

Economic Decisions Consider NET VALUE

Gross Value

- Cost

Net Value

Value can be revenue or a cost offset

Critical Costs

- Financial Costs
 - Application Costs
 - Storage Costs
- Time Requirements
- Land Requirements

Managing Manure Cost

- Objective: minimize the cost of storage and land application.
- Decision: store in an inexpensive structure that dissipates nutrients – lagoon.
- Result: lose valuable plant nutrients while increasing volume.
- Ask your boss for a pay cut so you won't have to pay as much tax!

Managing Manure Costs

- Objective: Minimize transportation cost.
- Decision: apply manure to the closest land.
- Result: P and K overloading so that the value of P and K is lost.
- Drive 1 mile to the track to jog 1 mile.

Financial Objective: Increase Net Value

Gross Value

- Cost

Net Value

Critical Value Factors

- Valuation Choice
- Marketing Strategy
- Soil Fertility
- Cropping System

Valuation Choice: Dollars/Acre

	Manure Nut	Commercial			
	\$/1000	\$/acre @ 4K	Fertilizer		
Nutrient	gallons	gallons/acre	\$/acre ¹		
Available N	\$20.00	\$80.00	\$80.00		
P_2O_5	\$18.88	\$75.52	\$32.45		
K ₂ O	\$11.60	\$46.40	\$18.00		
Total Value	\$50.48	\$238.80	\$130.45		
1. N = 160 lbs. @ \$.50; P2O5 = 50 lbs. @ \$.59; K20 = 40 lbs. @ \$.40					

Marketing Strategy: Mult-year Fertility

	Manure Nut	Commercial		
Nutrient	\$/1000 gallons	\$/acre @ 4K gallons/acre	Fertilizer \$/acre ¹	
Available N	\$20.00	\$80.00	\$80.00	
P_2O_5	\$18.88			
K_2O	\$11.60	\$46.40	\$18.00	
Total Value	\$50.48	\$238.80	\$130.45	
1. N = 160 lbs. @ \$.50; P2O5 = 50 lbs. @ \$.59; K20 = 40 lbs. @ \$.40				

Transportation Cost

Transportation Cost (\$/hr)	\$180
Road travel speed (mph)	10
Tank Capacity (gallons)	6000
Cost/1000 gallons/mile	\$3.00
Application rate (gal/ac)	4000
Cost/acre/mile	\$12.00

Valuation Choice: Dollars/Acre

	Manure Supplied Nutrients		Commorcial	
Nutrient	\$/1000 gallons	\$/acre @ 4K gallons/acre	Commercial Fertilizer \$/acre ¹	Difference
Available N	\$20.00	\$80.00	\$80.00	\$0.00
P ₂ O ₅	\$18.88	\$75.52	\$32.45	\$43.07
K ₂ O	\$11.60	\$46.40	\$18.00	\$28.40
Total Value	\$50.48	\$238.80	\$130.45	\$71.47
1. $N = 160$ K20 = 40 lbs		P205 = 50 lbs.	@ \$.59;	

Capture Full Value: \$71.47 ÷ \$12/acre-mile = 6 miles

Valuation Choice: Dollars/Acre

	Manure Supplied Nutrients		Commoraial	
Nutrient	\$/1000 gallons	\$/acre @ 4K gallons/acre	Commercial Fertilizer \$/acre ¹	Difference
Available N	\$20.00	\$80.00	\$80.00	\$0.00
P_2O_5	\$18.88	\$75.52	\$32.45	\$43.07
K ₂ O	\$11.60	\$46.40	\$18.00	\$28.40
Total Value	\$50.48	\$238.80	\$130.45	\$71.47
1. $N = 160$ K20 = 40 lbs		P2O5 = 50 lbs.	@ \$.59;	

Capture P Value (if current land needs no P): \$75.52 ÷ \$12/acre-mile = additional 6.3 miles

Increase Net Value by Selecting Soils that Need P

Gross Value

- Cost

Net Value

Cropping System

- Apply to crops needing N.
- Apply all needed N to eliminate commercial N fertilizer application cost.
- Apply multiple years of P and K. Don't reapply until P and K needed again.
- Apply to cropping systems that remove lots of nutrients and have high value.

Increase Net Value by Selecting Soils that Need P

Gross Value

- Cost

Storage Costs - Lagoon

- Least cost of construction
- Least cost of application irrigation
- Fewest nutrients to apply
- Stores P for later application
- Ideal for predominately pork producer; not necessarily ideal for integrated crop/pork producer.

Increase Net Value by Selecting Soils that Need P

Gross Value

- Cost

Net Value

Storage Costs - Slurry

- Greatest crop nutrient value
- Higher application costs tanker or dragline
- Ideal for integrated crop/swine producer

Increase Net Value by Selecting Soils that Need P

Gross Value

- Cost

Net Value

Cost Reduction Stategies

- Reduce bulk from water
 - Wet-dry feeders
 - Water management
 - Cover storage
- Reduce travel by piping or larger tankers.

Opportunity Cost - Time

- Machinery
 - Custom hire or Owned
 - Single or multiple pieces
- Integrated crop/livestock producer can spread costs of equipment over more enterprises.
- Livestock producer is constrained by the willingness of crop producer to accept manure.

Opportunity Cost - Time

- Machinery: Pipe or tanker
- Machinery: Speeds and application rates
- Cropping system adoptions
 - Delay spring planting?
 - Wheat?
- Application limits and resulting rates.

Application Limits – Time Costs

Application Limit	Cost	Application Time	
	Dollars per 1000 gallons	Minutes per AU	Hours per 1000 AU
Annual N Removal	\$13.04	10.6	175
Annual P Removal	\$18.54	15.0	250
4-year P Removal	\$15.02	13.1	220

Land Cost - Slurry

- Corn-Soybean rotation N supplied in corn year; P for both corn and soybean
 - 4800 head wean-finish operation needs 800 to 1200 acres
 - 4800 head grow-finish operation needs 1000 to 1600 acres

Land Tenure and Net Income

- Fertilizer value is optimized when put on land the producer controls (owns or rents).
- Implication: animal production will become reintegrated with crop production

Summary: Focus on Net Value

Gross Value

- Cost

Net Value

New Resources

- Extension website: www.extension.org/pages/Manure_Value_ and_Economics_Articles
 - Business Arrangements for Manure Offsite
 Transfer
 - Cost of Manure Application and Transport
 - Manure as a Source of Crop Nutrients and Soil Amendment
 - Value of Manure as an Energy Source

Manure Spreadsheets

- Manure Worth Spreadsheet
 - www.apec.umn.edu/faculty/wlazarus/ interests_manureworth.html

- Feed Nutrient Management Planning Economics
 - www.puyallup.wsu.edu/dairy/nutrientmanagement/software.asp

