations (L and D) are given by 

    21

2
L

S
L V C

m
=                                                (7) 

 21

2
D

S
D V C

m
=                                         (8) 

where 𝜌 is the atmospheric density, 𝑆 is the reference area, 𝐶𝐿 and 𝐶𝐷 are the lift and drag 

coefficients, respectively, and 𝑚 is the vehicle mass.  The 1976 US Standard Atmosphere 
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is adopted for the nominal density model of Earth’s atmosphere.  The gravitational 

acceleration components are given by  

 

2

2

22
1 (1.5 4.5sin )e

r

R
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r r




  
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   
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


 

 
=  

 
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where 𝜇 is the gravitational parameter of the Earth, 𝑅𝑒 is the equatorial radius of the Earth, 

and 𝐽2 is the second zonal coefficient.  The zonal variation occurs because of the oblateness.  

Other zonal coefficients are not included in the gravitational acceleration equations due to 

their small magnitudes compared to 𝐽2.  Before discussing impulsive orbital maneuver, it 

would be well at this point to describe the coordinate transformation which is necessary for 

transforming the Earth-relative-state variables to inertial-state variables. 

2.3   Coordinate Transformations 

The position and velocity vectors of the vehicle are shown in Figure 2.2.  The position 

vector components are given in the Earth-centered Earth-fixed (ECEF) coordinate system 

as in equation (11).  The three-dimensional cartesian coordinate system (X, Y, Z) is 

attached to the center of mass of Earth and rotates with the Earth around the Z-axis.  

                    

cos cos

cos sin

sin

X

Y

Z

r r

r r

r r

 

 



   
   

=
   
      

                                     (11) 
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Fig. 2.2  ECEF and LVLH Coordinate Systems 

The velocity vector components in the local-vertical local-horizontal (LVLH) coordinate 

system are  

                     

sin

cos sin

cos cos
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EAST

NORTH

V V

V V

V V



 

 

   
   

=
   
      

               (12) 

Vectors can be transformed from one coordinate system to another by rotation matrices.  

For the velocity vector transformation from LVLH to ECEF coordinate system, two 

consecutive rotations are implemented.  The first rotation is performed by rotating the 

𝑋′𝑌′𝑍′ frame through −𝜙 around 𝑌′ axis.  The second one is performed by rotating through 

−𝜃 about 𝑍′ axis.  The velocity vector components in ECEF coordinate system can be 

obtained: 
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The inertial velocity vector Vi is the sum of the Earth-relative velocity vector V and the 

transport velocity vector, which is the cross product of the Earth’s self-rotation angular 

velocity vector  and vehicle’s position vector r as in equation (14): 

            
i = + V V ω r                       (14) 

Detailed information about transforming the Earth-relative velocity, flight-path angle, and 

heading angle into the inertial system can be found in Ref [44].  

2.4   Impulsive Orbital Maneuvers 

The vehicle enters the Earth’s atmosphere at entry interface (EI), which is defined at an 

altitude of 400,000 ft (121.92 km).  The vehicle flies through the Earth’s atmosphere while 

dissipating energy due to drag until the vehicle reaches the atmospheric exit altitude.  EI 

and atmospheric exit occur at the same altitude.  After atmospheric flight and energy 

dissipation, orbital mechanics comes into play.  

In orbital mechanics, a spacecraft can be transferred from one orbit to another by impulses 

(propulsive burns).  The impulsive velocity change (velocity increment) Δ𝑉 is a measure 

of the amount of propellant consumption.  The relationship between Δ𝑉 and the propellant 

mass consumed 𝑚𝑝 is described by the ideal (or classical) rocket equation [45]: 

                                      
0

0

1 expp

sp

V
m m

g I

  
  

    

−
= −                        (15) 
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where 𝑚0 is the initial mass of the vehicle before the propulsive burn, 0g  is the Earth’s 

standard gravitational acceleration near sea level, and 𝐼sp is the specific impulse of the 

propellant.  It is considered that propulsion system provides Δ𝑉 instantly without change 

in the position of the vehicle. Impulses are performed to transfer a post-aerocapture orbit 

into a specified target orbit.   

2.4.1   Coplanar Transfer with Tangential Impulses 

When the apoapsis of the post-aerocapture ellipse orbit is tangent to the desired target 

circular orbit (case 1), one-impulsive maneuver is enough to get into the target circular 

orbit as shown in Figure 2.3.  The velocity vectors of the tangential orbits are collinear.  A 

single burn is applied at the apogee to raise the perigee to be the desired perigee.  For case 

1, the coplanar velocity increment is 

                        1

tgt 0 0 0

1 1 1
2

2 a p a

V V
r r r r


 

 =  = − − 
 +
 

                      (16) 

where 𝑟tgt is the radius of the target orbit, and 𝑟𝑎0 and 𝑟𝑝0 are the apogee and perigee radii 

of the exo-atmospheric orbit as determined by equations (17) and (18).  Since the exo-

atmospheric orbit is tangent to the desired target orbit at the apoapsis radius, 𝑟𝑎0 = 𝑟tgt  in 

equation (16), and the first term on the right-hand side of equation (16) expresses the 

circular speed of the target orbit.  

         ( )
2 2 2

exit exit exit
0
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1 1 1a

V r
r a e a

a





 
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 
 

       (17) 
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         ( )
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where 𝑎 and 𝑒 are the semimajor axis and eccentricity of the post-aerocapture orbit, 

respectively, 𝑟exit is the atmospheric exit radius, and 𝑉exit, and 𝛾exit are the inertial velocity 

and flight-path angle at 𝑟exit.  Kinetic and potential energy evaluated at the exit conditions 

determines the semimajor axis of the post-aerocapture orbit:  

                     2

exit EI2 2 /
a

V r

 

 

−
= =

− +
                                     (19) 

where 𝜉 is the total mechanical energy per unit mass which is constant during orbital flight 

according to the principle of conservation of energy.  

 

Fig. 2.3  Aerocapture Maneuver with One-Impulsive 

When the apoapsis radius of the post-aerocapture orbit does not match the target circle 

radius (case 2), two impulsive maneuvers are required to establish target orbit as shown in 
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Figure 2.4.  The attained 𝑟𝑎0 is not restricted in case 2.  The inequality relation might be 

𝑟𝑎0 < 𝑟tgt or 𝑟𝑎0 > 𝑟tgt.   

 

Fig. 2.4  Aerocapture Maneuvers with Two-Impulsive;  (a)  𝑟𝑎0 < 𝑟𝑡𝑔𝑡; (b)  𝑟𝑎0 > 𝑟𝑡𝑔𝑡 

The first impulse is performed at 𝑟𝑎0 to raise 𝑟𝑝0 to the target orbit, and then the second 

impulse is performed at 𝑟𝑝0 to either raise the new periapsis to the target orbit (Figure 2.4a) 

or lowers apoapsis to the target orbit (Figure 2.4b).  For case 2, the coplanar velocity 

increment is the sum of the magnitudes of the two impulses: 

1 2

0 tgt 0 0 0 0

1 1 1 1
2

a a a p a

V V V
r r r r r r


 

 =  +  = − − − 
 + +
 

 

tgt tgt tgt 0

1 1 1
2

2 ar r r r
+ − −

+
                                   (20) 

The absolute value symbols should be used for the second term on the right-hand side of 

equation (20) in case of having 𝑟𝑎0 > 𝑟tgt. 

          

          (a)                   (b) 
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2.4.2   Plane-Change Maneuver 

To change the orientation of the orbital maneuver while its size remains the same, the 

direction of the velocity vector must be changed at either the ascending node or the 

descending node.  Figure 2.5 shows a plane-change maneuver from a circular orbit (Orbit 

1) to another circular orbit (Orbit 2).  A velocity increment Δ𝑉𝑖 applied at the ascending 

node rotates the velocity vector 𝑉𝑐1 through the dihedral angle Δ𝑖 without changing its 

magnitude.  By using the law of cosine, the required change in velocity Δ𝑉𝑖 can be 

computed by 

                             2 sin
2

i c

i
V V


 =                                       (21) 

where 𝑉𝑐  is the circular speed (i.e., 𝑉𝑐 = 𝑉𝑐1 = 𝑉𝑐2) and Δ𝑖 is the magnitude of the 

inclination change.  

 

Fig. 2.5  Inclination-Change Maneuver 
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CHAPTER 3 – OPTIMAL AEROCAPTURE 

3.1   Optimization Problem 

The goal of the optimization problem is to minimize the impulsive velocity change of the 

aerocapture maneuver.  The Orion MPCV is used as a spacecraft model in the optimization 

problem.  The initial condition at entry interface is taken from [29, 30].  Table 3.1 shows 

the initial state for a nominal entry.  The target orbit is circular with an altitude of 200 km 

and inclination of 88 deg.   

Table 3.1: Nominal entry conditions 

EI state Value 

Altitude 121.92 km 

Longitude −116.5 deg 

Latitude −46.67 deg 

Inertial velocity 11.02 km/s 

Inertial flight-path angle −5.91 deg 

Inertial heading angle 0.00 deg 

Orbital inclination 90 deg 

 

Two-impulsive velocity increment formula in equation (20) is used as a cost function in 

the optimization problem (note that plane-change maneuver is ignored in this chapter).  

When the apogee of the post-aerocapture orbit is equal to the radius of the desired target 

orbit, the equation (20) converts into the equation (16) (because Δ𝑉2 will be zero in 

equation (20) to achieve the desired final orbit).  In most instances, one-impulsive 
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maneuver case provides a better performance in terms of Δ𝑉 than two-impulsive maneuver 

case.  

The problem statement is 

Minimize: 
0 tgt 0 0 0 0

1 1 1 1
( ) 2

a a a p a

F x
r r r r r r


 

= − − − 
 + +
 

 

                   
tgt tgt tgt 0

1 1 1
2

2 ar r r r
+ − −

+
                                         (22) 

Subject to: 

{
 
 
 
 
 

 
 
 
 
 
 𝑦̇1 = 𝑟̇,     𝑟(0) = 𝑟EI ⇒ fixed 

  
𝑦̇2 = 𝜃̇,    𝜃(0) = 𝜃EI ⇒ fixed

 
𝑦̇3 = 𝜙̇,    𝜙(0) = 𝜙

EI
⇒ fixed

 
𝑦̇4 = 𝑉̇,    𝑉(0) = 𝑉EI ⇒ fixed

 
𝑦̇5 = 𝛾̇,     𝛾(0) = 𝛾EI ⇒ fixed

 
𝑦̇6 = 𝜓̇,    𝜓(0) = 𝜓

EI
⇒ fixed}

 
 
 
 
 

 
 
 
 
 

         (23) 

 Inequality  

constraints:  𝑐 = 𝑟𝑎0 > 𝑟exit                                                       (24) 

 

It is assumed that initial condition of state variables is known for the nominal model, so it 

is fixed.  The system needs an inequality equation (24) so that the apoapsis radius of the 

post-aerocapture orbit must be greater than atmospheric exit radius in order to correctly 

compute the cost function in equation (22).  
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3.2   Fmincon Algorithm 

Fmincon is an optimization solver in MATLAB [46].  It attempts to find the local minimum 

value of a constrained nonlinear multivariable function.  The syntax of the Fmincon 

algorithm is defined as: 

x = fmincon (fun, x0, A, b, Aeq, Beq, lb, ub, nonlcon) 

where x is a solution of the optimization; fun is a function M-file that evaluates cost 

function value; x0 is the initial estimations for x to begin the optimization; A and b, 

respectively, are the matrix and vector for linear inequality constraints; Aeq and Beq are the 

matrix and vector for linear equality constraints; lb and ub, respectively, are the lower 

and upper bounds for the variables, and nonlcon is a function M-file that contains 

nonlinear equality and inequality constraints.  

Fmincon algorithm minimizes the cost function value in equation (22).  State differential 

equations (SDEs) in equation (23) should be integrated to assess the cost function value.  

Therefore, the ode45 solver in MATLAB [47] is chosen as an integration method to solve 

the SDEs.  It integrates the system of the SDEs from initial time to final time by using the 

initial condition of the state variables. The syntax of the ode45 solver is 

[t, y] = ode45(odefun, tspan, y0) 

where t is evaluation points on time span; y is the solution of the state variables; odefun 

is a function M-file that determines the right-hand sides of the SDEs; tspan is the interval 

of integration [t0 tf]; y0 is the initial condition of the state variables. 
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3.3   Bang – Bang Control 

The impulsive velocity change can be minimized by using instantaneous bang-bang bank 

control when constraints on final orbital inclination are omitted (i.e., no bank reversal is 

necessary through the trajectory).  First the spacecraft flies with full lift-up (𝜎 = 0) during 

the descent phase and then full lift down (𝜎 = 180) during the ascent phase.  The bank 

angle transition from 0 to 180 deg happens instantaneously at the switching time 𝑡𝑠.  The 

time at the atmospheric exit is free parameter and the switching time is the only variable 

that must be determined in the optimization problem.  The optimal switching time, which 

minimizes the velocity increment of the aerocapture problem, can be found by using the 

Fmincon optimization solver.  It is crucial to state that the Fmincon algorithm requires the 

inequality constraint (𝑐 = 𝑟𝑎0 > 𝑟exit) to define the optimal aerocapture problem correctly.  

Otherwise, the cost function might not converge to the solution more effectively.  For 

instance, if the inequality constraint (𝑐 = 𝑟𝑎0 > 𝑟exit) is ignored in the optimization 

algorithm and a small value of the switching time is used for the initial estimation, the 

Fmincon algorithm might find a minimal cost value with an apoapsis altitude ℎ𝑎0 which is 

less than the atmospheric exit altitude 𝑟exit.  This means that the coplanar velocity 

increment equations (16) or (20) cannot be applied because the spacecraft is still in the 

Earth’s atmosphere, and energy dissipation still exists due to drag.  Thus, the inequality 

constraint should be included in the optimization problem to gain the optimal solution in 

the right way.  Figures 3.1 and 3.2 present the bank angle and altitude time histories for 

optimal bang-bang control.  The optimal switching time is 𝑡𝑠 = 107.307 s, and the 

minimum insertion Δ𝑉 is 39.6 m/s with a single impulse where 𝑟𝑎0 = 𝑟tgt for the nominal 



22 
 

model.  Figure 3.3 shows the optimal FPA vs altitude profile for bang-bang control 

structure (𝜎 = 0-180 deg). 

  

Fig. 3.1  Bank Angle vs. Time for Optimal Bang-Bang Control Problem 
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Fig. 3.2  Altitude vs. Time for Optimal Bang-Bang Control Problem 

 

Fig. 3.3  Flight-Path Angle vs. Altitude for Optimal Bang-Bang Control Problem 
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The sensitivity of the aerocapture problem with respect to switching time, initial flight-path 

angle, and lift-to-drag ratio is investigated in this section.  The most important factor on 

the velocity increment is the switching time.  Figure 3.4 presents the total Δ𝑉 vs. switching 

time for bang-bang bank angle control problem.  It should be noted that the total Δ𝑉 

solutions in Figure 3.4 are not obtained from optimized trajectories.  Changing the optimal 

switching time (107.307 s) by about 0.04 s doubles the total Δ𝑉. 

  

Fig. 3.4  The Effect of Switching Time on Bang-Bang Aerocapture Problem 

The other two important factors on the optimal Δ𝑉-minimization are initial flight-path 

angle and the lift-to-drag ratio.  Figure 3.5 shows the surface plot of minimal-Δ𝑉 solutions 

vs. initial flight-path angle and lift-to-drag ratio.  The highest values of Δ𝑉 are in the far 

corner of the plot, which corresponds with low values of initial flight-path angle 𝛾0 and 
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𝐿/𝐷 ratio.  As 𝛾0 and 𝐿/𝐷 increase, the minimum Δ𝑉 decreases.  The lowest value of  Δ𝑉 

(36.91 m/s which is only 0.08 m/s is less than the Δ𝑉 value in the near corner of the plot) 

occurs at approximately 𝛾0 = 5.85 deg and 𝐿/𝐷 = 0.32.  When the vehicle has a higher 

𝐿 𝐷⁄  ratio, switching the bank angle from 0 to 180 deg should be made early.  This allows 

the vehicle to have a higher velocity and a lower flight-path angle at the exit in order to 

reach the desired apoapsis of target orbit.  These exit variables minimize the optimal Δ𝑉. 

  

Fig. 3.5  The Effects of Initial Flight-Path Angle and Lift-to-Drag Ratio on Bang-Bang 

Aerocapture Problem 

 

Lastly, several optimal bang-bang aerocapture maneuver are analyzed by running the 

optimization algorithm with a range of upper bound of bank angle 𝜎𝑢, while the lower 

bound 𝜎𝑙 remains the same.  Table 3.2 presents minimum-Δ𝑉 solutions for a range of the 
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upper bound.  Because a constant bank angle of 56.7 deg is minimum value for a nominal 

aerocapture corridor, the upper bound of the bang-bang bank angle control is limited to 60 

deg.  While a single-impulse maneuver is required for the first 9 scenarios (0-180 to 0-100 

deg) in Table 3.2, two propulsive burns are applied for the last 4 scenarios (0-90 to 0-60 

deg) to establish 200 × 200 km target orbit.  Decreasing the upper bound of the bang-bang 

bank angle causes early switching and some degradation in optimal velocity increment Δ𝑉.  

Table 3.2: Fmincon Optimization Results for Bang-Bang Scenarios 

Bang-bang bank 

(deg) 

Switching time 

(sec) 

Apogee Altitude 

(km) 

ΔV 

(m/s) 

0-180 107.307 200.00 39.59 

0-170 107.133  200.00 39.80  

0-160  106.634  200.00 40.54  

0-150  105.793  200.00 41.97  

0-140  104.587  200.00 44.36  

0-130  102.981  200.00 49.50  

0-120  100.906  200.00 53.87  

0-110  98.293  200.00 62.32  

0-100  95.002  200.00 74.37  

0-90  90.877  217.97 90.28  

0-80  85.537  248.32 108.28  

0-70  77.968  281.71 127.80  

0-60  64.071  318.07 148.22  

 

Figures 3.6 shows the time histories of the three bang-bang bank angle control scenarios 

(𝜎 = 𝜎𝑙-𝜎𝑢; 0-180; 0-120; and 0-60 deg) and the resulting flight-path angle and relative 
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velocity vs. altitude profiles are plotted in Figures 3.7 and 3.8.  As shown in Table 3.2 and 

Figure 3.6, the higher upper bound of bank angle increases the switching time and total 

atmospheric flight time.  As the upper bound decreases, the vehicle has a higher FPA and 

a lower velocity at the atmospheric exit conditions.     

  

Fig. 3.6  Bank Angle Profile for Three Sample Values of 𝜎𝑢 
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Fig. 3.7  Flight-Path Angle vs. Altitude for Three Sample Values of 𝜎𝑢 

 

Fig. 3.8  Relative Velocity vs. Altitude for Three Sample Values of 𝜎𝑢 
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In this chapter, optimal trajectories are achieved with instantaneous bang-bang bank angle 

transitions.  In reality, this is not possible because of limits on the attitude dynamics.  

Optimal aerocapture results are presented for comparison and evaluation purposes only; 

the real aerocapture problem will use an on-board guidance scheme, bank angle rate and 

acceleration limits, and an orbital-plane target.  
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CHAPTER 4 – AEROCAPTURE GUIDANCE LAW 

Aerocapture guidance algorithm can be separated into two phases: descent and ascent 

phases.  Open-loop and closed-loop bank angle commands are used in descent and ascent 

phases, respectively, as shown in Figure 4.1.   

 

Fig. 4.1  Nominal Aerocapture Trajectory 

4.1   Descent Phase 

Descent phase starts at the EI and lasts until the switching point that usually occurs around 

the pull-up point (𝛾 = 0).  During the descent phase, the vehicle flies with a constant open-

loop bank angle at 15 deg.  The reason behind choosing  = 15 deg instead of full lift-up 

in descent phase is that it is the same bank angle magnitude used by the Apollo entry 

guidance [48] and Lu et al. [30].  As discussed in chapter 3, the minimized Δ𝑉 is obtained 
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by following full lift-up in the descent phase and then full lift down during the ascent phase.  

Thus, using  = 15 deg instead of  = 0 in descent phase results in very little performance 

degradation in terms of impulsive Δ𝑉.  When the flight-path angle is greater than  ̶ 0.5 deg, 

the guidance algorithm begins seeking the switching point. Further details about how to 

determine the switching point will be provided in Section 4.2.3.       

4.2   Ascent Phase  

4.2.1   Analytical Prediction of Atmospheric Exit Velocity 

Analytical prediction of the exit state is made in the ascent phase after completing the open-

loop atmospheric flight.  The analytical guidance scheme is based on a simplified version 

of the equations of motion in a vertical plane.  Since radial distance is the sum of the Earth’s 

radius and altitude h, it can be said that the radial velocity and the time-rate of altitude are 

equal by assuming that the Earth’s radius has negligible change during the aerocapture 

maneuver.  The longitudinal equations of motion, equations (1), (4), and (5), repeated 

without the Earth-rotation effects and oblateness:  

sinr h V = =                                                         (25) 

2
sinV D

r


= − −                                                    (26) 

21 cos
cosL V

V r r

 
 

  
= + −  

  
                                      (27) 

Altitude is used as an independent variable in the algorithm.  By applying the chain-rule 

method for the vertical-place equations of motion (dividing equations (26) and (27) by 
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equation (25)), the independent variable is changed from time 𝑡 to altitude ℎ.  The 

derivatives of velocity and flight-path angle with respect to altitude are 

2sin

dV D

dh V Vr





−
= −                                                  (28) 

2

2

1 cos
cos

sin

d
L V

dh V r r

  




  
= + −  

  
                                (29) 

It is assumed that the aerodynamic lift 𝐿 and drag 𝐷, which are defined by equations (7) 

and (8), accelerations are measured accurately by onboard sensors.  The velocity is known 

through navigation, and the reference area 𝑆 is constant.  The density, lift and drag 

coefficients, and mass are unknown individually due to the trajectory dispersions and 

modeling uncertainties; however, the combination of density, lift (or drag) coefficient, and 

mass can be determined from the onboard acceleration sensors.  The lift and drag sensor 

data obtained from the descent phase allow us to create two parameters that are the products 

of density and lift (or drag) coefficient divided by mass.  A least-squares curve-fitting 

scheme then processes these data.  Two different scenarios, Fourier and exponential curve 

fitting schemes, are separately investigated to define the analytical prediction of 

atmospheric exit velocity.  

4.2.1.1   Fourier Curve Fitting 

The lift- and drag-acceleration terms, 𝜌𝐶𝐿 𝑚⁄  and 𝜌𝐶𝐷 𝑚⁄ , are fitted using MATLAB’s 

Curve Fitting Toolbox, cftool, by the 3rd order Fourier functions of altitude: 

3

0

1

cos( ) sin( )L
n n

n

C
a a nhw b nhw

m



=

= + +                                  (30) 
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3

0

1

cos( ) sin( )D
n n

n

C
c c nhw d nhw

m



=

= + +                                 (31) 

where 𝑎0 and 𝑐0 are constants, 𝑎𝑛 and 𝑐𝑛 are the amplitudes of the cosine waves, 𝑏𝑛 and 

𝑑𝑛 are the amplitudes of the sine waves, and 𝑤 is the frequency of the sinusoidal functions. 

Let us define sin 𝛾 as an exponential function of altitude, so that FPA vs altitude profile is 

comparable to the optimal bang-bang control problem for ascent phase as shown in Figure 

3.1c: 

0 1sin exp( )A A h = −                                                  (32) 

where 𝐴0 and 𝐴1 are constants. The reference trajectory is based on the FPA term in 

equation (32).  Substituting equations (8), (31) and (32) into equation (28) and neglecting 

the gravity term (𝜇 𝑉 𝑟2⁄ ) in equation (28) for now, the derivative of velocity with respect 

to altitude can be expressed as  

2

0 1 0 1

1

2

sin exp( ) 2 exp( )

D
D

CS
V C VS

dV D m m

dh V VA A h A A h






− −
−

= = =
− −

 

( )3

0 1

0 1

cos( ) sin( )

2 exp( )

n nn
VS c c nhw d nhw

A A h

=
− + +

=
−


                         (33) 

To solve the equation (33), we can write the equation in the separated form: 

( )3

0 1

1

cos( ) sin( )

exp( )

n nn
B c c nhw d nhwdV

dh
V A h

=
+ +

=
−


                          (34) 

where 𝐵 = −𝑆/(2𝐴0) is the new constant term.  Next, integrating both sides of equation 

(34) from the current conditions (ℎnow, 𝑉now) to the exit conditions (ℎexit , 𝑉exit) yields 
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( ) ( )
exit

now

3
1 1exit 0

1 2 2 2
1now 1 1

sin( ) cos( ) cos( ) sin( )
ln exp( )

h

n n

n h

c nw nhw A nhw d nw nhw A nhwV c
B A h

V A n w A=

 + + − + 
= +   

+   
       

          

         (35) 

Solving equation (35), we obtain the drag-only exit velocity   

( ) ( )
exit

now

3
1 1drag_Fourier 0

exit now 1 2 2 2
11 1

sin( ) cos( ) cos( ) sin( )
exp exp( )

h

n n

n h

c nw nhw A nhw d nw nhw A nhwc
V V B A h

A n w A=

  + + − +
 = + 

+   

     

                       

         (36) 

Now, we can include the neglected gravity term (𝜇 𝑉 𝑟2⁄ ) to improve the estimate for exit 

velocity.  The derivative of velocity with respect to altitude for the gravity term is  

( )
22

E

dV

dh Vr V R h

 − −
= =

+
                                             (37) 

To solve the equation (37), using the technique of separating variables: 

( )
2

E

VdV dh
R h

−
=

+
                                                  (38) 

Integrating the both sides of this equation from the current conditions (ℎnow, 𝑉now) to the 

exit conditions (ℎexit , 𝑉exit) yields 

exitexit

now now

21

2

hV

V E h

V
R h


=

+
                                                 (39) 

The exit velocity for a drag-free environment is found as 

grav 2

exit now

exit now

2 2

E E

V V
R h R h

 
= + −

+ +
                                    (40) 
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Equation (40) is an expression for constant total energy along a two-body orbit.  Exit-

velocity gravity correction is calculated by 

 
grav

grav exit nowV V V = −                                                  (41) 

By adding the exit-velocity gravity correction Δ𝑉grav to the drag-only exit velocity 𝑉exit
drag

, 

we finally obtain more accurate velocity at the atmospheric exit.  Thus, the analytical exit 

velocity for Fourier curve fitting scenario is given by 

      
Fourier drag_Fourier

exit exit gravV V V= +                                              (42) 

4.2.1.2   Exponential Curve Fitting 

In this scenario, the lift- and drag-acceleration terms, 𝜌𝐶𝐿 𝑚⁄  and 𝜌𝐶𝐷 𝑚⁄ , are defined by 

a single-term exponential function: 

0 1exp( )LC
k k h

m


=                                                     (43) 

0 1exp( )DC
x x h

m


=                                                    (44) 

where 𝑘0,  𝑘1,  𝑥0, and 𝑥1 are constants, which are obtained by MATLAB’s cftool using 

the accumulated lift- and drag-acceleration data.  In a similar fashion, we can substitute 

equations (8), (32) and (44) into equation (28) and neglect the gravity term (𝜇 𝑉 𝑟2⁄ ) in 

equation (28) for now, the derivative of velocity with respect to altitude is 

 0 1 10 1

0 1 0 1 0

exp ( )exp( )

2 exp( ) 2 exp( ) 2

DC
VS VS x x A hVS x x hdV m

dh A A h A A h A


− − +−

= = =
− −

              (45) 
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Separating variables in equation (45) yields 

 1 1exp ( )
dV

C x A h dh
V

= +                                             (46) 

where the new constant is 𝐶 = −𝑆𝑥0/(2𝐴0).  Similarly, integrating both sides of equation 

(46) from the current conditions (ℎnow, 𝑉now) to the exit conditions (ℎexit , 𝑉exit), we obtain 

 
exit

now

1 1exit

now 1 1

exp ( )
ln

h

h

C x A hV

V x A

 + 
=   

+   
                                    (47) 

Then, solving equation (47) for the drag-only exit velocity yields 

   1 1 exit 1 1 nowdrag_Exponential

exit now

1 1

exp ( ) exp ( )
exp

C x A h x A h
V V

x A

  + − + =  
+  

           (48) 

The exit-velocity gravity correction Δ𝑉grav (41) can be added to the drag-only estimate of 

exit velocity by following the same procedure (equations (37-41)) employed in the 

previous section.  Therefore, the exit velocity for exponential curve fitting scenario is 

expressed analytically as 

   1 1 exit 1 1 nowExponential

exit now grav

1 1

exp ( ) exp ( )
exp

C x A h x A h
V V V

x A

  + − + = +  
+  

        (49) 

The analytical solution for atmospheric exit velocity is now complete for both scenarios.  

The current states (ℎnow, 𝑉now) is known, and the exit altitude ℎexit is also known.  Eight 

Fourier-series coefficients (𝑐0,  𝑐𝑛,  𝑑𝑛,  w) and two exponential-function coefficients (𝑥0 

and 𝑥1) are separately required in the drag-only solutions (36) and (48).  The Fourier-series 

and exponential-function coefficients are individually obtained by a least-squares fit of the 
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accumulated drag-acceleration data as measured by the vehicle’s onboard sensors.  During 

the descent phase, the onboard navigation system measures and stores drag acceleration 

𝐷 = 𝜌𝑉2𝑆𝐶𝐷/(2𝑚) as a function of altitude.  Using the known reference area S and 

velocity V (from the navigation system), the drag-acceleration term 𝜌𝐶𝐷/𝑚 can be 

determined and stored vs. altitude.  A least-squares curve-fitting scheme then processes 

this data to determine the eight Fourier-series coefficients (or the two exponential-function 

coefficients).  The ability to analytically predict exit velocity using equation (42) or (49) is 

now possible in the ascent phase. 

The drag-only exit velocity equations (36) and (48) also need the two constants 𝐴0 and 𝐴1, 

which are required to parameterize the sine of flight-path angle as a function of altitude.   

Boundary value conditions can be used to solve for 𝐴0 and 𝐴1.  We know the current FPA 

𝛾now, so guessing the exit FPA 𝛾exit allows us to determine the coefficients 𝐴0 and 𝐴1.  

Taking the natural logarithm of both sides of equation (32) yields 

( ) ( )0 1 0 1ln sin ln exp( ) lnA Ah A Ah = − = −                               (50) 

For the last equation, let us define 𝑧now = ln(sin 𝛾now),  𝑧exit = ln(sin 𝛾exit),  𝑞0 =

ln(𝐴0), and  𝑞1 = −𝐴1.  Two linear simultaneous equations (corresponding current and 

exit conditions) can be written in matrix form as 

now now 0

exit exit 1

1

1

z h q
H

z h q

     
=  =     

    
Z Q                                    (51) 

where 𝐙, 𝐻, and 𝐐 represent the matrix and vectors on the left side of equation (51). 

Multiplying both sides by the inverse of matrix 𝐻 yields 
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1

now now0

exit exit1

1

1

h zq

h zq

−

    
=     

     
                                            (52) 

After finding the 𝐐 vector, the unknown constants 𝐴0 and 𝐴1 are computed by  

( )0 0 1 1exp ,A q A q= = −                                              (53) 

Knowledge of the atmospheric exit conditions and equations (17) and (19) are used to 

determine the post-aerocapture apogee altitude.  Hence, exit FPA can be adjusted until the 

predicted apogee matches the altitude of the target circular orbit.  Five trial values of exit 

FPA are used in the search scheme to determine five trial apogee radii.  The five trial values 

of apogee altitude are interpolated by using cubic-spline interpolation in order to find the 

exit FPA that results in a post-aerocapture trajectory with an apogee that matches the target 

orbit altitude.  This search scheme is robust because the trial exit flight-path angles are 

selected to ensure apogees that undershoot and overshoot the target circle.  Figure 4.2 

presents an example of the spline interpolation for the given trial values and apogee 

altitudes of the exo-atmospheric orbit ℎ𝑎0.  According to the above-shown example, the 

vehicle can reach the apogee altitude of 200 km with the exit flight-path angle of ~0.825 

deg.  The closed-loop bank command is computed from tracking the exponential function 

(sin 𝛾 = 𝐴0exp (−𝐴1ℎ)), which needs knowledge of current and exit flight-path angles.  

This predictor-corrector scheme is repeated at each guidance cycle, which has a frequency 

of 1 Hz. 
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Fig. 4.2  Spline Interpolation Example for Exit Flight-Path Angle 

4.2.2   Bank Angle Command 

Once the atmospheric exit conditions (𝑉exit and 𝛾exit) have been found, the guidance 

algorithm computes the commanded bank angle for tracking the reference trajectory in the 

ascent phase.  The refence bank profile is derived from equation (29): solving for bank 

angle 𝜎, we get 

1 2 21 cos
cos sin

d
V V

L dh r r

  
 −

   
= − −   

   
                             (54) 

To compute the bank angle, equation (54) needs the derivative 𝑑𝛾 𝑑ℎ⁄ .  Taking the 

derivative of the reference FPA term (sin 𝛾 = 𝐴0exp (−𝐴1ℎ)) with respect to altitude and 

using the chain rule, respectively, yield 
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1 0 1 1

(sin )
exp( ) sin

d
A A A h A

dh


= − − = −                                   (55) 

(sin ) (sin )
cos

d d d d

dh d dh dh

   



= =                                         (56) 

Solving equations (55) and (56) for 𝑑𝛾 𝑑ℎ⁄  yields 

1 tan
d

A
dh


= −                                                     (57) 

The commanded bank angle equation (54) also requires the lift acceleration, 𝐿 =

𝜌𝑉2𝑆𝐶𝐿/(2𝑚), where the term 𝜌𝐶𝐿/𝑚 is parameterized by either equation (30) for the 

Fourier curve fitting scenario or equation (43) for the exponential fitting scenario. 

Substituting equations (7), (30), and (57) or equations (7), (43), and (57) into equation (54), 

respectively, yield 
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 
 
 

                          (59) 

Equations (58) and (59) are the commanded bank angle of the Fourier and exponential 

curve fitting scenarios, respectively, for tracking the flight-path profile in the ascent phase.   
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4.2.3   Switching Point Criteria 

Chapter 3 and Lu et al. [30] have revealed that the optimal aerocapture maneuver consists 

of a bang-bang bank-angle profile when attitude dynamics are ignored.  Moreover, the 

sensitivity of the optimal aerocapture problem with respect to the bank-angle switching 

time has been investigated in chapter 3.  In the optimal aerocapture problem, instantaneous 

bang-bang bank-angle transition from 0 to 180 deg occurs at the optimal switching time; 

however, a realistic spacecraft can change the bang angle within the limits on the attitude 

dynamics.  Therefore, it is crucial to design a proper bank-switching algorithm.   

The bank-switching strategy is based on trends observed from running several trial 

trajectories using the analytical predictive guidance algorithm.  The best way to explain 

how to determine the switching point would be to use sample control profiles from these 

trials.  Figure 4.3 shows three sample bank angle profiles (Fourier series parameterizes the 

drag acceleration term 𝜌𝐶𝐷/𝑚 to obtain these profiles).  The switching time is varied by 

0.2 s.  Using the nominal density model and initial entry states, a high initial closed-loop 

bank angle (such as 120 deg near the pull-up altitude) is commanded by equation (58).  

Some time later the closed-loop bank is saturated at  𝜎 = 0 or  𝜎 = 180.  Once the bank 

angle saturates, the vehicle flies with constant bank angle until atmospheric exit altitude.  

The main reason for the saturation is a combination of the loss of aerodynamic control 

authority with decreasing air density and the inability to track equation (32), which 

parameterizes sin 𝛾 as an exponential function of altitude.  If we select the switching time 

too early, the saturation occurs at 𝜎 = 0 deg (lift vector is up) at an altitude of about 91 km 

as shown in Figure 4.3.  On the other side, the switching done later causes the saturation at 

𝜎 = 180 deg (lift vector is down) at an altitude of about 77 km.  The velocity increment 
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decreases until we reach a certain switching point.  After that point, the switching is 

delayed, and apogee altitude of the post-aerocapture and the impulsive V increase.  The 

solid curve in Figure 4.3 presents the predicted bank profile vs. altitude for the optimal 

switching time.  The bank angle saturates at 𝜎 = 180 deg (lift vector is down) at an altitude 

of about 85 km.  The optimal switching time leads to a total Δ𝑉 of 50.98 m/s which is only 

11.4 m/s greater than the optimal single-impulse Δ𝑉 (39.6 m/s) for the bang-bang 

aerocapture maneuver.  Note that the total Δ𝑉 for the early- and late-switching cases shown 

in Figure 4.3 are within 5 m/s from the nominal Δ𝑉 value. 

   

Fig. 4.3  Predicted Bank Angle Variation with Switching Point 

Once the terms 𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚 are parameterized by either the three-term Fourier 

series or a single-term exponential functions at 𝛾 >  ̶ 0.5 deg, the search for bank-angle 
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switching time begins.  The predictive guidance algorithm determines the correct exit FPA 

and velocity to achieve the desired target apogee, and then the ascent trajectory is 

analytically propagated forward in altitude to determine 𝛾 and V at an altitude of 85 km.  

Next, the closed-loop bank angle is computed by using these propagated states in either 

equation (58) or (59).  If the predicted bank angle saturates at 𝜎 = 0 deg at an altitude of 

85 km, this means that it is still too early for the switching point time.  Once the saturated 

bank angle command goes to 180 deg at an altitude of 85 km, the switching is initiated 

because it is the best time to move from the descent phase to the ascent phase to minimize 

the total Δ𝑉.  The bank-saturation altitude ℎsat presented in Figure 4.3 is 85 km for the 

optimal switching time with nominal L/D = 0.27.   

Additional bank-switching point analysis are executed to observe the effect of L/D ratio on 

the bank-saturation altitude.  Seven trial values are selected in a range between low (0.22) 

and high (0.32) for L/D ratios.  The optimal bank profiles and the corresponding bank 

saturation altitudes are determined for these trials.  The relationship among the seven data 

indicated by black diamonds in Figure 4.4 is nearly linear.  Thus, a linear model is 

generated for ℎsat by taking advantage of a linear least-squares method.  The switching 

point of the guidance algorithm is determined by evaluating the bank command at a 

predefined altitude based on a linear function of the L/D ratio: 

sat 0 1( / )h H H L D= +                                                  (60) 

where coefficients are found as 𝐻0 = 103.3 km and 𝐻1 = –68.571 km.  Again, the guidance 

algorithm initiates the bank-switching process when the commanded bank angle computed 
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by either equation (58) or (59) saturates at 180 deg at an altitude of ℎsat, equation (60), 

(recall that L/D ratio is known thanks to onboard sensors). 

 

Fig. 4.4  Linear Least-Square Fitting for ℎ𝑠𝑎𝑡  

4.2.3.1   Propagation of Bank Maneuver 

The bank maneuver from the open-loop bank at 15 deg to the initial closed-loop bank 

around 120 deg (which based on an analytical flight profile) takes about 8.5 s with the 

bank-angle rate limit of 15 deg/s and acceleration limit of 5 deg/s2.  The bank-attitude 

dynamics should be included in the aerocapture guidance to better predict the switching 

point.  Therefore, when searching the bank-switching point, a second-order Euler 

integration method is used to propagate the states h, V, 𝛾 ahead in time as the bank angle 

rotates from 15 deg to 120 deg using the maximum acceleration and rate limits: 
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( ) ( ) ( ) ( ) 20.5h t t h t h t t h t t+   +  +                                     (61) 

   ( ) ( ) ( ) ( ) 20.5V t t V t V t t V t t+   +  +                                   (62) 

( ) ( ) ( ) ( ) 20.5t t t t t t t   +   +  +                                    (63) 

where Δ𝑡 is the step size, ℎ(𝑡), 𝑉(𝑡), and 𝛾(𝑡) are the current state values, ℎ̇(𝑡), 𝑉̇(𝑡), and 

𝛾̇(𝑡) are the first-time derivatives of the states, and ℎ̈(𝑡), 𝑉̈(𝑡), and 𝛾̈(𝑡) are the second-

time derivatives.  A single time step Δ𝑡 = 8.5 s is used in the integration method to estimate 

the roll maneuver.   The vertical-plane equations of motion, equations (25-27), are 

simplified once again by making some assumptions: neglecting the gravity term 

(𝜇 sin 𝛾 𝑟2⁄ ), cos 𝛾 = 1 (for small flight-path angles), 𝑟 is constant, and 𝜎 is taken as 60 

deg (an average bank angle is used).  Upon the simplifications, the first-time derivatives of 

the states become 

( ) sinh t V =                                                       (64) 

( )V t D= −                                                          (65) 

2

2

1
cos

V
L

V r r


 

  
= + −  

  

                                           (66) 

To take the second derivatives, equations (65) and (66) need a density model, so the terms 

𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚 in lift and drag accelerations (using a small amount of accumulated lift 

and drag acceleration data near pull-up) are parameterized by a single-term exponential 

functions of altitude:    
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0 1exp( )LC
M M h

m
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=                                                  (67) 

0 1exp( )DC
N N h

m


=                                                  (68) 

where 𝑀0, 𝑀1, 𝑁0, and 𝑁1 are constants.  Substituting equations (67) and (68) into 

equations (65) and (66), and then taking the second-time derivatives yields 

( ) sin cosh t D V  = − +                                             (69) 
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   
                                 (71) 

Finally, we can compute the first and second derivatives using current states.  The second-

order Euler integration method (with a step size of 8.5 s) finds the predicted states at the 

end of the bank maneuver (15 to 120 deg) from current state.  Using this approximate state 

(h, V, 𝛾 at 𝑡 + Δ𝑡), the analytical guidance method selects correct exit conditions first and 

then checks the bank angle command at the predefined ℎsat.  If the bank angle has the 

desired value, then the switch point has been determined. 

4.2.4   Bank Angle Reversal Criteria 

Inclination i is the dihedral angle between the equatorial plane and the orbital plane, and it 

varies from 0 to 180 deg.  The inclination is one of the six classical orbital elements [45].  

It can be computed using the angular momentum vector h (which is the cross product of 

inertial position vector 𝐫𝑖  and inertial velocity vector 𝐕𝑖): 
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cos i


=
K h

h
                                                        (72) 

where K is the unit vector in the positive direction of Earth’s north polar axis.  In this study, 

the angular momentum vector at EI is in the equatorial plane (i.e.,  0zh =  =K h  with an 

initial heading angle of 0 deg), so the initial inclination is computed as 90 deg from 

equation (72).  The target orbital inclination is taken as 𝑖tgt = 88 deg, as used in reference 

[30]. 

Bank angle magnitude other than 0 deg (lift vector is up) or 180 deg (lift vector is down) 

induces inclination changes during the aerocapture maneuver.  Therefore, one bank-

reversal maneuver is required to correct the plane change in the atmospheric flight phase.  

The bank-reversal logic is based on the search for the intermediate inclination where a 

bank-reversal would result in exit conditions with an inclination of 88 deg.  The closed-

loop predictive guidance algorithm is run for this search scheme.  Using trial-and-error, the 

intermediate inclination is determined for starting the bank reversal maneuver so that the 

inclination meets the target value of 88 deg at the end of the atmospheric flight.  Figures 

4.5 and 4.6 present the inclination and bank angle profiles for three sample minimum-Δ𝑉 

aerocapture trajectories with low, nominal, and high L/D ratios.  These trajectories are 

determined by numerically integrating the complete equations of motion, equations (1-6), 

with Earth-rotation effects, oblateness, and roll dynamics.  Red and blue curves in Figures 

4.5 and 4.6 indicate open-loop (𝜎 = 15 deg) and closed-loop guidance (the bank angle 

command is obtained by using the tracking control law in the analytical guidance scheme) 

phases, respectively.  The switching and bank-reversal points are apparent in Figures 4.5 

and 4.6.  The lift-to-drag ratio has a direct impact on the bank-reversal inclination 
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overshoot of the target inclination.  Decreasing L/D ratio diminishes the inclination 

overshoot of the target value because the vehicle has less control authority which results in 

less change in inclination.  To complete the bank reversal maneuver from approximately 

130 deg to –130 deg as shown in Figure 4.6, the vehicle performs clockwise rotation in the 

quickest way without exceeding the limits on the attitude dynamics.  Feedback control 

system is not active during the bank reversal.  By following the reference bank angle 

profiles in Figure 4.6, the vehicle achieves the desired apogee altitude of 200 km with the 

desired 88-deg inclination.   

 

Fig. 4.5  Inclination Time History for Three Sample 𝐿 𝐷⁄  Ratios 
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Fig. 4.6  Bank Angle Time History for Three Sample 𝐿 𝐷⁄  Ratios 

In a similar way to the switching point criteria, additional bank-reversal point analysis has 

been implemented for seven trial values of L/D ratio.  These values are chosen between 

low (0.22) and high (0.32) for L/D ratio.  Figure 4.7 shows the bank-reversal inclination 

𝑖rev values for these seven trials, and that a simple linear model fits the data (L/D, 𝑖rev) 

quite well.  Therefore, the bank-reversal inclination 𝑖rev is determined from a least-square 

fit: 

rev 0 1( / )i I I L D= +                                                   (73) 

where coefficients are 𝐼0 = 88.9682 deg and 𝐼1 = –4.9884 deg.  A single bank reversal is 

performed when the current orbital inclination crosses the bank-reversal inclination 𝑖rev 

threshold.  As L/D ratio increases, 𝑖rev values decrease linearly. 
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Fig. 4.7  Linear Least-Square Fitting for 𝑖𝑟𝑒𝑣 

Figure 4.8 presents the flowchart of the APC guidance method.  The flowchart begins with 

open-loop aerocapture phase at the atmospheric entry.  Right after the terms 𝜌𝐶𝐿/𝑚 and 

𝜌𝐶𝐷/𝑚 in equations (7) and (8) are parameterized by either the Fourier or exponential 

functions at 𝛾 = −0.5 deg, the guidance algorithm makes the first decision on the bank-

switching condition.  If the commanded bank angle saturates at 180 deg at a predefined 

altitude ℎsat, the closed-loop aerocapture phase starts.  The second decision of the guidance 

algorithm is the bank-reversal maneuver.  If the current orbital inclination i is less than or 

equal to the bank-reversal inclination 𝑖rev,  the bank-reversal logic commands a reversal 

maneuver.  Then the bank angle is computed using the tracking control law for the 

remainder of the ascent phase.  To establish the desired target orbit, the total Δ𝑉 and orbital 

inclination are determined at the atmospheric exit. 
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Fig. 4.8  Schematic Flowchart of Analytical Aerocapture Guidance 
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CHAPTER 5 – NUMERICAL RESULTS 

5.1   Monte-Carlo Dispersions 

5.1.1   Vehicle Dispersions 

The only three vehicle parameters (lift coefficient, drag coefficient, and mass of the 

vehicle) are dispersed in the Monte-Carlo simulations.  Recall that there is almost no 

change in the lift and drag coefficients at very high Mach numbers, so they are considered 

to be constant along the aerocapture trajectory.  Table 5.1 shows the dispersions in the 

vehicle parameter.  While the normal distributions (with zero mean) are used for lift and 

drag coefficients, 𝐶𝐿 and 𝐶𝐷, the dispersions for vehicle mass are uniformly distributed 

with a range from 8534.2 kg to 9432.6 kg.  Note that the 15% 3𝜎 dispersions for 

aerodynamic coefficients used in Ref. [29] are increased to 20% for this study.   

Table 5.1: Vehicle Dispersions for the Monte-Carlo Simulation 

Parameter Nominal value Distribution Dispersion 

Lift coefficient 0.3699 Gaussian 3𝜎 = 0.07398(20%) 

Drag coefficient 1.37 Gaussian 3𝜎 = 0.274(20%) 

Mass 8983.4 kg Uniform ±5% 

 

5.1.2   Entry State Dispersions 

Initial states (longitude, latitude, velocity, flight-path angle, and heading angle) are 

randomly distributed in the Monte-Carlo simulations.  Note that the entry interface altitude 

is not a random variable because it is the trigger for aerocapture trajectory.  Table 5.2 

presents the nominal values and dispersions in the initial state.  Gaussian distributions with 
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zero mean are applied to the entry states.  It should be pointed out that 3𝜎 dispersions for 

the initial states implemented in Ref. [29] are doubled for this study. 

Table 5.2: Inertial Entry State Dispersions for the Monte-Carlo Simulation 

State Nominal value Distribution Dispersion 

Altitude (km) 121.92 𝑁𝐴 𝑁𝐴 

Longitude (deg) −116.5 Gaussian 3𝜎 = 0.4  

Latitude (deg) −46.67 Gaussian 3𝜎 = 0.4  

Velocity (km/s) 11.02 Gaussian 3𝜎 = 0.06  

Flight-path angle (deg) −5.91 Gaussian 3𝜎 = 0.02  

Heading angle (deg) 0.00 Gaussian 3𝜎 = 0.1  

 

5.1.3   Atmospheric Density Dispersions 

Air density is often regarded as the most effective factor for the accuracy of the aerocapture 

guidance algorithm because the air density is not uniform all over the Earth.  During the 

atmospheric flight phase, the lift and Drag accelerations directly depend on the air density. 

Small errors in atmospheric density model, especially at lower altitudes, can result in 

significant errors in targeting exit conditions.  In this study, the 1976 US Standard 

Atmosphere is used for the nominal density model.  Nominal atmospheric density model 

is perturbed by Earth Global Reference Atmospheric Model (Earth GRAM 2010) [49].  

Figure 5.1 shows the ratio of the dispersed density model to the nominal density model for 

altitudes between 50 and 121.92 km.  Because the vehicle’s lowest pull-up altitude is 

around 60 km, Figure 5.1 only presents the density ratios for altitudes above 50 km.  While 
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the relative atmospheric dispersions at higher operating altitudes are between 60 %, these 

values are less than 30% at the lower altitudes.   

 

Fig. 5.1  Ratio of GRAM 2010 Dispersed Density Relative to US 1976 Standard 

Atmosphere 

 

Atmospheric density in the GRAM 2010 perturbed density model is only a function of 

altitude.  In addition to the GRAM 2010 density perturbations, a small random variation 

should be added to the density during the ascent phase so that the density varies with 

longitude and latitude as well as altitude.  The density during the ascent phase at altitude 

h, 𝜌𝐴(ℎ), is obtained by multiplying the (GRAM 2010 dispersed) density for the descent 

phase 𝜌𝐷(ℎ) at altitude h with an exponentially growing sinusoidal multiplier: 

( ) ( ) ( )( ) ( )( )1 2 PU PU1 exp sinA Dh h G G h h h h   = + −  − 
                          (74) 
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where ℎPU is the pull-up altitude, G1 and G2 are constants, and Ω is the frequency of the 

sine function.  Coefficients G1 and G2 are determined from random values for the ascent-

to-descent density ratios, (𝜌𝐴/𝜌𝐷),  at exit altitude and at the midway altitude between pull-

up and exit.  Evaluating the amplitude of sine function in equation (74) at exit altitude and 

at the midway altitude between pull-up and exit produces a set of exponential equations  

( )( )1 2 exit PU 1expG G h h C− =                                             (75) 

( )( )1 2 mid PU 2expG G h h C− =                                            (76) 

where C1 and C2 are random variables with unity mean and a uniform dispersion of 0.1  

for C1, while a uniform dispersion of 20-30% of C1 for C2. Solving equations (75) and (76) 

for G1 and G2 yields 

1

2

2

exit mid

ln
C

C
G

h h

 
 
 =
−

                                                      (77) 

( )( )1 1 2 exit midexpG C G h h= − −                                          (78) 

The frequency of the sine function Ω is uniformly distributed with limits that correspond 

to one-quarter and two cycles during the ascent phase (the sign of frequency is also 

random).  Figure 5.2 shows the ascent-to-descent density ratios for 1000 Monte-Carlo 

simulations.  The density ratio is between  10% at exit, and this ratio is less than 3% at 

the midway altitudes.  Equation (74) models density deviations between the descent and 

ascent paths at a common altitude, e.g., density variations with latitude and longitude. 
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Fig. 5.2  Ratio of Ascent Density to Descent Density 

5.2   Scenario 1 – Fourier Curve Fitting Simulation Results 

Closed-form solutions for exit velocity in the first scenario are obtained by using Fourier 

curve fitting method as described in section 4.2.1.1.  A three-term Fourier series with 

altitude as the independent variable is used to parameterize the terms 𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚 

in equations (7) and (8).  Nominal and off-nominal (Monte-Carlo) results for scenario 1 

will be provided in this section.  

5.2.1   Nominal Results for Scenario 1 

A nominal guided aerocapture trajectory is achieved by using the nominal vehicle 

parameters (see Table 2.1), entry states (see Table 3.1), and density model (US 1976 

Standard Atmosphere).  The accumulated lift- and drag-acceleration data from EI to 𝛾 =
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−0.5 deg are nondimensionalized by a scaling factor of 108 m3 and the accumulated 

altitude data is nondimensionalized by a scaling factor of 60 km-1.  At 𝛾 = −0.5 deg, a 

nonlinear least-squares fitting technique is performed to fit three-term Fourier models to 

the dimensionless lift- and drag-acceleration data, respectively.  The least-square solution 

for each data is done only once during the atmospheric flight phase.  Table 5.3 presents the 

coefficients gained from fitting three-term Fourier models for the dimensionless 𝜌𝐶𝐿/𝑚 

and 𝜌𝐶𝐷/𝑚 vs. dimensionless altitude data.  CPU time required for the nonlinear least-

squares solver is computed by MATLAB’s tic/toc command as 0.6 s.  Recall that the 

switching to the closed-loop guidance is always several seconds after the pull-up point 

(𝛾 > 0 deg).  The computer used for analyses in this research has following system 

specifications: 

• Intel® Core™ i7-7700HQ CPU @ 2.8 GHz 

• 8 GB RAM  

• 64-bit Operating System 

• Windows 10 Home  

Figures 5.3 and 5.4 show the accumulated dimensionless data and Fourier-fit curves for 

dimensionless altitudes between 1.025 (≡61.5 km) and 2.032 (≡121.92 km).  According to 

goodness-of-fit statistics, R-squared values for both fitted curves are 1, which indicates 

perfect fit.   
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Table 5.3: Nominal Fourier-Series Coefficients for Scenario 1 

Data Coefficients Value 

𝜌𝐶𝐿/𝑚  

vs. 

altitude 

𝑎0 2.81245 × 105 

𝑎1  −3.72257 × 105    

𝑎2  0.94075 × 105 

𝑎3  −0.02874 × 105    

𝑏1  1.98375 × 105 

𝑏2  −1.39991 × 105    

𝑏3  0.27947 × 105 

𝑤  −0.29322   

𝜌𝐶𝐷/𝑚 
vs. 

altitude 

𝑐0 2.00061 × 106 

𝑐1  −2.71638 × 106    

𝑐2  0.76686 × 106 

𝑐3  −0.05039 × 106    

𝑑1  1.27475 × 106 

𝑑2  −0.92285 × 106    

𝑑3  0.19342 × 106 

𝑤  −0.26275 
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Fig. 5.3  Curve Fit on Dimensionless 𝜌𝐶𝐿/𝑚 vs Altitude for Scenario 1 

  

Fig. 5.4  Curve Fit on Dimensionless 𝜌𝐶𝐷/𝑚 vs Altitude for Scenario 1 
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Figures 5.5 and 5.6 present the nominal trajectory simulation results for inclination and 

bank angle profiles, respectively.  These two profiles are the same as those shown for 

𝐿/𝐷 = 0.27 in Figures 4.5 and 4.6.  Initiation of the bank-switching from open-loop to 

closed-loop control is 97.7 s, which is about 4 seconds after the pull-up time.  Closed-loop 

bank command usually varies between +120 and +130 deg until a single bank reversal is 

initiated at 𝑖 = 87.6 deg.  Due to “right turn” atmospheric flight with the positive bank 

angle, inclination angle decreases from 90 to 87.56 deg until the bank angle reaches to full 

lift-down position (𝜎 = 180 deg).  “Left turn” flight provides to increase the decreasing 

inclination angle to the target value of 88 deg.  Because the nominal apogee altitude of the 

exo-atmospheric trajectory is 200.12 km, the vehicle requires a total of two coplanar 

velocity increments of 49.04 m/s.   

 

Fig. 5.5  Nominal Inclination Time History for Scenario 1 
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Fig. 5.6  Nominal Bank Angle Time History for Scenario 1 

Figure 5.7 represents the latitude and longitude coordinates of the spacecraft between 

atmospheric entry and exit locations.  The spacecraft enters the atmosphere at a latitude of 

46.67º S and a longitude of 116.5º W.  The latitude and longitude of spacecraft’s ground 

track at atmospheric exit are 4.43º N and 117.67º W as seen in Figure 5.7.  Since the 

heading angle is around the zero during the atmospheric flight phase, spacecraft’s longitude 

only changes less than 1.2º, while its latitude ranges from 46.67º S to 4.43º N. 
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Fig. 5.7  Ground Track of Atmospheric Flight Phase for Scenario 1 on a Mercator Map 

5.2.2   Monte-Carlo Simulation Results for Scenario 1 

Dispersions described in section 5.1 for vehicle parameters, initial states, and atmospheric 

density are applied to the nominal model.  For the first scenario, 1000 Monte-Carlo 

simulations are executed to evaluate aerocapture robustness.  Figures 5.8 and 5.9 show the 

Monte-Carlo simulation results of the flight-path angle and relative velocity vs. altitude for 

scenario 1.  For the remainder of the figures, red curves indicate open-loop aerocapture 

phase and blue curves closed-loop aerocapture phase.  Switching from open-loop to closed-

loop bank control typically happens at flight-path angles between 0.5 and 1.6 deg and the 

exit FPA range is between 0.5 and 1.3 deg as seen in Figure 5.8.  The FPA range at the 

bank-switching position depends on the L/D ratio range in the simulations.  As L/D ratio 
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decreases, the bank-switching time increases, so does the FPA at the switching point.  

Figure 5.9 shows that the speed is reduced by about 30% from entry interface (EI) to exit.  

The majority of the speed reduction takes place in a narrow 15-km altitude band between 

75 and 60 km.  The main reason for the rapidly decreasing speed at these altitudes is that 

the vehicle is exposed to higher drag forces.  As altitude decreases, drag force goes up with 

increasing air density.  In addition, the longer the vehicle flies at the lower altitudes, the 

faster the speed reduces. 

 

Fig. 5.8  Flight-Path Angle vs. Altitude for 1000 Monte-Carlo Simulations of Scenario 1 
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Fig. 5.9  Relative Velocity vs. Altitude for 1000 Monte-Carlo Simulations of Scenario 1 

Figure 5.10 presents the 1000 bank angle profiles for scenario 1.  Open-loop bank angle 

remains constant at 15 deg for the first 90-110 s after entry interface.  Once the switching 

point is found, the vehicle performs bank angle transition from 15 deg (open loop) to ~120 

deg (initial closed loop) in 8.5 s with maximum bank rate and acceleration limits.  Closed-

loop bank angle magnitudes range between 115 and 135 deg before starting bank reversal.  

The bank reversal takes about 9-10 s for near-nominal L/D with a shortest rotation direction 

(total bank angle change is about 120 deg) but is much shorter for vehicles with extremely 

low L/D.  In such a case, the bank reversal starts at 162 deg and it takes 3.5 sec to go to -

162 deg.  The closed-loop bank is governed by equation (58) until saturation occurs at 

either full lift up or down.  Even though the switching prediction is based on the bank 
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saturation at 𝜎 = 180 deg, the closed-loop bank occasionally saturates at 𝜎 = 0 deg due 

to inaccuracies in propagating the initial roll dynamics and because guidance has neglected 

the roll-reversal dynamics.  Once the bank angle saturates, the bank angle stays constant at 

𝜎 = 0 or 𝜎 = 180 deg until reaching exit. 

 

Fig. 5.10  Bank Angle vs. Time for 1000 Monte-Carlo Simulations of Scenario 1 

Figure 5.11 illustrates inclination profiles from the simulation results.  Since the initial 

heading angle is random, the initial inclination varies around 90 deg.  Initially, flying right 

turn with a positive bank angle decreases inclination until the full lift down (𝜎 = 180 deg) 

is reached.  Then the left turn flight with a negative bank angle raises inclination.  Recall 

that increasing L/D increases the bank-reversal inclination overshoot of the desired target 
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inclination and the flight time.  All trajectories exit the atmosphere with inclinations within 

0.25 deg from the target inclination of 88 deg.  

 

Fig. 5.11  Inclination vs. Time for 1000 Monte-Carlo Simulations of Scenario 1 

Figure 5.12 presents the 1000 altitude time histories for scenario 1.  The closed-loop 

guidance control (blue curves in Figure 5.12) always begins after the pull-up point.  The 

Orion MPCV’s the atmospheric flight time roughly between 400 and 900 s for a 1000-run 

Monte-Carlo simulation.  The atmospheric flight time is directly proportional to the L/D 

ratio.   
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Fig. 5.12  Altitude vs. Time for 1000 Monte-Carlo Simulations of Scenario 1 

Table 5.4 and Figures 5.13-5.15 present the statistics of the 1000 dispersed trajectories 

from the Monte-Carlo simulations for scenario 1.  Apogee altitude of the post-aerocapture 

orbit is very accurate, with a mean value within 750 m of the target and a small standard 

deviation (< 10 km).  Orbital inclination at exit conditions is also very close to inclination 

targeting value, and the standard deviation is less than 0.1 deg.  The required impulsive 

orbital maneuvers to establish the target orbit are summarized in Table 5.4 into three 

categories, coplanar Δ𝑉 (single- or two-impulsive maneuver), plane-change Δ𝑉𝑖, and total 

Δ𝑉𝑇 = Δ𝑉 + Δ𝑉𝑖 .  Mean coplanar Δ𝑉 is 54.64 m/s, which is only 15 m/s greater than the 

optimal single-impulse (Δ𝑉 = 39.6 m/s) for the bang-bang aerocapture maneuver, while 

mean plane-change Δ𝑉𝑖 is 8.71 m/s.  Although inclination errors are very small for all 
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trajectories, the inclination clean-up Δ𝑉𝑖 cost is high for a final orbit insertion maneuver.  

For example, the absolute maximum error for inclination is 0.23926 deg, which 

corresponds to an inclination-correction maneuver of 32.51 m/s.  Despite the fact that mean 

total Δ𝑉𝑇 is equal to the sum of mean coplanar Δ𝑉 and mean plane-change Δ𝑉𝑖, the 

minimum and maximum total Δ𝑉𝑇 values depend on in-plane maneuver and plane-change 

corrections for each trial case in Monte-Carlo simulations.  Figures 5.13-5.14 show 

histograms of the apogee altitude of the exo-atmospheric trajectory, inclination at exit 

conditions, and the required total Δ𝑉𝑇.  In Figures 5.13-5.15, the fitted red curves for the 

normal distributions follow the heights of the histogram bars adequately.  Figure 5.13 

illustrates that there are some outliers around 240 km. 

Table 5.4: Statistical Results from the Monte-Carlo Simulations for Scenario 1 

Parameter Mean Standard deviation Minimum Maximum 

Apogee altitude 200.710 km 9.852 km 171.247 km 243.676 km 

Exit inclination 88.015o 0.077o 87.761o 88.233o 

Coplanar Δ𝑉 54.64 m/s 6.91 m/s 39.85 m/s 94.51 m/s 

Plane-change Δ𝑉𝑖 8.71 m/s 6.10 m/s 0 m/s 32.51 m/s 

Total Δ𝑉𝑇 63.35 m/s 9.76 m/s 40.31 m/s 99.85 m/s 
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Fig. 5.13  Histogram of Apogee Altitude from 1000 Trails for Scenario 1 

  

Fig. 5.14  Histogram of Exit Inclination from 1000 Trails for Scenario 1 
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Fig. 5.15  Histogram of Total Δ𝑉𝑇 from 1000 Trails for Scenario 1 

5.2.2.1   Comparison of Different-Term Fourier Curve Fitting Models 

In this section, the performance and robustness of the analytical aerocapture guidance 

algorithm is compared among different-term Fourier curve fitting models.  As has been 

presented in chapter 4, the products of density and lift (or drag) coefficient divided by mass, 

𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚, are fitted by a three-term Fourier series in order to find an analytical 

solution for atmospheric exit velocity and closed-loop bank command.  MATLAB’s 

cftool can fit data with Fourier-series function up to 8th order.  It should be pointed out 

that a one-term Fourier series cannot provide an adequate fit for 𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚 data.  

Also, a higher computational cost is required for seven- and eight-term Fourier series.  

Therefore, we only ran four additional 1000-dispersed Monte-Carlo simulation for Fourier-
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series functions with two, four, five, and six terms.  Tables 5.5-5.9 compare the statistical 

results from the 1000-dispersed Monte-Carlo simulation for the post-atmospheric apogee 

altitude, pre-burn orbital inclination, coplanar (or in-plane) Δ𝑉, plane-change Δ𝑉𝑖, and total 

Δ𝑉𝑇  (the statistical results from the baseline three-term Fourier series are also included).  

As can be seen in Tables 5.5, 5.7, and 5.9, the velocity increment and post-atmospheric 

apogee accuracy significantly degrade with the two-term Fourier series when compared to 

other higher-term Fourier series.  Tables 5.5-5.9 demonstrate that for post-atmospheric 

apogee altitude, pre-burn orbital inclination, and velocity increment, the Fourier scenarios 

with three, four, five, and six terms have quite similar mean values.  Table 5.9 shows that 

the mean total Δ𝑉𝑇-minimization slightly goes down with the increasing the number of 

terms in Fourier series.  On the other hand, as the number of terms in Fourier series 

increases, so does the computational complexity in the guidance algorithm.  From these 

simulation results it is obvious that the three-term Fourier series offers very good 

performance at the lowest computational cost for the analytical aerocapture guidance 

scheme.  

Table 5.5: Statistics for Apogee Altitude vs. Modeling Order for 𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚 

Fourier series 

order 

Mean value 

(km) 

Standard deviation 

(km) 

Minimum value 

(km) 

Maximum value 

(km) 

Two-term 170.7270 11.7138 136.1576 212.7329 

Three-term 200.7099 9.8524 171.2472 243.6761 

Four-term 199.1382 9.2179 167.4453 236.6728 

Five-term 199.3314 8.7365 171.2249 240.9807 

Six-term 200.3845 8.8472 173.7859 242.5521 
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Table 5.6: Statistics for Exit Inclination vs. Modeling Order for 𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚 

Fourier series 

order 

Mean value 

(deg) 

Standard deviation 

(deg) 

Minimum value 

(deg) 

Maximum value 

(deg) 

Two-term 88.0987 0.0621 87.8619 88.3171 

Three-term 88.0147 0.0769 87.7607 88.2332 

Four-term 88.0308 0.0696 87.7501 88.2408 

Five-term 88.0152 0.0747 87.7670 88.2352 

Six-term 88.0206 0.0704 87.7875 88.2424 

 

Table 5.7: Statistics for Coplanar Δ𝑉 vs. Modeling Order for 𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚 

Fourier series 

order 

Mean value 

(m/s) 

Standard deviation 

(m/s) 

Minimum value 

(m/s) 

Maximum value 

(m/s) 

Two-term 71.4539 7.3068 49.2675 107.4301 

Three-term 54.6368 6.9113 39.8462 94.5084 

Four-term 54.7237 7.0588 39.7795 92.1993 

Five-term 54.3128 6.7110 39.8742 91.0326 

Six-term 53.9854 6.8387 39.6423 91.1412 

 

Table 5.8: Statistics for Plane-Change Δ𝑉𝑖 vs. Modeling Order for 𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚 

Fourier series 

order 

Mean value 

(m/s) 

Standard deviation 

(m/s) 

Minimum value 

(m/s) 

Maximum value 

(m/s) 

Two-term 13.8441 7.6825 0.0019 43.0814 

Three-term 8.7099 6.1985 0.0025 32.5115 

Four-term 9.1001 6.4162 0.0051 33.9516 

Five-term 8.6395 6.2061 0.0070 31.9545 

Six-term 8.7231 6.2847 0.0032 32.9327 
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Table 5.9: Statistics for Total Δ𝑉𝑇 vs. Modeling Order for 𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚 

Fourier series 

order 

Mean value 

(m/s) 

Standard deviation 

(m/s) 

Minimum value 

(m/s) 

Maximum value 

(m/s) 

Two-term 85.2980 12.2607 53.7576 127.1587 

Three-term 63.3467 9.7556 40.3124 99.8472 

Four-term 63.8238 9.9162 41.8284 104.9169 

Five-term 62.9523 9.3107 40.3919 101.8883 

Six-term 62.7085 9.3325 41.0776 102.7299 

 

5.3   Scenario 2 – Exponential Curve Fitting Simulation Results 

In the second scenario, closed-form solutions for exit velocity are acquired by using 

exponential curve fitting method as described in section 4.2.1.2.  A single-term exponential 

function parameterizes the lift and drag terms, 𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚, in equations (7) and 

(8).  Nominal and off-nominal (Monte-Carlo) simulation results for scenario 2 will be 

provided in the following subsections.  

5.3.1   Nominal Results for Scenario 2 

A nominal aerocapture trajectory is developed for the second scenario by using the same 

nominal models as in the first scenario.  Four exponential coefficients (𝑘0,  𝑘1,  𝑥0, and 𝑥1) 

for both dimensionless nominal lift- and drag-acceleration vs. altitude data are found from 

the least-square fitting technique as summarized in Table 5.10.  Because the ratio of 𝜌𝐶𝐿/𝑚 

to 𝜌𝐶𝐷/𝑚 is equal to L/D, the coefficients 𝑘1 and 𝑥1 has the same value, and the ratio of 

𝑘0 to 𝑥0 must be equal to 0.27.   
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Table 5.10: Nominal Exponential-Functions Coefficients for Scenario 2 

Data Coefficients Value 

𝜌𝐶𝐿/𝑚 

vs. 

altitude 

𝑘0 3.78491 × 104 

𝑘1  −8.00316    

𝜌𝐶𝐷/𝑚 

vs. 

altitude 

𝑥0 1.40189 × 104 

𝑥1  −8.00316    

 

Figures 5.16 and 5.17 show the dimensionless nominal data (note that these data are the 

same as in Figures 5.3 and 5.4) and exponential-fit curves.  For both fitted curves in this 

scenario, R-squared values are found as 0.997 from the goodness-of-fit statistics.  As seen 

in Figures 5.16 and 5.17, a single-term exponential fitting curve does not follow closely 

the dimensionless nominal lift and drag data at the dimensionless altitude of between 1.25 

(≡75 km) and 2.032 (≡121.92 km).  This curve fitting method will result in relatively poor 

apoapsis accuracy when compared to the baseline three-term Fourier series. 
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Fig. 5.16  Curve Fit on Dimensionless 𝜌𝐶𝐿/𝑚 vs Altitude for Scenario 2 

  

Fig. 5.17  Curve Fit on Dimensionless 𝜌𝐶𝐷/𝑚 vs Altitude for Scenario 2 
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For the second scenario, Figures 5.18 and 5.19 present the nominal trajectory simulation 

results for inclination and bank angle profiles, respectively.  The nominal bank-switching 

begins at t = 96.7 s (recall that the nominal bank-switching time is 97.7 s for the first 

scenario).    The nominal apogee altitude of the post-aerocapture orbit is 241.24 km with 

an orbital inclination of 88 deg., the vehicle needs a periapsis raise burn (Δ𝑉1 = 44.63 m/s) 

and then a apogee clean-up burn (Δ𝑉2 = 12.15 m/s).  The sum of the two coplanar velocity 

increments is 56.78 m/s for the nominal second scenario (recall that the total Δ𝑉 = 49.04 

m/s for the nominal first scenario).  Although both scenarios have similar nominal 

inclination and bank angle profiles, the apoapsis targeting accuracy for scenario 2 is much 

worse than scenario 1 due to inaccuracies in the exponential curve fitting model. 

 

Fig. 5.18  Nominal Inclination Time History for Scenario 2 
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Fig. 5.19  Nominal Bank Angle Time History for Scenario 2 

5.3.2   Monte-Carlo Simulation Results for Scenario 2 

For the second scenario, we use the same 1000 dispersed cases investigated in the first 

scenario.  A similar set of figures will be given to compare the results between two 

scenarios.  Figures 5.20 and 5.21 present flight-path angle and relative velocity vs. altitude 

profiles from the Monte-Carlo simulations for scenario 2 (again, red and blue curves 

indicate open- and closed-loop aerocapture phase).  The exit FPAs of the 1000 dispersed 

trajectories are between 0.5 and 1.4 deg, and the exit velocity band is between 7795 and 

7883 m/s.  Figures 5.22-5.24 show the bank angle, inclination, and altitude histories of 

1000 aerocapture trajectories for scenario 2.  The closed-loop bank usually saturates at 𝜎 =

180 deg as seen in Figure 5.22. 
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Fig. 5.20  Flight-Path Angle vs. Altitude for 1000 Monte-Carlo Simulations of Scenario 2 

 

Fig. 5.21  Relative Velocity vs. Altitude for 1000 Monte-Carlo Simulations of Scenario 2 
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Fig. 5.22  Bank Angle vs. Time for 1000 Monte-Carlo Simulations of Scenario 2 

 

Fig. 5.23  Inclination vs. Time for 1000 Monte-Carlo Simulations of Scenario 2 



80 
 

 

Fig. 5.24  Altitude vs. Time for 1000 Monte-Carlo Simulations of Scenario 2 

Table 5.11 and Figures 5.25-5.27 present the statistical results from the 1000 Monte-Carlo 

simulations in the second scenario.  The mean apogee altitude of the exo-atmospheric orbit 

is 56.5 km higher than the target altitude.  The large spread in the apogee altitude causes a 

high standard deviation of 38.86 km.  Pre-burn orbital inclination is still very close to 

inclination targeting value of 88 deg, and all exit inclinations are within 0.29 deg from the 

target inclination.  Mean in-plane Δ𝑉 and plane-change Δ𝑉𝑖 values for the second scenario 

is approximately 20% greater than ones for the first scenario.  Figures 5.25-5.27 show 

histograms of the apogee altitude of the post-aerocapture orbit, pre-burn orbital inclination, 

and the total post-exit Δ𝑉𝑇.  Figure 5.25 gives an impression of a normal distribution, but 

more than 92% apogees overshoot the target circle.  In Figures 5.26 and 5.27, the data 

appear as a right skewed distribution. The medians are less than the mean in there.  These 
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demonstrate that more than 50% of the pre-burn inclination and total Δ𝑉𝑇 data are located 

less than their mean values of 87.971 deg and 76.51 m/s, respectively.  

Table 5.11: Statistical Results from the Monte-Carlo Simulations for Scenario 2 

Parameter Mean Standard deviation Minimum Maximum 

Apogee altitude 256.462 km 38.860 km 150.867 km 377.711 km 

Exit inclination 87.971o 0.086o 87.777o 88.282o 

Coplanar Δ𝑉 66.24 m/s 9.31 m/s 45.79 m/s 96.47 m/s 

Plane-change Δ𝑉𝑖 10.27 m/s 6.84 m/s 0 m/s 38.37 m/s 

Total Δ𝑉𝑇 76.51 m/s 13.44 m/s 53.98 m/s 119.37 m/s 

 

 

Fig. 5.25  Histogram of Apogee Altitude from 1000 Trails for Scenario 2 
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Fig. 5.26  Histogram of Exit Inclination from 1000 Trails for Scenario 2 

  

Fig. 5.27  Histogram of Total Δ𝑉𝑇 from 1000 Trails for Scenario 2 



83 
 

5.4   Comparison with NPC 

For the Earth aerocapture problem, a comparison is made between the APC guidance 

algorithm proposed in this thesis and the NPC guidance algorithm investigated by Lu et al. 

[30].  These two studies share the same aerocapture mission, including the use of the same 

vehicle models, entry states, operational limits, and distributions for dispersions (a few 

dispersions are larger in this work, such as aerodynamic coefficients and entry state 

uncertainties).  As we mentioned earlier, Lu et al. developed a closed-loop NPC guidance 

scheme that utilized the bang-bang control structure to steer the vehicle to a target state.  

Because the out-of-plane maneuvers are not reported in Ref. [30], we can only make a 

direct comparison for the in-plane maneuvers Δ𝑉 between the proposed APC method in 

this work and NPC method reported in Ref. [30].  Figure 5.28 shows the nominal in-plane 

Δ𝑉 values for the analytical guidance of this work with scenario 1 and 2, and the NPC from 

Ref. [30].  To establish the circular target orbit using nominal models, the APC guidance 

in-plane Δ𝑉 is 49.04 m/s with scenario 1 and 56.78 m/s with scenario 2, while the nominal 

value is reported in Ref. [30] as Δ𝑉 = 75.05 m/s.  By using the APC aerocapture guidance 

scheme with scenario 1 instead of the NPC guidance the minimized in-plane Δ𝑉 could be 

reduced by 35%.  For a given Δ𝑉, the propellant mass required for a propulsive burn can 

be calculated from the ideal rocket equation (15).  When we consider that the Orion MPCV 

has initial vehicle mass of 8983.4 kg, and that the vehicle’s onboard propellant has a 

specific impulse of 300 s [30], for the Δ𝑉 = 49.04 m/s, Δ𝑉 = 56.78 m/s, and Δ𝑉 = 75.05 

m/s, the propellant mass required for a propulsive burn is 148.50 kg, 171.72 kg, and 226.27 

kg, respectively.  Although both APC and NPC methods share a same constant bank angle 

(𝜎 = 15 deg) in descent phase, the closed-loop bank command in the APC method is closer 
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to full lift down (𝜎 = 180 deg) during the ascent phase than in the NPC method (recall that 

a lower constant bank angle (𝜎𝑑 = 95 deg) is chosen for the ascent phase of the NPC 

method because of their tradeoff between Δ𝑉 performance and robustness).  Hence, the 

nominal Δ𝑉 performance of the APC method is much closer to the optimal bang-bang 

solution.  

 

Fig. 5.28  Aerocapture In-plane Maneuver Δ𝑉 vs. Lift-to-Drag Ratio 

Figure 5.28 also presents the total in-plane Δ𝑉s from the 1000-dispersed Monte-Carlo 

simulation for scenarios 1 and 2 plotted against the randomized L/D ratio.  Note that the 

statistics in Tables 5.4 and 5.11 respectively represent the 1000 black “+” and orange “x” 

symbols plotted in Figure 5.28, and that scenarios 1 and 2 are run under exactly the same 

Monte-Carlo dispersions.  The green solid curve in Figure 5.28 presents, for a range of L/D 



85 
 

ratio, the minimum-Δ𝑉 solutions (single impulse) for the optimal bang-bang aerocapture 

problem with nominal entry states, nominal atmosphere, and no roll dynamics or plane-

change maneuvers.  Note that this curve is an extension of a vertical slice of Figure 3.5 at 

the nominal entry FPA, 𝛾EI = −5.91 deg, and that the curve is a lower Δ𝑉 boundary for a 

range of L/D ratio, but in practice the optimal bang-bang bank control experiment is an 

unachievable goal due to the trajectory dispersions and limits on the attitude dynamics.  

The scatter plots for scenarios 1 and 2 have an inverse correlation with L/D ratio as the 

optimal bang-bang solutions.  Since a three-term Fourier series model provides the better-

fit curves for the 𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚 vs. altitude data than the exponential model, the 

majority of the 1000 data points for scenario 1 are much closer to the optimal bang-bang 

solutions than for scenario 2. 

5.5   Variation in Entry Flight-Path Angle 

In this section, a simulation scenario for a wide range of entry flight-path angle is created 

to test the proposed APC guidance method using scenario 1.  Firstly, an entry FPA corridor 

width is determined.  When the initial nominal velocity is fixed, L/D ratio and vehicle mass 

are the primary variables in the determination of the entry FPA corridor width to reach the 

target apoapsis.  For a given initial velocity of 6.5 m/s and L/D (0.22 to 0.32), the entry 

FPA corridor width is set between –6.2 and –5.7 deg.  The switching-point criteria (Figure 

4.4) and the bank-reversal criteria (Figure 4.7) must be expanded to include large variations 

in the initial FPA.  Figure 5.29 shows the bank-saturation altitude (ℎsat) for six values of 

entry FPA (–6.2 to –5.7 deg) and six values of L/D ratio (0.22 to 0.32).  In a similar way 

to the section 4.2.3, the bank-saturation altitude is determined from minimum-Δ𝑉 

aerocapture trajectories for these 36 trials of entry FPA and L/D.  Therefore, the bank-
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saturation altitude is computed by a two-dimensional table look-up of the 36 combinations 

presented in Figure 5.3 with entry FPA and L/D as the independent variables.  

Figure 5.30 presents the 36 bank-reversal inclinations (𝑖rev) for the combinations of six 

values of entry FPA and L/D.  The bank-reversal inclination for any couple of entry FPA 

(between –6.2 and –5.7) and L/D (between 0.22 and 0.32) is determined in the same manner 

as the bank-saturation altitude.  It should be noted that Figures 4.4 and 4.7 are essentially 

vertical slices of the three-dimensional surfaces, respectively, in Figures 5.29 and 5.30 at 

the nominal entry FPA, 𝛾EI = −5.91 deg. 

 

 

Fig. 5.29  Bank-Saturation Altitude (ℎ𝑠𝑎𝑡) vs. Entry FPA (𝛾𝐸𝐼) and L/D Ratio 
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Fig. 5.30  Bank-Reversal Inclination (𝑖𝑟𝑒𝑣) vs. Entry FPA (𝛾𝐸𝐼) and L/D Ratio 

Lastly, a total of 1000 Monte-Carlo runs are made to analyze for a wide range of entry 

flight-path angle by using the APC guidance with scenario 1.  For this 1000-run Monte-

Carlo simulation, the entry FPA is uniformly dispersed between –6.2 and –5.7 deg; the 

other entry states (longitude, latitude, velocity, and heading angle) have Gaussian 

distributions (3𝜎 values can be seen in Table 5.2); the lift and drag coefficients are 

distributed normally with 10% 3𝜎 dispersions; vehicle mass has a uniform distribution with 

±5% error; and the atmospheric density dispersions are modeled by Earth GRAM 2010 and 

equation (74).  Figure 5.31 shows the in-plane maneuver Δ𝑉 from the 1000 Monte-Carlo 

trajectories using the APC guidance with scenario 1, as well as the minimum post-exit Δ𝑉 

for the bang-bang aerocapture optimization problem with L/D = 0.22, 0.27 (nominal), and 

0.32.  The optimal bang-bang solutions (red, blue, green lines in Figure 5.31) have constant 
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values of L/D for between –6.2 and –5.7 deg.  The lower the L/D ratio, the less control 

authority the vehicle will have.  This causes guidance performance degradation in terms of 

post-exit Δ𝑉.  Figure 5.31 also shows that the APC guidance using scenario 1 provides 

near-optimal performance for an entry FPA shallower than the nominal case (–5.91 deg) 

and good aerocapture performance for the more difficult cases with steeper entry FPA.  

Because L/D is dispersed about the nominal value of 0.27, the majority of the 1000 in-

plane post-exit Δ𝑉s follows the trend of the optimal bang-bang solutions with L/D = 0.27. 

On the other hand, a few scenarios of the 1000 off-nominal guided trajectories have a high 

post-exit Δ𝑉 (> 120 m/s) due to combinations of low L/D and steep entry FPA. 

 

Fig. 5.31  Aerocapture In-plane Maneuver Δ𝑉 vs. Entry FPA 
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Figures 5.32-5.34 present the statistical results from the 1000 Monte-Carlo simulations 

under large variations in the entry flight-path angle.  Mean apogee altitude and in-plane Δ𝑉 

are still very close to target values. Figures 5.32 and 5.33 also show that the normal 

distribution curves for apogee altitude and pre-burn orbital inclination follow the heights 

of the bars, while there are a small number of outliers.  Figure 5.34 shows that this is a 

right-skewed graph with a few data on the far right.  This trend means that the more than 

50% of the post-exit in-plane Δ𝑉s are less than 61.12 m/s for this 1000-run Monte-Carlo 

simulation. 

 

Fig. 5.32  Histogram of Apogee Altitude from 1000 Trails under Large Variations in Entry 

FPA 
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Fig. 5.33  Histogram of Exit Inclination from 1000 Trails under Large Variations in Entry 

FPA 

  

Fig. 5.34  Histogram of In-plane Δ𝑉 from 1000 Trails under Large Variations in Entry FPA 
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CHAPTER 6 – SUMMARY AND CONCLUSION 

The aim of this research was to design a new approach to achieve aerocapture in a robust 

and near-optimal performance way.  In this thesis, an explicit guidance method has been 

investigated for an Earth aerocapture problem.  A novel analytical predictor-corrector 

guidance algorithm has been developed for providing robust guidance solutions with near-

optimal Δ𝑉 performance.    

A comprehensive review of the literature on the studies for aerocapture at Earth and some 

other planets was conducted in chapter 1. The vehicle model used in testing the aerocapture 

guidance algorithm was the Orion MPCV.  The three-dimensional equation of motion of 

Orion MPCV were described in chapter 2.  The impulsive maneuvers required during the 

post-atmospheric flight phase to establish the target orbit were mainly defined in two 

groups as in-plane and out-of-plane impulsive maneuvers.  In-plane impulsive maneuvers 

were formulated based on the coplanar transfer with a single-tangential or two-tangential 

impulses.    

In chapter 3, the bang-bang aerocapture optimization problem with a single inequality 

constraint were defined.  The bank angle profile had a bang-bang structure during the 

atmospheric flight phase.  MATLAB’s Fmincon algorithm were used in the minimum-

coplanar-Δ𝑉 optimization problem.  The only variable optimized in the optimal aerocapture 

problem was the switching time, which is when the bank angle magnitude instantaneously 

transitions from 0 to 180 deg.  The optimal FPA vs. altitude profile gave us the idea to 

define the sine of flight-path angle as an exponential function of altitude for the ascent 
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phase.  In addition to this, the optimal bang-bang solutions were presented for comparison 

with the guided aerocapture performance from APC and NPC methods. 

The analytical guidance scheme was developed by essentially utilizing the 

parameterizations of the aerodynamic acceleration effects (𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚) and the 

FPA term.  The 𝑠𝑖𝑛𝛾 term was parameterized by an exponential function, while two options 

were considered to parameterize the terms 𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚: a Fourier series (scenario 

1) or an exponential function (scenario 2) as described in chapter 4.  For the 

parameterization of the 𝜌𝐶𝐿/𝑚 and 𝜌𝐶𝐷/𝑚 terms, the coefficients of these functions were 

found by a least-squares curve-fitting scheme.  A closed-form equation for exit velocity 

and a closed-loop control law for tracking the reference trajectory were achieved by using 

these Fourier and exponential equations.  The bank angle is the only control variable in the 

guidance algorithm.  Bank control was open-loop (lift up) from EI to the switching point 

(near pull-up altitude) and then closed-loop (lift down) until atmospheric exit in order to 

emulate the bang-bang structure of optimal aerocapture trajectories.  Bank reversal design 

was included in the analytical aerocapture guidance to minimize the plane-change Δ𝑉𝑖.   

Monte-Carlo simulations were used for the Earth aerocapture mission.  Monte-Carlo 

dispersions in the vehicle parameters, entry state, and atmospheric density were given in 

chapter 5.  For scenarios 1 and 2, the nominal and off-nominal guided trajectories were 

obtained from the Monte-Carlo simulations.  The numerical solution of the APC guidance 

algorithm with scenario 1 and scenario 2 showed that although the 100% of the 1000 

dispersed simulations are successfully captured for each scenario,  the Fourier curve-fitting 

(scenario 1) is the better approach to achieve the target orbit with less insertion Δ𝑉.  The 

results of the comparison of APC and NPC methods for the in-plane Δ𝑉 performance 
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demonstrate that the proposed APC method clearly has a more performance advantage over 

the NPC method.  Additionally, the APC guidance method was tested in a simulation 

environment with a wide range of entry FPA.  All Monte-Carlo simulations reveal that the 

proposed APC guidance is robust, accurate, and provides near-optimal performance. 

Key findings of this research are that the parameterization of the aerodynamic acceleration 

effects and the sine of FPA respectively with a Fourier series and exponential functions 

leads to closed-form solutions for the exit velocity and bank angle command; the 

determination of the switching time from open-loop to closed-loop control is a vital factor 

to the success of the aerocapture guidance; and including the attitude dynamics in the 

guidance algorithm improved the performance and robustness of the proposed APC. 
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APPENDIX A 

In this thesis, MATLAB programming language was used for computation and simulation.  

Script and function m-files for the optimal bang-bang control problem and closed-form 

solutions (exit velocity and bank angle command) of the three-term Fouirer scenario are 

presented below. 

 

Running Optimization M-file for Optimal Bang-Bang Control Problem: 

clc; clear all; 

format long     % output display format 

  

global r2d d2r ft_to_m h_EI R_Earth mu_Earth  initial_state 

        % global variables 

         

%%% Conversion factors %%% 

ft_to_m = 0.3048;   % feet to meters 

r2d = 180/pi;       % radians to degrees 

d2r = 1/r2d;        % degrees to radians 

  

mu_Earth = 3.986*10^14;     % Earth's gravitational parameter, m^3/s^2 

h_EI = 121920;              % altitude at entry interface (EI), m                   

R_Earth = 6378135;          % Earth radius, m 

  

%%% Initial state variables %%% 

r = h_EI + R_Earth;         % radial distance at EI, m   

theta = -116.5*d2r;         % longitude at EI, rad   

phi = -46.67*d2r;           % latitude at EI, rad   

v_inertial = 11020;         % inertial velocity at EI, m/s   

gamma_inertial = -5.91*d2r; % inertial flight-path angle at EI, rad   

psi_inertial = 0*d2r;       % inertial heading angle at EI, rad   

  

initial_state = [r, theta, phi, v_inertial, gamma_inertial, 

psi_inertial]; 
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ts_initial = 100;   % initial point         

lb = 50;            % lower bound  

ub = 150;           % upper bound 

  

options = optimset('Display','iter','Algorithm','interior-

point','MaxIter',4000,'MaxFunEvals',70000,'TolFun',1e-20); 

        % optimization options 

[x, fval, exitflag, output] = fmincon(@obj_fun, ts_initial, [], [], [], 

[], lb, ub, @nonlconstr, options) 

        % syntax of Fmincon algorithm  

 

 

Objective Function: 

function [min_DV] = obj_fun(x) 

  

global sigma d2r initial_state r_a      % global variables      

  

ts = x(1);          % switching time, s  

  

[v_Rel, gamma_Rel, psi_Rel] = fun_Iner_to_Rel (initial_state(1), 

initial_state(2), initial_state(3), initial_state(4), initial_state(5), 

initial_state(6)); 

        % transforming state variables from inertial to Earth-relative 

         

x0 = [initial_state(1), initial_state(2), initial_state(3), v_Rel,       

gamma_Rel, psi_Rel]; 

        % Earth-ralative initial state  

sigma = 0*d2r;      % bank angle during descent phase    

options = odeset('MaxStep',1);  % ODE options 

[t1, x1] = ode45(@fun_nominal_atmospheric, [0 ts], x0, options); 

        % syntax of ode45 solver 

     

x02 = [x1(end,1), x1(end,2), x1(end,3), x1(end,4), x1(end,5), x1(end,6)]; 

        % Earth-ralative state at switching time  

sigma = 180*d2r;    % bank angle during ascent phase   

options = odeset('Events', @myEventoptimal,'MaxStep',1);  
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        % ODE options 

[t2, x2] = ode45(@fun_nominal_atmospheric,[ts  3000],x02,options); 

  

[v_Iner_exit, gamma_Iner_exit] = fun_Rel_to_Iner (x2(end,1), x2(end,2), 

x2(end,3), x2(end,4), x2(end,5), x2(end,6)); 

        % transforming state variables from Earth-relative to inertial 

         

r_a = x2(end,1);    % apogee radius 

     

[h_a, DV] = fun_calculation_DV (v_Iner_exit); 

     

min_DV = DV; 

 

end 

 

Constraint Function: 

function [c, ceq] = nonlconstr(x) 

 

global sigma h_EI R_Earth d2r initial_state 

  

ts = x(1); 

  

[v_Rel,gamma_Rel,psi_Rel] = fun_Iner_to_Rel (initial_state(1), 

initial_state(2), initial_state(3), initial_state(4), initial_state(5), 

initial_state(6)); 

        % transforming state variables from inertial to Earth-relative 

         

x0 = [initial_state(1), initial_state(2), initial_state(3), v_Rel,       

gamma_Rel, psi_Rel]; 

        % Earth-ralative initial state  

sigma = 0*d2r;      % bank angle during descent phase    

options = odeset('MaxStep',1);  % ODE options 

[t1, x1] = ode45(@fun_nominal_atmospheric,[0  ts],x0,options); 

        % syntax of ode45 solver 

     

x02 = [x1(end,1), x1(end,2), x1(end,3), x1(end,4), x1(end,5), x1(end,6)]; 
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        % Earth-ralative state at switching time  

sigma = 180*d2r;    % bank angle during ascent phase   

options = odeset('Events', @myEventoptimal,'MaxStep',1); 

        % ODE options 

[t2, x2] = ode45(@fun_nominal_atmospheric, [ts 3000], x02, options); 

        

r_a = x2(end,1);    % apoapsis radius 

  

c = (R_Earth+h_EI) - r_a;   % inequality constraint 

ceq = [];                   % equality constraint 

 

end 

 

Main Function: 

function [dx]=fun_nominal_atmospheric(t,x) 

  

global  sigma mu_Earth h_EI R_Earth 

  

%%% Vehicle parameters %%% 

S = 19.86;                       % reference area, m^2          

m = 8983.4;                      % vehicle mass, kg 

CL = 0.3699;                     % lift coefficient 

CD = 1.37;                       % drag coefficient 

  

%%% State variables %%% 

r = x(1);                        % radial distance, m 

theta = x(2);                    % longitude, deg 

phi = x(3);                      % geo-centric latitude, deg 

V = x(4);                        % relative velocity, m/s 

gamma = x(5);                    % relative flight path angle, deg 

psi = x(6);                      % relative heading angle, deg 

  

h = r-R_Earth; 

[rho,~] = nominal_density_model(h/10^3);   % nominal density model 

  

if h > h_EI 
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    J2 = 0; 

else 

    J2 = 0.00108262;             % Earth zonal coefficient  

end 

omega = 7.292115*10^-5;          % Earth angular velocity, rad/s 

  

q = (V^2*rho)/2;                 % q-bar, kg/(m-s^2) 

L = q*S*CL/m;                    % lift acceleration, m/s^2 

D = q*S*CD/m;                    % drag acceleration, m/s^2 

  

%%% Trigonometric functions %%% 

sphi = sin(phi);        cphi = cos(phi);       tphi = sphi/cphi; 

sgamma = sin(gamma);    cgamma = cos(gamma);   tgamma = sgamma/cgamma; 

spsi = sin(psi);        cpsi = cos(psi); 

ssigma = sin(sigma);    csigma = cos(sigma); 

  

%%% Gravitational acceleration components %%% 

gr = mu_Earth/r^2*(1+J2*((R_Earth/r)^2)*(1.5-4.5*sphi^2)); 

gphi = mu_Earth/r^2*(J2*((R_Earth/r)^2)*(3*sphi*cphi)); 

  

%%% Equations of motion %%% 

dx = zeros(6,1);                  

dx(1) = V*sgamma; 

dx(2) = V*cgamma*spsi/(r*cphi); 

dx(3) = V*cgamma*cpsi/r; 

dx(4) = -D-gr*sgamma-gphi*cgamma*cpsi+... 

        omega^2*r*cphi*(sgamma*cphi-cgamma*sphi*cpsi); 

dx(5) = 1/V*(L*csigma+(V^2/r-gr)*cgamma+ gphi*sgamma*cpsi+... 

        

2*omega*V*cphi*spsi+omega^2*r*cphi*(cgamma*cphi+sgamma*cpsi*sphi)); 

dx(6) = 1/V*(L*ssigma/cgamma+V^2/r*cgamma*spsi*tphi+... 

        gphi*spsi/cgamma-2*omega*V*(tgamma*cpsi*cphi-... 

        sphi)+omega^2*r/cgamma*spsi*sphi*cphi); 
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Post-Exit Δ𝑉 Function: 

function [h_a,DeltaV] = fun_calculation_DV(v) 

 

global  R_Earth mu_Earth r_a 

  

%V in meter/s    %gamma in rad 

d_apogee = 200000;      % desired target apogee, m 

d_perigee = 200000;     % desired target perigee, m 

  

a = mu_Earth/(2*mu_Earth/(r_a)-v^2);     

        % semimajor axis of exo-atmospheric orbit, m 

r_p = 2*a-r_a;          % perigee radius of exo-atmospheric orbit, m 

h_a = r_a-R_Earth;      % apogee altitude of exo-atmospheric orbit, m 

  

Delta_V1 = sqrt(2*mu_Earth)*(sqrt(1/r_a-1/(r_a+(R_Earth+d_perigee)))-

sqrt(1/r_a-1/(r_a+r_p))); 

        % first impulse for apogee raise  

Delta_V2 = abs(sqrt(2*mu_Earth)*(sqrt(1/(R_Earth+d_perigee)-

1/(R_Earth+d_apogee+R_Earth+d_perigee))-sqrt(1/(R_Earth+d_perigee)-

1/(r_a+(R_Earth+d_perigee))))); 

        % second impulse for apogee correction (if necessary) 

DeltaV = Delta_V1+Delta_V2;    

        % total in-plane velocity increment  

end 

 

 

ODE Event Function: 

function [value, isterminal, direction] = myEventoptimal (~, xx) 

  

value      = (xx(5) - 0); % the FPA value that we want to be zero 

isterminal = 1;   % stop the integration 

direction  = -1;  % -1 = Decreasing, 1 = Increasing 

  

end 
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Closed-Form Solutions for Exit Velocity and Bank Angle Command Exit Velocity with 

Three-Term Fourier Scenario: 

function [V_exit, sigma] = fun_exit_velocity_FOURIER3(h_now, v_Iner_now, 

gamma_Iner_now, gamma_exit, CFL, CFD) 

global R_Earth  mu_Earth S   

                      

%%% Constants A0 and A1 (Eqs. 51-53) %%% 

z_now = log(sin(gamma_Iner_now)); 

z_exit = log(sin(gamma_exit)); 

h_exit = 121920; 

  

Q = inv([1 h_now; 1 h_exit])*[z_now; z_exit]; 

q0 = Q(1);   q1 = Q(2); 

A0 = exp(q0);   A1 = -q1; 

 

B = -S/(2*A0);      % constant term 

         

%%% Drag-only exit velocity (Eq. 36) %%%  

Drag_only_exit_velocity = v_Iner_now*exp(B*(... 

exp(A1*h_exit)*(CFD(1)/A1+... 

CFD(2)*(CFD(end)*sin(CFD(end)*h_exit)+A1*cos(CFD(end)*h_exit)) 

/(CFD(end)^2+A1^2)+... 

CFD(3)*(-CFD(end)*cos(CFD(end)*h_exit)+A1*sin(CFD(end)*h_exit)) 

/(CFD(end)^2+A1^2)+... 

CFD(4)*(2*CFD(end)*sin(2*CFD(end)*h_exit)+A1*cos(2*CFD(end)*h_exit)) 

/(4*CFD(end)^2+A1^2)+... 

CFD(5)*(-2*CFD(end)*cos(2*CFD(end)*h_exit)+A1*sin(2*CFD(end)*h_exit)) 

/(4*CFD(end)^2+A1^2)+... 

CFD(6)*(3*CFD(end)*sin(3*CFD(end)*h_exit)+A1*cos(3*CFD(end)*h_exit)) 

/(9*CFD(end)^2+A1^2)+... 

CFD(7)*(-3*CFD(end)*cos(3*CFD(end)*h_exit)+A1*sin(3*CFD(end)*h_exit)) 

/(9*CFD(end)^2+A1^2))-... 
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exp(A1*h_now)*(CFD(1)/A1+... 

CFD(2)*(CFD(end)*sin(CFD(end)*h_now)+A1*cos(CFD(end)*h_now)) 

/(CFD(end)^2+A1^2)+... 

CFD(3)*(-CFD(end)*cos(CFD(end)*h_now)+A1*sin(CFD(end)*h_now)) 

/(CFD(end)^2+A1^2)+... 

CFD(4)*(2*CFD(end)*sin(2*CFD(end)*h_now)+A1*cos(2*CFD(end)*h_now)) 

/(4*CFD(end)^2+A1^2)+... 

CFD(5)*(-2*CFD(end)*cos(2*CFD(end)*h_now)+A1*sin(2*CFD(end)*h_now)) 

/(4*CFD(end)^2+A1^2)+... 

CFD(6)*(3*CFD(end)*sin(3*CFD(end)*h_now)+A1*cos(3*CFD(end)*h_now)) 

/(9*CFD(end)^2+A1^2)+... 

CFD(7)*(-3*CFD(end)*cos(3*CFD(end)*h_now)+A1*sin(3*CFD(end)*h_now)) 

/(9*CFD(end)^2+A1^2))));  

  

%%% Drag-free exit velocity (Eq. 40) %%%  

Drag_free_exit_velocity = sqrt(v_Iner_now^2 +... 

2*mu_Earth/(R_Earth+h_exit) - 2*mu_Earth/(R_Earth+h_now)); 

%%% Exit velocity gravity correction (Eq. 41) %%%  

Exit_velocity_gravity_correction = Drag_free_exit_velocity - v_Iner_now; 

%%% Analytical exit velocity (Eq. 42) %%%  

V_exit = Drag_only_exit_velocity + Exit_velocity_gravity_correction; 

 

%%% Lift-acceleration term (rho*CL/m) (Eq. 30) %%% 

rho_CL_m = (CFL(1)+... 

    CFL(2)*cos(h_now*CFL(end)) + CFL(3)*sin(h_now*CFL(end)) +... 

    CFL(4)*cos(2*h_now*CFL(end)) + CFL(5)*sin(2*h_now*CFL(end))+... 

    CFL(6)*cos(3*h_now*CFL(end)) + CFL(7)*sin(3*h_now*CFL(end))); 

  

%%% Closed-loop bank angle (Eq. 58) %%% 

sigma = acos((-A1*v_Iner_now^2*sin(gamma_Iner_now)*tan(gamma_Iner_now)- 

(v_Iner_now^2-mu_Earth/(R_Earth+h_now))*cos(gamma_Iner_now)/... 

(R_Earth+h_now))/0.5*v_Iner_now^2*S*rho_CL_m); 

  

end 

 

 



107 
 

VITA 

 

Ibrahim Halil Cihan was born on August 2, 1989, in Sanliurfa, Turkey, where he received 

his primary and secondary education.  He joined Yildiz Technical University in Istanbul, 

Turkey and received his B.S degree with honors in Mechanical Engineering in 2012. Upon 

completing B.S, he was awarded the Turkish Ministry of National Education fellowships 

for the study-abroad program.  He then joined the Mechanical and Aerospace Engineering 

department at the University of Missouri – Columbia and received his M.S degree in 2016 

and Ph.D. in 2020.  His research interests are guidance and control of aerospace vehicles 

and optimal path planning.    


