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ABSTRACT 

Computational neuroscience provides tools to abstract and generalize principles 

of neuronal function using mathematics and computers. This dissertation reports 

biophysical modeling approaches to facilitate reverse engineering of two mammalian 

neural circuits - the lower urinary tract for the development of stimulation techniques, 

and the rodent hippocampus to understand mechanisms involved in theta rhythms. 

The LUT in mammals consists of the urinary bladder, external urethral sphincter 

(EUS) and the urethra. Control of the LUT is achieved via a neural circuit which 

integrates distinct components. Dysfunctions of the lower urinary tract (LUT) are caused 

by a variety of factors including spinal cord injury and diabetes. Our model builds on 

previous models by using biologically realistic spiking neurons to reproduce neural 

control of the LUT in both normal function and dysfunction cases.  

The hippocampus has long been implicated in memory storage and retrieval. Also, 

hippocampal theta oscillations (4-12 Hz) are consistently recorded during memory tasks 

and spatial navigation. Previous model revealed five distinct theta generators. The present 

study extends the work by probing deeper into the intrinsic theta mechanisms via 

characterizing the mechanisms as being resonant, i.e., inherently produce theta, or 

synchronizing, i.e., promote coordinated activity, or possibly both. The role of the 

neuromodulatory state is also investigated.  
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CHAPTER 1: INTRODUCTION AND  

BACKGROUND AND MOTIVATION  

The human brain has billions of neurons which produce complex electrical activity. These 

individual neurons communicate via synapses mostly by chemical interactions and are 

networked into complex local and inter-region circuits that are thought to implement 

various biological functions which give rise to physical and mental faculties of 

life. Computational models are becoming increasingly invaluable tools to neuroscientists 

to test various hypothesis before venturing into actual experimentation. At the cellular 

level, the Hodgkin-Huxley formulation is the most popular method used to model single 

cells because it can incorporate different current channels and their dynamics. Networks 

of neurons are then built on using these single cell models with connectivity estimates 

from appropriate brain regions.  The models are them tuned to match data from in vitro 

and in vivo experiments, typically in rodents. 

This dissertation uses computational modeling techniques to investigate two different 

biological functions involving different brain regions, as described in chapter overviews 

below for chapters 2-4. Chapter 5 provides a summary of the work, together with topics 

for future research. An appendix lists a primer developed as a chapter, to illustrate the 

development of computational model using the Hodgkin-Huxley, Izhikevich and 

integrate & fire formulations. 

CHAPTER OVERVIEW AND OBJECTIVES 

 Chapter 2 – This chapter focuses primarily on outlining the challenges in the 

development of computational model of the neural circuit that controls the lower urinary 



2 

 

tract (LUT) of mammals.  The LUT in mammals consists of the urinary bladder, external 

urethral sphincter (EUS) and the urethra. Control of the LUT is achieved via a neural 

circuit which integrates two distinct components. We describe the anatomy of the LUT  

with primary focus on the neural anatomy, then the overall efferent and afferent neural 

pathways of LUT and briefly discuss the neurotransmitters involved and known details 

related to species/sex differences and developmental changes. The challenges in 

modeling the control of LUT at cellular and network levels are then listed. 

 Chapter 3 – Dysfunctions of the lower urinary tract (LUT) are caused by a variety of 

factors including spinal cord injury and diabetes. This has resulted in increased focus on 

both understanding LUT function and in trying to alleviate dysfunction via stimulation 

techniques. Computational modeling, the focus of our research, is a powerful tool that can 

complement experimental investigations in such cases and are beginning to be developed 

for micturition loops. Models to date of the LUT have focused on mechanical properties 

of the LUT (Duin et al., 1998, Bastiaanssen et al., 1996). The models consider various 

neural feedback mechanisms (Duin et al., 2000) but biophysical ones incorporating 

spiking dynamics and neurophysiology have not been reported. Animal models have 

considerably enhanced our understanding of the LUT, although there are known 

physiological discrepancies between human and animal models (Birder et al. 2010). The 

pressure and flow characteristics have been well reproduced with appropriate, albeit 

reduced, neural infrastructure (Duin et al., 1998). Our model builds on this previous work 

by using biologically realistic spiking neurons to reproduce neural control of the LUT in 

both normal function and dysfunction cases.  
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 Chapter 4 – The hippocampus has long been implicated in memory storage and 

retrieval. Also, hippocampal theta oscillations (4-12 Hz) are consistently recorded during 

memory tasks and spatial navigation. Our recent work used a biophysical spiking network 

model of the CA3 region of the hippocampus that included an interconnected network of 

pyramidal cells, inhibitory basket cells (BC) and oriens-lacunosum moleculare (OLM) 

cells to investigate the role of intrinsic mechanisms in the generation of theta. The model 

revealed five cooperating theta generators: spiking oscillations of pyramidal cells, 

recurrent connections between them, slow-firing interneurons and pyramidal cells 

subnetwork, the fast-spiking interneurons and pyramidal cells subnetwork, and non-

rhythmic structured external input from entorhinal cortex to CA3. The present study 

extends the work by probing deeper into the intrinsic theta mechanisms via characterizing 

the mechanisms as being resonant, i.e., inherently produce theta, or synchronizing, i.e., 

promote coordinated activity, or possibly both. The role of the neuromodulatory state is 

also investigated.  

 Chapter 5 – This chapter provides a summary of the work, together with a listing of 

ideas for future research. 

 Appendix – We provide a tutorial illustration of how biophysical models can be 

developed systematically starting with models for single cells, using the example of 

amygdala nuclei that is one of the focus of our Lab. A step-by-step introduction to 

creating computational models using Hodgkin-Huxley, Izhikevich and integrate & fire 

formulations. 
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CHAPTER 2 

CHALLENGES IN MODELING THE NEURAL CONTROL OF LUT 

1. OVERVIEW 

The lower urinary tract (LUT) in mammals consists of the urinary bladder, external 

urethral sphincter (EUS) and the urethra. Control of the LUT is achieved via a neural 

circuit which integrates two distinct components. One component of the neural circuit is 

‘reflexive’ in that it relies solely on input from sensory neurons in the bladder and urethra 

that is fed back via spinal neurons to the LUT. The second neural component is termed 

‘top-down’ and is a conditioned input that comes from structures such as Pontine 

Micturition center (PMC), and Pontine storage center (PSC), that also receive the afferent 

sensory input from the LUT relayed through periaqueductal gray (PAG). The reader is 

referred to excellent references such as [1-3] from de Groat’s group for the top down 

control, which is not discussed here. This chapter focuses primarily on outlining the 

challenges in the development of computational model of the neural circuit that controls 

the LUT.  Section 2 describes the anatomy of the LUT  with primary focus on the neural 

anatomy. We describe the overall efferent and afferent neural pathways of LUT and 

briefly discuss the neurotransmitters involved and known details related to species/sex 

differences and developmental changes. Section 3 provides a brief summary of efforts to 

model the various neural components of the LUT for the purpose of understanding how 

they might participate in control. We list challenges in modeling the control of LUT at 

cellular and network levels and finally provide a brief description of an on-going effort 

to develop a biophysical model of the system. 
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2. NEUROBIOLOGY OF THE MAMMALIAN LOWER URINARY TRACT 

2.1.General anatomy of LUT 

The urinary bladder is a sphere-like hollow muscle that collects and stores urine from the 

ureters until it is stimulated to contract and evacuate the urine through the urethra – a 

process termed as micturition. The bladder is composed of a smooth muscle chamber, 

denoted the body, and a neck or posterior urethra, which serves to funnel urine into the 

urethra.  At the base of the neck, a smooth muscle sphincter, the internal sphincter (IUS), 

prevents outflow to the urethra until a certain pressure is achieved.  The urethra is a tube 

by which urine exits the bladder and flows to the exterior of the body. At the other end of 

the urethra is the EUS, which is a skeletal muscle sphincter, and the only voluntary 

component within the LUT. The main mechanical functions of sphincter muscles are 

controlled constrictions and relaxations. EUS allows conscious control over micturition 

and can be closed against fluid pressure by top-down signals from PSC. The coordination 

between EUS and bladder is mediated by complex neural circuits at the brain, spinal cord 

and ganglionic levels, and is crucial for proper functioning of the LUT. From a control 

point of view, internal changes such as convulsions, dysfunctions and infections, and 

external factors such as coughing, sneezing, cold, and fear, impact functioning of the EUS 

[4][5].  

2.2.Neural Anatomy of LUT 

The neural anatomy of the LUT can be viewed as having three main pathways labeled 

sympathetic, parasympathetic and somatic pathways. Although the functions of these 

pathways are similar in most species, differences exist between rat, mouse, cats and 

humans. The sympathetic pathway is responsible for relaxation of the bladder and 
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contraction of the IUS. the parasympathetic pathway does the opposite by relaxing the 

IUS and contracting the bladder. These bladder contractions can be periodic non-voiding 

or voiding contractions. The somatic pathway implements the conscious control of 

micturition via the EUS. 

 

The sympathetic, parasympathetic and somatic pathways carry sensory information from 

LUT to the spinal cord (hypogastric nerve) and efferent signals from the spinal cord to 

LUT (pelvic and pudendal peripheral nerves).  Primary sensory afferents of the LUT 

project to spinal interneurons and can initiate and modulate several spinal level reflexes. 

These afferents may be involved in reflex integration at local ganglionic levels, and/or 

project to higher order centers to convey bladder fullness sensation to facilitate voluntary 

voiding. Pressure, stress, or toxins can also activate these afferents [6]. Efferents control 

the functional output of bladder by timed contraction or relaxation of the bladder, IUS 

and EUS. Summary of the neural anatomy can be found in (Fig 1) below adapted from 

Inskip et al.[7] 

 

Sympathetic: 

Ganglia. It is estimated that in each hypogastric nerve about 1,300 afferent neurons, about 

1,700 preganglionic neurons, and about 17,000 postganglionic neurons project their 

axons [8]. In Rats, Hypogastric ganglion contains around 3078 ± 193 (mean ± SEM) 

neurons and are known to exhibit both tonic and phasic firing patterns (Table1)[9]. 

However, several of these neurons innervate different visceral organs. So, it is difficult 

to isolate and obtain data from the ones innervating only the LUT.  
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Hypogastric efferents. Sympathetic efferent innervation of LUT arise from preganglionic 

neurons located between thoraco-lumbar (T10-L2) spinal segments in humans and 

lumbar (L1-L2) spinal segments in rats which project to postganglionic neurons in 

inferior mesenteric ganglion (IMG) and pelvic plexus (Fig 1). Axons from these 

postganglionic neurons innervate the body and neck of the bladder, and the urethra. These 

sympathetic postganglionic nerves release norepinephrine (NE) and  contribute to storage 

mechanisms by contracting IUS (mediated by α-AR expressed in trigone, bladder neck 

and urethra) and relax the detrusor muscle (mediated by β-AR). [7] 

  

Hypogastric afferents. Hypogastric afferents are sensitive to small changes in bladder 

pressure caused by intrinsic detrusor contractions, across a wide range of pressures and 

tension [10]. The afferent signals in the pelvic and hypogastric nerves qualitatively appear 

to carry similar information and no functional classification can be made based on just 

afferent activity; the difference seems to be primarily related to the neurons they interact 

with at spinal level. Most of these afferents to the rostral lumbar segments terminate in 

laminae I, V–VII, and X [11]. Urethral afferents in hypogastric nerve can be both 

myelinated and unmyelinated and respond to urine flow and urethral distention. These 

urethral afferents exhibit rapidly adapting responses [12]. Hypogastric afferents are often 

active with bladder empty [13] and transection or pharmacological blockade of the 

sympathetic nerves can reduce urethral outflow resistance, reduce bladder capacity, and 

increase the frequency and amplitude of bladder contractions recorded under 

isovolumetric conditions, thus reinforcing their functional significance during storage 
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mode [14]. Hypogastric nerve also contains nociceptive afferents which are activated by 

chemicals and irritants.  

 

Parasympathetic: 

Ganglia. In rats, the number of labelled neurons in MPG that connect to bladder are 715 

± 126 neurons in 6 ganglia [15]. However, these labelled neurons are seen in penile, 

hypogastric, pelvic and accessory nerves. These neurons lacked dendrites and have soma 

cross section area of 309±7 µm2 and are known to exhibit both tonic and phasic firing 

patterns [16]. 

 

Pelvic efferents. Parasympathetic inputs to LUT originate at the sacral level in humans 

(S2-S4) and at the lumbosacral level in rats (L6-S1). These inputs synapse onto neurons 

in the major pelvic ganglion (MPG) at the post ganglionic level. Axons from MPG 

innervate the body and neck of the bladder and the urethra; they excite the bladder and 

inhibit the IUS. Inhibition of IUS is mediated by nitric oxide (NO) (Fig 1). 

Parasympathetic excitatory transmission is mediated by ACh acting on muscarinic 

receptors (mAChR) especially the M3 subtype; when activated triggers extracellular Ca+2
 

release and results in contraction of detrusor smooth muscle (DSM).  In some animals a 

noncholinergic contraction also occurs that is resistant to muscarinic receptor blocking 

agents. Adenosine triphosphate (ATP) is the excitatory transmitter mediating the 

noncholinergic contractions. Excitation of the bladder smooth muscle via ATP is also 

termed purinergic transmission [17], occurs via the action of ATP on P2X receptors 

(P2X1 in humans and rats) which are ligand gated ion channels. Purinergic transmission 
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has an important excitatory role in animal bladders but is not important in the normal 

human bladder, except in patients with pathological conditions [18].  

 

Pelvic afferents. Pelvic afferents have cell-bodies in the dorsal root ganglion (DRG) and 

innervate the bladder as well as urethra and transmit afferent signals to the spinal cord at 

the lumbosacral level, into laminae V–VII and X at the base of the dorsal horn. They are 

broadly classified into mechanosensitive Aδ and C-fibers (Fig 1). The pelvic nerve carries 

“pressure-related” sensory information from the bladder to the spinal centers. Aδ 

mechanoreceptor afferents are myelinated and respond to both passive distention and 

active bladder contractions. Unmyelinated C-fibers that are not mechanosensitive 

respond to chemical irritants such as capsaicin and turpentine oil or cold. C-fibers are not 

active during normal physiological conditions of continence or micturition but are 

selectively active at high bladder pressures [10]. Some C-fibers are mechanosensitive and 

are less excitable than Aδ fibers. Some small number of pelvic afferents (both Aδ and C) 

track bladder pressure in exclusively high-pressure conditions and are quiescent at low 

pressures. This is most likely due to hyperdistention of DSM and the information 

conveyed is a sensation of pain.  

 

Aδ mechanoreceptor afferents have conduction velocities in the range of (2.5 -15 m/s) 

[19] and are typically silent when the bladder is empty but display a graded increase in 

firing rate during slow filling, at pressures below 25 mmHg [20]. Basal firing rate of 

pelvic afferent neurons is ~1Hz when bladder volume is low [21] ; the maximal firing 

rates range from 15 to 30 Hz in cats. Four types of mechanosensitive fibers were identified 
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by stretch, stroke and probe – Muscle (63%), muscle-urothelial (14%), serosal (14%) and 

urothelial (9%). Pelvic afferents can also be classified, based on pressure thresholds, into 

low threshold (LT) (65%-80%) and high threshold (HT) (20%-35%) categories [22]; for 

rats, these thresholds (mmHg; mean± std dev) are reported as 5.7 ± 1.0 for LT and  34.0 

± 2.5 for HT [23]. 

 

In awake behaving cats, low voiding efficiency and improper micturition are observed 

with chronic pelvic transection; no effect was observed with hypogastric nerve 

transection[24]. The normal micturition reflex is triggered by myelinated Aδ-fiber 

afferents [25, 26].The C-fiber afferent neurotoxin (capsaicin), does not block normal 

micturition reflexes in cats and rats, and are believed to not be essential for normal 

voiding [27]. Stimulation studies in rats revealed that C-fiber afferent neurons (24 µm 

diameter) have an inward current which is capsaicin sensitive and produce a TTX 

resistant spike with phasic firing and Aδ afferent neurons (33µm diameter) have an 

inward current which is insensitivity to capsaicin and is not TTX resistant and exhibit 

tonic firing [28]. 

 

Somatic: 

Ganglia. There is no postganglionic stage in the somatic pathway. In the cat pre-ganglion, 

45% of EUS motoneurons fired spontaneously with frequencies ranging from 12-27Hz 

[29]. Also, it has been demonstrated in the cat that during micturition, the urethral 

sphincter motoneurons hyperpolarize and hence slow down their firing or become 

quiescent [30].  
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Pudendal efferents. The only somatic-LUT connection is to the striated muscle of external 

urethral sphincter. Motor neurons in Onuf’s nucleus located in the anterior horn of sacral 

S2-S4 segments in humans and lumbosacral L6-S1 segments in rats have long axons 

which directly innervate EUS via the pudendal nerve without any postganglionic targets 

in between. Their axons release ACh that act on nicotinic receptors (nAChR).  (Fig 1)  

 During bladder filling pudendal motoneurons are activated by low level afferent input, 

whereas during micturition the motoneurons are inhibited by inhibitory input from 

supraspinal centers. This inhibition is dependent on supraspinal mechanisms and so is 

weak or absent in chronic spinal animals and in paraplegic patients. During filling, in 

spinal injured patients, the inhibition to motoneurons during micturition is lost and 

excitatory sphincter reflex pathway commonly initiates a striated sphincter contraction 

the same time as contraction of the bladder causing dyssynergia between bladder and 

sphincter, and interferes with bladder emptying; this phenomenon is  termed detrusor-

sphincter dyssynergia (DSD) [31]. 

 

Pudendal afferents. Pudendal afferents have cell bodies in the dorsal root ganglia and 

enter the dorsal horn at the sacral or lumbosacral level (L6-S1 in rats, S1-S3 in cats, and 

S2-S4 in humans. Pudendal nerve afferent pathways of the cat, rat and monkey terminate 

in lateral laminae I, V–VII, and in lamina X [32, 33]. Pudendal afferents carry information 

related to pressure and flow rate from the urethra and coordinate urinary continence and 

micturition across many species.  
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Passing fluid through the urethra, irrespective of direction, causes pudendal nerve 

afferents activation at a much lower pressure compared to pelvic and hypogastric nerve 

afferents, which are activated by high-pressure flow that caused a distension of the urethra. 

Pudendal afferents are known to exhibit a slowly adapting tonic discharge that increases 

with bladder filling [34, 35]. Conduction velocities of pudendal nerve afferent fibers were 

found to communicate twice as fast (45 m/sec) as the pelvic nerve afferent fibers (20 

m/sec) when responding to electrical stimulation of the urethra in cats [36].  

 

At low bladder pressures, fluid entering the urethra can trigger an EUS contraction to 

maintain continence [37]. Studies in cats have also suggested that neurons in PSC provide 

a tonic excitatory input to the EUS motoneurons [38]. Electrical stimulation in PSC 

excites the EUS motoneurons and induces contractions of the EUS [39]. EUS also 

promotes continence via a feedback mechanism;  contraction of the EUS induces firing 

in pudendal afferent fibers, which activate spinal inhibitory interneurons involved in the 

micturition reflex to inhibit parasympathetic preganglionic neurons (PGN) to suppress 

reflex bladder activity [40]. In animal nerve transection experiments; by eliminating 

pudendal sensory feedback, voiding efficiency is reduced, suggesting that this sensory 

feedback critically interacts with the network that produces normal voiding behavior [41]. 

 

2.3. Neurotransmitters and receptors  

Synaptic transmission in all ganglia (e.g., IMG, MPG) is mediated by ACh acting on 

different nicotinic receptors. However, there is neuromodulation at both pre and post 

synaptic receptor sites. Parasympathetic postganglionic neurons (MPG) release the 
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excitatory neurotransmitter ACh / ATP, which contracts bladder smooth muscle, and 

nitric oxide (NO), which relaxes urethral smooth muscle [42,43]. Sympathetic 

postganglionic neurons (IMG) release NA (Noradrenaline) which relaxes DSM and 

contracts the urethral smooth muscle [44].  Somatic axons (motor neurons in Onuf’s 

nucleus) release ACh and activate nicotinic cholinergic receptors on EUS that results in 

contraction.   

 

Muscarinic receptors. Axons from MPG innervate DSM and release ACh which 

stimulates M3 muscarinic receptors that in turn triggers intracellular Ca+2 release that 

results in contraction of bladder. M3 receptors are the primary receptors in DSM, but M2 

receptors are also expressed in large numbers, as much as 3-fold [45]. M2 receptors 

appear to play a functional role in ‘recontracting’ DSM after relaxation [46]. M2 receptors 

when activated can suppress the inhibitory mechanisms mediated by β3 receptors and 

contribute to bladder contractions [44]. In the normal bladder, muscarinic receptors are 

the primary effector of contractility in DSM, and these receptors are the main target for 

therapies aimed at symptoms of overactive bladder (OAB).  

 

Purinergic receptors. Purinergic receptors respond to ATP, ADP, and adenosine. These 

receptors produce non-cholinergic contraction of DSM. The primary purinergic receptor 

present in DSM is P2X which are ligand-gated ion channels (Fig 1). Purinergic 

transmission doesn’t seem to be playing an important role in normal human bladders but 

are important in animal bladders. However, purinergic signaling emerges as more 

prominent role in disease (Detrusor overactivity (DO), partial/chronic outlet obstruction 
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and interstitial cystitis) and with aging [47]; potentially accounting for up to 65% of the 

total contraction force [44].   

 

Adrenergic receptors (ARs). ARs expressed in the bladder mediate relaxation and the 

ARs expressed in urethral outlet mediate contraction in response to sympathetic 

innervation (Fig 1). The major receptor subtypes present in the human bladder are α1 and 

β3; however, β-receptors are expressed more compared to α-receptors [48]. The effects 

of α1-AR stimulation on smooth muscle contraction are rather weak, therefore, appear to 

play only a minor functional role in the detrusor, but play a prominent role near the 

bladder outlet in terms of maintaining outlet resistance [49]. The β3-receptor subtype is 

most expressed in human bladders and accounts for >95% of β-receptors. NE is released 

from the sympathetic efferents to activate β3-receptors and results in smooth muscle 

relaxation.  

 

2.4.Differences in LUT circuit among species, sex and developmental changes  

Species. Efferent innervation to LUT originates from different spinal sections among 

species: parasympathetic (pelvic nerves (S2-S4 in humans and L6-S1 in rats)), 

sympathetic (hypogastric nerves (T10-L2 in humans and L1-L2 in rats)), and somatic 

nerves (pudendal nerves (S2-S4 in humans and L6-S1 in rats)).  

 

At the postganglionic level, morphology of the ganglion cells varies. In the rat MPG [50] 

and mouse IMG [51] the cells are (20-30 μm) in diameter and have no dendrites or only 

a few short dendrites. In cats, neurons in pelvic and bladder ganglia are larger (40–60 μm) 
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and have a few dendrites. Variations in conduction velocities, patterns of convergence 

and characteristics of transmitter release have been observed under different 

physiological conditions [52]. Preganglionic parasympathetic input to the bladder ganglia 

are carried by myelinated (B-fiber) axons in cats [53], unmyelinated C-fibers in rats and 

mouse [51,54] and a mixture of B- and C-fibers  in guinea pigs [55]. 

 

Considerable differences have been noted in synaptic transmission regarding the 

properties of the preganglionic input, and facilitatory and inhibitory synaptic mechanisms. 

In the rat, single presynaptic stimuli in the pelvic nerve elicit large amplitude EPSPs in 

postganglionic neurons [50,54].These responses do not change in amplitude during 

repetitive stimulation with frequencies (0.25-20 Hz). However, the discharges decrease 

in amplitude at high frequencies (30–50 Hz). So, in mouse, rat, and guinea pig, 

parasympathetic ganglia may function as relay and not integration centers [50,55]. In cats, 

single or low frequency stimuli (<0.25 Hz) elicit small amplitude EPSPs which gradually 

increase in amplitude during continuous stimulation at frequencies of (1-20 Hz) and 

maximal facilitation requires 15 to 25 stimuli in a train and persists for 30 to 60 s after 

termination of high frequency stimulation [56, 57]. This facilitation, also observed in 

rabbits, can suppress low frequency efferent activity and amplify high efferent activity, 

thus acting like a high pass filter.  

 

Sex. Apart from the obvious anatomical differences among sexes in different species, 

there are considerable differences in physiology, morphology and function. Anatomically, 

DSM is thicker in men than women, as greater voiding pressure is needed to empty the 
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bladder through the longer urethra of males [58]. Also, in male, the IUS is composed of 

smooth muscle that is arranged into long inner longitudinal and outer circular layers [59]. 

However, in women, the longitudinal cells do not form IUS, the bladder neck and 

proximal urethra form a functional rather than an anatomic internal sphincter. 

Contractility of DSM with cholinergic stimulation is found to be more sensitive in female 

rats than male [60]. Relaxation of bladder neck and urethra of male rabbits is more than 

in females with field stimulation [61] and gender doesn’t seem to influence the 

contractility of the human bladder [62]. Regarding receptors, male rabbits have equivalent 

amounts of α1- and α2-ARs, whereas the females have a significantly denser population 

of α2-ARs [63] and cholinergic transmission was predominant in the male guinea pig 

bladder than the female bladder. And the opposite is true for purinergic transmission [64]. 

Differences also exist in voiding patterns between male and female rats. During voiding, 

maximum flow rate was lower and micturition time was shorter in female rats as 

compared to  males. When we consider dysfunctions, it has been observed that overactive 

bladder (OAB) symptoms are more frequently observed and are significantly higher in 

women than in men but it is quite opposite in urinary urge incontinence (UUI) and DO 

symptoms [65 - 67].  

 

Neonates vs adult. Voiding in neonates is dependent on pudendo-bladder reflex 

mechanism which is triggered when the mother licks the genital or perineal region of the 

young animal (e.g., rats and cats) [68, 69]. The pudendo-bladder reflex circuit is in the 

sacral spinal cord and has afferents coming in from the pudendal nerve and efferents 

transmitted in the pelvic nerve. In newborn kittens and rats, the pudendo-bladder reflex 
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is essential for survival because urinary retention could be fatal if the newborn is away 

from the mother [70, 71]. Upon maturation, reorganization of synaptic connections in 

bladder reflex pathways happens which downregulate neonatal spinal mechanisms and 

upregulates conscious voiding control via supraspinal mechanisms. Spinal cord injury in 

adult animals and humans which interrupts supraspinal-spinal cord connections causes 

the reemergence of the neonatal perineal/pudendal-to-bladder reflex. In neonates some 

supraspinal mechanisms may already be functioning to suppress the spinobulbospinal 

micturition reflex pathway allowing micturition to be controlled by primitive spinal reflex 

mechanisms [72]. 

 

3. PHYSIOLOGY OF NEURAL CONTROL OF LUT & COMPUTATIONAL 

MODELING 

3.1. Filling vs Voiding  

During filling, distension of bladder produces low-level afferent firing. At this stage 

parasympathetic efferents are quiescent and sympathetic and somatic efferents are active. 

Intravesical pressure measurements in both humans and animals reveal low and relatively 

constant bladder pressures when bladder volume is below the threshold for inducing 

voiding (VolDEC). Also, during filling, EUS electromyogram (EMG) show increases in 

the activity of the sphincter reflecting an increase in efferent firing in the pudendal nerve 

and an increase in outlet resistance that contributes to storage of urine [2]. 

 

Voiding can be triggered either voluntarily or involuntarily. In human infants, as the 

bladder fills, bladder afferent signals increase in strength until they exceed a certain 
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threshold in the brainstem, specifically the periaqueductal gray (PAG). In the absence of 

any controlling influences, the pontine micturition center (PMC) is activated, the urethral 

sphincter relaxes, the bladder contracts, and voiding occurs [73]. This mechanism 

constitutes the involuntary voiding. In adults, increased afferent firing from inline tension 

receptors in the bladder produces firing in the parasympathetic pathways, inhibits 

sympathetic pathways and somatic pathways. This phase consists of an initial relaxation 

of the urethral sphincter followed by a contraction of the bladder, an increase in bladder 

pressure, and the flow of urine. The generation of conscious bladder sensations and the 

mechanisms that underlie the switch from storage to voluntary voiding involve cerebral 

circuits above the PAG [2]. 

 

Stimulation based experimental data. Several stimulation experiments proposed 

solutions to different LUT dysfunctions. Here we discuss one such stimulation - Pudendal 

nerve (PN) stimulation which has been replicated in a computational model [74]. PN 

stimulation has been proposed as a method to restore continence and micturition. This is 

possible because pudendal afferent stimulation can differentially activate spinal circuits 

responsible for reflex inhibition or excitation of bladder [75,76]. Low frequencies for PN 

stimulation (2-15 Hz) inhibit bladder contractions and increase bladder capacity and thus 

helps with continence. GABAergic mechanism in lumbo-sacral spinal column is evoked 

by this low PN stimulation and inhibits the excitatory control of the bladder, rather than 

activation of a bladder relaxation pathway [77]. High frequency PN stimulation (25-50 

Hz) evoked contractions in bladder but 33 Hz pudendal afferent stimulation caused 

sustained SEC (stimulation evoked contraction) for bladder volumes >70% VolDEC 
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(Volume threshold for distension evoked contractions) whereas 10 Hz caused SEI 

(stimulation evoked inhibition) [78, 79]. Pudendal afferent stimulation at 33 Hz failed to 

evoke robust bladder contractions (mean bladder pressure >10 cm-H2O) below ~70 % of 

the volume necessary to evoke DECs showing volume dependence [80].  

 

3.2. Brief history of modeling the LUT & challenges 

The earliest reported computational model of the LUT was of a dog bladder. The authors 

assumed the bladder to be spherical with a structure that collapsed with increasing 

pressure. They used recordings from stimulations of female dog bladders to determine 

their feedback system with state space methods dependent on their measured motor 

neuron firing rates [81]. This general approach was followed throughout most of the later 

modeling attempts. Another group, Bastiaanssen et al. [82]  developed a biomechanical 

model of LUT based on urine outflow data from patients, but further simplified their 

neural component to disregard firing rates, directly converting pressures to muscular 

contraction via empirically determined state variables. One of the earlier papers to attempt 

to model neural computation used a state-space formulation for each known neural 

ganglion. This group added levels of neural components incrementally and varied 

excitatory and inhibitory connectivity [83,84].  

 

Since 2010, there has been a resurgence in modeling the neural circuit of micturition more 

realistically.  Much of this has been devoted to determining the interactions between the 

supraspinal micturition centers (PMC/PAG, cortex, etc.) and the spinal ganglia or the 

interaction between the autonomic and somatic systems at the spinal level.  De Groat’s 
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group has focused on the former, while Grill’s group focused on the latter.  De Groat’s 

group created a model with simple monosynaptic weighed integration of binary neurons 

in the spinal cord [3].  Their supraspinal neurons were based on recordings taken from 

the PMC and PAG, as their overall goal was to understand the role of the supraspinal 

switching circuitry in micturition. Grill et al. developed an integrate-and-fire model of 

the spinal circuit at lumbosacral level of cat [74]focusing on the afferent pudendal 

stimulation. They have the most detailed model of connectivity at the spinal level; 

however, they ignore the sympathetic nervous system in their model.  Their results are 

centered on studying the spinal circuitry involved in pudendo-vesical reflex. 

Challenges to modeling cellular network neurophysiology.  

The role of computational modeling is to study complex functions with relatively simple 

principles while preserving the necessary realism in the model which can shed light on 

the inner working at different levels of organization. However, when trying to model a 

functional circuit such as the LUT, with gaps in data, several assumptions need to be 

made using informed judgement.  

 

Ganglion level. There is much overlap in the neurons which project to visceral organs 

and it is hard to know LUT specific neurons because all the axons are bundled together 

in the efferent nerves. So, several aspects required to model such as interconnectivity if 

any, synaptic divergence and convergence are unknown. The functional role of most 

postganglionic neurons is predominantly spatial amplification and filtering of 

preganglionic inputs. It has been suggested that after spinal transection the firing patterns 

of these neurons can change (Ex: from tonic to Phasic). These postganglionic neurons are 
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subject to modulation from several neuromodulators at both pre and post synaptic sites. 

However, the implications of these changes are yet to be studied and models provide a 

great framework in that regard.  

 

Cellular level. To model a biophysically constrained neuron, we match 

electrophysiological data such as passive properties (Resting membrane potential (VRest), 

input resistance (RIN) and time constant (τ)) and active properties such as (firing patterns 

and FIR curve). To reproduce these electrophysiological characteristics, experimental 

data related to all the properties are typically obtained from intracellular current-clamp 

studies, if the channel types present in the neuron are known. These neurons come with 

markedly different morphology across species, some with no dendrites and other with 

few. In order to capture the necessary essentials, we need answers to questions such as: 

Can the properties of the neuron be explained by a single compartment or do we need 

more compartments? Are the location of synapses important? For a systematic review of 

the methodology to build single cell models please refer to Guntu et al. [85]. 

 

To model the LUT circuit a challenge was that single cell data had to be compiled and 

integrated across different species and even from neonates and adults. It is noted that this 

is typical in computational studies involving brain regions in general, with the assumption 

being that characteristics of channels and other neuronal properties are similar across 

brain regions. For instance, in the case of LUT, there are relatively few studies that 

thoroughly characterize the firing patterns innervating efferent neurons, with the primary 

focus of the literature being on neurons of the MPG  (for example see references [16,86-
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88]). There are even fewer studies that specifically characterize ionic conductances 

underlying those firing patterns. Finally, distinct cell types have been reported in the MPG, 

based on their outputs – at a minimum those that fire tonically as a result of depolarization, 

and those that show phasic output [86]. The existing literature on underlying membrane 

conductances is further limited by those that discriminate between these cell types in their 

analysis. Only a subset of membrane conductances of MPG neurons have been studied in 

voltage clamp, and many of these represent mixed currents. For example, sodium currents 

have only been measured in one study [89], and this same study separated at least three 

K+ current subtypes in dissociated cultured neurons [89]. Calcium channels have been 

fairly well documented, including voltage-clamp studies of both N- and T-type currents 

[90-92]. Finally, ATP-sensitive K+ conductance [93] and calcium-sensitive chloride 

currents [94] have been partially characterized. However, these studies have only begun 

to provide a comprehensive characterization of membrane currents of the pelvic ganglion 

neurons, and represent a diverse set of model organisms, pharmacological isolation, and 

cell-type specific localization.  

 

Synaptic level. Synapses at all levels can be classified as excitatory and inhibitory and 

there is evidence of facilitating and depressing synapses as well.  Neurotransmitters and 

receptors involved in the LUT circuit are highlighted above in section 2. Transmission 

through efferent nerves is either cholinergic or purinergic. A majority of transmission at 

postganglionic level is cholinergic and this transmission can be modulated at pre and 

postganglionic sites. Neuromodulation effects may be substantial on the computational 
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properties of a neuron, but concrete experimental data are not yet available to incorporate 

these effects into  a model.  

 

In addition to membrane conductances and properties, even fewer studies have 

characterized synaptic currents. It is known that the cholinergic synapses of the MPG are 

largely carried by α3β4 subunits [95], and some of the integrative properties of these 

synapses have been studied [88,96]. However, there is relatively little information about 

the full spectrum of synaptic properties in the ganglia of the LUT. 

 

Network level. The afferent fibers consist of high-threshold and low-threshold types and 

functioning of LUT is state dependent i.e., depending on the state, several reflexes emerge 

and implement different functions in the LUT. Some reflexes are represented as mono 

synaptic while there is some evidence that they may be multisynaptic. Connectivity 

within ganglia is mostly unknown except we know that there is considerable divergence 

from preganglionic to postganglionic neurons e.g., PGN-MPG. While this brain stem 

switch itself is a complicated circuit, researchers have assumed the supraspinal input as a 

simple on-off switch. . While extracellular measures of LUT network activity have been 

made in conjunction with bladder output (for example see [26,97]), a comprehensive 

recording of simultaneous and coordinated efferent and afferent network activity during 

filling and voiding of the bladder has not yet been well reported. 

 

Interface with bladder. The purpose of the neural circuit described so far is to control the 

urinary bladder.  Specifically, to determine how efferents arising from the model result 
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in bladder contraction or relaxation and how bladder distention results in increased 

bladder afferent firing rate. Bladder stretch releases ATP and ACh which acts on P2X 

receptors or muscarinic receptors (M3) on the afferent nerve terminal as described above 

in section 2. The physiological details and complex interactions involved with bladder 

smooth muscles, urothelium, interstitial cells and afferent nerves is beyond the scope of 

this chapter and are reviewed in a hypothetical model of uroepithelial sensory web [98]. 

There have also been excellent efforts to model urinary bladder smooth muscle in the 

mouse [99]. The next logical step would be to incorporate the current model with bladder 

smooth muscle model [99] or even the mechanistic model of bladder [82]. To complete 

the picture incorporate model of supraspinal control by the higher order centers will need 

to be incorporated [3]. 

 

3.3.  Preliminary biophysical model of the neural LUT.  

We are currently developing and testing a biophysical model of the neural circuit of the 

LUT. The model contains EUS afferents, supraspinal PAG/PMC input and initial input 

for bladder afferents. At spinal level we modeled parasympathetic preganglionic neurons 

(PGN), sympathetic preganglionic neurons (Hypo), medial interneurons (INM+(excitatory) 

and INM-(inhibitory)), dorsal interneuron (IND), and Feedback interneuron (FB). At 

postganglionic level we have models for MPG and IMG neurons. We also modeled the 

somatic motorneuron (EUSMN). All neurons are modeled using the Hodgkin-Huxley 

formulation with single compartments [100]. Single cells are matched to reproduce 

available electrophysiological data (Table 1). A consolidated figure of the LUT model is 

provided in (Fig 2) below. 
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There are 10 cells in each location and the connectivity between groups of cells is 

implemented using a Gaussian distribution as with our previous models [109-111] There 

is no interconnectivity between neurons within a ganglion. All synapses are modeled as 

double exponential functions with rise and decay times. Our spinal interneuron network 

uses a depressing synapse with the EUS afferent and an assumed excitatory synapse with 

the PAG/PMC input to model INM+ as a low-pass filter for the EUS afferent. An 

excitatory synapse with the EUS afferent was used to model INM- as a high-pass filter for 

the EUS afferent. The bladder is filled at a constant rate.  We  use tuning curves from 

McGee et al., [74] to determine bladder pressure from PGN firing rate and we use this 

calculated pressure to then estimate bladder afferent firing rate. Once developed, a 

reliable model for bladder dynamics can replace this ‘tuning curve’ approximation that 

we use presently. . The model is implemented in NEURON [112] and uses the BMTK 

library to implement functions [113]. The feedback network uses the PGN firing rate to 

calculate bladder pressure, and then the bladder pressure and bladder volume to calculate 

bladder afferent firing rate at user-specified intervals during the simulation. This 

implementation permits implementation of closed-loop feedback given initial trends of 

bladder afferent firing rate.  

 

Current model reproduces the observed trends of firing rates during a typical fill and void 

cycle with firing rates that match experimental observations (Fig 3). Further details 

related to the model can be found in Guntu et al. [114] 
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A key with such modeling efforts is to match preliminary trends with simple structures, 

e.g., 1 or 10 cells in each ganglion. Further refinements can be pursued once the model is 

able to reproduce key experimental findings. Challenges to improving the model are as 

follows: Biological data related to single cell characteristics are scarce and from different 

species. Once such data are available, the single cell models can be improved.  The 

present model includes only tonic cells and so phasic and other cells types that may be 

discovered need to be incorporated. Both intra- and inter- connectivity are not known for 

the various ganglia, and so different parametric cases can be explored, ensuring all the 

while that firing rates are within the biological ranges. With increasing fidelity, such 

models can also help explore the various known ‘reflexes’ during both normal and 

abnormal (e.g., spinal cord injury) functioning of LUT networks. An important use of 

such models will be to provide or falsify testable hypotheses for understanding 

functioning as well as for the design of interventions such as electrical stimulation. 

 

SUMMARY  

This chapter focused on reviewing relevant literature with to the goal of highlighting the 

challenges in computational modeling of the neural control of the mammalian LUT. A 

brief overview of the anatomy, neurophysiology and neurotransmitters preceded the main 

focus on the neural components of the LUT. Differences among species, sex and 

developmental changes are also outlined to show the complexity in the underlying 

biology. To put the review in context, we provide a brief summary of ongoing modeling 

efforts related to the LUT circuit with 10-cells at each location. This preliminary model 

successfully simulated the firing pattern trends observed in experiments during the filling 



 
 

27 
 

and voiding cycle. Lack of experimental data necessitates thoughtful assumptions that are 

informed by an understanding of the neural fundamentals. As cited, an important use of 

such models will be to generate testable hypotheses for understanding normal and 

pathological functioning of the LUT, and to provide guidance for the design of 

interventions, e.g., electrical stimulation. 
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FIGURES: 

 

Figure 1: Consolidated biological figure of LUT innervation 

 

Figure2: Consolidated figure of LUT model 
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Figure 3: Filling vs Voiding in current biophysical model 

(A) Firing rates of bladder afferents, preganglionic neurons (PGN) and EUs motor 

neurons; (B) Firing rates of medial interneurons (INM+, INM-) and EUS afferents; 

(C) Bladder volume and pressure profiles 
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TABLES: 

 

Table 1: Electrophysiological properties of neurons in LUT circuit 

Properties/ 

Neurons 

VRest 

(mV) 

Capacitance 

(pF) 
RIN (MΩ) τ (msec) 

Firing rate 

(Hz) 

Bladder afferents 
[23][101] - - - - 0.06-40.4

 

EUS afferents 
[102] - - - - 1-65 

IND
 [103] -53.6 ± 2.54 - 822 ± 151 41.81 ± 5.4 21.83 ± 1.5 

INM+/-
 [104] -60 ± 1 94.8 ± 7.9 270 ± 25 22 ± 1.5 - 

FB - - - - - 

PGN [105] -51.0 ± 1.1 26.5 ± 1.5 771.3 ± 70.7 - - 

HYPO [106] -59.8 ± 7.4 32.8 ± 14.1 1140 ± 0.6 92.4 ± 43.7 - 

MPGT 
[16] [101] -46.1 ± 1.64 28.9 ± 2.0 143.7 ± 14.0 4.0 ± 0.3 - 

MPGP 
[16] [101] -47.4 ± 1.3 28.7 ± 2.3 157.2± 14.5 4.6 ± 0.5 - 

IMG [9] [107] -53.7 ± 2.45 - 83.0 ± 13.1 5.8 ± 1.4 - 

EUSMN 
[29] -55.0 ± 8.0 - 11.1 ± 4.6 4.9 ± 1.5 - 

PAG/PMC [108] - - - - 0-15 
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CHAPTER 3 

MODELING THE NEURAL CIRCUIT OF LOWER URINARY 

TRACT 

 

ABSTRACT 

The rodent lower urinary tract (LUT, composed of the bladder and urethra) is used as a 

model system to study human LUT function and dysfunction. Studies of LUT 

dysfunction and their amelioration via stimulation are gaining importance due to 

increasing incidence of dysfunction of LUT including due to injury, e.g., spinal cord 

injury (SCI) and stroke, and increasing prevalence of conditions such as diabetes.  

Computational modeling provides an attractive complement to such studies by 

providing a tool to rapidly explore various hypotheses about both function and 

dysfunction, and to aid in the design and testing of closed-loop control strategies. We 

developed biophysical models of the cells in all major ganglia using information from 

the literature. Sensory bladder afferents are modeled presently using a regression fit 

with filling rate and bladder pressure. The closed-loop model reproduced the firing rates 

and bladder profiles in the normal fill and void cycle. The model also reproduced 

stimulation evoked contraction and inhibition with different frequencies of pudendal 

afferent stimulation and predicts intrinsic mechanisms that may underlie the observed 

behavior. Ongoing work focusses on providing insights into functioning of the guarding 

storage reflex and other reflexes responsible for non-voiding and voiding contractions.  
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INTRODUCTION 

We provide a brief description of the LUT to illustrate what is being modeled, and then 

an overview of the mammalian LUT.  The LUT contains two major segments, the 

bladder and the urethra.  The bladder is composed of a smooth muscle chamber, denoted 

the body, and the neck, or posterior urethra, which serves to funnel urine into the 

urethra.  At the base of the neck, a smooth muscle sphincter, the internal sphincter, 

prevents outflow to the urethra until a certain pressure is achieved.  The urethra is a 

tube by which urine exits the bladder and flows to the exterior of the body.  The structure 

of note in the urethra is the external urethral sphincter, which is a skeletal muscle 

sphincter, and the only voluntary component within the LUT. This sphincter allows 

conscious control over micturition and can be closed against fluid pressure by signal 

from the cortex (Hall JE and Guyton AC, 2011). 

There are three main components to the neural anatomy of the LUT: sympathetic 

pathways, parasympathetic pathways, and the somatic pathways (Fowler CJ et al., 

2008). These pathways have slightly differing functions in various studied mammals 

(rat/mouse, cat, human being the most common).  Here, it is to be assumed to be for a 

mouse unless specified otherwise. The parasympathetic pathway constricts the bladder 

and relaxes the urethra; the sympathetic pathway does the opposite and inhibits the 

parasympathetic neurons near the bladder.   

Sympathetic efferent neurons (located in the spinal cord, see below) innervate the body 

and neck of the bladder, and the urethra; these and the afferents (from bladder and 
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urethra) transmit via the hypogastric nerve.  The urethral innervation is via the pelvic 

plexus.  These attach to the spinal cord between T11 and L2, though primarily at L2, in 

lamina V-VII and X [1,2].  Two neuron types have been noted in the bladder and spinal 

ganglia, Aδ and C. The Aδ neurons are myelinated and carry tension information. C 

neurons tend to carry only noxious stimuli, though some small percentage may also 

carry mechanical information. Information is supplied via mechanoreceptors in the 

bladder wall that respond to tension as the bladder fills or voids.  These neurons 

interface with the supraspinal micturition centers, namely the pontine micturition 

center, via spinal interneurons (Figure 4) (de Groat WC and Yoshimura N, 2009). 

Parasympathetic efferent neurons (located as noted below) innervate the body and neck 

of the bladder and the urethra. The afferents relay volume and tension information from 

these structures via Aδ and C neurons similar to the sympathetic pathways, though there 

can be some variation in properties of these cells based on location, prompting further 

subclasses (Yoshimura N and Chancellor MB, 2003). The primary differences are 

between neurons arising in the body of the bladder and the urethra, the former utilizing 

stretch receptors and the latter being more sensitive to flow.  These signals are 

transmitted via the pelvic nerve to L6 of the spinal column (lamina I, V-VII, and X), 

which forms a reflex arc back to the bladder to stimulate contraction (Figure 4). 

The only somatic-LUT connection is to the external urethral sphincter (EUS) (Hall JE 

and Guyton AC, 2011).  These motor neurons integrate via the pudendal nerve into the 

L6 regions of the spinal cord.  Afferent pathways report on muscle activity and integrate 

with the parasympathetic reflex arc in the sacral spine, as well as sending information 
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to the supraspinal system, mainly integrating in Onuf’s nucleus of laminia IX, though 

they notably interface with the parasympathetic system via dendritic extension in the 

areas noted in the parasympathetic section (de Groat WC and Yoshimura N, 

2009;Fowler CJ,Griffiths D and de Groat WC, 2008)(Figure 4). 

This section will present a broad overview of how the neurons of the LUT are believed 

to interact based on available data as well as how they regulate micturition.   

The LUT can function without the sympathetic system, however, this causes lower 

sustainable bladder pressures before micturition is engaged.  This leads to the 

conclusion that the sympathetic pathway serves to stabilize and inhibit the 

parasympathetic stimulation, as well as communicate information to the supraspinal 

centers, which in turn allows for better conscious control of micturition  (de Groat WC 

and Yoshimura N, 2009).  Sympathetic neurons from the bladder tend to be active even 

while empty, and those from the urethra only respond when under pressure 

(~>20mmHg).  When active, they serve to relax the bladder wall and contract the 

urethral wall and EUS (the latter via spinal pathways). 

Parasympathetic feedback loops drive the majority of LUT function.  The Aδ neurons 

fire at higher frequency as bladder pressure increases (Mendez A et al., 2013).  These 

signals, when combined with EUS pressure signals (and sympathetic feedback 

presented above) create a cycling feedback system where the pelvic nerve will 

periodically partially contract the bladder.  Should the EUS not open, these contractions 

will absolve relatively quickly, in positive correlation to baseline bladder pressure (Hall 
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JE and Guyton AC, 2011). 

The somatic portion of the LUT is the conscious control for micturition.  As stated 

above, if the EUS does not open, the pudendal pressure sensors inhibit the pelvic centers 

in the sacral spine and stop micturition (Fowler CJ,Griffiths D and de Groat WC, 2008)  

At extreme levels of pressure, this is overridden by the parasympathetic spinal reflex 

arc.  The motor neurons innervating the skeletal muscle of EUS are controlled by the 

supraspinal inputs. 

We have chosen to divide the models in the literature into two categories: mechanical 

and neurological models.  Mechanical models are more concerned with the bladder’s 

urine output and simplify the neural component into some state-space relationship or 

strict differential equation relationship without processing.  The neural models focus on 

creating some set of spiking neurons to reproduce effects measured experimentally. 

The first computational models we found were developed in the 1970s, and were based 

on the dog bladder (Bastiaanssen EH et al., 1996;Drolet R and Kunov H, 1975).  The 

model by Drolet and Kunov assumed the bladder to be a spherical collapsible tank with 

increasing pressure.  They used recordings from stimulating female dogs’ bladders to 

determine their feedback system with state space methods dependent on their measured 

motor neuron firing rates.  This general approach remained throughout most of the 

modeling attempts.  The model of the physical bladder was improved over time.  

Bastiaanssen et al. modeled the human bladder based on urine outflow data from 

patients, but further simplified their neural component to disregard firing rates, directly 
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converting pressures to muscular contraction via empirically determined state variables 

(Bastiaanssen EH,van Leeuwen JL,Vanderschoot J and Redert PA, 1996).   

One of the earlier papers to attempt to model neural computation was done by Van Duin 

et al. where they created state-space transformations at each known neural ganglion by 

varying complexity (van Duin F et al., 2000;van Duin F et al., 1998).  They added levels 

of neural components incrementally, then varied connectivity to include both excitatory 

and inhibitory connections.  Though later research by de Groat’s group showed some 

of their architecture to be incorrect, they were able to faithfully reproduce appropriate 

micturition patterns with varying levels of accuracy as they altered their model.   

More recently several groups have taken a greater interest in faithfully modeling the 

neural side of micturition.  Much of this has been devoted to determining the 

interactions between the supraspinal micturition centers (PMC/PAG, cortex, etc.) and 

the spinal ganglia or the interaction between the autonomic and somatic systems at the 

spinal level (de Groat WC et al., 2015;de Groat WC and Wickens C, 2013;McGee MJ 

and Grill WM, 2016).  De Groat’s group has focused on the former, while Grill’s the 

latter.  De Groat et al. created a model with simple monosynaptic weighed integration 

binary neurons in the spinal cord.  Their supraspinal neurons were based on recordings 

taken from the PMC and PAG, as their overall goal was to understand the supraspinal 

switching circuitry’s role in micturition (de Groat WC and Wickens C, 2013).   

McGee et al. has developed an integrate-and-fire model of the lower urinary tract.  Their 

primary research focuses on the pudendal neuron, and their model reflects this.  They 



48 

 

have the most detailed model of spinal connectivity in the sacral spine; however, they 

ignore the sympathetic nervous system in their model.  Their results centered on 

showing the depression of the micturition reflex – from the pudendal inputs (McGee 

MJ et al., 2014). 

The present study.  Our model builds on this previous work by using biologically 

realistic neurons to reproduce stimulation evoked contraction and inhibition of bladder 

depending on pudendal afferent stimulation. Experimentally it’s been found that during 

bladder filling when stimulated with 33Hz pudendal afferent stimulation when volume 

is above 70% of volume required to trigger distension evoked contractions we can 

observe stimulation evoked contractions and after distention evoked contractions are 

triggered and pressure is high when we stimulate with 10Hz pudendal afferent 

stimulation we can inhibit the distension evoked contractions. We then investigate the 

mechanisms that might implement some of the reflexive loops, and the top-down 

control from supraspinal centers. 

 

METHODS 

 The single cell and network models were developed using the parallel 

NEURON 7.4 simulator (Carnevale NT HM, 2009), and simulations were run with a 

fixed time step of 25 µs. 

   Mathematical equations for voltage-dependent ionic currents: The dynamics 

for soma followed the Hodgkin-Huxley formulation (Kim D et al., 2013) in eqn. 1, 
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𝐶𝑚𝑑𝑉𝑠/𝑑𝑡 = −𝑔𝐿(𝑉𝑠 − 𝐸𝐿) − ∑ 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡 − ∑ 𝐼𝑐𝑢𝑟,𝑠

𝑠𝑦𝑛
+ 𝐼𝑖𝑛𝑗 (1) 

where 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡  and 𝐼𝑐𝑢𝑟,𝑠

𝑠𝑦𝑛
 are the intrinsic and synaptic currents in the soma, 𝐼𝑖𝑛𝑗  is the 

electrode current applied to the soma, 𝐶𝑚  is the membrane capacitance, 𝑔𝐿  is the 

conductance of the leak channel. The intrinsic current 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡 , was modeled as 𝐼𝑐𝑢𝑟,𝑠

𝑖𝑛𝑡 =

𝑔𝑐𝑢𝑟𝑚𝑝ℎ𝑞(𝑉𝑠 − 𝐸𝑐𝑢𝑟), where 𝑔𝑐𝑢𝑟 is its maximal conductance, m its activation variable 

(with exponent p), h its inactivation variable (with exponent q), and 𝐸𝑐𝑢𝑟 its reversal 

potential (a similar equation is used for the synaptic current 𝐼𝑐𝑢𝑟,𝑠
𝑠𝑦𝑛

 but without m and h). 

The kinetic equation for each of the gating variables x (m or h) takes the form 

𝑑𝑥

𝑑𝑡
=

𝑥∞(𝑉,[𝐶𝑎2+]
𝑖
)−𝑥

𝜏𝑥(𝑉,[𝐶𝑎2+]𝑖)
  (2) 

where 𝑥∞ is the steady state gating voltage- and/or Ca2+- dependent gating variable and 

𝜏𝑥 is the voltage- and/or Ca2+- dependent time constant.  

Single cell models: We built single cells to represent neurons involved in 

parasympathetic, sympathetic and somatic pathways of LUT.  Each of these cells were 

single compartment, as we could not find any data-based reason to use multiple 

compartments: these neurons are mostly transmitting signals straight though with some 

data compression at the ganglia.  At postganglionic level we modeled MPG and IMG 

neurons, and both exhibit tonic and firing patterns. Tonic MPG neuron has Resting 

membrane potential (VRest): -45mV, Input resistance (RIN): 145MΩ and time constant 

(τ): 4.6ms matching biological values (Jobling P and Lim R, 2008). IMG neuron was 

tuned to VRest: -54mV, RIN: 82.7MΩ and τ: 5.5ms (Julé Y and Szurszewski JH, 1983). 
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At preganglionic level we have, parasympathetic preganglionic neuron (PGN): VRest: -

51mV, RIN: 772MΩ , Capacitance (C): 26.1pF and τ: 26.1ms which is known to exhibit 

both tonic and phasic firing patterns (Miura A et al., 2000) and sympathetic 

preganglionic neuron (HYPO): VRest: -58mV, RIN: 1.15GΩ and τ: 94.6ms with tonic 

firing (Zimmerman A and Hochman S, 2010). At spinal level we have, dorsal 

interneuron (IND): VRest: -54mV, RIN: 860MΩ and τ: 42.4ms and exhibit tonic firing 

with average spike frequency of 20Hz (Szûcs P et al., 2003), we use the same single 

cell to model excitatory medial interneuron(INM+), inhibitory medial interneuron (INM-

): VRest: -60mV, RIN: 286.6MΩ and τ: 20.8ms (Lu Y et al., 2001) and EUS motorneuron 

(EUSMN): VRest: -55mV, RIN: 11.1MΩ and τ: 4.9ms (Carp JS et al., 2010). 

See figure 9 for firing properties of each neuron and tables 2-4 for equations of current 

kinetics and maximal densities. 

  Network size and cell type proportions: Estimates of number of neurons at each 

stage are not readily available. Number of neurons at each stage is as follows: PGN:25, 

EUSMN:25, HYPO:25, INM+: 25, INM-: 25, IND: 25, IMG:250, MPG:250 and FB:25. the 

connection ratios between them are 1:10 between bladder afferents and IND & HYPO,  

10:1 for PGN-MPG & HYPO-IMG and 1:1 for the rest. However, these numbers and 

connection ratios are varied for SNR tests. Connections between cells were generated 

randomly, based on the Gaussian probabilities.  

   Mathematical equations for synaptic currents: All excitatory transmission was 

mediated by AMPA/NMDA receptors, and inhibitory transmission by GABAA 
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receptors. The corresponding synaptic currents were modeled by dual exponential 

functions (Destexhe A MZ, Sejnowski TJ, 1998) as shown in eqns. 3-5, 

𝐼𝐴𝑀𝑃𝐴 = 𝑤 × 𝐺𝐴𝑀𝑃𝐴 × (𝑉 − 𝐸𝐴𝑀𝑃𝐴) 

𝐺𝐴𝑀𝑃𝐴 = 𝑔𝐴𝑀𝑃𝐴,𝑚𝑎𝑥 × 𝐹𝐴𝑀𝑃𝐴 × 𝑟𝐴𝑀𝑃𝐴 

𝑟𝐴𝑀𝑃𝐴 =  𝛼𝑇𝑚𝑎𝑥𝐴𝑀𝑃𝐴 × 𝑂𝑁𝐴𝑀𝑃𝐴 × (1 − 𝑟𝐴𝑀𝑃𝐴 ) − 𝛽𝐴𝑀𝑃𝐴 × 𝑟𝐴𝑀𝑃𝐴 (3) 

𝐼𝑁𝑀𝐷𝐴 = 𝑤 × 𝐺𝑁𝑀𝐷𝐴 × (𝑉 − 𝐸𝑁𝑀𝐷𝐴) 

𝐺𝑁𝑀𝐷𝐴 = 𝑔𝑁𝑀𝐷𝐴,𝑚𝑎𝑥 × 𝐹𝑁𝑀𝐷𝐴 × 𝑠(𝑉) × 𝑟𝑁𝑀𝐷𝐴 

𝑟𝑁𝑀𝐷𝐴 =  𝛼𝑇𝑚𝑎𝑥𝑁𝑀𝐷𝐴 × 𝑂𝑁𝑁𝑀𝐷𝐴 × (1 − 𝑟𝑁𝑀𝐷𝐴 ) − 𝛽𝑁𝑀𝐷𝐴 × 𝑟𝑁𝑀𝐷𝐴 (4) 

𝐼𝐺𝐴𝐵𝐴𝑎 = 𝑤 × 𝐺𝐺𝐴𝐵𝐴𝑎 × (𝑉 − 𝐸𝐺𝐴𝐵𝐴𝑎) 

𝐺𝐺𝐴𝐵𝐴𝑎 = 𝑔𝐺𝐴𝐵𝐴𝑎,𝑚𝑎𝑥 × 𝐹𝐺𝐴𝐵𝐴𝑎 × 𝑟𝐺𝐴𝐵𝐴𝑎 

𝑟𝐺𝐴𝐵𝐴𝑎 =  𝛼𝑇𝑚𝑎𝑥𝐺𝐴𝐵𝐴𝑎 × 𝑂𝑁𝐺𝐴𝐵𝐴𝑎 × (1 − 𝑟𝐺𝐴𝐵𝐴𝑎 ) − 𝛽𝐺𝐴𝐵𝐴𝑎 × 𝑟𝐺𝐴𝐵𝐴𝑎 (5) 

where V is the membrane potential (mV) of the compartment (dendrite or soma) where 

the synapse is located, I is the current injected into the compartment (nA), G is the 

synaptic conductance (µS), 𝑤 is the synaptic weight (unitless), and E is the reversal 

potential of the synapse (mV). gx,max is the maximal conductance (µS), F implements 

short term plasticity as defined in the next section, and rx determines the synaptic 

current rise and decay time constants based on the terms αTmax and β (Destexhe A MZ, 

Sejnowski TJ, 1998). The voltage-dependent variable s(V) which implements the Mg2+ 

block was defined as s(V) = [1 + 0.33 exp(-0.06 V)]-1 (Volo Md et al., 2019) The terms 
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ONNMDA and ONAMPA are set to 1 if the corresponding receptor is open, else to 0. 

Synaptic parameter values are listed in table 4 as mean ± std. For all connections, 

synaptic weight w was distributed log-normally with a cutoff of three times the mean 

to prevent non-physiological values. 

   Short-term presynaptic plasticity: Short-term depression was modeled at EUS 

afferent->INM+ synapse. Short term plasticity was implemented as follows (Hummos A 

et al., 2014): For depression, the factor D was calculated using the equation: 𝜏𝐷 ∗
𝑑𝐷

𝑑𝑡
=

1 − 𝐷 and D constrained to be ≤ 1. After each stimulus, D was multiplied by a constant 

d (≤ 1) representing the amount of depression per pre-synaptic action potential and 

updated as 𝐷 → 𝐷 ∗ 𝑑. Between stimuli, D recovered exponentially back toward 1. We 

modeled depression using two factors d1 and d2 with d1 being fast and d2 being slow 

subtypes, and 𝑑 = 𝑑1 ∗ 𝑑2. The parameters for modeling short-term plasticity are (τD1 

= 400msec, D1 = 0.5, τD2 = 400msec, D2 = 0.5 and synaptic strength set to 0.5). Our 

model did not have long-term synaptic plasticity.  

Implementation of feedback: Simulated bladder pressure (PB) was recurrently 

calculated using functions of bladder volume at the previous time step and PGN output 

firing rate in a sliding window. (does not include IMG firing) 

The PGN firing rate calculation was generated from a polynomial fit of prior 

experimental    results in cats (Sasaki 1998).  

𝑃B(𝑡) = 𝑓(∫ 𝐹𝑅PGN(𝑡)𝑑𝑡
𝑡−1

𝑡−𝑤𝑙
+ 𝑓(𝑉𝑜𝑙B(𝑡 − 1))    (6) 
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Where,  

𝑓(𝐹𝑅PGN) = 2𝑥10−3𝐹𝑅PGN
3 −  3.3𝑥10−2𝐹𝑅PGN

2 + 1.8𝐹𝑅PGN − 0.5    (7) 

Model is using the following equation to simulate bladder filling: 

𝑣(𝑡)  =  𝑣(0)  +  𝑓𝑖𝑙𝑙 ∗ 𝑠𝑝𝑘 ∗ 𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟     (8) 

v(t): current volume of bladder, v(0): initial volume of bladder (0.05 ml) , fill: bladder 

fill rate (assumed constant: 0.05 ml/min), spk: current time in simulation, scale_factor: 

because we are working in a short period (10,000 ms) we need to scale the biological 

values we are using so that the filling/voiding cycle can fit in the shorter time frame 

(150), scaled to units of ml/ms for model 1/(1000*60) 

Model is using the following equation to simulate bladder voiding 

𝑣(𝑡) =  𝑣(𝑡 –  1) –  𝑣𝑜𝑖𝑑 ∗ 𝑠𝑝𝑘    (9) 

v(t): current volume of bladder, v(t – 1): previous volume of bladder, void: bladder void 

rate (assumed constant: 4.6 ml/min (Streng T et al., 2002) and voiding should be about 

100x faster than filling), spk: current time in simulation There is a maximum bladder 

volume of 0.76 ml being used as a guide for ending voiding.  

Pelvic afferent firing rate (Sengupta JN and Gebhart GF, 1994) 

𝐹𝑅Pel(𝑡) = 𝑓(𝑃B(𝑡 − 1))     

= 3𝑥10−8𝑃B5 +  1𝑥10−5𝑃B4 − 1.5𝑥 10−3𝑃B3 + 7.9𝑥 10−2𝑃B2 − 0.6𝑃B       (10) 
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Within the existing bladder feedback loop, we have added a connection between the 

EUS afferent firing rate and bladder pressure assumed to exist based on literature 

(Livingston BP, 2016) 

If,  ∆𝑃B =  𝑃B(𝑡) –  𝑃B(𝑡 − 1)  >  10 𝑐𝑚 H20 

EUS afferent neurons are set to fire at a rate given by the following equation 

𝐹𝑅EUS =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡1 ∗ 𝑃B(𝑡)  +  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡2 ∗ ∆𝑃B     (11) 

Inputs to the model:  

Current high firing rate for EUS, PAG afferent used in model is 15 Hz. Documented in 

literature as high firing rate for PAG (Blok BF and Holstege G, 2000). Current low 

firing rate for EUS, PAG afferent used in model is 1 Hz. Documented in literature as 

basal firing rate of pudendal (EUS) afferent (Habler HJ et al., 1993). 

 

RESULTS  

The biophysical model included all reported details about the neural LUT circuit.  The 

model was used to investigate both normal and abnormal functioning of the circuit, 

including how they affect the storage and voiding reflexes.    

Biologically realistic model of LUT 

The model successfully reproduces the firing rate and pressure profiles during filling and 

voiding cycles (Figure 5-6) with insights into reflexes involved in each stage. We 
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implement a feedback mechanism in the model based on (McGee MJ and Grill WM, 

2016) where, the parasympathetic efferent firing rate is used to recurrently calculate 

pressure at constant rate bladder filling and the pressure calculated is used to estimate 

bladder afferent firing rate . The estimated bladder afferent firing rate is fed back into 

the model. We used synaptic depression to model documented connection between EUS 

afferent and INM+ (Roppolo JR et al., 1985;Thor KB et al., 1989). Synaptic depression 

can be used to model a low-pass filter so that a post-synaptic neuron will only fire when 

the pre-synaptic neuron is firing low. According to the functional role of INM+ , this 

excitatory interneuron should fire high when EUS afferent firing is low and vice-versa. 

We modeled this using a depressive synapse between the EUS afferent and INM+ and a 

normal excitatory synaptic between the PAG input and INM+  

Insights related to storage reflex 

When a small amount of urine enters the urethra without conscious voiding control from 

the cortex, the bladder pressure increases, causing a contraction in the EUS (Park JM et 

al., 1997). This EUS contraction is modeled by an increase in the EUS motor neurons 

firing. We are assuming that the guarding reflex depends on bladder pressure and results 

in brief increases in the EUS afferent firing rate. To implement this in our model, we 

used a feedback loop  modification (See Methods). The steps involved are 1) measure 

firing rate of the PGN. 2) Uses this firing rate to calculate bladder pressure. 3) Detects 

when bladder pressure is spiking (sharp increase). 4) At each spike, a corresponding 

spike in the EUS motor neurons firing rate is generated. The results are reported in (Fig 

2) we can clearly see the result of these fluctuations in EUS motor neuron firing.  



56 

 

Distension evoked contractions (DECs) 

To further study the role of each reflex involved in the LUT circuit we identified and 

studied the sub-circuits involved. Example, parasympathetic pathway is mostly involved 

in micturition reflex and is mostly silent during filling process. Bladder is filled at 

constant rate from low volume to all the way beyond the maximum volume needed to 

evoke distention evoked contractions. The sub-circuit involved and the bladder response 

are shown in figure 7. The spinal neurons involved in this reflex are dorsal interneuron 

(IND) which receives excitation from bladder afferents and supraspinal input from 

PAG/PMC, PGN which are the primary pre-ganglionic neurons located in sacral 

parasympathetic nucleus (SPN) in lumbosacral cord. At postganglionic level we have 

major pelvic ganglion (MPG) which are known to have some filtering properties but 

mostly relay excitation to detrusor muscle. When bladder afferents fire higher than 10Hz 

PAG/PMC switches ON and provides an excitation of 15Hz to IND and is required to 

produce DECs. The network connections, synaptic properties and single neuron 

electrophysiological properties produce the observed bladder pressure profile.  

Stimulation evoked contractions (SECs) 

We expanded on the sub-circuit which produced the DECs to include pudendal 

stimulation effects, this include two spinal interneurons located medially and provide 

excitation and inhibition to PGN. These medial interneurons play a key role in producing 

pudendal stimulation based contraction and inhibition (SEI). Only SEC case is shown 

here and SEI will be explored in future work.  Pudendal afferents which are disconnected 
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from bladder and EUS feedback are artificially stimulated with 33Hz input. These 

afferents in this case provide excitation to IND also which is a converging point for 

bladder afferents, supraspinal input and pudendal stimulation. The sub-circuit and the 

bladder profiles showing SECs are shown in figure 8. We show the volume dependence 

of the contractions produced by pudendal stimulation, when 33Hz pudendal stimulation 

is give at 45% max volume the contractions produced are not at the level produced 

during DECs. However when pudendal stimulation is provided at or above 70% max 

volume the circuit produces robust contractions thus highlighting the volume 

dependence of this pudendal initiated reflex.  

 

DISCUSSION 

We developed a biophysical network model of the mammalian neural circuits mediating 

the storage and micturition reflexes. The model includes afferent firing rate generation, 

spinal network model and also incorporates post ganglionic level processing. The model 

is constrained to fit firing rates of neurons involved and show how guarding reflex can 

be implemented. The model also provides an ideal framework to study several aspects 

of information theory such as signal-to-noise ratio, signal filtering and robustness of the 

network.   
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CONCLUSION AND FUTURE WORK  

Models provide an ideal framework to provide insights into functional roles of different 

cells, connectivity, synapses in reflexes of LUT. Important aspects such as SNR, filtering 

properties of different stages can be studied with ease. Model can be easily adapted to 

include SCI related physiological changes and to test out hypothesis which can help in 

understanding possible therapeutic targets to restore normal function.  

Future work:  

a) What’s needed to make this model more biologically realistic. Continue adding 

biological values to model.  

b) Expand PAG model: There exists a circuit for an extended model of the higher-

level neurons involved in micturition (Zare, et al. 2019). Apply this to the current 

model and observe its effects on the output. 

SCI Injury/ dysfunctions and how circuit goes to reflex mode? 

1. Reflex mode operation: We introduced an interneuron which receives input 

from (1) bladder afferents (2) EUS afferents and inhibits EUS motorneuron to 

test out involuntary reflex. This could also be the urinary incontinence case. In 

this case PAG/PMC input is set to 0. This is to show EUS relaxation during 

reflex contraction of bladder.  

2. de Groats hypothesis (Organization of parasympathetic excitatory reflex 

pathway) : To see the effects of high threshold  C-fibers after spinal transection, 

change the afferent firing rate set to (0.9±0.4 Hz at rest; 34±2.5 Hz at Volthres; 
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13.3±3.0 Hz at 80mmHg and 17.4±3.3 Hz at 100mmHg) if there is a tuning 

curve with PB to c-fiber firing rate we should use that.  

Biology: After SCI at or above lumbosacral level eliminates voluntary 

supraspinal control of voiding, leading initially to an loss of coordination 

between bladder and EUS with complete urinary retention, followed by spinal 

micturition take over and neurogenic detrusor overactivity (NDO) that is 

mediated by spinal reflex pathways (de Groat WC and Yoshimura N, 2006). 

However, voiding is commonly inefficient causing detrusor–sphincter 

dyssynergia. 

In cats when supraspinal influence is removed by spinal lesions, a segmental 

sacral spinal reflex emerges that drives reflex bladder contractions and is 

mediated by capsaicin-sensitive C-fiber afferents. This causes reflex detrusor 

contractions in response to low-volume filling and is responsible for NDO in 

experimental models (de Groat WC et al., 1990). The emergence of C-fibre 

bladder reflexes seems to be mediated by several mechanisms, including 

changes in central synaptic connections and alterations in the properties of the 

peripheral afferent receptors that lead to sensitization of the ‘silent’ C-fibres and 

the unmasking of responses to mechanical stimuli (de Groat WC,Kawatani 

M,Hisamitsu T,Cheng CL,Ma CP,Thor K,Steers W and Roppolo JR, 1990) (de 

Groat WC, 1995) 
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FIGURES: 

 

Figure 4: Proposed model of mouse LUT modeled 

Abbreviations: MPG: major pelvic ganglion; IMG: inferior mesenteric ganglion; 

EUS: External urethral sphincter; INM+: excitatory medial interneuron; INM+: 

excitatory medial interneuron; IND: dorsal interneuron; PGN: parasympathetic 

preganglionic neuron; FB: feedback interneuron; Hypo: sympathetic preganglionic 

neuron. PAG/PMC: periaqueductal gray/ pontine micturition center denoting higher 

order input.   
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Figure 5: Firing rates of model neurons during filling and voiding 
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Figure 6: Constant rate filling of bladder with pressure profile 
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Figure 7: Parasympathetic sub-circuit with DECs  

(above) Sub circuit highlighting parasympathetic pathway which is responsible for 

micturition reflex, (below) figure shows constant rate volume fill from 0%-150% max 

volume (1.05ml). Supraspinal input from PAG is turned ON when bladder afferent 

rate goes above 10Hz and it fires at 15Hz providing descending excitation to PGN vis 

IND to produce distension evoked contractions (DECs) which results in rapid rise in 

bladder pressure (PB) and in turn help facilitate micturition.  
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Figure 8: LUT sub-circuit with pudendal stimulation 

 (below) Pudendal stimulation at 33Hz can evoke simulation evoked contractions 

(SECs) but are dependent on volume since 33Hz provided when volume is at 45% max 

volume doesn’t elicit contractions at same level as DECs but at 70% max volume 

SECs are at same pressure level as DECs which shows heavy volume dependency of 

SECs and the suggests a role of convergence of inputs from bladder afferents and 

pudendal afferents. 
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Figure 9: Models for Individual Cells 

Tonic MPG neuron 

Current injection plots (Biology) 

Matching current injection plots 

(Model) 

 
 

Responses to current injections of [-0.4,-0.3,-0.2,-0.1,0.1,0.2] nA with 250 ms duration.  

 

Phasic MPG neuron 

Current injection plots (Biology) Matching current injection plots (Model) 

  

Responses to current injections of [-0.4,-0.3,-0.2,-0.1,0.1,0.2] nA with 250 ms duration.  
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Sympathetic postganglionic neuron (IMG) phasic 

Current injection plots (Biology) Matching current injection plots (Model) 

 

 

Responses to current injections of [0.5,1,2] nA with 750 ms duration. 

 

Tonic PGN neuron 

Current injection plots (Biology) Matching current injection plots (Model) 

 

 

*Model follows trend of increased number of spikes with increased current injection 

consistent with biology (Data not shown) 
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Phasic PGN neuron 

Current injection plots (Biology) Matching current injection plots (Model) 

 

 

*Model gives 1 spike for current injections from 30pA – 120pA consistent with biology  

 

Sympathetic preganglionic neuron (Hypo) 

Current injection plots (Biology) Matching current injection plots (Model) 

 
 

Responses to current injection of 20pA for 1s duration 
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Dorsal interneuron (IND) 

Current injection plots (Biology) 

Matching current injection plots 

(Model) 

 
 

 Responses to current injection of [-10, 0, 100] pA for 800 ms duration 
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Medial interneuron (INM+ & INM-) 

Current injection plots (Biology) Matching current injection plots (Model) 

  

Responses to current injection of [109, 72, 54, 36, 18] pA for 500 ms duration; scale 

bar left 20mV, 100ms 
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TABLES: 

Table 2: Passive properties of neurons in LUT circuit 

Cell 
Passive 

properties 
RMP (mV) Rin (MΩ) τ (ms) C (pF) 

MPG 
Biology -46.1 ± 1.64 143.7 ± 14.0 4.0 ± 0.3 - 

Model -45 145 4.6 - 

IMG 
Biology -53.7 ± 2.45 83.0 ± 13.1 5.8 ± 1.4 - 

Model -54 82.7 5.5 - 

PGN 
Biology -51.0 ± 1.1 771.3 ± 70.7 20.4 26.5 ± 1.5 

Model -51 772 20.2 26.1 

HYPO 
Biology -59.8 ± 7.4 1.14 ± 0.6 92.4 ± 43.7 - 

Model -58 1.148 94.6 - 

IND 

Biology -53.6 ± 2.54 822 ± 151 41.81 ± 5.4 - 

Model -54 860 42.4 - 

INM± 

Biology -60 ± 1 270 ± 25 22 ± 1.5 - 

Model -60 286.6 20.8 - 
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Table 3: Gating parameters of ion channels 

Current 

Type 

Gating 

Variable 

α β 𝒙∞ τx (ms) 

INa
1
 

p=3 
−0.4(𝑉 + 30)

exp[−(𝑉 + 30)/7.2] − 1 
 

0.124(𝑉 + 30)

exp[(𝑉 + 30)/7.2] − 1 
 

𝛼

𝛼 + 𝛽
 

0.6156

𝛼 + 𝛽
 

q=1 
−0.03(𝑉 + 45)

exp[−(𝑉 + 45)/1.5] − 1 
 

0.01(𝑉 + 45)

exp[(𝑉 + 45)/1.5] − 1 
 

1

exp[(𝑉 + 50)/4] + 1
 

0.6156

𝛼 + 𝛽
 

IKdr
1
 

p=1 exp[−0.1144(V + 15)] exp[−0.0801(V + 15)] 
1

exp[(−𝑉 − 15)/11] + 1
 

50 ∗ 𝛽

1 + 𝛼
 

IH
2
 

q=1 exp[0.0832(V + 75)] exp[0.0333(𝑉 + 75)] 
1

exp[(𝑉 + 81)/8] + 1
 

𝛽

0.0081(1 + 𝛼)
 

IKM
3
 

p=2 

 

0.016

exp[−(𝑉 + 52.7)/23] 
 

0.016

exp[(𝑉 + 52.7)/18.8] 
 

1

exp[(−𝑉 − 52.7)/10.3] + 1
 

1

𝛼 + 𝛽
 

ICa
3
 

p=2 ― ― 
1

exp[(−𝑉 − 30)/11] + 1
 

2.5

exp [
−(𝑉 + 37.1)

32.3
] + exp [

(𝑉 + 37.1)
32.3

]
 

q=1 ― ― 
1

exp[(𝑉 + 12.6)/18.9] + 1
 420

 

INap
4 p=1 ―

 

―

 

1

exp[(−𝑉 − 48)/5] + 1
 

2.5 + 14

∗ exp[−|𝑉 + 40|

/10] 
IsAHP

3
 

p=1 
0.0048

exp[−5 log10([𝐶𝑎]𝑖2) − 17.5]
 

0.012

exp[2 log10([𝐶𝑎]𝑖2) + 20]
 

𝛼

𝛼 + 𝛽
 48 

IA
1 

p=1 

𝑒𝑥𝑝 [0.0381(𝑉 − 11) [−1.5

−
1

exp[(𝑉 + 40)/5 + 1
]] 

 

𝑒𝑥𝑝 [0.021(𝑉

− 11) [−1.5

−
1

exp[(𝑉 + 40)/5 + 1
]] 

 

1

1 + 𝛼
 

 

6.4826 𝛽

1 + 𝛼
 

 

q=1 
exp[0.1144𝑉+56] ― 

1

1 + 𝛼
 

 

0.26(𝑉 + 50) 

 

1 – Migliore et al. 1999, 2 – Magee et al. 1998, 3 – Kim et al. 2013, 4 – Traub 2002 
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Table 4: Parameters of single cell models 

Parameters MPGP MPGT IMGP PGNP PGNT Hypo INM IND 

Cm (µF/cm2) 0.65 0.65 1.5 0.9 0.9 1.12 2.5 1.7 

Ra (Ωcm) 200 200 200 200 200 200 200 200 

Conductance 

(mho/cm2) 

gNabar 

gKdrbar 

gLeak 

gNapbar 

gHdbar 

gCabar 

gMbar 

gsAHPbar 

gKapbar 

 

 

0.25 

0.002 

1.6e-4 

-- 

0.0001 

-- 

-- 

0.15 

-- 

 

 

0.35 

0.0013 

1.6e-4 

-- 

-- 

-- 

-- 

1.1e-5 

-- 

 

 

0.1 

0.014 

2.7e-4 

-- 

-- 

-- 

-- 

0.1 

-- 

 

 

0.5 

0.01 

4.5e-5 

-- 

-- 

0.005 

-- 

0.0003 

-- 

 

 

0.5 

0.01 

4.5e-5 

-- 

-- 

0.005 

-- 

5e-5 

-- 

 

 

0.2 

0.01 

3.13e-5 

2e-4 

-- 

0.003 

0.0012 

1e-4 

0.0025 

 

 

0.5 

0.1 

1.2e-4 

0.004 

-- 

0.004 

0.001 

0.001 

0.001 

 

 

0.3 

0.01 

4e-5 

-- 

-- 

2.35e

-3 

-- 

1.1e-

4 

-- 
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CHAPTER 4 

INTERPLAY OF RHYTHMIC AND NON-RHYTHMIC THETA 

GENERATORS IN A BIOLOGICALLY REALISTIC HIPPOCAMPAL 

MODEL  

 

ABSTRACT  

Rhythmic activity characterizes neuronal processing in multiple brain areas. Study of 

rhythms indicate the involvement of a multitude of rhythm generators, likely through a 

variety of mechanisms. Considering the multitude of involved mechanisms in rhythm 

generation, inactivation of circuit components can produce complex and unpredictable 

results. We use computational modeling to examine interaction between circuit 

components that participate in rhythm generation. We distinguish between resonant 

components and synchronizing components and demonstrate that this categorization 

permits predicting the rules of which components can interfere with one another and 

which can substitute for one another. Resonant mechanisms inherently produce 

rhythmic signals as a product of their dynamics and include spike-frequency adaptation, 

slow inhibition, rhythmic external input, and slow neuronal currents. Synchronizing 

mechanisms promote coordinated activity and include inhibitory feedback, non-

rhythmic external input, and recurrent excitatory connections. Some circuit components 

can provide both resonance and synchronization. We found the most robust rhythm 

generation to require at least one resonant component and one synchronizing 

component. We found that pyramidal cells adaptation can interfere with theta produced 
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by slow inhibition, and fast inhibition can either substitute for or interfere with rhythm 

generation by slow inhibition, depending on the cholinergic state. These results begin to 

shed light on the conflicting evidence produced by studies inactivating circuit 

components, and also predicts circuit states where inactivating a component known to 

participate in rhythm generation might paradoxically enhance rhythmic activity. We 

conclude that effects of component inactivation can only be predicted in the context of 

what other components are present and on the neuromodulatory state of the circuit. 

INTRODUCTION 

NOTE: This chapter originated as work done by a previous student. The advancement 

over that work is primarily the conversion of the entire model from an Izhikevich 

version to a biological realistic version. Preliminary single cell model results are 

provided in Figures 10A, 10B, and 10C, with parameter values in Tables A1, A2, and 

A3. The other figures are not yet complete and since the work is being written up as a 

journal paper presently, we use the same text as before and will be updating the figures 

related to the results once they are ready. 

The hippocampus is a well-studied and easily accessible part of the brain with a wealth 

of physiological data and computational models. It displays a prominent slow rhythmic 

activity in the theta band (4-12 Hz) (Vanderwolf, 1969). In rodents, evidence points to a 

hippocampal role in navigation, both spatial (O’Keefe and Dostrovsky, 1971) and 

temporal (Pastalkova et al., 2008; MacDonald et al., 2011), but also in encoding and 

retrieval of episodic-like memories (Steckler et al., 1998; Mumby et al., 2002; Eacott 

and Norman, 2004; Fortin et al., 2004). 
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The hippocampal theta rhythm is understood to be generated intrinsically, through a 

number of mechanisms (Kocsis et al., 1999; Buzsáki, 2002; Hummos and Nair, 2017), 

and also entrained from external input. Theta oscillations can be driven by medial septal 

and entorhinal cortex input in vivo, as found in experiments that inactivated the external 

input altogether, i.e., both its non-rhythmic and its rhythmic components (Petsche et al., 

1962; Brazhnik and Vinogradova, 1986; Stewart and Fox, 1990; Vinogradova, 1995; 

Boyce et al., 2016). While multiple mechanisms are suspected, biological and 

theoretical studies of hippocampal oscillations have typically focused on individual 

intrinsic oscillatory mechanisms, and the individual contributions of the multiple 

intrinsic mechanisms to theta activity are not well understood. 

The rise of optogenetic tools, and detailed realistic computer models, popularized 

inactivation studies that aim to ‘dissect’ rhythm generating circuits in the hippocampus, 

by inactivating one component at a time and observing changes rhythmic activity. 

While these studies generated multiple insights, divergent findings have been reported 

(Table 5). For instance, despite in vitro reports of a role for the slow inhibition from 

oriens-lacunosum moleculare cells (OLM cells) in theta generation (Pouille and 

Scanziani, 2004; Gloveli et al., 2005), in vivo optogenetic inactivation of slow and fast 

inhibitory cells (OLM, and BC) revealed no role in ongoing theta activity (Royer et al., 

2012). However, an in vitro study showed no role for OLM cells but rather inactivation 

of BCs severely attenuated theta activity (Amilhon et al., 2015). Nagode and colleagues 

(2014), on the other hand, found no effect from inactivating BCs on CA1 theta activity, 

but a reduction in CA3 gamma activity. A highly detailed model of CA1 region 

confirmed attenuation of theta with BCs inactivation but found no contribution from 
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OLM cells (Bezaire et al., 2016). Computational models have suggested a contribution 

to hippocampal theta from intrinsic membrane conductances such as the spike-

frequency adaptation currents (Crook et al., 1998; Fuhrmann et al., 2002; Hu et al., 

2002; Gigante et al., 2007; Augustin et al., 2013), or the h-current (Gloveli et al., 2005; 

Rotstein et al., 2005; Orbán et al., 2006; Zemankovics et al., 2010; Neymotin et al., 

2013a; Rotstein, 2015). Spike-frequency adaptation currents remain difficult to 

inactivate experimentally, while a genetic knockout of the h-current (HCN1 channels) 

did not disrupt theta (Nolan et al., 2004; Giocomo et al., 2011). 

These inconsistent results highlight the need for a deeper understanding of how the 

multiple mechanisms of theta interact. We used our previously developed model, that 

showed a multitude of interacting theta generators, to discover more specific rules that 

govern how the generators might substitute for others in some cases, and under what 

conditions. For this, we suggest that the approach should distinguish between network 

components that generate oscillatory resonance from those that synchronize neuronal 

activity (Table 6). By considering this distinction, we were able to better describe the 

effects of inactivating one component, in the presence of other components, and to 

describe several minimal circuits for robust rhythm generation. We also found that theta 

generators can also compete and interfere with each other, and the model predicts 

conditions under which inactivation of one theta generator can paradoxically enhance 

the power of ongoing theta activity. 

RESULTS 

We used our previously published computational model of the hippocampal CA3 

network that included pyramidal, OLM, and basket cells, modeled using the Izhikevich 
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formulation (Izhikevich, 2003), with cellular characteristics matched to physiological 

data. The model had synapses with realistic dynamics and short-term plasticity. 

Physiologically recorded place cells showed firing rates that were lognormally 

distributed (Mizuseki and Buzsáki, 2013), so our model pyramidal cells received 

Poisson inputs at rates drawn from a lognormal distribution, to match physiological 

firing patterns. The model reproduced the physiological aspects of theta rhythmic 

activity in the hippocampus (Mizuseki et al., 2012; Mizuseki and Buzsáki, 2013). 

In the present study, we inactivated components of the circuit individually or in 

combination, to discern their effect on the theta rhythm.  Expectedly, these inactivation 

runs led to variations in firing rates. To allow for an interpretable comparison of 

spectral power peaks across experimental conditions, we added a constant current 

injection to each cell to bias their activity level. The amplitude of these current 

injections was adjusted across experiments to maintain a realistic average firing rate for 

pyramidal cells as a population, keeping it within the reported 7 Hz reported for place 

cell activity in vivo (Mizuseki and Buzsáki, 2013). The application of a bias current 

maintained the lognormal distribution of firing rates and we only matched the average 

firing rate for the population (see figures 10A-10C, current injection values are given in 

figure legends).  

In examining as many potential network components involved in rhythm generation, we 

found it useful to describe components as either resonance generators or synchronizing 

mechanisms. This distinction has parallels with current understanding of rhythmic 

activity generation in a single neuron where neuronal currents are categorized into 

resonant and amplifying currents. Another helpful distinction between ‘resonance 
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generators’ and ‘current generators’ was previously considered in literature (Buzsáki, 

2002). 

OLMs and slow currents in pyramidal cells are the resonant mechanisms in CA3 

To identify the resonant components of our model, we began with isolated pyramidal 

cells, with their slow currents (adaptation and h-current) inactivated. Pyramidal cells 

also received unique Poisson input and had no correlations in their external input. We 

then ran simulations with only one model component activated including the recurrent 

connections, BCs, non-rhythmic correlated external input from EC, OLM cells, and 

pyramidal cells slow currents. The results showed that only OLM cells and the 

pyramidal cells slow currents produced a peak in theta range (Fig. 2), indicating that the 

two components are the resonant components in this network. Recurrent connections, 

and input from EC enhanced power in the delta range (2-6 Hz). 

 

Resonant mechanisms can substitute for or compete with one another 

Resonant mechanisms are defined as network components possessing dynamics 

consistent with rhythmic activity at certain frequencies.  It follows from this definition 

that one resonant mechanism, at a minimum, is critical for the generation of oscillatory 

activity in the corresponding oscillatory band. To test this hypothesis in our model, we 

considered that the OLM-pyramidal cells loop and the slow currents in pyramidal cells 

(adaptation and h-current) are the only two active resonant mechanisms.  

We ran experiments with four combinations of model components. First, the full model 

with all components of the CA3 network active. Second, we inactivated OLM cells 
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(denoted “-OLM”), and third we activated OLM cells back on again and inactivated 

slow currents in pyramidal cells (denoted “-sPYR”), through decreasing the time 

constant of the adaptation current to 10 ms (from 100 ms), and removing the h-current. 

The last experiment was to inactivate both OLM cells and slow currents together 

(denoted “-Both”). Power spectra of these experiments showed that the presence of 

either resonant mechanisms, OLM-pyramidal cells or slow current, was sufficient to 

produce theta rhythmic activity, whereas inactivating both abolished all theta activity 

(Fig. 2). These results are made more evident by calculating the relative power in the 

theta band (Fig. 2, power in the 4-12 Hz range divided by power in the 0-50 Hz range). 

The firing rate was kept within 0.5 Hz of the physiologically reported value of 7 Hz 

(Fig. 2, see Methods).  

In this experiment other synchronizing mechanisms of theta remained intact, such as the 

recurrent connections and the reciprocal inhibition to BCs. But in the absence of any 

resonant mechanisms rhythm generation fails. This suggests a rule of a minimum of one 

resonant mechanism to generate rhythms.  An interesting interaction observed indicated 

that pyramidal cells slow currents has the potential to compete with OLM-pyramidal 

cell ability to generate rhythmic activity. The observation that theta power increases 

with the activation of pyramidal cells slow currents indicates potential interference 

between resonating mechanisms (Fig. 2) 

Cholinergic states separate resonant mechanisms functionally and reduce 

interference. 

We found that there is a potential for interference between the two resonant 

mechanisms in our model. Our previous findings indicated that different cholinergic 
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states engage different theta mechanisms (Hummos and Nair, 2017), accordingly, we 

theorized that by functionally separating the two mechanisms, cholinergic modulation 

might reduce the interference between the two resonant mechanisms. 

For this experiment, we performed the four experimental conditions (full model, OLM 

inactivated, slow currents inactivated, both inactivated) in three cholinergic states, low, 

med, and high (by setting the ACh variable to 0, 1, and 2 respectively, see Methods). 

Examination of relative theta power in these conditions revealed that in the extremes of 

cholinergic modulation (low and high), the pattern of slow currents interfering with 

OLM generated theta disappeared (Fig.3). 

Interactions between slow and fast inhibitory cells in theta generation 

We next considered interactions between interneuronal subtypes in theta generation 

across cholinergic states. We examined the OLM-pyramidal cells and the BC-pyramidal 

cells subnetworks and ran experiments with other synchronizing mechanisms 

inactivated (recurrent connections were inactivated, and non-rhythmic external input 

was substituted with direct Poisson inputs to pyramidal cells).  

In the baseline cholinergic state, both mechanisms appeared to have an additive effect 

on producing theta spectral peak. Inactivating either subtype of interneurons produced a 

moderate drop in theta power. We have previously shown that the OLM-pyramidal cells 

subnetwork becomes increasingly engaged in theta generation in high cholinergic states 

(Hummos and Nair, 2017). Here we observed that at increasing cholinergic levels, 

OLM-pyramidal subnetwork is becoming more engaged in generating higher levels of 

theta power, meanwhile, BCs effects remained the same. In high cholinergic states, 
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interestingly, BCs began to interfere with the theta activity generated through the OLM-

pyramidal subnetwork, and their inactivation increased rhythmic power in the theta 

range (Fig. 4). A similar analysis with a circuit including the recurrent connections and 

basket cells revealed little interaction between the two synchronizing mechanisms (Fig. 

5). Specifically, recurrent connections appeared to have the most significant role in 

lower cholinergic states, while BCs had a consistent role with little change across 

cholinergic states. 

DISCUSSION 

We used our previously developed model of the hippocampal CA3 to provide in-depth 

concepts to assimilate what is known about hippocampal theta generation, in a well-

grounded conceptual framework. Our study shows a complex interaction between theta 

generators. The effects of inactivating one theta component can be complex and 

dependent on other generators present and on neuromodulatory states.  

Multiple interacting mechanisms 

Comprehensive models have been developed recently allowing the examination of a 

number of these generators in one model (Neymotin et al., 2013a; Bezaire et al., 2016; 

Ferguson et al., 2017; Hummos and Nair, 2017). We here used our biologically realistic 

model, with many theta generating components, to show that theta generators act to 

provide a context in which inactivation of one component can be interpreted. 

Inactivation of on component can have no effect, reduce or even enhance rhythmic 

activity, depending on which other components are active. Our previous study showed 

that results of component inactivation can also depend strongly cholinergic 

neuromodulation (Hummos and Nair, 2017). Here we also extend these results to show 
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a complex interaction between the component inactivated, other active components, in 

addition to the cholinergic state, to determine the effects of inactivation on the power 

spectrum. 

These insights can be used to interpret results from experiments. For example, our 

results are consistent with findings by Royer et al., where optogenetic inactivation of 

either BCs or OLM did not impact theta generation significantly. As far as can be 

gleaned from their Methods, the animals were not exposed to any novel stimuli or 

environments during testing, and because cholinergic modulation is tied to novelty 

(Miranda et al., 2000; Giovannini et al., 2001), one can assume a low cholinergic state 

in this study. Their results are consistent with our inactivation results, where, in low 

cholinergic states, BCs and OLMs were able to compensate for one another to generate 

theta (Fig. 4). However, our model predicts that in a high cholinergic state, the same 

experiment could show a dramatic drop in theta with OLM inactivation, and an increase 

in theta power with BCs inactivation (Fig. 4); this remains to be shown in experiments. 

Resonant and synchronizing mechanisms act in concert to generate rhythms 

We here provide a broad stroke conceptualization by distinguishing between resonant 

mechanisms and synchronizing mechanisms. We note another distinction between 

‘resonance generators’, and ‘current generators’ suggested by Buzsaki (2002). BCs have 

recently been shown in a computational model to be significant current generators, even 

if not directly involved in rhythm generation (Neymotin et al., 2013b). 

Parallels can be seen between this conceptual division and the requirements for 

generating subthreshold membrane oscillations in a single cell. Individual neurons were 
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described to require at least one resonant current and at least one amplifying current to 

display significant membrane oscillations (Hutcheon et al., 2000). 

Recently another comprehensive model of CA1 showed that theta power was sensitive 

to silencing several of the interneuronal cell types including silencing PV+ BCs, CCK+ 

BCs, neurogliaform, bistratified, and axo-axonic cells (Bezaire et al., 2016). Our work 

suggests that almost any interneuronal population, if reciprocally connected to 

pyramidal cells, can participate in rhythm generation, as a synchronizing component. 

The sensitivity of the theta rhythm in that study to the inactivation of as many types of 

interneurons might be related to changes in the levels of network excitability, as the 

study indicates theta was sensitive to level of excitation. A contribution of our study 

was to examine effects of inactivating interneurons while maintaining excitation levels 

within physiological limits. We provided pyramidal cells with a constant current 

injection to offset the effects of inactivating inhibitory interneurons on level of 

excitation. Isolating effect of interneurons on excitation level, revealed their role in 

rhythm generation by acting as synchronizing mechanisms.  

Most interneuronal types are capable of participating in theta rhythm generation, 

including OLM cells. We here emphasized the role of the OLM-pyramidal cells sub-

network in providing resonance in theta frequency, however OLM cells also do 

participate, as do many interneurons, as a synchronizing mechanism. 

Fast spiking basket cells as synchronizing component for theta generation 

Inhibition by fast spiking basket cells, which tightly controls the timing of pyramidal 

cells firing, was proposed to play a role in theta generation (Buzsaki 2002), but later 
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studies focused on the role of the pyramidal-basket cells sub-network as a generator of 

gamma power (for review, see Buzsáki and Wang, 2012). However, recent 

experimental and computational findings have highlighted a role for basket cells in the 

generation of theta activity. Inactivation of PV+ basket cells diminished theta activity in 

an intact hippocampus preparation (Amilhon et al., 2015), and in a detailed 

computational model of CA1 (Bezaire et al., 2016), and a minimal circuit with 

pyramidal cells and BCs was found sufficient to produce theta activity (Stark et al., 

2013; Ferguson et al., 2017; Hummos and Nair, 2017). 

Two more recent modeling studies, Hummos et al. (2017) and Ferguson et al. (2017), 

demonstrated a role for BCs in synchronizing a population of excitatory pyramidal cells 

to generate theta activity. In these models, pyramidal cells had spike frequency 

adaptation matched to experimental data, and generated theta spiking oscillations, i.e. a 

predominance of theta interval spikes in pyramidal cells (ISI peak ~ 90 ms), robustly at 

a wide range of input levels  (Hummos and Nair, 2017). Through reciprocal 

connections, BCs synchronize these theta spikes. Intuitively, we theorize that BCs can 

synchronize pyramidal cells spikes to a degree where BCs themselves begins to receive 

increasingly synchronized excitation from pyramidal cells, and in turn provides theta 

rhythmic inhibition, thus amplifying the rhythmic activity. This mechanism is relatively 

independent of the specific properties of BCs or their connections to pyramidal cells but 

is rather a general property of pyramidal-interneuronal interactions. Considering that 

pyramidal cells have both subthreshold and spiking oscillations in the theta range, any 

common input might add sufficient synchrony in their activity to create more coherent 

rhythmic activity (Cobb et al., 1995). This common input can come from any type of 
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inhibitory cells reciprocally connected to pyramidal cells, independent from the specific 

dynamics of the inhibitory cells or their inhibitory current, although faster inhibitory 

currents might control pyramidal cells spiking with higher precision. 

We demonstrate this effect in a simulation with two populations of BCs and pyramidal 

cells and their interconnections (Fig. 1D). This subnetwork is capable of generating 

theta rhythmic activity that is robust to a range of input levels to pyramidal cells. This 

current study extends these results and show that the role of BCs in ongoing theta 

oscillations is dependent on the involvement of OLM cells, and on the neuromodulatory 

state of the circuit. 

Competition and interference 

This study provides examples of interference and competition amongst resonant 

mechanisms and amongst synchronizing mechanisms, in a biologically realistic model. 

The results accordingly predict conditions were inactivation of a resonant or a 

synchronizing mechanism might enhance rhythmic activity, indicating that their 

presence interfered with other active generators. We note, however, that interference is 

not a destructive phenomenon in this context. Indeed, interference between oscillators 

has been theorized to encode the location of an animal by producing grid cells firing 

patterns in EC (Burgess, 2008). In addition, competition of multiple peripheral 

oscillators to synchronization with a central oscillator have been theorized to serve as a 

mechanism for attention controlled by executive function (Kazanovich et al., 2013). 

Limitation and future direction 

As discussed above, theta appears to be generated in the hippocampus due to the effects 
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of external input, both its rhythmic and non-rhythmic components, and a consortium of 

intrinsic mechanisms. Our model falls short of representing the diversity of these theta 

generators and analyzing more complex interactions that involve a larger number of 

rhythm generators. With the current community effort to make more detailed models 

increasingly available, these complexities can be examined comprehensively. In 

addition to complexity added by more theta generators, neuromodulators (such as 

endocannabinoids, and serotonin) have effects of theta generation and likely have a role 

in determining which theta generators are actively engaged. The h-current model used 

matched experiments of subthreshold resonance in pyramidal cells (see Methods), 

however it remained mathematically difficult to separate from the adaptation current in 

pyramidal cells. A more detailed model of the h-current can allow examination of its 

role specifically and separate from spike-frequency adaptation. 

Another area of future interest would be to examine how individual theta generators 

interact with rhythmic external input. Results can vary from competition and 

interference to synergy. Combinations of intrinsic theta generators might also respond 

differently than individual ones. These questions in addition to cholinergic dependence 

can help future conceptualization of how the hippocampus responds to its rhythmic 

inputs.  

CONCLUSIONS 

• As a conceptual framework for hippocampal theta generation, we propose a useful 

distinction between resonant and synchronizing components. 
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• Many interneuronal types can be involved in theta generation through a general role 

for interneurons as synchronizing mechanisms. These effects can be more evident if 

inactivation studies would compensate for variation in excitation levels. 

• We predict conditions when inactivation of a rhythm generator might paradoxically 

raise the power in the particular rhythmic band.  

METHODS 

We developed a network model of the rodent hippocampus in a prior study using 

Izhikevich single cell models, synaptic currents, spatial connectivity patterns, short- and 

long-term plasticity and known neuromodulator effects (Hummos et al. 2014). The model 

included CA3 and DG regions that received inputs from EC. The present study used the 

same model, except for replacing the Izhikevich single cell models with biophysical 

conductance-based models matched to biological data. We provide information related to 

the single cell models followed by an overview of the network model and key features. 

The reader is referred to our previous study for details, including a complete listing of 

other parameters (Hummos et al. 2014). 

Single cell models 

Single neurons were modeled using the Hodgkin-Huxley formulation (Byrne et 

al. 2014) and included multiple compartments with known currents and neuromodulator 

receptors. CA3 model cells included PNs and the two most abundant interneuron types, 

BCs and OLM cells (Vida 2010). DG model cells included granule cells, BCs, and Hilar 

Perforant Path-associated (HIPP) cells. All model neurons were matched to the salient 

features reported in biology. CA3 PNs fire in bursts of 2-3 action potentials as well as 

individual spikes (Tropp Sneider et al. 2006). These PNs respond to current injections 
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with an initial burst followed by either silence or tonic firing at different frequencies 

(Brown and Randall 2009; Hemond et al. 2008) and are also capable of bursting in 

response to a very short (2-5 ms) current pulse with a burst of action potentials that out-

live the stimulus (Brown and Randall 2009; Wong and Prince 1981). Model CA3 PNs 

had a resting potential of -75 mV, input resistance of 80 MΩ and time constant of 21 

ms. Parvalbumin-positive basket cells (BCs) are characterized by fast spiking patterns 

and a small membrane time constant (~10 ms) and little spike frequency adaptation 

(Bartos and Elgueta 2012). The cell model had these characteristics, with a resting 

potential of -64 mv and firing rate vs. current injection relationship that matched data in 

(Buhl et al. 1996). OLM cells have a high input resistance (496 MΩ) and slow 

membrane time constant (71 ms) (Lawrence et al. 2006). Action potentials are followed 

by a characteristic long-lasting, slow after-hyperpolarization with rebound spikes 

occurring commonly on repolarization. Model OLM cells captured these characteristics, 

and had a resting membrane potential of -68 mv (Ali and Thomson 1998). OLM model 

cells were also tuned to produce the observed slow AHP, rebound spikes and the 

characteristic sag with negative current injections. Granule cells in DG display a very 

low basal firing rate in vivo with an average < 0.5 Hz, and bursts shorter than those in 

CA3 cells (Jung and McNaughton 1993). These cells predominantly fire in single spikes 

with spike frequency adaptation (Staley et al. 1992). DG model cells had resting 

membrane potential of -73 mV (Staley et al. 1992) and matched biological data 

including passive properties and responses to current injections (Staley et al. 1992). 

Interneurons in DG used the same BC model and used the OLM model for HIPP cells 

(Katona et al. 1999).  
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EC Layer II Stellate cell. The medial EC Layer II is composed primarily of “stellate” 

cells (Tahvildari et al. 2005). For the purpose of this study, because we needed the cells 

responsible for hippocampal input to the CA3 and Dentate Gyrus only the stellate cell 

of EC layer II was modeled (Heinemann et al., 2006). This cell consisted of two 

Hodgkin-Huxley type compartments with individual properties: These included a soma 

and an apical dendrite. Current injection responses from electrophysiological 

experiments (Alonso et al., 1993) were matched in the cell model. 

Ion currents in the Stellate cell model. The ion currents inserted into each compartment 

were adapted from existing biophysical hippocampal and entorhinal cortex models 

(Acker et al., 2003, Fransén et al., 2004 , Li et al., 2008). The soma compartment 

contained sodium (INa), persistent sodium (INaP), delayed-rectifier potassium (IKDR), L-

type calcium (ICa,L), hyperpolarization-activated (IH), calcium-activated potassium 

(IAHP), high voltage-activated calcium (ICa ) and calcium and voltage-activated 

potassium (IC) currents. The apical dendrite contained the same currents as that of the 

soma except for IC and ICa (Fransén et al., 2004). The specific properties of the Stellate 

cell model are shown in Table 1A, and the equations used for each ion current are 

shown in Table 1B. 

 

Dentate Gyrus Granule cell. Neurons in the DG consist primarily of pyramidal, granule 

and stellate cell types of which we have modeled the granule cell. For the purpose of 

this study, we needed the cells involved in memory formation and storage in the 

hippocampal circuit and so only the granule cell was modeled. This cell consisted of 

two Hodgkin-Huxley type compartments with individual properties: These included a 
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soma and an apical dendrite. Current injection responses from electrophysiological 

experiments (Zhang et al.,1993, Spruston et al., 1992 and Staley et al. 1992) were 

matched in the cell model.  

Ion currents in the Granule cell model. The ion currents inserted into each compartment 

were adapted from existing biophysical dentate gyrus model (Aradi and Holmes, 1999). 

The soma compartment contained sodium (INa), fast (IfKDR) and slow (IsKDR) delayed-

rectifier potassium, L-type (ICa,L), T-type(ICa,T) and N-type (ICa,N) calcium, fast transient 

potassium current (IA), calcium-activated potassium (IAHP) and calcium and voltage-

activated potassium (IC) currents. The apical dendrite contained the same currents as 

that of the soma except for IA (Aradi and Holmes, 1999).  

 

CA3 Spiny Pyramidal Cell. Neurons in the CA3 consist primarily of spiny and aspiny 

pyramidal and basket cell types of which we have modeled the spiny pyramidal cell. 

For the purpose of this study, we needed the cells responsible for memory formation 

and storage in the hippocampal circuit and so only the CA3 cell was modeled. This cell 

consisted of two Hodgkin-Huxley type compartments with individual properties: These 

included a soma and an apical dendrite. Current injection responses from 

electrophysiological experiments (Scharfman (1993) were matched in the cell model.  

Ion currents in the CA3 cell model. The ion currents inserted into each compartment 

were adapted from existing biophysical CA3 cell models (Traub et al. (1991), Traub et 

al. (1994) and Migliore (1995)). The soma compartment contained sodium (INa), 

delayed-rectifier potassium (IKDR), L-type (ICa,L), T-type(ICa,T) and N-type (ICa,N) 

calcium, calcium activated potassium (IKCa), fast transient potassium current (IA), 
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calcium-activated potassium (IAHP) and voltage-gated persistent muscarinic (IM) 

currents. The apical dendrite contained the same currents as that of the soma.  

Interneuron. The interneurons were modeled after interneurons of the lateral amygdala 

(LA) as described in Li et al. (2009).  

 

Equations for Modeling A Cell 

For each Hodgkin-Huxley type cell compartment, the membrane voltage was computed 

by Eq. 1, where Ci and Vi represent the total capacitance and membrane voltage of 

compartment i, and Iion and Iaxial represent the sums of intrinsic membrane currents, 

axial cytoplasmic currents, respectively, for that compartment. 

iaxialiion
i

i II
dt

dV
C ,, +=

 
 (1) 

Ion currents. Each ion current was modeled according to Eq. 2, where the kinetics of 

the gating variables m and h were governed by Eq. 3, with x representing either m or h. 

V is the membrane voltage of the compartment in which the current was inserted, Gmax 

is its maximal conductance, and Erev is its reversal potential. Each current is assigned its 

own value of these parameters, and these values are shown in Table 1B. 

( )rev

qp EVhmGI −−= max  (2) 

( )
( )Vτ

xCaV,x

dt

dx

x

−
=

+

 ][ 2

 (3)

 

Axial currents. Axial currents flowing between neuron sections are handled in the 

NEURON simulation environment for connected sections according to section 

geometry and cytoplasmic resistivity. For the connected sections i and j, the axial 

current flowing to section i is computed according to the equation Iaxial = (Vj – Vi)/Ri , 
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where Ri is the cumulative axial resistance between the end-most points at which Eq. 1 

is evaluated.  

 

Network structure and connectivity 

The rat hippocampus contains approximately 1.6 million cells (Hosseini-

Sharifabad and Nyengaard, 2007). For computational efficiency and to maintain 

minimum model complexity, the numbers were scaled down while maintaining reported 

ratios (Hummos et al., 2014), as in our previous models (Li et al., 2011; Kim et al., 

2013a, 2013b; Pendyam et al., 2013). The model DG region had 384 granule cells, 32 

BCs, and 32 HIPP interneurons, while the model CA3 region contained 63 pyramidal 

cells, 8 BCs, and 8 OLM cells (Seress and Pokorny, 1981; Kosaka et al., 1987; Baude et 

al., 2007; Hosseini-Sharifabad and Nyengaard, 2007). The model EC region had 30 

regular spiking cells. 

  The entorhinal cortex provides inputs to the hippocampus through the perforant 

pathway that projects to the entire hippocampal formation. The standard view describes 

a unidirectional connectivity with a direct path from EC to CA3 and an indirect path 

through DG (Fig. 1D in Hummos and Nair, 2017) (Naber et al., 1997; Witter, 2010). 

The perforant path projections follow a lamellar organization across the longitudinal 

axis of the hippocampus, as follows: Lateral and posterior parts of the EC are connected 

to the dorsal parts of CA3 and DG, while the more medial and anterior parts of EC 

project to the ventral parts of CA3 and DG (Witter, 2010). This lamellar organization 

transitions gradually from one extreme to the other on the longitudinal axis of the 

hippocampus, and a single neuron in EC can project to about 25% of the longitudinal 
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length of CA3 (Witter, 2010). Projections from DG to CA3 also follow a similar 

longitudinal organization; however, these projections target a more limited longitudinal 

extent (Witter, 2010). 

Model cells were distributed uniformly in 3D space separated into the three 

regions, EC, DG, and CA3, with dimensions that approximate the respective 

dimensions of the rat hippocampus (Hummos et al., 2014). Projections from EC to both 

pyramidal cells and BCs in DG and CA3 followed a lamellar pattern where neurons 

were most likely to connect to neurons in of their longitudinal neighborhood with a 

decreasing probability towards the periphery. This spatial connectivity was modeled 

using a Gaussian connection probability function that depended on the longitudinal 

distance between the two connected cells. The Gaussian function had a peak probability 

of 0.4 and a standard deviation of 3 mm for the perforant path projections to both 

pyramidal cells and BCs in CA3. Perforant path projections to DG had similar values 

(see (Hummos et al., 2014)). 

Similarly, the mossy fiber projections from DG to CA3 followed the same 

lamellar pattern but with a more limited longitudinal extent by setting the standard 

deviation of the Gaussian probability function to 2 mm. In addition, to preserve the 

sparseness of the mossy fiber connections from DG to CA3 (Witter, 2010), each DG 

granule cell was limited to contacting two CA3 pyramidal neurons. Projections from 

DG granule cells to CA3 BCs are more diffuse and out-number projections to CA3 

pyramidal neurons by a ratio of 10:1 (Acsady et al., 1998). Accordingly, DG projections 

to BC followed a Gaussian distribution with a peak probability of 0.2 and standard 

deviation of 3 mm. Recurrent CA3 connections reveal relatively more diffuse spatial 
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organization (Ishizuka et al., 1990; Wittner et al., 2007), and were therefore distributed 

homogenously with a fixed probability of 0.3. 

  The dendritic projecting OLM cells are thought to be involved in feedback 

inhibitory loops (Maccaferri, 2005) and while they have a more limited axonal 

arborization (Buhl and Whittington, 2007) they make many more synapses compared to 

BCs (Sik et al., 1995). In contrast, BCs have a more diffuse axonal arborization with the 

highest connection probability to pyramidal cells in their immediate neighborhood and a 

decreasing connection probability towards the periphery of their axonal arbors (Sik et 

al., 1995). Similarly, BCs project to neighboring OLM cells (Bartos et al., 2010). As 

before, we used a Gaussian function to approximate these spatial probabilities. We also 

assumed that BC projections to both pyramidal cells and to OLM cells shared the same 

spatial domain. In the reverse direction, OLMs receive reciprocal connections from the 

same pyramidal cells they projected to, in line with their function as local feedback cells 

(Maccaferri, 2005). On the other hand, granule cells in DG and pyramidal cells in CA3 

projected homogenously to BCs with a fixed probability of 0.15, consistent with the 

lack of specific topography reported at these projections (Wittner et al., 2006).  

The network was constructed by generating connections randomly between cells 

while maintaining the connection probabilities and spatial patterns of connectivity 

described above. The spatial connectivity patterns and parameter values are summarized 

in table 7 (also see (Hummos et al., 2014)).  

Synaptic currents 

Synaptic currents were modeled using the kinetic model described in Destexhe 
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et al. (1998). AMPA, NMDA, GABAA, and GABAB currents were modeled and their 

dynamics such as rise and decay time constants and delays were matched to available 

literature (Hummos et al., 2014). In particular, CA3 pyramidal cell AMPA currents 

were fastest for the mossy fiber inputs from DG and slowest for perforant path inputs 

from EC, while recurrent CA3 inputs from other pyramidal cells had intermediate 

values (Hoskison et al., 2004; Tóth, 2010), as summarized in table 7. Additionally, 

inhibitory currents from OLM had slower dynamics compared to those from BC (Table 

7) (Geiger et al., 1997; Bartos et al., 2010). Synaptic weights were assigned in 

accordance with literature where available (for details, see Hummos and Nair, 2017). 

Long-term synaptic plasticity 

 

 Biological studies have shown classical Hebbian associative long-term 

potentiation (LTP) at the glutamatergic perforant path synapses to DG (Bliss and 

Gardner-Medwin 1973) and to CA3 (Do et al. 2002). Many types of synaptic plasticity 

exist at GABAergic synapses (for a review, see (Maffei 2011)). (Woodin et al. 2003) 

reported LTP between hippocampal cells if the pre- and post-synaptic spikes were 

within 20ms of each other, LTD if within 50ms, and no change if longer. They also 

found plasticity to be dependent on activation of postsynaptic L-type voltage dependent 

calcium channels (VDCCs). 

 Consistent with these findings, the model implemented LTP using a learning 

rule based on the concentration of a post-synaptic calcium pool at each modifiable 

synapse (Shouval et al. 2002a). At excitatory synapses, calcium entered post-synaptic 

pools via NMDA receptors, and at inhibitory synapses, calcium entered through 

VDCCs. The postsynaptic pool also received Ca2+ from internal stores upon GABAB 
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receptor stimulation. This approach has been used in other models by our group (Kim et 

al. 2013b; Li et al. 2009). For both types of synapses, a calcium concentration above a 

lower threshold caused synaptic weight depression, while a concentration exceeding an 

upper threshold cause synaptic weight potentiation. Because the characteristics of DG to 

CA3 mossy fiber potentiation are controversial (Neves et al. 2008), we only modeled 

short-term plasticity in the MF connections, as described below. Long-term plasticity in 

all synapses was constrained to 100%. 

 

Short-term synaptic plasticity 

 

 In addition to long-term plasticity described above, we included short-term 

plasticity in the model based on the formulation by (Varela et al. 1997). We modeled 

short-term facilitation reported at the DG to CA3 mossy fiber connections (Toth et al. 

2000) and frequency-dependent synaptic depression reported at the recurrent CA3 

connections (Hoskison et al. 2004). In CA1, projections from pyramidal cells to OLM 

cells have been shown to experience short-term facilitation (Ali and Thomson 1998), 

while projections to BC cells experience short-term depression (Ali et al. 1998). In the 

opposite direction, inhibitory currents from OLM cells to CA3 pyramidal cells show no 

short term facilitation or depression (Maccaferri 2005), while inhibitory currents from 

BC cells to CA3 pyramidal cells show depression (Hefft and Jonas 2005). 

Acetylcholine effects  

The hippocampus receives widespread volume transmission of cholinergic 

inputs from the septum-diagonal band complex (Woolf, 1991).Cholinergic stimulation 

has differential effects on synaptic transmission of different pathways in the 

hippocampus (Barry et al., 2012). Synaptic transmission through the perforant pathway 
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projections to CA3 is suppressed by 50%, compared to a suppression by 85% at the 

recurrent connections in CA3 (Hasselmo et al., 1995; Kremin and Hasselmo, 2007). On 

the other hand, the mossy fibers transmission is enhanced by 49% (Vogt and Regehr, 

2001). To model ACh effects on synapses, AMPA synaptic currents were scaled by the 

value of ACh. A parameter bACh determined the direction and magnitude of ACh 

effects on a particular synapse. Values of bACh for different synapses were set 

according to experimental results as summarized in table 7 (also see Hummos et al. 

(Hummos et al., 2014)). 

In addition to the synapse specific effects, cholinergic stimulation enhanced 

cellular excitability and depolarized the resting membrane potential of principal cells, 

eliminated AHP, decreased spike frequency adaptation and induced rhythmic burst 

activity (Madison and Nicoll, 1984; Misgeld et al., 1989). Furthermore, effects on 

interneurons were subtype-dependent (McQuiston and Madison, 1999a, 1999b). 

Muscarinic stimulation of OLM interneurons depolarized the resting membrane 

potential, and lowered both spike frequency adaptation and AHP (Lawrence et al., 

2006). In contrast, PV-BCs respond to muscarinic receptor activation with a limited 

depolarization in resting membrane potential (Cea-del Rio et al., 2010; Cobb and 

Lawrence, 2010). Effects of ACh on neurons were modeled by linearly scaling the 

neuronal model parameters by the ACh state as detailed in Hummos et al. (see fig. S4 in 

(Hummos et al., 2014)). Considering the slow dynamics of ACh effects (onset time 

constant approximated between 1 and 2 s; Hasselmo and Fehlau, 2001), ACh state was 

set to a given value at the beginning of each experiment and had no dynamics. 

Spontaneous firing rates 
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DG. 0.5 Hz (Bower, 2008); 2 to 4 Hz for mossy cells (Santhakumar, 2005) 

CA3. 0.1 to 0.2 Hz (Hausser, 2004); The highest mean firing rates were observed during 

RUN (CA1 = 0.88 ± 1.23 Hz; CA3 = 0.50 ± 0.78 Hz), followed by SWS (CA1 = 0.72 ± 

0.78 Hz; CA3 = 0.42 ± 0.44 Hz) and REM (CA1 = 0.67 ± 1.00 Hz; CA3 = 0.24 ± 0.38 

Hz), in both regions. 

Note: RUN: is during task performance. SWS is slow wave sleep and REM is REM 

sleep. (Miuseki, 2012) 

In our model, the DG cells had an average spontaneous firing frequency of 2.98 Hz and 

the CA3 cells had an average firing frequency of 0.49 Hz. Both values are within 

reported values in the literature. 

 

Inputs and data analysis 

For the full model and sub-circuit cases considered, either EC cells or CA3 

pyramidal cells (identified in the figures) received external input as trains of Poisson-

distributed spikes, triggering an influx of AMPA and NMDA currents into the cell. We 

studied two model cases: one with external input arriving at EC, and the other with 

input arriving directly at CA3 pyramidal cells. The two types of inputs differed in the 

weight of the associated input synapses, and the base rate of the Poisson spike trains 

arriving at these synapses. Input to EC arrived at synapses with a 100% spike 

transmission rate to ensure that EC firing pattern was dictated by the Poisson input, 

whereas input to CA3 pyramidal cells had a lower weight value with parameters 

matching the EC to CA3 synapses (Table 7). 
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To determine the base rates of the Poisson processes generating these input trains, we 

considered place cells in CA3. Place cells respond to certain areas in the environment 

and their firing rates approximate a lognormal distribution (Mizuseki and Buzsáki, 

2013) with an average of ~7 Hz (Mizuseki et al., 2012). In our model case where 

external inputs arrived at EC, each EC cell received a unique train of Poisson input 

spikes at a base rate of 15 Hz, which produced firing rates in CA3 pyramidal cells with 

a lognormal distribution and an average of 7 Hz. In the model case where external 

inputs arrived directly to CA3 pyramidal cells, the input rates to different cells had to be 

drawn from a lognormal distribution (average: 50 Hz, standard deviation: 40 Hz), to 

produce firing rates with a lognormal distribution that matched experimental data. 

Following titration of the Poisson input, a constant current injection was added to the 

voltage equation and the current amplitude was adjusted to maintain the physiologically 

reported average firing rate and lognormal distribution of firing rates. The current 

values used for each experimental condition are listed in the corresponding figure 

legend. 

For spectral analysis, we summed the spikes of all cells of each type in a region 

(e.g., CA3 pyramidal cells) in 0.1 ms bins and computed the fast-Fourier transform of 

the resulting vector, using the Matlab function psautospk.m (Koch and Segev, 1998), 

with a moving window of size 1024 ms, and overlap of 512 ms. Spike data was used in 

spectral calculations as a proxy for LFP as used in network models (e.g., Brunel and 

Wang, 2003; Hoseini and Wessel, 2016; Samarth et al., 2016), with the assumption that 

these spikes are received by a downstream local neuron and translated into membrane 

currents that generate an LFP signal.  
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  The model was developed using the NEURON software package (Carnevale and 

Hines, 2009) and run on a PC with an Intel i7-core processor with an integration time-

step of 0.1 ms (key results were also verified with a time-step of 0.01 ms). The code is 

available as part of our previous publication via the public database ModelDB at Yale 

University. The recorded spike times were then analyzed using MATLAB (Mathworks, 

Inc.). All simulations ran for 5 seconds. 
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TABLES 

 

Table 5: Summary of inactivation studies 

Study Type Component 

inactivated 

Evidence 

for 

Evidence 

against 

Cholinergic 

effects 

Region 

(Amilho

n et al., 

2015) 

In vitro 

intact 

preparatio

n 

Optogenetic 

BCs and 

OLM 

inactivation 

Role of 

BCs 

OLM cells Not 

considered 

CA1 

(Wulff et 

al., 2009) 

In vivo GABAA 

receptors on 

BCs  

Role for 

inhibition 

of BCs in 

theta 

Role for 

inhibition 

of BCs in 

gamma 

Not 

considered 

CA1 

(Gillies 

et al., 

2002) 

In vitro AMPA 

transmissio

n 

Inhibitor

y 

currents 

Recurrent 

connection

s (But not 

in CA3) 

Inhibition 

based theta 

was atropine-

resistant 

CA1, 

CA3 

(Nolan et 

al., 2004) 

In vivo HCN1  h-current Not 

considered 

CA1 

(Leung 

and 

Shen, 

2004) 

In vivo AMPA 

transmissio

n 

None Recurrent 

connection

s 

Not 

considered. 

CA1, 

theta 

dropped 

by 47% 

(Nagode 

et al., 

2014) 

in vitro  Role of 

CCK 

cells 

Role of 

BCs 

Rhythms 

cholinergicall

y induced 

CA1 

(Royer et 

al., 2012) 

In vivo OLM cells 

and BCs 

None OLM cells 

or BCs 

cells 

Not 

considered, 

but animals 

not exposed to 

novelty. 

CA3 

(Buzsáki 

et al., 

1983) 

In vivo EC input Rhythmic 

EC input 

 Inactivating 

EC input 

made the 

remaining 

theta atropine-

sensitive 

Theta 

dropped 

but more 

markedl

y 

became 

atropine 

sensitive

. 
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Table 6: Classification of theta rhythm mechanisms 

 

Mechanism Resonant Synchronizing 

E-E  X 

E-Slow I X X 

E-Fast I  X 

Adaptation X  

h-current X  

Non-rhythmic 

external input 

 X 

Rhythmic external 

input 

X X 
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Table 7: Chapter 4 supplementary tables  

 

 

 

Table A1: Parameter values for CA3 PNs. 

Current 

Type 

Soma Gmax 

(S/cm2) 

DendP 

Gmax 

(S/cm2) 

Gating 

Variable 
α β 

INa 0.031 0.015 
p = 3 

0.32(13.1 − 𝑣)

exp  13.1 − 𝑣 /4 − 1
 

0.28(𝑣 − 40.1)

exp  𝑣 − 40.1 /5 − 1
 

q = 1 0.128exp (17 − 𝑣)/18  
4

exp  40 − 𝑣 /5 + 1
 

IKdr 0.06 0.03 
p = 3 

−0.07(𝑣 − 47)

exp  𝑣 − 47 /−6 − 1
 

0.264

exp  𝑣 − 22 /40 
 

q = 1 0.001exp[ −2 𝑣 + 61 .
𝐹

𝑅𝑇
 ] 0.001 

IKCa 0.00055135 0.00055 p =1 

0.28 𝐶𝑎2+ 

 𝐶𝑎2+ + exp1 0.00048, 0.84, 𝑣 
 

0.48

1 +  𝐶𝑎2+ /exp1 0.13𝑒−6 , 1, 𝑣 
 

exp1

= 0.00048exp[−
0.12𝐹𝑣

𝑅 273.15 + 𝑑𝑒𝑔𝐶 
] 

exp1 = 0.13𝑒−6exp[−
𝐹𝑣

𝑅 273.15 + 𝑑𝑒𝑔𝐶 
] 

IM 0.007 0.001 p = 4 −0.006exp[ 0.6 𝑣 + 55 .
𝐹

𝑅𝑇
 ] 0.06exp[ −9.4 𝑣 + 55 .

𝐹

𝑅𝑇
 ] 

ICaL 0.025 0.025 p = 2 
15.69(81.5 − 𝑣)

exp  81.5 − 𝑣 /10 − 1
 0.29exp −𝑣/10.86  

ICaN 0.01 0.0001 
p =2 

0.1967(19.98 − 𝑣)

exp  19.98 − 𝑣 /10 − 1
 0.046exp −𝑣/20.73  

q = 1 0.00016exp −𝑣/48.4  
1

exp  39 − 𝑣 /10 + 1
 

ICaT 0.0079 0.007 
p =2 

0.2(19.26 − 𝑣)

exp  19.26 − 𝑣 /10 − 1
 0.009exp −𝑣/22.03  

q = 1 0.00016exp −𝑣/16.26  
1

exp  29.79 − 𝑣 /10 + 1
 

IKAHP 0.001 0.0004 p = 1 1.3 ∗ 1013[𝐶𝑎2+]𝑖
4 0.005 

IA 0.0012 0.001 
p = 1 0.02exp[ 1.8 𝑣 + 33.6 .

𝐹

𝑅𝑇
 ] 0.02exp[ −1.2 𝑣 + 33.6 .

𝐹

𝑅𝑇
 ] 

q = 1 0.08exp[ 4 𝑣 + 83 .
𝐹

𝑅𝑇
 ] 0.08 

Diam 

μm  

16 3 Cm = 1.0 

μF/cm2 

Raxial = 210 Ω-cm Gleak = 0.00018 

Length 

μm 

16.8 150 ENa = 45 

mV 

EK = -85 mV Eleak = -70 mV 

    x∞ = 
α

α+β
 τx (ms) = 

1

α+β
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Table A2: Parameter values for DG PNs. 

Current 

Type 

Soma 

Gmax 

(S/cm2) 

DendP 

Gmax 

(S/cm2) 

Gating 

Variable 
α β 

INa 
0.08 0.08 

p = 3 
−0.3(𝑣 − 25)

exp  𝑣 − 25 /−5 − 1
 

0.3(𝑣 − 53)

exp  𝑣 − 53 /5 − 1
 

q = 1 
0.23

exp  𝑣 − 3 /20 
 

3.33

exp  𝑣 − 55.5 /−10 + 1
 

IfKdr 0.04 0.04 p = 4 
−0.07(𝑣 − 47)

exp  𝑣 − 47 /−6 − 1
 

 

0.264

exp  𝑣 − 22 /40 
 

IsKdr 0.13889 0.012 p = 4 
−0.028(𝑣 − 35)

exp  𝑣 − 35 /−6 − 1
 

0.1056

exp  𝑣 − 10 /40 
 

IC 0.0001 0.0001 p =2 
−0.00642𝑉𝑚 − 0.1152

exp − 𝑉𝑚 + 18 /12 − 1
 1.7exp −(𝑉𝑚 + 152)/30  

𝑉𝑚 = 𝑣 + 40log(1000 𝐶𝑎 
𝑖2) 𝑉𝑚 = 𝑣 + 40log(1000 𝐶𝑎 

𝑖2) 

ICaL 0.0004 0.0004 p = 2 
15.69(81.5 − 𝑣)

exp  81.5 − 𝑣 /10 − 1
 0.29exp −𝑣/10.86  

ICaN 0.0005 0.0005 
p =2 

0.19(19.98 − 𝑣)

exp  19.98 − 𝑣 /10 − 1
 0.046exp −𝑣/20.73  

q = 1 0.00016exp −𝑣/48.4  
1

exp  39 − 𝑣 /10 + 1
 

ICaT 0.0005 0.0005 
p =2 

0.19(19.98 − 𝑣)

exp  19.98 − 𝑣 /10 − 1
 0.046exp −𝑣/20.73  

q = 1 0.00016exp −𝑣/48.4  
1

exp  39 − 𝑣 /10 + 1
 

IAHP 0.00005 0.00005 p = 1 

0.0048

exp −0.5 𝑉𝑚 − 35  
 

0.012

exp 0.2 𝑉𝑚 + 100  
 

𝑉𝑚 = 10log(1000 𝐶𝑎 
𝑖1) 𝑉𝑚 = 10log(1000 𝐶𝑎 

𝑖1) 

IKA 0.005 ─ 
p = 1 

−0.05(𝑣 + 25)

exp  𝑣 + 25 /−15 − 1
 

0.1(𝑣 + 15)

exp  𝑣 + 15 /8 − 1
 

q = 1 
0.00015

exp  𝑣 + 13 /15 
 

0.06

exp  𝑣 + 68 /−12 + 1
 

 Diam. (μm) 16 3 Cm = 1.0 

μF/cm2 

Raxial = 210 Ω-cm Gleak = 0.0002 

Length (μm)  

(S/cm2) 

(S/cm2) 

16.8 150 ENa = 45 

mV 

EK = -85 mV Eleak = -70 mV 

𝜏 𝐶𝑎2+  

(sAHP)(msec) 

(sAHP)(msec) 

(sAHP)(msec) 

1000 1000 
[Ca2+]rest = 

50 nM 
x∞ = 

α

α+β
 τx (ms) = 

1

α+β
 

𝜏2 𝐶𝑎2+   

(C)(msec) 
1 1 
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Table A3: Parameter values for BC and OLM cells (all values for are for both unless otherwise 

indicated). 

Current 
Soma 

Gmax 

(S/cm2) 

DendP Gmax 

(S/cm2) 
Gat. Var. α β 

INa 
BC-0.12; 

OLM-

0.08 

BC-0.12; 

OLM-0.08 

p = 3 
−0.3(𝑣 − 43)

exp  𝑣 − 43 /−5 − 1
 

0.3(𝑣 − 15)

exp  𝑣 − 15 /5 − 1
 

q = 1 
0.23

exp  𝑣 − 65 /20 
 

3.33

exp  𝑣 − 12.5 /−10 + 1
 

IfKdr 

BC-

0.0013; 

OLM-

0.01 

BC-0.0013; 

OLM-0.01 
p = 4 

−0.07(𝑣 − 47)

exp  𝑣 − 47 /−6 − 1
 

0.264

exp  𝑣 − 22 /40 
 

IsKdr 

BC-

0.0013; 

OLM-

0.01 

BC-0.0013; 

OLM-0.01 
p = 4 

−0.028(𝑣 − 35)

exp  𝑣 − 35 /−6 − 1
 

0.1056

exp  𝑣 − 10 /40 
 

IKCa (BC) 0.0002 0.0002 p =1 

0.28 𝐶𝑎2+ 

 𝐶𝑎2+ + exp1 0.00048, 0.84, 𝑣 
 

0.48

1 +  𝐶𝑎2+ /exp1 0.13𝑒−6 , 1, 𝑣 
 

exp1

= 0.00048exp[−
0.12𝐹𝑣

𝑅 273.15 + 𝑑𝑒𝑔𝐶 
] 

exp1

= 0.13𝑒−6exp[−
𝐹𝑣

𝑅 273.15 + 𝑑𝑒𝑔𝐶 
] 

IH (OLM) 0.00002 0.00002 p = 1 x∞ = 
1

exp   84.1−𝑣 /10.2 +1
 

τx (ms) = 

 
1

exp  0.116𝑣−17.9 +exp  0.09𝑣−1.84  
 

ICaL 0.09 0.09 p = 2 
15.69(81.5 − 𝑣)

exp  81.5 − 𝑣 /10 − 1
 0.29exp −𝑣/10.86  

ICaN (BC) 0.0008 0.0008 
p =2 

0.19(19.98 − 𝑣)

exp  19.98 − 𝑣 /10 − 1
 0.046exp −𝑣/20.73  

q = 1 0.00016exp −𝑣/48.4  
1

exp  39 − 𝑣 /10 + 1
 

ICaT (OLM) 0.0005 0.0005 
p =2 

0.2(19.26 − 𝑣)

exp  19.26 − 𝑣 /10 − 1
 0.009exp −𝑣/22.03  

q = 1 0.00016exp −𝑣/16.26  
1

exp  29.79 − 𝑣 /10 + 1
 

IKAHP  0.00002 0.00002 p = 1 1.25 ∗ 1013 [𝐶𝑎2+]𝑖
4 0.00025 

IA 

BC-

0.00015; 

OLM-

0.0001 

BC-0.00015; 

OLM-0.0001 

p = 1 0.02exp[ 1.8 𝑣 + 33.6 .
𝐹

𝑅𝑇
 ] 0.02exp[ −1.2 𝑣 + 33.6 .

𝐹

𝑅𝑇
 ] 

q = 1 0.08exp[ 4 𝑣 + 83 .
𝐹

𝑅𝑇
 ] 0.08 

Diam. (μm)   
BC-15; 

OLM-10 

BC-2.5; 

OLM-3 

Cm = BC-

2.5; 

OLM-2.0 

μF/cm2 

Raxial = BC-100; OLM-150 Ω-

cm 
Gleak = BC-0.0002; OLM-0.0003 

Length(μm)   20 BC-300; 

OLM-250 

ENa = 55 

mV 

EK = -90 mV Eleak = -64 (BC); -60 (OLM) mV 

 x∞ = 
α

α+β
 τx (ms) = 

1

α+β
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FIGURES 

Electrophysiological Recordings 

   
Biologically Realistic Cell Model Plots 

  
 

Iinj =  0.3nA 0.6nA 1nA 

Figure 10A: Electrophysiological recordings and cell model voltage plots of 

Entorhinal Cortex Layer II Stellate Cell to current injections of 0.3, 0.6 and 1.0nA for 

500ms. The biological recordings are shown above with the model simulations below 

for several current injections. 
 
 

Electrophysiological Recordings 

  

 

Biologically Realistic Cell Model Plots 

   
Iinj= 0.6nA/5ms 0.055nA/500ms 0.2nA/500ms 

Figure 10B: Electrophysiological recordings and cell model plots of Dentate Granule 

Cell to current injections of 0.6nA for 5ms, 0.055 and 0.2 nA for 500ms. The 

biological recordings are shown above with the model simulations below for several 

current injections. 
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Electrophysiological Recordings 

 

 

Biologically Realistic Cell Model Plots 

  

Iinj= 0.2nA 0.3nA 

Figure 10C: Electrophysiological recordings and cell model plots of CA3 Spiny 

Pyramidal Cell to current injections of 0.2 and 0.3nA for 250ms. The biological 

recordings are shown above with the model simulations below for several current 

injections. 
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Figure 10D. Multiple generators of theta oscillations in the hippocampal ca3 

network. 

Adapted from Hummos and Nair (2017). 
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Suggested figures for future work: 

Figure 2: Pyramidal cells slow currents and olm-pyramidal cells loop are the two 

resonant mechanisms. 

A) The power spectra of 6 simulations. The ‘None’ experiment had no theta generating 

components with isolated pyramidal cells with no slow currents, and direct unique 

Poisson input with no correlations. The following experiments activated one theta 

component at a time and examined the power spectrum. The recurrent connections were 

activated in ‘+RC’ and produced a small bump in the 2-4 Hz range. BCs activated in 

‘+BC’ produced no spectral peaks. Routing input through the EC added correlations in 

the external input and shift the power to low frequencies but did not produce theta 

peaks. Adding OLM cells ‘+OLM’ produced a robust theta peak. Activating the slow 

currents in pyramidal cells also produced a small but significant peak in theta 

frequencies ‘+RES’. B) relative theta calculations. ‘+RC’, ‘+EC’ increased relative 

theta due to a less specific increase in slow frequency power.  C) firing rates were kept 

within physiological range using the following current injections. None: 7 mA, +RC 8 

mA, +BC 5 mA, +EC 10 mA, +OLM 1 mA, +RES 1 mA. 

________________________________________ 

Figure 3: Resonant mechanisms can substitute for and compete with each other. 

A) Schematic of this experiment with EC inactivated and input directly arriving at CA3 

pyramidal cells. Both OLM cells, BCs, and the recurrent excitatory connections were 

active.  

B) The power spectra of four experiments as follows: “full” simulated with both OLM 

cells and adaptation in pyramidal cells intact, “-OLM” was run with OLM cells 

inactivated, “-sPYR” had OLM cells intact but adaptation and h-current were removed 

from pyramidal cells, and finally “-both” had both pyramidal cells slow currents and 

OLM cells inactivated. The power spectra indicate that theta activity persisted with at 

least one resonant mechanism intact, but also interestingly showed that pyramidal cells 

adaptation as a resonant component may have interfered with the OLM-pyramidal cells 

resonator. 

C) Relative power in the theta band (4-12 Hz) divided by total power (0-50 Hz) and 

normalized to the value of the “full” model run.  

D) Shows the results of our procedure using constant current injections to cells to 

maintain a population average firing rate consistent with physiological data, to 

compensate for the variation in firing rates resulting from inactivating various network 

components. Current injections to pyramidal cells in the different experiments were as 

follows. Full: 3.5 mA, -OLM: 4.2 mA,  -sPYR: 3 mA,  -Both: 8.2 mA. 
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Figure 4: Functional separation at the extremes of cholinergic modulation minimizes 

interference between resonating mechanisms.  

Current injections to compensate for variation in firing rates: ACh 0: Full: -2 mA, -

OLM: -2 mA,  -sPYR: 0 mA,  -Both: 2 mA. ACh 1: Full: 3.5 mA, -OLM: 4.2 mA,  -

sPYR: 3 mA,  -Both: 8.2 mA. ACh 2: Full: 4 mA, -OLM: 5 mA,  -sPYR: 3.5 mA,  -

Both: 8.5 mA. 

________________________________________ 

Figure 5: Synchronizing Mechanisms Can Substitute for Or Interfere With One Another 

Recurrent connections and EC were inactivated, leaving the two synchronizing 

mechanisms in the model, OLM cells and BC cells. We tested three conditions, first 

with both OLM and BC cells active (+OLM +BC), and then with BCs inactivated 

(+OLM -BC) and finally, with OLM cells inactivated (-OLM +BC). Running the three 

conditions under three different cholinergic states revealed different interaction modes 

between the two synchronizing mechanisms. In low ACh, they were equally effective at 

generating theta, and only one mechanism appeared necessary. With increasing 

cholinergic levels, BCs contribution to theta diminished, and in high cholinergic states 

they interfered with OLM generated theta. Current injections to compensate for 

variation in firing rates: ACh 0: +both: -7 mA, -BC: -6.5 mA,  -OLM: -7.5 mA. ACh 1: 

+both: -3 mA, -BC: 1 mA,  -OLM: -6.1 mA. ACh 2: +both: -1 mA, -BC: 2.8 mA,  -

OLM: 1.4 mA. 

________________________________________ 

Figure 6: Recurrent connections and bcs cooperatively synchronize theta oscillations. 

 

OLM cells and EC were inactivated, leaving the two synchronizing mechanisms in the 

model, recurrent connections and BC cells. We tested three conditions, first with both 

recurrent connections and BC cells active (+RC +BC), and then with BCs inactivated 

(+RC -BC) and finally, with recurrent connections inactivated (-RC +BC). Running the 

three conditions under three different cholinergic states revealed a stable engagement of 

BCs in theta generation while recurrent connection had a stronger engagement in lower 

cholinergic states. Current injections to compensate for variation in firing rates: ACh 0: 

+both: 5 mA, -BC: 6 mA,  -RC: 1 mA. ACh 1: +both: 2 mA, -BC: 5 mA,  -RC: -2 mA. 

ACh 2: +both: -2 mA, -BC: 5 mA,  -RC: -2 mA 
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CHAPTER 5 – SUMMARY 

 

Biological neuronal networks are vastly complex and understanding or predicting the 

scientific principles that underlie the behavior and interactions of complex neural circuits 

is a monumental task. Despite the inherent challenges, neuroscientists have developed 

techniques to study neuronal functions from molecular to network level.  Among the tools 

available to study neuroscience, engineering tools such as computational modeling are 

gaining popularity every day and are playing an important role. Computational modeling 

allows the investigation of hypotheses with large parameter variation at multiple levels 

of depth thus saving the considerable time and money that are inherently required for 

biological experimentation. Specific predictions made by the model can be tested with 

biological experiments to confirm the results. Models can be developed with different 

levels of abstraction depending on the function under study. Networks of neuronal modes 

can be constructed using realistic synaptic connections with short-term/ long-term 

plasticity if required to study biological processes and systems involving larger scale 

structures.  

Here we have presented two studies that demonstrate the utility of modeling to address 

hypotheses in these unique systems at various levels of detail.  

 

CHAPTER 2- In Chapter 2, we investigate the functioning of lower urinary tract (LUT) 

during filling/ voiding and also after spinal cord injury. LUT function is controlled by 

many involuntary reflexes and also have a neural control for voluntary voiding. Afferent 

nerves of LUT which carry sensory information across multiple levels of spinal cord are 
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responsible for several aspects of functioning in normal case. However, after spinal cord 

injury some of this information is not conveyed to higher order centers which is 

responsible for voluntary voiding and if this descending input is lost it leads to urinary 

incontinence. Studying the LUT circuit involves thorough testing of afferents, efferents 

and mediating neurons in the LUT circuit to get insights. The current model provides a 

framework at the cellular level for such a study and we investigate how guarding reflex 

and other parasympathetic and sympathetic reflexes work. We developed a cellular and 

network level biophysical model with rodent data and implemented closed loop 

calculation of pressure with efferent firing rate and volume and in-turn using the 

calculated pressure to estimate afferent firing rate which is then incorporated into the 

feedback loops appropriately.  

Future work: 

• There are variations in electrophysiological and functional properties of circuit 

elements between species, sex and across developmental changes. It is not feasible 

to make models for all species and this may not necessary. The long-term goal is 

to study dysfunctions in humans via stimulation or other intervention is the long-

term goal, and it is believed that rodent and cat models may provide sufficient 

background to develop ideas for stimulation techniques that might be relevant for 

humans. We are currently working on a rodent model which should provide 

guidelines for further studies. 

• Current model focusses primarily of functioning of LUT at spinal level with 

descending input from higher order center. However, there are complex 

computations that happen at these supraspinal stages and there are existing 
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networks that can be incorporated. At the other end there are models being 

developed of detrusor muscle also, if we can incorporate both to existing model 

this will increase the testing range of the model and gives a fully functioning 

model with several targets for interventions using electrical stimulation or 

chemical stimulation depending on dysfunction.  

• Currently there is several gaps in the data related to dysfunctions of the circuit 

elements, e.g., after spinal cord injury. These gaps need to be filled in as data 

becomes available. But the nature of current model framework allows for testing 

part of the model where data is available.  

• Finally, the present model is primarily at the cellular and network levels of the 

LUT.  Molecular and genomic pathways are important elements of the overall 

problem, including in the various ganglia and in the bladder, and these levels are 

typically the targets of therapeutic interventions. Again, the modeling framework 

we propose can integrate these elements. 

 

CHAPTER 3 - In chapter 3, we explore the interactions of intrinsic theta generators in 

rodent hippocampus. This work builds on a previously published work from our lab 

(Hummos et al., 2017). Previously we have shown that theta rhythm can be generated 

intrinsically to hippocampus identifying several generators. In current study we classify 

the intrinsic generators as resonators and synchronizing and show that for reliable rhythm 

generation we need at least one resonant and one synchronizing components. The model 

had Izhikevich models for principal cells in CA3 and the two abundant interneuron types 

basket cells (BCs) and oriens lacunosum-moleculare (OLM) interneurons, and the present 
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study incorporated realistic synapses among and between these interneurons. The 

network model also included synaptic currents such as AMPA, NMDA, GABA. Other 

aspects of the model include short-term synaptic plasticity, spatial connectivity patterns 

and known effects of acetylcholine. 

Future work: 

• To improve the model with more testable parameters and to add biological realism 

into the model, all single cell models will be tuned to match biological data using 

Hodgkin-Huxley formulation and model will be scaled to full rodent brain cell 

numbers.  

• The current modeling framework can be easily adapted to study slow-gamma, 

fast-gamma and spontaneous gamma rhythms in hippocampus. Also, there is 

considerable interactions among theta and gamma rhythms. Future work will 

include reproduction of local field potential (LFP) data in addition to unit data 

which can help provide more reliable and experimentally validated predictions.  

 

CHAPTER 4 - In chapter 4, we focus in-depth on model development process. We 

provide overview of the amygdala and its role in acquisition and expression of fear. We 

discuss how computational models can be used to investigate the  fear circuit in 

mammals. We provide information on three popular biological based single cell model 

types such as integrate-and-fire, Izhikevich and biophysical model neuron. We then 

show step-by-step illustration of how we can go about developing the biophysical single 

cell models and the models developed are made publicly accessible. This chapter also 
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focusses on the challenges in modeling such models and how they can complement 

actual experimentation.   

Future work: 

• As more computational power becomes more accessible full-size networks can be 

modeled. Effective way to incorporate neuromodulation into the model need to be 

investigated. Many brain functions involve several brain regions and it is worth 

investing time to develop techniques to effectively these networks without the 

limitation of computational strain.  
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APPENDIX 

Amygdala Models 

INTRODUCTION 

The mammalian amygdala has been the topic of intensive research, due largely to its 

prominent role in the acquisition, consolidation, and storage of memories associated 

with emotional events, including those related to reward (Baxter & Murray, 2002; 

Murray, 2007; Schulz, 2007) and aversive (LeDoux, 2008) memories. Emotional 

memory is viewed as an implicit or unconscious form of memory and contrasts with 

explicit or declarative memory mediated by the hippocampus. The amygdala has been 

shown to participate in a wide range of normal behavioral functions and psychiatric 

conditions (LeDoux 2002), and its structure and basic circuit connections and function 

seem to be conserved across species (Janak & Tye, 2015). However, despite two 

decades of intense research, we still do not understand the role of the various amygdalar 

microcircuits that involve their distinct nuclei (reviewed in Duvarci & Paré, 2014). It is 

been argued that biologically based computational models provide an important 

complement to experiments in studying distributed control of aversive behaviors by the 

amygdala (Nair, Paré, & Vicentic., 2016). Here we focus on such biologically based 

computational models. 

 This chapter is structured as follows. First, we provide a brief survey of 

computational models related to amygdala focusing on the nuclei involved in 

acquisition and expression of fear. We suggest how computational models can 

complement experimental investigations in reverse engineering the mammalian fear 

circuit. Second, we focus on a tutorial illustration of how biophysical models of the fear 
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circuit can be developed systematically starting with models for single cells, that is, 

provide a step-by-step introduction to creating biophysical models of amygdalar cells. 

We use the software package NEURON for this illustration. All the models are publicly 

accessible at the site http://engineering.missouri.edu/neuro/other-resources/ (click on 

“Single Neuron Models”). Finally, we highlight the need for integrating computational 

tools into neuroscience curricula and research, and to ensure meaningful 

interdisciplinary interactions among students from biological (biology, psychology) and 

physical (engineering, physics, mathematics, statistics) sciences. Such interactions are 

critical for tackling the important and exciting challenge of understanding the 

functioning of the fear as well as other circuits. 

Computational Models of Amygdala 

Computational models have been popular in physical sciences and engineering for a 

long time. Indeed, computational models are routinely included in undergraduate and 

graduate courses in these areas and form a critical element in the research enterprise. 

We briefly review computational models and then focus on how we might use such 

models in reverse engineering the mammalian fear circuit, including our own research 

with amygdala models (e.g., Fig.1; Kim et al., 2013a). Interestingly, the National 

Academy of Engineering has listed “reverse engineer the brain” as one of the 14 grand 

challenges in engineering for the 21st century, highlighting the fact that engineering 

tools including computational models have the potential to assist neuroscientists in 

probing nervous system function. This suggests an increase in the involvement of 

engineers in neuroscience research in the coming decades. Later in the section we 

provide a step-by-step introduction to the development of computational models of 
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single cells and networks, using a popular software package NEURON (Carnevale & 

Hines, 2006). 

 

Levels of modeling 

Simplified techniques to model neuronal cells include the popular connectionist, 

integrate-and-fire formulations (Dayan & Abbott, 2005). These have been enormously 

successful and have been used for various studies, particularly theoretical ones 

investigating stability and oscillations. Another promising modeling technique that uses 

the Izhikevich formulation (Izhikevich, 2004, 2007) to retain the key 

neurocomputational properties has also been used to develop large-scale models 

(Hummos, Franklin, & Nair, 2014; Izhikevich & Edelman, 2008). While these 

techniques continue to provide important insights, they do not directly model channel 

and synaptic neurophysiology, and so may not be suited for studies requiring more 

biological realism such as effects of manipulation of individual channel currents, and of 

neuromodulation. We focus here on biophysical models that incorporate channel and 

synaptic neurophysiology. Specifically, we first illustrate how such biophysical models 

have helped provide insights into the role of the various amygdalar nuclei in aversive 

learning, using data from the rodent literature.  

 From a modeling perspective, the nervous system can be viewed at several levels, 

including genetic, molecular, cellular, circuits, multiple circuits/region, and behavior 

levels. Although exciting experimental work at the genetic and molecular levels exists 

for the amygdala (e.g., Mahan and Ressler, 2012), modeling studies linking these to 

higher levels have been scarce, and so focus on cellular and higher levels here. Four of 
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these levels are depicted in Fig. 21.2—the single neuron level with its inputs and 

outputs shown in the figure; local brain region, which typically comprises homogeneous 

populations of neurons and such models provide “population level” output; and models 

of networks of such local regions. So, we start with the fundamental unit of a neuron. 

Different types of neurons are interconnected using connectivity data from biology to 

form networks representing local, regional, and whole brain anatomy. Indeed, in several 

ambitious brain modeling projects, leading researchers are incorporating 

neurophysiological data at multiple levels to develop very detailed and large-scale 

models of the mammalian brain (Eliasmith & Trujillo, 2014; Markram et al., 2015). It 

has been argued that two basic guidelines should be considered in developing large-

scale models: the models should be linked to behavior, and they should have the 

capability of varying the level of simulated detail. We illustrate the modeling process at 

the cellular, circuit, and region levels using the amygdala and the mammalian fear 

circuit as the example case. 

Fear learning and extinction depend on parallel computations in a vast distributed 

network (Pape & Paré, 2010; Sah, Faber, Lopez De Armentia, & Power, 2003). How 

has this circuit been modeled by researchers?  To provide context to the discussion, we 

first adapt the general structure of Fig. 21.2 to the specific fear learning problem. The 

corresponding levels of focus for the fear learning problem are shown in Fig. 21.3. Fig. 

21.3A shows the three types of tone responsive populations of pyramidal cells, with 

high (A), medium (B), and low (C) adapting types. Interneurons are of various types, 

with a typical fast spiking one shown in the panel. Fig. 21.3B shows both experimental 

(Repa et al., 2001) and model (Kim et al., 2013a) population responses (local circuit) 



135 
 

region of lateral amygdala (LA) cells after an auditory fear conditioning protocol. Panel 

4C shows the challenge at the larger circuit level where numerous studies have 

implicated the hippocampus, amygdala, and the prefrontal cortex in regulating fear and 

extinction, but the details are presently unknown. This thus represents an exciting 

challenge presently for modeling researchers. After this level is understood, the next 

challenge will be connecting it to the behavioral level (Fig. 21.3D), which poses 

challenges too formidable to be tackled at the present time, and may require new tools 

and paradigms as mentioned in a later section. 

 Computational models of fear learning have typically used phenomenological (e.g., 

connectionist) or firing rate formalisms. One of the first computational models of the 

amygdala was an anatomically constrained connectionist model of the thalamo-cortico-

amygdala regions for a fear conditioning application that associated tone inputs with a 

specific frequency (CS) with foot shock (US) (Armony, Servan-Schreiber, Cohen, & 

LeDoux, 1995). The model was trained using a modified Hebbian-type learning rule 

and was able to reproduce data related to frequency-specific changes of the receptive 

fields known to exist in the auditory thalamus and amygdala. A neural network 

connectionist model for emotional conditioning focusing on the amygdala and the 

orbitofrontal cortex and their interactions was proposed by Moren and Balkenius 

(2000). The amygdala was the locus of acquisition and the orbitofrontal cortex was the 

site for extinction learning. The model simulated basic phenomena related to emotional 

conditioning including acquisition, extinction, blocking, and habituation. A conceptual 

firing rate model of the amygdala that accounts for many aspects of delay and context 

conditioning was proposed by Krasne, Fanselow, and Zelikowsky (2011). Conditioning 
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and extinction are the result of neuromodulation-controlled long-term potentiation 

(LTP) at synapses of thalamic, cortical, and hippocampal afferents onto principal cells 

and inhibitory interneurons of the LA and basal amygdala (BA). The model included 

conditioning, secondary reinforcement, blocking, the immediate shock deficit, 

extinction, renewal, and a range of empirically valid effects of pre- and post training 

ablation or inactivation of hippocampus or amygdala nuclei, and provided several 

predictions related to contextual extinction. Another firing rate model (Ball, Hummos, 

& Nair, 2012) reported combinations of tone and shock densities that would provide 

experimental estimates of tone responsive and conditioned cell proportions after 

auditory Pavlovian fear conditioning (Repa et al., 2001). Furthermore, it provided 

several insights including how intrinsic connectivity might help distribute sensory 

inputs to produce conditioned responses in cells that do not directly receive both tone 

and shock inputs, and how a balance between potentiation of excitation and inhibition 

prevents stimulus generalization during fear learning. Vlachos, Herry, Luthi, Aertsen, 

and Kumar (2011) developed a network model using leaky integrate-and-fire neurons 

that reproduced the differential recruitment of two distinct subpopulations of BA 

neurons as seen in experiments. Plasticity was modeled using a calcium hypothesis. The 

model revealed that the two populations might encode contextual specificity of fear and 

extinction memories. A recent model focused on the poorly understood topic of 

contributions of the amygdala, prefrontal cortex, and hippocampus to fear conditioning, 

using a firing rate formulation (Moustafa et al., 2013). The authors propose that 

hippocampal input to both ventromedial prefrontal cortex (vmPFC) and basolateral 

amygdala is essential for contextual modulation of fear acquisition and extinction. The 
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model successfully reproduced data from several animal fear conditioning paradigms, 

including acquisition, extinction, reacquisition, and context specificity effects. Another 

class of computational models directly model channel and synaptic neurophysiology 

using the Hodgkin–Huxley modeling formulation that is the focus for the remainder of 

this chapter. This formulation is described next.  

 

Biophysical models can assist with reverse engineering the mammalian fear circuit 

A different class of models that has been reported previously for the mammalian fear 

circuit is the “biophysical” model, which uses a Hodgkin–Huxley formulation for 

membrane potential dynamics, and includes a more realistic neuronal morphology and 

incorporates individual current channels (e.g., sodium, potassium, calcium, etc.) and 

synapses such as N-methyl-D-aspartate (NMDA),  α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA), and γ-aminobutyric acid (GABA). A biophysical 

model is thus able to utilize the rich neurophysiological data that are increasingly being 

generated (Nair, 2012). Such models have been used for a variety of applications 

including modeling the olfactory bulb, amygdala, perirhinal cortex, and dentate gyrus 

(Davison, Feng, & Brown, 2000; Feng, Samarth, Paré, & Nair, 2016; Kim et al., 2013a; 

Li, Nair, & Quirk, 2009; Samarth, Ball, Unal, Paré, & Nair, 2016; Schneider, Bezaire, 

& Soltesz, 2012). More details regarding such models, including how to develop them, 

are provided in a later section. 

 Biophysical models of Lateral amygdala (LA), basal amygdala (BA), intercalated 

cells of amygdala (ITC), central amygdala nucleus (Ce), and of the entire network 

constitute a promising approach to shed light on this question of how fear is learnt in the 
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mammalian brain. To illustrate how biophysical models incorporating channel and 

synaptic neurophysiology can further our understanding of fear learning, we describe 

the insights that emerged from one of our recent modeling studies (Kim et al., 2013b; 

Kim et al., 2015; Li et al., 2009). This model investigated whether the assignment of 

neurons to a fear memory trace involved a competitive synaptic process. Previously, it 

was observed that only a minority of LA neurons increase their responsiveness to the 

CS after fear conditioning (25%; Han et al., 2007; Repa et al., 2001; Rumpel, LeDoux, 

Zador, & Malinow, 2005) even though most cells receive the required inputs (Repa et 

al., 2001). Why might this be? Related to this observation, another study showed that 

LA cells expressing high levels of cAMP response element-binding protein  (CREB) are 

preferentially recruited into the fear memory trace (cells with increased CS 

responsiveness after training or “plastic” cells (Han et al., 2007, 2009; Zhou et al., 

2009). Moreover, when CREB was overexpressed or down-regulated in LA, the 

proportion of LA neurons in the memory trace remained constant, which led to the 

proposal that recruitment of LA neurons into the fear memory trace involves a 

competitive process (Han et al., 2007). Currently, the mechanisms underlying this 

competitive process remain unclear. To address these questions, a biophysical 

conductance-based model of LAd that includes 800 principal cells (PNs) and 200 

interneurons (INs) was developed (Kim et al., 2013a), as an expanded version of our 

previous model (Li et al., 2009). Based on in vitro electrophysiological studies (Faber, 

Callister, & Sah, 2001), model neurons were endowed with various ionic conductances 

so that they could reproduce the electroresponsive properties of PNs and INs, as 

observed experimentally. For instance, to reproduce the continuum of spike frequency 
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adaptation seen in principal cells experimentally (Sah et al., 2003), the model featured 

three types of PNs, with high, intermediate, or low spike frequency adaptation, due to 

the differential expression of a Ca2+-dependent K+ current (gKCa). Afferents to these 

cells were constrained by previous tract-tracing and physiological studies, and included 

neuromodulatory inputs from dopaminergic and noradrenergic neurons. The model also 

included spatially heterogeneous connections between PNs and INs, based on an in 

vitro study (Samson & Paré, 2006). 

Findings from the model 

Because CREB decreases spike afterhyperpolarizations, we considered the possibility 

that a higher intrinsic excitability confers a competitive advantage to particular LA 

neurons. Consistent with this view, we observed that only 1% of model LA neurons 

with high spike frequency adaptation were plastic cells, compared to > 40% of the 

intrinsically more excitable neurons. However, if this factor (intrinsic excitability) acted 

independently, CREB overexpression would result in the recruitment of a higher 

number of LA cells to the memory trace. Yet, this is not what was seen experimentally 

or in the current model (CREB overexpression was simulated by converting less into 

more excitable cells). This suggested that one or more additional factors must be at play 

in the competitive process. Comparative analyses of the intrinsic connectivity of plastic 

vs. nonplastic cells revealed that a major substrate of this competition is the distribution 

of excitatory connections between principal cells and the amount of di-synaptic 

inhibition they generate in other projection cells. These two factors conspire to enhance 

the likelihood that some principal cells will fire more strongly to the CS at the expense 

of others. Effectively, our modeling study provided a novel insight into a general 
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principle of competition leading to memory formation: subsets of projection cells band 

together by virtue of their excitatory interconnections to suppress plasticity in other 

projection cells via the recruitment of local-circuit cells (Kim et al., 2013b).  

 In addition to the findings just cited, our prior models have revealed several insights: 

sustained firing properties of conditioned prelimbic mPFC neurons (Burgos-Robles, 

Vidal-Gonzalez, & Quirk, 2009) depended on monoamine modulation of PL-BLA (PL- 

prelimbic; BLA – Basolateral amygdala) microcircuits (Pendyam et al. 2013). 

Regarding extinction in the amygdala, an emerging debate pits LTP of inhibitory 

circuits against LTD (Long-term depression) of excitatory circuits (Kim et al., 2007). 

Our modeling indicated that both were required to achieve full extinction (Li et al., 

2009). Another modeling study related to extinction showed how IL could overcome 

inter-ITC inhibition and reduce fear expression by decreasing the responsiveness of Ce 

neurons to BLA inputs (Li, Amano, Paré, & Nair, 2011). A very recent study showed 

how intrinsic mechanisms might stabilize encoding and retrieval circuits differentially 

in the hippocampus (Hummos et al., 2014).  

 

How to Develop a Biologically Based Computational Model 

The new area of computational neuroscience provides a tremendous opportunity for 

researchers from the quantitative disciplines of physics, mathematics, computer 

sciences, and engineering. This is because the process of developing a comprehensive 

computational model of various brain regions (including the amygdala), has only begun 

and much work remains. Neurophysiological data continue to be generated at increasing 

rates as we describe below, and so the time is ripe for the development of viable 
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computational models. As reviewed above, only a few computational models have been 

developed for the amygdala and these are either too simplistic or specific to certain 

nuclei. Indeed, we still lack information about amygdalar subcircuits and their 

involvement in different functions. So, on the experimental front, a key requirement is 

to clarify whether the amygdala is indeed involved in a particular function or disorder. 

In the case of such an involvement, the next step would be to design experiments to 

tease out the involvement and contributions of specific amygdalar subcircuits to the 

particular function or disorder. With a host of new tools such as optogenetics, this task 

is within reach presently, and we should have rich data to feed into computational 

models.  

 A computational model could be utilized in concert with experiments to investigate a 

host of “what if” scenarios, even if part of the neurophysiology data is presently 

unavailable. For this reason, computational models are beginning to be viewed as viable 

“tools” to complement in vitro and in vivo techniques, including using the novel 

experimental tools being developed. In this section, we present a detailed step-by-step 

approach of how to begin the process of developing biophysical computational models 

of the amygdala at the cellular and network levels, using the software package 

NEURON (Carnevale & Hines, 2006).  

 

Three popular biologically based single-cell model types 

The membrane potential of individual neurons exhibits unique dynamics that enable 

them, in very specific ways, to both be receptive to inputs from other neurons, and to 

themselves influence other neurons via their output spikes. These membrane potential 
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dynamics are termed “neurocomputational” properties, that is, the computational 

properties of the neuron that determine how its membrane potential changes (including 

spikes) in response to inputs. Izhikevich (2007) argues that a good neuron model should 

capture the relevant neurocomputational properties. A typical neuron in the human brain 

can have ~10,000 synapses (although only a small subset may be active in any state), 

and the presynaptic spikes that arrive via these connections constitute the “stimulus” 

received from other neurons. These inputs excite the neuron and the level of excitation 

is determined by the neurocomputational properties of the particular neuron.  

 We focus on three types of single-cell model types reported in the literature, the 

integrate-and-fire neuron, the Izhikevich neuron, and the biophysical model neuron. The 

interested reader is referred to an excellent comparative analysis of the properties of the 

various model types by Izhikevich (2004). After a description of the three model types 

and their mathematical representations, we illustrate how to develop all three models 

using a pyramidal neuron from the rodent LA as the example case. We also provide 

information that will enable readers to develop single-cell models of neurons on their 

own, via links to “canned” models that they can download and run. 

 

Integrate-and-fire neuron 

This is perhaps the simplest biologically based model of a neuron since it is linear and 

includes only the leak conductance and a spiking threshold. The implicit assumption is 

that voltage-gated conductances do not contribute to the initiation of the spike and 

activate instantaneously after the spiking threshold is crossed. With this logic, the spike 

itself can be neglected from the computations (and added artificially to the plot), and the 
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membrane potential reset to Vrest after the spike, as shown in Eq. 1.1, 

                   𝐶
𝑑𝑉

𝑑𝑡
= 𝐼 − 𝑔𝑙𝑒𝑎𝑘(𝑉 − 𝐸𝑙𝑒𝑎𝑘); When V > Vthresh, V = Vrest                  (Eq. 1.1)   

where 𝑔𝑙𝑒𝑎𝑘 and 𝐸𝑙𝑒𝑎𝑘 are the conductance and reversal potential, respectively, of the 

leak channel. This model can fire tonic spikes with constant frequency (i.e., is class 1 

excitable) and it is an integrator (Izhikevich, 2007). The computation requires only four 

floating-point operations (additions, multiplications, etc.) plus one comparison with the 

threshold. Details about the integrate-and-fire formulation can be found in Dayan and 

Abbott (2005). 

Izhikevich neuron 

The model can exhibit firing patterns of all known types of cortical neurons with the 

choice of four parameters a, b, c, and d as shown in Eq. 1.2.  

               𝐶�̇� =  −𝑘(𝑣 − 𝑣𝑟)(𝑣 − 𝑣𝑡) − 𝑢 + 𝐼         

(Eq. 1.2) 

�̇� = 𝑎(𝑏(𝑣 − 𝑣𝑟) − 𝑢) 

if v ≥ 𝑣𝑝𝑒𝑎𝑘,   v = c,  and u = u + d 

where v is the membrane potential, u is the recovery current, vr is resting membrane 

potential, and vt is the instantaneous threshold potential. The parameters k and b can be 

determined using the neuron’s rheobase and input resistance. The variable u represents 

the sum of all slow currents with outward currents being positive. The sign of b 

determines whether the cell is an integrator (b < 0) or resonator (b > 0). The recovery 

time constant is a. The spike cut-off value is vpeak, and the voltage is reset to c after each 
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spike. Additional details related to the model can be found in Izhikevich (2002, 2007). 

 

Biophysical model neuron 

Biophysical conductance-based models of neurons, using the Hodgkin–Huxley 

formulation, are increasingly incorporating, to varying extents, the growing data 

characterizing neurophysiology, despite the absence of a systematic approach for the 

development of such models. Since biophysical models are the main focus of this 

chapter, we have provided a background and discuss issues related to such models in 

more detail. 

 Biological data used to constrain a biophysical neuronal model include morphology 

(Power Bocklisch, Curby, & Sah, 2011), known current channel types and their 

maximal conductance densities, passive properties of the cell (e.g., input resistance, 

time constant, resting potential), and responses to current injections (Bar-Ilan, Gidon, & 

Segev, 2012). It is also important to preserve synaptic integration characteristics, an 

area that is not well understood presently (Stuart, Spruston, & Hausser, 2008). These 

properties are determined from the literature for the particular neuron prior to 

developing the model equations using the formulation described next. 

 The equation for each compartment (soma or dendrite) followed the Hodgkin–

Huxley formulation (Byrne & Roberts, 2009) in Eq. 1.3, 

              𝐶𝑚𝑑𝑉𝑠/𝑑𝑡 = −𝑔𝐿(𝑉𝑠 − 𝐸𝐿) − 𝑔𝑐(𝑉𝑠 − 𝑉𝑑) − ∑ 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡 − ∑ 𝐼𝑐𝑢𝑟,𝑠

𝑠𝑦𝑛
+ 𝐼𝑖𝑛𝑗       (Eq. 

1.3) 

where 𝑉𝑠/𝑉𝑑 are the somatic/dendritic membrane potential (mV), 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡  and 𝐼𝑐𝑢𝑟,𝑠

𝑠𝑦𝑛
 are the 

intrinsic and synaptic currents in the soma, 𝐼𝑖𝑛𝑗 is the electrode current applied to the 
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soma, 𝐶𝑚 is the membrane capacitance, 𝑔𝐿 is the conductance of leak channel, and 𝑔𝑐 is 

the coupling conductance between the soma and the dendrite (similar terms added for 

other dendrites connected to the soma). The intrinsic current 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡 , was modeled 

as 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡 = 𝑔𝑐𝑢𝑟𝑚𝑝ℎ𝑞(𝑉𝑠 − 𝐸𝑐𝑢𝑟), where 𝑔𝑐𝑢𝑟 is its maximal conductance, m its 

activation variable (with exponent p), h its inactivation variable (with exponent q), and 

𝐸𝑐𝑢𝑟 its reversal potential (a similar equation is used for the synaptic current 𝐼𝑐𝑢𝑟,𝑠
𝑠𝑦𝑛

 but 

without m and h). The kinetic equation for each of the gating functions x (m or h) takes 

the form 

                                        
𝑑𝑥

𝑑𝑡
=

𝑥∞(𝑉,[𝐶𝑎2+]
𝑖
)−𝑥

𝜏𝑥(𝑉,[𝐶𝑎2+]𝑖)
                                                  (Eq. 

1.4) 

where 𝑥∞ is the steady-state gating voltage- and/or Ca2+-dependent gating variable and 

𝜏𝑥 is the voltage- and/or Ca2+-dependent time constant. The equation for the dendrite 

follows the same format with “s” and “d” switching positions in Eq. 1.3.  

 

Developing the three types of computational models for a lateral amygdala (LA) 

neuron 

How do the three single-cell model types compare as far as neurocomputational 

properties? A summary of the comparison is provided in Fig. 1.4 (adapted from 

Izhikevich, 2003). Usage of the integrate-and-fire model has been popular for 

applications involving very large network sizes and for studying stability issues (Dayan 

& Abbott, 2005). The Izhikevich formulation may be a better choice for applications 

that require improved cellular characteristics, in addition to network features. For 

applications that require manipulation at the individual current and synaptic levels, the 
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biophysical model formulation may be more appropriate.  

 We next illustrate the development of all three types of single-cell models in a 

tutorial mode using an example case of a principal cell in the rodent LA (Faber et al., 

2001). For this, as a first step, the reader can download instructions, together with codes 

for developing such models themselves from the site 

http://engineering.missouri.edu/neuro/other-resources/ (click on “Single Neuron 

Models”). The instructions explain in detail how to model each type of cell, and then 

provide an example of how to develop these for an LA neuron. The reader can utilize 

the procedure and modify the codes to develop single-cell models of their own choice. 

Briefly, the procedure to develop a model neuron is as follows: (1) select the model 

formulation from the three types above; (2) determine all the neuronal characteristics to 

be modeled (e.g., resting potential, membrane time constant, frequency–current 

responses); and (3) follow the step-by-step procedure outlined in the instructions. The 

model codes for the three formulations are provided in separate folders. The “hands-on” 

tutorial will provide the reader with an understanding of how to model single-cell types 

using any of the three formulations. Fig. 1.5 shows the responses of the four different 

LA single-cell types (pyramidal cells of types A, B, and C, and a fast-spiking inhibitory 

interneuron), using the three methods. Note that although the single-cell models are 

developed using the NEURON software package, the procedure is general and the user 

can develop the model using other software of their preference such as GENESIS 

(http://genesis-sim.org/), and NEST (http://www.nest-simulator.org/), all of which are 

described at the Organization for Computational Neurosciences site 

(http://www.cnsorg.org/software). Once this is accomplished, the next step will be to 



147 
 

model networks of neurons using the single-cell models. 

  

Moving to the computational model of a local circuit region 

In a local network (level 2 in Fig. 1.2), collections of neurons, largely homogenous, 

interact with each other via excitatory or inhibitory connections. In vitro and in vivo 

studies have focused on such local regions (e.g., amygdala, hippocampus) and reliable 

biological data about single-cell properties, and connectivity is available for some of 

these brain regions. If the inputs to such local networks can be characterized effectively, 

viable models with predictive capability can be developed for such local networks, for 

example, the LA network model described above (Kim et al., 2013a; Li et al., 2009), 

which was successful in replicating the experimentally reported formation of two 

different tone responsive populations in rodents after Pavlovian conditioning (Repa et 

al., 2001). A flowchart illustrating the modeling process for this network case is shown 

in Fig. 21.6. The reader is referred to our prior publication for details related to the 

development of the model itself (Kim et al., 2013a); the model is available for 

download from the public database https://senselab.med.yale.edu/modeldb/.  

 

Next Steps in Modeling the Amygdala and the Fear Circuit 

The challenges facing the computational neuroscience community at the cellular and 

systems/network levels stem largely from our present lack of information about the 

microcircuitry and neurophysiological mechanisms relevant for the particular function 

studied.  
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Single-cell modeling—some challenges 

Single-cell modeling is perhaps the most well understood aspect of neurocomputational 

models, and key computations performed by single neurons in the context of their role 

in networks have been characterized extensively (Brunel, Hakim, & Richardson, 2014; 

Herz, Gollisch, Machens, & Jaeger, 2006). However, some issues remain, which we 

highlight below. 

Morphology 

How many compartments should one select when developing a single-cell model? 

Better understanding of dendritic function will help address this question. Although 

dendrites have been shown to have active channels, the role of these channels in 

dendritic information processing are only beginning to be understood (Stuart et al., 

2008). We provide a brief review of the literature to highlight the issue, and the reader 

is referred to the cited references for guidance on the selection of appropriate numbers 

of compartments in single-cell models. 

 Active channels in dendrites are more easily recruited by synaptic input than by 

retrograde input from the soma (Spruston, 2008). Dendritic spike propagation to the 

soma is extremely limited, and single action potentials propagate through dendrites 

better than spike trains, with a frequency-dependent decrease in spike amplitudes 

observed in spike trains (Johnston, Magee, Colbert, & Cristie, 1996). A uniform 

distribution of Na+ channels in dendrites with some decrease in density and in threshold 

in distal apical dendrites has been shown to facilitate back-propagating action potentials 

(BPAPs) from soma (Johnston et al., 1996). In CA1 pyramidal neurons, the A-type K+ 

channels increase in density toward the distal dendrites and this is hypothesized to 
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attenuate BPAPs. Both CA1 and layer V neurons show a similar somatodendritic 

gradient of HCN channels, presumably to reduce IPSP amplitude and decrease distance 

dependence of EPSP temporal summation in the soma (Spruston, 2008). Ca2+ channels 

are present in dendrites and they can be opened by BPAPs, local dendritic spikes, and 

also by synaptic potentials (Johnston et al., 1996). AMPA conductance shows a 

gradient, with conductance decreasing distally along a dendrite. Since distal dendrites 

have higher input resistance, a lower current is needed to achieve the same membrane 

voltage difference (Katz et al., 2009).  

 While Na+, NMDA and Ca2+ spikes are reported in pyramidal neurons (Major, Larkum, 

& Schiller, 2013), their functional role is not fully understood. Na+ spikes are thought to 

assist BPAPs (Johnston et al., 1996). NMDA spikes are predominant in distal dendritic 

branches and in basal dendrites. NMDA spikes travel longer distances than EPSPs and 

may be required in long dendritic branches for more reliable communication. The distal 

junction of the apical trunk has been shown to produce Ca2+ spikes, presumably 

integrating inputs from more distal dendrites. It is observed experimentally that the 

threshold of Ca2+ spike is lowered if it is preceded by an AP that back-propagates 

(Larkum, Zhu, & Sakmann, 1999). The role of these emerging dendritic mechanisms in 

single-cell computations, and, importantly, in plasticity in network models remains to be 

unraveled. 

 The principal cells in the amygdala are largely of the pyramidal type with both apical 

and basal dendrites. Better understanding of the issues discussed in this section will 

suggest appropriate improvements in both morphology and dynamics for the 

compartmental models of pyramidal neurons of the amygdala described above.  



150 
 

Neuromodulation 

How do we model the effect of neuromodulators and neuropeptides on neurons? 

Neuromodulators such as dopamine and norepinephrine are known to alter the 

functioning of neurons and circuits by changing both current channels and synaptic 

properties, for example, see review in Marder, O’Leary, T., and Shruti (2015). 

Modeling the effect of neuromodulators is dependent on information about the 

distribution of neuromodulator receptors on the cells, and on the level of 

neuromodulators (low, medium, high) depending on whether the region has 

neuromodulator terminals. Although information about these mechanisms is scarce 

presently, the hope is that, as with other “gaps” in knowledge, this one will also be 

filled in the next decade. As an example of how neuromodulator effects can be 

incorporated into a model, the reader is referred to the LA model in Kim et al. (2013a). 

These authors survey how neuromodulators have long been implicated in fear and 

anxiety, and focus on how they regulate Pavlovian fear learning and synaptic plasticity 

in LA.  

 

 

Challenges in moving from cellular to network and to behavior levels   

The transition in modeling from a single-cell to local or regional network levels and 

then to larger networks and to the whole brain is the goal of computational 

neuroscience. Again, lack of information about the relevant microcircuitry and 

functional connectivity at all these levels during various “states” of behavior (e.g., fear, 

pleasure) limits the development and fidelity of such models presently. Nevertheless, 
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researchers have been attempting to develop large-scale models, focusing on specific 

behaviors (Izhikevich & Edelman, 2008; Markram, 2012). With the rich complexity of 

brain processes leading to an equally complex set of behaviors, decisions about the 

“right” model, at both single-cell and network levels, to replicate the behavior of 

interest promise to provide challenges to both biological and computational 

neuroscientists. We describe next some of these challenges for the mammalian fear 

circuit.  

 There is evidence that fear conditioning induces widespread synaptic plasticity in 

several brain areas (Pape & Paré, 2010). In addition to the amygdala, prefrontal cortex 

and hippocampus regions discussed above, thalamic (Weinberger, 2011) and cortical 

(Letzkus et al., 2011) regions have also been implicated, and more information on these 

fronts will surely emerge. Several studies (reviewed in Ji & Maren, 2007) have revealed 

that the ventral hippocampus (VH) and infralimbic (IL) sector of mPFC modulate the 

amygdala during the acquisition and recall of extinction. Recent inactivation studies 

suggest the simultaneous involvement of VH, BA, and mPFC in two possible “loops” 

(Orsini, Kim, Knapska, & Maren, 2011). 

  A goal of future research will be to generalize the model of the amygdala to reward 

learning, and by adding other relevant nuclei (e.g., basomedial amygdala), taking into 

account the different functional roles of particular nuclei and their connections (Janak & 

Tye, 2015). Accomplishing the goal outlined above of creating a comprehensive model 

of the entire amygdala and of the larger fear (and other brain) circuits will require 

interdisciplinary expertise and interactions, including usage of the “tool” of 

computational neuroscience. Wang and Krystal, (2014) characterize the challenges 
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faced in understanding the important application of amygdala-centric psychiatric 

disorders as follows: “It is our belief that these challenges cannot be overcome without 

theory and computational modeling. To advance the field, we need new infrastructure, 

resources, and training of cross-disciplinary young talents who are well versed both in 

mathematical modeling and experimentation.” Reverse engineering the fear circuit is 

perhaps one of the important challenges in clinical neuroscience, and promises to 

provide exciting opportunities for interdisciplinary collaborations including among 

neuroscientists and computational researchers. Indeed, numerous universities are 

developing curricula incorporating computational approaches in biology and 

neuroscience, and this bodes well for future students and researchers interested in the 

exciting area of reverse engineering brain circuits. 
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FIGURES 

 

 

 

 

 

 

 

 

Figure 1.1 Amygdalar nuclei relevant to auditory fear and extinction. Pyramidal 

neurons and their projections are in red. Inhibitory interneurons and their projections are 

in blue. Inputs from prelimbic and infralimbic cortices, and from ventral hippocampus 

are not shown. Amygdalar pathways relevant to auditory fear. Tone and shock 

information arrive at LA via thalamic and cortical routes. LA projects to BA, ITCD and 

CeL. BA fear neurons project to CeM and BA extinction neurons project to ITCV (fear 

recall circuit in bold and extinction recall in dashed line type). Ce represents the 

amygdalar output which projects to the brainstem and other regions eliciting fear. ITC: 

inter-calated cells (subscripts D - dorsal, V-ventral); CeL/CeM: lateral/medial part of 

the central nucleus of the amygdala. 
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Figure 1.2. Four levels of computational modeling in neuroscience. 

 

Figure 1.3. Illustration of the four levels of modeling using the mammalian fear circuit. 
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Figure 1.4.  Attributes of various single cell model types; adapted from Izhikevich 

(2004).  

 

Figure 1.5. Membrane potential responses to current injections for the three LA cell 

types, using three model formulations. The scale bar for x-axis for all panels is 200 ms; 

the scale bar for the y-axis is 20 mV for all depolarizing injections, and 5 mV for all 

hyperpolarizing injections, unless stated otherwise. See text for other details. 
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Figure 1.6. Flowchart illustrating procedure to create a neuronal network model of a 

local region. 
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