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ABSTRACT

Cloud-based applications that rely on emerging technologies such as social vir-

tual reality are increasingly being deployed at high-scale in e.g., remote-learning,

public safety, and healthcare. These applications increasingly need mechanisms

to maintain robustness and immersive user experience as a joint consideration to

minimize disruption in service availability due to cyber attacks/faults. Specifically,

effective modeling and real-time adaptation approaches need to be investigated to

ensure that the application functionality is resilient and does not induce undesired

cybersickness levels. In this thesis, we investigate a novel ‘DevSecOps’ paradigm

to jointly tune both the robustness and immersive performance factors in social

virtual reality application design/operations. We characterize robustness factors

considering Security, Privacy and Safety (SPS), and immersive performance factors

considering Quality of Application, Quality of Service, and Quality of Experience

(3Q). We achieve “harmonized security and performance by design” via model-

ing the SPS and 3Q factors in cloud-hosted applications using attack-fault trees

(AFT) and an accurate quantitative analysis via formal verification techniques

i.e., statistical model checking (SMC). We develop a real-time adaptive control

capability to manage SPS/3Q issues affecting a critical anomaly event that in-

duces undesired cybersickness. This control capability features a novel dynamic

rule-based approach for closed-loop decision making augmented by a knowledge

base for the SPS/3Q issues of individual and/or combination events. Correspond-

ingly, we collect threat intelligence on application and network based cyber-attacks

that disrupt immersiveness, and develop a multi-label K-NN classifier as well as

statistical analysis techniques for critical anomaly event detection. We validate

the effectiveness of our solution approach in a real-time cloud testbed featuring

vSocial, a social virtual reality based learning environment that supports deliv-

ery of Social Competence Intervention (SCI) curriculum for youth. Based on our

experiment findings, we show that our solution approach enables: (i) identifica-
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tion of the most vulnerable components that impact user immersive experience

to formally conduct risk assessment, (ii) dynamic decision making for controlling

SPS/3Q issues inducing undesirable cybersickness levels via quantitative metrics

of user feedback and effective anomaly detection, and (iii) rule-based policies fol-

lowing the NIST SP 800-160 principles and cloud-hosting recommendations for a

more secure, privacy-preserving, and robust cloud-based application configuration

with satisfactory immersive user experience.
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Chapter 1

Introduction

1.1 Social Virtual Reality (VR) as a new paradigm

Virtual Reality (VR) extends the reality-virtual world continuum for providing

immersive access to remote synthetic computer-generated environments [1]. Social

VR is a new paradigm of collaboration systems that uses edge computing for

novel application areas involving virtual reality learning environments (VRLE)

for special education, surgical training, and flight simulators. Cloud applications

integrate with social VR via Internet-of-Things (IoT) devices to create intelligent

network services interconnecting smart edge devices, cloud/fog resources and for

providing high quality of experience [2, 3] in a flexible personal immersive learning

environment i.e. social VRLEs [4, 5]. In addition, such VRLEs allows one to be

virtually present at a distant location in an immersive manner, and increases

accessibility to remote learning materials, instruments and domain experts.

For instance, an exemplar social VRLE e.g., vSocial [4] shown in Figure 1.1 pro-

vides access to online VR-based content, web applications and session monitoring

to enhance learning effectiveness of geographically dispersed VRLE students/in-

structors [6]. Networked VRLE components are controlled from a central cloud

instance with administrative privileges for data collection/aggregation from dis-
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Figure 1.1: Illustration of a cloud-based Social VRLE deployed across high-speed,
low-latency network sites.

tributed user/instructor locations. Another example is adopting social VR in the

field of emerging services and analytics can enable the visualization techniques

and 3D or multi-dimensional computing technologies to be more interactive and

accurate [3]. In addition, Social VR hosting in cloud is a great capability for

many applications since it provides the storage and computation needs for users

with flexibility in cost and performance. With such facilitation of improving user

experience, VR can be used: (i) for transforming designs of interactive systems

(e.g. AR toolkit released by Apple) [7], (ii) for augmenting social networks with

VR (e.g. Facebook own VR social platform named as Spaces) [8] and (iii) for

enhancing the capabilities of a digital workplace, adding unprecedented spatial

depth and realistic environmental detail (e.g. information and workspaces).

1.1.1 Novel Application Domains for Social VR

With the ongoing Covid-19 pandemic, social VR are widely spread into novel appli-

cation domains as immersive learning environments (VRLEs) for remote learning

purposes in education [9], surgical training, flight simulations. Nowadays, people
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with mental health issues use therapy sessions via social VR [10]. Technology

giants like facebook, mozilla, huwaei create new social VR applications as office

workspace environments, social gathering spaces for human presence in the cur-

rent pandemic. Moreover, instead of the video-conferencing tools (e.g.zoom) which

lack in capturing non-verbal cues for effective social communication new social VR

applications with a blend of video conferencing are being created. For instance,

spatial VR meeting room application [11] details about having life-like realistic

virtual avatars (users virtual model in VR) using 3D scans of their faces and an

immersive environment where the meetings of a workspace can be conducted sim-

ilar to a real world office. All such developments make the immersive social VR

as the next generation social media application and services due to their impact

on human activity.

1.1.2 Applications of Social VR as Learning
Environments (VRLE)

Due to the capability of stimulating users’ immersive senses of virtual worlds,

social VR in education are used as interactive learning environments mainly for

remote learning purposes. In such learning environments which are computer gen-

erated with the use of data models and algorithms based on the current pose and

other input stimuli especially in VR based gaming [12, 13]. Social VR in public

safety is used for training personnel in the learning environments simulated for

disaster scenarios. For instance, seismic simulations in VRLEs can help in saving

more lives by identifying the critical moments that earthquake will happen and

training the people accordingly can enable them to prepare for safety [3]. More-

over, manufacturing industries adopt VR as the medium for user communication

mainly to analyze and interpret data in an immersive way. For this, they upload

their VR software to the cloud for interactive data visualization services which

provides a significant edge in the domains of service, training, research and de-

velopment. With such remote monitoring and control through cloud applications

3



Figure 1.2: Sophisticated attacks in social VRLE

provided by VR can be great tools for communications in the manufacturing and

automobile industry [5, 14].

1.2 Robustness and User Immersion Challenges

Social VR, has the potential to augment human performance through the inte-

gration of Internet-of-Things (IoT) devices (e.g. headsets, sensors, controllers).

The content rendering, strategies for effective interaction scenarios are key re-

quirements for the next generation Immersive social media powered by VR [15].

There is a need for more insights on the facilitation of user experience in terms of

perception, sense of presence and cognition which are the basic immersion factors

in social VR. However, there are certain challenges in terms of robustness issues

and user immmersive experience that needs to be addressed.

1.2.1 Inducing Factors of Cybersickness

Typical VR system applications comprise of interactions that require coordination

of diverse user actions from multiple Internet-of-Things (IoT) devices, processing

activity data and projecting visualization to achieve cooperative tasks. However,

inter-connectivity of the VR devices at the network edge (i.e., VR headsets, emo-
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tion recognition devices) and the VR content/monitoring in the cloud instance

makes VRLEs vulnerable to both traditional cyber attacks [16] (e.g., unautho-

rized access, data tampering), as well as new kinds of cyber attack risks (e.g.,

occlusion attack, Chaperone attack) [17]. In addition, there is a lack of existing

knowledge in terms of addressing critical security and privacy (SP) issues, as well

as system/network faults that an attacker can use to negatively impact VRLE

functionality [18]. Any disruption caused by an attacker on the instructor’s VR

content or administrator privileges will in turn impact user activities. There is a

clear dearth of works on the quantitative evaluation for these security and privacy

threats in the context of VRLE applications.

Social VRLEs that are not well-designed can be affected by undesirable effects

due to e.g., physiological conditions, poor content organization, faults from hard-

ware/software, or cyber attacks - while training students in sessions. The impact

of such effects can specifically induce cybersickness, which is a set of unpleasant

symptoms such as eyestrain, headache, nausea or even vomiting, thus compromis-

ing user safety in a VR session [19]. Prior work in [20] addresses both social and

technical/security aspects to provide immersiveness in VR applications. There are

even works that characterize user disruption due to discrepancies and overexpo-

sure in the socio-technical systems [21]. However, state-of-the-art in the design of

VRLEs to critically ensure user safety against these anomaly events is not mature.

The work in [22] outlines the different threats and vulnerabilities in VR but

does not provide any quantitative evaluation. Another notable recent work [17]

also showed how cyber attacks (e.g., overlaying images in field of user vision,

modifying VR environmental factors, human joystick compromise) can trigger a

user safety issue. This issue can disorient users in immersive VR environments

(e.g., force them to hit walls or physical objects) through security analysis of

HTC Vive and Oculus Rift based systems. Further, detection of anomaly events

that disrupt user safety in VRLEs requires use of causal event analysis techniques

[23, 24, 25] that correlates both cyber and human/social component data points.
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Figure 1.3: Immersive attacks in social VRLE

Thus we are motivated to explore the inter-relationship between SPS con-

cerns for a harmonized robustness and performance social VRLE system design

with reduced impact of cybersickness. Failure to address these SPS issues in a

social VRLE application may result in poor user experience (e.g., poor student en-

gagement, disruption of learning/collaboration, reputation loss for the institution

hosting the VRLE [26], and disruption of user safety (e.g., physical harm, eye

strain, cybersickness).

In this thesis, we characterize robustness factors as security, privacy and safety

issues in social VRLE and user immersive performance issues as 3Q: Quality of

Application, Quality of Service, Quality of Experience. For this, we we define

security as the robustness of the VR system against various attacks, privacy as

the protection and secrecy over data sensitivity, and safety as the disruption in

the system that compromises the user’s overall well-being and a fault-attack as an

abnormal condition or defect at the component, equipment, or sub-system level

which may lead to a failure.
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1.2.2 Disruption Factors of User Immersion

User in VR would feel amazed due to the immersiveness, but later on vast majority

of issues occur when the user tries to interact with objects and get the same level

of return for their efforts as they would from a usable mobile application. These

issues are often quite severe to the point where the user is frustrated and confused

and quickly loses the motivation to continue. Also, disruption in such application

functionalities harm the user safety.

For providing immersive experience, VRLE applications need to render the

content to multiple output devices. In addition, maintenance of seamless the user-

system communication (i.e. IoT wearables) for accurate localization and tracking

of the controllers needs to be considered. With ubiquity of IoT wearables (i.e.

headsets and controllers) along with the demand for network and storage capabil-

ities in VRLE creates a set of unique performance issues related to immersiveness.

For instance, perceived delay in visualization of user emotion data that is col-

lected from the IoT sensors in the VRLE application can cause the disruption

in monitoring the student performance thereby can compromise the learning out-

comes. In other words, an attacker can take such network delay issues as vulnera-

bilities and use it to trigger a cyber attack (malicious packet drop) which further

can disrupt the user in session.

Similarly, a network packet drop during the content transfer over the network

can cause a degradation of the quality of the content (audio/video) which fur-

ther disrupts the user experience in VRLE. Such scenarios occur possibly, when a

VRLE session is going on. Based on that real-time applications, factors that can

potentially affect include insufficient bandwidth, frame-rate of a content rendered,

network qualuty, packet loss. To elucidate, in such an application scenario, user

experience is more likely to be effected which can be due to bandwidth consump-

tion or sufficient image quality factors. In addition to that, there should a strategy

selection based on suitability for the issues (e.g.,bandwidth conditions) should be

emphasized. In this thesis we provide a characterization study of a remote learning
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Figure 1.4: The interplay of the 3Q’s : QoE, QoA, and QoS

application in a virtual reality infrastructure. To the best of our knowledge, this

work is the first to characterize data processing latency issues affected by multiple

factors, and investigates appropriate system architecture configurations to satisfy

user QoE requirements in a social VRLE.

1.2.3 Social VRLE Application Case Study

In this thesis, our social VRLE case study will involve vSocial [4], which is de-

veloped for training youth with Autism Spectrum Disorder (ASD). The vSocial

application is used for delivering a Social Competence Intervention (SCI) cur-

riculum via a system as shown in Figure 1.5 that consists of modules such as:

VR content rendering, web applications and classroom portal with instructional

content hosted as web pages. Our multi-modal VRLE system as shown in Fig-

ure 1.5 uses the High Fidelity platform [27], and renders 3D visualizations based

on the dynamic human computer interactions with an edge cloud i.e., vSocial

Cloud Server. The vSocial Cloud Server shown in Figure 1.5 delivers the VRLE

content to the users in these virtual classrooms and stores the user engagement

information and activities in real-time. The vSocial server provides functionalities

such as user access control, session content management, and student progress

tracking. Given that the vSocial server is a critical system component, it is an
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Figure 1.5: vSocial – Social VRLE application system setup

attractive target for an attacker. Our VRLE setup includes: VR headset devices

(HTC Vive), hand-held controllers, and base stations for accurate localization and

tracking of controllers [4].

1.3 Joint Tuning Approach of Robustness and
Immersive Performance based on DevSecOps
Paradigm

In this thesis, we propose a novel joint methodology that tunes both user immer-

sive performance and robustness factors jointly such that the user experience is

facilitated in terms of increased immersion and cybersickness control for a social

VRLE application case study (i.e. vSocial). Our joint tuning methodology will

feature “towards a harmonized robustness and performance by design" (i.e. Formal

modeling and analysis) and an “adaptive control of performance and robustness"

as shown in Figure 1.6 to enable immersive experience for VRLE users within

future VRLE systems.

The main goal of our methodology is to control the cybersickness along with
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Figure 1.6: A novel methodology for ensuring robustness and high performance in
social VRLE applications
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maintaining high immersive experience for the users participating in VRLE ses-

sions. The joint tuning approach requirements are motivated by the consequences

of ill-suited VRLE design which makes it vulnerable to security breaches and pri-

vacy leakage attacks that can significantly impact sensitive users (e.g., special

education students, patients). Till date, state-of-the-art in social VR focused on

technology advancements, software, application and collaboration architectures

with little attention to SPS concerns. In addition, there are no well-defined threat

models for the design of trustworthy learning environments with a co-operative

setting of geographically distributed users and IoT devices. Moreover, there is a

knowledge gap that provides insights into how cyber-attacks influence the immer-

sion factors that directly cause cybersickness.

Our joint tuning approach features will supplement the current social VR sys-

tems to facilitate immersive, collaborative user interactions and ensure the safety

of the user. The solution approach in Figure 1.6 features anomaly detection mod-

ule, control and decision making module for real-time adaptive control along with

development of a harmonized VRLE design. This thesis addresses the challenges

of joint tuning performance and robustness in social VRLEs that will advance user

experience research related to online learning frameworks, cloud platforms, formal

methods. In addition, my thesis outcome brings new insights to education/special

education, public safety, telehealth application areas using social VR. In detail,

the contributions of my thesis can be summarized as follows:

1. Harmonized Robustness Design and Performance

• Theoretical contributions: Explored about the inter-relationship of im-

mersion and SPS issues inducing cybersickness (see Chapter 2). Specifi-

cally, my inter-relationship analysis is built upon Attack Fault Tree for-

malism (AFT) as novel threat models for social VRLEs. Using formal

verification techniques (i.e. statistical model checking), we determine

the probability of occurrence of events (i.e. inherent attack vectors and

performance issues) leading to cybersickness and disruption of UIX in
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current VR systems. To my knowledge, this is the first SPS and 3Q

modeling technique for identifying cybersickness factors and provide

formal guarantee on the VRLE system and user behavior.

• Design Contributions: For a trustworthy social VRLE design, we devel-

oped a quantitative framework that integrates relevant security prin-

ciples following the National Institute of Standards and Technology

(NIST) SP800-160 guidelines [28]. Such adoption of security principles

in mainly for reduction of cybersickness caused due to either direct

immersion attacks or inherent attack scenarios (i.e. consequences of

cyber-attacks).

2. Threat Intelligence Collection for Critical anomaly event detection

• Algorithm Contributions: Novel ML-enabled algorithms for detection

and collection of single and combination of attack/fault scenarios that

can be used as threat intelligence collection via a mature knowledge

base (See Chapter 3). To elucidate, we develop a multi-label K-NN

classifier for detection of multi-attack/fault scenarios (i.e. combina-

tion/consequences of single network attacks) before the user experience

gets disrupted (VRLE server crash occurrence). This is mainly, due to

the lack of accuracy for classifying multi-attack using a single labeled

KNN. For this reason, we extend the model to a multi-label KNN clas-

sifier to obtain the accurate anomaly detection. Moreover, for detection

of attacks with sparse data (i.e. application attacks such as unautho-

rized access), developed a Z-score based statistical analysis for flagging

malicious anomaly event behavior. With the experimental results, we

compare the performance of each algorithm for a given anomaly event.

In addition, novel attack detection metrics such as suspiciousness score

for attack occurrence and user immersive experience (UIX) score are

also used.
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• Design Contributions: Novel anomaly detection module that captures

the threat intelligence using novel quantitative metrics for cyber-attack

occurrence (i.e. network-based and application-based attacks) into a

Knowledge base for detecting future anomaly events in real-time before

the user safety gets compromised.

3. Adaptive Control of Robustness and Performance for Resilience

• Theoretical contributions: Novel rule-based approach based on adaptive

control for resilience in social VRLEs (See Chapter 4). My work is

the first to investigate adaptations as attack/fault mitigation strategies

with NIST guidelines to control cybersickness

• Algorithm Contributions: Dynamic Decision Making built on decision

trees and their associated metrics for determining the suitability of the

list of adaptation for a given anomaly event inducing undesired cyber-

sickness. Novel Closed loop mechanism for determining the impact of

the mitigation strategies for a given anomaly event. In addition, we

perform characterization of cybersickness quantitative parameters for

social VRLE application users.

• Design Contributions: Developed a novel 3QS framework that relies on

decision metrics implemented in a VRLE application setting for real-

time adaptations. In addition, performed modeling as a priority queue

for the user-system events along with objective assessment of CS and

UIX during VRLE session.

1.4 Thesis Organization

The remainder of thesis is organized as follows: In Chapter 2, we firstly introduce

our quantitative framework for formal modeling and analysis of SPS and immersion

issues. Then, we explain each component of our framework in details. Lastly,
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we evaluate our framework for attack datasets; and provide the case studies to

demonstrate the possible usage of NIST principles for cybersickness mitigation.

In Chapter 3, we describe our anomaly detection module by developing a multi-

label KNN model and statistical analysis technique to detect the cyber-attacks

disrupting user experience. We also introduce novel assessment techniques for user

immersive experience and attack occurrence metrics based on different attacker

profiling. In Chapter 4, we introduce our adaptive control 3QS framework by

proposing a rule-based dynamic decision making approach. Finally, we summarize

this thesis in chapter 5.
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Chapter 2

Towards Harmonizing Robustness
and Performance by Design

2.1 Background and Related works

We present a summary of SPS issues in emerging technologies such as IoT as

discussed in [29], which in particular, comprises of an exhaustive compilation of

potential security and privacy threats and challenges. Another comprehensive

study about this topic is presented in [30]. A typical VRLE application is suscep-

tible to similar vulnerabilities along with human well-being, which has not been

previously addressed in existing works. It is important to note that we are not

exploring the trustworthiness, but rather focusing on the effect of VR usability

due to potential security and privacy attacks.

In VRLE, the instructor plays a critical role by changing the pace of curriculum

delivery and educational VR content in the virtual classroom based on continu-

ous student evaluation (e.g., tokens, passes or strikes). The VRLE administrator

also occupies an elevated position as he or she controls the user data of several

sessions. Any disruption due to masquerading or spoofing by attacker with mali-

cious intents [31] on the instructor’s VR content or administrator privileges will

compromise the learning activities in such a collaborative (virtual) space.
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Authors in [32] discuss challenges in security and privacy for Augmented Real-

ity (AR) applications and explore opportunities for securing AR systems without

much discussion about the safety aspects. Although threats in AR and other IoT

systems are also relevant in VR applications, VR threats differ from AR threats

because of the complete user immersion in a virtual world. Multiple attacker mod-

els in [33] for threats in security and privacy for distributed IoT systems focus on

threats such as DoS, physical damage, eavesdropping, etc. They suggest counter-

measures but without evaluation studies. A survey in [34] classifies the security

and privacy attacks in IoT systems, and discusses security issues in different layers

i.e., in application, network, transport and perception.

Previous research has examined privacy issues in AR, fog and mobile com-

puting. The AR browser in [35] examines in depth about the vulnerabilities and

requirements for mobile devices without any significant evaluation of proposed

approaches. Works about privacy attacks for fog computing [36] discuss issues

such as trust and authentication, data storage, location and usage privacy. A

thorough survey on mobile computing privacy threats [37] highlights the trade-off

between functionality and privacy. Some major threats which are also applicable

to our VRLE include: lack of transparency, tracking, leaks from (mobile) sensor,

among others. They highlight the need to go beyond specific components such as

network, hardware or application, and propose end-to-end solutions that consider

system and data vulnerabilities [38]. An observation given the above state-of-art

is that there are very few scholarly works on the quantitative evaluation for these

security and privacy threats in the context of VR applications.

A seminal work on safety issues for virtual environments [39] established that

human performance efficiency is affected by task and user characteristics. Ex-

isting works such as [40], compared a virtual environment in a display monitor

with Head-Mounted Display (HMD) to establish its correlation with cybersick-

ness. Most recently, works such as [41] highlight the problems about overexposure

and cybersickness in VRLEs for training youth with ASD. Considering the exist-
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ing SPS research in such VRLE applications, our work not only considers security

and privacy, but also safety threats in a single comprehensive risk assessment

framework.

2.1.1 Characterization of Robustness Factors in social VRLE

The focus of our work is to categorize threats based on three orthogonal aspects

in VR applications: security, privacy and safety (SPS) which we consider as the

robustness factors. We define security as the robustness of the VR system against

various attacks, privacy as the protection and secrecy over data sensitivity, and

safety as the disruption in the system that compromises the user’s overall well-

being.

To facilitate collaboration among students distributed over multiple locations,

social VRLE applications such as vSocial [4] demand continuous and secured

interoperability with entities (e.g., network-connected edge cloud) that requires

large-scale capture, processing, and visualization of sensor data streams. These

inherent challenges demand novel techniques for threat modeling of SPS factors

in such complex multi-modal systems. In our proposed work, we provide threat

formalization and risk assessment of the virtual reality learning environments us-

ing vSocial as a case study. We consider the potential threats pertaining to the

vSocial server as the critical attack target, along with the respective SPS factors as

shown in Fig. 2.1. We use these threat-to-system component mappings to design

our attack trees, which ultimately quantify the risk score for each of the VRLE

application system modules.

In the following paragraphs, various SPS attacks on server components are

summarized:

1) Security: All VRLE systems are open to security attacks that can compro-

mise integrity and performance. Session failure results from malicious activities

carried out by attacker to crash VR sessions such as Denial of Service (DoS) at-

tacks [33]. Threats such as Elevation of Privilege (EOP) provide attackers elevated
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Table 2.1: Mapping of threats on vSocial Server to SPS aspects
Threat Security Privacy Safety

Insertion of Malicious Code
Location Inference Attack

DDoS/DoS
Elevation of Privilege (EOP)

Tampering
Eavesdropping

Improper Disposal of User Data
Extended Sessions
Shoulder Surfing
Session Failure

Informed Consent
Network Discrepancies

Bugs in VR
Impersonation

access to sessions and activities that enable them to modify system contents or

add malicious files. A typical VRLE system collects large amounts of sensitive

data, which are susceptible to manipulation through data tampering performed

via unauthorized channels. Furthermore, data integrity can be compromised by

insertion of malicious code to modify session entities or data, or even change sys-

tem configuration or access policies. Also, network attacks, such as DoS or DDoS

result in system crashes and data unavailability. Moreover, impersonation attacks

can occur when impostors login with stolen credentials, and access sensitive user

information.

2) Privacy: Threats to privacy impact VRLE data confidentiality. Attacks such

as eavesdropping allow an attacker to access confidential information via packet

sniffing. Also through shoulder surfing, attacker can gain access to user authoriza-

tion information through screen or hand movement observation in VR sessions.

Furthermore, data security breaches including tampering with static and transit

data allows the attacker to gain access to user credentials and real-time data. Ad-

ditionally, tampering can indirectly lead to other privacy threats; for instance, the

manipulation of instructor information enable attackers to impersonate instructors

18



and lead courses, which is extremely harmful to students. This can be particularly

detrimental to vSocial, as sensitive user data such as emotion recognition, student

information and other personal information is constantly collected. Informed con-

sent is also a concern if users are not notified about what data is being collected

from them. Improper disposal of data can also compromise privacy due to deleted

information still residing in the server, putting the users confidentiality at risk.

3) Safety: We consider safety threats to be factors that directly impact user well-

being. For instance, session takeover allows an attacker to control the VR render-

ing, impacting user activity in a VR session. Moreover, any network discrepancy

initiated by an attacker can cause sudden changes in VR rendering leading to user

disorientation. Unintentional activities can also cause safety issues. For example,

computer bugs can cause glitches within the VR rendering software, resulting in

sudden differences in visuals inside the headset. Extended sessions can cause cy-

bersickness [40] due to an individual being forced to stay in a VR session for an

extended period of time.

2.1.2 Threat Modeling Approaches using STRIDE

A threat model is defined as a framework which details internal and external

vulnerabilities, as well as objectives and countermeasures [42]. Threat models are

utilized across various disciplines such as cloud computing [43], health records [44],

and storage [45]. Threat model for a multi-modal system such as VRLE can

provide a systematic analysis of possible threats and help identify any module

that is highly vulnerable to attacks.

Rather than exploring threats in the entire vSocial system,we consider the vSo-

cial server as a critical target (i.e., thetrusted computing base) as it executes several

functionalitiessuch as: rendering controls, visualization, web applications,storage,

as shown in Fig. 1. The session permissions refer tousers’ ability to access session

resources. The storage dealswith transit data, which is any data collected in real-

time suchas emotion data or network performance measurements, andstatic data,
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Figure 2.1: Threat model representing formalization and classification of Security,
Privacy and Safety threats originating in the vSocial VRLE server hosting the
virtual reality content.

which refers to user data and progress reports. The visualization functionality al-

lows for display of real-time dataso that the instructor or administrator can view

it on a webportal. The rendering controls enable the instructor to invitestudents

(other users) to join the VR class. A compromise inthe security of these modules

can leak confidential informationor could compromise the integrity of the entire

VRLE system.

2.1.3 Attacks in VRLE application use case:

The users in a social VRLE are networked and geographically distributed, which

creates a series of potential attack scenarios. Using vSocial shown in Figure 1.5 as

a social VRLE case study, herein we demonstrate exemplar security and privacy

attacks that can affect the VRLE application sessions.

Security Attacks: An attacker can gain unauthorized access to either tamper

any confidential information (user, network, VRLE components) by impersonating

as a valid user, or disclose compromised confidential information. To elucidate,

the instructional content in a vSocial application is in a web-enabled presentation
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Table 2.2: Overview of the VRLE STRIDE Model
STRIDE
Categories

Examples

Spoofing An attacker can assume the identity of a student to track other users movement or disturb the user learning experience.
An unauthorized access to the storage in VRLE will expose the stored visualized data to the attacker.

Tampering
of Data

EEG data which is collected through muse headsets can be tampered if not transited on a secured network to storage or
for visualization.
Unauthorized access as an instructor can tamper the VRLE content, modules or change of different user permissions.
Data retrieved from the storage can be tampered via SQL injection attack.
Tampering in configuration or firmware of microcontrollers in VR device can disrupt user learning experience but can
also, impact visual content in VRLE.

Repudiation
An attacker can change the authorization/validation actions which is part of data collection/ visualization phases in
VRLE and can log incorrect information.
A malicious insider tampers the stored data (EEG data) and erases the logs recorded.

Information
Disclosure

User emotion data at data collection/ visualization can be disclosed via sniffer attack or unauthorized access to the
network.
Data stored in the storage component can be disclosed using the logs information if it is not secured.
Confidential data such as user ID, session information etc., can be disclosed if the data is not sent over a secured
network.
User avatar information can be disclosed by the attacker through packet spoofing which can eventually impact user
VRLE experience.

Denial of
Service

VRLE component muse which collects user emotion data would be unavailable due to a denial of service attack.
Sending multiple Sync flood requests to VRLE server interrupts the data visualization resources/ access to storage.
Loss of availability for VR rendering due to Denial of Service (DoS) for users.
False user emotion data is displayed to the instructor due to intermittent network discrepancies (low bandwidth
conditions).

Elevation of
Privilege

A malicious user might elevate his or her privilege level to compromise the confidential user data in VRLE.
An attacker impersonates as an instructor for higher user/ access rights than his/her original authorization levels
(admin) in order to change user accounts, tamper the active directory.
Unauthorized access to the instructor side can result in elevation of access to users. An attacker can give more access
to users in VRLE which can result in a negative impact on learning outcome.

Figure 2.2: Unauthorized access to VRLE learning content.

format using the features present in High Fidelity. To guide the students through

activities in the vSocial learning environment, the instructor will have privileged

access to control the learning content settings such as e.g., editing the slides, and

rewarding the students based on their performance. Gaining Unauthorized access

to the instructor account as shown in Figure 2.2 can lead to disclosure of user in-

formation, and tampering of the learning content in vSocial to negatively impact

the users’ (students’) learning experience.

Figure 2.3: Privacy attack on vSocial application.
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Privacy Attacks: A user privacy breach can involve an intruder entering a VRLE

world with fake credentials to snoop into the virtual classroom conversations. The

attacker can then disrupt an ongoing VRLE session by obstructing the view of

the users in their learning sessions and can even disorient the content. Disorien-

tation can possibly lead to a user running into a wall and getting physically hurt.

Privacy attacks can also involve packet tampering that was demonstrated in [46],

where an attacker performs illegal packet capture in order to extract sensitive in-

formation (packet sniffing attack). A potential privacy breach can occur when the

attacker discloses the confidential information obtained from the captured packets

as shown in Figure 2.3. Using this packet sniffing attack, the avatar (user virtual

information) can also be disclosed with private location information and student

credentials.

2.1.4 Statistical Model Checking

Statistical model checking (SMC) is a variation of the well-known classical model

checking [47] approach for a system that exhibits stochastic behavior. The SMC

approach to solve the model checking problem involves simulating (Monte Carlo

simulation) the system for finitely many runs, and using hypothesis testing to infer

whether the samples provide a statistical evidence for the satisfaction or violation

of the specification [48].

Stochastic timed automata: Stochastic timed automata (STA) is an extended

version of timed automata (TA) with stochastic semantics. A STA associates

logical locations with continuous, generally distributed sojourn times [49]. In

STA, constraints on edges and invariants on locations, such as clocks are used to

enable transition from one state to another [50].

Definition 1 (Stochastic timed automata). Given a timed automata which is

equipped with assignment of invariants I to locations L, we formulate an STA as

a tuple T = 〈 L, linit, Σ, X , E, I, µ 〉, where L is a finite set of locations, linit ∈

L is the initial location, Σ is a finite set of actions, X is the finite set of clocks,
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E ⊆ L × Lclk × Σ × 2X is a finite set of edges, with Lclk representing the set of

clock constraints, I: L −→ λ is the invariant where λ is the rate of exponential

assigned to the locations L, µ is the probability density function ( µl) at a location

l ∈ L.

Initial Wait Fail

initiate!
x := 0

fail?

Figure 2.4: An exemplar STA.

An exemplar STA is shown in Figure 2.4 that consists of the locations {Initial,

Wait, Fail}. Herein, the Initial location represents the start of execution of an

STA and a clock x is used to keep track of the global time. The communication

in an STA exists between its components using message broadcast signals in a

bottom-up approach. The STA is activated by broadcasting initiate! signal, which

transitions to wait location and waits for the fail signal. In an STA, time delays

are governed as probability distributions (used as invariants) over the locations.

The Network of Stochastic Timed Automata (NSTA) is defined by composing

all component automaton to obtain a complete stochastic system satisfying the

general compositionality criterion of TA transition rules [49, 51].

UPPAAL SMC: UPPAAL SMC is an integrated tool for modeling, validation,

and verification of real-time systems modeled as a network of stochastic timed

automata (NSTA) extended with integer variable, invariant, and channel synchro-

nizations [51]. In SMC, the probability estimate is derived using an estimation

algorithm and statistical parameters, such as 1− α (required confidence interval)

and ε (error bound) [52]. For instance, if we indicate goal state in the STA of

Top_event as Fail, then the probability of a successful occurrence within time

t can be written as: Pr[x <= t](<> Top_event.Fail) where, <> represents the

existential operator (♦) and x is a clock in the STA to track the global time.
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Figure 2.5: Proposed framework for security, privacy analysis in social VRLE.

2.1.5 Design principles

To build a trustworthy VRLE system architecture which ensures security and

privacy, integration of design principles in the life cycle of edge computing inter-

connected and distributed IoT device based systems is essential [53]. We adapt

the following three design principles from NIST SP800-160 [28, 53] such as: (i)

Hardening – defined as reinforcement of individual or types of components to en-

sure that they are harder to compromise or impair, (ii) Diversity – defined as

the implementation of a feature with diverse types of components to restrict the

threat impact from proliferating further into the system, and (iii) Principle of least

privilege – defined as limiting the privileges of any entity, that is just enough to

perform its functions and prevents the effect of threat from propagating beyond

the affected component.

2.2 Quantitative Framework for Security, Privacy
Issues

In this section, we present details of our proposed framework that uses preliminary

results from section 2.1.3 for security and privacy analysis (i.e., to identify the most

vulnerable attacks) of social VRLE applications. An overview of the steps followed

in our framework is shown in Figure 2.27. Firstly, we outline the threat scenarios

in a social VRLE application [4] using traditional approaches. Secondly, we use

an attack tree formalism for the modeling procedures. Following this, each attack
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tree is translated into an equivalent STA to form an NSTA, which is input into

the UPPAAL SMC tool. Lastly, we use the quantitative assessment from the tool

to determine if the probability of disruption is higher than a set threshold (user

specified requirements). Based on this determination, we subsequently prescribe

the design principles such as: hardening, diversity and principle of least privilege

that can be adopted in VRLE deployments. Overall, our framework steps help

us to investigate potential security, privacy attack scenarios and recommend the

design alternatives based on design principles for securing an edge computing

based VRLE application.

2.2.1 Formal Modeling of Security and Privacy using Attack
Tree (AT) Formalism

We formalize the outlined security, privacy threat scenarios from stride model

described above using attack tree formalisms. Attack trees are hierarchical models

that show how an attacker goal (root node) can be refined into smaller sub-goals

(child/intermediate nodes) via gates until no further refinement is possible such

that the basic attack steps (BAS) are reached. BAS represents the leaf nodes of

an attack tree [54]. The leaf nodes and the gates connected in the attack trees

are termed as attack tree elements. To explore dependencies in attack surfaces,

attack trees enable sharing of subtrees. Hence, attack trees are often considered

as directed acyclic graphs, rather than trees [50].

There are several tools to develop attack trees such as ADTooL, SecurITree [55],

among others which formalize attack trees that can be used for risk assessment.

SecurITree specifically shows its flexibility by considering several input param-

eters such as: rates, weights, and counter measure nodes at every level of the

tree. We also can perform risk assessment by using Frequency rates and duration.

Frequency rates refer to the number of times an attack occurs in a specific time pe-

riod, and the duration is the timespan of the attack on the VRLE system. Other

functionalities such as counter measure node could also be considered within a
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VRLE application setup context. We use the attack trees concept from [56] and

derive graphical models that provide a systematic representation of various attack

scenarios.

Definition 2 (Attack trees). An attack tree A is defined as a tuple {N ,Child,

Top_event, l} ∪ {AT_elements} where, N is a finite set of nodes in the attack

tree; Child: N → N* maps each set of nodes to its child nodes; Top_event is an

unique goal node of the attacker where Top_event ∈ N; l: is a set of labels for

each node n ∈ N ; and AT_elements: is a set of elements in an attack tree A.

Attack tree elements: Attack tree elements aid in generating an attack tree

and are defined as a set of {G ∪ L} where, G represents gates; L represents leaf

nodes. Following are the descriptions of each of the AT elements.

Attack tree gates: Given an attack tree A, we formally define the attack tree

gates G = {OR,AND,SAND}.1 An AND gate is disrupted when all its child

nodes are disrupted, whereas an OR gate is disrupted if either of its child nodes

are disrupted. Similarly, SAND gate is disrupted when all its child nodes are

disrupted from left to right using the condition that the success of a previous step

determines the success of the upcoming child node. The output nodes of the gates

using these gates G in an attack tree A are defined as Intermediate nodes (I),

which will be located at a level that is greater than the leaf nodes.

Attack tree leaves: An attack tree leaf node is the terminal node with no other

child node(s). It can be associated with basic attack steps (BAS), which collectively

represent all the individual atomic steps within a composite attack scenario. To

elucidate, for an attacker to perform intrusion, the prospective BAS can include:

(i) identity spoofing, and (ii) unauthorized access to the system depending on the

attacker profile. Thus, every BAS appears as an implicit leaf node of the attack

tree. We assume the attack duration to have an exponential rate and model the

equation as : P (t) = 1− eλt where, λ is the rate of exponential distribution. We
1We limit our modeling to these three gates, however attack trees can adopt any other gates

from the static/dynamic fault trees.
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use this exponential distribution because of its tractability and ease of handling,

and also because it is defined by a single parameter.

Figure 2.6: Formalized security attack tree with threat scenarios disrupting LoI.

2.2.2 Formal Description of Novel ATs for Security and Pri-
vacy issues in VRLE

Using experimental evidence from our work [26], we model threat scenarios in the

form of a security attack tree and privacy attack tree as shown in Figures 2.6

and 2.31, respectively. The descriptions of the leaf nodes are listed in Table 2.3.

Each of the threat scenarios relevant to Loss of Integrity (LoI) issue are outlined

in security AT and privacy leakage issues in the privacy AT.

Figure 2.7: Formalized privacy attack tree with threat scenarios disrupting privacy
leakage.

27



Table 2.3: Descriptions of leaf nodes in security and privacy attack trees.
Security Attack Tree Privacy Attack Tree

Leaf Node Components Description of Leaf Nodes Leaf Node Components Description of Leaf Nodes
Impersonation Attacker successfully assumes the identity of a valid user Unauthorized Access Attacker gains access to VR space

Packet Spoofing Spoofing packets from a fake IP address to impersonate User VR space location Attacker determines the user location in
VR space

Sync Flood Sends sync request to a target and direct server resources
away from legitimate traffic

Ping sweeping Attacker sends pings to a range of IP
addresses and identify active hosts

SQL Injection Attacker injects malicious commands in user i/p query
using GET and POST

Capture packets Attacker uses packet sniffer to capture
packet information

Insert Malicious Scripts Attacker successfully adds malicious scripts in VR Analyze packets To identify erroneous packets to tamper

Capture Packets The attacker uses a packet sniffer to capture packet
information

Intrusion Attacker performs an unauthorized activity
on VR space

Analyze Packets Attacker identifies erroneous packets to tamper Eavesdropping Attacker listens to conversations in VR space

Modify Sensitive Data To modify any sensitive information by eavesdropping Disclosure of sensitive
information

Attacker maliciously releases any captured sensitive data

User Login User login into VRLE
Capture hostname With IP address obtained, attacker can capture

the hostname in the VRLE application
Unauthorized Login Attacker gains access into VRLE by unauthorized means
Password Attacks Attacker recovers password of a valid-user

Figure 2.8: STA for root node of security AT.

Moreover, the listed attack trees are useful when they are concerned with user

privacy and safety in a VRLE system. To elucidate, critical VRLE applications

such as flight simulations, military training exercises and vSocial (developed for

children with ASD) are sensitive to information disclosure attacks that can cause

significant disruption for the stakeholder participants. If an attacker compromises

such sensitive information, it can be used to harm the participants in the form of

e.g., a chaperone attack (to make a user run into walls) and other physical safety

attacks detailed in [38].

2.2.3 Translation of ATs into Stochastic Timed Automata

In this section, we generate STA from the corresponding security and privacy

attack trees shown in Figures 2.6 and 2.31. In our translational approach: (i)

each of the leaf nodes in these attack trees is converted into an individual STA.

The intermediate events, which are basically the output of the logic gates used

at different levels are converted imperatively into STA; (ii) the generated STAs

are composed in parallel by including the root node; (iii) the obtained NSTA is

then used for statistical model checking in order to verify the security and privacy

properties formalized as SMC queries.

To demonstrate the translation of an attack tree into an STA, we consider the
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Figure 2.9: STA for OR gate and root node of security attack tree.

security attack tree as shown in Figure 2.6. As part of the translation, each of

the security AT element (leaf and gates) input signals are connected to the output

signal of child nodes. The generated network of STA communicates using signals.

initiate - indicates activation signal of attack tree element. This signal is sent

initially from the root node to its children. fail - indicates disruption of that

attack tree element. This signal is sent to the parent node from its child node to

indicate an STA disruption. The scope of the above signals can also be extended

by special symbols such as: i)‘?’ (e.g., initiate?) means that the event will wait

for the reception of the intended signal, ii) ‘ !’(e.g., initiate!) implies output signal

broadcasts to other STA in the attack tree.

Illustrative example: For instance, we show the conversion of LoI i.e., root node

(Top_event) into STA as shown in Figure 2.33. The converted STA of the LoI is

equipped with initiate! and fail? signals. The root node is the OR gate output for

the two child nodes: (A) “System Compromise” and (B) “Data Tampering”. Top

OR gate sends an initiate signal and activates its child nodes “System compromise”

and “Data Tampering” as shown in Figure 2.9 by broadcasting initiateA! and

initiateB! signals. After initialization, if either of the nodes (A) OR (B) are

disrupted, then a fail! signal is sent to the Top_event, which forces a transition

to Disrupt state, representing LoI in the system. The clock x is a UPPAAL

global variable to keep track of the time progression as mentioned in Section

Preliminaries. Similarly, STAs for the AND gate, SAND gates and the leaf nodes

are also developed. Moreover, STAs for leaf nodes such as impersonation in

the security attack tree are instantiated with λ (rate of exponential) values. For

the given λ values to the leaf nodes, the probability of occurrence is calculated.
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Table 2.4: λ values for leaf nodes of security & privacy ATs.
Security AT Privacy AT

Security threats λ Privacy threats λ

Impersonation 0.006892 Unauthorized access 0.006478
User login 0.0089 User VR space location 0.0094

Password attacks 0.008687 Capture hostname 0.004162
Unauthorized login 0.008687 Ping sweeping 0.002162
Packet spoofing 0.0068 Capture packets 0.00098
SYNC flood 0.0068 Analyze packets 0.0048
SQL injection 0.00231788 Disclosure of sensitive info 0.0009298

Insert malicious scripts 0.008 Intrusion 0.006628
Capture packets 0.000 98 Eavesdropping 0.08
Analyze packets 0.0048 – –

Modify sensitive data 0.002642 – –

This value then propagates upward in the tree to calculate the probability of

LoI. As mentioned earlier, the developed STAs are composed using the parallel

composition [49] technique to form an NSTA, which is then used for SMC by the

UPPAAL tool [51].

2.3 Quantitative Analysis of ATs and Evaluation
of Design Principles

In this section, we present the results obtained using our proposed framework. As

mentioned in section 2.2, the threat scenarios we consider are: LoI and privacy

leakage for security and privacy attack trees (AT), respectively. In the following

analysis, we assume that our design requirement is to keep the probability of LoI

and privacy leakage below the threshold of 0.25. For evaluation purposes, we use

arbitrary values of λ as parametric input to the leaf nodes as shown in Table 2.12

obtained from [57], [58]. Note, after providing λ values as parameters to the leaf

nodes, we utilize the SMC queries as explained in Section to find the respective

probabilities of LoI and privacy leakage. Any other user specified threshold values

can also be used in our framework. This is due to the fact that the model checking

approach takes the user specified values at the beginning of an experiment. For our
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Figure 2.10: TS of security AT where - TS2, TS3, TS4, TS7 are the most vul-
nerable nodes.

experiment purposes, we consider LoI (security attack tree) and privacy leakage

(privacy attack tree) as goal nodes. In the following set of experiments, we present

the obtained probability of the goal nodes with respect to the time window used

by the attacker.

2.3.1 Vulnerability Analysis for Security AT

We assign the values of λ shown in Table 2.12. However, when assigning a λ value

to a leaf node in the attack tree, we consider a very small positive constant (K) ≈

0.002 for the remaining leaf nodes. This is because, in real time systems, multiple

attack scenarios can happen.

To identify a vulnerability in a security attack tree, we analyze: (i) individual

leaf nodes, and (ii) combinations of leaf nodes, to determine their effect on the

probability of LoI occurrence.

i) Individual leaf node analysis: In Figure 2.10, we show the probability of

LoI over multiple time windows for each leaf node in the security attack tree. We

perform a thorough analysis of leaf nodes in the security attack tree for threat sce-

narios across different time intervals i.e., t = {0, 60, 120, 180}. For the individual
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Figure 2.11: TS of security AT where – TS6*, TS7* are the most vulnerable
combination.

leaf node analysis, the considered threat scenarios (TS) shown in Figure 2.10 are

termed as: TS1 – insert malicious scripts, TS2 – packet spoofing, TS3 – unautho-

rized login, TS4 – password attacks, TS5 – modify data, TS6 – analyze packets,

TS7 – Sync flood, TS8 – SQL injection, TS9 – capture packets, TS10 – imper-

sonation, TS11 – user login. As shown in Figure 2.10, the leaf nodes TS3 and

TS4 (for unauthorized access) as well as TS2 and TS7 (for DoS attack) are the

most vulnerable in the security attack tree with the probability of 0.53.

ii) Analysis using combination of leaf nodes: Herein, we consider combi-

nations of leaf nodes to identify their impact on LoI. For these experiments, we

explore two scenarios: In the first scenario, we consider combinations of leaf nodes

that belong to the same sub-tree, and in the second scenario, we consider leaf

nodes from different sub-trees. The considered combination of threat scenarios

are enlisted as: TS1* – {impersonation, SQL injection}, TS2* – {impersonation,

modify data}, TS3* – {SQL injection, capture packets}, TS4* – {pwd attacks,

SQL injection}, TS5* – {impersonation, packet spoofing}, TS6* – {packet spoof-

ing, unauthorized login}, TS7* – {unauthorized login, Sync flood}. As shown in

Figure 2.11, TS6* and TS7* are the most vulnerable combination of threat scenar-

ios with a probability of 1 for an LoI event. As part of further analysis in Section
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Figure 2.12: TS of privacy AT where - PTS1, PTS3, PTS4, PTS9 are the most
vulnerable nodes.
Table 2.5: Most vulnerable components considering the individual & combination
of leaf nodes.

Level in
attack
trees

Analysis on security AT Analysis on privacy AT

Different
Scenarios

Identified vulnerable
components in security

AT

Different
Scenarios

Identified vulnerable
components in privacy

AT

Individual
leaf nodes

Leaf nodes where
probability of

disruption in LoI at
(t≤ 180) = 0.53

Unauthorized login Leaf nodes where
probability of

disruption in privacy leakage
at (t≤ 180) = 0.34

Unauthorized access
Packet spoofing User VR space location

Sync flood Ping sweeping
Password attacks Capture hostname

Combinat
-ion of leaf

nodes

Leaf nodes where
probability of

disruption in LoI
at (t≤ 180) = 1

{Unauthorized login,
Packet spoofing},

{Unauthorized login,
Sync flood}

Leaf nodes where
probability of

disruption in privacy leakage at
(t≤ 180) = 1

{Unauthorized access,
user VR space location}

Design-principles, we discuss about the potential candidates for design principles

to apply on these leaf nodes such that the VRLE application resilience against

security threats is enhanced.

2.3.2 Vulnerability Analysis for Privacy AT

We analyze the privacy attack tree similarly for: (i) individual leaf nodes, and (ii)

combinations of leaf nodes. For the considered individual leaf node analysis in

the privacy attack tree, the threat scenarios are termed as: PTS1 – unauthorized

access, PTS2 – capture packets, PTS3 – user VR space location, PTS4 – ping

sweeping, PTS5 – analyze packets, PTS6 – disclosure of sensitive information,
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Figure 2.13: TS of privacy AT where – PTS1∗ is the most vulnerable combination.

PTS7 – intrusion, PTS8 – eavesdropping, PTS9 – capture hostname. As shown

in Figure 2.12, the most vulnerable leaf nodes are: PTS1, PTS3, PTS4, PTS9

with the highest probability of privacy leakage of 0.34.

For the analysis of combination of leaf nodes, we refer to the combination

of threat scenarios as: PTS1* – {unauthorized access, user VR space location},

PTS2*– {capture packets, disclosure of sensitive information}, PTS3* – {unau-

thorized access, disclosure of sensitive information}, PTS4* – {capture packets,

analyze packets}. As shown in Figure 2.13, PTS1* is the most vulnerable com-

bination of threats for privacy leakage with a probability of 1. In summary, we

can conclude that the above numerical analysis shown in Table 2.5 on both secu-

rity and privacy attack trees can help in identifying the LoI and privacy leakage

concerns that need to be addressed in the social VRLE design.

2.3.3 Recommended Design Principles

In this section, we are examining the effect of applying various design principles

to the most vulnerable components identified in the Sections 2.3.1, and 2.3.2. Ex-

isting works such as NIST SP800-160 document [28], [53] suggest that the services
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Figure 2.14: Prob. in LoI reduced by 15.85% in security AT due to application of
design principles.

for safeguarding security and privacy are critical for successful operation of cur-

rent devices and sensors connected to physical networks as part of IoT systems.

As mentioned in Section 2.1.5, these design principles are essential to construct

a trustworthy edge computing based system architecture. The goal is to apply a

combination of design principles at different levels of abstraction to help in devel-

oping effective mitigation strategies. We adopt a selection of design principles such

as hardening, diversity and principle of least privilege among the list of principles

available in NIST document [28], and [53]. In the following, we demonstrate their

effectiveness by showing that there is a reduction in the probability of disruption

terms after adopting them in our VRLE system design.

Implementation of design principles on security attack tree: In this sec-

tion, we apply design principles on one of the identified vulnerable nodes of the

security attack tree as shown in Section 2.3.1. For instance, we incorporate hard-

ening design principle on the password attacks, to study its effects on the security

metric LoI as shown in Figure 2.14. As part of the hardening principle, we added

new nodes such as a firewall and a security protocol in the security attack tree.

Our results show that the probability of disruption of LoI is reduced from 0.82 to

0.69 (15.85%), with the given attacker profile. The decrease in the disruption of
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Figure 2.15: Prob. of privacy leakage reduced by 68% in privacy AT due to
application of design principles.
LoI is due to the rise in additional resources that are required by the attacker to

compromise such a VRLE application system which is incorporating the harden-

ing principle. Similarly, we apply the principle of least privilege on the security

attack tree, which under-provisions privileges intentionally. This in turn reduced

the probability of disruption of LoI from 0.82 to 0.79 (3.66%).

Implementation of design principles on privacy attack tree: Using the

similar approach mentioned in design principles on the security attack tree, we

apply diversity design principle on one of the identified vulnerable nodes (unau-

thorized access) in the privacy attack tree. After adding multi-factor authentica-

tion procedures as part of the diversity principle, the probability of disruption on

privacy leakage is reduced significantly from 0.5 to 0.16 (68%) as shown in Fig-

ure 2.15. Similarly, we apply the principle of least privilege by under-provisioning

privileges on the privacy attack tree where the probability of disruption of privacy

leakage is slightly reduced from 0.5 to 0.48 (4%). Thus, from the above implemen-

tation of individual design principles, we conclude that hardening and diversity

are more effective in reducing the disruption of LoI and privacy leakage, respec-

tively. Thus, our findings shows that some security principles are more effective
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Figure 2.16: Prob. of LoI is reduced by 26% in security AT due to application of
design principles for a combination of security attack tree nodes.
than others. In addition, our results emphasize the benefits in implementing a

combination of design principles in both security and privacy attack trees to over-

all improve the attack mitigation efforts.

To study the effect on disruption of the LoI and privacy leakage, we adopt a

combination of design principles such as: (i) for the security attack tree: {hard-

ening, principle of least privilege}, and (ii) for the privacy attack tree: {diversity,

principle of least privilege}. We observe that there is a significant drop in the

probability of disruption of LoI from 0.81 to 0.6 (26%), and 0.5 to 0.1 (80%) for

privacy leakage as shown in Figures 2.16 and 2.17, respectively.

From the above numerical analysis, we can conclude that incorporating relevant

combination of standardized design principles and their joint implementation have

the potential to better mitigate the impact of sophisticated and well-orchestrated

cyber attacks on edge computing assisted VRLE systems with IoT devices. In

addition, our above results provide insights on how the adoption of the design

principles can provide the necessary evidence to support a trustworthy level of

security and privacy for the users in VRLE systems that are used for important

societal applications such as: special education, surgical training, and flight sim-

ulators.
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Figure 2.17: Prob. of privacy leakage reduced by 80% in privacy AT due to
application of design principles for a combination of privacy AT nodes.

2.3.4 Conclusion

Social Virtual Reality Learning Environments (VRLEs) are a new form of im-

mersive VR applications, where security and privacy issues are under-explored.

To address security, privacy issues we presented a novel framework that quantita-

tively assesses such threat scenarios for a social VRLE application case study viz.,

vSocial. Specifically, we explored different threat scenarios that possibly cause LoI

(e.g., unauthorized access) and privacy leakage (e.g., disclosure of sensitive user

information) in a set of social VRLE application session scenarios. We utilized

the attack tree formalism to model the security and privacy threats. Specifically,

we developed relevant attack trees and converted them into stochastic timed au-

tomata and then performed statistical model checking using the UPPAAL SMC

tool. Furthermore, we illustrated the effectiveness of our framework by analyzing

different design principle candidates. We showed a ‘before’ and ‘after’ perfor-

mance comparison to investigate the effect of applying these design principles on

the probability of LoI and privacy leakage occurrence. The highlights from our

experiments with realistic social VRLE application scenarios indicate that some

security principles are more effective than others. However, combining them can

result in a more effective mitigation mechanism. For instance, among the design
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principle candidates, (i) {hardening, principle of least privilege} is the best design

principle combination for enhancing security, and (ii) {diversity, principle of least

privilege} is the best design principle combination for enhancing privacy.

In future, we plan to explore the effect of fault and attacks as a combination

using the attack-fault tree formalism [50] for VRLE applications. This will allow

us to reason about the safety metrics and study the safety, security and privacy

trade-offs. Since, different components in a typical social VRLE application go

through different maintenance actions, we also plan to explore the impact of var-

ious maintenance strategies on the reliability metric of social VRLE applications

using the fault maintenance tree formalism [59].

2.4 Social Virtual Reality Attacks inducing Cy-
bersickness

Recent works [17, 29, 30] highlight the importance of security and privacy (SP)

issues in VR applications. However, they lack in evaluation of critical SP, sys-

tem/network fault issues that impact VRLE applications’ functionality and user

experience. For instance, an intruder can gain unauthorized access (e.g., using fake

credentials) to tamper the VRLE content which constitutes as a security breach.

The unauthorized access can also lead to a privacy breach through eavesdropping

during a VRLE session. Similarly, an intentional network fault can be triggered

by an adversary by launching a Denial of Service (DoS) attack. As a result of

such an intentional cyber-attack which we also define as a fault-attack, the VRLE

content can be rendered unavailable to VRLE users. In addition, a faulty VRLE

component (e.g., infrared sensor, gyroscope) can be used for distorting the view of

a VRLE user during a session. The impact of such security and privacy breaches

can induce cybersickness, which is a set of unpleasant symptoms such as eyestrain,

headache, nausea or even vomiting, thus compromising user safety in a VR session

[19, 60, 61].
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To motivate the impact of security and privacy issues on user safety, we con-

sider a VRLE application viz., vSocial [4] shown in Figure 1.5 that is designed

for youth with autism spectrum disorder (ASD). This multi-modal VRLE sys-

tem uses the High Fidelity platform [27], and renders 3D visualizations based on

the dynamic human computer interactions with an edge cloud i.e., vSocial Cloud

Server. Owing to the inherent inter-connectivity of the network-edge and the core

cloud in the VRLE setup, the VR application is vulnerable to novel attacks known

as immersion attacks. To elucidate, using SP issues as the vulnerabilities, an at-

tacker can: (i) cause defacement of VRLE content with offensive images known

as overlay attack [17], (ii) obstruct the user view or trigger noise attenuation

during VRLE sessions known as occlusion attack [17], and (iii) create applica-

tion issues i.e., reduction of graphical content or delays between both user and

avatar movement. Failure to address such security, privacy and resulting safety

(SPS) issues in VRLE results in alteration of instructional content, compromise of

learning outcomes, abuse of access privileges leading to confidential student infor-

mation disclosure and/or poor student engagement due to cybersickness. Hence,

it is imperative to model the inter-relationship between security, privacy and user

safety for identification of cybersickness events and for creation of relevant defense

mechanisms to increase the resilience of social VRLE systems.

2.4.1 Background on Social Virtual Reality Attacks:

i) Network-based attacks: There have been several prior studies that high-

light the importance of security and privacy threats on Augmented Reality (AR)

devices, and edge computing. A recent study [22] on challenges in AR and VR

discusses the threat vectors for educational initiatives, however this study does

not characterize related attack impacts. Survey articles such as [29, 30, 36, 62, 63]

are significant for understanding the concepts of threat taxonomy and attack sur-

face area of sensors and fog computing applications. They highlight the need to

go beyond specific components such as network, hardware or user interface, and
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propose end-to-end solutions that consider system and data vulnerabilities [38].

An observation from the above state-of-art is that - there is a dearth of scholarly

works on the quantitative evaluation for security and privacy threats in the con-

text of VR applications.

ii) Immersion attacks: Existing works [17, 38] discuss about the immersion

attacks that can cause physical harm and disrupt the user experience in a virtual

environment [17]. For instance, authors in [17] detail about generating a disori-

entation attack by changing the translation and yaw, creation of physical collision

attack by tampering the SteamVR [64] chaperone file and an overlay attack to

display unintended images during the session. The work in this study [17] serves

as a fundamental source for our attack data i.e., to study unique cyber attack

patterns relevant to VRLEs that can potentially induce cybersickness for users.

In addition, the works in [39, 65, 66] discuss the security, privacy challenges in

AR and VR applications. However, they do not study the impact of such security,

privacy challenges on the VRLE user safety. Furthermore, the authors in the work

[67] discuss about how the participants can get disoriented due to the exposure

in a virtual environment even for a 20 minutes session. We build our work based

on these prior works, and explore potential novel attack surfaces related to secu-

rity, privacy, safety issues in VRLE applications and their associated impact on

inducing user cybersickness.

2.4.2 Cybersickness in Virtual Reality Environments

i) Potential factors inducing cybersickness Several works define cybersick-

ness as a form of motion/simulation sickness due to several physiological factors

of the user in correlation with immersion and presence in VRLE. For instance, the

work in [60], [61] detail that the sensory conflict between the vestibular and vi-

sual senses causes motion sickness in an unfamiliar virtual environment. Another

work [68], attributes cybersickness as a form of disorientation due to the user’s

view point. In contrast, the work in [69] notes the difference between motion
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sickness and cybersickness in terms of the individual causes and their associated

impacts on the users using motion sickness susceptibility questionnaire (MSSQ)

via experimental simulation. In addition, the work in [70] found that that graph-

ical quality in virtual environments significantly affects immersion and induces

cybersickness. Our work builds on these existing works, but uniquely identifies

potential factors that induce cybersickness and thus impact user safety within so-

cial VRLE application sessions.

ii) Measuring cybersickness in virtual reality environments Several works [69,

71] devise questionnaires related to cybersickness in relation to motion sickness

factors. The work in [71] adapts the simulator sickness questionnaire (SSQ) to

quantify the physiological effects. Their survey methodology considers factors re-

lated to general discomfort, fatigue, eyestrain, difficulty focusing, headache, full-

ness of head, blurred vision, dizziness with eyes closed, and vertigo. Effects such

as cybersickness, simulator sickness, and motion sickness have been found to be

correlated in [69]. Similarly, the work in [72] explores the subjective aspects of the

virtual environments i.e., presence, engagement, immersion and their relation to

cybersickness symptoms (i.e., consequences on user experience). In addition, there

have been studies that examined the effect on user immersion by implementing

such questionnaires within a virtual environment [73]. The authors in [73] found

that users in the virtual environments prefer such deployment of virtual question-

naires over traditional paper survey formats. However, we remark that this finding

is dependent on the integration of the questionnaires such that the immersion is

preserved during the virtual sessions for the users. We adapt these works in de-

vising our questionnaires that are seamlessly integrated in the VRLE sessions to

help us determine the potential factors of cybersickness.
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Figure 2.18: A before and after scenario showcasing the effect of DoS attack on
vSocial causing a server crash.

2.4.3 Experimental Validation of Social VR Attacks Induc-
ing Cybersickness

To understand the potential cyber-attacks/fault-attacks and their impact on cy-

bersickness, we perform an experimental behavior analysis on a vSocial instance.

For this, we simulate exemplar security, privacy and safety attacks based on my

works [16, 26] through our experimental validations. We validate the SP attacks

of vSocial application using simulation tools (such as Clumsy 0.2 [74] and Wire-

shark [75]). For the purposes of this paper, we define: (a) security – as a condition

that ensures a VR system to perform critical functions with the establishment of

confidentiality, integrity, and availability [28], (b) privacy – as a property that reg-

ulates the IoT data collection, protection, and secrecy in interactive systems [28],

(c) safety – as the disruption in the system that compromises the user’s overall

well-being [28].

i) Security Concerns Disrupting User Experience in VRLEs: Social VR-

LEs use distributed head-mounted displays and wearable devices when connecting

to virtual classrooms. Consequently, user experience in social VRLE applications

is highly sensitive to Distributed Denial of Service (DDoS) attacks. To elucidate,

a malicious user simulates a DoS attack scenario on the vSocial environment, via

packet tampering, packet duplication, and packet drop which results in a VRLE

server crash as shown in Figure 2.18. Based on our validation experiments, a
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Figure 2.19: vSocial system content affected due to insertion of malicious scripts
in the student learning environment.

packet drop of 80% disrupts the communication between the user and VRLE

server thereby impacting the learning experience [26]. Similarly, a tamper rate of

20% is sufficient to crash the VRLE server for all the connected VRLE users as

shown in Figure 2.18. In case of packet tampering, a man-in-the-middle attack

scenario can reveal confidential information as discussed in [26].

Another security attack scenario can involve an attacker gaining unauthorized

access by impersonating as a valid user. Gaining unauthorized access to the in-

structor account can trigger a privacy attack with threats such as: disclosure of

confidential user information, and tampering of the learning content, edge com-

puting and network devices. For instance, an intruder in social VRLE inserts

malicious scripts to initiate data tampering of the VRLE application content as

shown in Figure 2.19. With this, the attacker can modify the boundaries of the

users’ virtual view that can lead to a user running into a wall and getting physically

hurt. Failure to address such security attack scenarios can lead to an immersive

attack i.e., overlay attack [76]) that can impact the VRLE user experience.

ii)Privacy Concerns Disrupting User Experience in VRLEs

A user privacy breach can involve an intruder who enters into a VRLE world

by gaining unauthorized access (e.g., using fake credentials) and tries to eavesdrop

the virtual classroom conversations. The attacker can gain access to the virtual

location of the user and can disrupt the orientation of the user’s virtual object

(avatar). Privacy attacks can also involve packet tampering that was demonstrated
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Figure 2.20: Packet Sniffing attack to disclose avatar and host server information.

in [26], where an attacker performs an illegal packet capture to extract sensitive

information (packet sniffing attack as shown in Figure 2.20).

Another form of privacy breach can occur when the attacker discloses confi-

dential user information via packet sniffing attack to gain access to users’ physical

location information and credentials as shown in Figure 2.21. Such privacy attacks

can create: (a) loss of confidentiality (LoC) when sensitive information is disclosed,

and (b) loss of integrity (LoI) when the attacker tampers with the VRLE content.

Figure 2.21: A malicious user exposes the IP address of a valid VRLE user (dis-
closing user physical location) by gaining access to VRLE activity logs.
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Failure to address such privacy attack scenarios can disrupt the UIX in an ongoing

VRLE session by obstructing the view of the users in their learning sessions i.e.,

occlusion attack, or by creating a noise attenuation issue or by causing disorien-

tation of the content to disrupt the UIX.

iii)Safety Concerns Disrupting User Experience in VRLEs

Figure 2.22: Immersion attack to tamper the chaperone file.

Based on prior work in [17], we perform safety attacks that can potentially disrupt

the UIX in a vSocial instance. For instance, we assume that a XSS browser attack

can occur, where the web entities in vSocial are targeted to hook the browser for

hijacking the VRLE content. Immersion attacks e.g., overlay attack overlays and

replaces visuals with offensive content on a user’s local machine which can partially

compromise the VRLE [17]. Performing an overlay attack along with an SQL

injection can create more impact on user privacy as the confidential information

can be captured via overlay entities. By modifying the boundaries in a SteamVR

chaperone file as shown in Figure 2.22 via TFTP [64], an attacker can disorient

the user avatar or can lead a user to run into walls or physical objects. With

this immersion attack, a VRLE user can experience light-headedness, a potential

cybersickness factor. In addition, a network fault-attack that is triggered by low
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Table 2.6: Survey questions asked during a CS experiment.

Label CS Questions Related
Works

Nausea How often do you feel nauseaous ? [77, 78]

Discomfort What level do you feel discomfort
or disoriented during the sessions ?

[77]

Vection How often do you have the feeling
of self-movement ?

[77, 78]

Eyestrain What level do you feel eye strain
or light-headed ?

[77]

Task
Completion

How likely are you able to finish
the tasks in the session ?

[77, 78]

Mental
Engagement

How mentally engaged are you in
the environment ?

[72, 77]

bandwidth events (e.g., packet loss scenarios) can disrupt the VRLE content,

thereby inducing cybersickness for a user who is remotely participating in a VR

session.

Using our experimental validations, we next describe a preliminary study on

the outlined security, privacy threat scenarios and their respective impact on the

cybersickness. Towards this aim, we perform a systematic study to identify the

potential cybersickness factors that rely on both the simulator sickness as well as

user experience factors adapted from relevant prior works [19, 60].

2.4.4 Impact Analysis of Security, Privacy Issues on Cyber-
sickness

In this section, we perform an experimental behavior analysis of the above simu-

lated SP attack scenarios and their impact on potential cybersickness factors in

VRLEs. For this, we adopt several CS factors based on the existing works [72,

77, 78] that include e.g., the Virtual Sickness Questionnaire (VSQ). To measure

the impact on each of these CS factors during the VRLE users session, we orga-

nize the CS factors under 6 questions as shown in Table 3.1. These questions are
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Figure 2.23: cybersickness virtual questionnaire for the users to respond after each
activity in a vSocial experiment

integrated as virtual questionnaires (VQs) and post-session survey for feedback

collection such that they do not cause any disruption to the VRLE users [79].

In addition, based on our prior work in [26]: (i) we simulate a security attack,

privacy attack and combination of security, privacy attacks across three different

user activities as shown in Figure 2.24 and, (ii) subsequently quantify CS using a

set of VQs. In this context, we set up a vSocial [4] instance with activities that

rely on fine movement, visual clarity, and clear audio, all of which are disrupted

by SP attacks as shown in Figure 2.24.

Firstly, we collect baseline data (i.e., benign behavior) using VQs at the end of
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Figure 2.24: Activities and their associated virtual questionnaires used for the
immersion survey experiment.

activity1. Next, during activity 2, we simulate malicious packet drops to disrupt

VRLE content rendering as a security attack and then collect user feedback. Sim-

ilarly, in activity 3 we simulate a privacy attack to trace the user’s virtual location

and then play a distracting noise to disrupt the user experience. This disruption

is stopped approximately halfway through activity 3, where the user response is

recorded. For the rest of activity 3, a combination of security and privacy attacks

(i.e., packet tampering + disclosure of user location), are simulated after which

the user exits the vSocial environment to give feedback via a post-session paper

survey.

To maintain uniformity across the collected feedback, we used the same VQ as

shown in Figure 3.2. For this survey, 15 VRLE user participants provided their

feedback for each of the questions in our CS survey on a scale of 1 to 5, where 1

(very poor), 2 (poor), 3 (Moderate), 4 (good), 5 (excellent). This collected data

allows us to quantify the aggregated impact value of CS score due to SP attacks in

the VRLE. We stop the attack simulations until the checkpoint (attack duration

is 180 seconds), to avoid further discomfort in relation to the time spent by the

user in vSocial.

Results of the Impact analysis of SP attacks on CS factors: Using the

collected data for the SP versus CS factors analysis, we outline the data points for

each cybersickness factor versus the average rating given by the users as shown

in Figure 3.2. The cybersickness factors listed in Table 3.1 are represented as

N,D,V,E,T,M on x-axis and the average of the user responses on y-axis as shown
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Figure 2.25: Results of CS-survey experiments.

in Figure 3.2. Based on the results, we observe that security, privacy, and combi-

nation of SP attacks have significant impact the cybersickness factors. To eluci-

date, the combination of security, privacy attacks causes significant dizziness and

nausea, the primary factors that induce cybersickness. From these results, we

understand that SP attacks do certainly induce cybersickness by disrupting users

and also the functionality of the VRLE. With this analysis, we further explore

the potential security and privacy, fault-attack in detail (single and combination

of threats) that could induce CS in a VRLE.

Based on the above impact analysis, we will focus on the causes of cybersickness

for a Virtual Reality Learning Environment (VRLE) case study: vSocial [4] which

was developed for youth with autism spectrum disorder (ASD). Since every VR

users in such applications are susceptible to cybersickness in a different manner,

we refine our problem scope to the following research questions:

• What components (sensors, controllers, headsets, etc,.) in VR are vulnerable

and what type of cyber-attacks on those identified components may lead to

cybersickness?

• What are the VR applications issues (network, storage, etc.) that might also
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Figure 2.26: Safety attack tree for VR application case study: vSocial

Figure 2.27: Proposed framework for security and privacy analysis of a social
VRLE.

triggers cybersickness?

2.5 Security, Privacy Harmonized Framework for
Social VRLE

In this section, we present our proposed framework to identify the most vulnerable

attacks/fault components inducing cybersickness by performing security, privacy

and safety analysis of social VRLE applications. An overview of the approach

followed in our framework is shown in Figure 2.27. Firstly, we model the SP at-

tack vectors inducing cybersickness by using an attack-fault tree formalism based

on our preliminary results from Section 2.4.4. Secondly, each attack-fault tree is
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Table 2.7: Description of leaf nodes in safety AT
Leaf node
components

Description of leaf nodes Leaf node
components

Description of leaf nodes

SQL Injection (SQL-I)

Attacker injects malicious
commands in user input
query using GET and POST
to disclose information such
as user credentials

Impersonation (Imp)

Attacker pretends to be
a valid user and tries to
influence user experience
in VR environment.

Identity Spoofing (IS)
Attacker pretends to be a
legitimate user and tries to
disrupt the VR experience.

Control of user (CU)
After impersonating to
VR space attacker can
control the user activity.

Intrusion (In) Attacker gets unauthorized
access to user VR location.

IR sensors (IRs)
Attacker tampers the IR
sensors in VR headset
to disrupt the visual in VR.

Insert Malicious
Scripts (ImS)

Attacker successfully adds
malicious scripts in the VR
environment to compromise
visual or change the contents.

Change coordinates (CC)
Attacker tries to disrupt
the cybersickness by
changing the coordinates.

Denial of service (Dos)

Loss of availability in of user
features in environment
to compromise the visual
or change the contents.

Track coordinates (TC) Attacker determines the
coordinates of the controllers.

Upload rate/
download rate (UR/DR)

Interemittent discrepancies in
network can reduce the overall
bandwidth resulting in bad
VR experience.

DoS of controller (Dos)
Attacker tracks the
coordinates to disrupt the
of the controllers.

Collect information (CI)

Information such as ip or any
other confidential information
of the user can be disclosed
to disruipt user privacy.

Locate information (LI)

Locate the base station
information which includes the
information about controllers,
sensors and headset information.

Goto VR space (G-VR) Go to the user’s VR
space location.

Disclosure of
information (DI)

Attacker discloses the compo-
nent’s information such as ip to
disrupt the cybersickness of the
controllers or change the contents.

Table 2.8: Description of the Intermediate nodes for safety AT
Node Description Node Description Node Description
Cs Cybersickness UA Unauthorized Access IRs Infrared sensors

FL Flicker DT Data
Tampering

CC Change
coordinates

LRF Low Refresh
Rate

IS Identity
Spoofing

TC Track coordinates

SQL-I SQL Injection In Intrusion DoC DoS of controller

ImS Insertion of ma-
alicious scripts

DoT Disruption of
userin task

LI Locate information

J Jitter DI Disclosure of
information

DoI Disclosure
of data

LB Low Bandwidth CO Control User CU Control of user

DoS Denial of Service CI Collect
Information

HT Tampering of
headset

TL Timelag G-VR GoTo VR
Space

LoA-C Loss of availability
of controller

LB Low Bandwidth Imp Impersonation BsC Compromise base
station

TD Transfer Delay FnW Features not
Working

- -

RT Response
Time

UR/
DR

Upload Rate/
Download Rate

- -
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translated into an equivalent STA to form an NSTA, as input into the UPPAAL

SMC tool. Thirdly, we use the quantitative assessment from the tool to determine

if the probability of disruption is higher than a set threshold determined as part

of VRLE design requirements. Lastly, we perform risk assessment of the identified

attack vectors to determine the potential impact on VR application functionality

and inducing cybersickness. Based on this determination, we subsequently pre-

scribe the design principles such as: hardening, diversity, redundancy and principle

of least privilege that can be adopted in VRLE deployments. Overall, our frame-

work steps help in the investigation of potential cyber attacks and fault-attacks.

Further, they help in recommendations of VRLE application design alternatives

based on design principles.

Fault-attacks in social VRLEs: Using the attack tree formalism we model the

potential attacks inducing cybersickness as shown in the Figure 2.26. Note, the

dynamic user interactions in a social VRLE application can create new security,

privacy attacks and/or faults surfaces (individual and combination of attacks).

For instance, an intentional network fault can be triggered by an adversary by

launching a Denial of Service (DoS) attack. As a result of such an intentional

cyber-attack which we also define as a fault-attack, the VRLE content can be ren-

dered unavailable to VRLE users. In addition, a faulty VRLE component (e.g.,

infrared sensor, gyroscope) can be used for distorting the view of a VRLE user

during a session. The impact of such security and privacy breaches can induce

cybersickness, which is a set of unpleasant symptoms such as eyestrain, headache,

nausea or even vomiting, thus compromising user safety in a VR session [19, 60, 61].

Based on the effectiveness of attack trees for successfully modeling the security

and privacy scenarios, we further explore the potential fault-attacks leading to

cybersickness as shown in the table 2.9.

To study such potential security, privacy and safety issues causing cybersick-

ness from different aspects of a VRLE application pertaining to (i) different phases

of the VRLE workflow (services) — this includes the threat scenarios for different

53



Table 2.9: Potential Fault-attacks in VRLE
Types of faults

in VRLE
Example fault

scenarios

Hardware / physical
components in VR

A faulty sensor in VRLE can cause not to display the VRLE content on the headset.
Detection of an issue in the application can occur due to a component failure such
as base stations in the range
Failure of a Infrared sensor (used for eye tracking), accelerometer and gyroscope
can result in a distorted view of VR content to the user in VRLE

Software and
communication

Data is not retrieved due to a discrepancy in the code and causes the workload and
makes the retrieval process slow or fail

Network faults Such faults occur in the VRLE server which is hosted in a cloud environment.
Occurs due to packet loss or corruption, congestion, failure of the destination node
or link, etc. Factors like Low bandwidth, packet loss, can result in crashing VRLE
application

Permanent Faults Crash faults that cause the system components to completely stop functioning or
remain inactive during failures (e.g., power outage, hard disk crash)

Transient Faults Byzantine faults occur in VRLE system components to behave arbitrarily or
maliciously during failure, causing the system to behave unpredictably incorrect.

Process faults Such faults occur in the VRLE workflow processes due to lack of resources for
processing the EEG data, storing the user data

phases in VRLE workflow such as: data Collection, data in transit, data visualiza-

tion, data storage. (ii) VRLE resources (components) — this includes the VRLE

components such as: VR headset, controllers as well as different sensors in the

architecture, and (iii) different user interactions relevant to the VRLE application

workflow management — which includes user interactions that occur in the VRLE

such as: user-user, user-instructor, instructor-admin. In order to explore the rela-

tionship of fault, and security and/or privacy threats leading to cybersickness, we

utilize the Attack Fault Tree (AFT) formalism [50].

2.5.1 Formalization of Security and Privacy Attack-fault
Trees (AFTs)

To analyze the interplay of faults, security and privacy threat scenarios that trig-

ger cybersickness, the dependencies are modeled using the attack fault tree (AFT)

formalism [50] using the identified threats and faults outlined in Table 2.2, Ta-

ble 2.9. Specifically, the focus is on modeling the security issues pertaining to the

Confidentiality, Integrity and Availability (CIA) triad such as: Loss of Integrity

(LoI), Loss of confidentiality (LoC), Loss of Availability (LoA) leading to cyber-

sickness. On the other hand, the specific privacy threats (privacy leakage) and
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fault scenarios (network faults, transient faults) are focused to study the causes

of cybersickness in VRLE. For instance, availability of VR contents or data on

the instructor/admin web application can be compromised if an attacker performs

DoS which can lead to both privacy and security issues. Such complex inter-

dependencies can aid in modeling more realistic scenarios, and hence covers a

wider attack surface area.

Attack Fault trees (AFTs) outlines the logical steps to trigger an attack or a

fault scenario in comparison with the traditional threat models. AFTs are hier-

archical models that show how an attacker goal (root node) can be refined into

smaller sub-goals (child/intermediate nodes) via gates until no further refinement

is possible such that the lead node is reached. A leaf node can be a terminal

node or a basic attack steps (BAS) [54]. To explore dependencies on VRLE attack

surfaces, attack-fault trees enable sharing of subtrees. Hence, attack-fault trees

are often considered as directed acyclic graphs, rather than trees [50].

Definition 3 (Attack-Fault Trees (AFTs)). An attack-fault tree A is defined as

a tuple {N ,Child, Top_event, l} ∪ {AFT elements} where, N is a finite set of

nodes in the attack tree; Child: N → N* maps each set of nodes to its child nodes;

Top_event is an unique goal node of the attacker where Top_event ∈ N ; l: is a

set of labels for each node n ∈ N ; and AFT elements: is a set of elements in an

attack-fault tree A.

Definition 4 (AFT elements). AFT elements aid in generating the attack-fault

tree and are defined as a set of {G ∪ BE ∪ IE} where, G = {OR, AND, SAND,

SOR, PAND} represents the set of gates used for modeling the multi-threat and

fault-attack scenarios in AFTs, and BE is the set of basic events {BAS ∪BCF}

and IE is the set of intermediate events.

Attack-fault tree elements: Attack-fault tree elements aid in generating an

attack-fault tree and are defined as a set of {G∪L} where, G represents gates; L

represents leaf nodes. Following are the descriptions of each of the AFT elements.
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Attack-fault tree gates: Given an attack-fault tree A, we formally define the

attack-fault tree gates G = {OR,AND,SAND,PAND}.

• OR:- An OR gate is disrupted if either of its child nodes are disrupted.

• AND:- An AND gate is disrupted when all its child nodes are disrupted.

• SAND:- A Sequential AND (SAND) gate is disrupted in the order of

left to right only when its leftmost child node is disrupted. To elucidate, the

gate is disrupted using the condition: the success of previous step determines

the success of the upcoming child node.

• PAND:- A Parallel AND (PAND) gate model the order dependent dis-

ruption (i.e., left to right) but activates its child nodes all at once.

We limit our attack-fault tree modeling to these gates, however attack-fault trees [50]

can adopt any other gates from the static/dynamic fault trees. The output nodes

of the gates G in an attack-fault tree A are defined as Intermediate nodes (I),

which will be located at a level that is greater than the leaf nodes.

Basic attack step (BAS):A BAS collectively represents all the individual atomic

steps within a composite attack-fault scenario. Each of the BAS also represents

the leaf nodes of an AFT [54].

Attack-fault tree leaves: Given an attack-fault tree A, we formally define the

attack tree leaves Lnode = {BAS ∪ leaf nodes}.

In other words, Lnode is the terminal node with no other child node(s) which

is either modeled as BAS or a simple leaf node (modeled with exponential distri-

bution) of the attack-fault tree. To elucidate, for an attacker to impersonate as a

valid user, the prospective BAS can include: (i) spoofing attack, and (ii) session

hijacking to the system depending on the attacker profile. For an attack-fault

tree A, we assumed the attack duration to have an exponential rate and model
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Figure 2.28: Formalized attack fault tree with threat scenarios inducing cyber-
sickness.

Figure 2.29: Formalized attack fault sub-tree with threat scenarios triggering a
LoC and/or LoI issues.

the equation as : P (t) = 1 − eλt where, λ is the rate of exponential distribu-

tion [16]. We use the exponential distribution because of its tractability and ease

of handling, since they are defined by a single parameter.

2.5.2 Formal Description of Novel AFTs for VR attacks in-
ducing cybersickness

Based on the results discussed in Section 2.1.4 and experimental evidence from

our prior work [16], we model potential VRLE security, privacy and fault-attack

scenarios that induce cybersickness in the form of an attack-fault tree as shown in
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Figure 2.30: Formalized attack fault sub-tree with threat scenarios triggering a
LoA issue.

Figure 2.28. As part of our framework approach, we consider cybersickness as the

primary goal for an attacker. We model our main AFT as shown in Figure 2.28

using different security, privacy, fault-attacks in the form of sub-trees as shown

in Figures 2.29, 2.30, 2.31. Exploring the security aspect in CIA triad of {Confi-

dentiality, Integrity, Availability} results in an enormous number of leaf nodes in

the AFT. For the purposes of our work, we term the main generated AFT that is

covering SPS attack scenarios inducing cybersickness as Safety-AFT.

To elucidate, the safety AFT contains root node as cybersickness (CS) which

branches out to intermediate nodes such as security issues relevant to CIA triad

i.e., {Loss of Confidentiality (LoC), Loss of Integrity (LoI), Loss of Availability

(LoA)}. This branching results in an enormous number of leaf nodes as shown in

Figures 2.29 and 2.30. The intermediate nodes serve the purpose of establishing

the relationship of root node to leaf nodes which are basically the basic attack steps

to disrupt cybersickness. We continue the branching of intermediate nodes until

no further division is possible, i.e., a case that terminates as leaf nodes. Similarly,

the other sub-tree whose root node is privacy leakage address the privacy threat
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Figure 2.31: Formalized attack fault sub-tree with threat scenarios triggering a
privacy leakage issue.

scenarios that induce cybersickness for a social VRLE user.

In our generated safety-AFT, we also explore the temporal dependencies in

terms of sharing subtrees where the cause and effect relationship is outlined. To

elucidate, an intermediate node in a sub-tree can be used as leaf node in a different

sub-tree which can act as a sharing node. For example, the unauthorized system

access (USA) which is an intermediate node in the LoC subtree is used as a

leaf node represented as LoC-USA in the LoI subtree as shown in the Figure 2.29.

Similarly, LoA subtree shares its intermediate node “Features not working (FNW)"

as a leaf node which is represented as LoA-FNW in the LoI subtree. Moreover,

the LoC subtree intermediate node i.e., Unauthorized data access (UDA) acts as

the leaf node LoC-UDA in the privacy leakage subtree as shown in Figure 2.31.

Using this generated safety attack-fault tree, we discuss the process of convert-

ing an AFT into STA to perform stochastic model checking in the next section.
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Figure 2.32: Framework for translation of attack trees into network of stochastic
timed automata.
2.5.3 Translation of attack-fault trees into stochastic timed

automata

In this section, we generate STA for each of the sub-trees in Figures 2.29, 2.30

and 2.31 that are part of the safety-AFT in Figure 2.28. An overview of our

translation approach is shown in Figure 2.32 where: (i) each of the leaf nodes in

these AFTs are converted into individual STAs. The intermediate events, which

are basically the output of the logic gates that are used at different levels are

converted imperatively into STA; (ii) the generated STAs are composed in parallel

by including the root node; (iii) the obtained NSTA is then used for statistical

model checking in order to verify the security, privacy and fault-attack properties

formalized as SMC queries. As mentioned earlier, these obtained STAs are used

for performing model checking to verify the cybersickness metrics formalized as

SMC queries.

To demonstrate the translation of an AFT into an STA, we first consider

the safety AFT shown in Figure 2.28. As part of the translation, each of the

security AFT element (leaf and gates) input signals are connected to the output

signal of child nodes. The generated network of STAs (i.e., NSTA) communicates

using {initiate, fail} signals. initiate - indicates activation signal of attack tree

element. This signal is sent initially from the root node to its children. fail -

indicates disruption of that attack tree element. This signal is sent to the parent

node from its child node to indicate an STA disruption. The scope of the above

signals also includes special symbols such as: i)‘?’ (e.g., initiate?) means that
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Figure 2.33: STA of cybersickness root node in safety AFT.

Figure 2.34: STA of OR gate and signal transition between the root node and the
childnode for the LoA subtree in the safety-AFT.

the event will wait for the reception of the intended signal, ii) ‘ !’(e.g., initiate!)

implies output signal broadcasts to other STA in the attack-fault tree.

Illustrative example: In the subsequent paragraph, we illustrate our transla-

tional approach by converting the safety AFT into an exemplar NSTA. For in-

stance, we show the conversion of root node (i.e., cybersickness) (Top_event) into

equivalent STA as shown in Figure 2.33. Here, the STA broadcasts initiate signal

and waits for the fail signal from the child nodes to disrupt the cybersickness

node. In addition, the clock x is a UPPAAL global variable where we declare

x = 0 to keep track of the time progression as mentioned in Section 2.1.4.

An example of OR gate in the safety AFT involves the child node Transfer

Delay of the LoA sub-tree shown in Figure 2.30. The OR gate of the Transfer

Delay is disrupted, when any of its child nodes Features not working, Response

Time sends a fail signal as shown in Figure 2.34. This fail! signal is sent to

the Top_event which forces a transition to Disrupt state, representing LoA in

the system thereby disrupting cybersickness. Similarly, STAs for the AND gate,

SAND gates and the leaf nodes are also developed.

For instance, we consider the sub-tree LoA in Figure 2.30 whose intermediate

node Timelag is converted into an STA representation with AND gate as shown

in Figure 2.35. For this, the STA for intermediate node Timelag, waits for the

disrupt (fail) signal from both Traffic Congestion, Transfer delay as shown in
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Figure 2.35: STA of AND gate for the LOA sub-tree of the safety AFT.

Figure 2.36: STA for SAND gate in safety AFT.

Figure 2.35. The Timelag node gets disrupted once the fail signal is received from

its child nodes. Similarly, the node Features not working with a SAND gate is

disrupted only if its child nodes Unauthorized access, Data tampering send the fail

signal in a sequential manner (i.e., left to right order) as shown in Figure 2.36.

Next, we explain PAND gate which we have used to model the faults in NSTA

as shown in Figure 2.37. In case of PAND gate for the node DoS in the LoA

sub tree, we convert the equivalent STA where its children (i) DoS (ii) UR are

initialized at the same time via initiateA8 and initiateA9 signals. The disruption

of the PAND gate occurs once its both children are disrupted in a sequential

manner as shown in Figure 2.37.

Moreover, the leaf node Data Tampering of the LOA subtree is converted

to STA as shown in Figure 2.38. Here, the STA gets activated after receiving

initiateA10 signal form its parent node FNW and disrupts the gate by sending

a disrupt signal. Each of these converted STA leaf nodes are instantiated with

λ (rate of exponential) values. For the given λ values to the leaf nodes, the

probability of occurrence is calculated. This value then propagates upward in the

tree to calculate the probability of LoA thereby can be used to determine the

probability of the main root node of the safety AFT i.e., cybersickness.

Using this translational approach, we convert all the nodes including the leaf

nodes and their associated BAS in our safety AFT into equivalent STAs. These

developed STAs are composed using the parallel composition [49] technique to
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Figure 2.37: STA for PAND gate in safety AFT.

Figure 2.38: STA for leaf node data tampering in LOA subtree of the safety AFT.

form an NSTA, which is then used for SMC by the UPPAAL tool [51].

2.5.4 Attacker Profiling (AP) for BAS

The level of cybersickness induced due to each of these threat factors is also

dependent on the considered attacker profiles (AP). For this, we develop AP

based on prior works [54, 80] with attributes such as – (i) time taken to exe-

cute an attack, (ii) cost incurred to perform the attack, (iii) skill level of the

attacker, and (iv) resources required to perform a cyber/immersion attack [81, 82]

as shown in Table 2.10. To explain, we enlist the APs required to perform cyber-

attacks/immersion attacks (e.g., DoS, Impersonation, SQL injection, control of

users) as shown in the Table 2.10. With these generated AP, we showcase the

logical steps taken by an attacker (i.e., BAS) to disrupt a leaf node. Each of these

BAS are equipped with exponential distribution, discrete probabilities [50] in the

Table 2.10: Attacker profiles for modeling different BAS.
Type of Attack Attacker Skills Resources

DoS Attack Attacker1 High Low (ping sweeping),
High (sync flood)Attacker2 Low

Impersonation Attacker1 High Low (spoofing attack),
High (Session Hijack)Attacker2 Low

SQL injection Attacker1 High High (Fraud. access),
Medium (Alter Data)Attacker2 Low

Insert malicious
scripts

Attacker1 High Low (Add URL),
Medium (spooky vis.)Attacker2 Low
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safety AFT. In addition, we incorporate these APs for quantitative evaluation

(i.e., in-depth analysis) to identify the most vulnerable components in the gener-

ated safety AFT of social VRLE applications. These APs can be further extended

depending on the attributes considered for profiling.

Modeling of basic attack step (BAS) In each of the BAS, to evaluate the

disruption values over various paths (i.e., attack steps) taken by attacker, we as-

sign the probability weights and rate of exponential over the edges and nodes,

respectively. For every attack scenario in BAS, the steps taken by the attacker

are different depending on the attacker profile. To explain our approach in mod-

eling a BAS, we consider the leaf nodes – Impersonation, SQL injection, Insert

malicious scripts and Denial of service in our safety AFT. For instance, the STA

Figure 2.39: BAS for impersonation.

of the leaf node impersonation gets activated after receiving initiate signal from

the parent node as shown in the BAS representation Figure 2.39. The BAS for

impersonation node in Figure 2.39 is equipped with probability weights (w1, w2),

rate of exponential represented as λ. After getting elevated access to the network,

the attacker chooses a path (i.e., by performing a spoofing or session hijacking

attack) with probabilities w1/w1+w2, w2/w1+w2, respectively. After exploiting

one of the paths as shown in the Figure 2.39, fail signal is sent to the parent node

representing disruption of the impersonation node in the given attack-fault tree.

Another example of BAS of SQL injection is shown in Figure 2.40, where

the logical steps taken by the attacker are outlined. To elucidate, the attacker

can perform SQL injection in following ways: i) login as a fraudulent user, ii)
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Figure 2.40: BAS for SQL injection.

Table 2.11: Values of λ given to the basic attack steps of the safety AFT
Basic attack steps of safety AFT

Threat scenarios λ

Impersonation 0.00004925, 0.00005466
SQL injection 0.0000502, 0.0000854, 0.0000492

Insert malicious scripts 0.0005389, 0.0006899
Denial of service 0.0003638, 0.0003084

access data, and iii) alter data, without having authorized access. In addition, the

probability of taking different paths is described based on the probability weights

i.e., w3, w4 and w5 distributed over the edges. After disruption, fail signal is

sent to the parent node representing disruption of the respective event.

Table 2.12: λ values for leaf nodes of security & privacy subtrees in safety AFT.
LoC subtree LoI subtree LoA subtree Privacy leakage subtree

Threat scenario λ Threat scenario λ Threat scenario λ Threat scenario λ

Login to system 0.0089 Packet spoofing 0.0068 Network traffic 0.0000113 Ping sweeping 0.002162

User data 0.004162 SYNC flood 0.0068 Upload/down
-load rate

0.0001 User physical
location

0.0000078

Capture packets 0.00098 Modify sensitive
data

0.002642 Unauthorized
access

0.006478 Password attacks 0.08687

Analyze packets 0.0048 Change coordinates 0.002642 Low
Bandwidth

0.000121 Capture
Hostname

0.004162

Impersonation 0.006892 Identity spoofing 8.1219E-06 ——- Intrusion 0.006628

User login 0.0089 Insert malicious
scripts

0.008 Listen to
conversation

0.08
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2.6 Quantitative Analysis of Safety AFT

In this section, we present the quantitative results obtained from experiments

that use our proposed framework. We quantitatively assess individual as well as

combinations of leaf nodes in the safety AFT, to study how multiple SPS threats

associated to cyber-attacks/fault-attacks affect the cybersickness occurrence. For

this, we consider the sub-trees pertaining to threat scenarios – LoI, LoC, LoA

and privacy leakage for the outlined safety AFT shown in Figure 2.28. In the

following analysis, we assume that our design requirement is to keep the probability

of cybersickness below the threshold of 0.25. For evaluation purposes, we use

arbitrary values of λ as parametric input to the leaf nodes as shown in Table 2.12

obtained from [57, 58]. In addition, we give the λ value based on the weights of

probability of distributions for each BAS as shown in Table 2.11.

Using these λ values as parameters to the leaf nodes, we utilize the SMC queries

as explained in Section 2.1.4 to analyze and find the probability of cybersickness

for the generated STAs. For our experimental purposes, we consider cybersickness

(i.e., root node of safety AFT) as the goal node. Any other user-specified threshold

values for different applications can also be used in our framework. This is due to

the fact that the model checking approach takes the user-specified values at the

beginning of an experiment. In addition, we also consider an error bound ε value

of 0.01 and 95% confidence interval for the calculation of probability of disruption.

In the following set of experiments, we present the obtained probability of the goal

nodes with respect to the time window used by the attacker.

2.6.1 Vulnerability Analysis in the safety AFT

With this quantitative analysis, we identify the most vulnerable components that

can act as inducing factors for cybersickness in a VRLE session. For this, we

assign the values of λ for the leaf nodes shown in Table 2.12. For the remaining

leaf nodes in the safety AFT, we consider a very small positive constant (K) ≈
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Figure 2.41: TS of safety AFT where - TS3, TS7, TS8 are the most vulnerable
nodes.

0.00001. This is because, in real world systems, multiple attack scenarios can

happen. To identify a vulnerability in the safety AFT, we analyze: (i) individual

leaf nodes, and (ii) combinations of leaf nodes, to determine their effect on the

probability of CS occurrence.

Individual leaf node analysis

In Figure 2.41, we show the probability of CS over multiple time windows for each

leaf node in the safety AFT. We perform a thorough analysis of leaf nodes in the

safety AFT for threat scenarios across different time intervals i.e., t = {1 hr, 2 hr

and 3 hr}. For the individual leaf node analysis, the considered threat scenarios

(TS) shown in Figure 2.41 are termed as: TS1 – Impersonation, TS2 – User login,

TS3 – User physical location, TS4 – Capture packets, TS5 – Ping sweeping, TS6

– Intrusion, TS7 – Upgrade, TS8 – Low bandwidth, TS9 – Network fault. As

shown in Figure 2.41, the leaf nodes TS1 and TS8 (for causing a DoS attack), TS3

and TS7 (for sensitive data leakage) are the most vulnerable in the safety AFT

with the probability of 1. In addition, we also determine TS6 that is considered

as the next vulnerable node in the safety AFT.
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Figure 2.42: Combinations of TS of safety AFT where - TS1, TS4, TS6 are the
most vulnerable nodes.

Combination of leaf node analysis

Herein, we consider combinations of leaf nodes to identify their impact on CS.

For these experiments, we explore two scenarios: In the first scenario, we consider

combinations of leaf nodes that belong to the same sub-tree (e.g., LoI). In the

second scenario, we consider leaf nodes from different sub-trees (e.g., LoA and

privacy leakage). The considered combination of threat scenarios are enlisted

as: TS1* – {Capture hostname, Ping sweeping}, TS2* – {Data tampering, user

information}, TS3* – {Data tampering, faulty application behavior}, TS4* – {Low

bandwidth, unauthorized access}, TS5* – {Sync flood, ping sweeping}, TS6* –

{Intrusion, Listen to conversation}, TS7* – {Impersonation, Packet Spoofing}.

As shown in Figure 2.42 TS1*, TS4*, TS6* and TS7* are the most vulnerable

combination of threat scenarios with a probability of 0.9 for a CS event. As part

of further analysis in Section 2.7, we discuss about the potential candidates for

design principles to apply on these leaf nodes such that the VRLE application

resilience is enhanced against security threats.
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Figure 2.43: Probability of disruption of cybersickness for different attacker pro-
files.

2.6.2 Evaluation of attacker profiles in terms of impact on
disruption of safety AFT

In this section, we analyze how APs impact the disruption of an intermediate

node, root node (cybersickness) for the safety AFT shown in Figure 2.28. For

instance, the Figure 2.43 considers the APs enlisted in Table 2.10 along with the

AP attributes such as cost, resources, skills required and their associated likelihood

of the cybersickness disruption in the safety AFT. From the graphical analysis, we

determine that for time ≈ 3 hours, the disruption of likelihood of CS for Attacker

1 is 4.44 × 10−2 and for Attacker 2 is 4.25 × 10−2. Similarly, in Figure 2.44, we

also analyze the impact on disruption of an intermediate node {Response Time}

in the LoA subtree of the safety AFT. From our results in Figures 2.43 and 2.44,

we determine this change of probability of disruption between the considered APs

is due to the change in the profile attributes i.e., skill, cost, time, resources. With

this analysis, we consider both the attacker profiles in determining the vulnerable
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Figure 2.44: Probability of disruption of response time in safety attack tree for
different attacker profiles.

components for a given social VRLE application design.

2.6.3 Risk assessment based on vulnerability analysis and
attacker profiles

In this section, we perform risk assessment on the identified vulnerability compo-

nents outlined in Section 2.6.1 for the safety AFT. To determine the severity of

these identified threat vectors in a VRLE, we adopt a widely accepted NIST-based

risk assessment procedure [28, 83]. Taking the vulnerability results into account,

we calculate their associated risk values based on the formulation:

R = P (O)× I (2.1)

where, P (O) is the probability of occurrence, I is the level of impact in the event

of attack occurrence and R is the associated risk.

In addition, we use the semi-quantitative scale based on the NIST SP 800-
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Figure 2.45: Risk assessment of threats affecting cybresickness.

53 [28] to categorize the risk levels as ‘High’, ‘Moderate’, ‘Low’ based on the I

and P (O) values for a given threat scenario. For this, we determine the P (O)

from our vulnerability analysis of the STAs related to the safety AFT discussed

in Section 2.6.1. Similarly, we estimate the I using NIST guidelines in terms of

impact on cybersickness based on our preliminary experiments results on CS levels

as shown in Figure 3.2. The rational behind such a calculation is to get the most

conservative estimate of the critical components in the VRLE application. To

categorize into the appropriate risk level for each of the threat scenarios, we first

calculate the risk% using the Equation 2.1. To elucidate, the calculated risk% is

assigned the risk level using a percentage scale from 0 to 100%, where >= 100%

(very high), > 70% (high), > 50% (moderate), > 20% (low), < 20% (very low).

The risk assessment shown in Figure 2.45 details the risk value of each of the

most vulnerable components considered as threat scenarios in Section 2.6.1. These

threat scenarios – TS3, TS6, TS7, TS1*, TS4*, TS6* are enlisted on the X-axis

and the Y-axis represents the associated risk%.

Based on our risk assessment results, we identify that TS6* has a higher risk

level with value 78.65%. Similarly, TS4* also falls under high risk category when

compared to TS3, TS6, TS7 and other combinations. In addition, the risk levels
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for TS6, TS7 are higher than the combination TS1*, which is a privacy breach sce-

nario. The low risk level we can observe for TS1* can be considered as a potential

risk factor if the hostname of the user is obtained for an attacker with higher AP.

From our risk analysis, we can also determine that - among the considered threat

scenarios, a DoS and a man-in-the-room attack cause higher risk for occurence

of cybersickness. Based on the above, we can see how SP attacks can be used to

trigger novel attack scenarios such as an immersion attack, to induce undesired

cybersickness levels. Thus from our above quantitative results, we can conclude

that along with physiological conditions, the security and privacy related threats

can act as major factors for inducing cybersickness in a VRLE session.

2.7 Recommended Design Principles

In this section, we examine the effect of applying various design principles to the

most vulnerable components identified in the Section 2.6.1 for our safety AFT.

Existing works such as NIST SP800-160 [28], [53] suggest that the services for

safeguarding security and privacy are critical for successful operation of current

devices and sensors connected to physical networks as part of edge computing

systems. As mentioned in Section 2.1.5, these design principles are essential to

construct a trustworthy edge computing based system architecture. The goal is

to apply a combination of design principles at different levels of abstraction to

help in developing effective mitigation strategies. We adopt a selection of design

principles such as hardening, diversity, Redundancy and principle of least privi-

lege among the list of principles available in NIST SP800-160. In the following,

we demonstrate their effectiveness by showing that there is a reduction in the

probability of disruption terms after adopting them in a VRLE design.
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Figure 2.46: Pr reduced by 24.14% in safety AFT due to application of hardening
design principle.

2.7.1 Implementation of design principles on safety AFT:

To study the effect of design principles on the cybersickness occurrence, we incor-

porate hardening, redundancy as shown in Figures 2.46 and Figure 2.47 relating

to the safety AFT. As part of hardening principle, we added new nodes such as a

firewall and a security protocol to analyze the impact of the most vulnerable nodes

triggering a DoS attack in the safety AFT. Our results show that the probability

of CS disruption is reduced from 0.87 to 0.66 (24.14%), with the given attacker

profile.

The decrease in the disruption of CS is due to the increase in the resource

requirement for an attacker to compromise a VRLE application which is incor-

porating the hardening principle. Similarly, we apply: (i) redundancy on the

safety AFT that adds more components with similar functionalities intentionally

which in turn reduces the probability of disruption of cybersickness by 2.6% as

shown in Figure 2.47, and (ii) principle of least privilege where the probability of

cybersickness in the safety AFT is reduced by 2.61%.

Thus, from the above implementation of individual design principles, we can
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Figure 2.47: Pr reduced by 2.6% in safety AFT due to application of redundancy
design principle.

observe that hardening is more effective in reducing the disruption of cybersickness

compared to any of the other design principles. In addition, our results demon-

strate the benefits in implementing a combination of design principles in safety

AFT to overall improve the attack mitigation efforts.

To study the effect on disruption of the cybersickness, we adopt a combination

of design principles for the safety AFT such as: (i) {hardening, principle of least

privilege}, (ii) {hardening, redundancy}, and (ii) {Redundancy, principle of least

privilege}. We observe that there is a significant drop in the probability of disrup-

tion of cybersickness from 0.87 to 0.62 (28.96%) due to {hardening, principle of

least privilege} as shown in Figure 2.48. Similarly, Figure 2.49 shows the effect of

combination of {hardening, redundancy} that results in reducing the disruption of

CS with 25.2% in a safety AFT. In addition, we apply the {redundancy, principle

of least privilege} combination, which results in a reduction of cybersickness by

3.05% as shown in Figure 2.50.

Finally, we evaluate the effect of all the combined design principles on safety

AFT. The Pr of the cybersickness for the safety AFT is reduced by 35.18% as

shown in Figure 2.51. From the above numerical analysis, we can conclude that in-
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Figure 2.48: Pr reduced by 28.96% in safety AFT due to application of hardening
and principle of least privilege design principles.

corporating relevant combination of standardized design principles and their joint

implementation have the potential to better mitigate the impact of sophisticated

and well-orchestrated cyber attacks on edge computing assisted VRLE systems

with wearable devices. In addition, our above results provide insights on how the

adoption of the design principles can provide the necessary evidence to support a

trustworthy level of security, privacy and safety for the users in VRLE systems that

are used for important societal applications such as: special education, surgical

training, and flight simulators.

2.8 Conclusion

Social Virtual Reality Learning Environments (VRLE) provide immersive expe-

rience by delivering online content to distributed users. Currently, VRLE ap-

plications are being adopted in various application domains, however the related

security, privacy and user safety (SPS) issues are under-explored. In this paper, we

present a novel quantitative framework to analyze potential security, privacy issues

that induce cybersickness (a safety issue) in a VRLE session. With our preliminary
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Figure 2.49: Pr reduced by 25.52% in safety AFT due to application of hardening
and redundancy design principles.

experiments that considered a social VRLE application case study viz., vSocial,

we demonstrated the disruptive effects of various cyber-attacks/fault-attacks based

SPS issues (i.e., DoS, eavesdropping via man-in-the-room) on cybersickness levels.

We utilized attack-fault tree formalism to model the security issues (i.e., LoC,

LoI and LoA scenarios) and privacy issues (i.e., privacy leakage) inducing cyber-

sickness in a VRLE session. Specifically, we developed relevant attack-fault trees

and converted them into stochastic timed automata and then performed model

checking using the UPPAAL SMC tool.

Using our proposed framework, we determined causes of: DoS attack, data

leakage, man-in-the-room attack and unauthorized access as the most vulnerable

components that can induce higher level of cybersickness in VRLE sessions. By

using the NIST SP800-16 risk assessment method, we determined the severity of

these identified threat scenarios (i.e., critical issues) in terms of impact on cyber-

sickness and degradation of application functionality. Furthermore, we illustrated

the effectiveness of our framework by analyzing different design principle candi-

dates. We showed a ‘before’ and ‘after’ performance comparison to investigate

the effect of applying suitable design principles to reduce the probability of cy-
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Figure 2.50: Pr reduced by 3.05% in safety AFT due to application of redundancy
and principle of least privilege design principles.

bersickness occurrence. From our experiments with the vSocial application, we

determined that the choice of a suitable design principle pertaining to the most

vulnerable threat components is significant for use in an attack mitigation strat-

egy. Specifically, we observed that implementing a combination of design princi-

ples can result in a more effective mitigation strategy. Among the design principle

candidates, we found: (i) {hardening, principle of least privilege}, (ii) {hardening,

redundancy} were the most suitable combinations for reducing the probability of

CS occurrence with an average of 29%.

As part of future work, evaluation of different attack-defense strategies and

potential performance adaptations can be performed. This can help to assess

their effectiveness in mitigating the cybersickness occurrence, to ultimately ensure

a safe, trustworthy and high-performing VRLE to the application users.
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Figure 2.51: Pr reduced by 35.18% in safety AFT due to application of hardening,
redundancy and principle of least privilege design principles.
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Chapter 3

Threat Intelligence Collection for
Critical Anomaly Event Detection

3.1 Attack Issues Disrupting Immersion Factors

The adoption of virtual reality in IoT-based infrastructure merges the physical

and the digital world to create a new form of an interactive environment [84].

We collect the SP attack data related to potential vulnerabilities in VRLE via

different subjective assessments. In this section, we formulate our problem by

stating the relationship between potential SP attacks and UIX factors in two

phases: (i) modeling of potential SP issues in VRLE that disrupts users’ UIX,

and (ii) analyzing the relationship of the impact of SP attacks on UIX due to the

vulnerabilities in VRLE.

Using the attack tree formalism discussed in our works [16], [26] we model the

potential SP attacks that disrupts UIX factors as leaf nodes and the root node

respectively as shown in Figure 3.1. We generate this SP-UIX attack tree whose

root node (i.e., disruption in UIX) is the goal of an attacker, intermediate nodes

are the potential attacks and the leaf nodes as threats causing such SP attacks.

The attacks listed in this SP-UIX attack tree can be generated in various ways

based on the attacker profile. In our study context, we generate this SP-UIX
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Figure 3.1: Formalized immersion attack tree with logical gates

attack tree by validating the potential threat scenarios from our prior work in [85]

and penetration testing on the vSocial application as explained in Section 3.4.

Moreover, the SP-UIX attack tree shows how an attacker can take advantage of

a vulnerability (i.e., leaf node) to trigger an anomaly event (e.g., packet spoofing,

tampering packets), which can in turn lead to an attack scenario (i.e., intermediate

nodes such as e.g., Denial of Service) as shown in Figure 3.1.

3.1.1 Quantifying Immersive User Experience

In order to understand the impact on UIX factors due to the listed potential SP

attacks (individual attacks and combination attacks), we set up a vSocial instance

with three different activities for users to perform as shown in Figure 2.24. These

activities are part of the learning curriculum of the vSocial environment [85] and

rely on fine movement, visual clarity, and clear audio, all of which are disrupted

by simulated attacks. We perform an experimental behavior analysis based on one

of our earlier works [85] to assess significant factors that disrupt UIX in a VRLE.

We simulate three attacks across the activities and quantify UIX using a set of

virtual questionnaires (VQs) as shown in Figure 2.24.

After the orientation of the vSocial, the test subject participates and their

feedback is collected at the end of activity 1 which is the baseline data for a nor-
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Table 3.1: Survey questions asked during immersion experiment
Label Immersion Question Original

Survey
Related
Works

Mental
Engagement

How mentally engaged are you
in the virtual environment?

ITQ [86][72]

Comfort Do you feel comfortable in the
virtual environment?

[87]

Smoothness
of Movement

How Smooth is movement in the
virtual environment?

PQ [86][72]

Usability Question

Accuracy
of Controls

Are the controls sensitive to your
movement and capable of
performing tasks?

PQ [86][72]

Visual Clarity Are you able to see the games
clearly?

PQ [86][72]

Sound Clarity Are you able to hear the sounds in
the virtual environment?

PQ [86][72]

mal functioning VRLE without any attack scenario. Next, the subject proceeds

to activity 2, where a security attack is simulated with a data packet drop that

disrupts the rendering of the VRLE [26], after which user feedback is collected

using a VQ. The user then proceeds to activity 3, where a privacy attack is simu-

lated to capture the user’s virtual location and a distracting noise is played such

that the user’s learning experience is disrupted. We stop this disruption for the

VRLE user approximately halfway through activity 3, where the user response is

recorded using another VQ. For the rest of activity 3, we simulate a combination

of security and privacy attack (packet tampering and disclosing the user location),

after which the users exit the vSocial environment to submit their feedback via a

post-session survey.

We run the attacks until the next checkpoint is reached i.e., if the attack dura-

tion reaches 180 seconds, we stop the attack simulation to avoid further discomfort

to the user in relation to their time spent in the VRLE. The surveys conducted for

this attack behavior analysis using VQs and post-session paper format are used

to measure each of the UIX factors i.e., usability of the application and sense of

immersiveness which the VRLE users feel. These VQs are integrated into the

VRLE such that they do not cause any disruption to the users [79]. We model

the questions in these VQs based on existing works and surveys [72] [86], such as

the Presence Questionnaire (PQ) and Immersive Tendencies Questionnaire (ITQ).
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For the purpose of our data analysis, we use usability and immersiveness based

questions adapted from [72, 86, 87]. To maintain uniformity across the collected

feedback data, we used the same questions related to UIX factors in every VQ as

shown in Figure 3.2. We recruited 15 human subjects to participate in this UIX

survey and obtained their feedback for each of the questions present in our UIX

survey on a scale of 1 to 5, where 1 (very poor), 2 (poor), 3 (Moderate), 4 (good),

5 (excellent). This collected data allows us to quantify the aggregated value of

UIX scores in the VRLE.

Results of the analysis about the impact of SP attacks on UIX factors

To investigate the impact of SP attacks on UIX factors, we first study whether

our chosen usability and immersion related questions are dependent on each other.

Based on the definition of UIX factors (usability of the application and sense

of immersiveness), we perform several statistical correlation tests (i.e., Pearson,

Kendall and Spearman) for the data collected using these set of questions. From

our statistical correlation analysis, we observe that the correlation coefficient for

different tests between usability and immersion is high ≥ 0.50. For the purpose of

the statistical analysis, we consider a null hypothesis as follows: the usability and

immersion data are independent of each other. However, the obtained p-values are

very low, which supports the rejection of our proposed null hypothesis, thereby

concluding that immersion and usability factors are indeed correlated.

Based on our data collected for the SP versus UIX factors analysis, we outline

the data points for each question versus the average rating given by the users as

shown in Figure 3.2. We observe that the security, privacy, and combination of

SP attacks have significantly impacted both the immersion and usability factors.

From these results, we understand that SP attacks do certainly affect UIX factors

and cause disruption in the functionality of the VRLE. With this analysis and our

modeled SP-UIX attack tree, we further explore the threat signatures to use for

detection of such attack scenario before they disrupt a user’s UIX in a VRLE.
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Figure 3.2: Results of UIX survey experiments.

3.2 Anomaly Detection Module

Due to the dynamic interactions in real-world VRLE applications, the SP attacks

(individual and combination of attacks) can create diverse attack signatures/-

patterns. In order to continuously learn from such VRLE system behavior and

mitigate the impact of SP attacks on UIX factors, we propose a novel anomaly

detection method. Our approach is based on DevSecOps [88] principles of diverse

solutions for change (i.e., attack, fault) detection in resilient systems. Although

there are several existing anomaly detection methods, our methodology consid-

ers events in human-computer dynamic interactions that are specific to VRLEs

involving spatially distributed users. These events can be caused due to a new

set of attack surfaces that are not seen in traditional network systems. For in-

stance, a concurrent/consequent multi-attack scenario can uniquely disrupt UIX

and user safety in a real-time VRLE application. An example of a multi-attack

scenario can be seen in a case where sensitive user information has been disclosed

(privacy attack) by gaining unauthorized access to the data (security attack) in

a social VRLE application. In this section, we present an overview of our novel

anomaly detection method shown in Figure 3.3 that is applicable to VRLEs and
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Figure 3.3: Anomaly detection method to address SP attacks on VRLE(s).
addresses security and privacy attack events that uniquely impact human and sys-

tem interactions. We categorize our approach into two main modules: i) Anomaly

Detection module to check and classify for anomaly events in the incoming data,

ii) Computation of Suspiciousness Score SSattack for the detected attacks in the

VRLE data.

The primary goal of our anomaly detection method is to enable the creation

of a secure and reliable IoT based VRLE that can: (a) identify vulnerabilities

against cyber-attacks, and (b) avoid the disruption of UIX caused due to anomaly

events during operational use. We highlight our attack detection shown in Fig-

ure 3.3 as part of a monitoring system that analyzes relevant data (user, system

information) to detect any cyber-attack events. Our anomaly detection is based

on DevSecOps [88] principles of diverse solutions and thus utilizes an ML classifier

and statistical analysis for classifying the detected anomalies into specific attack

types. In a VRLE application setting, our anomaly detection approach runs the
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ML model to analyze the incoming data from VRLE sessions, whereas the statis-

tical analysis continuously monitors the VRLE to identify and recursively trace

the origin of the attack.

3.3 Anomaly Detection using Machine learning (ML)
techniques

Once an anomaly is detected, our attack detection module uses ML techniques

in order to classify the type of network-based attacks. Incorporating ML tech-

niques can aid in automating the detection process and security analysis (e.g.,

malware detection, network log analysis, vulnerability assessment) in VRLE ap-

plications [89]. We utilize ML techniques mainly to deal with the continuous input

data (VRLE session, network information) to analyze anomaly events in VRLEs

and correlate them to user and system behaviors. In addition, ML helps us parse

through large sets of data logs that are generated from multiple IoT devices (head-

sets, controllers, emotion headbands) during user-system interactions in VRLEs.

Further, ML can be integrated into functionalities such as network performance

and user emotion monitoring, and anomaly events tracking across VRLE sessions.

Based on these motivations, we implement a ML classifier in our proposed anomaly

detection module that can accurately differentiate normal (benign) behavior from

a number of network-based attacks (e.g., DoS). Even though these network attacks

generate a lot of data, these attacks share common traits in features [90] as shown

in Figure 3.6, which in turn suggests a good fit for applying ML techniques.

Our attack detection ML technique shown in Figure 3.3 mainly consists of two

steps: (i) pre-processing, and (ii) detection of the attack type. To detect and

classify the network-based attacks, the pre-processing step considers the packet

data and the user data for building an ML classifier. Based on pattern analysis,

our ML technique can categorize the baseline data to attack type. The baseline

data refers to the data collected from the VRLE components and from the user
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interactions in vSocial without any attack scenarios (benign behavior). In addi-

tion, SP issues related to application-based attacks evolve with varied behavior

patterns and diverse features which can make the labeling of the data infeasible

in real-time. To address this different feature dimension issue, we focus our ML

classifier only for network-based attacks with common feature traits.

Next, we establish the effectiveness of our proposed anomaly detection method.

We evaluate the performance of our two mechanisms (ML classifier, Z-score anal-

ysis) in the detection module using both numerical simulations and event-driven

experimental testbed evaluations based on the vSocial use case. Our evaluation

goals are: (i) validation of different security and privacy attacks (individual and

combination), (ii) detection of network and application based attacks (iii) calcula-

tion of suspiciousness score for each of the detected network and application-based

attacks, and their impact on UIX scores using our proposed anomaly detection

method in realistic settings. To demonstrate our anomaly detection effectiveness

for each targeted attack type, we start by describing our testbed configuration, fol-

lowed by the data collection efforts for the various attack experiments, and finally

conclude with discussion of the obtained results.

3.3.1 Attack Data Collection in Testbed Setup

Testbed setup

The realistic, Open Cloud [91] testbed that we used in our anomaly detection

experiments is shown in Figure 3.4. The testbed contains two software-defined

networking (SDN) switches, a root switch, and a slave switch. The slave switch

is attached to nodes (users and attackers) and a connection to the root switch.

Moreover, the root switch is connected to an elastic virtual machine (VM), which

could serve as a candidate for hosting the target application (i.e., the vSocial por-

tal) that could be compromised by the attackers. All switches are connected to a

unified SDN controller located in the cloud service provider domain, which directs
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Figure 3.4: VRLE architecture implemented in an OpenCloud testbed setup.

the policy updates. We can extend this VRLE setup to many more switches and

devices as necessary. In our testbed setup, the three attackers try to disrupt the

server functionality, hosted on the VM connected to the root switch. We use Fre-

netic [92] to link the nodes together and subsequently implement a slowhttptest

script in order to simulate a DoS attack in the Open Cloud testbed. Before il-

lustrating all the simulated SP attacks, we first discuss the tools used as part of

performing attack scenarios on the vSocial application client.

Tools Used

As part of simulating several SP attacks, we used a Kali Linux [93] VM specifically

with a few built-in tools such as Metasploit for port scanning and running attacks

using the CVE database [94], and vulnerabilities related to unauthorized access

found in Trivial File Transfer Protocol (TFTP) [95]. In order to simulate a DoS

attack on vSocial, we used Clumsy0.2 [74] andWireshark [75] to capture the packet

rates, where the attacks were run against a vSocial client and the corresponding

vSocial server. Using the above-specified tools and the testbed setup, we generate

the attack data for network-based attacks (i.e., DoS) and application-based attacks

(i.e., Unauthorized access).
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Attack simulations

In order to generate the attacks listed in the SP-UIX tree shown in Figure 3.1

related to VRLE application, we perform SP attacks. Using the leaf nodes as

vulnerabilities in the SP-UIX attack tree, we generate SP attacks such as DoS

(Packet Drop, Packet Tampering, Packet Duplication), Unauthorized access (to

obtain local files).

a) Unauthorized access attack: As part of gaining unauthorized access, a

password attack is executed using a Brute-force method. This attack can impact

the integrity of the VRLE if the attacker gains administrator level access and dis-

closes the user information or tampers the content in the VRLE. Our proposed

anomaly detection module detects this form of unauthorized access to avoid po-

tential privacy breaches as detailed in Section 3.2. Moreover, an attacker requires

considerable amount of resources to gain unauthorized access via brute-force. In

addition, the likelihood of a server being highly vulnerable would be low. In order

to obtain the local files from such a server, we determine based on the existing

work [85], the amount of resources required to go from medium to high.

Attacker Profiling for attack simulations

Based on the work discussed in [17], we perform a XSS browser attack, where the

web entities in vSocial are targeted to hook the browser for hijacking the VRLE

content. In order to simulate this attack, the attacker needs to be highly skilled

and requires significantly more resources as it concerns with the VRLE content

in web entities. Another type on SP attack is to overlay and replace visuals with

offensive content on a user’s local machine which can partially compromise the

VRLE [17]. Performing an overlay attack along with an SQL injection can create

even more impact on user privacy as the confidential information can be captured

via overlay entities. Another form of privacy attack, packet sniffing can create

a privacy breach if the captured packets can be decrypted. The probability of

success of such SP attacks are dependent on the attacker profile.
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Table 3.2: Attacker profiling with estimated level of impact.

Attack Resources/
Skill

Level of
Impactφ

Impact Scaleφ

Unauthorized Access High 5 1. Normal System
Obtaining Local Files Medium 4 Functionality
Dropping Packets1 Medium 3 2. Minor Decrease
Duplicating Packets2 Medium 3 in System Functionality
Tampering Packets3 Low 5 3. Unusable System
XSS Browser Attack High 3 Functionality
Overlay Attack Medium 4 4. Partially Compromised
Packet Sniffing High 4 System
Malicious Script
Execution

High 3 5. Fully Compromised
System

Modification of
Chaperone

Medium 5

180% Drop Rate
220x Rate, 40% Likelihood
320% Tamper Rate

Using the observations (level of impact, resources required) through our SP

attack simulations, we develop the attacker profiles shown in Table 3.2 for every

SP attack simulated as part of the SP-UIX tree validation. In this study, we adapt

the definition of attacker profile from several existing works [81] as a collection of

relevant characteristics of an attacker (such as e.g., skills, resources, motivations/-

goals) and the associated level of attack impact. We estimate the level of impact

using a uniform scale of 1 to 5 which is categorized based on the number of VRLE

components that get disrupted during an SP attack scenario. These attacker pro-

files contribute primarily to the calculation of the suspiciousness score discussed

in Section 3.4. However, these attacker profiles can be extended for risk manage-

ment and deploying defense mechanisms on VRLEs in the future. Based on the

simulated SP attack data (available at [96]), using the attacker profiles presented

in Table 3.2 and the modeled SP-UIX attack tree, we illustrate the evaluation of

our detection approach employed in the vSocial application.

With the collected data from different SP attacks generated, our proposed

anomaly detection uses a two-stage ensemble learning scheme from [85]. The

first stage includes attack (anomaly event) detection whereas, the second stage

is about the classification of these events into specific attack types. We collect a
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Figure 3.5: Packet rate time series comparison for single attacks.

significant amount of data to utilize in our two-stage ensemble learning scheme

for attack detection and classification effectively. For evaluation purposes, our

proposed approach detects and classifies DoS attack (network-based attack) using

a machine learning classifier, Unauthorized access (application-based attacks) by

performing Z-score statistical analysis. We also illustrate the potential privacy

breach that is caused due to unauthorized access in vSocial. We then present

results from these two different implemented techniques by considering single SP

attack scenario, and a combination of several SP attack scenarios to show how our

anomaly detection approach can be used in real-time.
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ML on a single label network-based attack dataset

Herein, we detail the pre-processing of the data collected, feature extraction and

the subsequent attack detection steps for detection of single and multi-labeled

network-based attacks using ML techniques.

3.3.2 Data Preprocessing and Feature Extraction

Data Pre-Processing for our ML-based approach: To identify and accu-

rately differentiate benign data from a number of selected network attacks, our

proposed anomaly detection method aims to develop a pertinent machine learn-

ing classifier. We generate training and testing datasets by sampling different

types of network-based attacks (i.e., DoS), and also the causes of DoS attack

(i.e., packet tampering, packet drop, packet duplication). In this study, we use

Clumsy0.2 for generating these network attacks where we consider that these

anomaly events occur with malicious intent. On the other hand, scikit-learn

[97] and scikit-multilearn [98] are used for implementing the classifier models.

In our pre-processing step, we opt for a low-demand data collection approach.

As part of data collection, we monitor network activity during: (i) normal time

periods, and (ii) while performing each of the three DoS attacks such that all this

data is updated into the Knowledge Base. We calculate the number of packets

sent per second over a span of time by capturing the raw data associated with

the timestamp of each packet. With this, we construct a dataset of packet rates

captured over a time span for each attack type, thereby initializing a time series

classification problem. In this study, we consider that the samples are collected in

a uniform distribution such that each class is distributed uniformly.

The considered data set includes four classes: Normal (benign) behavior class

and the remaining three classes are DoS attack events (packet duplication, packet

tampering, and packet dropping). For each class, we collect 40 samples of 15-

second sequences, where each sequence contains a packet rate at 1-second intervals.
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Figure 3.6: Five of the most distinguishing extracted features.
Due to data collection at equally spaced time intervals (1 second) i.e., packets rate

per second (PRS ), we can model the data effectively as time series data, where each

class has its own individual sequence. We support our statement by analyzing how

the time series of the packet rates for each class contains distinguishing features as

shown in Figure 3.5. This motivates our work to use this time series data to train

an effective machine learning model that can take packet rate data at a sequence

of time as an input and accurately label the data as one of the four attack data

classes.

As part of feature extraction, we use tsfresh [99], a time series feature extrac-

tion tool that can be used for translating the time series data to a data format that

can be utilized for training traditional machine learning models. Using tsfresh

on the packet rate data, 212 relevant statistical features are generated. The five

most distinguishing features among the 212 relevant returned features that clearly

differentiate classes from one another are outlined in Figure 3.6. We use these

distinguishing five features – Sum of Values, Mean of Values, Ricker Wavelet,

Fourier Coefficient (real), and Fourier Coefficient (absolute value) for training a

ML classifier.
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3.3.3 Accuracy Analysis for Suitable ML Model

Before we implement a ML classifier, we perform several tests based on quantifiable

metrics that suits our data. We repeat the feature extraction step on multiple ML

classifiers to aid in developing an algorithm for an accurate detection approach. We

implement the following classifiers i.e., {Decision Tree, Random Forests, K Nearest

Neighbors, Ensemble Voting Classifier} [97] by adapting from the sklearn python

machine learning library for the best-fit analysis. For each of the classifiers, we run

1000 tests, each of which included a random train-test split designed to prevent

overfitting. Each test consists of training the model with 112 samples and testing

it on 48 samples. There are several performance evaluation metrics that can be

used for a classification exercise. We specifically use performance metrics such

as average time, precision and recall that are computed to decide the suitable

classifier for our data collected in order to classify a sample as an attack or a

benign data class. We calculate the considered performance metrics as follows:

Recall =
TruePositives

FalseNegatives+ TruePositives

Precision =
TruePositives

FalsePositives+ TruePositives

The detailed comparison in terms of the performance metrics (precision and

recall) and time needed for each model to classify a sample between ML classifiers

is shown in Figure 3.7. Based on our analysis shown in Figure 3.7, we determine

that the KNN with the K-parameter set to 2 is most suitable with 97.8% average

precision and 97.6% average recall. We compare the KNN performance for different

K-parameters ranging from 2 to 20 where, the KNN performs at its best with the

K-parameter set to 2. On an average this KNN takes 7 milliseconds to classify

a sample. Although the decision tree is able to run faster for classification of a

sample in 1.52 milliseconds, we give priority to the precision and recall factors

for accuracy in classifying a sample. Moreover, we expected the KNN + Random
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Figure 3.7: Single-label classifier accuracy comparison.

forest (voting classifier) to be the winner among the considered classifiers. But,

the KNN was most suitable due to the huge difference in running the classifier in

terms of the considered metrics of performance.

3.3.4 Single and Multi- Network Attack Detection Results

To determine the most suitable classifier in terms of faster attack detection along

with higher accuracy in classification, we use average speed (i.e. time taken to

classify a single sample) as another metric. Based on the graphical analysis shown

in Figure 3.7, we use the most suited classifier KNN and use it for attack detection

and classification for single labeled data. We term the time taken to recognize the

attack initiation as Time to detect an attack. We calculate the attack detection

time by monitoring the network packet rate as it transitions from normal (benign)

behavior to any of the events related to DoS attacks. To elucidate, we calibrate

the average time (in seconds) from the start of a DoS attack to the identification

of such anomaly behavior by the ML classifier in the anomaly detection scenarios

as shown in Table 3.3.
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Figure 3.8: Single-label KNN classifier confusion matrix.

We determine the average time taken by our anomaly detection approach ap-

plying KNN classifier for detection of network-based attacks (i.e., DoS) as 3.2

seconds. Based on our preliminary work [85], we highlight that the time taken to

detect an attack is lower than the time taken for a DoS attack to cause a VRLE

server crash. With this detection result, it is evident that our anomaly detection

method works effectively and can avoid any VRLE server crash before the user

gets interrupted or before an attack event causes a significant impact on VRLE

sessions. The Listed anomaly types (Ai) in the table 3.3 are the set of: {A1– Drop-

ping, A2– Duplication, A3– Tampering} simulated single attack scenarios and N–

represents a ‘no breach scenario’ as shown in Figure 3.8.

Figure 3.8 shows a normalized confusion matrix generated for attack classi-

fication using KNN classifier. The row values in the matrix represent the true

label (actual values) and the column represents the predicted label (predicting the

categories of the values). Moreover, the diagonal elements represent the degree of

accurate prediction of the values (assigning on what level our model was able to

identify and classify the attacks from the given data). The non-diagonal elements

represent the falsely classified (confused to categorize with other classes in the

dataset) in the given confusion matrix.
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Table 3.3: Performance metrics of our anomaly detection method in terms of
detection and classification of anomaly events.

Type of ML Model
Stage 1: Detection - time to detect network attacks (in seconds) for each

Anomaly Type (Ai) and accuracy metric
Stage 2: Classification

Avg. time to classify
into n/w attacks
(in milli seconds)

Avg. accuracy to
classify

into network attacks
A1 A2 A3 A4 A5 A6 A7

Avg. detection
time (in seconds)

Avg. accuracy
for detection

Multi labeled KNN
(Multi attack scenario)

4.0 2.0 2.8 2.6 1.2 3.6 3.6 2.82 99.5% 1.3 87.5%

Single labeled KNN
(single attack scenario)

4.4 2.4 2.8 - - - - 3.2 98.8% 7 97.5%

Multi-label network based attack detection and classification using multi-
label KNN

Based on the results shown in Figure 3.7 and in Figure 3.8, we justify the poten-

tial of employing a suitable classifier in our proposed anomaly detection method

to identify any network-based anomaly events from a sample of time-series based

packet data. However, considering the dynamic interactions in a VRLE, we de-

termine with several experiments that a multi-attack scenario (combination of

attacks) can occur in a real-time VRLE application. The above discussed single-

label KNN classification classifier will not have the capability to handle a multi-

attack scenario. Although the single labeled model can determine the occurrence

of an attack, it has no capability to identify which specific attacks are acting in a

combination.

In order to address such multi-attack scenarios, our anomaly detection method

adapts multi-label KNN classification based on the existing works [100]. The

single-label KNN classifier in our anomaly detection method uses adaptations

(i.e., the skmultilearn.adapt module) for multi-label classification with changes

in cost/decision functions. For demonstration purposes, we use an exemplar ML

model that focuses only on DoS attacks. Our approach can be extended beyond

the scope of this paper for non-DoS attacks affecting the VRLE application.

In our development of a multi-label ML classifier, we collect the attack data

similar to the single-label classifier data. We collect the packet rate in a time-

series format while a combination of two or more DoS attacks is simulated on

the VRLE application. By observing the time-series data, we proceed to develop

our multi-label KNN classifier by adapting from the works in [98, 100]. Our

developed multi-label KNN classifier is able to detect the combination of network
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Figure 3.9: Multi-label K-NN classifier confusion matrix.

attack events from the normal behavior (benign) class of data with an average

accuracy of 99.5% when our model was run for 1000 tests. We compare these

results to check the capability of our model with the existing works[101], where

their optimal detection model discusses the potentiality to exceed 99% accuracy

in detecting various DoS attacks from normal (benign) behavior data.

Moreover, our multi-label KNN classifier accurately identifies if any attack

behavior is observed in the VRLE sessions. In addition, the multi-label KNN

classifier is successful in labeling the data samples with the appropriate class/-

classes with an average accuracy of 87.5% for 1000 trials. Although this classi-

fication accuracy is significantly lower than our single-label KNN classifier, these

results can be used as a preliminary model considering the complexity in determin-

ing a multi-attack scenario (multi-class labels). We also compare our multi-label

KNN classifier with existing works that discuss classifier chains and label power-

set model. We observed that the average accuracy of these two models failed to

exceed 60% which is lower than our developed multi-labeled KNN classifier.

We tabulate all the different attack scenarios including different attack com-

binations, where we compute the average time taken by our multi-label KNN

classifier to detect an attack is 2.8 seconds as shown in Table 3.3. We generate a
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confusion matrix for the multi-labeled classifier as shown in Figure 3.9 with the

correct classifications and the incorrectly labeled predictions. The listed anomaly

event types shown in the Table 3.3 includes the combination of {A4– Duplication

+ Dropping, A5– Dropping + Tampering, A6– Duplication + Tampering, A7–

Tampering + Duplication + Dropping} multi-attack scenarios simulated and N–

represents a no breach scenario as shown in Figure 3.8. Our algorithm does not

fail in classifying a single attack (Duplication) that is part of a combination attack

(Dropping + Duplication). This shows that our multi-label solution can identify

and classify an anomaly event (in combination scenario), and at the very least

could specify one attack out of a combination of attacks that are present in the

VRLE. Thus, our anomaly detection method detects different DoS attack scenar-

ios (single and combination) efficiently using the most suitable KNN classifier. We

enlist all the detection results for the network attacks considered in different sce-

narios in terms of different performance metrics (time taken to detect and classify,

accuracy) as shown in Table 3.3.

3.3.5 Anomaly Detection using Statistical Analysis

Our proposed anomaly detection method involves performing statistical Z-score

analysis [102] to detect application-based attacks with sparse data and unique fea-

tures. For instance, in the case of unauthorized access, database logs information

on privacy breaches cannot provide enough quantifiable data. Testing such sparse

data presents additional new challenges for training ML classifiers in terms of fea-

ture extraction. We identify and classify the application-based attacks that are

not detected with our ML technique using the statistical analysis as the alterna-

tive technique. Our statistical Z-score analysis technique utilizes flag conditions

that are further separated into threshold functions and boolean conditions.

We adapt the concept of threshold values for this statistical analysis from the

work in [103]. However, due to the single-dimensional nature of the data consid-

ered for the statistical analysis, we calculate Z-scores instead of principal com-
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ponent analysis as discussed in [103]. To determine the deviation of attack data

from normal (benign) VRLE application behavior, Z-score allows us to calculate

the thresholds for each attack encountered. The Z-score is computed using the

standard deviations from a mean, where standard deviation alone only indicates

variance. Based on the existing literature [104, 105], we adapt the formulations of

standard deviations (Equation 3.1) and Z-score (Equation 3.2) for sample size n

as follows:

SD =
√∑

(X−X)2

n−1 (3.1)

z =
(X − µ)

σ
(3.2)

where X is individual value, µ is mean, SD is standard deviation, X is sample

mean and n is the sample size. To determine the threshold values for application-

based attacks, our anomaly detection approach calculates the standard deviation

for each sample of baseline data. Based on the deviation from the mean using the

formulations in Equations 3.1 and 3.2, the threshold values are calculated.

Once the Z-scores for baseline data are calculated, our anomaly detection

method proceeds to calculate the Z-scores for the incoming data and determines

an anomaly event based on the deviation from the Z-scores of baseline data. The

standard deviation, mean used for the calculation of Z-score of the baseline data

are represented as σ and µ, respectively. Our anomaly detection method identifies

anomaly event patterns in VRLEs based on the outlined categories in Equation 3.3.

The pseudocode in Algorithm 1 presents the implementation of the statistical anal-

ysis technique employed in our proposed anomaly detection approach. As part of

calculating the threshold values for the incoming log data, our anomaly detection

approach utilizes the Equation 3.3 and determines the Z-scores for baseline data

and incoming application data.

f(z) =


Baseline data, if z ∈ [x, y]

Anomaly, otherwise
(3.3)

The threshold values represent the Z-scores for baseline data. Moreover, the
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threshold values are applied to any data that follows standard distribution as

discussed in Section 3.2. Once the respective Z-scores are calculated for both

baseline data and input data, we determine whether an anomaly event is occur-

ring or not occurring.

More specifically, to identify the anomaly events, we compare Z-scores of the

incoming data to the baseline data in the Threshold function listed in line 3 of

Algorithm 1. If the Z-scores of the incoming data are out of the threshold range of

the baseline data, then we determine an anomaly event has occurred. In addition

to this, the Threshold function in Algorithm 1 also calculates the suspiciousness

score SSattack of the identified anomaly event. On the other hand, we utilize a

Boolean function (see line 15 of Algorithm 1) to validate the boolean conditions

especially for other form of application-based attacks such as e.g., data tampering.

If the boolean conditions are true, then the data is flagged as a malicious event

and the IP of that user is retrieved to calculate the suspiciousness score SSattack

of that specific anomaly event. Thus, the application-based attacks are detected

based on the calculation of Z-scores using the Equations 3.1, and 3.2 in order to

determine the threshold and boolean conditions. Such a determination helps us

to flag malicious events as detailed in Table 3.4 and Algorithm 1.

Application-based attacks such as unauthorized access, and disclosure of con-

fidential information are not feasibly detected by an ML classifier. To elucidate,

each of these application based attacks generates unique threat signatures or not

enough data which would be difficult to train and test the heterogeneous data using

an ML classifier. For overcoming this problem, our proposed anomaly detection

method employs statistical techniques for identifying these kinds of application-

based attacks. An example of an attack generating no/less data is when a VRLE

session starts and the attacker tries to gain access to the system and seeks to mod-

ify the files after the session start timestamp. In this case, there are no quantifiable

parameters to determine file modification (i.e., data tampering). As a solution, the

pseudocode in Algorithm 1 listed in Section 3.2 implements the boolean conditions
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Algorithm 1: Statistical analysis pseudocode
Input: Di: Input application data (user, session info) from logs
Output: Return suspiciousness score value
begin

Function SA ():
Function Threshold ():

Function Z-scores ():
Calculate Z-scores: Zb, SD : σb for baseline data using Eqn. 3.2;
for each y ∈ Di do

SDi =
√

(x−µb)
2

n−1

Zi =
x−µb
SDb

end
end Function
if Zi /∈ range(Zb) then

Suspiciousness score();
end
else

return as benign data;
end

end Function
Function Boolean ():

if Bcon_attackisTrue then
Suspiciousness score();

end
end Function
Function Suspiciousness score ():

SS = Est.Impact ∗Attack
return as SS;

end Function
end Function SA

end

to flag malicious events and thresholding equations to perform Z-score analysis.

We illustrate our experimental evaluation of our statistical technique by cal-

culating the thresholds for the application-based attacks listed in Table 3.4. The

Algorithm 1 computes the threshold function of each of the application-based

attacks by considering the Z-score of the baseline data as the threshold. Next,

the Algorithm 1 compares the Z-scores of the input data to the Z-score of baseline

data as mentioned in Equation 3.3. If the input log data is determined as anomaly,

Table 3.4: List of statistical analysis system functions.
Function Description

Booleans
SQLInjection() Scan inputs for illegal characters causing SQL Injection

TFTP() Check for open ports, new files sent from IPs over
TFTP, a sample vulnerability for unauthorized access

checkUsernameIP() Checks for a username login from an unfamiliar IP
Thresholds

bruteforce() Uses Z-scores to calculate when a number of login
attempts exceeds the normal threshold

bruteforceUsername() Uses Z-scores to calculate when no. of login attempts
for a specific username exceeds the normal threshold
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the Suspiciousness Score is calculated for that specific attack. This calculation

of Suspiciousness Score can aid in alerting the VRLE server administrator about

the attack. This Algorithm 1, can be extended to the other application-based at-

tack scenarios that are not included in this study along with several other existing

vulnerabilities that can cause attacks considered in this study.

3.3.6 Attack Data Collection

In order to test the effectiveness of our Algorithm 1, our anomaly detection method

collects the data by simulating an unauthorized access on the VRLE application.

In order to perform a brute force attack (a form of unauthorized access), we

parsed a database of 1,000,000,000 common passwords [106], and categorized a

set of passwords as good passwords (possible errors a user can make while typing

the password). This good set of password data consists of the passwords that, are

less than two characters different and within 2 characters of the correct password.

We calculate the ratio of good passwords to the total set of passwords as 10
4958

approximately.

As part of data collection, the tests are run within a reasonable amount of

time to determine the normal data set (benign user) and malicious data set (at-

tacker patterns). For this, we consider the fraction 10
4958

, where the numerator

value denotes a good password dataset of 10 passwords. On the other hand, the

denominator value can be denoted as an attacker database of 4958 passwords.

We use 123456 as the sample correct password of a user for testing different user

scenarios. In order to collect data of a non-malicious user logging into the sys-

tem, we run this test by removing the good passwords until the sample correct

password is identified. Our data collection approach runs the test 1000 times to

record the data that determines the number of attempts taken to identify the

correct password. To collect the data related to unauthorized access (malicious

user trying to login), we run the same test 1000 times using the attacker database

of passwords to simulate a Brute-force attack scenario onto a VRLE system. The
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Table 3.5: Bruteforce attack detection scenarios in terms of precision and recall
metrics

Statistic Good password dataset Attacker database
Precision 99.95% 99.7%
Recall 99.92% 99.93%

data is recorded to identify the number of attempts taken by a malicious user to

guess the correct password.

3.3.7 Accuracy Analysis of statistical analysis technique

The data collected in terms of normal (benign) user attempts and malicious (at-

tacker) attempts are analyzed using Algorithm 1 for calculating the deviations

from the mean. With this, the Z-scores are rounded to the nearest whole number

due to the computational requirements. We were able to run only 1000 tests due

to system limitations and computation time for the statistical analysis. Using

the Boolean and threshold functions listed in Table 3.4, we generate histogram

to show the distribution of Z-score frequency for normal (benign) user data on

login attempts and for malicious user (unauthorized access) login attempt data as

shown in Figure 3.10.

The Z-score data related to benign user shown in Figure 3.10, follows a Gaus-

sian distribution along with thresholds created with a sensitivity value of 2. Any

data that falls outside the range of these thresholds can be categorized as anomaly

events (malicious attacks). We run the Algorithm 1 associated with the Z-score

analysis for 100 times on both the benign user data and malicious user data to

calculate precision and recall scores for each test. The average precision and re-

call scores are calculated for 100 tests on both the good password and attacker

database as shown in Table 3.5 where we identify that these both statistics are

with higher levels of 99% in terms of precision and recall factors.

Our statistical analysis technique considers other forms of unauthorized access

for determining the efficiency of our Z-score based analysis. For simplicity, we

run tests related to an attacker database of 100 passwords instead of the 4958
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Figure 3.10: Brute-force password attempt Z-score distribution.
passwords. This considered 100 set of passwords, represents the scenario where

an attacker tries to gain access using other forms of sniffing methods to narrow

down to the correct password to a small number. For uniformity, we perform the

same number of tests similar to the tests performed for determining the number

of login attempts to Brute-force a VRLE system. We tabulate the statistical

parameters precision and recall for other forms of attack data as shown in Table 3.5

to understand the efficiency of our Z-score based analysis.

3.3.8 Application Attack Detection Results

Although the password data considered for the other forms of unauthorized access

is significantly reduced from the password data considered for the brute force

attack, our Algorithm 1 listed in Section 3.2 demonstrates very promising results

with above levels of 99% in terms of precision and recall factors. The y-axis in

the bar graphs shown in Figure 3.10 represents the frequency of the data and the

x-axis represents the Z-score value ranges. The thresholds for the normal data

(benign user) are in the form of the dotted line on the extreme left as shown in

Figure 3.10. The malicious attack data is detected and flagged, as the Z-score

distribution falls out of the threshold range. This case is annotated as malicious

data in the bar graph shown in the Figure 3.10. Thus, using statistical analysis,

we identify the application-based attacks (i.e., unauthorized access) with the data
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threshold shown in Figure 3.10.

3.4 Quantitative Metrics for Attack Occurrence
based on Attacker Profiling

Based on the attack classification results, our proposed anomaly detection method

involves calculation of the suspiciousness score (SSattack) for each of the attacks

detected. The SSattack for a specific attack pattern is calculated based on the

estimated level of impact on the UIX and functionality of the VRLE as mentioned

in the Equation 3.4 and Algorithm 1. The suspiciousness score calculated for each

detected attack in VRLE is as follows:

SSattack =
∑n

i=1 (AttackScenarioi ∗ EstLevelOfImpacti) (3.4)

The SSattack calculation takes into account the detected attacks from both the

ML technique and the Z-score based statistical analysis. This SSattack serves as

a quantitative analysis metric of the risk associated with an attack or a specific

user in a VRLE. The pseudocode in Algorithm 1, consists of a callable, unique

dictionary entry and function for each detected attack is based on the ML classifier

and Z-score statistical analysis that iteratively adds to the overall suspiciousness

score.

Calculation of Suspiciousness Scores (SSattack)

Based on the approach shown in Figure 3.3 that is described in Section 3.2, our

anomaly detection module calculates the suspiciousness score SSattack for a specific

detected attack. We utilize a sandbox technique for the calculation of suspicious-

ness score SSattack based on the parameters: ‘Estimated level of impact of an

attack on the UIX’. In addition, for the attacks that affect privacy, it is difficult to

get quantifiable indicators such as in the case of log files being stolen or browsers

being hooked. We include all these attacks to build an attacker profile [81]. We

remark that these can be extended for future works to determine quantifiable
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Table 3.6: Calculation of suspiciousness scores based on multiple combination of
attacks.

Type of attack Detected attack
scenarios

Impact value
from AP

Total
Suspiciousness
Scores (SSattack)

No breach
(baseline data)

Benign Data
(non-malicious)

1 0

Single network
attack scenario
(DoS attack)

Duplication 3 0.17
Dropping 3 0.17
Tampering 5 0.40

Multi network
attack scenario
(combination
of DoS attacks)

Duplication + Dropping 6 0.50
Tampering + Duplication 8 0.70
Tampering + Dropping 8 0.70

Tampering + Dropping +
Duplication

11 1

Single non-
network based
attack

Brute Force attack 5 0.40
Unauthorized access (other

forms)
5 0.40

parameters for the application-based attacks.

Our anomaly detection module calculates these SSattack based on Equation 3.4

which is mentioned in the Algorithm 3.2. Our anomaly detection method nor-

malizes the estimated level of impact such that the SSattack values are normalized

on a scale from 0.0 to 1.0; where 1.0 represents the maximum score of SSattack.

There are a few attacks that have similar indicators in case of a single attack or a

multiple attack scenario. To elucidate, a recently modified system file can cause

an overlay attack (where a default image file has been overridden) or a Chaperone

file modification attack [17]. On the other hand, unauthorized access encompasses

any kind of brute-force attack or administrator login from a non-administrator

user role. The SSattack for each detected attack is assigned based on Equation 3.4,

where we calculate the estimated level of impact of each attack on the UIX as

follows:

est.levelI =
(x−minimpact)

maximpact −minimpact
(3.5)

The SSattack gets updated by the above formulated estimated level of impact

as shown in Table 3.6 using the Equations 3.4 and 3.5. Our proposed anomaly

detection will generate the normalized SSattack scores so that they can be used for
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Figure 3.11: Relative change in UIX as the Suspiciousness scores increase for
different type of SP breaches.

triggering an alert. These SSattack scores can also be used for defense mechanisms

when an attack is detected.

3.5 Impact analysis on User Immersion for De-
tected Attacks

With the calculated SSattack for each of the detected attack, we also evaluate the

impact on overall UIX score (aggregated numerical value of UIX factors consid-

ered) for different types of scenarios (attack and benign user), as shown in the

Figure 3.11. The x-axis in Figure 3.11 denotes the breaches occurred where, NB

– No breach, SB – Security breach, PB – Privacy breach and CB – Combination

of breaches in the vSocial case study. The y-axis in Figure 3.11, represents the

percentage change value that occurs in both UIX and SSattack parameters. We

observe that for every security, privacy breach scenario in the VRLE, the UIX

score is significantly reduced compared to the benign user behavior (NB scenario).

On the other hand, the SSattack is increased for every type of breach included in

this analysis. We also highlight that as SSattack increases, the overall UIX score
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is reduced significantly for the attack scenarios considered in this validation of

impact analysis. With this analysis, we highlight the fact that SSattack (that tells

about the attack occurrence) and UIX score (usability of the application and sense

of immersiveness) can be used as salient quantitative parameters in our proposed

anomaly detection method for notifying attack events before they occur in real-

world VRLE systems. We store all this historic data on detected attack patterns,

SSattack score and impact on UIX score in the knowledge base, to train models for

zero-day attack anomaly events detection by continuously learning the dynamic

interactions in a VRLE.

3.6 Knowledge Base

Our anomaly detection method stores the baseline data into a database, created

to serve as a Knowledge Base for training the models employed in our detection

approach. This knowledge base actively stores VRLE session information, detected

attack patterns (qualitative descriptions of each attack) along with the associated

SSattack, and user data. This historic data can be used to further train models and

can help in detection of zero-day attack anomaly events with continuous learning

of dynamic interactions in a VRLE.

3.7 Summary

With our experimental survey on several test subjects, we demonstrated the

disruptive effects of various application-based and network-based SP attacks on

UIX factors. Building upon these established observations, we proposed a novel

anomaly detection method that: (a) effectively identifies an attack event or a com-

bination of attack events and, (b) correspondingly classifies the relevant anomaly

events into a specific attack category recorded in a knowledge base. We utilize

attack trees to model the SP attacks that are caused due to the vulnerabilities in
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VRLEs that can potentially disrupt UIX. Our proposed anomaly detection method

involved two major techniques: (i) ML-based KNN classifiers for detection of

network-based attacks, and (ii) Z-score based analysis for detection of application-

based attacks. Using a real-world VRLE application case study viz., vSocial, we

successfully detected single network attack scenarios (e.g., security attack) within

3.2 seconds and classified the attack with an accuracy of 97.5%. Moreover, we

adapted a multi-label KNN classifier model to detect multi-attack scenarios (i.e.,

combinations of security and privacy attacks) within 2.82 seconds, and classified

the attack categories with an accuracy of 87.5%. Additionally, our anomaly detec-

tion method identified unauthorized access via a Z-score based statistical analysis

with an average precision of 99.7%. We also generated an attack-specific ‘Suspi-

ciousness Score’ metric normalized on a scale of 0-1 for both network-based and

application-based attacks in order to serve as a quantifiable parameter for future

attack events. We utilized different attacker profiles generated from our exper-

iments in our extensive attack simulations on a vSocial testbed to demonstrate

our proposed anomaly detection method’s efficacy in terms of accuracy, precision

and recall. In the same context, we created a knowledge base that stores detected

attack patterns along with a history of calculated Suspiciousness Scores and UIX

scores. The created knowledge base can thus be used to extend our proposed

anomaly detection method to identify zero-day attack events on VRLE systems.
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Chapter 4

Adaptive Control of Robustness and
Immersive User Experience for
Resilience

4.1 3QS Framework Dynamic Rule Based Approach
for Social VRLE

With the dynamic user-system interactions for content rendering, VRLEs are a

target for an attacker to trigger security, privacy attacks [16, 26]. In addition,

the work in [107] details about the performance issues that can disrupt the social

VRLE user experience. However, prior works lack in the knowledge to address

both performance and security issues that can impact the user experience and

even user safety in VRLE sessions. Failure to address such impediments can lead

to deface attacks on the VR content with offensive images [38] that can hamper

user experience. They can also lead to application latency issues that degrade per-

formance. Based on prior works in VRLE and other IoT applications [108], [109]

we adopt the following definitions of various performance (3Q) factors: Quality of

Application (QoA) – a measure of the application performance; Quality of Service

(QoS) – a measure of network resources such as network bandwidth and jitter;

Quality of Experience (QoE) – a measure of the perceived satisfaction or annoy-
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Figure 4.1: Proposed rule-based 3QS-adaption framework for a social VRLE sys-
tem.

ance of a user’s experience. Together, such performance and security issues can

induce “cybersickness” (e.g., eyestrain, nausea, headache, disorientation of user

movement) [19, 60]. Hence, there is a need to study methods to mitigate impact

of performance and security anomaly events that induce cybersickness.

4.1.1 Closed Loop Mechanism in Social VRLE Case Study

In this section, we present details of our novel rule-based 3QS-adaptation frame-

work to control the impact of cybersickness levels induced due to potential anomaly

events caused by 3QS issues. An overview of our 3QS-adaptation framework is

shown in the Figure 4.1. Firstly, we detail the monitoring process for detecting

anomaly events in the collected network data during a VRLE session. Given such

anomaly event data, we next describe how our decision module determines suit-

able adaptations relevant to the anomaly event. Following this, we explain how

the decision outcome is incorporated on an affected VRLE component such that

the cybersickness level is reduced. Lastly, we describe how we update session

information and the impact of the adaptation into a knowledge base.
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Figure 4.2: Detected 3QS related anomaly categories in the anomaly event moni-
toring tool

4.1.2 Anomaly Monitoring Tool

To identify any potential 3QS issues in a social VRLE, we developed an anomaly

event monitoring tool [110] to observe the network behavior changes, and user

activity trends during the VRLE session. We create alarms to trigger when an

anomalous behavior pattern is identified in the vSocial application. The anomaly

event types include: QoA issues (e.g., visualization delay due to network lag),

QoS issues (e.g., packet loss), and security issue (e.g., DoS attack, unauthorized

access). Next, we collect this anomaly event data as shown in Figure 4.1 in order

to calculate the corresponding impact on the cybersickness level for the session

user(s). Following this, we classify the collected anomaly event data into specific

3QS categories.

To identify the traces of 3QS anomaly events in the collected network data

during a VRLE session, we developed a web-based anomaly monitoring tool using

the Flask micro framework with Python3 [111]. Our anomaly monitoring tool uses

the AWS CloudWatch alarms to create triggers based on a threshold condition

for every 3QS anomaly. For instance, a QoS alarm is triggered if the threshold

condition if ([No. of packets out] < 7280 packets/second) fails. Similarly, for a

QoA alarm, we use a threshold condition if the (CPU Utilization %) > 8%. Next,

the anomaly monitoring tool will pass the collected anomaly data as shown in
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Figure 4.3: Decision making of a suitable adaptation among the list of solution
candidates

Figure 4.2 to the decision module of our 3QS-adaptation framework as detailed in

Section 4.1.3. We store this detected anomaly data into a AWS S3 bucket [112],

which is further interfaced with DynamoDB [112], the knowledge base.

4.1.3 Dynamic Decision Making for Handling
Critical Anomaly Events

The anomaly event data is classified based on 3QS issue categories. Given anomaly

event, our 3QS-adaptation framework activates a decision module that has knowl-

edge of potential adaptations for the specific event as shown in Figure 4.1. The

decision module knowledge allows it to compare an anomaly event in a particular

category with a set of relevant decision units, where each decision unit is generated

and trained on how to deal with a specific type of anomaly event as described in

Algorithm 1. The decision units contain a list of potential candidate adaptations

that are retrieved from the knowledge base module as shown in Figure 4.3.

Each of the decision units contain a list of defined tuples. These tuples are of

the form {An, Ct, I}, where An represents the adaptation name, Ct represents the

history of adaptation in terms of number of times that specific choice was imple-

mented, and I represents the impact on cybersickness level after the adaptation

was implemented for a given anomaly event. As and when such decision units are
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Algorithm 2: Build Decision Units
Input: Adaptation list, Anomaly type list
Output: Relevant Decision units
begin

Function BuildFramework ():
for each AnomalyType ∈ AnomalyTypeList do

Function BuildDecisionUnits ():
Let TupleList = [ ]
for each Adaptation ∈ TupleList do

Let Tuple = (An, Ct, I) TupleList.append(Tuple)
end
return DecisionUnit(AnomalyTypei, TupleList)

end Function
end
return AdaptiveFramework(DecisionUnit0, ..., DecisionUnitsk)

end Function
end

Algorithm 3: Find Suitable Adaptation
Input: Anomaly, Adaptive Framework
Output: Solution
begin

Function FindAdaptation ():
for each DecisionUnit ∈ AdaptiveFramework do

if Anomaly = DecisionUniti.AnomalyType then
Function ProcessAnomaly ():

LetSortedList = AdaptationList
for each Adaptation ∈ AdaptationList() do

if Adaptationk is suitable() then
adaptationk.ct+ = 1
return adaptationk.adaptationend

end
end

end
Function AdaptationList ():

for each Adaptation ∈ AdaptationList do
Sortedlist[] = AdaptationList.sort(C, I,Rt, Ct)
AdaptationList.update(Sortedlist)

end
return AdaptationList

end

created, our decision modules updates the knowledge base to use them for training

the decision making relevant to diverse set of future anomaly events.

In the process of determination of a suitable adaptation, our decision module

traverses through a list of candidate adaptations enlisted in the matched decision

unit. For this, the attributes in the tuples are used as “decision metrics” along with

the response time taken by a specific adaptation. To elucidate, the decision mod-

ule compares a list of candidates using the decision metrics, and determines the

suitability in the order of I, Ct and reduced response time in the system. Next, this

specific decision unit will be sorted, where the head of the list represent the most

suitable adaptation for a given anomaly event. With every iteration of handling

anomaly events, the Ct value related to the considered adaptation gets updated
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Table 4.1: Potential adaptation choices for different 3QS anomalies
Anomaly Issue Specific Category Adaptation Name

QoA High CPU Utilization
Upgrading Instance Type (A1)

Higher Resources (A2)
Modifying Instance Volume (A3)

QoS Low Network Bandwidth Enabling Enhanced Networking (A4)
Higher Network Bandwidth (A5)

Security Denial of Service Amazon Rout 53 (A6)
AWS GuardDuty (A7)

Privacy Unauthorized Access Blacklist IP via third-party app (A8)

into the knowledge base. Thus, using the decision module, our 3QS-adaptation

framework facilitates dynamic decision making for a suitable adaptation to reduce

the induced cybersickness level for a given anomaly event.

With the categorized anomaly data, the decision module look up for the relevant

decision unit as described in Section 4.1.3. For this, we detail the sample list

of potential adaptations for a specific decision unit as shown in the Table 4.1.

For example, once a QoA anomaly is identified, the related adaptation candidates

are shown in Table 4.1 that include: (i) ‘upgrading the instance type’ (A1), (ii)

‘scaling up the resources’ (A2), and (iii) ‘modifying instance volume’ (A3).

[{name: A1, Impact: 0.5, count: 1, Rs: 0.54} ,

{name: A2, Impact: 0.5, count: 1, Rs: 300},

{name: A4, Impact: 1, count: 4, Rs: 60},

{name: A5, Impact: 0.5, count: 2, Rs: 300}]

Listing 4.1: Sample generated decision unit matrix for a given QoS anomaly event.

Listing 4.1 provides details about the decision matrix (unit) retrieved by our

decision module where ‘enhanced networking’ (A4) is determined as the suitable

solution for a QoS anomaly event. Based on these comparison results, the deci-

sion module will sort the candidates list where the suitable adaptation (enhanced

networking (A4)) will be at the head of the list. In case, A4 is not effective in

reducing the cybersickness for a QoS anomaly event, the decision module will look

up the next suitable solution e.g., one that involves allocation of ‘higher network

bandwidth’ (A5). With use of such metrics, the decision outcome is generated for
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each of the identified anomaly categories. Next, the decision related to an anomaly

event is incorporated as detailed in Section 4.1.5 and its relevant information is

updated into the knowledge base module to train for future anomaly events.

4.1.4 Creation of a Knowledge Base

Our proposed 3QS-adaptation framework stores the baseline data of benign ap-

plication behavior into knowledge base for handling future anomaly events in a

social VRLE. The knowledge base actively stores VRLE session information, de-

tected anomaly event patterns along with the associated user data. In addition

to this, our knowledge base stores the data related to potential adaptations for

a specific anomaly category as explained earlier. The anomaly event traces in

the knowledge base can be helpful to a network/system administrator to deter-

mine the causes of the detected anomalies, and improve the effectiveness of the

adaptations. Moreover, the knowledge base can be used as a medium for threat

intelligence collection that aids in training of our decision module for mitigation

of zero-day anomaly events that arise in an individual and/or combination of 3QS

anomaly event scenarios.

In our 3QS-adaptation framework, a knowledge base has been created using

a DynamoDB service. To facilitate periodic updates from each of the modules in

our framework into DynamoDB, we use the Amazon S3 service along with AWS

Lambda functions. We use these both storage systems as our decision module

that is hosted on a Jupyter notebook instance that takes only CSV data as input.

The full capability of our Knowledge Base can be extended to other applications

and can be utilized for employing additional adaptations in VRLE systems.

Using the S3 as the medium, we upload all our session data, adaptation results,

decision module results into DynamoDB, thus creating a Knowledge Base as shown

in Figure 4.4.
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Figure 4.4: DynamoDB table that show data collection in terms of cost, resource,
solution and time

4.1.5 Adaptation Control

The adaptation control is the control module in our 3QS-adaptation framework

enacts suitable adaptations for a given anomaly event category. Once the decision

outcome (i.e., suitable adaptation) is obtained, the control module first calculates

the risk level associated to a choice of adaptation, along with the cost incurred

to control the induced cybersickness anomaly event. Next, the control module

invokes an action using an alarm (using e.g., AWS CloudWatch) for the relevant

functionality of the determined adaptation. In addition, the risk and cost aware

decision outcome implementation is evaluated for the feedback (e.g., control on

cybersickness level, user satisfaction). If the anomaly event is successfully han-

dled, then this session information along with the control module data is updated

into the knowledge base for handling similar future anomaly events. Thus, the

anomalies are monitored continuously, and we perform dynamic decision making

to invoke the suitable control actions iteratively for on-demand resource provision-

ing that delivers satisfactory user experience and controls cybersickness levels in

a social VRLE.

Using the decision outcome, the control module implements the adaptation

based on the risk and cost aware analysis detailed in Section 4.2.2. In this section,

we show a before-and-after implementation scenario for the adaptations listed in
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Figure 4.5: Upgrading Instance Type Graph

Table 4.1 in the event of 3QS anomalies within our vSocial application.

For instance, when an AWS alarm relevant to an QoA anomaly is triggered,

the control module invokes an action for the suitable adaptation which is to up-

grade the instance type (A1) keeping in mind the decision outcome, risk and cost

factors. To elucidate, the control module upgrades the current instance (t2.micro)

to c4.large based on the risk and cost aware analysis detailed in Section4.2.2. After

incorporating the adaptation A1, we observe there is a 4% decrease in CPU% as

shown in Figure 4.5 which is less than the threshold value. We can also see that

until the end of the VRLE session, the new instance maintains the application

functionality i.e., CPU% values range between 4% and 5%. Using this adapta-

tion, our adaptive framework can ensure the on-demand service of the vSocial

application. or can even aid in determining the attacker node connecting to the

server.

Similarly, for a QoS anomaly, after implementing the suitable adaptation “en-

hancing the network conditions" (A4), the packet rate is maintained within a

threshold range (i.e., 7280 Packets/Second) beyond which application is non-

functional. In case of a security issue, we utilize the adaptation Blacklist IP (A8)

to block unauthorized access based on the threshold condition (number of login

attempts > 5). Based on these implementations for different anomaly categories,

we measure the “performance metrics" {response time, Threshold measures}, cost
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Figure 4.6: Enabling Enhanced Networking

incurred and its impact on controlling the cybersickness level in a VRLE session

as shown in Table 4.2.

4.1.6 Testbed Setup

In this section, we first describe the experimental testbed setup based on the

vSocial application case study [4]. We use this testbed for the evaluation of our

rule-based 3QS-adaptation framework. Next, we discuss the results from exper-

iments to perform a risk and cost aware analysis to finalize suitable adaption

choices. Following this, we present the benefits of our priority queuing model in

mitigating cybersickness for a given anomaly event. Lastly, based on our exper-

imental results, we enlist suitable practices for handling the identified anomaly

events in mitigating cybersickness within social VRLEs.

We setup our experimental testbed in a public cloud i.e., Amazon Web Ser-

vices (AWS) [112] as shown in Figure 4.7. In this testbed, we host our vSocial

application [4] on an Amazon Elastic Compute Cloud (EC2) instance [112] to

render the VRLE content to the users. We also host a controller node on an-

other EC2 instance to: (i) capture network data using Amazon CloudWatch [112],

and (ii) monitor the network data using our anomaly monitoring tool alongside

a decision module hosted on a separate Jupyter notebook instance [113]. In ad-
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Figure 4.7: Overview of our Experimental Testbed Setup

Figure 4.8: Anomaly Data Collection for Simulated Security, QoS, QoA scenarios
along with the baseline data

dition, we store the captured and processed network data in the controller node

into a DynamoDB [112] service. This DynamoDB service serves as a knowledge

base for future anomaly events. We also connect our knowledge base to Amazon

S3 [112] service using the Amazon Lambda [112] service in order to provide seam-

less interaction between the decision module and anomaly monitoring tool. Before

illustrating our experimental scenarios, we first detail the tools used for anomaly

data collection required for our framework.

As part of anomaly data collection, we simulate a QoS issue (packet drop), QoA

issue (packet drop + lag), Security issue (DoS), Privacy (duplication + tampering)

in our vSocial application setup. We calculate the packet rate by capturing the
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Figure 4.9: Avg. Latency measured (in ms) for QoA anomaly, QoS anomaly
scenario in different adaptation scenarios
raw data associated to the timestamp of each packet for each of the simulated 3QS

issues along with the baseline data (of benign behavior) of the vSocial application.

To simulate a DoS attack on vSocial, we used Clumsy 0.2 [114], a windows based

tool to control networking conditions such as lag, drop, throttle, or tamper of live

packets. To see the impact on our VRLE application performance, we specifically

drop a certain percentage of live packets. Using the Wireshark [115] tool, we

capture packets being sent to-and-from our VRLE server in order to demonstrate

possible data loss resulting from the packet capture. With the above specified

tools and the experimental testbed setup, we collect the anomaly data relevant to

3QS issues in VRLE sessions.

4.2 Rule-based Policy Recommendations

4.2.1 Quantification of Cybersickness

In this section, we objectively measure the induced cybersickness level for a given

set of anomaly events i.e., visualization delay due to network lag (QoA issue),

packet loss (QoS issue), and DoS attack (security attack). Existing works [60, 116],

attribute cybersickness to physiological conditions (e.g., nausea, eyestrain). How-
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ever, the works in [116] study the quantifying effects of latency as the objective

parameter to assess cybersickness. Based on these findings, we measure the la-

tency as the primary objective metric of cybersickness for different 3QS anomalies

simulated in different network conditions [26]. We also measure the latency in

milli seconds (ms) during the normal functionality of a VRLE session, which is

23.5 ms that is used as a baseline data for cybersickness.

The graphical results in Figure 4.9 detail the control of cybersickness (i.e.,

latency metric) for a few adaptations (i.e., upgrading instance (A1), scaling of

higher Resources (A2), enhancing networking (A4), network bandwidth capacity

(A5)) listed in Table 4.1. We also consider a no-adaptation (NA) scenario to study

the adverse impact on cybersickness control. Moreover, in real-world applications

such as vSocial, there is a possibility that one adaptation action might not be

enough to mitigate the anomaly impact, and an adaptation should consider the

combination of performance and security issues inducing cybersickness [16]. To

address such an case, we include a combination of adaptation scenarios to analyze

the impact on cybersickness control for a given anomaly event. From the results

in Figure 4.9, we observe that for a QoA anomaly, adaptations A1, A2 reduce the

cybersickness by 26.43% and 13.46% respectively. In case of a QoS anomaly, the

adaptation A4 reduces the cybersickness significantly by 30.28%. In addition, A1

and A2 reduce cybersickness by 17.28% making them the next suitable choice for

a QoS anomaly as shown in Figure 4.9. We also note that the combination of best

adaptations i.e., A1 and A4 reduces cybersickness by 29.39% for a QoA anomaly

and 20.48% for a QoS anomaly event as shown in Figure 4.9. However the choice

of combination can vary based on the considered list of potential candidates that

can further impact the control of cybersickness levels in a VRLE session.
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Figure 4.10: Risk evaluation associated with the best (BA1, BA2), worst (WA1)
and combination of adaptations in controlling cybersickness for the given QoA
and QoS anomaly event

4.2.2 Risk and Cost Aware Trade-off Analysis

Risk calculation for the adaptations

To calculate the risk associated with each decision outcome, we adopt the NIST

SP800-30 [28] based risk assessment method [83]. For this, we term the risk as

“failure risk" which is a likelihood value of an associated adaptation that can fail

in controlling the cybersickness for a given anomaly event. For the assessment,

we use two basic variables L(D) and I where, L(D) is the likelihood of decision

of a specific adaptation of an anomaly event; I represents the Impact factor of an

adaptation in controlling the cybersickness level. We estimate the L(D) based on

the decision metrics, where the order of priority is cybersickness level, count and

then system response time.

We measured I based on the % of cybersickness level control as discussed in

Section 4.2.1. Using these both L(D) and I, we calculate the failure risk as Rf =

1 − f(L(D), I) where, f(L(D), I) is the average function adopted from existing

works [83]. We use a pre-defined semi-quantitative scale of 0-1 as guided by

NIST for the impact/likelihood event assessments, with 1 indicating very high, 0.8

indicating a high, 0.5 indicating a moderate, 0.2 indicating a low, and 0 indicating

very low levels of impact. Using these parameters, the final failure risk value is

calculated for each of the best adaptations (BA1, BA2), worst adaptations (WA1)

and combination of adaptation choices as illustrated in Figure 4.10. We considered

these adaptations as best/worst based on the latency measurement results shown
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Table 4.2: Cost-aware application performance analysis of adaptations chosen for
3QS anomalies

Anomaly
Event

Adaptation
name

Cost
(in $/hr)

Threshold Metric Rat

(in seconds)

QoA A1 0.23 CPU utilization rate
is decreased to 4%

0.54
A2 2.4 300

QoS A4 0.10 Packet rate at 7280
packets/second

1
A5 0.10 300

DoS A7 0.33 Packet data measure 0.51
Unauthorized

access
A8 0.02 Number of login

attempts <5
Varies based on
number of users

in Figure 4.9 for each anomaly event.

subsubsectionCost aware application performance analysis The results in the

previous section discussed the risk associated with some of the best and worst

adaptations for a given set of anomaly categories in VRLEs. In order to fully

understand the effects of these adaptations on cost and application performance,

we calculate the response time taken for implementing the adaptation choice. For

instance, we consider A1 and A2 as the best practices for a QoA anomaly due

to their control on cybersickness as shown in Figure 4.9. Similarly, for a QoS

anomaly, we consider the adaptation choices A4, A5 and for a security attack, we

consider the A7, A8 choices as detailed in Table 4.1.

Each of these adaptations once implemented using the control action detailed in

Section 4.1.5, the system response time is measured using the AWS CloudWatch.

In addition, we also measure the impact on the application performance using

threshold metrics (e.g., CPU utilization rate, network packet rate) as detailed in

Section 4.1.2. With this, we highlight the functionality of our framework that takes

dynamic decisions to control the cybersickness and maintain satisfactory applica-

tion functionality. Based on our experimental results (i.e., cost-performance and

risk evaluation), we enlist suitable rules (i.e., best practices) to adopt for future

anomaly events.
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4.2.3 Priority-based Queuing Model for Cybersickness Con-
trol

In our 3QS-adaptation framework, we use a model to capture the pattern of VRLE

application performance, especially with regards to response time in addressing

the anomaly events inducing cybersickness. The behavior of anomaly event data

processing represents a queue, and thus we model our framework into a M/M/1/K

finite queuing system. This analytical model is based on the embedded Markov

Chain, featured by states, events, transitions. The requests that enter into the

queue are anomaly events caused by 3QS issues, which are processed on a priority

basis i.e., in the order of events with ability to cause higher cybersickness levels.

Figure 4.11: Modelling stages of our proposed rule-based 3QS-adaptation frame-
work as a queue

The processing of an incoming request includes three stages: stage 1 (pre-

processing of anomaly event data), stage 2 (categorization into anomalies caused

by 3QS issues), and stage 3 (anomaly event data pushed into the decision module)

as shown in Figure 5.3. After stage 3, the processed event record leaves the

queue, where the anomaly data is sent to the decision module to determine the

suitable action on the corresponding VRLE component. Each stage described

in Figure 5.3, has a different average service rate, represented as µ1, µ2, and µ3.

Thus, the overall response time of the system in processing one data record can

be computed by solving the similar markov chain transition model as described

in one of our works[107]. In this process, the execution of the three stages is

mutually exclusive, which means that the second record will not be processed

until the previous one is completed. We assume the processing times at each stage

is exponentially distributed, and the data records follow a Poisson arrival with an

expected rate of λ.

Given the above explanation, the system can be represented as a Markov model
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with a state space: S = {(k, n), 0 ≤ k ≤ K, 0 ≤ n ≤ 3}, where, k represents the

number of events in the queue, K represents the maximum size of the queue, and

n is the number of stages in processing the events. The mean response time (RT q)

to process an anomaly event in the queue can be obtained by using the Little’s

formula [107].

The wait time of the queue Wq is derived based on the number of events in the

queue Lq and arrival rate (λ)

Wq =
Lq
λ

(2)

Wt is the wait time of the overall system that can be derived using the processing

rates µ, Wq

Wt = Wq +
1

µ
(3)

X̄ is the sum of the mean service time for all three stages, and can be written as -

X̄ =
3∑

n=1

1/µn (4)

We use the above analytical model in the performance evaluation experiments

to determine the waiting delays that might occur in processing the anomaly events

inducing cybersickness. To elucidate, a low cybersickness inducing anomaly trigger

can be delayed, while a severe threat posing anomaly trigger can be urgently

handled by allowing it to experience lower wait times in the triggers handling

queue. To achieve such a handling, we use our priority queue model as a Binary-

Heap [117] to perform reheapficiation of the events in the queue once an anomaly

event is deleted from the queue as detailed earlier.

The priority queuing model used in our framework processes events in the

sorted order of cybersickness levels to reduce the the waiting delay in processing

higher cybersickness inducing anomaly events. However, this form of a linear

priority queue (LPQ) can lag in terms of the overall execution time of the events
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Table 4.3: Performance metrics of our queuing model
No. of events

in queue
Wq

(in sec)
X̄

(in sec)
Rs

(in sec)
No. of processed
severe anomalies

10 2400.48 0.146 3300 4
20 5700 0.204 6303.98 5
30 8700 0.28 9304.15 7
40 11700 0.36 12304.32 11

Table 4.4: Recommendations based on risk level (Rl), Cost level (Cl), and control
on cybersickness (∆CS)

IF THEN ELSE
Anomaly Scenario in VRLE session Ai Rl Cl ∆CS% Ai Rl Cl ∆CS%

QoA Increasing number of users;
To improve application run time

A1 L L 26.43% A2 M M 13.46%

QoS Lower latency in VRLE content A4 L L 30.28% A1+A4 L M 20.48%
UA Only valid users in VRLE session A8 L L 20.7% A7 M H -
DoS Avoid loss of content availability A1+A6 M M 36.1% A1+A7 M H -

in a queue when compared to the state-of-the-art queuing system (i.e., FIFO) [118].

To overcome such performance overheads in terms of waiting delays and overall

response time, our priority queue is implemented using a binary heap [117] which

we term as “Binary Heap Priority Queue" (BHPQ). Although, the processing

discipline of the events in BHPQ is similar to a LPQ, but BHPQ will address

the waiting delays caused in an LPQ by reheapifying the next anomaly once a

processed event is deleted from the queue.

Using the formulation detailed in Section 5.3, we calculate the overall system

response time (Rs) as Sum (RT q, Rat), where Tq is the response time in queue

and Rat is the time taken for an adaptation to implement as shown in Table 4.3.

In addition, we also enlist the number of processed severe anomaly events (i.e.,

with high cybersickness level) for a given number of anomaly events in the queue

as shown in Table 4.3. Moreover, in case of a traditional FIFO-based queuing

model [107], the number of severe events being processed would be much less,

thereby delaying the control of the cybersickness level.
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4.2.4 Rule-based semantics for Performance and Robust-
ness

Based on our initial experimental evaluation of our framework to control cyber-

sickness level using the listed adaptations in Table 4.1, we recommend rule-based

practices as shown in Table 4.4. These practices are expressed in a semantic

form i.e., we enlist Event-Condition-Action (ECA) rules with a typical form of

IF − THEN − (ELSE) [119] to adopt for future VRLE systems. From the re-

sults shown in Table 4.4, for a QoA anomaly with the given scenario in VRLE,

we recommend adaptation A1 due to the low cost incurred and high impact on

cybersickness control when compared to adaptation A2. Moreover, for a QoS

anomaly, we recommend adaptation A4 for the significant impact on cybersick-

ness over adaptation A5. In addition, as the next suitable rule-based practice for

QoS anomaly, we recommend a combination of A1 and A4 whose risk level is low

and the good impact on cybersickness.

Similarly, for an Unauthorized Access (UA), we recommend adaptation A8

over A7 due to the incurred cost and also the lack of control with the GuardDuty

service in A7 as shown in Table 4.4. Moreover, the implementation of security

recommendations in Table 4.4 are aligned with the NIST security principles [28].

Specifically, mitigation strategies in: (i) A1 (e.g., addition of firewall rules, creation

of security groups [120]) corresponds to the hardening principle, and (ii) A7 (e.g.,

addition of multiple components to increase impairment tolerance) corresponds to

both hardening and diversity principles. In addition, our recommendations can

range from ideas of checking for malware and updating security groups to extreme

actions such as terminating the instance altogether.

Using such rule-based adaptations, we showcase the benefit of our proposed

framework that controls the cybersickness level induced by the 3QS related anoma-

lies. However, these rules can be updated with an updated trained list of poten-

tial adaptations, which we plan to explore as part of our future work. Moreover,

there are other forms of rule-based mechanisms such as corrective and enhancing

128



rules [121], fuzzy rules [122] that can also be adapted to a VRLE application.

4.2.5 Summary

We Proposed a novel rule-based 3QS-adaptation framework that focused on the

control of cybersickness induced by performance issues (e.g., visualization delay,

packet drop, time lag) and security issues (e.g., unauthorized access, DoS attack).

We quantified the cybersickness metric objectively using a latency metric for a

simulated anomaly event scenario. We utilized a priority-based queuing model

that handles anomaly events in the order of highest cybersickness inducing levels.

To determine the suitable adaptation for handling a given anomaly event type,

our approach involves performing risk and cost aware analysis for each decision

outcome. Once a suitable adaptation is incorporated for a given anomaly event

type, cybersickness measurements are updated and used as feedback to determine

the impact on the anomaly event.

Our validation results show that the real-time adaptations suggested by our

rule-based framework: (i) reduce the cybersickness level by 26.43% for a QoA

anomaly and the same for a QoS anomaly event by 30.28%, and (ii) maintains the

application functionality within the threshold limit (beyond which an application

is non-functional) along with low system response times. Based on these key

findings, we enlisted suitable practices for prevention of 3QS issues based on NIST

SP800-160 guidelines.
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Chapter 5

Conclusion and Future Works

Social VRLEs provide immersive experience to the users via remote learning ca-

pabilities. The current lack in the state-of-the-art to address potential perfor-

mance/security issues can disrupt users’ experience and potentially induce cyber-

sickness. Failure to address such issues can endanger the user safety by causing

physical harm e.g., by obstructing the view of the users, forcing users to run into

walls. In this paper, we proposed a novel rule-based 3QS-adaptation framework

that focused on the control of cybersickness induced by performance issues (e.g.,

visualization delay, packet drop, time lag) and security issues (e.g., unauthorized

access, DoS attack). We quantified the cybersickness metric objectively using a la-

tency metric for a simulated anomaly event scenario. We utilized a priority-based

queuing model that handles anomaly events in the order of highest cybersick-

ness inducing levels. To determine the suitable adaptation for handling a given

anomaly event type, our approach involves performing risk and cost aware anal-

ysis for each decision outcome. Once a suitable adaptation is incorporated for a

given anomaly event type, cybersickness measurements are updated and used as

feedback to determine the impact on the anomaly event.

Our validation results show that the real-time adaptations suggested by our

rule-based framework: (i) reduce the cybersickness level by 26.43% for a QoA

anomaly and the same for a QoS anomaly event by 30.28%, and (ii) maintains the
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application functionality within the threshold limit (beyond which an application

is non-functional) along with low system response times. Based on these key

findings, we enlisted suitable practices for prevention of 3QS issues based on NIST

SP800-160 guidelines.

5.1 Summary of contributions

Figure 5.1: Contributions for Research Goal 1: Harmonized Robustness and Per-
formance by Design

Figure 5.2: Contributions for Research Goal 2: Threat Intelligence Collection for
Critical Anomaly Events
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Figure 5.3: Contributions for Research Goal 3: Rule-Based Approach for tuning
Performance and Robustness for Resilience

5.2 Future Work

Moreover, our rule-based adaptive control can be applied to different domains

(such as public safety, workforce training)

1. As part of future work, our joint tuning approach can be adopted for room-

based Immersive VR applications and even Mixed Reality (XR) applications.

2. Moreover, our rule-based adaptive control can be applied to different do-

mains (such as public safety, workforce training)

• Automate our approach using machine learning models for dynamic

decision making about anomaly event mitigation strategies

• Investigate about modeling of our 3QS framework into queue with mul-

tiple servers

• Research about extensive adaptations in real-time which could feature

more refined rules for dynamic decision making especially when VRLEs

are scaled to handle more number of session users.

3. Can explore issues around identifying zero-day anomalies in social VRLEs

and update the threat intelligence collection.
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Glossary

Term or
Abbreviation

Explanation

Accessibility Related to characteristic needs of the users, technologies
involved and their associated user roles in VR application

Online Learning Virtual Reality is used for distance learning purposes in the
field of education especially during pandemic

Usability
We define the context of usability of the application as a
combination of effectiveness, user satisfaction, security

and efficiency

User Experience
In the context of VRLE, we define user experience as the

combination of cyber sickness and user immersive
experience during a VRLE session

User Immersive
Experience

(UIX)

Experience pertaining to the user i.e., to be submerged in
a simulated experience generated by a VR technology

Cybersickness
(CS)

A Form of motion induced sickness fora user while
using the VR application
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