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ABSTRACT 

Seeds are a major source of protein in human and livestock diets. Cereal grains are some 

of the most consumed seeds by both humans and livestock worldwide, with maize, wheat, 

and rice alone accounting for ~70% of the total cereal production. Maize is one of the 

major staple crops used for food, feed, and fuel. A mature maize kernel contains small 

embryo (10% of the volume) and a large endosperm (~90% of its volume). In terms of 

composition, majority of the kernel proportion contains around 90% of starch and around 

8-10% of protein. Nine of the twenty amino acids cannot be synthesized by monogastric 

animals, including humans, and must be obtained through the diet and are considered 

essential amino acids (EAA): lysine, isoleucine, leucine, histidine, methionine, 

phenylalanine, threonine, tryptophan, and valine. The protein quality is poor in maize 

endosperm as the primary storage proteins are severely deficient in EAA such as lysine, 

tryptophan, and methionine.  Such deficiencies can be detrimental since corn provides an 

important source of proteins for food in developing countries and for feed in developed 

countries such as the U.S. Failure to consume sufficient levels of EAA per day leads to 

severe malnutrition, even if one’s calories requirements are met.  

Many attempts to increase the EAA has demonstrated only limited success since seed can 

rebalance their amino acids composition even when major changes are introduced in their 

proteome. One possible approach to solve this applied problem is by seed EAA 

biofortification; however, many attempts at this task fall short and strongly indicates that 

even though we know most of the metabolic pathways of amino acids, we know very 

little about their regulation especially in seed. Therefore, the first step towards efficient 
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amino acid biofortification is to increase our fundamental understanding of their function, 

as well as the metabolic regulation and the biology of the plant seeds.  

Despite the tight regulation within any given genotype seed amino acid composition 

display extensive natural variation which can be utilized to uncover the genetic basis and 

identify new targets for seed amino acids biofortification. Hence to uncover the genetic 

architecture of amino acids composition in maize kernels we used Goodman-Buckler 

maize association panel that consists of 282 diverse maize inbred lines including stiff 

stalk, non-stiff stalk, tropical and subtropical, sweetcorn and popcorn lines. I performed 

genome wide association study (GWAS) on both the protein bound amino acids (PBAA) 

and free amino acids (FAA). Although, GWAS is widely used to dissect the genetic 

architecture of complex traits, oftentimes the GWAS outputs the extensive list of genes 

particularly when using multiple phenotypic traits. To overcome this, I used an 

integrative multi-omics approach that combines GWAS and co-expression networks 

modules obtained from ten seed filling stages of B73 to uncover novel key regulatory 

genes, characterize biological process and prioritized the candidate genes that involved in 

shaping the natural variation of amino acid composition. 

Chapter one of the dissertation is the general introduction and literature review on the 

seed amino acids. It briefly discuss the general introduction of PBAA and FAA, previous 

attempts done to improve seed PBAA and FAA composition, natural variation used to 

uncover the genetic architecture of complex traits including metabolic traits such as 

amino acids and finally discuss the multi-omics integration to uncover the genetic basis 

of complex traits. 
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Chapter two elaborates the comprehensive genetic basis of PBAA in maize kernels using 

integrative analysis of 76 PBAA GWAS with protein co-expression network modules. 

Previous studies have shown that manipulation of storage proteins and amino acid 

pathway genes  have contributed in the improvement of quality protein maize however, 

my study strongly suggests that in addition to the manipulation of storage protein and 

amino acid metabolic genes, specific ribosomal genes along with other translation 

machinery could be the novel target for seed amino acids biofortification. 

Chapter three discusses the genetic basis of FAA in maize kernels using integrative 

analysis of 109 FAA GWAS with protein co-expression network modules. I have 

presented here the comprehensive list of SNPs as well as the candidate genes and several 

biological processes including the translational machinery responsible for shaping the 

genetic architecture of FAA in seed.  

Chapter four includes the conclusion and future works. 

Maize is an important crop used for both food and feed and possesses great genotypic and 

phenotypic diversity. The results from my study has validated several previous 

characterized genes and identified novel key genes that regulate and shape the PBAA and 

FAA in maize kernels, which could be used further to target for amino acid 

biofortification.  
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CHAPTER 1: GENERAL INTRODUCTION AND LITERATURE REVIEW 

1.1 Amino acid composition in seeds 

Amino acids (AA) are the basic building blocks of proteins and are therefore 

essential for growth and development to sustain life. There are 20 proteogenic amino 

acid: Alanine (Ala), Arginine (Arg), Asparagine (Asn), Aspartate (Asp), Cysteine (Cys), 

Glutamine (Gln), Glutamate (Glu), Glycine (Gly), Histidine (His), Isoleucine (Ile), 

Leucine (Leu), Lysine (Lys), Methionine (Met), Phenylalanine (Phe), Proline (Pro), 

Serine (Ser), Threonine (Thr), Tryptophan (Trp), Tyrosine (Tyr) and Valine (Val).  There 

are two functional pools of amino acid in seeds: the protein bound amino acid pool 

(PBAA), which account for 95% of seed total amino acids (TAA) and the free amino acid 

pool (FAA), which account for the remaining 5% (Amir, Galili, & Cohen, 2018; 

Muehlbauer, Gengenbach, Somers, & Donovan, 1994). FAAs serve as building blocks of 

protein synthesis, as main precursors for the synthesis of diverse group of primary and 

secondary metabolites, which includes organic acids, osmolytes, phytohormones, and 

secondary metabolites and as an alternative source of accessible energy (Amir et al., 

2018; Angelovici, Fait, Fernie, & Galili, 2011; G. Galili & Hofgen, 2002), the majority of 

PBAA in seeds are deposited as seed storage proteins (SSP), which ensure proper 

desiccation and germination (Angelovici, Galili, Fernie, & Fait, 2010; Bewley, 1997).  

In maize, out of 95% of the PBAA in seed, ~ 70% are in SSP. There are three 

main groups of SSP in maize categorized based on their solubility: water soluble 

albumins, salt-soluble globulins, and alcohol soluble prolamins (Peter R Shewry & 

Casey, 1999). Prolamins, also known as zeins, are the most abundant SSP (60-70% of the 

total storage proteins) in maize seeds (Larkins, 2017; Larkins & Hurkman, 1978) and 
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hence are the major determinants of seed amino acid composition in the maize kernel. 

Zein proteins are synthesized in the lumen of the rough endoplasmic reticulum where 

they form insoluble spherical accretions called protein bodies of generally 1-2 microns in 

diameter (Larkins, 2017; Lending & Larkins, 1989). Zeins lacks one or more essential 

amino acids such as lysine and tryptophan. Maize zeins are categorized into 4 types: α, β, 

γ and δ-zeins. Among the 4 types of zeins, the 19 and 22-kDa α zeins are the most 

abundant ones and mostly enriched in proline and glutamine (a non-essential amino 

acids), while β, γ and δ zeins, which are mostly enriched in cysteine, methionine, and 

other essential amino acids that are less abundant in maize endosperm. Therefore, zeins 

consists of plenty of non-essential amino acids but are deficient in several essential amino 

acids, thereby resulting in the poor seed amino acid nutritional value (Larkins, 2017; 

Larkins, Pedersen, Marks, & Wilson, 1984; Peter R Shewry, 2007). 

1.2 Previous attempts to improve the amino acid levels and composition in seeds 

Attempts to improve the seed storage proteins (PBAA) over the past two decades 

had uncovered a unique regulatory mechanism that governs amino acid composition and 

accumulation in seeds. In contrast to the expectation, knockdown of the highly abundant 

but EAA poor storage proteins or overexpression of high-quality proteins using 

transgenic approaches had very little effect on the overall relative composition of amino 

acids in seeds. In fact, seeds revealed their ability to rebalance protein composition to the 

original state even when severe perturbation to the proteome is introduced by transgenic 

measures (Larkins, 2017; M. Schmidt et al., 2011). In addition, some of the proteomic 

alterations that were introduced had negative effects on seed quality and led to brittle 

kernel texture, poor germination, poor longevity, as well as negative effects on plant 
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overall growth and yield. For example, the opaque 2 (o2) mutant exhibits a substantial 

reduction in seed storage proteins, exhibits proteome rebalance with higher lysine content 

but comes with poor seed quality. O2 encodes for a transcription factor belonging to the 

BZIP family; alteration of the gene results in a decrease of zein proteins and an increase 

in non-zein proteins that are rich in lysine.  

Although, o2 has double the amount of lysine compared to the wild type (Hunter 

et al., 2002), it comes with negative agronomic qualities such as soft chalky endosperm 

which is unfavorable for food processing and susceptible to many diseases and pests with 

poor germination and yield (Dizigan et al., 2007; Kodrzycki, Boston, & Larkins, 1989). 

Attempts were made using different opaque modifiers to improve the agronomic qualities 

of the o2 mutant while maintaining the increase in lysine in the seed. The result was the 

development of quality protein maize (QPM) cultivars (Crow & Kermicle, 2002; Geetha, 

Lending, Lopes, Wallace, & Larkins, 1991; Vasal, Villegas, Bjarnason, Gelaw, & Goertz, 

1980). Endosperm texture was improved to a greater extant in the QPM cultivars along 

with high lysine and tryptophan and better protein digestibility, however, the yield was 

still compromised (Sofi, Wani, Rather, & Wani, 2009).  In addition, QPM breeding is a 

complex process involving selection of multiple, unlinked o2 modifier loci, while 

maintaining the homozygous recessive o2 background, which is both challenging and 

time consuming. 

Interestingly, the proteome rebalancing and FAA reprogramming phenomena are 

followed by a major increase in free amino acids in maize seeds. The FAA 

reprogramming function is unclear since the total PBAA composition or levels are mostly 

unchanged. In general, the regulation of the FAA pool and its interplay with the PBAA 
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pool is unclear even though they are precursors and products. Several studies have 

focused on increasing FAA to achieve seed amino acid biofortification. Studies 

demonstrated that FAA are highly interconnected and perturbation of a single gene in the 

amino acid metabolic pathway often leads to the changes in the entire amino acid 

metabolic network along with adverse effects on the agronomic and yield traits (Dizigan 

et al., 2007; Gu, Jones, & Last, 2010). For instance, Dizigan et al (2007) expressed a Lys 

feedback insensitive biosynthesis gene in maize that overcame the natural regulation of 

free Lys and led to a substantially higher accumulation of free lysine in seeds (Dizigan et 

al., 2007), however, it also came with negative pleiotropic effects on growth and yield 

penalties in the maize cultivar. Similarly, Zhu et al. (2003) demonstrated a substantial 

increase in Arabidopsis seed free lysine by increasing its synthesis and blocking 

catabolism. Nevertheless, this manipulation results in severe fitness penalty including 

poor germination and growth, which was found to be caused by the deprivation of 

alternative energy source during germination (Angelovici et al., 2011; X. Zhu & Galili, 

2003). Gu et al. (2010) reported that in Arabidopsis seeds, knock out of a leucine 

catabolic gene causes increase in 12 FAA. Interestingly, it does not alter the overall 

PBAA composition of seeds (Gu et al., 2010), which  suggests that there is a disconnect 

between the PBAA from the availability of its precursors (FAA) during the dry seed 

developmental stage.  

Neither the genetic basis of the rebalancing mechanism nor the genetic basis 

governing the interplay between FAA and PBAA were exposed using reverse genetic 

approaches, most likely since knock out mutants are either lethal or FAA and PBAA are 

complex traits that are governed by multiple genes. The natural variation of these traits 
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certainly supports the later. Recent studies have shown that there is extensive natural 

variation in seed amino acids (both FAA and PBAA absolute levels and relative 

composition) across inbred lines (Angelovici et al., 2016; Deng et al., 2017) despite their 

tight regulation in seeds. Hence, exploiting the natural variation of these traits to uncover 

the genetic basis of their regulation could prove very beneficial.  

1.3 Using natural variation to uncover the genetic basis of amino acids 

Genome wide association study (GWAS) is widely used to dissect the architecture 

of several complex traits including the primary and secondary metabolites traits 

(Angelovici et al., 2016; Angelovici et al., 2013; Cook et al., 2012; Deng et al., 2017;  

Wu et al., 2016). A recent review on GWAS and various GWAS working models can be 

found in Shrestha, Awale, & Karn (2019). The majority of amino acid GWAS have been 

done in seed FAA in Arabidopsis, while there are limited studies done on GWAS of seed 

FAA and PBAA in maize. Angelovici et al. (2013) performed GWAS on branched chain 

amino acid levels in Arabidopsis seeds using 360 ecotypes. The authors found the strong 

association of BCAA with branched chain amino acid transferases; BCAT1 and BCAT2. 

Using linkage analysis and reverse genetic approaches, the authors found that the allelic 

variation of BCAT2 is responsible for the natural variation of seed BCAAs as well as 

FAA homeostasis in seeds (Angelovici et al., 2013). A recent study by Slaten et al (2020) 

on FarmCPU, GWAS on free Glutamine (Gln) related traits in Arabidopsis seed 

identified several multiple candidate genes.  Using molecular validation, the authors 

revealed an unexpected association between the aliphatic glucosinolates and the Gln 

related traits, which indicates that secondary metabolites might have key functions in 

primary seed metabolism and also play key roles in sharping the seed metabolic 
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homeostasis (Slaten, Yobi, et al., 2020a). Qin et. al (2019) studied the GWAS of 15 

PBAA in 249 soybean association panel and found 14 annotated amino acid metabolism 

related genes including pyrroline-5-carboxylate reductase and B L-selenocystathione 

(Qin et al., 2019). A strong SNP-PBAA association was found by a study on PBAA 

GWAS in maize by Deng et. al (2017). The study was conducted using 513 diverse maize 

inbred lines from China as well as 3 recombinant inbred line (RIL) populations for 

linkage study. The authors found 247 and 281 significant loci using GWAS study at two 

different field locations respectively. They found some important candidate genes 

regulating PBAA natural variation in maize seeds that included o2 and o2 modifier genes 

including the 27kD γ zein (Deng et al., 2017). 

1.4 Challenges in GWAS and the use of integrative approaches combined with 

GWAS to whittle down candidate genes 

 Although GWAS is widely used to dissect the genetic basis of complex trait, it is 

challenging to identify and validate the key regulatory genes from an extensive list of 

genes especially when GWAS is done using multiple traits. To overcome this challenge, 

integration of multiple omics (genomics, transcriptomics, and proteomics) techniques has 

been found to be effective in identifying key regulations of different metabolites in a 

wide variety of species that includes Arabidopsis (S. Wu et al., 2016), maize (Schaefer et 

al., 2018), soybean (Qi et al., 2018), rapeseed (Yao et al., 2020) and peanut (H. Zhang et 

al., 2019). For example, Wu et al. (2016) demonstrated that comparing two or more 

orthogonal genome scale data sets is a potential approach to identify the key regulatory 

elements with more confidence. The study showed that in Arabidopsis, comparing  

GWAS output with metabolite-transcript correlation network analysis (S. Wu et al., 
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2016) helped identify both previously identified as well as novel key functional 

regulatory genes of both primary and secondary metabolites.  Schaefer et al (2018) 

integrated results from maize ionome GWAS with gene expression networks and 

facilitated the prioritization of key candidate genes (Schaefer et al., 2018). The authors 

demonstrated that coexpression networks are a powerful tool in prioritizing candidate 

causal genes from GWAS loci but also suggest that the success of such strategies highly 

depends on the gene expression data context related to the phenotype studied. A meta-

QTL analysis combined with weighted gene correlation network analysis (WGCNA) was 

used to reveal hub genes for soybean seed storage composition during seed development 

(Qi et al., 2018). Using WGCNA, the authors identified 47 modules and reported several 

hub gene that were involved in soybean oil and seed storage protein accumulation 

processes including vacuolar protein sorting 35 (VPS35), Zn-dependent exopeptidase 

superfamily protein, ABI3b, LEC1d and cupin family protein (Qi et al., 2018). The 

GWAS and co-expression network combination was also used to uncover the key 

regulatory genes of oleic acid in rapeseed and to develop functional haplotype markers 

for the improvement of oleic acid content in rapeseed (Yao et al., 2020). Similarly, A 

GWAS and co-expression network were used to uncover the ionomic variation in 

cultivated peanut. The authors used 13 mineral elements and performed GWAS using a 

120-accession association panel and combined them with a gene coexpression network. 

They reported several QTLs and candidate genes for boron, copper, sodium, sulfur, and 

zinc (H. Zhang et al., 2019).  
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1.5 High throughput phenotyping of seed amino acids enables genomic analysis 

In addition to the challenges in prioritizing GWAS candidate genes, finding an 

appropriate, high throughput, cost-effective, and accurate method to quantity seed amino 

acids is also a major challenge. To date one of the main challenges was the lack of high 

resolution, low cost high throughput phenotyping method that can facilitate phenotyping 

large populations and implementation of quantitative genetic approaches such as GWAS. 

Low resolution methods such as NIR are used, but predominantly for preliminary sample 

screening. In addition, FAA and PBAA cannot be separated using these methods.  High 

resolution methods that are based on high performance liquid chromatography (HPLC) 

method may take up to two hours for a single analysis and are highly expensive. To 

overcome this challenge, one can implement a low cost, microscale (3-4 mg) high 

throughput (96 multiplex) detection method that is based on LC-MS/MS multiple 

reaction monitoring (MRM) approach, which combines both accuracy and affordability 

(Angelovici et al. 2013). Recently a similar method was also develped for PBAA (Yobi 

& Angelovici, 2018) that has enabled extensive genomic analysis of amino acids in 

seeds. 

Therefore, in this dissertation, I, first quantified 16 PBAA and 20 FAA absolute 

levels from the 282 Goodman-Buckler association panel using the methods described 

above. I, then, used these absolute levels, and calculated relative composition and 

biochemical family related ratios to perform GWAS. Altogether, 76 PBAA and 109 FAA 

GWAS were used. In order to prioritize the GWAS candidate gene list, an integrative 

multi-omics approach that integrates both PBAA and FAA GWAS with the protein co-

expression modules that has strong association with the PBAA and FAA traits 



 

9 

 

respectively obtained from 10 seed filling stages of B73 was used. This study highlights 

and uncovers novel key regulatory genes, characterize biological processes, and 

prioritized candidate genes that are involved in shaping the natural variation of amino 

acid composition. 
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CHAPTER 2: MULTI-OMICS APPROACH REVEALS THE INVOLVEMENT 

OF TRANSLATIONAL REPROGRAMMING IN SHAPING AMINO ACID 

COMPOSITION DURING KERNEL MATURATION IN MAIZE. 

ABSTRACT 

Maize seeds are a critical source of protein for humans and livestock worldwide, 

despite being deficient in several essential amino acids. They are therefore an important 

target for biofortification efforts. Studies centered on eliminating the highly abundant but 

poorly balanced seed storage proteins have revealed that the regulation of seed amino 

acids is complex and does not rely on a handful of proteins. In this study, we used two 

complementary omics-based approaches to shed new light on the genes and biological 

processes that underlie the regulation of seed amino acid composition. I first conducted a 

genome wide association study to identify a list of candidate genes involved in the natural 

variation of 76 seed protein bound amino acid related traits. I then used a weighted gene 

co-expression network analysis to associate protein expression with seed amino acid 

composition dynamics during kernel maturation. I found that in contrast to the rising seed 

storage proteins almost half of the proteome, was significantly reduced during kernel 

maturation. That proteome is enriched in the translational machinery components, such as 

ribosomal proteins, which strongly suggests a translational reprogramming is occurring. 

The reduction was significantly associated with decreases in several amino acids, 

including lysine and methionine, pointing to its role in shaping the seed amino acid 

composition. I compared the candidate gene lists generated with both approaches and 

found a nonrandom overlap of 80 genes. A functional analysis of these genes showed a 

tight interconnected cluster dominated by translational machinery genes, especially 
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ribosomal proteins, lending further support for a role of translation dynamics in shaping 

seed amino acid composition. The findings strongly suggest that seed biofortification 

strategies that target the translation machinery dynamics should be considered and 

explored. 

1. Introduction 

Cereal grains are an important food source for humans and livestock worldwide. 

Maize, wheat, and rice account for approximately 70% of total cereal production (Peter R 

Shewry, 2007; P. R. Shewry & Halford, 2002). Of these three cereals, maize (Zea mays 

ssp. mays) is the most productive crop in terms of yield per acreage; the United States 

alone produced around 400 million tons in 2018, for example (FAOSTAT, 2018). Maize 

seeds, or kernels, consist of a large endosperm (~90% of the total dry seed weight) and a 

small embryo (~10% of the total dry seed weight) (Flint-Garcia, Bodnar, & Scott, 2009; 

Watson, 2003). Although maize kernels are dominated by carbohydrates—roughly 70% 

of their composition is starch and about 10% is protein (Flint-Garcia et al., 2009; Watson, 

2003; Y. Wu & Messing, 2014). Both humans and livestock, especially in developing 

countries, rely heavily on maize as a protein source (B. Shen & Roesler, 2017; Shiferaw, 

Prasanna, Hellin, & Bänziger, 2011). This dietary reliance is problematic since maize 

kernels are deficient in several essential amino acids (EAA); that is, those amino acids 

that humans and livestock cannot synthesize in their bodies and must obtain from their 

diet.  

Previous studies have posited that this deficiency in essential amino acids in seed 

is due to the abundance of seed storage proteins (SSPs). The reason is that SSPs can 

contribute to more than 60% of a seed’s total amino acid composition but are very poor in 
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several  EAAs (Larkins, 2017; Larkins et al., 1984; J. Messing, 1983; Peter R Shewry, 

2007; P. R. Shewry & Halford, 2002). The most abundant SSPs in maize kernels are the 

zeins, which are members of the prolamin group (Boston & Larkins, 2009; Larkins, 2017; 

Larkins & Hurkman, 1978).  During seed development, zeins are deposited in the 

endosperm in specific protein bodies (Lending & Larkins, 1989). While rich in proline 

(Pro) and glutamine (Gln), zeins lack several essential amino acids, including lysine 

(Lys), methionine (Met), and tryptophan (Trp) (Larkins, 2017; Peter R Shewry, 2007). 

Attempts have been made to boost the EAA composition of kernels by knocking down or 

out the zeins, but these efforts have not yielded any significant improvements. To the 

contrary, studies of various zein mutants have revealed that seeds largely maintain their 

protein levels and protein bound amino acid (PBAA) composition in response to large 

perturbations to their proteome (Morton, Jia, Zhang, & Holding, 2015; M. Schmidt et al., 

2011; Y. Wu, Wang, & Messing, 2012). This natural phenomenon, which is termed 

proteomic rebalancing, is a highly conserved mechanism in seeds, having been reported 

not only in maize (Morton et al., 2015) but also in soybean (M. Schmidt et al., 2011), 

Arabidopsis (Withana-Gamage et al., 2013), camelina (M. A. Schmidt & Pendarvis, 

2017), and wheat (Altenbach, Tanaka, & Allen, 2014). Neither the underlying molecular 

mechanism nor the natural function of proteomic rebalancing is understood. Nonetheless, 

the phenomenon strongly implies a greater complexity to the metabolic regulation of a 

seed’s PBAA levels and composition than just the seed storage protein levels.  

Quantitative genetic approaches have proven to be efficacious for interrogating 

the genetic architecture of complex traits, including PBAAs, and their regulatory genetic 

mechanisms. Genome wide association studies (GWAS) have proven to be a powerful 
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tool for uncovering metabolic QTLs (mQTL) that underlie the natural variation of 

metabolic traits (Angelovici et al., 2013; Deng et al., 2017; Slaten, Yobi, et al., 2020a; S. 

Wu et al., 2016) and, consequently, facilitating the identification of key regulatory genes 

as well as targets for marker assisted selection for breeding. A GWAS of seed PBAAs 

measured from 79 wild soybean accessions, for example, elucidated the genetic basis that 

underlies the deficiency of essential sulfur amino acids and led to identification of several 

QTLs  involved in the natural variation of aspartic acid (Asp) and Gln (La et al., 2019). 

Likewise, a large meta-analysis of soybean seed compositional QTLs identified 156 

QTLs related to PBAAs, which included a number of potential candidate genes related to 

their metabolic pathways (Van & McHale, 2017). Surprisingly, very few GWAS of 

PBAAs measured from maize kernels were conducted. Deng et al. (2017) conducted an 

extensive association and linkage mapping study of maize PBAAs measured from 513 

lines of a Chinese diversity panel that led to the identification of 247 and 281 significant 

QTLs in two different environments (Deng et al., 2017). The authors subsequently 

identified additional QTLs via a linkage mapping of three RIL populations, but an in-

depth analysis was performed on only three candidate genes.  

The large number of candidate genes can be one of the drawbacks of GWAS. 

Often, it is impractical to validate or prioritize the candidate genes using classical genetic 

approaches. Further, the candidate genes often are involved in the natural variation of 

traits in a very specific combination of environments and timepoints and/or 

developmental stages. While some candidate genes identified by GWAS are key 

regulatory genes that belong to a specific relevant biological process, it can be hard to 
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differentiate these genes from other candidate genes relevant only to the specific 

conditions under which the plants were grown.   

An integrative multi-omics approach can help overcome this challenge. Several 

recent studies have combined GWAS with a co-expression network analysis as a means 

to efficiently whittle down candidate gene lists to a few novel key regulatory genes 

involved in shaping the natural variation of a phenotype of interest (Qi et al., 2018; 

Schaefer et al., 2018; S. Wu et al., 2016). A study in maize, for example, demonstrated 

the power of integrating co-expression networks with GWAS to prioritize casual genes 

from a GWAS candidate gene list (Schaefer et al., 2018).  The authors cautioned, 

however, that the success of similar strategies depends heavily on the relevance of the 

gene expression data to the phenotypes studied. A study in Arabidopsis, for example, 

found numerous functional associations between genes and primary metabolites by 

combining quantitative genetic mapping with correlation networks of transcripts and 

metabolites taken from a stress time course study (S. Wu et al., 2016). With this method, 

the authors were able to identify ~90 candidate associations between structural genes and 

primary metabolites, some of which had been previously characterized, reinforcing the 

effectiveness of their strategy. Similarly, a meta-analysis study in soybean integrated 

metabolic and transcriptomic data, GWAS, and a mapping association to identify genes 

responsible for seed compositional traits, including amino acids (Qi et al., 2018). In this 

example, the authors used a weighted gene co-expression network analysis (WGCNA) to 

find an association between co-expression modules from RNA seq data taken during seed 

development and a seed compositional trait. The highly connected genes from the 

associated co-expression modules (i.e., hub genes) were then compared to previously 
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identified mQTLs for the traits. Several of the hub genes matched the identified mQTLs, 

supporting their key role in the compositional trait of interest.   

It stands to reason that coupling GWAS with a proteomic expression network 

analysis would be biologically more relevant than gene expression for a trait such as seed 

PBAA composition, which ultimately reflects proteome dynamics. Such an approach is 

rarely used, however, since proteomic analyses can be expensive and hard to generate. 

Here, I took advantage of a relatively affordable, high-throughput shotgun proteomic 

methodology to overcome this limitation. Thus, in this study, I performed  GWAS on 

PBAAs measured from dry maize kernels taken from a 282-association panel and 

generated a candidate gene list. I then performed an association analysis between 

proteomic expression data and PBAA composition quantified from a developmental 

series of B73 plants to generate an orthogonal candidate gene list. From a comparison of 

these two gene lists, I identified 80 high confident candidate genes (HCCG) that were 

both strongly associated with seed PBAA composition during maturation and involved in 

the natural variation of these traits in dry kernels. A downstream functional analysis and 

comprehensive ranking of these 80 genes showed that our approach was very efficient in 

identifying both characterized and, more importantly, previously uncharacterized 

biological processes involved in seed PBAA composition. This analysis revealed 

surprising insights about the role that the translational machinery genes, especially 

ribosomal proteins, play in the seed amino acid composition. I suggest these proteins may 

be new avenues to explore for seed PBAA biofortification.     
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2. Materials and Methods  

2.1 Germplasm  

I obtained phenotypic data from 279 lines of the Goodman-Buckler maize 

association panel (Flint‐Garcia et al., 2005). These lines were grown over the summers of 

2017 and 2018 with two replications, each using a randomized complete block design, at 

the Genetics Farm near Columbia, MO. Briefly, 13 kernels per inbred line were grown in 

10 feet rows. Self-pollination was done for every standing plant in a row, and measures 

were taken to avoid cross contamination. Pollinated ears were harvested at maturity, and 

cob husks removed. Ears were dried, shelled, and bulked to form representative 

composite grain samples for each inbred line. Twenty-five random seeds from each 

inbred bulked sample were ground into fine powder for PBAA quantification.  

2.2 PBAA quantification 

Seed PBAAs were extracted and detected using a high‐throughput absolute 

quantification protocol for 16 protein‐bound amino acids. The protocol combines a 

microscale protein hydrolysis step and an absolute quantification step using multiple 

reaction monitoring—based liquid chromatography–tandem mass spectrometry detection, 

as described in (Yobi & Angelovici, 2018). Due to acid hydrolysis, Gln and Asn were 

converted to Glu and Asp, respectively; therefore, Glx denotes Gln and Glu, and Asx 

denotes Asn and Asp. Trp and Cys were destroyed, and Gly was poorly detected. In total, 

15 PBAAs were analyzed which represent 17 PBAAs.  

2.3 Phenotypic data analysis and GWAS 

I evaluated a total of 76 PBAA absolute, relative composition, and biochemical 

traits. All traits were treated independently. Metabolic ratio traits were derived prior to 
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calculation of the best linear unbiased predictions (BLUP) to minimize noise.  For each 

trait, the outlier removal, optimal transformation, and BLUP calculation were performed 

as previously described (Slaten, Chan, Shrestha, Lipka, & Angelovici, 2020). The 

analysis was performed in R version 3.4.3. Variance component estimates from a mixed 

linear model, where taxa, replication, and year are fitted as random effects, were used to 

estimate broad sense heritability on a line mean basis as previously described (Holland, 

Nyquist, & Cervantes-Martínez, 2003). Ser/Total heritability was 0 – because the BLUP 

of Ser/Total did not converge to the model – and was therefore removed from the 

downstream GWAS analysis. 

The association panel was previously genotyped with the Illumina MaizeSNP50 

BeadChip (Cook et al., 2012) and with genotyping-by-sequencing (Elshire et al., 2011) as 

described in (Lipka et al., 2013). Single-nucleotide polymorphisms (SNPs) were filtered 

using a minor allele frequency greater than 0.05, and a total of 422,161 SNPs were used 

for the GWAS analysis. I used GAPIT (Lipka et al., 2012) mixed linear model (MLM) 

and FarmCPU (X. Liu, Huang, Fan, Buckler, & Zhang, 2016) to conduct the univariate 

GWAS. False discovery rate (FDR) (Benjamini & Hochberg, 1995) was used to correct 

the multiple hypothesis testing problem at 5%. Candidate gene lists were obtained using a 

200 kb window size (100 kb on either side) of each significant SNP. The physical 

locations and annotations of genes were based on Maize AGP_V2 

(http://ftp.maizesequence.org/release-5b/filtered-set/). 

2.4 Gene functional categorization using MapMan 

MapMan version 3.6; (Lohse et al., 2014) was used for the functional 

categorization of the candidate genes generated by GWAS. The genes were mapped to 

http://ftp.maizesequence.org/release-5b/filtered-set/
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corresponding Bins using the Zea mays mapping database 

Zm_B73_5b_FGS_cds_2012.m02 obtained from 

https://mapman.gabipd.org/mapmanstore. A total of 35 functional gene categories were in 

the mapping database. 

2.5 PBAA and seed proteome quantification of B73 inbred lines across ten seed 

filling stages  

B73 inbred lines were grown during the summer of 2018 at the Genetics Farm 

near Columbia, MO. Samples from 10 different seed filling stages were collected, 

starting at 10 days after pollination (DAP) and then every four days until 46 DAP. The 10 

time points collected were 10, 14, 18, 22, 26, 30, 34, 38, 42, and 46 DAP. Three 

biological replicates were collected from each seed developmental stage (3 Rep * 10 time 

points =30 samples). The whole ear from each sample was then harvested and frozen 

with liquid nitrogen, and 15 random developing seeds also were collected and stored 

immediately in liquid nitrogen. The seeds were lyophilized for 5 days and then finely 

ground for PBAA quantification. 

2.6 Proteomic analysis  

Protein extraction was performed based on the (Hurkman & Tanaka, 1986) 

method as described in (Yobi et al., 2020). Briefly, 5 mg finely ground seed powder were 

weighed and extracted with Tris-HCl buffered phenol and an SDS extraction buffer. 

After trypsin digest and purification, the peptides were analyzed on a Bruker timsTOF 

PRO using the PASEF (1) method. The acquired data were submitted to the PEAKS DB 

search engine (version 8.5, Bioinformatics Solutions Inc.) for peak picking. Protein 

https://mapman.gabipd.org/mapmanstore
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identification was completed using the MaizeGDB database (Lawrence, Dong, Polacco, 

Seigfried, & Brendel, 2004).  Proteins with spectral counts ≥ 4 were retained for analysis. 

2.7 WGCNA analysis 

I performed a weighted protein correlation network analysis (Langfelder & 

Horvath, 2007) using the R package WGCNA (Langfelder & Horvath, 2008). I chose the 

soft threshold power β=12 to construct the co-expression network as the R2 reached 

around 80% at ensuring the network was close to the scale-free network. I used Pearson 

correlation, blockwiseModules function, and the dynamic tree cut algorithm (Langfelder, 

Zhang, & Horvath, 2007) with a height of 0.20 and a minimum module size of 30. 

Modules are defined as the branches of the dendrogram.  

2.8 GO enrichment analysis 

GO enrichment analysis was performed using AgriGO_V2 (Tian et al., 2017). 

The following parameters were used to determine the GO biological process, cellular 

component, and molecular function terms that were overrepresented (p<0.05): a 

hypergeometric test with a 5% FDR correction, a custom reference that consisted of 2648 

proteins detected in my proteomics study, Zea mays as the select organism, and GO full 

plant ontologies. 

2.9 eQTL analysis of the 80 HCCG 

I used the gene expression dataset from (Kremling et al., 2018). The authors 

collected 3’ RNA-seq data from seven different tissues (including seeds at 350 growing 

degree days) from 255 inbred lines of the Goodman-Buckler association panel. I limited 

my eQTL analysis by using expression datasets specifically from the seed and to 80 high 

confidence candidate genes (HCCG). I first choose 80 HCCG gene expression levels 
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from the seed specific dataset and associated them with the corresponding GWAS tag 

SNPs by using the student t-test followed by an FDR correction at a 0.05 significance 

level. However, we defined an eQTL as significant only if it explained the variation of 

the corresponding PBAA related trait. Hence, we performed a Pearson correlation test 

between the normalized gene expression level and the corresponding PBAA trait from the 

GWAS. 

2.10 Protein-protein interaction of the 80 HCCG using STRING  

I constructed and visualized the protein-protein interaction (PPI) network 

associated with the 80 HCCG using the Search Tool for the Retrieval of Interacting 

Genes/Proteins database STRING V11.0(Szklarczyk et al., 2019). Active interaction 

sources, including high-throughput lab experiments, gene co-expression and previous 

knowledge from curated databases specific to Zea mays, were used to construct the PPI 

network at medium confidence (> 0.4) and high confidence (> 0.7) levels (Szklarczyk et 

al., 2019). I used the MCL clustering algorithm within STRING (Szklarczyk et al., 2019) 

to further investigate strong interactions among nodes in the PPI network. 

3. Results 

3.1 Seed PBAA absolute levels and relative composition displayed different 

relationships and heritability.  

The PBAA content and composition of dry maize kernels was measured from 279 

inbred lines that belonged to a 282 line maize diversity panel (Flint‐Garcia et al., 2005). 

Two replicates of this panel were grown in 2017 and again in 2018. Fifteen PBAAs were 

quantified from the dry kernels. Due to the extraction method, the 15 PBAAs represent 

17 PBAAs, since Asn and Gln hydrolyze to Asp and Glu and are denoted as Asx and Glx, 
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respectively (see Materials and Methods and Yobi et. al 2018) (Supplemental Data 

S2.1). 

I found considerable natural variation in most PBAAs, both in terms of absolute 

levels and in relative composition (Table S2.1a, b; Figure 2.1a, b). A relative 

composition trait is defined as the ratio of an individual amino acid to the sum of the 15 

measured amino acids (e.g., Ala/Total, Ile/Total).  I categorized the natural variation of 

these traits into three groups: Group 1 were those with PBAA levels > 10%, Group 2 

were those with PBAA levels between 10 and 2%, and Group 3 were with those with 

PBAA levels < 2% (Figure 2.1a, b and Table S2.1a, b).  In general, the broad sense 

heritability of the PBAA absolute traits were moderate to high; the exceptions were Arg 

and Glx (Glu + Gln), which each showed low heritability (0.05 and 0.33, respectively) 

(Table S2.1a). Interestingly, the broad sense heritability values of many PBAA relative 

compositions were substantially lower than their absolute levels (Table S2.1a, b). 

I performed a pairwise Pearson correlation analysis to evaluate the relationship 

between PBAA absolute levels and relative composition. For absolute PBAA, all 

pairwise correlations were significant at a qFDR-values <0.05 and were exclusively 

positive (Figure 2.1c and Table S2.2a, b). The strongest correlation was between Ala 

and Leu (r = 0.96) absolute levels, whereas the weakest correlation was between Lys and 

Leu (r = 0.27) absolute levels (Figure 2.1c and Table S2.2a). Notably, both Met, and 

Lys demonstrated relatively larger number of weaker pairwise correlations with the other 

PBAAs (Figure 2.1c and Table S2.2a). The pairwise correlation analysis showed a very 

different pattern for PBAA relative compositions. For this trait, we found both positive 

and negative correlations and numerous non-significant correlations among the relative 
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PBAAs (Figure 2.1d and Table S2.2c, d). The strongest positive correlation was 

between Lys/Total and Arg/Total (r = 0.74), and the strongest negative correlation was 

between Lys/Total and Leu/Total (r = -0.83) (Figure 2.1d and Table S2.2c). In general, 

only a few PBAA relative compositions, including those of Leu, Lys, Arg, His, and Val, 

had multiple moderate to strong correlations. Overall, we found that PBAA absolute 

levels were largely heritable and had strong positive correlations and that PBAA relative 

compositions were less heritable and had low to moderate negative and positive 

correlations.   

3.2 GWAS of PBAA related traits resulted in 1399 potential candidate genes  

To capture the breadth of the genetic architecture underlying this natural variation 

in PBAAs, I performed a GWAS on 76 PBAA-related traits. These traits included: (1) the 

absolute levels in nmole/mg, (2) the relative composition of each trait represented as the 

ratio of each PBAA to the total sum of the PBAAs measured (i.e. Lys/ Total), and (3) 

metabolic ratios based on the potential relationship within each amino acid metabolic 

family (e.g., Lys/the Asp family pathway: Ile + Met + Thr + Asx + Lys).  A full list of the 

76 traits is in (Table S2.3), and the calculated values are elaborated in (Supplemental 

Data S2.1). I describe a similar use of amino acid derived traits for GWAS in 

(Angelovici et al., 2016; Deng et al., 2017). For simplicity, I use the one letter code to 

describe the ratio-related traits; these abbreviations are in (Table S2.3).    

GWAS were performed using the FarmCPU model (X. Liu et al., 2016) and the 

GAPIT MLM model (Lipka et al., 2013). Results from the latter model were not 

significant; therefore, we present only the results from FarmCPU. We used FarmCPU 

previously to successfully identify key genes involved in free amino acid metabolism in 
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Arabidopsis (Slaten, Yobi, et al., 2020a). Overall, the model yielded 40 traits (out of the 

76) with significant SNP-trait associations at 5% FDR correction (Benjamini & 

Hochberg, 1995) and 277 unique (i.e., non-redundant) SNPs (Supplemental Data S2.2). 

(Figure 2.2a) shows the partitioning of the 277 unique SNPs across the ten maize 

chromosomes. A visualization of the distribution of the significant SNP-trait associations 

using a 1 Mb window span showed several potential hotspots on chromosomes 1, 2, 6, 7, 

and 9 (Figure S2.1a). A PBAA trait categorical summary of the GWAS results by amino 

acid family is in (Table 2.1).  

I extracted 1399 unique candidate genes from 200 kb intervals centered around 

the significant SNPs identified for the 40 traits (100 kb upstream and 100 kb 

downstream) (Supplemental Data S2.2) as was described in previous studies and to 

compensate for a low marker coverage (Ching et al., 2002; Flint-Garcia, Thornsberry, & 

Buckler IV, 2003; J. Yan et al., 2009). I detected six candidate genes that were associated 

with the highest number of traits and that were also the most significant associations. 

These genes were extracted from the same SNP and included two SSP proteins, 

GRMZM2G138689 (50 kD γ-zein), and GRMZM2G138727 (27 kD γ-zein) 

(Supplemental Data S2.2).  

I next asked whether any specific biological processes or pathways were enriched 

across the 1399 candidate genes. An enrichment analysis using AgriGo (Tian et al., 2017) 

found no enrichments. I next used MapMan 3.6 (Lohse et al., 2014) to assess the 

functional categorization of the genes (Figure 2.2b) and found that the four top 

functional categories were protein (13.6%), RNA (10.5%), signaling (4.6%), and 

transport (4.0%) (Figure 2.2b).   
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In sum, the GWAS identified 1399 candidate genes. To whittle this list down, I 

chose to generate an orthogonal candidate gene list with which to compare these genes.   

3.3 The dynamics of individual PBAA relative compositions during kernel 

maturation highlighted opposing patterns. 

I generated an orthogonal candidate gene list associated with seed PBAA 

regulation and homeostasis by performing an association analysis of PBAA composition 

with protein co-expression during seed maturation.  I collected 15 developing B73 

kernels from three biological replicas at ten time points; kernels were collected every 4 

days, starting 10 days after pollination (DAP) through desiccation (46 DAP-dry kernels). 

At 10 DAP, kernels transition to maturation and the storage compounds, especially SSPs, 

accumulate (Larkins, 2017; Sabelli & Larkins, 2009).  

For each sample, I quantified the PBAA levels and calculated the relative 

composition using the same methods described above (Supplemental Dataset S2.3). 

Hierarchical clustering was used to cluster the trends of the relative compositions across 

the ten developmental stages (Figure 2.3). I choose to only analyze the trends of relative 

composition as I reasoned they are the most relevant to compare/associate with protein 

expression that are measured per equal protein content.  

The patterns of PBAA relative composition aligned well with the known seed 

storage protein composition and accumulation trends, which resulted in elevation of the 

branched chain amino acid (BCAA) content and reductions in Lys and Met (Gorissen et 

al., 2018). My analysis of PBAA relative composition trends resulted in four clusters. 

Cluster I (all the BCAAs and Tyr) was characterized by a gradual but continual elevation 

in relative composition with a peak at seed desiccation. Cluster II (Ser, Pro, Thr) was 
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characterized by an initial reduction in relative composition followed by an increase after 

26 DAP. Cluster III (Met, Ala, Asx, Glx) was characterized by a continual but gradual 

decrease in relative composition. And, finally, cluster IV (Arg, Phe, Lys, Gly, His) 

showed an increase initially (until 18 DAP) followed by a decrease in relative 

composition (Figure 2.3a, b). 

3.4 Five protein co-expression modules were highly associated with PBAA 

compositional dynamic patterns  

In addition to PBAA quantification, I analyzed protein expression levels from 

each sample using a shotgun proteomic approach (see Materials and Methods). I 

identified 6361 proteins and then removed those with low spectral counts and poor 

reproducibility (see Materials and Methods), leaving 2648 good quality proteins 

(Supplemental Data S2.4). I performed a weighted gene co-expression network analysis 

(WGCNA) (Langfelder & Horvath, 2008) on these filtered proteins and then constructed 

an undirected and weighted protein co-expression network using the optimum soft 

threshold (Figure S2.2). Notably, our digestion and detection method filtered out the 

highly abundant zeins, allowing us both to get a deeper coverage of the seed proteome 

and to skip the exclusion of these proteins using protein fractionation. The 2648 proteins 

were assigned to eight modules: blue, turquoise, brown, green, yellow, black, red, and 

gray (Figure 2.4a). A list of proteins in each module with their respective annotations is 

in (Supplemental Data S2.5). The turquoise module had the most proteins (853 

proteins;), and the black module had the least (66 proteins) (Figure 2.4a and 

Supplemental Data S2.5).  Visualization of the expression pattern of eigen protein of a 

particular module indicated that, as the kernel matured, proteins from the blue and 
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turquoise modules decreased (45% of all proteins detected ) and proteins from the brown 

and green modules increased (Figure 2.4b). Thus, almost half of all proteins analyzed 

declined during seed maturation (Figure 2.4b).  I calculated the Eigengene-based module 

connectivity, or module membership (kME), for each particular protein within a given 

module in order to investigate its potentiality to be a candidate for hub gene (kME>0.7). 

A full list of proteins and their kME within a respective module is in (Supplemental 

Data S2.5).   

Next, I assessed the functional relationships between the seed PBAA relative 

composition trends and the protein expression patterns across the seed developmental 

stages.  Here, I used WGCNA to perform a correlation between the relative PBAA 

composition traits and the protein expression modules. To create a modules-PBAA 

composition association, I calculated the module Eigen protein (ME), the first principal 

component of a given module. The correlation between the ME of each module and the 

PBAA composition trait are shown in (Figure 2.4a).  Five modules (blue, turquoise, 

brown, green, and black) correlated highly (rabs =~0.7-0.94) with multiple PBAA 

compositional traits. The gray, yellow, and red modules had mostly low and non-

significant correlations with the PBAA traits (Figure 2.4a).  

I used AgriGO_V2 to carry out a GO enrichment analysis on the proteins 

identified from the five modules (Tian et al., 2017). Enrichment for the blue, turquoise, 

brown, and black module proteins is in (Table S2.4). I did not find enrichment for 

proteins in the green module. The most significant enrichments were found for proteins in 

the turquoise module, and the terms included structural molecule activity, structural 

constituent of ribosome, ribosomal subunit, and translation (corrected p-values 1.80E-28 
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- 2.30E-19). The blue module was enriched for the term purine ribonucleoside metabolic 

process (corrected p-value 0.013) (Table S2.4). The most enriched categories for the 

brown and black modules were response to light intensity (corrected p-value 3.90E-05) 

and carbohydrate biosynthetic process (corrected p-value 0.00017), respectively (Table 

S2.4).  Altogether, I identified 1583 candidate proteins that were highly correlated with 

the PBAA compositional dynamics during kernel maturation. I converted these candidate 

proteins into their respective gene ID, providing us with the orthogonal gene list with 

which to compare to the gene list generated by GWAS. 

3.5 Eighty high confidence candidate genes (HCCG) were identified by intersecting 

the GWAS and WGCNA candidate gene lists 

  I compared my two orthogonal candidate gene lists and searched for genes that 

were highly associated with my traits in both approaches. The logic of this approach is as 

follows: if overlap in the lists is not random, then genes that are both highly associated 

with PBAA across development and are also part of the genetic architecture of PBAA in 

the dry kernel are key regulatory genes. A comparison between the GWAS and WGCNA 

candidate gene lists yielded 80 overlapping genes (Figure 2.5). I refer to these as high 

confidence candidate genes (HCCG) (Table S2.5). 

  I tested my assumption that these genes resulted from a non-random overlap 

between the GWAS and WGCNA analyses. I used GeneOverlap (L. Shen, 2014) to 

perform 10,000 overlap simulations. I extracted a random subset of genes without 

replacement with the same number of genes as the GWAS candidate gene list (i.e., 1399 

genes) and overlapped them with the WGCNA gene list. I used the AGP_V2 maize 

genome annotation, which consists of 39,656 genes. This analysis showed that 80 genes 
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is a larger number than what would be expected (p=7e-04) using a Fisher’s Exact test, 

which supports my assumption that the overlap was not random.  

3.6 A protein-protein interaction network analysis of the 80 HCCG showed a large, 

tightly interconnected functional cluster containing mostly protein synthesis related 

genes 

I was interested in the potential functional interaction between the 80 HCCG 

proteins. I constructed and visualized a protein-protein interaction (PPI) network 

associated with the 80 HCCG by using the Search Tool for the Retrieval of Interacting 

Genes/Proteins database STRING (V11.0; (Szklarczyk et al., 2019). The PPI network 

generated by STRING consisted of 80 nodes (42 connected at least to one other protein, 

and 38 were unconnected; not shown in the figure) and 91 edges with an average node 

degree of 2.27 (Figure 2.6a). Each node represents a HCCG, and each edge represents 

the interaction between nodes/HCCG. The number of edges is larger than is expected for 

a random network of the same size (p-value 6.58e-05), indicating that these interactions 

are not random. To further investigate the functional interaction among the nodes, I used 

the MCL clustering algorithm in STRING, which resulted in 11 clusters (Figure 2.6a). 

The genes and clusters are summarized in (Table S2.5).  Cluster 1, which contained 19 

genes, was the largest and most interconnected functional cluster. The other clusters had 

only two to three genes. Using MapMan (Lohse et al., 2014) to assess the functional 

categorization of the 11 clusters (Figure 2.6a, b and Table S2.5), we found that the 

majority of genes in cluster 1 belong to protein synthesis, degradation, and folding. Two 

genes are categorized as stress genes but could be involved in protein folding as they are 

chaperons. Strikingly, of these 19 genes in cluster 1, nine were ribosomal gene subunits. 
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Cluster 2 (green yellow) included three zein storage proteins; cluster 3 (green) included 

TCA and electron transport chain genes; and the remaining clusters included genes 

related to carbohydrate, amino acid, lipid metabolism, cell wall degradation, and cell 

vesical transport (Figure 2.6b and Table S2.5).  

I wanted to investigate protein and gene expressions from cluster 1, so I 

performed expression visualization of both (Figure 2.7a, b). The proteomic data were the 

same data used for the WGCNA (Figure 2.7a). The gene expression data (Figure 2.7c) 

were extracted from a public dataset (Chen et al., 2014). The majority of cluster 1 

proteins were highly expressed at 10 DAP and then gradually but continually decreased 

throughout the remainder of seed development (Figure 2.7a, b). The exceptions were 

two heat shock proteins that demonstrated the opposite trend (Figure 2.7a). I also 

visualized the transcript expression patterns of the same genes using a public dataset 

(Chen et al., 2014) that contains the maturity timepoints up until 38 DAP (Figure 2.7c). 

Interestingly, the expression patterns of most proteins diverged from the gene expression 

patterns one, toward late maturation and desiccation.  While proteins showed a consistent 

decrease, gene expression was elevated toward these stages (Figure 2.7c, d). The latter 

observation could be used to infer that transcript elevation is not manifested in translation 

of these proteins (Figure 2.7e).  

To further investigate expression levels of the cluster 1 genes, I used a heatmap to 

visualize the gene expression dataset from (Stelpflug et al., 2016) at various 

developmental stages, including whole seed, endosperm, embryo, ear, tassel, internode, 

and leaf (Figure S2.3). Overall, I found gene expression was higher in seeds and 

reproductive tissues as compared to the vegetative tissues. I also found high gene 
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expression in the embryo (in most of the stages), endosperm (particularly in the early 

stages from 12 to 14 DAP), whole seed, ear, and tassel. Gene expression was relatively 

low in the different leaf stages; however, expression in the internode was higher relative 

to the leaf (Figure S2.3). The latter pattern indicates that these ribosomal proteins are not 

housekeeping genes and are extensively differentially expressed across the various 

tissues, most especially in seeds.  

3.7 eQTL-mQTL analysis indicate that only few HCCG are driven by expression 

I evaluated whether my identified mQTLs are driven, at least in part, by 

significantly different expression levels in the seeds. I used 3’ RNA-sequencing data 

from maize developing seeds (350 growing degree DAP) collected from 255 inbred lines 

of the Goodman-Buckler association panel, as previously published in (Kremling et al., 

2018). Out of the 80 HCCG, 18 (22.5%) had significant associations between their 

expression levels and their corresponding GWAS tag SNP locus and, hence, were 

potential eQTL candidates (Table S2.6a). However, I was interested in whether these 

eQTLs explained the variation in the corresponding PBAA-related traits. Hence, I did a 

Pearson correlation test between the normalized gene expression levels of those 18 genes 

and their corresponding PBAA traits from the GWAS (Table S2.6b). Out of these 18, 

only four genes showed a significant correlation at a 5% level of significance (Table 

S2.6b). These four eQTLs/mQTLs were significantly correlated with 11 PBAA traits 

(Table S2.6b).  Interestingly, one gene, Glutelin 2 (GRMZM2G138727), associated with 

eight PBAA traits (i.e., H/M, H/Z, Z/ZHPR, H/Total, L/IVL, V/A, V/LAV, V/Total; 

Table S2.6b). Notably, most correlations, although significant, were low (Table S2.6b), 

which we infer is a consequence of using data coming from two independents 
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experiments or from additional biological factors at play. In sum, the eQTL/mQTL 

analysis suggests that most of the mQTLs I identified are not driven by expression 

variation.  

3.8 Ranking the 80 HCCG by comprehensively integrating all performed analyses  

Finally, I prioritized and ranked the 80 HCCG by integrating data from all 

analyses performed. I interrogated each of the 80 genes using the following five criteria: 

1) Does it have a significant association (based on the GWAS analysis) with multiple 

traits? 2) Does it have a high WGCNA-kME, which represents the connectivity of a 

given protein with a module eigengene (kME> 0.7) 3) Does it have an mQTL that is 

driven by gene expression (mQTL/eQTL)? 4)  Does it have a STRING analysis 

connectivity > 0.4, which represents the inclusion in the PPI network; and 5) Does it have 

a STRING analysis connectivity > 0.7, which represents high connectivity within the PPI 

network. Each gene was given a score, from 1 to 5, that reflected how many criteria it 

fulfilled. I then ranked the 80 genes according to their score (high to low). Genes with the 

same score were further ranked by the number of traits associated with it in the GWAS 

(the more traits, the higher the rank) (Supplemental Data S2.6). I used the following 

logic as the basis for the five criteria: genes that are associated with multiple traits in the 

GWAS and/or are highly connected in either the co-expression (WGCNA) analysis or the 

functional analysis (STRING) and/or showing eQTL/mQTL are key genes that are 

involved in the PBAA composition in seeds.  

The top 15 genes are summarized in (Table 2.2).  GRMZM2G138727 (27kD γ-

zein) met all five criteria and was the top ranked gene, followed by GRMZM2G058760 

(ferredoxin NADP reductase1-fnr1) and GRMZM2G138689 (50kD γ-zein). (Table 2.2). 
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27kD γ-zein and 50kD γ-zein are the two important genes that were previously reported 

to be involved in PBAA composition in seed (Deng et al., 2017; Guo et al., 2013),  

confirming the effectiveness of my ranking approach.  Four ribosomal genes were also 

ranked among the top 15 HCCG as was elongation initiation factor 3 (eIF3) and 26S 

protease regulatory subunits (Table 2.2), indicating that protein metabolism synthesis and 

degradation machinery, especially the translational machinery, must play a key role in 

shaping and regulating PBAAs in maize kernels. Three genes, which included eIF 3, Zein 

2 (16 kD zein), and a 40S ribosomal subunit, were responsible for Met-related traits. 

While a different ribosomal protein was associated with Lys related trait. Both Lys and 

Met are two amino acids that are deficient in maize. Many of the top-ranked genes were 

associated with Arg, Met, His, and Lys (minor amino acids) or BCAA (major amino 

acids) related traits. 

4. Discussion 

The development of effective seed amino acid biofortification strategies requires a 

fundamental understanding of the mechanism that underlies PBAA composition. I have 

learned from multiple studies that have targeted SSPs in various plant species that the 

genetic and metabolic bases of seed composition are interconnected and complex and do 

not rely merely on the expression of specific proteins (Larkins & Hurkman, 1978; 

Joachim Messing, 1983; Morton et al., 2015). In this study, I used and integrated two 

omics approaches to analyze the genetic basis of PBAA natural variation and its 

association with the compositional dynamics during seed maturation. My results provide 

new and strong evidence that the structural components of the translational machinery 

play a key role in seed PBAA regulation. 



 

38 

 

4.1 Functional categorization of candidate genes resulting from GWAS of PBAA-

related traits highlights proteins and RNA metabolism. 

The phenomenon of proteomic rebalancing makes altering seed PBAA 

composition via mutation difficult (Morton et al., 2015; Y. Wu & Messing, 2014). 

Nevertheless, we know that seed PBAA composition is a complex trait that varies across 

natural and artificial populations of maize and other crops (Deng et al., 2017; La et al., 

2019). Indeed, my study found that both PBAA absolute levels (nmol/mg) and PBAA 

relative composition (PBAA/TPBAA) show significant natural variation (Figure 2.1a, 

b). Interestingly, a correlation analysis of both these traits across a large association panel 

showed a strong and significant positive correlation between PBAA absolute levels, but 

significant correlations, both positive and negative, for only a handful of PBAA relative 

composition levels (Figure 2.1b). I interpret this result to mean that the high coordination 

observed in the overall amino acid absolute levels results from a general change in the 

overall protein levels in the different genotypes as opposed to the relative composition, 

which itself more likely reflects the natural variation of the proteomic composition in the 

seeds. For example, the relative compositions of Lys and Leu demonstrate a strong 

negative correlation, which very likely reflects variation in the abundance of SSPs, which 

are high in Leu but poor in Lys (Gorissen et al., 2018).  My analysis also found a high 

positive correlation between the natural variation of Lys and Asx, which aligns with a 

previous study where proteomic perturbations that led to high levels of Lys also led to 

high levels of Asx (Hunter et al., 2002).   

These findings support the notion that different PBAA-related ratios represent 

different aspects of the relationship between seed PBAAs. Therefore, we included in my 



 

39 

 

GWAS all relevant metabolic ratios of PBAA based on their biochemical affiliations and 

interpreted the resultant candidate genes to be part of the comprehensive genetic 

architecture of PBAAs. A similar approach has proven to be very effective in other 

metabolic studies in maize and Arabidopsis (Angelovici et al., 2013; Deng et al., 2017; 

Slaten, Yobi, et al., 2020b). My GWAS and candidate gene extraction approach yielded a 

relatively large number of unique candidate genes for all PBAA-related traits, most likely 

due to the relatively permissive statistical correction used for my analysis.  However, 

since I intended to intersect the GWAS candidate gene list with an orthogonal candidate 

gene list, the length of the list did not pose a concern. Nevertheless, I conducted a 

functional analysis of these candidate genes and found that both “proteins” and “RNA” 

were the largest identified categories (Figure 2.2b). This finding suggests that protein 

metabolism and gene expression may lie at the heart of seed PBAA.   

4.2 An increase in several PBAA relative composition during seed maturation is 

negatively correlated with multiple translational machinery components.   

I intersected my GWAS with proteomic expression data. This combination is 

rarely implemented because of the cost and difficulty associated with proteomic analyses.  

Similar multi-omics studies have used transcriptomic expression data. However, I 

reasoned that the association between overall seed PBAA composition dynamics during 

maturation and proteome expression patterns would yield a more direct and biologically 

relevant findings. From my analysis, I learned that the relative composition levels of Leu, 

Ile, Val, Tyr, and Pro were elevated toward seed desiccation (Figure 2.3) and were 

positively associated with three proteomic co-expression modules (brown, green, and 

black) that also gradual increased with kernel maturation (Figure 2.4a, b). In contrast, 
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Ala, Asx, Glx, Gly, His, and Lys relative compositions decreased during kernel 

maturation and were strongly associated with two proteins co-expression modules (blue 

and turquoise) that also gradually decreased (Figure 2.4a, b). These PBAA composition 

dynamics are consistent with the elevation of SSPs that are poor in Lys and rich in Leu 

and Pro (Gorissen et al., 2018; Hunter et al., 2002). My analysis further revealed that 

45% of the detected proteins were reduced during kernel maturation, while only 14% 

increased (Figure 2.4a, b). This large reduction in proteins undoubtedly contributed to 

the PBAA composition in the dry seed. The effect of this reduction on PBAA 

composition might be on par with the elevation of SSPs; however, since my proteomic 

analysis was semi-quantitative, a future study is needed to confirm this claim. 

Nonetheless, this finding should be of great interest to seed amino acid biofortification 

efforts since it suggests that the proteins to target may be the reduced ones, and not the 

abundant SSPs. 

 The large reduction of proteins during kernel development and maturation 

coincided with two major processes. The first is the accumulation of SSPs, which starts 

around 10 DAP and increases with seed maturity (Larkins, 2017; Sabelli & Larkins, 

2009). The second is a programmed cell death (PCD) that is initiated around 12-16 DAP 

and expands to engulf the entire starchy endosperm by late development (Young, Gallie, 

& DeMason, 1997), which lead to the degradation of many proteins in the endosperm.  It 

is interesting then that the proteins included in the two protein expression modules 

(turquoise and blue module) that showed reductions toward desiccation were significantly 

enriched highly in biological processes related to translation and gene expression (Table 

S2.4). It stands to reason that many gene expression related proteins are downregulated 
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during maturation as a result of PCD and in preparation for desiccation and dormancy. 

The large reduction in proteins related to translation is, nonetheless, surprising since this 

period is characterized by massive SSP synthesis and accumulation (Larkins, 2017; 

Prioul et al., 2008; Sabelli & Larkins, 2009). Even more striking is that a large portion of 

these proteins are ribosomal proteins which are associated with protein synthesis 

(Supplemental Data S2.5; turquoise module). These results could indicate that specific 

types of ribosomes are associated with the translation of SSPs and that this reduction may 

be part of a global translational reprogramming or some sort of translational switch. 

Global translational control has been reported for stresses that produce energy deficits, 

including hypoxia (Branco-Price, Kawaguchi, Ferreira, & Bailey-Serres, 2005; Branco‐

Price, Kaiser, Jang, Larive, & Bailey‐Serres, 2008), heat (Yangueez, Castro-Sanz, 

Fernandez-Bautista, Oliveros, & Castellano, 2013), and drought (Kawaguchi & Bailey-

Serres, 2002; Kawaguchi, Girke, Bray, & Bailey‐Serres, 2004). Selective translational 

regulation also has been associated with dark/light transition (Bailey-Serres & 

Juntawong, 2012), photomorphogenesis (M.-J. Liu et al., 2013), daily clock cycle (Missra 

et al., 2015), and symbiosis with nitrogen fixing bacteria (Reynoso, Blanco, Bailey‐

Serres, Crespi, & Zanetti, 2013). Consistently, a study by Shamimuzzaman & Vodkin 

(2014) that found an increase of 64 ribosomal proteins during the transition of soybean 

cotyledons from storage organs to photosynthetic organs (4 days after seed imbibition 

and germination), supporting an involvement of specific ribosomal changes in 

developmental transitions (Shamimuzzaman & Vodkin, 2014). In sum, I infer from the 

results of my association analysis of proteomic expression and seed PBAA that a 
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translational reprogramming is likely to occurs during seed maturation which play a key 

role in shaping the PBAA composition. 

4.3 An analysis of HCCG relationships reveals a tightly connected cluster dominated 

by translational machinery components. 

I used two orthogonal approaches to pinpoint the genetic basis of PBAA 

composition in seed. I reasoned that (1) genes that are associated in both analyses are key 

regulatory genes determining PBAA composition in seeds; and (2) that the overlap in 

genes between the two approaches is not random. My multi-omics approach yielded 80 

high confidence candidate genes (HCCG), which my statistical analyses supports my 

non-random assumption.  

A protein-protein interaction analysis of the 80 HCCG found several biological 

processes previously implicated in seed PBAA composition as well as biological 

processes not previously reported. The previously characterized processes were storage 

proteins, transport and amino acids, lipid, and energy and carbohydrate metabolism. The 

novel processes were related to translational machinery, especially ribosomal proteins 

(Figure 2.6a).  Lipid, carbohydrate, and energy metabolism affect levels of PBAA in 

crop seeds (Deng et al., 2017; M. Jia et al., 2013; Miclaus, Wu, Xu, Dooner, & Messing, 

2011), while cell transport, select amino acid metabolic pathways and storage proteins 

affect PBAA composition (Hunter et al., 2002; Morton et al., 2015; Pandurangan et al., 

2012; Wang & Larkins, 2001). Interestingly, my GWAS identified only three γ-zeins 

(Supplemental Data S2.2), notably the same three zeins also identified as part of my top 

ranked HCCG list (Table 2.2). Among these three zeins, Glutelin2 ranked highest. This 

ranking was consistent with its previous detection in a GWAS of PBAAs measured from 
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a different maize association panel (Deng et al., 2017), highlighting its general 

importance in the natural variation of seed PBAA. This protein is also involved in the 

initiation of SSP protein bodies (Guo et al., 2013). Together, these results strongly 

support the validity of my multi-omics approach as well as the integrative scoring method 

I used to rank my HCCG list. 

Surprisingly, the functional analysis of the 80 HCCG highlighted the role that 

core protein metabolism, especially ribosomal proteins, plays in seed PBAA composition. 

The PPI analysis showed that the 80 HCCG included only one large tightly connected 

group dominated by genes related to protein metabolism, where more than half were 

components of the translational machinery, with nine ribosomal proteins and one 

translational initiation factor EIF3. The remaining proteins included four protein 

chaperons, two involved in protein degradation, and one vesicle–fusing ATPase (Table 

S2.5). Four of the ribosomal genes and EIF3 are in my top 15 HCCG list (Table 2.2). An 

analysis of publicly available transcriptional data of the genes in cluster 1 indicated that 

these genes are differentially expressed and have relatively high expression levels in 

reproductive tissues, mainly endosperm and embryo (Figure S2.3). Hence, I reason that a 

key factor shaping seed PBAA is specific translational attenuation, most probably driven 

by alteration to specific components of the translational machinery, namely the ribosomal 

proteins.  Studies over the past two decades have shed light on the adaptive nature of the 

ribosomal proteins and their potential selective regulation of translation. Multiple 

ribosomal protein mutants, for example, have revealed a functional role for these proteins 

in developmental and stress related processes (Ma & Dooner, 2004; Tzafrir et al., 2004; 

H. Yan et al., 2016; J. Zhang et al., 2016). Many ribosomal proteins are transcriptionally 
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regulated during stress, such as in sucrose feeding (Gamm et al., 2014), cold, heat, and 

UV-B (Sáez-Vásquez & Delseny, 2019; Sormani, Masclaux-Daubresse, Daniele-Vedele, 

& Chardon, 2011) as reviewed in (Martinez-Seidel, Beine-Golovchuk, Hsieh, & Kopka, 

2020). We also know from ribosomal profiling of stem cells that ribosomal heterogeneity 

at the level of core ribosomal proteins facilitates preferential translation of specific 

mRNAs (Shi et al., 2017). Most recently, it was proposed that plant evolution directing 

high ribosomal proteins paralogue divergence toward functional heterogeneity (Martinez-

Seidel et al., 2020) .  

Previous studies have established that proteomic reprogramming and rebalancing 

are due, in large part, to translational regulation rather than transcriptional regulation 

(Morton et al., 2015; M. Schmidt et al., 2011). For example, proteomic characterization 

of the RDM4 mutant, which exhibits proteomic reprogramming and rebalancing, found 

enrichment for protein biosynthesis, especially ribosomal biogenesis, in the endosperm 

for proteins that increased (S. Jia et al., 2020). These previous observations align with a 

key role of ribosomal proteins in seed proteome and seed PBAA composition. An 

additional finding that supports this hypothesis is the identification of eIF3 as a HCCG. 

eIF3, which consists of 12 subunits, is the most complex and largest initiation factor, 

participating in nearly all major steps of translation initiation (Browning & Bailey-Serres, 

2015; Merchante, Stepanova, & Alonso, 2017). Alterations to eIFs can have drastic 

effects on translation, either by global repression or upregulation (Merchante et al., 

2017). Mutants of several subunits of the eIF3 complex in Arabidopsis have been shown 

to affect the translation of genes in specific processes (Merchante et al., 2017). Notably, 

eIF protein levels, especially eIF2, are enhanced in several maize opaque mutants that 
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undergo rebalancing but still display elevated levels of Lys (Habben, Kirleis, & Larkins, 

1993; Habben, Moro, Hunter, Hamaker, & Larkins, 1995; M. Jia et al., 2013)  

5. Conclusion 

This study provides further support for the effectiveness of using an integrative 

multi-omics approach to shed new light on the biological processes involved in regulation 

of complex metabolic traits in plants, here seed PBAA composition in maize. With this 

approach and by using publicly available datasets, I uncovered two uncharacterized 

factors associated with seed PBAA: a translational reprogramming during seed 

maturation and the complex dynamic and heterogeneity of the translational machinery, 

especially ribosomal proteins. I propose that the role of ribosomal proteins and the 

translational dynamic in seed PBAA composition represent new and exciting avenues for 

seed amino acid biofortification that might be the key for overcoming proteomic 

reprogramming and rebalancing.  
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7. Figures 

 

Figure 2. 1: The natural variation and relationships of PBAA measured from the 

diversity panel.  Boxplot showing the PBAA (a) absolute levels and (b) relative 

compositional distribution in the 279 taxa from the Goodman-Buckler maize association 

panel.  Pairwise Pearson correlation analysis between the absolute PBAA levels (c) and 

relative composition (d) using back transformed BLUPs of 279 taxa from Goodman-

Buckler maize association panel. The correlation matrix was visualized in R v.3.4.3 (R 

Core Team). Each dot represents a significant correlation coefficient (r) at qFDR values 

<0.05. Blue dots indicate positive correlation, and red dots indicate negative correlations. 

Asx denotes Asn + Asp. Glx denotes Gln + Glu. Numbers on (a) and (b) represent groups 

based on PBAA absolute levels (a) and PBAA/TPBAA ratios (b) where 1 is for PBAA 

levels > 10%; 2 is for PBAA levels between 10 and 2%; and 3 is for PBAA levels < 2%. 
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Figure 2.2: The genomic distribution of the significant unique SNPs found in GWAS 

and the functional categorization of the extracted candidate. (a) The partition of the 

significant unique SNPs across the 10 chromosomes in maize. (b) Pie chart representing 

the functional categorization of the 1399 GWAS candidate genes using MapMan version 

3.6. The percentage in parenthesis represents the proportion of genes that falls into a 

functional category. The top four categories are highlighted in dark orange and include 

protein, RNA, signaling, and transport. 
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Figure 2. 3: Seed PBAA composition dynamics during maturation.  

(a) Heatmap and (b) hierarchical clustering trends of the PBAA relative compositions 

across ten seed filling time points of maize inbred B73. The average values of three 

biological replicates from each time point were scaled and used to create the heatmap (n 

=3). Blue indicates low values for PBAA accumulation, and red indicate high 

accumulations. The red line in (b) indicates the average expression pattern of individual 

PBAA accumulation within a cluster (n = X) and was created using geom line “mean” 

function in ggplot2 package in R v.3.4.3.  
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Figure 2. 4: Relationships among protein co-expression modules and PBAA 

compositional dynamics during seed maturation. (a) Module-trait relationships from 

the WGCNA analysis. Module names are displayed as rows on the left y-axis (e.g., 

MEblue denotes modules eigen protein for blue module). The relative PBAA 

composition traits (e.g., Ala/T, which is the ratio of Ala/Sum total of all PBAAs levels) 

are displayed in columns on the x-axis. The total number of proteins for each respective 

module is appears in parentheses along the y-axis. Each cell shows the correlation 

coefficients between modules Eigen protein (ME)-PBAA traits (top number) and the 

corresponding p-value (bottom number in parenthesis). The module-trait relationships are 

colored based on their correlation: red is a strong positive correlation, and green is a 

strong negative correlation. (b) The expression trend of Eigen protein found in the 

corresponding modules across the seed development time points. The x-axis is the 10 

timepoints, in days after pollination. The y-axis is the expression of module eigen protein 

using the scaled spectral count of protein (scaled SP). 
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Figure 2. 5: Comparison between the candidate genes lists of WGCNA and GWAS.  

Van diagram depicting the 80 genes that overlap with both the GWAS candidate gene list 

and the relevant proteomic co-expression modules (turquoise, brown, green, black, and 

blue modules). I refer to them as high confidence candidate genes (HCCG).  
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Figure 2. 6: Protein-protein interaction (PPI) of the 80 HCCG list. (a) A PPI of 

the 80 HCCG was created using STRING V11.0. HCCG are indicated by nodes 

labeled with the encoding protein symbol from STRING. Interaction between nodes 

are indicated by edges. Smooth line edges indicate intra-cluster interactions, and 

dotted edges indicate inter-cluster interaction. Cluster analysis using MCL algorithm 

resulted in 11 distinct clusters. (b) Table representation of cluster numbers, color, 

gene count within each cluster using STRING, and the Bin name is the functional 

category of the clusters using MapMan version 3.6.0. 
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Figure 2. 7: Protein and gene expression from cluster 1. Heatmap of 19 genes in 

cluster 1 (red) obtained from the 80 HCCG protein-protein interaction in Figure 6a. (a) 

Protein expression pattern across the ten seed developmental stages of B73 obtained from 

shotgun proteomic sequencing.  (b) Hierarchical clustering was used to cluster the 

proteins using the scaled data for spectral counts of proteins (scaled SP). (c) Gene 

expression pattern of the same 19 genes across eight seed developmental stages of B73 

obtained from Chen et. al (2014) in the same order as (a). (d) Hierarchical clustering was 

used to cluster the gene using the scaled data from the FPKM gene values. Red indicates 

high expression, and blue indicates low expression. (e) The names and annotations of the 

19 proteins/genes in cluster 1.   
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8. Supplementary Figures 

 

Figure S2.1 Genomic distribution of significant and all SNPs across the genome (a) 

Genome wide distribution of all the significant SNP found in our GWAS. (b) Genome 

wide SNP distribution of all the SNPs that were used for our analysis. The x-axis 

represents the position in Mbp across the genome while the y-axis represents the count in 

numbers of SNPs within the window size of 1 Mb. Several potential hotspot of SNP 

associations are detected (significant SNP count >20 for a given position) and marked by 

the orange arrows in chromosome 1, 2, 6, 7, and 9. 
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Figure S2.2 Analysis of network topology for soft thresholding power for 

constructing the coexpression network. (a) Shows the scale-free fit index (y-axis) as a 

function of the soft-thresholding power (x-axis). The red bar indicates scale free topology 

R2 at 80%. (b) Displays the mean connectivity (degree, y-axis) as a function of the soft 

thresholding power (x-axis). 
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Figure S2. 3 Gene expression of cluster 1 members in the various maize tissues. (a) 

Heatmap of tissue gene expression pattern of the cluster1 in Figure 6a; 19 genes across 

whole seed, endosperm, embryo, ear, tassel, internode, and leaves obtained from 

Stelpflug et. al (2016) and heatmap was created using the scaled data from the RPKM 

gene values. Red indicates higher expression while blue indicates lower expression. (b) 

The names and annotation of the proteins/genes within cluster 1. 
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9. Tables 

Table 2.1 A summary of 76 PBAA GWAS results. Data are summarized by PBAA trait 

category: PBAA absolute levels, relative composition, aspartate family related ratios, 

BCAA family related ratios, glutamate family related ratios, and shikimate family related 

ratio traits. The table presents the absolute number (n) and the percentage (%) per family 

for the following trait parameters: total number of traits analyzed for the GWAS, number 

of significant traits in the GWAS at 5% FDR, number of unique (non-redundant) SNPs, 

average SNP per trait per family, and number of unique candidate genes from a 200 kb 

window of the peak SNP. 

 

Averag

e SNP 

per trait

n % n % n % n %

Absolute levels 15 20 5 12.5 36 12.9 7 219 16

Relative composition 14 18 8 20.0 60 21.6 8 317 23

Aspartate family related 

ratios 15 20 8 20.0 72 25.9 9 304 22

BCAA family related     

ratios 14 18 7 17.5 38 13.7 5 210 15

Glutamate family 

related ratios 13 17 9 22.5 61 22.3 7 296 21

Shikimate family related 

ratios 5 7 3 7.5 10 3.6 3 53 4

Total sum of the PBAA 76 100 40 100 277 100 39 1399 100

PBAA Traits 

Category

Total number of 

traits analyzed

No. of significant 

traits

No. of unique 

SNPs

No. of unique 

Candidate genes



 

74 

 

 

Table 2.2 Ranking of the top 15 high confidence candidate gene (HCCG) list. A data 

integration from GWAS, WGCNA, expression variation correlation with trait correlation 

(eQTL/mQTL), and STRING analyses were used for determination and a combined score 

and ranking were based on the cumulative number of criteria that each gene fulfilled. “1” 

means that the condition is satisfied, while “0” means that the condition is not satisfied. 

The criteria are asignificant association based on GWAS analysis with multiple traits; 
bhigh WGCNA-kME, which represents the connectivity of a given protein with module 

eigengene (kME> 0.7); cmQTLs that is driven by mQTL/eQTL; dSTRING analysis 

connectivity > 0.4, which represents the inclusion in the PPI network; and eSTRING 

analysis connectivity > 0.7, which represents high connectivity within the PPI network- 

since STRING analysis at confidence score  >0.7 and  >0.4 is not independent, partial 

score (0.5) is given instead of full score (1) if the gene is included in the PPI network. 
fCombined score of all the five criteria. Sig. Traits (GWAS) represents traits that were 

significantly associated with that SNP in my GWAS. 

 

      GWAS WGCN

A 

eQTL-

mQTL 

STRING   

R

a

n
k 

Protein ID 

(HCCP) 

Annotations Significant 

Traits  

Multiple 

associati

onsa 

HC 

geneb 

Expressio

n driven c 

0.4d 0.

7e 

Com

bined 

scoref 

1 GRMZM2G1

38727_P01 

Glutelin-2 

Precursor (Zein-
gamma-27 kDa 

zein) 

H/M, H/Z, 

Z/ZHPR, 
H/TOTAL, 

L/IVL, V/A, 

V/LAV, 

V/TOTAL 

1 1 1 1 0.

5 
4.5 

2 GRMZM2G0

58760_P01 

ferredoxin NADP 

reductase1-fnr1 

H/Z, H/ZHPR, 

H/TOTAL 

1 1 1 1 0 4 

3 GRMZM2G1

38689_P01 

50kD gamma 

zein- gz50 

Z/ZHPR, H/M, 

H/Z, H/TOTAL, 

L/IVL, V/A, 
V/LAV, 

V/TOTAL 

1 1 0 1 0.

5 
3.5 

4 GRMZM2G0

44800_P01 

40S ribosomal 

protein S11 

K/IMTXK, 

V/LAV 

1 1 0 1 0.

5 
3.5 

5 GRMZM2G4

40208_P01 

6-

phosphogluconate 
dehydrogenase 

L/IVL, M/I 1 1 0 1 0 3 

6 GRMZM2G0

90338_P01 

sulfite reductase1- 

sir1 

L/V, V/LAV 1 0 1 1 0 3 

7 GRMZM2G1

76396_P02 

proline 

iminopeptidase 

L/LAV, V/IVL 1 0 0 1 0.

5 
2.5 

8 GRMZM2G0

24354_P01 

ribosomal protein 

l15 

T/K, R/ZHPR 1 0 0 1 0.

5 
2.5 

9 GRMZM2G1

25300_P02 

40S ribosomal 

subunit protein 

S21 

M/TOTAL 0 1 0 1 0.

5 
2.5 

1

0 

GRMZM2G3
60681_P01 

heat-shock protein 
101 

V/A 0 1 0 1 0.
5 

2.5 
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1

1 

GRMZM2G1

10185_P02 

26s protease 

regulatory subunit 

7 

R/ZHPR 0 1 0 1 0.

5 
2.5 

1

2 

GRMZM2G0

60429_P01 

Zein-beta 

Precursor (Zein-
2)(16 kDa 

zein)(Zein Zc1) 

M 0 1 0 1 0.

5 
2.5 

1

3 

GRMZM2G1
02779_P01 

Eif3 M 0 1 0 1 0.
5 

2.5 

1

4 

GRMZM2G5
87327_P01 

hypothetical 
protein 

LOC100382060 

V/A 0 1 0 1 0.
5 

2.5 

1

5 

GRMZM2G1
40116_P01 

60 ribosomal 
protein l14 

H/ZHPR 0 1 0 1 0.
5 

2.5 
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10. Supplementary Tables 

Table S2.1 Statistical and heritability summary of the PBAA related traits. The  mean, 

standard deviation (SD), relative standard deviation (RSD), range and broad sense heritability 

(BSH) of 15 PBAAs absolute levels measured and calculated from the dry seeds of Goodman-

Buckler maize association panel and the 15 calculated PBAA relative composition are described 

in (a) and (b) respectively. Statistics (mean, SD, RSD and range) were calculated using the dry 

seed PBAA measurement from back transformed BLUPs of the 279 taxa of Goodman-Buckler 

maize association panel while BSH was calculated using replicated data (raw data after outlier 

removal) from two years and two replica. 

 

 

 

 (a)

Trait
Trait 

Symbol
Mean SD

Relative SD 

%
Min Max

Broad Sense 

Heritability

Leu L 133.61 15.21 11.39 83.72 186.82 0.78

Ala A 122.57 12.25 9.99 84.87 167.88 0.89

Glx Z 103.38 5.43 5.25 84.15 124.59 0.33

Pro P 88.03 7.05 8.01 66.68 115.13 0.66

Ser S 64.52 4.84 7.50 50.83 81.09 0.66

Asx X 56.62 5.87 10.37 41.68 77.12 0.89

Val V 52.51 4.18 7.97 41.65 68.19 0.79

Thr T 51.23 4.17 8.13 40.59 69.05 0.66

Ile I 46.66 5.22 11.19 31.76 66.74 0.86

Phe F 44.51 4.74 10.65 30.37 59.83 0.56

Tyr Y 23.07 2.53 10.95 15.54 33.94 0.90

His H 20.71 1.33 6.41 17.27 25.65 0.71

Arg R 20.67 1.10 5.33 17.02 24.03 0.05

Lys K 17.61 1.68 9.53 14.20 24.40 0.81

Met M 16.43 2.87 17.49 9.72 30.31 0.71

Back transformed BLUPs

(b)

Trait
Trait 

Symbol
Mean SD

Relative SD 

%
Min Max

Broad Sense 

Heritability

Leu/T L/T 0.15 0.01 3.51 0.12 0.17 0.50

Ala/T A/T 0.14 0.00 1.91 0.12 0.15 0.70

Glx/T Z/T 0.12 0.00 1.73 0.12 0.13 0.08

Pro/T P/T 0.10 0.00 1.86 0.10 0.11 0.22

Ser/T S/T 0.07 0.00 0.00 0.07 0.07 0.00

Asx/T X/T 0.06 0.00 4.45 0.06 0.08 0.78

Val/T V/T 0.06 0.00 3.55 0.06 0.07 0.61

Thr/T T/T 0.06 0.00 0.94 0.06 0.06 0.10

Ile/T I/T 0.05 0.00 2.42 0.05 0.06 0.72

Phe/T F/T 0.05 0.00 2.39 0.05 0.06 0.25

Tyr/T Y/T 0.03 0.00 2.81 0.02 0.03 0.45

Arg/T R/T 0.02 0.00 2.70 0.02 0.03 0.02

His/T H/T 0.02 0.00 7.47 0.02 0.03 0.85

Lys/T K/T 0.02 0.00 11.05 0.02 0.04 0.83

Met/T M/T 0.02 0.00 14.84 0.01 0.03 0.72

Back transformed BLUPs



 

77 

 

 

Table S2.2 The relationship among the abs PBAA levels and among their relative 

composition. (a) Pairwise Pearson correlation coefficients between the 15 absolute 

PBAA levels using back transformed BLUPs of 279 taxa from Goodman-Buckler maize 

association panel. (b) Significance of correlation analysis of absolute PBAA using 

corr.test function in R and the corresponding adjusted p-value using FDR correction at 

5% level of significance. (c) Similarly, pairwise Pearson correlation coefficient between 

14 relative (compositional) PBAA using back transformed BLUPs of 279 taxa from 

Goodman-Buckler maize association panel. Ser/Total trait did not converge for the back 

transformed BLUPs and hence excluded from the entire analysis. (d) Significance of 

relative PBAA correlation analysis using corr.test and the corresponding adjusted p-value 

using FDR correction at 5% level of significance. T stands for Total. 

 

 

(a) Ala Arg Asx Glx His Ile Leu Lys Met Phe Pro Ser Thr Tyr Val

Ala 1

Arg 0.50 1

Asx 0.83 0.60 1

Glx 0.89 0.48 0.75 1

His 0.49 0.62 0.50 0.59 1

Ile 0.91 0.52 0.81 0.80 0.49 1

Leu 0.96 0.41 0.78 0.87 0.49 0.92 1

Lys 0.39 0.81 0.66 0.37 0.48 0.41 0.27 1

Met 0.58 0.46 0.40 0.55 0.35 0.53 0.53 0.29 1

Phe 0.82 0.40 0.69 0.79 0.46 0.84 0.84 0.31 0.43 1

Pro 0.79 0.48 0.66 0.80 0.74 0.79 0.82 0.32 0.52 0.75 1

Ser 0.92 0.54 0.83 0.87 0.55 0.90 0.91 0.48 0.58 0.85 0.78 1

Thr 0.85 0.63 0.80 0.77 0.64 0.85 0.83 0.54 0.58 0.70 0.72 0.87 1

Tyr 0.89 0.50 0.73 0.87 0.56 0.84 0.89 0.36 0.65 0.84 0.82 0.88 0.79 1

Val 0.85 0.68 0.84 0.80 0.69 0.86 0.83 0.60 0.56 0.72 0.83 0.83 0.83 0.81 1
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(c) Ala/T Arg/T Asx/T Glx/T His/T Ile/T Leu/T Lys/T Met/T Phe/T Pro/T Thr/T Tyr/T Val/T

Ala/T 1.00

Arg/T -0.35 1.00

Asx/T -0.15 0.36 1.00

Glx/T -0.14 0.05 -0.12 1.00

His/T -0.64 0.49 0.05 0.40 1.00

Ile/T 0.30 -0.30 0.03 -0.67 -0.62 1.00

Leu/T 0.55 -0.69 -0.44 -0.27 -0.69 0.60 1.00

Lys/T -0.49 0.74 0.61 0.06 0.47 -0.32 -0.83 1.00

Met/T 0.05 0.11 -0.29 -0.12 -0.09 -0.05 -0.06 -0.05 1.00

Phe/T 0.13 -0.38 -0.17 -0.22 -0.41 0.21 0.34 -0.36 -0.15 1.00

Pro/T -0.42 0.04 -0.33 0.26 0.58 -0.37 -0.27 -0.05 0.00 -0.16 1.00

Thr/T -0.12 0.23 0.10 -0.42 0.09 0.19 -0.06 0.18 0.10 -0.24 -0.29 1.00

Tyr/T 0.21 -0.32 -0.38 -0.06 -0.31 -0.07 0.34 -0.36 0.29 0.30 -0.08 -0.12 1.00

Val/T -0.45 0.49 0.37 0.04 0.54 -0.24 -0.61 0.61 -0.05 -0.53 0.27 0.13 -0.46 1.00

(d) Ala/T Arg/T Asx/T Glx/T His/T Ile/T Leu/T Lys/T Met/T Phe/T Pro/T Thr/T Tyr/T Val/T

Ala/T 0.00

Arg/T 0.00 0.00

Asx/T 0.01 0.00 0.00

Glx/T 0.03 0.44 0.05 0.00

His/T 0.00 0.00 0.44 0.00 0.00

Ile/T 0.00 0.00 0.63 0.00 0.00 0.00

Leu/T 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lys/T 0.00 0.00 0.00 0.37 0.00 0.00 0.00 0.00

Met/T 0.44 0.07 0.00 0.06 0.18 0.44 0.37 0.44 0.00

Phe/T 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00

Pro/T 0.00 0.52 0.00 0.00 0.00 0.00 0.00 0.44 0.96 0.01 0.00

Thr/T 0.05 0.00 0.10 0.00 0.14 0.00 0.37 0.00 0.11 0.00 0.00 0.00

Tyr/T 0.00 0.00 0.00 0.33 0.00 0.30 0.00 0.00 0.00 0.00 0.19 0.05 0.00

Val/T 0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.45 0.00 0.00 0.04 0.00 0.00
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Table S2.3 List of 76 seed PBAA traits used for GWAS. These traits included from the 

quantification of 15 absolute levels and the calculation of their relative composition and 

known biochemical interactions (based on their affiliation with their respective amino 

acid families: Aspartate, Glutamate, BCAA and Shikimate). 

 

Abs & relative 

composition to 

total AAs 

AA-Abs  & 

AA/Total Total= 

Sum of 15 AA 

Asp Family =Ile, 

Met, Thr, Asx 

Lys (IMTXK)

BCAA Family= Ile, 

Val, Leu (IVL)     Pyr 

Family=Leu, Ala, Val 

(LAV)

A A/X A/LAV Ala A

A/Total I/IMTXK I/IVL Arg R

F IMTXK I/L Asx X

F/Total K/IMTXK I/LAV Glx Z

H M/I I/V His H

H/Total M/IMTXK IVL Ile I

I M/K L/IVL Leu L

I/Total T/I L/LAV Lys K

K T/IMTXK L/V Met M

K/Total T/K LAV Phe F

L T/Z V/A Pro P

L/Total X/IMTXK V/IVL Ser S

M X/K V/LAV Thr T

M/Total Z/I Z/V Tyr Y

P Z/K Val V

P/Total

R

Glu Family= Glx, 

His, Pro, Arg 

(ZHPR)

Shikimate Family = 

Phe,Tyr (FY)

R/Total H/M F/FY

S H/X F/Z

T H/Z FY

T/Total H/ZHPR Y/F

V P/ZHPR Y/FY

V/Total R/P

X R/Z

X/Total R/ZHPR

Y X/ZHPR

Y/Total Z/P

Z Z/R

Z/Total Z/ZHPR

ZHPR

 Biochemistry based metabolic ratios, 

grouped by AA families' affiliation 

Bound amino 

acids one letter 

code 
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Table S2.4 Enrichment analysis of the five protein co-expression modules. GO 

enrichments of the proteins obtained from five WGCNA modules that are associated with 

PBAA composition dynamics across maturation (blue, turquoise, brown, green, and 

black) using AgriGo V2. P, biological process; F, molecular function F; C, cellular 

components. There was no significance GO enrichment terms for the green modules. 

 

 

 

GO_acc term_type Term
query 

item

query 

total
ref item ref total p-value FDR

GO:0046128 P purine ribonucleoside metabolic process 7 332 8 2409 7.10E-06 0.013

GO:0042278 P purine nucleoside metabolic process 7 332 9 2409 2.80E-05 0.026

GO:0046500 P S-adenosylmethionine metabolic process 5 332 5 2409 5.20E-05 0.032

GO:0030244 P cellulose biosynthetic process 7 332 10 2409 8.20E-05 0.038

GO:0070003 F threonine-type peptidase activity 10 332 15 2409 4.30E-06 0.00076

GO:0004298 F threonine-type endopeptidase activity 10 332 15 2409 4.30E-06 0.00076

GO:0050662 F coenzyme binding 36 332 117 2409 3.50E-06 0.00076

GO:0005839 C proteasome core complex 10 332 15 2409 4.30E-06 0.0018

Blue Module

GO_acc term_type Term
query 

item

query 

total
ref item ref total p-value FDR

GO:0006412 P translation 149 799 222 2409 7.30E-23 2.30E-19

GO:0010467 P gene expression 170 799 283 2409 2.50E-18 4.00E-15

GO:0034645 P cellular macromolecule biosynthetic process 172 799 300 2409 6.90E-16 7.30E-13

GO:0009059 P macromolecule biosynthetic process 172 799 301 2409 1.00E-15 8.30E-13

GO:0044267 P cellular protein metabolic process 225 799 435 2409 2.20E-13 1.40E-10

GO:0019538 P protein metabolic process 251 799 519 2409 7.60E-11 4.00E-08

GO:0009166 P nucleotide catabolic process 43 799 63 2409 2.10E-08 4.90E-06

GO:0009261 P ribonucleotide catabolic process 43 799 63 2409 2.10E-08 4.90E-06

GO:0006195 P purine nucleotide catabolic process 43 799 63 2409 2.10E-08 4.90E-06

GO:0009143 P nucleoside triphosphate catabolic process 43 799 63 2409 2.10E-08 4.90E-06

GO:0009146 P purine nucleoside triphosphate catabolic process 43 799 63 2409 2.10E-08 4.90E-06

GO:0009207 P purine ribonucleoside triphosphate catabolic process 43 799 63 2409 2.10E-08 4.90E-06

GO:0009203 P ribonucleoside triphosphate catabolic process 43 799 63 2409 2.10E-08 4.90E-06

GO:0009154 P purine ribonucleotide catabolic process 43 799 63 2409 2.10E-08 4.90E-06

GO:0044260 P cellular macromolecule metabolic process 282 799 625 2409 2.50E-08 5.30E-06

GO:0046700 P heterocycle catabolic process 46 799 73 2409 2.70E-07 5.50E-05

GO:0006184 P GTP catabolic process 33 799 47 2409 3.10E-07 5.80E-05

GO:0009199 P ribonucleoside triphosphate metabolic process 50 799 82 2409 3.80E-07 6.80E-05

GO:0009141 P nucleoside triphosphate metabolic process 50 799 83 2409 6.40E-07 0.0001

GO:0009144 P purine nucleoside triphosphate metabolic process 49 799 81 2409 6.90E-07 0.0001

GO:0009205 P purine ribonucleoside triphosphate metabolic process 49 799 81 2409 6.90E-07 0.0001

GO:0046039 P GTP metabolic process 34 799 51 2409 1.40E-06 0.0002

GO:0043170 P macromolecule metabolic process 312 799 729 2409 1.40E-06 0.0002

GO:0009150 P purine ribonucleotide metabolic process 54 799 94 2409 1.90E-06 0.00026

GO:0006163 P purine nucleotide metabolic process 56 799 99 2409 2.50E-06 0.00031

GO:0044249 P cellular biosynthetic process 257 799 597 2409 4.60E-06 0.00057

GO:0043933 P macromolecular complex subunit organization 43 799 72 2409 4.90E-06 0.00059

GO:0065003 P macromolecular complex assembly 38 799 62 2409 7.20E-06 0.00082

GO:0034621 P cellular macromolecular complex subunit organization 39 799 65 2409 1.10E-05 0.0012

GO:0022607 P cellular component assembly 42 799 72 2409 1.40E-05 0.0015

GO:0034622 P cellular macromolecular complex assembly 34 799 55 2409 1.60E-05 0.0017

GO:0009259 P ribonucleotide metabolic process 55 799 102 2409 2.00E-05 0.0019

GO:0009058 P biosynthetic process 265 799 629 2409 2.00E-05 0.0019

GO:0051258 P protein polymerization 13 799 15 2409 3.20E-05 0.003

GO:0016043 P cellular component organization 87 799 180 2409 3.60E-05 0.0033

GO:0070727 P cellular macromolecule localization 51 799 95 2409 4.40E-05 0.0039

GO:0006461 P protein complex assembly 24 799 36 2409 4.70E-05 0.0039

Turquiose Module
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GO:0070271 P protein complex biogenesis 24 799 36 2409 4.70E-05 0.0039

GO:0034613 P cellular protein localization 49 799 91 2409 5.50E-05 0.0045

GO:0006886 P intracellular protein transport 48 799 90 2409 8.80E-05 0.007

GO:0009987 P cellular process 576 799 1471 2409 9.20E-05 0.0072

GO:0043623 P cellular protein complex assembly 20 799 29 2409 9.70E-05 0.0073

GO:0044085 P cellular component biogenesis 47 799 88 2409 9.80E-05 0.0073

GO:0016192 P vesicle-mediated transport 35 799 62 2409 0.00017 0.012

GO:0006753 P nucleoside phosphate metabolic process 65 799 134 2409 0.00025 0.017

GO:0008104 P protein localization 58 799 117 2409 0.00025 0.017

GO:0009117 P nucleotide metabolic process 65 799 134 2409 0.00025 0.017

GO:0006139 P nucleobase, nucleoside, 124 799 283 2409 0.00028 0.018

GO:0044237 P cellular metabolic process 459 799 1175 2409 0.00031 0.02

GO:0045184 P establishment of protein localization 57 799 116 2409 0.00037 0.023

GO:0015031 P protein transport 57 799 116 2409 0.00037 0.023

GO:0022621 P shoot system development 26 799 45 2409 0.00068 0.04

GO:0048367 P shoot development 26 799 45 2409 0.00068 0.04

GO:0044248 P cellular catabolic process 123 799 286 2409 0.00067 0.04

GO:0003002 P regionalization 12 799 16 2409 0.00079 0.046

GO:0009887 P organ morphogenesis 17 799 26 2409 0.00083 0.048

GO:0007389 P pattern specification process 14 799 20 2409 0.00088 0.049

GO:0005198 F structural molecule activity 124 799 154 2409 1.90E-31 1.80E-28

GO:0003735 F structural constituent of ribosome 98 799 124 2409 2.50E-24 1.10E-21

GO:0017111 F nucleoside-triphosphatase activity 90 799 146 2409 8.70E-12 2.50E-09

GO:0016462 F pyrophosphatase activity 96 799 159 2409 1.10E-11 2.50E-09

GO:0016818 F hydrolase activity 96 799 160 2409 1.80E-11 3.20E-09

GO:0016817 F hydrolase activity, acting on acid anhydrides 99 799 167 2409 2.40E-11 3.60E-09

GO:0003924 F GTPase activity 37 799 54 2409 1.70E-07 2.20E-05

GO:0003676 F nucleic acid binding 129 799 265 2409 5.60E-07 6.40E-05

GO:0032555 F purine ribonucleotide binding 181 799 404 2409 4.80E-06 0.0004

GO:0032553 F ribonucleotide binding 181 799 404 2409 4.80E-06 0.0004

GO:0019001 F guanyl nucleotide binding 47 799 81 2409 5.70E-06 0.0004

GO:0032561 F guanyl ribonucleotide binding 47 799 81 2409 5.70E-06 0.0004

GO:0005525 F GTP binding 47 799 81 2409 5.70E-06 0.0004

GO:0016887 F ATPase activity 33 799 54 2409 3.00E-05 0.002

GO:0005200 F structural constituent of cytoskeleton 11 799 12 2409 4.70E-05 0.0029

GO:0042623 F ATPase activity, coupled 26 799 42 2409 0.00015 0.0084

GO:0017076 F purine nucleotide binding 184 799 438 2409 0.00024 0.013

GO:0005524 F ATP binding 138 799 326 2409 0.00076 0.039

GO:0032559 F adenyl ribonucleotide binding 138 799 328 2409 0.001 0.048

GO:0033279 C ribosomal subunit 85 799 104 2409 2.90E-23 2.50E-20

GO:0005840 C ribosome 124 799 177 2409 5.60E-22 2.40E-19

GO:0043232 C intracellular non-membrane-bounded organelle 199 799 332 2409 1.10E-20 2.50E-18

GO:0043228 C non-membrane-bounded organelle 199 799 332 2409 1.10E-20 2.50E-18

GO:0022626 C cytosolic ribosome 113 799 162 2409 4.70E-20 8.10E-18

GO:0030529 C ribonucleoprotein complex 131 799 199 2409 2.00E-19 2.90E-17

GO:0044445 C cytosolic part 82 799 111 2409 1.30E-17 1.70E-15

GO:0032991 C macromolecular complex 261 799 488 2409 4.90E-17 5.20E-15

GO:0005730 C nucleolus 118 799 194 2409 3.80E-14 3.70E-12

GO:0022625 C cytosolic large ribosomal subunit 52 799 67 2409 2.60E-13 2.00E-11

GO:0031981 C nuclear lumen 119 799 200 2409 2.50E-13 2.00E-11

GO:0015934 C large ribosomal subunit 53 799 69 2409 3.30E-13 2.40E-11

GO:0044428 C nuclear part 135 799 238 2409 1.20E-12 7.90E-11

GO:0015935 C small ribosomal subunit 32 799 35 2409 1.40E-12 8.60E-11

GO:0022627 C cytosolic small ribosomal subunit 26 799 29 2409 5.20E-10 3.00E-08

GO:0070013 C intracellular organelle lumen 122 799 228 2409 1.40E-09 7.10E-08

GO:0043233 C organelle lumen 122 799 228 2409 1.40E-09 7.10E-08

GO:0031974 C membrane-enclosed lumen 122 799 230 2409 2.70E-09 1.30E-07

GO:0044446 C intracellular organelle part 333 799 743 2409 6.40E-09 2.90E-07

GO:0044422 C organelle part 333 799 744 2409 7.40E-09 3.20E-07

GO:0005634 C nucleus 200 799 430 2409 9.70E-08 4.00E-06

GO:0005829 C cytosol 230 799 512 2409 3.80E-07 1.50E-05

GO:0030662 C coated vesicle membrane 18 799 21 2409 1.10E-06 4.10E-05
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GO:0030120 C vesicle coat 18 799 21 2409 1.10E-06 4.10E-05

GO:0016020 C membrane 375 799 890 2409 1.30E-06 4.50E-05

GO:0044433 C cytoplasmic vesicle part 18 799 22 2409 4.30E-06 0.00013

GO:0012506 C vesicle membrane 18 799 22 2409 4.30E-06 0.00013

GO:0030659 C cytoplasmic vesicle membrane 18 799 22 2409 4.30E-06 0.00013

GO:0048475 C coated membrane 26 799 37 2409 5.30E-06 0.00015

GO:0030117 C membrane coat 26 799 37 2409 5.30E-06 0.00015

GO:0030312 C external encapsulating structure 115 799 242 2409 7.60E-06 0.00021

GO:0005618 C cell wall 115 799 242 2409 7.60E-06 0.00021

GO:0030135 C coated vesicle 19 799 25 2409 1.60E-05 0.00042

GO:0005886 C plasma membrane 269 799 640 2409 2.10E-05 0.00054

GO:0030660 C Golgi-associated vesicle membrane 13 799 15 2409 3.20E-05 0.00076

GO:0005798 C Golgi-associated vesicle 13 799 15 2409 3.20E-05 0.00076

GO:0044425 C membrane part 169 799 386 2409 3.80E-05 0.00088

GO:0015630 C microtubule cytoskeleton 17 799 23 2409 8.30E-05 0.0019

GO:0043234 C protein complex 126 799 282 2409 9.70E-05 0.0021

GO:0005874 C microtubule 13 799 16 2409 0.00012 0.0025

GO:0005856 C cytoskeleton 23 799 36 2409 0.00018 0.0037

GO:0016023 C cytoplasmic membrane-bounded vesicle 20 799 31 2409 0.00038 0.007

GO:0030658 C transport vesicle membrane 9 799 10 2409 0.00035 0.007

GO:0031982 C vesicle 20 799 31 2409 0.00038 0.007

GO:0031988 C membrane-bounded vesicle 20 799 31 2409 0.00038 0.007

GO:0031410 C cytoplasmic vesicle 20 799 31 2409 0.00038 0.007

GO:0044459 C plasma membrane part 94 799 208 2409 0.00037 0.007

GO:0000139 C Golgi membrane 13 799 18 2409 0.00085 0.015

GO:0022624 C proteasome accessory complex 9 799 11 2409 0.0014 0.021

GO:0005838 C proteasome regulatory particle 9 799 11 2409 0.0014 0.021

GO:0030663 C COPI coated vesicle membrane 9 799 11 2409 0.0014 0.021

GO:0005853 C eukaryotic translation elongation factor 1 complex 6 799 6 2409 0.0014 0.021

GO:0030126 C COPI vesicle coat 9 799 11 2409 0.0014 0.021

GO:0030133 C transport vesicle 9 799 11 2409 0.0014 0.021

GO:0030137 C COPI-coated vesicle 9 799 11 2409 0.0014 0.021

GO:0005911 C cell-cell junction 84 799 190 2409 0.0015 0.022

GO:0055044 C symplast 84 799 190 2409 0.0015 0.022

GO:0009506 C plasmodesma 84 799 190 2409 0.0015 0.022

GO:0030054 C cell junction 84 799 190 2409 0.0015 0.022

GO:0044430 C cytoskeletal part 17 799 27 2409 0.0015 0.022

GO:0005737 C cytoplasm 553 799 1462 2409 0.0018 0.026

GO_acc term_type Term
query 

item

query 

total
ref item ref total p-value FDR

GO:0009642 P response to light intensity 13 171 31 2409 1.00E-07 3.90E-05

GO:0009644 P response to high light intensity 11 171 21 2409 5.60E-08 3.90E-05

GO:0042542 P response to hydrogen peroxide 12 171 29 2409 3.80E-07 9.40E-05

GO:0000302 P response to reactive oxygen species 12 171 34 2409 2.80E-06 0.00052

GO:0009408 P response to heat 15 171 63 2409 3.90E-05 0.0058

GO:0009266 P response to temperature stimulus 24 171 140 2409 9.70E-05 0.01

GO:0009314 P response to radiation 16 171 76 2409 0.00011 0.01

GO:0009416 P response to light stimulus 16 171 76 2409 0.00011 0.01

GO:0006979 P response to oxidative stress 17 171 90 2409 0.00027 0.022

Brown Module
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GO_acc term_type Term
query 

item

query 

total
ref item ref total p-value FDR

GO:0016051 P carbohydrate biosynthetic process 11 62 61 2409 9.00E-07 0.00017

GO:0034637 P cellular carbohydrate biosynthetic process 11 62 58 2409 5.30E-07 0.00017

GO:0016137 P glycoside metabolic process 6 62 20 2409 1.10E-05 0.001

GO:0019252 P starch biosynthetic process 5 62 12 2409 9.50E-06 0.001

GO:0005982 P starch metabolic process 6 62 22 2409 2.00E-05 0.0015

GO:0044262 P cellular carbohydrate metabolic process 16 62 184 2409 7.40E-05 0.0045

GO:0009081 P
branched chain family amino acid metabolic 

process 5 62 26 2409 0.00057 0.03

GO:0006073 P cellular glucan metabolic process 6 62 40 2409 0.00067 0.031

GO:0009250 P glucan biosynthetic process 5 62 28 2409 0.00081 0.033

GO:0044042 P glucan metabolic process 6 62 43 2409 0.00099 0.036

Black Module
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Table S2.5 The 80 HCCG STRING and functional analysis.  String analysis of the 80 HCCG including cluster number, cluster 

color, Protein ID, STRING Protein name and protein description. MCL clustering method was used in STRING V11.0 resulting into 

11 distinct cluster in the PPI network derived from 80 HCCG. "Unconnected" label in the cluster number indicates those proteins that 

are not connected in the given PPI analysis. MapMan functional categorization of the 80 HCCG and their respective bin, bin code, and 

bin name are also elaborated. 

                                                                                                                                                                             MapMan Annotations 

Cluster 

number 

Cluster 

color 
Protein ID 

STRING 

protein name 
Protein description Bin Bin code Bin name 

1 Red GRMZM2G070863_P0

1 

rs55622338 Hsp70-Hsp90 organizing protein 3 20 20.2.1 stress abiotic heat 

1 Red GRMZM2G360681_P0

1 

541780 Chaperone protein ClpB1; Heat-

shock protein 101; Uncharacterized 

protein; Belongs to the ClpA/ClpB 

family 

20 20.2.1 stress abiotic heat 

1 Red GRMZM2G587327_P0

1 

100382060 Vesicle-fusing ATPase 29 29.5.11.20 protein degradation 

ubiquitin proteasome 

1 Red GRMZM2G044137_P0

1 

100285769 60S ribosomal protein L30; 

Uncharacterized protein 

29 29.2.1.2.2.30 protein synthesis 

ribosomal protein 

eukaryotic 60S subunit 

L30 

1 Red GRMZM2G140116_P0

1 

100192835 60S ribosomal protein L14-1 29 29.2.1.2.2.14 protein synthesis 

ribosomal protein 

eukaryotic 60S subunit 

L14 

1 Red GRMZM2G024354_P0

1 

100282218 Ribosomal protein L15; Belongs to 

the eukaryotic ribosomal protein 

eL15 family 

29 29.2.1.2.2.15 protein synthesis 

ribosomal protein 

eukaryotic 60S subunit 

L15 
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1 Red GRMZM2G102779_P0

1 

cl2592_1 Eukaryotic translation initiation 

factor 3 subunit D; mRNA cap-

binding component of the 

eukaryotic translation initiation 

factor 3 (eIF-3) complex, which is 

involved in protein synthesis of a 

specialized repertoire of mRNAs 

and, together with other initiation 

factors, stimulates binding of 

mRNA and methionyl-tRNAi to 

the 40S ribosome. The eIF-3 

complex specifically targets and 

initiates translation of a subset of 

mRNAs involved in cell 

proliferation. In the eIF-3 complex, 

eif3d specifically recognizes and 

binds the 7-methylguanosine cap of 

a subset of mRNAs 

29 29.2.3 protein synthesis 

initiation 

1 Red GRMZM2G377797_P0

1 

100283242 40S ribosomal protein S16; 

Belongs to the universal ribosomal 

protein uS9 family 

29 29.2.1.2.1.16 protein synthesis 

ribosomal protein 

eukaryotic 40S subunit 

S16 

1 Red GRMZM2G125300_P0

2 

GRMZM2G125

300_P02 

40S ribosomal protein S21; 

Belongs to the eukaryotic 

ribosomal protein eS21 family 

29 29.2.1.2.1.21 protein synthesis 

ribosomal protein 

eukaryotic 40S subunit 

S21 

1 Red GRMZM2G122767_P0

1 

umc1329 T-complex protein 1 subunit delta; 

Molecular chaperone; assists the 

folding of proteins upon ATP 

hydrolysis 

29 29.6 protein folding 

1 Red GRMZM2G121452_P0

1 

GRMZM2G121

452_P01 

26S proteasome non-ATPase 

regulatory subunit 8; 

Uncharacterized protein 

29 29.5.11.20 protein degradation 

ubiquitin proteasome 
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1 Red GRMZM2G005080_P0

1 

100193140 Proteasome subunit alpha type; 

The proteasome is a multi- 

catalytic proteinase complex which 

is characterized by its ability to 

cleave peptides with Arg, Phe, Tyr, 

Leu, and Glu adjacent to the 

leaving group at neutral or slightly 

basic pH; Belongs to the peptidase 

T1A family 

29 29.5.11.20 protein degradation 

ubiquitin proteasome 

1 Red GRMZM5G868433_P0

4 

GRMZM5G868

433_P04 

60S ribosomal protein L7-2; 

Uncharacterized protein 

29 29.2.1.2.2.7 protein synthesis 

ribosomal protein 

eukaryotic 60S subunit 

L7 

1 Red GRMZM2G044800_P0

1 

RPS11 40S ribosomal protein S11 29 29.2.1.2.1.11 protein synthesis 

ribosomal protein 

eukaryotic 40S subunit 

S11 

1 Red GRMZM2G145280_P0

1 

100282254 60S ribosomal protein L13; 

Belongs to the eukaryotic 

ribosomal protein eL13 family 

29 29.2.1.2.2.13 protein synthesis 

ribosomal protein 

eukaryotic 60S subunit 

L13 

1 Red GRMZM2G124576_P0

2 

100384739 annotation not available 27 27.3.67 RNA regulation of 

transcription putative 

transcription regulator 

1 Red GRMZM2G125271_P0

1 

RPS4 40S ribosomal protein S4 29 29.2.1.2.1.4 protein synthesis 

ribosomal protein 

eukaryotic 40S subunit 

S4 

1 Red GRMZM2G110185_P0

2 

mss1 Uncharacterized protein 29 29.5.11.20 protein degradation 

ubiquitin proteasome 
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1 Red GRMZM2G110626_P0

1 

100272316 T-complex protein 1 subunit alpha; 

Molecular chaperone; assists the 

folding of proteins upon ATP 

hydrolysis 

29 29.6 protein folding 

2 Green 

Yellow 

GRMZM2G138727_P0

1 

LOC542296 Glutelin-2; Seed storage protein. It 

accounts for about 15% of the total 

endosperm protein content 

35 35.2 not assigned unknown 

2 Green 

Yellow 

GRMZM2G138689_P0

1 

Zm.96787 50 kDa gamma-zein; Zeins are 

major seed storage proteins 

35 35.2 not assigned unknown 

2 Green 

Yellow 

GRMZM2G060429_P0

1 

zp16 16 kDa gamma-zein; Zeins are 

major seed storage proteins 

35 35.2 not assigned unknown 

3 Green GRMZM2G068455_P0

3 

100193663 Malate dehydrogenase 8 8.1.9 TCA / org 

transformation TCA 

malate DH 

3 Green GRMZM2G097040_P0

1 

100272681 NADH dehydrogenase 

[ubiquinone] flavoprotein 2 

mitochondrial; NADH-ubiquinone 

oxidoreductase subunit 

9 9.1.2 mitochondrial electron 

transport / ATP 

synthesis NADH-DH 

localization not clear 

3 Green GRMZM2G143651_P0

1 

GRMZM2G143

651_P01 

NADH dehydrogenase 

[ubiquinone] 1 alpha subcomplex 

subunit 9 mitochondrial 

9 9.1.2 mitochondrial electron 

transport / ATP 

synthesis NADH-DH 

localization not clear 

4 Light 

Green 

GRMZM2G004528_P0

3 

mips2 Myo-inositol phosphate synthase; 

Putative inositol-3-phosphate 

synthase; Uncharacterized protein 

3 3.4.3 minor CHO 

metabolism myo-

inositol InsP Synthases 
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4 Light 

Green 

GRMZM2G440208_P0

1 

100856973 6-phosphogluconate 

dehydrogenase, decarboxylating; 

Catalyzes the oxidative 

decarboxylation of 6- phosphor-

gluconate to ribulose 5-phosphate 

and CO(2), with concomitant 

reduction of NADP to NADPH; 

Belongs to the 6-phosphogluconate 

dehydrogenase family 

7 7.1.3 OPP oxidative PP 6-

phosphogluconate 

dehydrogenase 

4 Light 

Green 

GRMZM2G456086_P0

1 

pco087551 Putative ribose-5-phosphate 

isomerase 3 chloroplastic; Ribose-

5-phosphate isomerase; 

Uncharacterized protein 

7 7.2.4 OPP non-reductive PP 

ribose 5-phosphate 

isomerase 

5 Medium 

Sea 

Green 

GRMZM2G030144_P0

1 

100193027 AP-1 complex subunit gamma-1 31 31.4 cell vesicle transport 

5 Medium 

Sea 

Green 

GRMZM2G122135_P0

2 

103638140 Serine/threonine-protein 

phosphatase 2A 65 kDa regulatory 

subunit A beta isoform 

29 29.4 protein 

posttranslational 

modification 

6 Cyan GRMZM2G058760_P0

1 

542713 Ferredoxin--NADP reductase 7 7.3 OPP electron transfer 

6 Cyan GRMZM2G090338_P0

1 

cl122_1 Sulfite reductase [ferredoxin], 

chloroplastic; Essential protein 

with sulfite reductase activity 

required in assimilatory sulfate 

reduction pathway during both 

primary and secondary metabolism 

and thus involved in development 

and growth 

14 14.3 S-assimilation sulfite 

redox 

7 Dark 

Cyan 

GRMZM2G020446_P0

1 

100273126 Diaminopimelate decarboxylase; 

Uncharacterized protein 

13 13.1.3.5.5 amino acid metabolism 

synthesis aspartate 

family lysine 

diaminopimelate 

decarboxylase 



 

 

 

8
9
 

7 Dark 

Cyan 

AC182617.3_FGP001 100273435 Diaminopimelate epimerase 

chloroplastic 

13 13.1.3.5.4 amino acid metabolism 

synthesis aspartate 

family lysine 

diaminopimelate 

epimerase 

8 Purple GRMZM5G875238_P0

1 

sps1 Sucrose-phosphate synthase; Plays 

a role in photosynthetic sucrose 

synthesis by catalyzing the rate-

limiting step of sucrose 

biosynthesis from UDP-glucose 

and fructose- 6-phosphate. 

Involved in the regulation of 

carbon partitioning in the leaves of 

plants. May regulate the synthesis 

of sucrose and therefore play a 

major role as a limiting factor in 

the export of photoassimilates out 

of the leaf. Plays a role for sucrose 

availability that is essential for 

plant growth and fiber elongation; 

Belongs to the glycosyltransferase 

1 family 

2 2.1.1.1 major CHO 

metabolism synthesis 

sucrose SPS 

8 Purple GRMZM2G122231_P0

1 

gpm600 Trehalose-6-phosphate synthase 3 3.2.3 minor CHO 

metabolism trehalose 

potential TPS/TPP 

9 Pink GRMZM2G053720_P0

1 

pza03240 Proline dehydrogenase; Converts 

proline to delta-1-pyrroline-5-

carboxylate 

13 13.2.2.2 amino acid metabolism 

degradation glutamate 

family proline 

9 Pink GRMZM2G176396_P0

2 

100272740 Proline iminopeptidase 29 29.5 protein degradation 

10 Sandy 

Brown 

GRMZM5G824920_P0

1 

GRMZM5G824

920_P01 

Glucan endo-13-beta-glucosidase 

3; Putative O-Glycosyl hydrolase 

superfamily protein; 

Uncharacterized protein; Belongs 

to the glycosyl hydrolase 17 family 

26 26.4.1 misc beta 1,3 glucan 

hydrolases glucan 

endo-1,3-beta-

glucosidase 
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10 Sandy 

Brown 

GRMZM2G181259_P0

1 

100279291 Glycosyl hydrolase family protein; 

Belongs to the glycosyl hydrolase 3 

family 

10 10.6.1 cell wall degradation 

cellulases and beta -

1,4-glucanases 

11 Brown GRMZM2G053803_P0

2 

pco105010 Acyl-CoA binding protein 11 11.1.13 lipid metabolism FA 

synthesis and FA 

elongation acyl-CoA 

binding protein 

11 Brown GRMZM2G023667_P0

2 

smh3 Glycylpeptide N-

tetradecanoyltransferase; Adds a 

myristoyl group to the N-terminal 

glycine residue of certain cellular 

proteins 

29 29.3.4.99 protein targeting 

secretory pathway 

unspecified 

U
n

co
n

n
ec

te
d

 NA GRMZM2G129451_P0

2 

ss1 Starch synthase, 

chloroplastic/amyloplastic; Starch 

synthase I; Belongs to the 

glycosyltransferase 1 family. 

Bacterial/plant glycogen synthase 

subfamily 

2 2.1.2.2 major CHO 

metabolism synthesis 

starch starch synthase 

U
n

co
n

n
ec

te
d

 NA GRMZM2G013002_P0

1 

expB8 Beta-expansin 1a; Belongs to the 

expansin family 

10 10.7 cell wall modification 

U
n

co
n

n
ec

te
d

 NA GRMZM2G135132_P0

1 

103653801 Adenosine kinase 2 23 23.3.2.1 nucleotide metabolism 

salvage nucleoside 

kinases adenosine 

kinase 

U
n

co
n

n
ec

te
d

 NA GRMZM2G007791_P0

1 

ago2a Argonaute2a; Belongs to the 

argonaute family 

27 27.3.36 RNA regulation of 

transcription 

Argonaute 
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U
n

co
n

n
ec

te
d

 NA GRMZM2G531230_P0

1 

GRMZM2G531

230_P01 

annotation not available 13 13.2.3.1.1 amino acid metabolism 

degradation aspartate 

family asparagine L-

asparaginase 

U
n

co
n

n
ec

te
d

 NA GRMZM2G044629_P0

3 

100279878 UDP-N-acetylglucosamine 

diphosphorylase 2 

10 10.1 cell wall precursor 

synthesis 

U
n

co
n

n
ec

te
d

 NA GRMZM2G082032_P0

1 

GRMZM2G082

032_P01 

Putative isoaspartyl peptidase/L-

asparaginase 2 

13 13.2.3.1.1 amino acid metabolism 

degradation aspartate 

family asparagine L-

asparaginase 

U
n

co
n

n
ec

te
d

 NA GRMZM2G036464_P0

1 

gln5 Glutamine synthetase root isozyme 

4 

12 12.2.2 N-metabolism 

ammonia metabolism 

glutamine synthase 

U
n

co
n

n
ec

te
d

 NA GRMZM5G829778_P0

1 

idh2 Isocitrate dehydrogenase [NADP]; 

Belongs to the isocitrate and 

isopropylmalate dehydrogenases 

family 

8 8.1.4 TCA / org 

transformation TCA 

IDH 

U
n

co
n

n
ec

te
d

 

NA GRMZM2G458549_P0

1 

pco060326 Galactokinase 3 3.8.1 minor CHO 

metabolism galactose 

galactokinases 

U
n

co
n

n

ec
te

d
 NA GRMZM2G146754_P0

1 

100302679 Betaine aldehyde dehydrogenase 2 

mitochondrial 

16 16.4.2 secondary metabolism 

N misc betaine 

U
n

co
n

n
ec

te

d
 

NA GRMZM2G061969_P0

1 

100280155 Phospholipase D; Hydrolyzes 

glycerol-phospholipids at the 

terminal phosphodiesteric bond 

11 11.9.3 lipid metabolism lipid 

degradation 

lysophospholipases 
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U
n

co
n

n
ec

te
d

 

NA GRMZM2G013214_P0

1 

GRMZM2G013

214_P01 

Uncharacterized protein 16 16.4.2 secondary metabolism 

N misc betaine 

U
n

co
n

n
ec

te
d

 NA GRMZM2G098167_P0

1 

100191598 17.4 kDa class III heat shock 

protein; Belongs to the small heat 

shock protein (HSP20) family 

20 20.2.1 stress abiotic heat 

U
n

co
n

n
ec

te
d

 NA GRMZM2G371375_P0

1 

100280469 Embryonic protein DC-8 35 35.2 not assigned unknown 

U
n

co
n

n
ec

te
d

 

NA GRMZM2G147882_P0

3 

100192575 2-oxoglutarate (2OG) and Fe(II)-

dependent oxygenase superfamily 

protein; Iron ion binding protein; 

Uncharacterized protein ; Belongs 

to the iron/ascorbate-dependent 

oxidoreductase family 

17 17.5.1 hormone metabolism 

ethylene synthesis-

degradation 

U
n

co
n

n
ec

te
d

 NA GRMZM2G051943_P0

1 

cta1 Endochitinase A; Defense against 

chitin-containing fungal pathogens; 

Belongs to the glycosyl hydrolase 

19 family. Chitinase class I 

subfamily 

20 20.1 stress biotic 

U
n

co
n

n
ec

te
d

 NA GRMZM2G141473_P0

1 

103644157 annotation not available 17 17.1.1 hormone metabolism 

abscisic acid synthesis-

degradation 

U
n

co
n

n
ec

te
d

 NA GRMZM2G111143_P0

1 

pco087970b Glycosyl hydrolase superfamily 

protein; Belongs to the glycosyl 

hydrolase 17 family 

26 26.4.1 misc beta 1,3 glucan 

hydrolases glucan 

endo-1,3-beta-

glucosidase 
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U
n

co
n

n
ec

te
d

 NA GRMZM2G124550_P0

2 

100285555 annotation not available 29 29.4 protein 

posttranslational 

modification 

U
n

co
n

n
ec

te
d

 NA GRMZM2G052148_P0

1 

rs55622871 annotation not available 29 29.3.1 protein targeting 

nucleus 

U
n

co
n

n
ec

te
d

 NA GRMZM2G045070_P0

1 

GRMZM2G045

070_P01 

Topoisomerase-like protein 35 35.2 not assigned unknown 

U
n

co
n

n
ec

te
d

 NA GRMZM2G057576_P0

1 

GRMZM2G057

576_P01 

Clathrin heavy chain; Clathrin is 

the major protein of the polyhedral 

coat of coated pits and vesicles 

31 31.4 cell vesicle transport 

U
n

co
n

n
ec

te
d

 NA GRMZM2G162426_P0

1 

103639290 Calcium pump3; Belongs to the 

cation transport ATPase (P-type) 

(TC 3.A.3) family 

34 34.21 transport calcium 

U
n

co
n

n
ec

te
d

 

NA GRMZM2G122810_P0

2 

ESMT1 Methyltransferase; Cycloartenol-C-

24-methyltransferase 1; Endosperm 

C-24 sterol methyltransferase; 

Uncharacterized protein; Belongs 

to the class I-like SAM-binding 

methyltransferase superfamily. 

Erg6/SMT family 

17 17.3.1.2.1 hormone metabolism 

brassinosteroid 

synthesis-degradation 

sterols SMT1 
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U
n

co
n

n
ec

te
d

 NA GRMZM2G328893_P0

1 

GRMZM2G328

893_P01 

annotation not available 13 13.1.5.3.1 amino acid metabolism 

synthesis serine-

glycine-cysteine group 

cysteine OASTL 

U
n

co
n

n
ec

te
d

 

NA GRMZM2G574782_P0

1 

IDP388 Probable bifunctional 

methylthioribulose-1-phosphate 

dehydratase/enolase-phosphatase 

E1 Methylthioribulose-1-phosphate 

dehydratase Enolase-phosphatase 

E1; In the C-terminal section; 

belongs to the HAD-like hydrolase 

superfamily. MasA/MtnC family 

3 3.5 minor CHO 

metabolism others 

U
n

co
n

n
ec

te
d

 NA GRMZM2G053299_P0

1 

umc2243 Actin-7; Belongs to the actin 

family 

31 31.1 cell organization 

U
n

co
n

n
ec

te
d

 NA GRMZM2G126453_P0

1 

103652718 AAA-type ATPase family protein 29 29.5.9 protein degradation 

AAA type 

U
n

co
n

n
ec

te
d

 NA GRMZM2G141818_P0

3 

100383316 Argonaute104; Uncharacterized 

protein; Belongs to the argonaute 

family 

27 27.3.36 RNA regulation of 

transcription 

Argonaute 

U
n

co
n

n
ec

te
d

 NA GRMZM5G823484_P0

1 

GRMZM5G823

484_P01 

annotation not available 35 35.2 not assigned unknown 
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U
n

co
n

n
ec

te
d

 NA GRMZM2G177928_P0

1 

GRMZM2G177

928_P01 

Strictosidine synthase; 

Uncharacterized protein 

16 16.4.1 secondary metabolism 

N misc alkaloid-like 

U
n

co
n

n
ec

te
d

 NA GRMZM2G052562_P0

2 

znod1 Zea nodulation homolog1; Alpha-

L-fucosidase 2; Alpha-L-

fucosidase 2 isoform 1; Alpha-L-

fucosidase 2 isoform 2; 

Uncharacterized protein 

26 26.28 misc GDSL-motif 

lipase 

U
n

co
n

n
ec

te
d

 NA GRMZM2G126732_P0

1 

acco20 Uncharacterized protein 17 17.5.1 hormone metabolism 

ethylene synthesis-

degradation 

U
n

co
n

n
ec

te
d

 NA GRMZM2G051677_P0

2 

frk2 Fructokinase-2; May play an 

important role in maintaining the 

flux of carbon towards starch 

formation. May also be involved in 

a sugar- sensing pathway 

2 2.2.1.1 major CHO 

metabolism 

degradation sucrose 

fructokinase 

U
n

co
n

n
ec

te
d

 NA GRMZM2G081886_P0

1 

103645840 annotation not available 13 13.1.5.1.1 amino acid metabolism 

synthesis serine-

glycine-cysteine group 

serine 

phosphoglycerate 

dehydrogenase 

U
n

co
n

n
ec

te
d

 NA GRMZM2G019404_P0

1 

mha2 Plasma membrane ATPase 34 34.1 transport p- and v-

ATPases 



 

 

 

9
6
 

U
n

co
n

n
ec

te
d

 NA GRMZM2G051782_P0

1 

GRMZM2G051

782_P01 

Tubulin alpha chain 31 31.1 cell organization 
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Table S2.6 (a) Summary of gene expression variation analysis using Student T-test. Gene 

and Tag SNP/locus from GWAS, chromosome number (Chr), position, alleles, p-values 

from Student T-test and adjusted p-values (FDR) were summarized. 18 gene expression 

variation were significant at adjusted p-values < 0.05 out of 80 tests performed. (b) 

Pearson correlation analysis between normalized gene expression and corresponding 

GWAS trait. Bold letters indicate that expression level of 4 genes out of 18 are 

significantly correlated with the PBAA levels and hence are the candidates for eQTL. 

 

(a)

Gene Annotation

Corresponding 

Tag SNP from 

GWAS

Chr Position Allele P.value FDR

GRMZM5G823484 exocyst complex component 5 ss196445606 3 99274528 A/G 2.44E-09 5.74E-08

GRMZM2G126732 ACC oxidase20 S4_177597637 4 177597637 T/A 4.51E-06 0.0001084

GRMZM2G138727
Glutelin-2 Precursor (Zein-

gamma)(27 kDa zein)
ss196479450 7 120236783 A/G 1.15E-05 0.0001798

GRMZM2G058760 Ferredoxin--NADP reductase S1_285140826 1 285140826 G/C 4.34E-05 0.0005206

GRMZM2G177928 strictosidine synthase S1_276683281 1 276683281 G/T 3.82E-05 0.0005206

GRMZM2G007791 protein argonaute 2 ss196433591 2 9984374 A/C 6.85E-05 0.000644

GRMZM2G456086 ribose-5-phosphate isomerase ss196522048 7 9335049 A/G 6.00E-05 0.000644

GRMZM5G875238 Sucrose-phosphate synthase S8_161897525 8 161897525 A/G 9.21E-05 0.0008035

GRMZM2G360681 heat-shock protein 101 S6_160624540 6 160624540 T/A 0.0001004 0.0008035

GRMZM2G531230
Putative isoaspartyl 

peptidase/L-asparaginase 2
S2_4988770 2 4988770 T/A 0.0024312 0.0122428

GRMZM2G122810 sterol methyltransferase1 S7_18139554 7 18139554 C/A 0.0023762 0.0122428

GRMZM2G181259
Glycosyl hydrolase family 

protein
S6_148954189 6 148954189 A/C 0.0029763 0.0122428

GRMZM2G019404
plasma-membrane 

H+ATPase2
S2_4291700 2 4291700 G/A 0.0027085 0.0122428

GRMZM2G371375 embryonic protein DC-8 S2_10778250 2 10778250 C/T 0.0061292 0.0226309

GRMZM2G090338
Sulfite reductase [ferredoxin], 

chloroplastic;
S6_157019045 6 157019045 G/C 0.0077057 0.0264195

GRMZM2G052148
nucleoporin interacting 

component
ss196424255 1 59588968 A/G 0.0071034 0.0417326

GRMZM2G125300
40S ribosomal subunit protein 

S21
ss196510015 5 1526576 A/G 0.0094171 0.0442606

GRMZM5G829778
Isocitrate dehydrogenase 

[NADP]
ss196524643 6 165506601 A/C 0.0086912 0.0442606

Significant Gene expression variation due to the GWAS tag SNP polymorphism 
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(b)

Gene Trait

GRMZM5G823484 M/K

GRMZM2G126732 H/Z

GRMZM2G138727

H/M, H/Z, Z/ZHPR, 

H/TOTAL, L/IVL, V/A, 

V/LAV, V/TOTAL

GRMZM2G058760 H/Z, H/ZHPR, H/TOTAL

GRMZM2G177928 M/IMTXK, M, M/TOTAL

GRMZM2G007791 M

GRMZM2G456086 H/ZHPR

GRMZM5G875238 V/IVL

GRMZM2G360681 V/A

GRMZM2G531230 H/Z

GRMZM2G122810 H/Z

GRMZM2G181259 V/A

GRMZM2G019404 A/X

GRMZM2G371375 M/K

GRMZM2G090338 L/V, V/LAV

GRMZM2G052148 H/X

GRMZM2G125300 M/TOTAL

GRMZM5G829778 X

Correlation coefficient ®

0.1986084, 0.4979167, -0.474152, 0.3888341, -

0.2535665, -0.3826112,  -0.3321514, 

0.3244373

(-0.1747104), -0.1392256, -0.1943974

0.6827

0.3988

0.06792, 0.1469,  

0.04185

P-value

Correaltion between GWAS candidate gene expression and the trait variation

0.005145, 9.737e-14, 

1.949e-12, 1.637e-08, 

0.0003358, 2.88e-08, 

1.974e-06, 3.301e-06

-0.01657203

-0.1473831

-2.98E-02

-6.17E-02

-8.25E-02

6.22E-02

-6.46E-02

6.61E-03

0.1012778

(-0.06727557), 0.01722733,  -0.06246337

-6.77E-02

3.64E-02

0.1349378

(-0.0274067 )

0.404, 0.831 , 0.4385

0.1323089, 0.1524204

0.323

0.6037

3.68E-02

0.4248

0.4398

0.9499

0.1737

0.08733, 0.04857

0.352

0.6075

0.1068

0.7037

0.2552

-7.11E-02
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CHAPTER 3: UNCOVERING THE GENETIC ARCHITECTURE OF FAA IN 

MAIZE KERNELS USING MULTI-OMICS INTEGRATION. 

Abstract 

Amino acids are the primary metabolites essential for protein synthesis and 

precursors for biosynthesis of numerous important compounds. The free amino acid 

(FAA) pool in seeds contributes to seed vigor, alternative energy source and contributes 

to seed desiccation and hence, its manipulation can potentially improve the nutritional 

status of crop. While genome wide association studies (GWAS) on FAAs have identified 

several regulatory genes mainly in Arabidopsis, the genetic regulation of seed FAA 

levels, composition, and biochemical regulation in maize kernels remains mostly 

unsolved. Hence, in this study, I first performed GWAS of FAAs as absolute levels, 

relative composition, and biochemical ratios that I measured from dry kernels of the 282-

association panel and extracted a first list of candidate genes. Second, I performed an 

association analysis between proteomic expression data and the FAA biochemical traits I 

quantified from a developmental series of kernels from the inbred line B73 and similarly 

extracted a second list of candidate genes. Comparing the two candidate gene lists 

revealed 120 key candidate genes that were both strongly associated with seed FAA 

composition during maturation as well as involved in the natural variation of these traits 

in dry kernels. Functional analysis of these genes demonstrated a comprehensive genetic 

architecture of seed FAAs in maize that revealed several biological processes such as 

protein metabolism that includes translational machinery especially ribosomal proteins 

(RPs), amino acid metabolism, RNA transcription, sulfur assimilation, cell vesical 

transport, and TCA cycle. Understanding the coordinated working mechanisms of these 
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biological process in a system level would be beneficial to engineer the amino acids in 

seeds. 

1. Introduction 

Amino acids are primary metabolites that play a central role in plant growth and 

development as well as in providing key nutrients to humans and livestock. Out of the 

total amino acid pool, the free amino acid (FAA) pool contributes 1-10% in maize seeds 

(Amir et al., 2018; Muehlbauer et al., 1994). Despite their low levels in seeds, FAA are 

functionally diverse and essential for maintaining the overall seed development and seed 

amino acid homeostasis. In addition to being the building blocks of protein synthesis, 

FAA also serve as precursors of primary and secondary metabolites, which include 

organic acids, osmolytes, phytohormones, and secondary metabolites and can be utilized 

as an alternative source of accessible energy (Amir et al., 2018; Angelovici et al., 2011; 

G. Galili & Hofgen, 2002).  The FAA pool in dry seeds has also been reported to ensure 

proper desiccation, longevity, germination, and seed vigor (Angelovici et al., 2011; Gad 

Galili, Avin-Wittenberg, Angelovici, & Fernie, 2014). Hence, due to their multi-faceted 

roles, the genetic regulation and the homeostasis of the FAA pool is complex, and more 

studies are needed to fully understand their genetic architecture and homeostasis, 

especially in seeds. 

Despite the low proportion of the FAA pool in seeds, their manipulation can 

potentially improve the nutritional status of crop (Amir et al., 2018; Gad Galili & Amir, 

2013). Several studies focused on increasing FAA to achieved seed amino acid 

biofortification have demonstrated that FAA are highly interconnected and perturbation 

of a single gene in the amino acid metabolic pathway can often lead to changes in the 
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entire amino acid metabolic network, along with adverse effects on agronomic and yield 

attributing traits (Dizigan et al., 2007; Gu et al., 2010). Hence, understanding more of the 

underlying genetic basis of the FAA metabolism and how they are intertwined with 

essential cellular processes in plants will facilitate manipulation of FAAs in seeds without 

strong deleterious and pleiotropic effects on the entire system. 

Like other metabolic traits, FAA are complex metabolic traits and have shown 

extensive variability and high heritability across natural populations. Genome-wide 

association study (GWAS) have been used to uncover metabolic QTLs (mQTL) that 

underlie the natural variation of numerous metabolic traits (Angelovici et al., 2013; Deng 

et al., 2017; Slaten, Yobi, et al., 2020a; S. Wu et al., 2016), and has contributed to the 

identification of key regulatory genes or targets for maker assisted selection (MAS) for 

breeding. For instance, Angelovici et al. (2013) performed GWAS on branched chain 

amino acid levels in Arabidopsis seeds using 360 ecotypes. The authors found a strong 

association of BCAA with branched chain amino acid transferases: BCAT1 and BCAT2. 

Using linkage analysis and reverse genetic approaches, the authors found that the allelic 

variation of BCAT2 is responsible for the natural variation of seed BCAAs as well as free 

amino acid homeostasis in seeds (Angelovici et al., 2013). A recent study by Slaten et al 

(2020a) on FarmCPU GWAS on free glutamine (Gln) related traits in Arabidopsis seed 

identified several candidate genes and using molecular validation.  The authors found an 

unexpected association between the aliphatic glucosinolates and Gln related traits, which 

indicates that FAA could be controlled by some secondary metabolites (Slaten, Yobi, et 

al., 2020a). While GWAS on FAAs have identified several regulatory genes mainly in 
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Arabidopsis, the GWAS study on regulation of seed FAA levels, composition, and 

biochemical regulation in Maize kernels is still far from being fully understood.  

Although GWAS is widely used to dissect the genetic architecture of complex 

traits, one major limitation of using multiple traits GWAS is that the candidate gene list 

could be extensive. Previous studies indicated that an integrative multi-omics approach 

that combines GWAS and co-expression networks can help overcome this challenge and 

help whittle down the candidate gene list and identify of novel key regulatory genes that 

are involved in shaping the natural variation of the phenotype of interest (Qi et al., 2018; 

Schaefer et al., 2018; S. Wu et al., 2016). 

Hence, in this study, I first performed GWAS studies of FAA absolute, relative 

composition, and biochemical ratios that I measured from mature, dry kernels of the 282-

association panel. This analysis enabled the extraction of a candidate gene list. Second, I 

performed a weighted protein correlation network analysis between proteomic expression 

data and the FAA biochemical traits I quantified from a developmental series of a B73 

line. This analysis enabled the extraction of a second candidate gene list. Comparing the 

candidate gene lists from the two approaches revealed 120 key candidate genes/proteins 

that were both strongly associated with seed FAA composition during maturation as well 

as involved in the natural variation of these traits in mature kernels. Functional analysis 

of these genes demonstrated that several biological processes such as protein metabolism 

that includes translational machinery especially RPs, amino acid metabolism, RNA 

transcription, sulfur assimilation, cell vesical transport, and TCA cycle are involved in 

shaping FAA composition in seeds. These results provide a comprehensive genetic 
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architecture of seed FAAs in maize and how these processes work in coordination to 

regulate FAA homeostasis in seeds. 

2. Materials and Methods 

2.1 Germplasm and GWAS Field Trial 

I used the Goodman-Buckler maize association panel that consists of 282 diverse 

maize lines including tropical and sub-tropical, temperate, sweetcorn and popcorn lines 

(Flint‐Garcia et al., 2005). This inbred panel was grown in the summers of 2017 and 2018 

each with two replications each year, using a randomized complete block design at 

Genetics Farm, near Columbia, MO. Thirteen kernels per inbred line were grown in a 3 m 

row and each plant was self-pollinated to avoid any cross contamination. All the 

pollinated ears within a row were harvested at maturity and husk leaves were removed. 

The resulting ears were dried, shelled, and bulked to form a representative composite 

grain sample for each inbred line. Twenty-five random seeds from each inbred bulked 

sample were ground into fine powder for FAA quantification.  

2.2 FAA quantification 

To characterize the seed FAAs, freeze-dried seed tissue was ground to a fine 

powder and 7-8 mg were weighed, extracted, and analyzed for FAA quantification using 

UPLC-MS/MS (Waters Corporation, Milford, MA, USA) as described in (Angelovici et 

al., 2013). This method allowed us to accurately quantify all 20 proteogenic amino acids 

(FAA). 
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2.3 Phenotypic data analysis and GWAS 

I evaluated a total of 109 FAAs traits - absolute, relative composition, and 

biochemical traits. All the traits were treated independently. Metabolic ratio traits were 

derived prior to the calculation of BLUPs to minimize noise.  For each trait, outlier 

removal, optimal transformation, and BLUP calculation were performed as described in 

(Slaten, Chan, et al., 2020). Variance component estimates from mixed linear model 

where taxa, replication, and year were fitted as random effects were used to estimate the 

broad sense heritability on a line mean basis as described in Holland et al. (2003).  

The association panel was previously genotyped with the Illumina MaizeSNP50 

BeadChip (Cook et al., 2012) as well as with a genotyping-by-sequencing (GBS) method 

(Elshire et al., 2011) as described in Lipka et al. (2013). SNPs were filtered using minor 

allele frequency greater than 0.05 and a total of 407,120 SNPs were used for performing 

the GWAS analysis. I used GAPIT (Lipka et al., 2012) mixed linear model (MLM) and 

FarmCPU model (X. Liu et al., 2016) to conduct univariate GWAS. False discovery rate 

(FDR) (Benjamini & Hochberg, 1995) was used to correct the multiple hypothesis testing 

problem at 5%. A candidate gene list was obtained using 200 kb window size (100 kb on 

either side) of the significant SNPs. The physical locations and annotations of the genes 

were based on Maize AGP_V2; http://ftp.maizesequence.org/release-5b/filtered-set/ . 

2.4 Gene functional categorization using MapMan 

MapMan version 3.6 (Lohse et al., 2014) was used to assess the functional 

categorization of the candidate genes from GWAS. GWAS candidate genes were mapped 

to corresponding bins using the Zea mays mapping database 

http://ftp.maizesequence.org/release-5b/filtered-set/
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Zm_B73_5b_FGS_cds_2012.m02 obtained from 

https://mapman.gabipd.org/mapmanstore. A total of 35 functional gene categories were in 

the mapping database. 

2.5 FAA and seed proteome quantification of B73 across ten seed filling stages  

The B73 inbred line was grown in the summer of 2018 at Genetics Farm, near 

Columbia, MO. Samples from 10 different seed filling stages were collected starting at 

10 days after pollination (DAP) and continued to sample every four days interval until 46 

DAP. The 10 time points collected were 10, 14, 18, 22, 26, 30, 34, 38, 42 and 46 DAP. 

Three biological replicates were collected from each seed developmental stage. The 

whole ear from each sample was harvested and frozen into liquid nitrogen and 15 

randomly chosen developing seeds were collected and stored immediately in liquid 

nitrogen. The seeds were then lyophilized for 5 days and then ground using a Perten 

Laboratory Mill 3310. These samples were then used for FAA quantification as detailed 

in Angelovici et al. (2013). 

2.6 Proteomic analysis  

Protein extraction was performed based on the Hurkman & Tanaka (1986) 

method as described in Yobi et al. (2020). Briefly, 5 mg fine powder were weighed and 

extracted with Tris-HCl buffered phenol and an SDS extraction buffer. After trypsin 

digest and purification, the peptides were analyzed on a Bruker timsTOF PRO using the 

PASEF (1) method.  The acquired data were submitted to the PEAKS DB search engine 

(version 8.5, Bioinformatics Solutions Inc.) for peak picking and protein identification 

using the MaizeGDB database (Lawrence et al., 2004).  Proteins were retained for 

analysis when their spectral counts were ≥ 4. 

https://mapman.gabipd.org/mapmanstore
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2.7 WGCNA analysis 

I performed the weighted protein correlation network analysis (WGCNA) 

(Langfelder & Horvath, 2007) using the R package WGCNA (Langfelder & Horvath, 

2008). I chose the soft threshold power β=12 to construct the co-expression network as 

the R2 reached around 80% ensuring the network was close to the scale-free network. I 

used Pearson correlation to construct the co-expression network. I also constructed 

protein modules, which is a cluster of densely interconnected proteins with respect to co-

expression. In order to construct protein modules from each network, I first used the 

topological overlap matrix derived from the resulting adjacency matrix. I then converted 

the topological overlap matrix into a dissimilarity measure by subtracting it from 1 as 

described in Dong & Horvath (2007) . Hence, the dissimilarity topological overlap 

measure was then used as input for the average linkage hierarchical clustering to create a 

dendrogram (clustering tree or modules). I use blockwiseModules function and the 

dynamic tree cut algorithm (Langfelder et al., 2007) with a height of 0.20 and a minimum 

module size of 30. Modules are defined as the branches of the dendrogram. Each module 

of a particular network is assigned to a unique color (e.g. turquoise, black, blue, etc.).  

2.8 GO enrichment analysis 

GO enrichment analysis was performed using AgriGO_V2 (Tian et al., 2017). 

The following parameters were used to determine the GO biological process, cellular 

component, and molecular function terms that were overrepresented (p<0.05); a 

hypergeometric test with a 5% FDR correction, a custom reference that consist of 2648 

proteins detected in my proteomics study, Zea mays as the select organism, and GO full 

plant ontologies. 
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2.9 Protein-protein interaction (PPI) of 80 HCCG using STRING analysis 

I constructed and visualized the PPI network associated with 120 HCCG using the 

Search Tool for the Retrieval of Interacting Genes/Proteins database STRING (STRING 

V11.0) (Szklarczyk et al., 2019). Active interaction sources including high-throughput 

lab experiments, gene coexpression as well as the previous knowledge in curated 

databases specific to species “Zea mays” were used to construct the PPI network both at 

medium confidence level > 0.4 and high confidence level > 0.7 (Szklarczyk et al., 2019). 

To further investigate the strong interaction among the nodes, I performed the clustering 

of the PPI network using MCL clustering algorithm within STRING (Szklarczyk et al., 

2019). 

3. Results 

3.1 Both FAAs absolute and relative composition demonstrate high natural 

variation but only the abs levels show strong correlations  

To evaluate the phenotypic variation of FAA absolute and relative composition, 

20 proteogenic amino acids were quantified using water based extraction method and LC-

MS/MS detection and quantification as described in Angelovici et al. (2013) 

(Supplemental Data S3.1) from 279 inbred lines of Goodman Buckler association panel 

(Flint‐Garcia et al., 2005). Two replicates of this panel were grown in two years (2017, 

2018). Relative composition traits were defined as the ratio of an individual amino acid to 

the sum of the 20 measured amino acids (e.g., Ala/Total).   

My result demonstrated that there is an extensive natural variation in FAA both at 

the absolute levels and relative composition (Table S3.1a, b and Figure 3.1a, b). My 

data show that Pro, Asn, Glu, and Asp were the four most abundant FAAs in their 
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absolute levels and relative composition, whereas Ile, Trp, Met, and Cys were the four 

least abundant FAAs in both absolute level and relative composition ( Figure 3.1a, b, 

Table S3.1a, b).  In general, the broad sense heritability of the FAA absolute traits was 

high, with the exception of Met and Thr that showed low heritability (0.48 and 0.42 

respectively) (Table S3.1a). The majority of the FAA relative composition also have 

high heritability with the exception of Cys/Total, Gly/Total and Thr/Total  that showed 

moderate to low heritability (0.58, 0.04, and 0.11 respectively) (Table S3.1b).   

Interestingly, the relative composition broad sense heritability of Met/Total  was 

substantially higher than its absolute level (0.94).   

I performed Pearson correlation analysis to evaluate the relationship among the 

FAA absolute levels and relative composition. For absolute FAA absolute levels, all the 

pairwise correlations were significant at a qFDR-values <0.05 and were exclusively 

positive (Figure 3.1c, Table S3.2a, b). The strongest correlation was between Ile and 

Leu as well as between Ile and Val (r = 0.88), whereas the weakest correlation was 

between Asn and Pro (r = 0.18) (Figure 3.1c, Table S3.2a). Notably, Asn demonstrated 

relatively larger number of weaker pairwise correlations with the other FAAs (Figure 

3.1c, Table S3.2a). The pairwise correlation analysis of the FAA relative composition 

showed a very different pattern and consists of both positive and negative correlations 

and many of the correlations were not significant (Figure 3.1d, Table S3.2c, d). The 

strongest positive correlation was found to be between the Ile/Total and Val/Total (r = 

0.82) whereas the strongest negative correlation was found between Asn/Total and 

Pro/Total (r = -0.60) as well as between Asn/Total and Thr/Total (r = -0.60) (Figure 

3.1d, Table S3.2c). In general, only few FAA relative composition had multiple 
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significant moderate to strong correlations. These amino acids included Asn, Pro, Ala, 

Val, and Tyr, which exhibit high, moderate, and low abundance. Interestingly, Asn/Total 

showed the most significant negative correlations to all other FAAs. In general, my 

results demonstrated that both FAA and their relative composition demonstrate extensive 

natural variation, but while the absolute FAAs are strongly and positively correlate with 

each other, their relative composition exhibit a different pattern.   

3.2 Functional analysis of my genome wide association study candidate gene list 

reveals four key functional categories  

A total of 109 FAAs GWAS were performed using both FarmCPU (X. Liu et al., 

2016) and GAPIT MLM models (Lipka et al., 2013). My SNP datasets included both 

Illumina MaizeSNP50 BeadChip (Cook et al., 2012) and GBS (Elshire et al., 2011) as 

described in (Lipka et al., 2013). SNPs were filtered using minor allele frequency greater 

than 0.05 and a total of 422,161 SNPs were used in my analysis. Results from the MLM 

model were not significant therefore the results presented are from FarmCPU model.  

This model proved to successfully uncover key genes underlying FAA related traits in 

Arabidopsis (Slaten, Yobi, et al., 2020a). I conducted a comprehensive GWAS by using 

absolute FAA levels (nmole/mg), relative composition and biochemical metabolic ratios; 

relative composition of each trait represented as the ratio of each FAA to the total sum of 

the FAA measures (i.e. Ala/Total) and metabolic ratios that are based on the potential 

relationship within each amino acid metabolic family (i.e. Val/ (Ile+Leu+Val= the BCAA 

family pathway)) (Table S3.3). A similar use of amino acid derived traits in GWAS was 

previously used and described in Angelovici et al., (2016) and Deng et al. (2017). For 

brevity from this point forward, we will use the one letter code to describe the FAA 
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biochemical ratio traits; for example, the ratio above will be V/ILV. All the abbreviations 

of the FAA can be found in (Table S3.3).    

My analysis revealed 78 traits (out of 109) with significant  SNP-trait associations 

at 5% FDR correction (Benjamini & Hochberg, 1995) and a total of 549 unique (non-

redundant) SNPs were found (Table 3.1, Supplemental Data S3.2). A visualization of 

the distribution of the significant SNP-trait associations using a 1 Mb window span 

showed several potential hotspots on chromosomes 1, 2, 4, 5, 6, 8, and 9 (Figure S3.1a). 

The partition of the 526 unique SNPs across the ten maize chromosomes is shown in 

Figure 3.2a and the FAA trait categorical summary of the GWAS results by amino acids 

family is summarized in Table 3.1. The highest number of SNP-trait associations was for 

the Aspartate family related traits (31%) and the lowest was for the Serine related traits 

(1%) (Table 3.1). The highest number of candidate genes was also from Aspartate family 

related traits (32%) followed by FAA absolute levels (23%) and the lowest one was from 

the Serine (1%) (Table 3.1).  

I extracted 2779 unique candidate genes from 200kb intervals centered around the 

significant SNPs identified for all the 78 significant traits (out of 109) used for my 

GWAS (100kb up and 100kb downstream) (Supplemental Data S3.2) as was described 

in previous studies and to compensate for a low marker coverage (Ching et al., 2002; 

Flint-Garcia et al., 2003; J. Yan et al., 2009). A previous GWAS study on maize protein 

bound amino acids by Deng et. al (2017) has also used 100Kb up and downstream from 

the peak SNP to extract the candidate gene list The gene name, gene frequency, gene start 

and stop position and their annotations are provided (Supplemental Data S3.2).  The top 

three highly frequent genes identified were GRMZM2G427672 (RNA-binding KH 
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domain-containing protein), repeated 8 times across the FAA traits, some traits are 

duplicated with different SNPs (M/I, T/M, A, F, V, A, D, and T); GRMZM2G138097 

(hypothetical protein LOC100278893), repeated 7 times (R, E/R, R/E, R/EHPRQ, R, E/R 

and K); and GRMZM2G178460 (Putative envelope ADPATP carrier protein 

chloroplastic), repeated 7 times across the FAA traits (E/R, R/E, R/EHPRQ, R, E/R, K 

and R) (Supplemental Data S3.2). Also, the three most significant genes identified 

based on the lowest p-values are GRMZM2G164352 (pvalue 2.23E-16) associated with 

Met; GRMZM2G386095 (pvalue 2.23E-16) also associated with Met and 

GRMZM2G178182 (pvalue 2.23E-15)  associated with Tyr (Supplemental Data S3.2). 

I further tested whether any specific biological process or pathway were enriched 

in the 2779 candidate genes, I performed an enrichment analysis using both AgriGO 

(Tian et al., 2017) and STRING analyses (Szklarczyk et al., 2019), but no enrichments 

were found. Hence, to assess the functional categorization of the candidate genes, I used 

MapMan version3.6 (Lohse et al., 2014).  The resulting proportion of genes assigned to 

the respective functional bins is visualized using pie chart (Figure 3.2b). The results 

showed that protein, RNA, signaling, and transport had the highest contributions with 

11.9%, 11.2%, 5.3%, and 3.71 respectively. (Figure 3.2b). Overall, my results suggest 

the FAA genetic architecture may be dominated by these four functional categories. 

3.3 Individual FAA absolute levels overall decreases during kernel maturation while 

its relative composition showed mixed trends. 

I set up an orthogonal experiment where I collected FAA and proteomic data from 

10 different seed filling stages of inbred line B73 with a rationale to compare these 

results with my previous GWAS results to generate a high confidence candidate gene list 
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that is involved in seed FAA regulation and homeostasis. I collected 15 developing seeds 

from maize ear with three biological replicates from 10 time-points. Collection of 

samples was done every 4 days starting at 10 days after pollination (DAP) through 

desiccation (46 DAP-dry kernels). I started my sampling at 10 DAP since it is the stage 

when the seeds begin to accumulate storage compounds, especially the SSPs (Larkins, 

2017; Prioul et al., 2008).  

Next, I quantified the FAA levels and relative composition in each sample in the 

same manner described above (Supplemental Data S3.3). Hierarchical clustering was 

used to cluster the trends of FAA accumulation of both absolute levels and relative 

composition across the 10 seed developmental stages (Figure 3.3a-d). There are three 

observed patterns of FAA absolute levels (nmol/mg) (Figure 3.3a, b). Interestingly, all 

FAA levels (nmol per mg seed) had an initial drop from 10 days to 18 DAP. However, 

the FAAs in cluster I (Gly, Cys, Met, and Trp) displayed a slight increase from 18 DAP 

up to 26 DAP and then decreased gradually for the most parts from that point on, while in 

cluster II (Asn, Arg, Pro, Asp and Gln), the levels plummeted from 10 DAP to 18 DAP 

and then decreased gradually until maturity. Similarly, Cluster III (Lys, Thr, Ile, Leu, 

Val, His, Tyr, Glu, Phe, Ala and Ser) levels showed a sharp decline from 10 to 18 DAP 

but then remain stable until 26 DAP before declining again to the lowest levels at 46 

DAP (Figure 3.3a, b). Nevertheless, since seed weights and density changes across 

development, the FAA relative composition dynamics is more biologically relevant and is 

more representative of the metabolic alteration in the seed. Indeed, when I analyzed the 

pattern of accumulation of the FAA relative composition, I detected different clustering 

and patterns. The trends of FAA relative composition indicated that Gly relative 
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composition was unique as it increased gradually to peak at 34 DAP before decreasing 

slowly towards the end of seed desiccation (Cluster I), while the relative composition of 

Ala, Ile, and Met increased towards the 38 and 42 DAP and decreased later on (Cluster 

II). Interestingly, the majority of FAA relative composition (i.e., Trp, Asn, Cys, Tyr, Phe, 

His, Pro, Leu, Arg, and Lys) showed mixed trends until 26 DAP and then showed very 

sharp increase from 34 DAP to 42 DAP before decreasing slightly at the end of seed 

desiccation (Cluster III), while Asp and Gln showed highest abundance at 10 DAP 

followed by a decrease (Cluster IV). The relative composition of Thr, Val, Glu, and Ser 

showed mixed patterns with first peak at 18 DAP, then a decrease at low levels till 34 

DAP, and an increase again till 42 DAP followed by a slight decrease at desiccation 

(Cluster V) (Figure 3.3c, d).  

3.4 WGCNA reveals strong associations between specific protein co-expression 

modules and FAA relative composition.  

  I analyzed protein expression levels from ten seed filling time points using a 

shotgun proteomic approach (see Material and Methods). The analysis altogether 

identified 6361 proteins. Proteins with low spectral count and poor reproducibility were 

removed (see material and Methods) leaving 2648 good quality proteins (Supplemental 

Data S2.4). Weighted gene co-expression network analysis (WGCNA) (Langfelder & 

Horvath, 2008) was performed on the filtered proteins and an undirected and weighted 

protein co-expression network was constructed using optimum soft threshold (Figure 

S2.2).  

Altogether, the 2648 proteins were assigned to 8 distinct modules: blue, turquoise, 

brown, green, yellow, black, red and grey (Figure 3.4a). The list of proteins found in 
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each module and their respective annotations can be found in (Supplemental Data S2.5). 

I found that the turquoise module consists of highest number of proteins (853 proteins) 

followed by grey (805), blue (356), brown (201), yellow (190) , green (107), red (70) and 

black (66) (Figure 3.4a; Supplemental Data S2.5).  Visualization of the expression 

pattern of eigen proteins of a particular module indicated that the blue and turquoise 

module proteins generally decreased towards the maturity. However, while in the blue 

module, I observed a sharp decrease from 10 DAP till 18 DAP followed by a gradual 

decrease, in the turquoise module, I observed a gradual decrease from 18 DAP (Figure 

3.4b). Proteins in brown modules increased gradually towards the maturity and then 

maintained constant levels, whereas in the green modules, the proteins showed a large 

increase during late maturation. Proteins in the yellow module peaked in 18 DAP and for 

the most part reduced thereafter; proteins in black modules increased to peak at 30 DAP 

followed by a slight reduction close to the maturity; proteins in red modules had their 

main expression peak at 26 DAP, which then decreased during maturity, while proteins in 

grey modules had mixed patterns of increase and decrease of expression throughout seed 

development (Figure 3.4b). 

To identify genes that are highly associated with the dynamics of FAA, the 

Eigengene-based module connectivity or module membership (kME) for a particular 

protein within a given modules was calculated. The full list of proteins and their kME 

within a respective module can be found in Supplemental Data S2.5. 

However, my main focus was to further reveal functional relationships between 

the seed FAA relative composition with the protein expression pattern across the seed 

developmental stages. Unlike PBAA relative composition, the correlation of FAA 
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composition traits with protein modules appears to be vague and difficult to interpret 

(Figure 3.4a); I therefore used both FAA absolute and relative composition traits to 

correlate with protein co-expressed modules. I used WGCNA to perform a correlation 

between the absolute and relative FAAs composition traits with the protein expression 

modules. To create modules-FAA association, module Eigen protein (ME), the first 

principal component of a given module was calculated. The correlations between MEs of 

each module and the FAA composition traits are shown in Figure 3.4a.  The five 

modules (the blue, turquoise, brown, green, and black) demonstrated significant 

correlations (r = ~ 0.7-0.94) with multiple FAA absolute and compositional traits. The 

grey, yellow, and red modules have relatively low correlations with the FAA relative 

composition traits and so they are excluded from my downstream analysis (Figure 3.4a). 

Hence, I limited my further analysis to those five modules: the blue, turquoise, brown, 

green, and black modules.  

GO enrichment analysis of the proteins identified from five modules in WGCNA 

were carried out using AgriGO_V2 (Tian et al., 2017). Enrichment for the blue, 

turquoise, brown, and black module proteins can be found in Table S2.4. I did not find 

enrichment with the proteins from the green modules. Interestingly, I found enrichments 

specific to modules. For examples, the blue module was enriched with nucleoside 

metabolic process; the turquoise module was enriched with translation and protein 

metabolic process; the brown module was enriched with response to light intensity and 

several stress; the and black module was enriched with carbohydrate and branched chain 

amino acid metabolic process (Table S2.4). Hence, altogether I have a list of 1583 

candidate proteins from the five WGCNA modules that have high correlation with 
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relative FAA compositional traits. The 1583 candidate proteins were later converted into 

their respective gene ID and used as orthogonal gene list to compare with previous 

GWAS candidate gene list to prioritize the high confidence candidate gene list. 

3.5 Intersecting the GWAS and WGCNA candidate gene lists revealed 120 High 

confidence candidate genes. 

My underlying assumption for the integration of my two omics approaches was 

that the genes that appear in both GWAS and WGCNA analyses are genes that do not 

randomly overlap, and therefore are key regulatory genes. Hence, I compiled a high 

confidence candidate gene list by intersecting genes that were highly associated with our 

traits in both approaches. The overlap between the two analyses resulted into 120 genes 

(Figure 3.5), referred from here on as high confidence candidate genes (HCCG) (Table 

S3.4).  

3.6 STRING analysis of 120 HCCG reveals complex genetic architecture of FAAs. 

I constructed and visualized the PPI network associated with 120 HCCG using the 

Search Tool for the Retrieval of Interacting Genes/Proteins database (STRING V11.0) 

(Szklarczyk et al., 2019). STRING integrates both known and predicted PPIs, which can 

be applied to predict functional interactions of proteins.  

The PPI network generated by STRING consists of 120 nodes (53 connected and 67 

unconnected-not shown in figure) and 124 edges, with an average node degree of 2.07 

(Figure 3.6a). Each node represents the HCCG and the edges represent the interaction 

between them. The number of edges is significantly larger (p-value 1.25e-05) than the 

expected for random network of the same size. To investigate the strong interaction 

among the nodes, I performed the clustering of the PPI network using MCL clustering 
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algorithm in STRING, which results in 9 clusters (Figure 3.6a). The genes and the 

clusters are summarized in Table S3.4.  I used MapMan version 3.6 (Lohse et al., 2014) 

to assess the functional categorization of the 9 clusters (Figure 3.6a, b and Table S3.4). 

MapMan functional categorization shows many major biological processes that includes 

cluster 1 genes (red) categorized as protein synthesis, RNA transcription, and transport; 

cluster 2 (sandy brown) as TCA and lipid metabolism; cluster 3 (brown) as protein 

degradation (proteasome); cluster 4 (green yellow) as CHO metabolism; cluster 5 (green) 

as protein post translational modification (PPTM); cluster 6 (cyan) as cell wall related 

proteins; cluster 7 (dark cyan) as sulfur assimilation; cluster 8 (cornflower blue) as amino 

acid metabolism; and cluster 9 (pink) as cell vesical transport (Figure 3.6a, b and Table 

S3.4) which indicates that the FAAs are complex traits and these interconnected gene and 

gene clusters regularly coordinated to maintain the FAAs homoeostasis in the maize 

kernels.  

4. Discussion 

The FAAs are important for multiple biological processes including seed 

germination, desiccation, longevity, and nutrition. Several studies have shown that the 

manipulation of specific FAAs can have a pleiotropic, systemwide effect on overall 

growth and germination indicating that their metabolism and regulation is intertwined 

with other key biological and metabolic processes in the seeds (Amir et al., 2018; Gad 

Galili & Amir, 2013). A fundamental understanding of the genetic and metabolic bases of 

seed FAA composition in crops in general and in maize specifically is essential for the 

development of effective strategies for seed amino acid biofortification. In this study, I 

show that using a multi-omics integration approach that utilizes both the genetic basis of 
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FAA natural variation and their association with proteome dynamics during seed 

development and maturation identified several biological process which play a key role in 

seed FAA regulation: RNA transcription, protein metabolism and transport, amino acids 

metabolism, TCA cycle and carbohydrate metabolism,. 

4.1 Genome wide association studies revealed proteins and RNA metabolism as 

major functional categories in the resulting candidate gene list. 

Seed FAAs are complex traits which display natural variation across natural and 

artificial populations in maize as well as in other crops (Angelovici et al., 2016; Slaten, 

Yobi, et al., 2020b). My study shows that both absolute levels (nmol/mg) and relative 

composition (FAA/TFAA) express significant natural variation (Figure 3.1a, b). A 

correlation analysis of both traits across the association panel showed that, despite a 

strong and significant positive correlation between the FAA absolute levels, only a 

handful of relative FAA composition were significant and showed both positive and 

negative correlations (Figure 3.1c, d). The relative composition of Ile and Val as well as 

Ile and Leu demonstrate a very strong positive correlation (Figure 3.1d). The amino 

acids Ile, Leu, and Val are biosynthetically and chemically related as they all have 

branched hydrocarbon side chains (Binder, 2010) and fall under BCAA family. BCAAs 

are essential amino acids and hence essential nutrients for humans and animals. It is 

reported that the genetic disruption of BCAA catabolism has little effect on leaf amino 

acid profiles, but severely influences amino acid metabolism in seeds (Angelovici et al., 

2013; Gu et al., 2010). Interestingly, the relative composition of Asn and Pro has 

demonstrated negative correlation with most of the other FAAs (Figure 3.1d). It might 

be because these amino acids are the most abundant in the dry seeds as compared to the 
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other amino acids, however the biological meaning for this negative correlation in the dry 

seeds needs to be further investigated. Asn is one of the most important AAs related to 

nitrogen metabolism as it has N:C ratio of 2:4, which makes it an efficient molecule for 

the storage and transport of nitrogen in living cells (Lea, Sodek, Parry, Shewry, & 

Halford, 2007) and can represent 50% of the total free amino acids in the developing 

cotyledon (Hernandez-Sebastia et al., 2005), hence it might be one of the reasons for its 

high abundance in the dry seeds. Pro and Asn contribute the most to the FAA pool in dry 

seeds as Asn is used as a nitrogen storage that is used later during germination, while Pro 

is the osmoprotectant, mainly used for seed desiccation and maturation (Amir et al., 

2018).  

I included in my GWAS all the relevant metabolic ratios of FAA based on their 

biochemical affiliation and considered the candidate genes as part of a comprehensive 

architecture of the FAA genetic architecture. A similar approach proved very effective in 

other metabolic studies in both maize and Arabidopsis (Angelovici et al., 2013; Deng et 

al., 2017; Slaten, Yobi, et al., 2020b). My GWAS and candidate gene extraction approach 

yielded relatively a large number of unique candidate genes for all the FAA relative traits 

that is likely due to the relatively permissive statistical correction.  However, since I 

aimed to intersect the GWAS candidate gene list with an orthogonal candidate gene list, 

the latter did not pose a concern. Nevertheless, functional analysis indicated that both 

“proteins” as well as “RNA” were the largest identified categories (Figure 3.2b), eluding 

that protein metabolism as well as gene expression may be in the heart of the genetic 

basis of seed FAA too. Although the functional category for regulating the FAA and 
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PBAA seems to be consistent, it will be interesting to further investigate whether there 

are same or distinct genes underlying those categories for FAA and PBAA. 

4.2 Multi-omics integration revealed one hundred and twenty high confidence 

candidate genes  

One of the disadvantages of performing large omics analysis is that often we end up 

with a long list of candidate genes that is difficult to prioritize in a significant or 

meaningful way, which makes it very hard to uncover biological processes that underlie 

our traits of interest and identify key regulatory genes for further analysis. To address this 

challenge, I used two orthogonal approaches and intersected them to pinpoint the genetic 

and metabolic bases of FAA composition in seed. Previous studies have shown that 

intersecting GWAS with network analysis from a time development or orthogonal 

experiment is very efficient (Qi et al., 2018; Schaefer et al., 2018; S. Wu et al., 2016). My 

underlying assumptions is that the genes that are associated in both analyses are key 

regulatory genes determining FAA composition in seeds. Overall, I have identified 120 

HCCG. 

Using a protein-protein interaction analysis to uncover the functional relationship 

among these genes revealed several biological processes that were previously shown to 

be involved in seed FAA composition. The previously characterized ones were amino 

acid metabolism, sulfur assimilation, CHO metabolism, and cell vesical transport (Figure 

3.6a).  For instance, I found Glutamate decarboxylase (GAD) gene cluster 

(GRMZM2G017110 and GRMZM2G098875) as one of the major amino acid 

metabolism gene in one of my HCCG clusters (Figure 3.6a, b - Cluster8 and Table 

S3.4).  The GWAS results showed that GRMZM2G017110 was significantly associated 
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with BCAA traits (Val, Leu) and with Ala while GRMZM2G098875 was significantly 

associated aspartate related traits (D/IMNTDK, N/D, N/IMNTDK) (Supplemental Data 

S3.2). GAD carries out the alpha-decarboxylation of glutamate to yield the nonprotein 

amino acid gamma-aminobutyrate (GABA) and carbon dioxide (Singh, 1998). The level 

of GABA has been reported to increase during the maturation stage of seed development 

and was suggested to play an important role in seeds (Fait et al., 2006). Studies have also 

shown that a rapid formation of GABA in developing seeds will degrades to succinate on 

the onset of germination (Tuin & Shelp, 1994). Therefore, accumulation of GABA in the 

mature dry seeds are suggested to supply available energy to seeds for later germination 

(Fait et al., 2011). Hence, GAD is important for the biosynthesis of GABA and the latter 

plays an important role in regulating the carbon nitrogen balance, amino acid 

biosynthesis as well as storage reserve accumulation during seed development and 

germination by modulating the flux of carbon and energy through the TCA cycle (Fait, 

Fromm, Walter, Galili, & Fernie, 2008).  Another important gene identified from this 

analysis is the cysteine synthase (GRMZM2G005887), also known as O-acetyl-L-serine 

(OAS) or o-acetyl serine sulfhydrylase (OASS) (Figure 3.6a, b-Cluster 7 and Table 

S3.4). The gene was found to be associated with FAA absolute traits, Isoleucine in my 

GWAS result (Supplemental Data S3.2), which is interesting as previous studies have 

highlighted the potential regulation of this genes with sulfur related amino acids such as 

Cys and Met, but not Ile (Kim et al., 2012). Therefore, the connection of OAS with Ile 

needs to be further investigated. Several studies in soybean seeds have shown the 

promising nature of this gene in improving the amino acid composition in seeds. OAS is 

reported to be a very important metabolic gene that regulates the sulfur and nitrogen 



 

122 

 

regulation of soybean seed storage protein composition (Kim et al., 1999). Kim et. al 

(2012) demonstrated that the overexpression of cytosolic OASS resulted in a 58-74% 

increase in protein-bound cysteine levels compared with non-transformed wild type 

soybean seeds, and a 22-32% increase in free cysteine levels, which was important to 

improve the sulfur related essential amino acids in soybean (Kim et al., 2012). I found 

another gene, sulfite reductase (GRMZM2G090338), within the same cluster (Cluster 7- 

Figure 3.6a, b), which is also related to sulfur assimilation (Xia, Wang, & Xu, 2018) 

indicating their association in the similar biological processes. 

Interestingly, like my PBAA, my multi-omics approach analysis also supported the 

core protein metabolism and translation machinery role in seed FAA composition. My 

PPI analysis revealed that 120 HCCG included a tightly connected group dominated by 

genes related to protein metabolism with 7 ribosomal proteins and 3 translational 

initiation factor eiF2a, eIF2b and EIF3L (Table S3.4). Interestingly, the protein 

expression of all the proteins in this cluster (falls under turquoise module excluding the 

eIF3L that falls under WGCNA Brown module – Supplemental Data S2.4, Figure 3.4b) 

displayed reduction during maturation and desiccation, which indicated that some of the 

FAA relative composition traits such as Asp and Gln are positively associated with this 

reduction, while Arg, Asn, Leu and Lys are negatively associated with this reduction 

(Figure 3.4a,b) indicating some sort of switch between the protein and FAA metabolites. 

However, this attenuation of proteins and their correlation with FAA metabolites is not as 

clear as compared with PBAA correlation with these protein modules and needs further 

investigation. This might be due to the multi-faceted role of FAAs making it more 

complex to understand and interpret, while PBAA functions mainly as storage protein 
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reservoir. Hence, it might be useful to further breakdown FAA traits into its several 

amino acids biochemical families to better visualize and interpret this complex analysis. 

My PPI analysis and integrative approach indicated that one of the key factors in 

shaping the seed FAA is specific translation attenuation, most probably driven by 

alteration in specific components of the translational machinery namely the ribosomal 

proteins. Although the ribosomal proteins are found to be associated with both PBAA and 

FAA, it will be interesting to further investigate whether the same or distinct ribosomal 

proteins regulate the seed FAA and PBAA composition. Previous studies have shown the 

increase in FAA, especially Lys, is associated with expression of genes encoding 

ribosomal proteins, as well as those encoding translation initiation and elongation factors, 

all of which are associated with protein synthesis (Angelovici et al., 2009). In recent 

years, increasing evidence have shed light on the adaptive nature of RPs as well as their 

potential selective regulation of translation. Multiple RP mutants revealed the functional 

role they have in developmental and stress related processes (Ma & Dooner, 2004; 

Tzafrir et al., 2004; H. Yan et al., 2016; J. Zhang et al., 2016). Several studies also 

revealed that many RPs are transcriptionally regulated during stress such in sucrose 

feeding (Gamm et al., 2014), cold, heat, and UV-B stress (Sáez-Vásquez & Delseny, 

2019; Sormani et al., 2011) as reviewed in (Martinez-Seidel et al., 2020).  

In addition, support for the key role that the translational regulation play in seed 

FAA composition is the identification of several eIF as my key HCCG. I found eIF2α, 

eIF2β and eIF3 as my HCCG. Previous studies has reported that elongation factor 1a 

(EF-1α) concentration is highly correlated with the lysine content in maize endosperm 

(Habben et al., 1995; M. Jia et al., 2013). Habben et al (1995) reported that the mRNA 
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levels of EF-1α was significantly increased in the endosperm on W64Ao2 plants 

compared with its normal wild type counterpart (Habben et al., 1995). The author 

mentioned that EF-1a is a lysine rich protein that consists of around 10% Lys and binds 

to the aminoacyl-tRNAs to the ribosome (Habben et al., 1995). Hence, it will be 

interesting to investigate the correlation of eIF2α and other eIF HCCG in high lysine 

maize lines. I also found one of the eIF3 as one of my key HCCG. eIF3 is reported to 

consist of 12 subunits and is the most complex and largest initiation factor, participating 

in nearly all major steps of translation initiation (Browning & Bailey-Serres, 2015; 

Merchante et al., 2017). Studies have shown that alteration in eIFs can have drastic effect 

on translation, either global repression or upregulation (Merchante et al., 2017). Various 

enhanced expressed proteins that include several EIFs such as eIF2 and GAPDH have 

been identified as high-lysine containing proteins that add a substantial contribution to 

the overall lysine elevation in high lysine maize (M. Jia et al., 2013).  In addition to this 

evidence on translation regulation, a recent study on the genomic prediction of FAAs 

using prior biological processes in Arabidopsis dry seeds revealed that protein 

metabolism, amino acid metabolic pathway and specialized metabolism contribute to the 

genetic architecture of FAAs (Turner-Hissong et al., 2020). 

5. Conclusion 

This study demonstrates the effectiveness of undertaking integrative multi-omics 

approach to uncover key biological processes that are involved in seed FAA composition 

in maize. Using this approach, I have identified and highlighted some previously well 

characterized amino acid metabolic genes, several TCA cycle, and CHO metabolism 

related genes. Finally, I uncovered the complex dynamic and heterogeneity of the 
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translational machinery, especially RPs in shaping the FAA composition in seeds, which 

will lead to new and exciting avenues for seed amino acid biofortification. The biological 

processes for regulating both the PBAA and FAA are similar with genes related to the 

functional category of protein metabolism and translation as well as RNA are in the heart 

of PBAA and FAA regulation, however investigating further on whether the same or 

distinct genes underlying those functional category will shed light in the inter-regulation 

of seed PBAA and FAA.  
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7. Figures 

 

Figure 3.1 The natural variation and relationships of FAA traits measured from the 

diversity panel.  Boxplot showing the FAA (a) absolute levels and (b) relative 

compositional distribution in the 279 taxa from Goodman-Buckler maize association 

panel.  (c) Pairwise Pearson correlation analysis was done between the absolute FAA 

levels and (d) relative compositions using back transformed BLUPs of 279 taxa from 

Goodman-Buckler maize association panel. The correlation matrix was visualized in R 

v.3.4.3 (R Core Team). Each dot represents a significant correlation coefficient at qFDR 

values <0.05. Blue dots indicate positive correlation while red indicates negative 

correlations. 
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Figure 3.2 The genomic distribution of the significant unique SNPs found in GWAS 

and the functional categorization of the extracted candidate. (a) The partition of the 

significant unique SNPs across the 10 chromosomes in maize. (b) Pie chart representing 

the functional categorization of the 2779 GWAS candidate genes using MapMan version 

3.6. The number in the parenthesis represent the proportion of genes that falls into a 

functional category. The top 4 categories are highlighted and include: protein, RNA, 

signaling, and misc.  
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Figure 3.3: Seed FAA composition dynamics during development and maturation.  

Heatmap (a) and hierarchical clustering trends (b) of the FAA absolute levels across ten 

seed filling time points of maize inbred B73. Heatmap (c) and hierarchical clustering 

trends (d) of the FAAs relative composition across ten seed filling time points of maize 

inbred B73. Average values of three biological replicates from each time point were 

scaled and used to create heatmap (n =3). Heatmap blue color indicates low values for 

FAA accumulation while the red color indicates high accumulation. The red line 

indicates the average expression pattern of individual FAAs accumulation within a 

cluster (n = X) and was created using geom_line “mean” function in ggplot2 package in 

R v.3.4.3. 
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Figure 3.4: The relationship among the protein co-expression modules and the FAA 

composition dynamics during seed maturation. (a) Module-trait relationships (MTRs) 

from the WGCNA analysis. Modules names are displayed as rows on the left in the y-

axis (i.e. MEblue denotes modules eigen protein for blue module) and the FAA absolute 

and relative composition traits (e.g. Ala/T, which is the ratio of Ala/Sum total of all 

FAAs levels) are displayed in columns as x-axis. The total number of proteins in the 

respective module is described in the parentheses along the y-axis. The correlation 

coefficients between modules Eigen protein (ME)-FAA traits are shown in the top of 

each row whereas the corresponding p-values are displayed at the bottom of each row 

within parentheses. The MTRs are colored based on their correlation; red is a strong 

positive correlation while green is a strong negative correlation. (b) The expression trend 

of Eigen protein found in the corresponding modules across the 10 different seed 

developing time points in days after pollination (DAP). The x-axis is the 10 DAPs while 

the y-axis is the expression of module eigen protein using the scaled spectral count data. 
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Figure 3.5: Comparison between the candidate genes lists of WGCNA and GWAS.  

Venn diagram depicting the 120 genes that overlap with both the GWAS candidate gene 

list and the relevant proteomic co-expression modules (turquoise, brown, green, black 

and blue modules). I refer to the overlapping genes  as high confidence candidate genes 

(HCCG). 
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Figure 3.6: Protein-Protein interaction (PPI) of 120 HCCG. (a) Protein-protein 

interaction of 120 HCCG created using STRING (v11.0). Proteins are indicated by nodes 

labeled with the encoding protein symbol from STRING while interaction between nodes 

were indicated by edges. Smooth line edges indicate intra-cluster interaction whereas 

dotted edges indicate inter-cluster interactions. Cluster analysis using MCL algorithm 

resulted in 9 distinct clusters. (b) Table representation of cluster numbers, cluster color, 

gene count within each cluster using STRING, and the bin name is the functional 

category of the clusters using MapMan version 3.6.0. 
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8. Supplementary Figures 

 

Figure S3.1 Genomic distribution of significant and all SNPs across the genome (a) 

Genome wide distribution of all the significant SNP found in our GWAS. (b) Genome 

wide SNP distribution of all the SNPs that were used for our analysis. The x-axis 

represents the position in Mbp across the genome while the y-axis represents the count in 

numbers of SNPs within the window size of 1 Mb. Several potential hotspot of SNP 

associations are detected and marked by the orange arrows in chromosome 1, 2, 4, 5, 6, 8, 

and 9. 
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9. Tables 

Table 3.1 A summary of 109 FAA GWAS results. The data is summarized by FAA trait 

category i.e. FAA absolute levels, relative composition, aspartate family related ratios, 

BCAA family related ratios, glutamate family related ratios, and shikimate family related 

ratio traits. The table presents both the absolute numbers (n) and the percentage per 

family for the following trait parameters: total number of traits analyzed for GWAS 

studies, number of significant traits in GWAS at 5% FDR, number of unique (non-

redundant) SNPs, average SNPs per trait per family, and number of unique candidate 

genes from 200kb window of peak SNP. 

 

 

 

 

 

 

 

FAA Traits 

Category

Average 

SNP per 

trait

n % n % n % n %

Absolute levels 20 18 19 24 147 27 8 664 23

Relative 

composition 20 18 12 15 76 14 6 397 14

Aspartate family 

related ratios 23 21 20 26 170 31 9 889 32

BCAA family 

related ratios 14 13 8 10 43 8 5 266 10

Glutamate family 

related ratios 17 16 10 13 62 11 6 277 10

Serine family 

related ratios 3 3 3 4 6 1 2 19 1

Shikimate family 

related ratios 12 11 6 8 45 8 8 267 10

Total sum of the 

FAA 109 100 78 100 549 100 44 2779 100

Total number of 

traits analyzed No. of sig. traits

No. of unique 

SNPs

No. of unique 

Candidate genes
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10. Supplementary Tables 

Table S3.1 Statistical and heritability summary of the FAA absolute and relative 

composition traits. The mean, standard deviation (SD), relative standard deviation 

(RSD), range and broad sense heritability (BSH) of 20 FAA absolute levels measured and 

calculated from the dry seeds of Goodman-Buckler maize association panel and the 20 

calculated FAA absolute and relative composition traits are described in (a) and (b), 

respectively. Statistics (mean, SD, RSD and range) were calculated using the dry seed 

FAA measurement from back- transformed BLUPs of the 279 taxa of Goodman-Buckler 

maize association panel while BSH was calculated using replicated data (raw data after 

outlier removal) from two years and two replicas. 

 

 

(a)

Trait

Trait 

Symbol Mean SD

Relative SD 

% Min Max

Broad Sense 

Heritability

Pro P 3.47 1.92 55.44 0.45 9.23 0.93

Asn N 3.38 1.84 54.40 0.25 8.99 0.81

Glu E 1.50 0.33 21.74 0.75 2.69 0.78

Asp D 1.29 0.61 47.54 0.41 4.22 0.92

Gly G 1.23 0.44 35.29 0.40 2.44 0.77

Ala A 1.21 0.49 40.66 0.49 3.31 0.89

Thr T 0.41 0.15 35.93 0.11 0.93 0.42

Arg R 0.38 0.18 45.56 0.11 1.53 0.77

Gln Q 0.34 0.18 51.44 0.07 1.27 0.92

Lys K 0.34 0.23 67.19 0.09 1.48 0.94

Ser S 0.31 0.18 56.95 0.07 1.29 0.94

His H 0.21 0.08 40.38 0.09 0.49 0.86

Tyr Y 0.21 0.06 31.03 0.09 0.67 0.91

Val V 0.19 0.06 33.64 0.09 0.44 0.90

Leu L 0.08 0.03 39.56 0.04 0.22 0.92

Phe F 0.08 0.03 39.62 0.03 0.20 0.92

Ile I 0.07 0.03 47.50 0.03 0.24 0.92

Trp W 0.05 0.02 29.68 0.02 0.13 0.93

Met M 0.05 0.03 60.53 0.01 0.20 0.48

Cys C 0.02 0.00 13.67 0.02 0.04 0.63

Backtransformed BLUPs
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(b)

Trait

Trait 

Symbol Mean SD

Relative SD 

% Min Max

Broad Sense 

Heritability

Asn/T N/T 0.21 0.08 37.38 0.03 0.43 0.77

Pro/T P/T 0.20 0.07 36.60 0.05 0.45 0.89

Glu/T E/T 0.10 0.02 19.06 0.06 0.15 0.67

Asp/T D/T 0.08 0.02 26.57 0.03 0.16 0.82

Ala/T A/T 0.08 0.02 22.41 0.04 0.13 0.78

Gly/T G/T 0.07 0.00 4.17 0.06 0.08 0.04

Thr/T T/T 0.03 0.00 13.13 0.01 0.04 0.11

Arg/T R/T 0.02 0.01 39.62 0.01 0.06 0.73

Gln/T Q/T 0.02 0.01 34.71 0.01 0.05 0.83

Lys/T K/T 0.02 0.01 55.77 0.01 0.08 0.96

Ser/T S/T 0.02 0.01 37.85 0.01 0.07 0.92

Tyr/T Y/T 0.01 0.00 20.56 0.01 0.02 0.89

His/T H/T 0.01 0.00 26.08 0.01 0.03 0.78

Val/T V/T 0.01 0.00 19.25 0.01 0.02 0.83

Leu/T L/T 0.01 0.00 27.03 0.00 0.01 0.88

Phe/T F/T 0.01 0.00 25.72 0.00 0.01 0.86

Ile/T I/T 0.00 0.00 30.84 0.00 0.01 0.88

Trp/T W/T 0.00 0.00 29.37 0.00 0.01 0.93

Met/T M/T 0.00 0.00 50.17 0.00 0.01 0.94

Cys/T C/T 0.00 0.00 22.74 0.00 0.00 0.58

Backtransformed BLUPs
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Table S3.2 Correlation among the absolute FAA levels and their relative 

composition. (a) Pairwise Pearson correlation coefficients between the 20 absolute FAA 

levels using back transformed BLUPs of 279 taxa from Goodman-Buckler maize 

association panel. (b) Significance of correlation analysis of absolute FAA using corr.test 

function in R and the corresponding adjusted p-value using FDR correction at 5% level of 

significance. (c) Pairwise Pearson correlation coefficient between 20 relative 

(compositional) FAA using back transformed BLUPs of 279 taxa from Goodman-

Buckler maize association panel. (d) Significance of relative FAA correlation analysis 

using corr.test and the corresponding adjusted p-value using FDR correction at 5% level 

of significance. T stands for Total (E.g.: Ala/T=Ala/Total). 

 

 

 

(a) Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

Ala 1

Arg 0.36 1.00

Asn 0.38 0.33 1.00

Asp 0.68 0.23 0.41 1.00

Cys 0.59 0.42 0.22 0.49 1.00

Gln 0.63 0.24 0.32 0.59 0.42 1.00

Glu 0.66 0.23 0.34 0.73 0.42 0.63 1.00

Gly 0.70 0.27 0.54 0.75 0.50 0.61 0.81 1.00

His 0.54 0.66 0.52 0.39 0.43 0.48 0.36 0.50 1.00

Ile 0.75 0.41 0.29 0.60 0.56 0.66 0.58 0.61 0.58 1.00

Leu 0.70 0.35 0.30 0.60 0.48 0.69 0.59 0.62 0.53 0.88 1.00

Lys 0.48 0.72 0.36 0.34 0.39 0.35 0.26 0.36 0.62 0.50 0.43 1.00

Met 0.66 0.39 0.23 0.56 0.63 0.59 0.51 0.54 0.45 0.70 0.64 0.42 1.00

Phe 0.68 0.38 0.37 0.60 0.45 0.66 0.56 0.61 0.55 0.76 0.85 0.46 0.58 1.00

Pro 0.48 0.34 0.18 0.45 0.37 0.32 0.43 0.46 0.37 0.35 0.36 0.27 0.30 0.39 1.00

Ser 0.84 0.37 0.27 0.66 0.57 0.64 0.64 0.67 0.52 0.79 0.74 0.53 0.71 0.73 0.42 1.00

Thr 0.77 0.44 0.34 0.68 0.67 0.55 0.64 0.72 0.52 0.63 0.63 0.43 0.58 0.63 0.71 0.73 1.00

Trp 0.41 0.33 0.41 0.50 0.33 0.41 0.41 0.47 0.47 0.47 0.43 0.31 0.38 0.54 0.36 0.38 0.43 1.00

Tyr 0.59 0.48 0.35 0.54 0.45 0.49 0.56 0.58 0.62 0.63 0.63 0.48 0.46 0.75 0.50 0.59 0.59 0.62 1.00

Val 0.85 0.43 0.40 0.69 0.58 0.70 0.66 0.70 0.63 0.88 0.83 0.51 0.67 0.80 0.44 0.83 0.73 0.51 0.67 1.00

(b) Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

Ala 0

Arg 1.58E-08 0

Asn 1.53E-10 1.21E-09 0

Asp 2.28E-37 4.16E-05 2.48E-13 0

Cys 8.33E-27 7.27E-13 0.0001 1.29E-18 0

Gln 2.24E-31 6.51E-06 3.32E-08 1.71E-27 1.46E-13 0

Glu 5.54E-35 3.27E-05 3.75E-09 5.66E-47 7.10E-14 1.24E-32 0

Gly 5.00E-41 2.00E-07 5.57E-23 2.23E-51 9.10E-20 1.87E-29 5.04E-66 0

His 3.68E-21 2.00E-37 1.57E-21 1.45E-12 5.44E-14 8.86E-18 1.50E-10 2.00E-20 0

Ile 6.44E-50 3.27E-13 5.01E-07 4.21E-29 7.94E-24 1.17E-35 2.80E-26 9.73E-30 1.16E-27 0

Leu 7.92E-41 2.44E-08 2.61E-07 2.09E-29 1.77E-17 4.57E-40 1.15E-27 1.12E-30 2.92E-21 1.46E-88 0

Lys 2.84E-16 7.10E-49 1.05E-10 1.32E-09 4.71E-12 1.83E-10 2.33E-06 3.74E-11 1.40E-32 5.21E-20 2.58E-13 0

Met 3.44E-35 1.06E-11 5.31E-05 5.69E-24 3.64E-32 1.15E-27 3.98E-20 1.82E-22 8.49E-16 1.37E-41 5.23E-33 4.29E-14 0

Phe 1.17E-37 1.20E-09 1.73E-10 5.80E-28 2.05E-15 3.34E-35 2.40E-24 2.46E-29 1.58E-22 9.93E-53 9.67E-79 3.68E-15 4.46E-26 0

Pro 8.55E-17 1.01E-11 0.00047 4.57E-16 6.28E-11 1.14E-08 6.01E-15 2.84E-17 9.84E-12 5.94E-10 6.61E-10 8.06E-08 6.91E-08 1.74E-11 0

Ser 1.10E-73 6.47E-11 8.27E-06 2.29E-35 2.24E-25 3.55E-33 1.58E-32 4.35E-37 2.22E-20 6.81E-60 2.41E-49 1.74E-21 3.48E-44 5.18E-45 2.44E-13 0

Thr 1.44E-53 1.00E-14 2.61E-09 1.91E-37 1.54E-36 4.78E-23 8.02E-33 2.04E-45 1.43E-20 3.78E-31 2.37E-30 6.81E-15 2.96E-26 2.49E-31 2.45E-43 1.53E-46 0

Trp 3.86E-12 6.20E-11 1.40E-13 1.34E-18 8.88E-09 2.31E-13 4.03E-13 1.95E-17 3.56E-18 8.86E-17 1.46E-13 7.49E-10 1.12E-11 2.82E-21 1.19E-11 2.57E-11 1.19E-14 0

Tyr 2.45E-26 6.78E-17 3.45E-09 1.20E-21 6.42E-15 7.67E-20 2.97E-24 1.42E-25 5.00E-31 1.16E-33 1.27E-32 5.45E-18 1.63E-16 7.07E-50 8.00E-19 6.00E-28 5.38E-27 9.74E-31 0

Val 1.03E-76 1.50E-14 1.56E-11 2.72E-39 8.35E-26 3.91E-42 8.20E-35 7.92E-41 2.59E-32 1.47E-89 1.17E-70 3.98E-20 1.63E-37 7.05E-61 9.04E-15 9.95E-73 2.04E-47 7.27E-20 5.29E-39 0
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(c) Ala/T Arg/T Asn/T Asp/T Cys/T Gln/T Glu/T Gly/T His/T Ile/T Leu/T Lys/T Met/T Phe/T Pro/T Ser/T Thr/T Trp/T Tyr/T Val/T

Ala/T 1.00

Arg/T 0.00 1.00

Asn/T -0.39 -0.14 1.00

Asp/T 0.11 -0.14 -0.22 1.00

Cys/T 0.27 0.35 -0.34 0.16 1.00

Gln/T 0.28 -0.06 -0.22 0.16 0.09 1.00

Glu/T 0.18 0.04 -0.35 0.37 0.47 0.23 1.00

Gly/T 0.04 -0.30 -0.07 0.17 -0.06 0.12 0.31 1.00

His/T 0.08 0.63 -0.01 -0.11 0.30 0.14 0.07 -0.17 1.00

Ile/T 0.58 0.13 -0.34 0.14 0.29 0.35 0.15 0.03 0.26 1.00

Leu/T 0.47 0.12 -0.35 0.19 0.33 0.43 0.31 0.03 0.25 0.75 1.00

Lys/T 0.13 0.67 -0.09 -0.11 0.15 -0.01 -0.12 -0.24 0.45 0.22 0.15 1.00

Met/T 0.33 0.17 -0.32 0.16 0.48 0.27 0.16 0.04 0.16 0.48 0.38 0.14 1.00

Phe/T 0.38 0.17 -0.27 0.17 0.32 0.37 0.27 0.02 0.31 0.57 0.79 0.16 0.27 1.00

Pro/T -0.14 -0.04 -0.60 -0.19 -0.10 -0.16 -0.20 -0.27 -0.26 -0.16 -0.16 -0.14 -0.07 -0.17 1.00

Ser/T 0.58 0.02 -0.39 0.16 0.23 0.24 0.07 0.14 0.09 0.61 0.47 0.16 0.41 0.37 -0.09 1.00

Thr/T 0.27 0.10 -0.60 -0.02 0.31 0.03 0.02 0.02 -0.06 0.22 0.19 0.04 0.27 0.19 0.42 0.35 1.00

Trp/T 0.03 0.26 -0.09 0.19 0.47 0.02 0.43 -0.08 0.38 0.13 0.23 0.08 0.12 0.34 -0.18 -0.02 -0.04 1.00

Tyr/T 0.22 0.39 -0.31 0.15 0.49 0.14 0.41 0.02 0.51 0.41 0.51 0.24 0.19 0.61 -0.12 0.23 0.14 0.53 1.00

Val/T 0.69 0.17 -0.32 0.20 0.40 0.34 0.26 -0.01 0.36 0.82 0.71 0.26 0.40 0.59 -0.26 0.57 0.20 0.26 0.45 1.00

(d) Ala/T Arg/TAsn/TAsp/T Cys/T Gln/T Glu/T Gly/T His/T Ile/T Leu/T Lys/TMet/TPhe/T Pro/T Ser/T Thr/T Trp/T Tyr/T Val/T

Ala/T 0.00

Arg/T 0.98 0.00

Asn/T 0.00 0.03 0.00

Asp/T 0.10 0.02 0.00 0.00

Cys/T 0.00 0.00 0.00 0.01 0.00

Gln/T 0.00 0.39 0.00 0.02 0.18 0.00

Glu/T 0.01 0.60 0.00 0.00 0.00 0.00 0.00

Gly/T 0.54 0.00 0.34 0.01 0.32 0.07 0.00 0.00

His/T 0.38 0.00 0.80 0.05 0.00 0.03 0.36 0.01 0.00

Ile/T 0.00 0.03 0.00 0.07 0.00 0.00 0.05 0.76 0.00 0.00

Leu/T 0.00 0.06 0.00 0.01 0.00 0.00 0.00 0.75 0.00 0.00 0.00

Lys/T 0.04 0.00 0.18 0.07 0.02 0.89 0.03 0.00 0.00 0.00 0.02 0.00

Met/T 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.60 0.02 0.00 0.00 0.02 0.00

Phe/T 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.86 0.00 0.00 0.00 0.01 0.00 0.00

Pro/T 0.03 0.55 0.00 0.00 0.15 0.01 0.00 0.00 0.00 0.02 0.01 0.03 0.30 0.01 0.00

Ser/T 0.00 0.78 0.00 0.02 0.00 0.00 0.34 0.04 0.23 0.00 0.00 0.01 0.00 0.00 0.20 0.00

Thr/T 0.00 0.13 0.00 0.75 0.00 0.59 0.76 0.75 0.38 0.00 0.01 0.56 0.00 0.00 0.00 0.00 0.00

Trp/T 0.69 0.00 0.17 0.00 0.00 0.75 0.00 0.19 0.00 0.03 0.00 0.19 0.06 0.00 0.01 0.77 0.53 0.00

Tyr/T 0.00 0.00 0.00 0.06 0.00 0.01 0.00 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.03 0.00 0.00

Val/T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table S3.3 List of 109 seed FAA traits used for GWAS. These traits included from the 

quantifications of 20 absolute levels, their relative composition and known biochemical 

interactions (based on their affiliation with their respective amino acid families: 

Aspartate, Glutamate, BCAA, Shikimate and Serine). 

Abs & Relative composition 

to total AAs 

AA-Abs  & AA/T T= Sum of 20 

AA 

Asp Family =Ile, Met, Asn,Thr, 

Asp Lys (IMNTDK)

BCAA Family= Ile, Val, Leu 

(IVL)     Pyr Family=Leu, Ala, Val 

(LAV) Ala A

Ala A/E A/LAV Arg R

Ala/T D/IMNTDK E/V Asn N

Arg D/K I/IVL Asp D

Arg/T E/I I/L Cys C

Asn E/K I/LAV Gln Q

Asn/T I/IMNTDK I/V Glu E

Asp IMNTDK IVL Gly G

Asp/T K/IMNTDK L/IVL His H

Cys M/I L/LAV Ile I

Cys/T M/IMNTDK L/V Leu L

Gln M/K LAV Lys K

Gln/T N/D V/A Met M

Glu N/E V/IVL Phe F

Glu/T N/IMNTDK V/LAV Pro P

Gly N/K Ser S

Gly/T N/M Thr T

His N/Q
Shikimate Fam =Trp, Phe,Tyr 

(WFY) Trp W

His/T N/T D/W Tyr Y

Ile T/G E/W Val V

Ile/T T/I F/E

Leu T/IMNTDK F/WFY

Leu/T T/K Q/W

Lys T/M S/W

Lys/T W/F

Met
Glu Family= Glu, His, Pro, Arg, 

Gln (EHPRQ)
W/WFY

Met/T D/EHPRQ WFY

Phe E/EHPRQ Y/F

Phe/T E/P Y/W

Pro E/R Y/WFY

Pro/T EHPRQ

Ser H/D
Ser Family=Ser, Gly, Cys 

Ser/T H/E C/SGC

Thr H/EHPRQ G/SGC

Thr/T H/M S/SGC

Trp H/Q

Trp/T H/W

Tyr P/EHPRQ

Tyr/T Q/E

Val Q/EHPRQ

Val/T R/E

R/EHPRQ

R/P

 Biochemistry based metabolic ratios, grouped by AA 

families' affiliation Free Amino acids one 

letter code 



 

 

 

1
4
7
 

Table S3.4 The 120 HCCG STRING and functional analysis.  String analysis of the 120 HCCG including cluster number, cluster 

color, Protein ID, STRING Protein name and protein description. MCL clustering method was used in STRING V11.0 resulting into 9 

distinct cluster in the PPI network derived from 120 HCCG. "Unconnected" label in the cluster number indicates those proteins that 

are not connected in the given PPI analysis. MapMan functional categorization of the 120 HCCG and their respective bin, bin code, 

and bin name are also presented. 

STRING PPI Cluster analysis MapMan Annotations 

cluster 

number 

cluster 

color 

gene 

count 

Protein STRING Protein name Protein description Bin BinCode BinName 

1 Red 19 GRMZM2G006178_P01 103639168 ABC transporter E family 

member 2 

27 27.2 RNA.transcription 

1 Red 19 GRMZM2G024354_P01 100282218 Ribosomal protein L15 ; 

Belongs to the eukaryotic 

ribosomal protein eL15 family 

29 29.2.1.2.2.15 protein.synthesis.ribo

somal 

protein.eukaryotic.60

S subunit.L15 

1 Red 19 GRMZM2G030016_P02 100193269 40S ribosomal protein S7 ; 

Belongs to the eukaryotic 

ribosomal protein eS7 family 

29 29.2.1.2.1.7 protein.synthesis.ribo

somal 

protein.eukaryotic.40

S subunit.S7 

1 Red 19 GRMZM2G038032_P01 gpm583 Guanine nucleotide-binding 

protein beta subunit-like 

protein 

30 30.5 signalling.G-proteins 

1 Red 19 GRMZM2G041881_P01 btf3 Nascent polypeptide-associated 

complex subunit beta 

27 27.3.67 RNA.regulation of 

transcription.putative 

transcription 

regulator 

1 Red 19 GRMZM2G056462_P01 100282096 Eukaryotic translation 

initiation factor 2 beta subunit 

29 29.2.3 protein.synthesis.initi

ation 

1 Red 19 GRMZM2G058138_P01 100279728  Eukaryotic translation 

initiation factor 2 subunit alpha 

29 29.2.3 protein.synthesis.initi

ation 

1 Red 19 GRMZM2G067303_P02 LOC542200 40S ribosomal protein S20 ; 

Belongs to the universal 

ribosomal protein uS10 family 

29 29.2.1.2.1.20 protein.synthesis.ribo

somal 

protein.eukaryotic.40

S subunit.S20 



 

 

 

1
4
8
 

1 Red 19 GRMZM2G078143_P01 gly1 Serine 

hydroxymethyltransferase; 

Interconversion of serine and 

glycine; Belongs to the SHMT 

family 

1 1.2.5 PS.photorespiration.s

erine 

hydroxymethyltransfe

rase 

1 Red 19 GRMZM2G081541_P01 GRMZM2G081541_P01 ABC transporter F family 

member 1 

34 34.16 transport.ABC 

transporters and 

multidrug resistance 

systems 

1 Red 19 GRMZM2G109121_P02 103634615 annotation not available 27 27.2 RNA.transcription 

1 Red 19 GRMZM2G116273_P01 gst1 Glutathione S-transferase 1; 

Conjugation of reduced 

glutathione to a wide number 

of exogenous and endogenous 

hydrophobic electrophiles. 

Involved in the detoxification 

of certain herbicides; Belongs 

to the GST superfamily. Phi 

family 

26 26.9 misc.glutathione S 

transferases 

1 Red 19 GRMZM2G131473_P02 100191629 Methionine aminopeptidase 2; 

Cotranslationally removes the 

N-terminal methionine from 

nascent proteins. The N-

terminal methionine is often 

cleaved when the second 

residue in the primary 

sequence is small and 

uncharged (Met-Ala-, Cys, 

Gly, Pro, Ser, Thr, or Val) 

29 29.5.7 protein.degradation.m

etalloprotease 

1 Red 19 GRMZM2G133121_P01 100501865 Phosphoribosylaminoimidazole 

carboxylase family protein / 

AIR carboxylase family 

protein 

23 23.1.2.6 nucleotide 

metabolism.synthesis.

purine.AIR 

carboxylase 



 

 

 

1
4
9
 

1 Red 19 GRMZM2G153181_P01 103649546 Eukaryotic translation 

initiation factor 3 subunit L; 

Component of the eukaryotic 

translation initiation factor 3 

(eIF-3) complex, which is 

involved in protein synthesis of 

a specialized repertoire of 

mRNAs and, together with 

other initiation factors, 

stimulates binding of mRNA 

and methionyl-tRNAi to the 

40S ribosome. The eIF-3 

complex specifically targets 

and initiates translation of a 

subset of mRNAs involved in 

cell proliferation 

35 35.2 not 

assigned.unknown 

1 Red 19 GRMZM2G163561_P01 GRMZM2G163561_P01 40S ribosomal protein S23; 

Uncharacterized protein ; 

Belongs to the universal 

ribosomal protein uS12 family 

29 29.2.1.2.1.23 protein.synthesis.ribo

somal 

protein.eukaryotic.40

S subunit.S23 

1 Red 19 GRMZM2G427014_P01 100284613 40S ribosomal protein S16 ; 

Belongs to the universal 

ribosomal protein uS9 family 

29 29.2.1.2.1.16 protein.synthesis.ribo

somal 

protein.eukaryotic.40

S subunit.S16 

1 Red 19 GRMZM5G868433_P04 GRMZM5G868433_P04 60S ribosomal protein L7-2; 

Uncharacterized protein 

29 29.2.1.2.2.7 protein.synthesis.ribo

somal 

protein.eukaryotic.60

S subunit.L7 

1 Red 19 GRMZM5G899149_P01 pco064822 40S ribosomal protein S26; 

Uncharacterized protein ; 

Belongs to the eukaryotic 

ribosomal protein eS26 family 

29 29.2.1.2.1.26 protein.synthesis.ribo

somal 

protein.eukaryotic.40

S subunit.S26 

2 Sandy 

Brown 

8 GRMZM2G107082_P01 GRMZM2G107082_P01 ATP-citrate synthase alpha 

chain protein 3 

8 8.2.11 TCA / org. 

transformation.other 

organic acid 

transformaitons.atp-

citrate lyase 



 

 

 

1
5
0
 

2 Sandy 

Brown 

8 GRMZM2G113408_P01 ATPB ATP synthase subunit beta, 

mitochondrial; Mitochondrial 

membrane ATP synthase 

(F(1)F(0) ATP synthase or 

Complex V) produces ATP 

from ADP in the presence of a 

proton gradient across the 

membrane which is generated 

by electron transport 

complexes of the respiratory 

chain. F-type ATPases consist 

of two structural domains, F(1) 

- containing the 

extramembraneous catalytic 

core, and F(0) - containing the 

membrane proton channel, 

linked together by a central 

stalk and a peripheral stalk. 

During catalysis, ATP 

synthesis in the catalytic 

domain of F(1) is coupled via a 

rotary mechanism of the c [...] 

NA NA NA 

2 Sandy 

Brown 

8 GRMZM2G131539_P01 100502326 Enolase 4 4.1.13 glycolysis.cytosolic 

branch.enolase 

2 Sandy 

Brown 

8 GRMZM2G154595_P01 100274264 Malate dehydrogenase 8 8.1.9 TCA / org. 

transformation.TCA.

malate DH 

2 Sandy 

Brown 

8 GRMZM2G166646_P01 100856885 Putative mitochondrial-

processing peptidase subunit 

alpha-2 

chloroplastic/mitochondrial 

29 29.3.2 protein.targeting.mito

chondria 

2 Sandy 

Brown 

8 GRMZM5G833389_P02 pco072546 2,3-bisphosphoglycerate-

independent phosphoglycerate 

mutase; Catalyzes the 

interconversion of 2-

phosphoglycerate and 3-

phosphoglycerate 

4 4.1.12 glycolysis.cytosolic 

branch.phosphoglyce

rate mutase 

2 Sandy 

Brown 

8 GRMZM5G848768_P02 100192501 3-ketoacyl-CoA thiolase 2 

peroxisomal; Belongs to the 

thiolase family 

11 11.9.4.5 lipid metabolism.lipid 

degradation.beta-

oxidation.acyl-CoA 

thioesterase 



 

 

 

1
5
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2 Sandy 

Brown 

8 GRMZM5G854571_P01 GRMZM5G854571_P01 annotation not available 13 13.2.6.3 amino acid 

metabolism.degradati

on.aromatic 

aa.tryptophan 

3 Brown 8 AC199782.5_FGP001 pco094838 ATPase ASNA1 homolog; 

ATPase required for the post-

translational delivery of tail-

anchored (TA) proteins to the 

endoplasmic reticulum. 

Recognizes and selectively 

binds the transmembrane 

domain of TA proteins in the 

cytosol. This complex then 

targets to the endoplasmic 

reticulum by membrane-bound 

receptors, where the tail- 

anchored protein is released for 

insertion. This process is 

regulated by ATP binding and 

hydrolysis. ATP binding drives 

the homodimer towards the 

closed dimer state, facilitating 

recognition of newly 

synthesized TA membrane 

proteins. ATP hydrolysis is 

required for ins [...] 

34 34.18.1 transport.unspecified 

anions.arsenite-

transporting ATPase 

3 Brown 8 GRMZM2G005080_P01 100193140 Proteasome subunit alpha type; 

The proteasome is a 

multicatalytic proteinase 

complex which is characterized 

by its ability to cleave peptides 

with Arg, Phe, Tyr, Leu, and 

Glu adjacent to the leaving 

group at neutral or slightly 

basic pH; Belongs to the 

peptidase T1A family 

29 29.5.11.20 protein.degradation.u

biquitin.proteasom 

3 Brown 8 GRMZM2G095219_P01 GRMZM2G095219_P01 Pleckstrin homology (PH) 

domain-containing protein 

35 35.2 not 

assigned.unknown 



 

 

 

1
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3 Brown 8 GRMZM2G102596_P01 pco130904 Proteasome subunit beta type; 

The proteasome is a 

multicatalytic proteinase 

complex which is characterized 

by its ability to cleave peptides 

with Arg, Phe, Tyr, Leu, and 

Glu adjacent to the leaving 

group at neutral or slightly 

basic pH; Belongs to the 

peptidase T1B family 

29 29.5.11.20 protein.degradation.u

biquitin.proteasom 

3 Brown 8 GRMZM2G114220_P01 pco125270b Ubiquitin fusion degradation 

protein 1 

29 29.5.11 protein.degradation.u

biquitin 

3 Brown 8 GRMZM2G126453_P01 103652718 AAA-type ATPase family 

protein 

29 29.5.9 protein.degradation.A

AA type 

3 Brown 8 GRMZM2G159538_P01 100282935 Plant UBX domain-containing 

protein 10; Fas-associated 

factor 1-like protein; 

Uncharacterized protein 

29 29.5 protein.degradation 

3 Brown 8 GRMZM2G374881_P02 GRMZM2G374881_P02 Proteasome subunit beta type; 

The proteasome is a 

multicatalytic proteinase 

complex which is characterized 

by its ability to cleave peptides 

with Arg, Phe, Tyr, Leu, and 

Glu adjacent to the leaving 

group at neutral or slightly 

basic pH; Belongs to the 

peptidase T1B family 

29 29.5.11.20 protein.degradation.u

biquitin.proteasom 

4 Green 

Yellow 

4 GRMZM2G027955_P01 AGP2 Glucose-1-phosphate 

adenylyltransferase large 

subunit 2, 

chloroplastic/amyloplastic; 

This protein plays a role in 

synthesis of starch. It catalyzes 

the synthesis of the activated 

glycosyl donor, ADP- glucose 

from Glc-1-P and ATP 

2 2.1.2.1 major CHO 

metabolism.synthesis.

starch.AGPase 

4 Green 

Yellow 

4 GRMZM2G032003_P01 csu815 UDP-glucose 

pyrophosphorylase2 

4 4.3.1 glycolysis.unclear/du

ally targeted.UGPase 



 

 

 

1
5
3
 

4 Green 

Yellow 

4 GRMZM2G099860_P01 TIDP3174 Trehalose-6-phosphate 

synthase2 

3 3.2.3 minor CHO 

metabolism.trehalose.

potential TPS/TPP 

4 Green 

Yellow 

4 GRMZM2G328500_P01 TIDP3299 UDP-glucose 6-dehydrogenase 10 10.1.4 cell wall.precursor 

synthesis.UGD 

5 Green 4 GRMZM2G030144_P01 100193027 AP-1 complex subunit gamma-

1 

31 31.4 cell.vesicle transport 

5 Green 4 GRMZM2G122135_P02 103638140 Serine/threonine-protein 

phosphatase 2A 65 kDa 

regulatory subunit A beta 

isoform 

29 29.4 protein.postranslation

al modification 

5 Green 4 GRMZM2G164352_P03 pco067871 Serine/threonine-protein 

phosphatase 2A 65 kDa 

regulatory subunit A beta 

isoform 

29 29.4 protein.postranslation

al modification 

5 Green 4 GRMZM5G836182_P01 100382775 ADP-ribosylation factor A1F; 

Belongs to the small GTPase 

superfamily. Arf family 

29 29.3.4.99 protein.targeting.secr

etory 

pathway.unspecified 

6 Cyan 4 GRMZM2G017186_P11 umc1721 Exhydrolase II 10 10.6.1 cell 

wall.degradation.cell

ulases and beta -1,4-

glucanases 

6 Cyan 4 GRMZM2G084812_P01 rfz1 Fasciclin-like arabinogalactan 

protein 8 

10 10.5.1.1 cell wall.cell wall 

proteins.AGPs.AGP 

6 Cyan 4 GRMZM2G111324_P01 100191471 Glucan endo-13-beta-

glucosidase 3; Belongs to the 

glycosyl hydrolase 17 family 

26 26.4.1 misc.beta 1,3 glucan 

hydrolases.glucan 

endo-1,3-beta-

glucosidase 

6 Cyan 4 GRMZM2G147687_P04 exg1 Exoglucanase1 10 10.6.1 cell 

wall.degradation.cell

ulases and beta -1,4-

glucanases 

7 Dark Cyan 2 GRMZM2G005887_P03 cys2 Cysteine synthase 13 13.1.5.3.1 amino acid 

metabolism.synthesis.

serine-glycine-

cysteine 

group.cysteine.OAST

L 



 

 

 

1
5
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7 Dark Cyan 2 GRMZM2G090338_P01 cl122_1 Sulfite reductase [ferredoxin], 

chloroplastic; Essential protein 

with sulfite reductase activity 

required in assimilatory sulfate 

reduction pathway during both 

primary and secondary 

metabolism and thus involved 

in development and growth 

14 14.3 S-assimilation.sulfite 

redox 

8 Cornflower 

Blue 

2 GRMZM2G017110_P01 100501579 Glutamate decarboxylase; 

Uncharacterized protein ; 

Belongs to the group II 

decarboxylase family 

13 13.1.1.1.1 amino acid 

metabolism.synthesis.

central amino acid 

metabolism.GABA.G

lutamate 

decarboxylase 

8 Cornflower 

Blue 

2 GRMZM2G098875_P02 100381655 Glutamate decarboxylase; 

Belongs to the group II 

decarboxylase family 

13 13.1.1.1.1 amino acid 

metabolism.synthesis.

central amino acid 

metabolism.GABA.G

lutamate 

decarboxylase 

9 Blue 2 AC155622.2_FGP004 100192909 Coatomer subunit alpha-1 31 31.4 cell.vesicle transport 

9 Blue 2 GRMZM2G000645_P01 103638095 Coatomer subunit beta'; The 

coatomer is a cytosolic protein 

complex that binds to dilysine 

motifs and reversibly 

associates with Golgi non- 

clathrin-coated vesicles, which 

further mediate biosynthetic 

protein transport from the ER, 

via the Golgi up to the trans 

Golgi network. Coatomer 

complex is required for 

budding from Golgi 

membranes, and is essential for 

the retrograde Golgi-to-ER 

transport of dilysine-tagged 

proteins 

31 31.4 cell.vesicle transport 

Unconnected NA NA GRMZM2G004138_P01 pco117754 Caffeoyl-CoA O-

methyltransferase 1 

16 16.2.1.6 secondary 

metabolism.phenylpr

opanoids.lignin 



 

 

 

1
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biosynthesis.CCoAO

MT 

Unconnected NA NA GRMZM2G007791_P01 ago2a Argonaute2a; Belongs to the 

argonaute family 

27 27.3.36 RNA.regulation of 

transcription.Argonau

te 

Unconnected NA NA GRMZM2G008410_P01 542422 Protein BTR1; Transcribed 

sequence 1087 protein; 

Uncharacterized protein 

27 27.4 RNA.RNA binding 

Unconnected NA NA GRMZM2G014788_P01 100384763 Carbohydrate-binding-like fold 35 35.2 not 

assigned.unknown 

Unconnected NA NA GRMZM2G018950_P01 100273121 annotation not available 29 29.5.5 protein.degradation.s

erine protease 

Unconnected NA NA GRMZM2G019404_P01 mha2 Plasma membrane ATPase 34 34.1 transport.p- and v-

ATPases 

Unconnected NA NA GRMZM2G020523_P01 100272496 Peroxidase 2 ; Belongs to the 

peroxidase family. Classical 

plant (class III) peroxidase 

subfamily 

26 26.12 misc.peroxidases 

Unconnected NA NA GRMZM2G020661_P01 100284756 Ras protein Rab11B; Ras-

related protein Rab11B; 

Uncharacterized protein 

30 30.5 signalling.G-proteins 

Unconnected NA NA GRMZM2G025215_P01 cl31807_1 Putative DUF1421 domain 

family protein 

27 27.3.30 RNA.regulation of 

transcription.Trihelix, 

Triple-Helix 

transcription factor 

family 

Unconnected NA NA GRMZM2G029543_P01 pco095766 Malonyl CoA-acyl carrier 

protein transacylase 

11 11.1.2 lipid metabolism.FA 

synthesis and FA 

elongation.Acetyl 

CoA Transacylase 

Unconnected NA NA GRMZM2G031859_P01 cl19897_1 Exosome complex exonuclease 

RRP44 homolog A; Belongs to 

the RNR ribonuclease family 

31 31.2 cell.division 

Unconnected NA NA GRMZM2G032766_P01 100279462 Calcium-dependent lipid-

binding (CaLB domain) family 

protein 

20 20.2.2 stress.abiotic.cold 

Unconnected NA NA GRMZM2G033555_P01 GRMZM2G033555_P01 Dihydroflavonol-4-reductase 16 16.8.3 secondary 

metabolism.flavonoid

s.dihydroflavonols 



 

 

 

1
5
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Unconnected NA NA GRMZM2G033641_P01 umc1462 Patellin-1; Putative patellin 

family protein; 

Uncharacterized protein 

34 34.99 transport.misc 

Unconnected NA NA GRMZM2G034069_P01 100192966 NAD(P)-binding Rossmann-

fold superfamily protein 

16 16.8.3 secondary 

metabolism.flavonoid

s.dihydroflavonols 

Unconnected NA NA GRMZM2G039886_P01 GRMZM2G039886_P01 HSP40/DnaJ peptide-binding 

protein; DnaJ subfamily B 

member 5; Uncharacterized 

protein 

20 20.2.1 stress.abiotic.heat 

Unconnected NA NA GRMZM2G043198_P01 pdh2 Pyruvate dehydrogenase E1 

component subunit beta; The 

pyruvate dehydrogenase 

complex catalyzes the overall 

conversion of pyruvate to 

acetyl-CoA and CO2 

8 8.1.1.1 TCA / org. 

transformation.TCA.

pyruvate DH.E1 

Unconnected NA NA GRMZM2G048324_P01 nrx1 Nucleoredoxin1 35 35.2 not 

assigned.unknown 

Unconnected NA NA GRMZM2G051050_P01 GRMZM2G051050_P01 Ypt/Rab-GAP domain of 

gyp1p superfamily protein 

30 30.5 signalling.G-proteins 

Unconnected NA NA GRMZM2G051219_P01 bf1 Blue fluorescent1 13 13.1.6.5.2 amino acid 

metabolism.synthesis.

aromatic 

aa.tryptophan.anthran

ilate 

phosphoribosyltransf

erase 

Unconnected NA NA GRMZM2G054300_P04 103639279 APx1-Cytosolic Ascorbate 

Peroxidase ; Belongs to the 

peroxidase family 

21 21.2.1 redox.ascorbate and 

glutathione.ascorbate 

Unconnected NA NA GRMZM2G059299_P01 100382042 G-type lectin S-receptor-like 

serine/threonine-protein kinase 

SD2-5; Putative D-mannose 

binding lectin domain related 

protein; Uncharacterized 

protein 

26 26.16 misc.myrosinases-

lectin-jacalin 
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Unconnected NA NA GRMZM2G060702_P02 ADF3 Actin-depolymerizing factor 3; 

Actin-depolymerizing protein. 

Severs actin filaments (F- 

actin) and binds to actin 

monomers 

31 31.1 cell.organisation 

Unconnected NA NA GRMZM2G061662_P01 100193236 NEDD8-activating enzyme E1 

regulatory subunit; Regulatory 

subunit of the dimeric E1 

enzyme. E1 activates 

RUB1/NEDD8 by first 

adenylating its C-terminal 

glycine residue with ATP, 

thereafter linking this residue 

to the side chain of the 

catalytic cysteine, yielding a 

RUB1-ECR1 thioester and free 

AMP. E1 finally transfers 

RUB1 to the catalytic cysteine 

of RCE1 

29 29.5.11.2 protein.degradation.u

biquitin.E1 

Unconnected NA NA GRMZM2G061900_P01 100272423 Ras-related protein ARA-3; 

Uncharacterized protein 

30 30.5 signalling.G-proteins 

Unconnected NA NA GRMZM2G067225_P01 aos1 Allene oxide synthase1; 

Putative cytochrome P450 

superfamily protein; 

Uncharacterized protein 

17 17.7.1.3 hormone 

metabolism.jasmonat

e.synthesis-

degradation.allene 

oxidase synthase 

Unconnected NA NA GRMZM2G072240_P02 100383183 Carboxypeptidase; Belongs to 

the peptidase S10 family 

29 29.5.5 protein.degradation.s

erine protease 

Unconnected NA NA GRMZM2G075655_P01 GRMZM2G075655_P01 Myosin heavy chain-related 31 31.1 cell.organisation 

Unconnected NA NA GRMZM2G080542_P01 gpm703 Protein arginine N-

methyltransferase PRMT10; 

Belongs to the class I-like 

SAM-binding 

methyltransferase superfamily. 

Protein arginine N- 

methyltransferase family 

26 26.6 misc.O-methyl 

transferases 

Unconnected NA NA GRMZM2G081037_P01 100273215 Metal-dependent protein 

hydrolase 

35 35.2 not 

assigned.unknown 
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Unconnected NA NA GRMZM2G083810_P01 hsp18f 17.5 kDa class II heat shock 

protein 

20 20.2.1 stress.abiotic.heat 

Unconnected NA NA GRMZM2G093405_P05 cl7341_1a Uncharacterized protein 35 35.2 not 

assigned.unknown 

Unconnected NA NA GRMZM2G100288_P01 100274007 Receptor-like protein kinase 

FERONIA; Belongs to the 

protein kinase superfamily 

30 30.2.16 signalling.receptor 

kinases.Catharanthus 

roseus-like RLK1 

Unconnected NA NA GRMZM2G103771_P01 gpm462 Stress-inducible membrane 

pore protein 

29 29.3.2 protein.targeting.mito

chondria 

Unconnected NA NA GRMZM2G107665_P01 GRMZM2G107665_P01 Aminomethyltransferase 35 35.2 not 

assigned.unknown 

Unconnected NA NA GRMZM2G107984_P02 100501766 DEAD-box ATP-dependent 

RNA helicase 53 

27 27.1.2 RNA.processing.RN

A helicase 

Unconnected NA NA GRMZM2G111143_P01 pco087970b Glycosyl hydrolase 

superfamily protein; Belongs 

to the glycosyl hydrolase 17 

family 

26 26.4.1 misc.beta 1,3 glucan 

hydrolases.glucan 

endo-1,3-beta-

glucosidase 

Unconnected NA NA GRMZM2G116087_P01 cmu1 Chorismate mutase; 

Uncharacterized protein 

13 13.1.6.2.1 amino acid 

metabolism.synthesis.

aromatic 

aa.phenylalanine and 

tyrosine.chorismate 

mutase 

Unconnected NA NA GRMZM2G116258_P01 100193482 Putative glutamate-1-

semialdehyde 2,1-aminomutase 

family protein; 

Uncharacterized protein ; 

Belongs to the class-III 

pyridoxal-phosphate-dependent 

aminotransferase family 

19 19.3 tetrapyrrole 

synthesis.GSA 

Unconnected NA NA GRMZM2G119146_P01 GRMZM2G119146_P01 Uncharacterized protein 27 27.4 RNA.RNA binding 

Unconnected NA NA GRMZM2G124047_P01 IDP706 Putative serine peptidase S28 

family protein 

29 29.5 protein.degradation 

Unconnected NA NA GRMZM2G124365_P01 GRMZM2G124365_P01 Chorismate mutase; 

Uncharacterized protein 

13 13.1.6.2.1 amino acid 

metabolism.synthesis.

aromatic 

aa.phenylalanine and 
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tyrosine.chorismate 

mutase 

Unconnected NA NA GRMZM2G126002_P01 pco064579 Putative oxidoreductase, 

aldo/keto reductase family 

protein 

17 17.2.3 hormone 

metabolism.auxin.ind

uced-regulated-

responsive-activated 

Unconnected NA NA GRMZM2G133407_P04 pco095801 Soluble epoxide hydrolase 26 26.1 misc.misc2 

Unconnected NA NA GRMZM2G141704_P01 GRMZM2G141704_P01 ECA1 (ER-TYPE CA2+-

ATPASE 1) 

34 34.21 transport.calcium 

Unconnected NA NA GRMZM2G151734_P01 pco101658 Haloacid dehalogenase-like 

hydrolase (HAD) superfamily 

protein 

33 33.99 development.unspecif

ied 

Unconnected NA NA GRMZM2G153823_P01 IDP1950 Putative 14-3-3 protein ; 

Belongs to the 14-3-3 family 

30 30.7 signalling.14-3-3 

proteins 

Unconnected NA NA GRMZM2G154687_P01 GRMZM2G154687_P01 Phospholipase A1-IIgamma; 

Triacylglycerol lipase; 

Uncharacterized protein 

11 11.9.2.1 lipid metabolism.lipid 

degradation.lipases.tri

acylglycerol lipase 

Unconnected NA NA GRMZM2G161905_P01 gst25 Glutathione S-transferase GST 

25 

26 26.9 misc.glutathione S 

transferases 

Unconnected NA NA GRMZM2G169384_P01 100282986 Multiple organellar RNA 

editing factor 8 

chloroplastic/mitochondrial 

33 33.99 development.unspecif

ied 

Unconnected NA NA GRMZM2G173341_P01 100285211 Putative UDP-arabinopyranose 

mutase 5 

10 10.5.5 cell wall.cell wall 

proteins.RGP 

Unconnected NA NA GRMZM2G176595_P01 pco112411b Beta-expansin 1a; Beta-

expansin 6; Uncharacterized 

protein ; Belongs to the 

expansin family 

10 10.7 cell wall.modification 

Unconnected NA NA GRMZM2G177928_P01 GRMZM2G177928_P01 Strictosidine synthase; 

Uncharacterized protein 

16 16.4.1 secondary 

metabolism.N 

misc.alkaloid-like 

Unconnected NA NA GRMZM2G179797_P03 cl891_1a Threonine synthase; 

Uncharacterized protein 

13 13.1.3.2.1 amino acid 

metabolism.synthesis.

aspartate 

family.threonine.thre

onine synthase 
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Unconnected NA NA GRMZM2G180335_P01 100279900 Dynamin-related protein 3A; 

Belongs to the TRAFAC class 

dynamin-like GTPase 

superfamily. 

Dynamin/Fzo/YdjA family 

26 26.17 misc.dynamin 

Unconnected NA NA GRMZM2G181018_P01 100281165 Arabinogalactan protein 35 35.2 not 

assigned.unknown 

Unconnected NA NA GRMZM2G307992_P03 IDP643 Uncharacterized protein 35 35.2 not 

assigned.unknown 

Unconnected NA NA GRMZM2G316362_P02 cl27608_1 Acyl-desaturase; 

Uncharacterized protein 

11 11.1.15 lipid metabolism.FA 

synthesis and FA 

elongation.ACP 

desaturase 

Unconnected NA NA GRMZM2G341729_P01 GRMZM2G341729_P01 USP family protein 20 20.2.2 stress.abiotic.cold 

Unconnected NA NA GRMZM2G428096_P01 GRMZM2G428096_P01 annotation not available 34 34.21 transport.calcium 

Unconnected NA NA GRMZM2G458549_P01 pco060326 Galactokinase 3 3.8.1 minor CHO 

metabolism.galactose

.galactokinases 

Unconnected NA NA GRMZM2G589579_P01 100381552 Argonaute4a; Putative 

argonaute family protein; 

Uncharacterized protein ; 

Belongs to the argonaute 

family 

27 27.3.36 RNA.regulation of 

transcription.Argonau

te 

Unconnected NA NA GRMZM2G701221_P01 AY104923 ER6 protein 20 20.2.99 stress.abiotic.unspecif

ied 

Unconnected NA NA GRMZM5G800842_P01 100382860 Ubiquitin-activating enzyme 

E1 2 

29 29.5.11.2 protein.degradation.u

biquitin.E1 

Unconnected NA NA GRMZM5G825524_P01 GRMZM5G825524_P01 Vacuolar protein sorting-

associated protein 35; Plays a 

role in vesicular protein sorting 

29 29.3.4.3 protein.targeting.secr

etory 

pathway.vacuole 

Unconnected NA NA GRMZM5G833625_P01 GRMZM5G833625_P01 Uncharacterized protein 35 35.2 not 

assigned.unknown 

Unconnected NA NA GRMZM5G835704_P01 100282630 VIP1 protein 35 35.2 not 

assigned.unknown 
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CHAPTER 4: CONCLUSION AND FUTURE WORKS 

Summary/Conclusion  

Seeds are an important source of both calories and proteins. However, seeds of 

major staple crops are deficient in one or more of the essential amino acids that we do not 

synthesize in our bodies and must obtain from diet. Prolonged deficiency of these EAA 

can lead to severe malnutrition to both humans and livestock. One of the sustainable 

approaches to tackle this issue is through seed amino acid biofortification. Hence, to do 

so, we need to better understand the genetic architecture and regulation of absolute seed 

amino acid levels and relative composition (both PBAAs and FAAs). Maize is the most 

productive crop in terms of yield per acreage around the world and is used as both food 

and fiber. The major objective of this research was to identify the key genes that shape 

both PBAAs and FAAs in maize kernels by harnessing natural variation as well as 

analysis of proteomic dynamics of maize kernel developmental series.  

In this study, I first performed GWAS studies on 76 PBAAs related traits 

measured and calculated from dry kernels of the 282 maize association panel grown in 

multiple years and extracted the first candidate gene list. I then compared the candidate 

genes list in the first analysis to a second one generated by an association analysis 

between the proteomic expression data and the PBAA composition. This association 

demonstrated the novel finding on the translational switch during seed maturation which 

might be contributing to the PBAA dynamics in seed. Integration of these two approaches 

yielded 80 high confidence candidate genes (HCCG). Functional analysis of these 80 

PBAA HCCG revealed several previously studied and well characterized genes such as 

storage proteins, cell vesicle transport, sulfur assimilation and amino acid, lipid, and 



 

162 

 

CHO metabolic pathway genes. Using the integrative omics approach, I ranked these 80 

PBAA HCCG genes and found that 27kD y zeins and 50kD y zeins, two well 

characterized genes that have been postulated to play roles in initiation and filling of seed 

storage proteins, were the most highly ranked genes. The latter supported the validity of 

my approach and reinforced my novel finding that strongly indicated that the translational 

machinery especially, ribosomal protein heterogeneity may be in the heart of the 

mechanism shaping the PBAA composition. 

Using the same pipeline as PBAA, I performed GWAS on 109 FAAs related traits 

measured and calculated from dry kernels of the 282 maize association panel grown in 

multiple years with multiple replications and extracted the first candidate gene list. As 

stated before, I compared that list to a second candidate gene list generated from an 

association analysis between the proteomic expression data and both FAA absolute levels 

and composition quantified from a B73 maturation developmental series. When 

comparing the candidate gene lists from the two approaches, I found 120 HCCG for 

FAA. Functional analysis of the 120 FAA HCCG revealed previously characterized 

genes and biological processes such as RNA transcription, TCA cycle related genes, 

lipid, CHO and amino acid metabolism and cell vesicle transport. Interestingly, my result 

in FAA analysis again highlighted the role of translational machinery especially RPs gene 

cluster indicating its roles in shaping the FAA regulation and homeostasis in seeds.  

The FAA study indicated that FAA are more complex than PBAA which may be 

due to the multi-faceted roles of FAA in central metabolism. Therefore, it might prove 

more beneficial to analyze each amino acid family separately.  This will help to reduce 

the data complexity and better interpret the results. 
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Interestingly, this study revealed a novel interconnected cluster dominated by 

translational machinery genes, especially RP, for both FAA and PBAA, supporting the 

key role of translation dynamics in shaping both seed PBAA and FAA composition. My 

findings suggest that novel seed biofortification strategies, which target translational 

machinery dynamics should be considered and further explored. My study also suggests 

that some biological processes such as protein metabolism and translation shape both 

PBAA and FAA regulations.  However, further analysis on the similarity and difference 

between the two genetic architectures and their relationships is still required.  

Future work 

In this study, I have identified key processes that are involved in shaping amino 

acid metabolism as well as multiple high confidence candidate genes. Nevertheless, 

additional analysis is needed to evaluate their role in shaping amino acid composition in 

seeds. Below, I suggest several follow up studies that could facilitate this goal.  

Functional analysis of selected candidate genes using reverse and forward genetics 

approaches  

One of the traditional approaches and the most common to test gene functionality 

is by either knocking out or overexpressing genes of interest. Since my study has shown 

the strong implications of the ribosomal proteins, I suggest that overexpression of 

selected HCCG RP that are down regulated during seed maturation under either 

constitutive or seed specific promoters. These specific alterations can help uncover their 

role in the proteome and amino acid composition in the dry seed. A complementary 

approach that could also shed some light on the ribosomal protein heterogeneity role in 
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seeds can include reverse genetic approach that include knock out of selected ribosomal 

proteins. 

Similar approaches can be applied to several EIFs candidate genes that were 

revealed in my PBAA (eIF3) and FAA (eIF2α, eIF2β and eIF3). Previous studies has 

reported that the elongation factor 1a (EF-1α) mRNA concentration is highly correlated 

with the lysine content in maize endosperm of W64Ao2 plants compared with its normal 

wild type counterpart  (Habben, Moro, Hunter, Hamaker, & Larkins, 1995; Jia et al., 

2013), while there are no studies for other eIFs relationships with amino acids as far as I 

know.  

Analysis of translational switch during seed maturation using Ribo-seq approaches 

 My study suggests that a translational switch may occur during seed maturation 

and it could be one of the factors determining PBAA composition in seeds. I hypothesize 

that this switch may be part of a global translational reprogramming or a more specific 

translational switch. Analyzing the translational event during seed maturation can be 

done using methods such Ribo-Seq that helps determine the translated transcripts and 

their translational efficacy. 

Integrating an additional orthogonal dataset extracted from SSP mutants   

During my study here, in addition to B73 inbred line, I have also generated FAA 

and PBAA metabolic data from 10 different seed filling stages of the opaque2 mutant in 

the B73 background (o2/B73), as well as their proteomics data using shotgun sequencing. 

I suggest that we can integrate as well as compare the metabolic and proteomic 
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expressions of o2/B73 mutant with the wild B73 to further narrow the candidate gene lists 

that regulate amino acid composition in maize kernels. 

Preforming multivariate GWAS on both FAA and PBAA 

 In this study, I performed univariate GWAS for both PBAA and FAA. However, 

my correlation analysis of the absolute levels of both PBAA and FAA shows that these 

traits strongly correlates with each other (PBAA among themselves, FAA among 

themselves). Multivariate approach was shown to be more powerful to tackle dependent 

traits (Pitchers et al., 2017; Zhu & Zhang, 2009).  

Uncovering the relationship between genetic relationship between PBAA and FAA 

 Although, FAA contributes only ~1-10% of total amino acid pools, it is one of the 

most important precursors for the protein bound amino acids. However, not much is 

known on the inter-regulation of these two AA pools, especially in seeds. It would be 

interesting to know if there are any common master regulators that can influence both 

PBAA and FAA in seeds. A preliminary study can be done by overlapping the HCCG 

from PBAA and FAA and identify the overlapped genes between the two and later use 

cloning to understand the gene/s specific role in regulating both free and bound amino 

acid. 

 The research project in my dissertation and its future works holds a tremendous 

potential for the development of nutritious and balanced maize kernels and hence could 

be used to mitigate the malnutrition in both human and livestock around the world. There 

has been a wealth of metabolic data generated for 282 maize association panel and both 

metabolic and proteomic data generated for 10 different seed filling stages of wild B73 
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and o2/B73 mutant, which will be made available to public and could be used by 

students, faculties, industries, and plant breeders. I believe that the findings from my 

research would open new avenues towards developing and breeding quality maize 

protein. 
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Appendix 

Supplementary dataset for Chapter 2 and Chapter 3 can be found at 

https://missouri.box.com/s/7igm6gjbsf0tbbgn8bin8dz63af9alc4  
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