Economics of Manure Management

Ray Massey
Ecenomist

UNvisgIT or mssouri

y Extension

COMMERCIAL AGRICULTURE

Economic Decisions Consider NET VALUE

Gross Value

- Cost

Net Value

Value can be revenue or a cost offset

UNvisgIT or misouri

Critical Costs

- Financial Costs
- Application Costs
- Storage Costs
- Time Requirements
- Land Requirements

Managing Manure Cost

- Objective: minimize the cost of storage and land application.
- Decision: store in an inexpensive structure that dissipates nutrients - lagoon.
- Result: lose valuable plant nutrients while increasing volume.
- Ask your boss for a pay cut so you won't have to pay as much tax!

Managing Manure Costs

- Objective: Minimize transportation cost.
- Decision: apply manure to the closest land.
- Result: P and K overloading so that the value of P and K is lost.
- Drive 1 mile to the track to jog 1 mile.

UNvisgIT or mssouri
 y Extension

COMMERCIAL AGRICULTURE

Financial Objective: Increase Net Value

Gross Value

D

?
II

- Cost
 -

Net Value

UNvisgIT or misouri

Critical Value Factors

- Valuation Choice
- Marketing Strategy
- Soil Fertility
- Cropping System

Valuation Choice: Dollars/Acre

Nutrient	Manure Supplied Nutrients		Commercial Fertilizer \$/acre ${ }^{1}$
	\$/1000	\$/acre @ 4K	
	gallons	gallons/acre	
Available N	\$20.00	\$80.00	\$80.00
$\mathrm{P}_{2} \mathrm{O}_{5}$	\$18.88	\$75.52	\$32.45
$\mathrm{K}_{2} \mathrm{O}$	\$11.60	\$46.40	\$18.00
Total Value	\$50.48	\$238.80	\$130.45
1. $\mathrm{N}=160 \mathrm{lbs}$. @ \$.50; P2O5 = 50 lbs . @ \$.59; $\mathrm{K} 20=40 \mathrm{lbs} . @ \$.40$			

Marketing Strategy: Mult-year Fertility

Manure Supplied

 Nutrients
\$/1000 \$/acre @ 4K

Commercial Nutrient gallons gallons/acre Fertilizer \$/acre ${ }^{1}$

Available N	$\$ 20.00$	$\$ 80.00$	$\$ 80.00$
$\mathrm{P}_{2} \mathrm{O}_{5}$	$\$ 18.88$	$\$ 75.52$	$\$ 32.45$
$\mathrm{~K}_{2} \mathrm{O}$	$\$ 11.60$	$\$ 46.40$	$\$ 18.00$
Total Value	$\$ 50.48$	$\mathbf{\$ 2 3 8 . 8 0}$	$\mathbf{\$ 1 3 0 . 4 5}$

1. $\mathrm{N}=160 \mathrm{lbs}$. @ \$.50; P2O5 = 50 lbs . @ \$.59;
$\mathrm{K} 20=40 \mathrm{lbs}$. @ $\$.40$

Transportation Cost

Transportation Cost (\$/hr) Road travel speed (mph)
\$180 Tank Capacity (gallons) 6000
Cost/1000 gallons/mile \$3.00

Application rate (gal/ac) 4000 Cost/acre/mile

Valuation Choice: Dollars/Acre

Nutrient	Manure Supplied Nutrients		Commercial Fertilizer \$/acre ${ }^{1}$	Difference
	\$/1000 gallons	\$/acre @ 4K gallons/acre		
Available N	\$20.00	\$80.00	\$80.00	\$0.00
$\mathrm{P}_{2} \mathrm{O}_{5}$	\$18.88	\$75.52	\$32.45	\$43.07
$\mathrm{K}_{2} \mathrm{O}$	\$11.60	\$46.40	\$18.00	\$28.40
Total Value	\$50.48	\$238.80	\$130.45	\$71.47
1. $\mathrm{N}=160$ $\mathrm{K} 20=40 \mathrm{lbs}$	bs. @ \$.50; @ $\$.40$	$\mathrm{P} 2 \mathrm{O} 5=50 \mathrm{lbs} .$	@ \$.59;	

Capture Full Value:
$\$ 71.47 \div \$ 12 /$ acre-mile $=6$ miles

Valuation Choice: Dollars/Acre

Nutrient	Manure Supplied Nutrients		Commercial Fertilizer \$/acre ${ }^{1}$	Difference
	$\$ / 1000$ gallons	\$/acre @ 4K gallons/acre		
Available N	\$20.00	\$80.00	\$80.00	\$0.00
$\mathrm{P}_{2} \mathrm{O}_{5}$	\$18.88	\$75.52	\$32.45	\$43.07
$\mathrm{K}_{2} \mathrm{O}$	\$11.60	\$46.40	\$18.00	\$28.40
Total Value	\$50.48	\$238.80	\$130.45	\$71.47
1. $\mathrm{N}=160$ $\mathrm{K} 20=40 \mathrm{lbs}$	bs. @ \$.50; @ $\$.40$	$\mathrm{P} 2 \mathrm{O} 5=50 \mathrm{lbs} .$	@ \$.59;	

Capture P Value (if current land needs no P): $\$ 75.52 \div \$ 12 /$ acre-mile = additional 6.3 miles

Increase Net Value by Selecting Soils that Need P

Gross Value

- Cost

Net Value

1
1

COMMERCIAL AGRICULTURE

Cropping System

- Apply to crops needing N.
- Apply all needed N to eliminate commercial N fertilizer application cost.
- Apply multiple years of P and K. Don't reapply until P and K needed again.
- Apply to cropping systems that remove lots of nutrients and have high value.

Increase Net Value by Selecting Soils that Need P

Gross Value

- Cost

Net Value
$\frac{\sim}{4}$

Storage Costs - Lagoon

- Least cost of construction
- Least cost of application - irrigation
- Fewest nutrients to apply
- Stores P for later application
- Ideal for predominately pork producer; not necessarily ideal for integrated crop/pork producer.

Increase Net Value by Selecting Soils that Need P

Gross Value

- Cost

Net Value
\uparrow
1

Storage Costs - Slurry

- Greatest crop nutrient value
- Higher application costs - tanker or dragline
- Ideal for integrated crop/swine producer

Increase Net Value by Selecting Soils that Need P

Gross Value

- Cost

Net Value

1
1

UNvisgIT or mssouri

y Extension

COMMERCIAL AGRICULTURE

Cost Reduction Stategies

- Reduce bulk from water
- Wet-dry feeders
- Water management
- Cover storage
- Reduce travel by piping or larger tankers.

UNvissITY OF Mssourn

y Extension

COMMERCIAL AGRICULTURE

Opportunity Cost - Time

- Machinery
- Custom hire or Owned
- Single or multiple pieces
- Integrated crop/livestock producer can spread costs of equipment over more enterprises.
- Livestock producer is constrained by the willingness of crop producer to accept manure.

Opportunity Cost - Time

- Machinery: Pipe or tanker
- Machinery: Speeds and application rates
- Cropping system adoptions
- Delay spring planting?
- Wheat?
- Application limits and resulting rates.

y Extension

Application Limits - Time Costs

Application Limit	Cost	Application Time	
	Dollars per 1000 gallons	Minutes per AU	Hours per $1000 ~ A U ~$
Annual N Removal	$\$ 13.04$	10.6	175
Annual P Removal	$\$ 18.54$	15.0	250
4-year P Removal	$\$ 15.02$	13.1	220

UNvissITY OF Mssourn

Land Cost - Slurry

- Corn-Soybean rotation - N supplied in corn year; P for both corn and soybean
- 4800 head wean-finish operation needs 800 to 1200 acres
- 4800 head grow-finish operation needs 1000 to 1600 acres

COMMERCIAL AGRICULTURE

Land Tenure and Net Income

- Fertilizer value is optimized when put on land the producer controls (owns or rents).
- Implication: animal production will become reintegrated with crop production

UNIVERSITY OF MISSOURI

y Extension

COMMERCIAL AGRICULTURE

Summary:

 Focus on Net Value
Gross Value

> - Cost
> Net Value

New Resources

- Extension website: www.extension.org/pages/Manure_Value_ and_Economics_Articles
- Business Arrangements for Manure Offsite Transfer
- Cost of Manure Application and Transport
- Manure as a Source of Crop Nutrients and Soil Amendment
- Value of Manure as an Energy Source

COMMERCIAL AGRICULTURE

Manure Spreadsheets

- Manure Worth Spreadsheet
- www.apec.umn.edu/faculty/wlazarus/ interests_manureworth.html
- Feed Nutrient Management Planning Economics
- www.puyallup.wsu.edu/dairy/nutrientmanagement/software.asp

Economics of Manure Management

Ray Massey
Ecenomist

