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ABSTRACT

Scalable Rule Learning (SRLearn) is a scalable divide-and-conquer approach with

graph-based modeling of social media data, to scale up first-order rule learning through

Markov Logic Networks on a commodity cluster on large scale Twitter data. SRLearn

takes advantage of distributed systems to partition large-scale data into smaller but mean-

ingful partitions based on user interaction and incorporates a gradient boosting approach

with a tool called BoostSRL for first-order rule mining. We show how this scalable so-

lution on first order predicates is more accurate and efficient than existing systems, such

as ProbKB (a scalable system to construct probabilistic knowledge base) and XGBoost

(extreme gradient boosting) on relational data.
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CHAPTER 1

INTRODUCTION

Social media has been on the rise for the past few decades, connecting people from

all corners of the world. With platforms like Facebook1, Instagram2, Twitter3, LinkedIn4

etc., people are now spoilt with multiple options on how we choose to communicate

with the world. They rely on these platforms not just to communicate with friends and

family, both near and far, but also to reach out to a much wider audience. People rely

on these channels for a quick mode of communication in terms of conveying personal

life updates, pictures or videos from the latest vacation, political debates on the different

world problems, send out news update, even send out distress signals in hopes to find help,

or even reach out to a larger market for their small businesses. Over the course of time

social media has evolved along with how people choose to communicate. This exchange

of messages can be in various formats: text messages, shared URLs, images, etc.

Despite it’s numerous advantages, social media also evolved into an unreliable

place on the web. Due to constant attacks on social media, the spread of wrong informa-

tion has become very common. Cyber criminals leverage personal information of users,

such as contacts, locations, personal and/or business activities to can either target specific

advertisements towards users or lead to criminal activities in virtual and/or real world. [32]
1www.facebook.com
2www.instagram.com
3www.twitter.com
4www.linked.com
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Furthermore, identity theft is also on the rise where cyber criminals hack into people’s ac-

counts. A Stratecast study showed that 22% of social media users have been victims of

security related attacks. Pony botnet, a controller that is a code for credential theft in Win-

dows machines, affected Facebook, Google, Yahoo and other social media users, stealing

more than 2 million users’ passwords. Facebook estimated that it sees 50-100 million

fake duplicate accounts from it’s monthly active users.

Another kind of social media attack is the ”false flag” attack that tricks users into

revealing private and personal information about themselves. Upon initiating a password

change, the cyber criminals can immediately access the security information of these

users.

It has been time and again seen that misinformation has the potential to create

disruption in an otherwise peaceful society. Continuous investigation is carried out to

understand the motives behind these attacks as well. One of the many trends seen recently

have been the increase in attacks on celebrity and government officials’ social media

accounts by 43% since 2019. [49]. The cyber criminals mostly intend to spread malware

and misinformation through these attacks. In May 2016, the attack on LinkedIn exposed

117 million credentials. Vevo encountered a phishing attack in 2017 and 3.12 terabytes

of sensitive company data was leaked. Slack was hacked in 2017 because of which 0.5

million in Ether coins were stolen. Twitter was hacked in July 2020 and some of the most

influential accounts were used in a bitcoin theft.

Attackers get a financial gain by targeting high-profile individuals. In July 2020,

Twitter employees were targeted through a phishing attack, because of which accounts of

2



Figure 1: Elon Musk’s Twitter account hacked for Bitcoin scam
https://www.theverge.com/2020/7/15/21326200/elon-musk-bill-gates-twitter-hack-bitcoin-scam-compromised

influential people like Barack Obama and Elon Musk were compromised to be used for

bitcoin theft.(Fig. 1).

Because of the global reach of social media, it cybercriminals benefit from it by

targeting a massive audience at once. In early 2020, Roblox5 was hacked and the attackers

took over gaming accounts to spread pro-Trump election propaganda. (Fig. 2). Similary

Reddit6 was under a similar attack in 2020, leading to spread of misinformation about the

US presidential election.

With the global outreach, social media platforms also have the potential to be-

come a new battleground for cyber warfare. Nation-states and state-backed cybercrimi-

nals exploit social media to influence the audience and disrupt political peace in foreign

5https://www.roblox.com/
6https://www.reddit.com/
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Figure 2: Roblox hacked to spread political propaganda
https://www.forbes.com/sites/davidthier/2020/07/05/hackers-are-spreading-trump-propaganda-through-roblox/?sh=537dac0c6aa7
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governments. US government threat intelligence agencies and organizations reported ev-

idence of Russia interfering with the 2016 US presidential election [49] by spreading

misinformation. According to Microsoft, Russia state-backed threat actors are actively

engaging in attacks against campaigns and parties for the 2020 election as well. Vice

Chairman of the Senate Select Committee on Intelligence, Mark Warner, stated at a cyber

security conference that Russia tried to exacerbate the political parties’ divisions to create

disparity by creating fake accounts on social media. Another example of cyber warfare

was in Iran [50],where the killing of Major General Qasem Soleimani, led to sponsoring

social media disinformation campaigns. In December 2019, the National Cybersecurity

Authority of Saudi Arabia declared that Iran was employing Dustman, a new data-wiping

malware, against Bapco, Bahrain’s national oil company. Dustman can disrupt computer

processes and overwrite data on targeted computers. Iran’s abilities to research and target

energy companies in the Middle East, as well as develop new wiper malware, demonstrate

Iran can conduct sophisticated cyber attacks.

Thus, we have seen time and again that the social media platforms are constantly

under attack, it leads to question the truthfulness behind the posts on the platform. One

can also question the path in which this information can travel to reach the targeted audi-

ences. This leads to a system that is capable of navigating the intricacies of social media

to identify such potential threats, before they are conceived in reality. This is a big um-

brella problem, and this dissertation aims to make a small but significant contribution in

addressing the many challenges of social media’s truthfulness.

Furthermore, over billions of users on these platforms, it leads to the increase in

5



the amount of data being generated each minute. With the continuous attack on social

media users, as well as the constant scaling up of data in consideration, this creates a need

for a scalable system that can process the ever increasing size data. Therefore, we start

with one such popular social media, Twitter to address this issue.

In statistical relational learning, a Markov logic network (MLN) [42] is regarded

as one of the most flexible representations as it combines first-order logic and probabilistic

graphical models. First-order logic enables the complexity of the data to be modeled; and

probability allows expressing the uncertainty in the data. An MLN is a knowledge base

(KB) and can model the complex, diverse nature of Twitter posts (a.k.a. tweets) containing

100+ attributes. Once the KB is learned, which includes the first-order rules (or formulas)

and their weights, probabilistic inference can be conducted on the KB to reason about

the content in the posts and users’ behavior. For example, one can compute the marginal

probability of a URL being malicious, a tweet being sensitive, a user account being an

adversary or social bot [46], and so on [45]

Therefore, taking advantage of the popular big data processing tools as well as the

prior work done in the field of first order rule learning, we propose SRLearn(Scalable Rule

Learning) [45] a scalable scales up first order rule learning on large scale Twitter7 data.

The novelty of our approach comes from the way we model the large scale data based

on user interaction on social media. We rely on this logic to create small but meaningful

partitions with the intent of maximum retention of data, implying increase in chances of

learning interesting rules from the data.

7www.twitter.com
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SRLearn comprises of the following steps:

• divide-and-conquer approach to first-order rule learning through parallel and dis-

tributed graph-based modelling of users and the related ground predicates,

• parallel graph-partitioning to create a balanced set of partitions in order to minimize

the chances of missing out on interesting rules, and

• employing first order rule learning through BoostSRL [27] on these partitions.

The remaining chapters describe in details the evolution as well as the implemen-

tation of the system in the following order.

• Data collection: Information regarding the size, domain and additional details,

• Evidence DB generation: Modification of Twitter data into a knowledge base to be

used by SRLearn,

• Experimental setup: System set up for our proposed approach along with the popu-

lar rule learning techniques,

• SRLearn: Our proposed approach with rule learning,

• Rule learning in the absence of SRLearn,

• XGBoost: A very popular machine learning approach suggested in literature that

relies on gradient boosting as well as supports distributed systems, and

• ProbKB: A scalable rule mining method that also supports distributed systems.

7



CHAPTER 2

BACKGROUND

In this chapter, we provide a background on the big data tools that enable large-

scale data processing, the concepts behind first-order logic, Markov Logic, and Markov

Logic Networks.

2.1 Apache Spark

The necessity to analyze the ginormous amounts of data consumed and produced

by industries and research alike led to the development of various big data tools catering

to cluster programming needs. Apache Spark [54] is one such tool that aims at providing a

unified platform for large-scale data processing. Using a common engine, Spark caters to

the diverse workloads such as streaming services through Spark Streaming, SQL queries

through Spark SQL, machine learning capabilities through Spark MLlib, and graph pro-

cessing using GraphX, making it easier and efficient to use. Users are thus able to take

advantage of distributed storage like Hadoop, distributed systems management tools like

Mesos, NoSQL databases like Cassandra, or even relational database management sys-

tems like MySQL from a single API.

As opposed to prior systems of MapReduce [7], which requires data to be brought

8



in and out of the storage to be processed, Spark provides an increased run-time, by allow-

ing processes to manipulate data in memory. Along with the unification of multiple mod-

els, Spark allows writing applications through programming languages like Java, Scala,

Python, R, and SQL.

Each Spark application consists of a driver program that begins with the main

function, triggering parallel processing on a cluster. Spark provides data abstraction

mainly in the form of resilient distributed dataset(RDD), dataframes, and shared variables

such as broadcast variables, that are shipped across tasks in memory and accumulators,

like counters and sums. RDDs are a collection of elements distributed across nodes on a

cluster. Spark follows lazy computation technique, where the RDDs are transformed from

one form to another using transformation functions, but the RDD that users want to work

with, is created when the action function is called. DataFrames are also a distributed col-

lection of data that are equivalent to relational databases or data frames in Python. Thus

this data abstraction enables to run SQL-like queries through Spark SQL in a distributed

environment.

2.2 Hadoop Distributed File System

Apache Hadoop [17] is an open-source distributed framework that allows the pro-

cessing of large data across a cluster and is capable of handling application failures. The

different project components of Hadoop are as follows.

• HDFS: Distributed file system

• MapReduce: Distributed computation network

9



• HBase: Column-oriented distributed database system

• Pig Latin: Data querying language and parallel execution framework

• Hive: Data warehousing tool

• ZooKeeper: Distributed coordination service

• Chukwa: Data management collection system

• Avro: Data serialization system

Hadoop Distributed File System [47](HDFS) is a component of Apache Hadoop

originally developed by Yahoo!. As the name suggests, it is a distributed UNIX-like file

system providing reliable storage. HDFS is capable of scaling from a single computer

to thousands of computers, enabling different industrial use cases and research, without

worrying about node failure or data loss.

HDFS stores data in the form of metadata on a single NameNode, and the actual

data on one or many servers called as DataNodes. To ensure the reliability of the data,

the DataNodes contain replications of the application data. The aggregated file content

in HDFS usually is split into blocks of data, each of which is stored in DataNode. The

NameNode in the HDFS architecture contains information pertaining to the namespace

tree and the mapping of file blocks onto the DataNodes. The NameNode is made aware

of all the participating DataNodes at the time of startup through a handshake mechanism.

It is also aware of the DataNodes in operation at any given point of time, through the

heartbeats that the DataNodes send to the NameNode. If the NameNode does not receive

10



a heartbeat from DataNode for ten minutes, it considers this DataNode to be no longer

in service and initiates the creation of new replicas of the blocks that were on the said

unavailable DataNode.

2.3 First-Order Logic

First-order logic [13] [42] evolved from propositional logic as a more expressive

mechanism of knowledge representation to describe real-world entities and their relation-

ship with each other. As opposed to propositional logic, first-order logic is not restricted

to the facts but also assumes the following.

• Objects: Represent constants (e.g. people: Alice, Bob, Charles) and variables

(e.g. x, y, z) in a domain.

• Relations: Also known as predicates, represent relationships among objects or their

attributes (e.g. Father, Friend, Artist).

• Function: Represent mappings of one object onto another or other tuples of objects

(e.g. FatherOf, RelatedTo).

An atomic sentence is a fundamental sentence in first-order logic, formed using

predicate and one or a group of objects enclosed within parenthesis. Atomic sentence

to represent the relation Alice is a friend of Bob is given by Friend(Alice, Bob).

Atomic sentence to represent the relation Alice is an artist is given by Artist(Alice).

Furthermore, a positive literal is an atom and a negative literal is a negated atom. A ground

predicate is a predicate that does not have any object/term associated with it.
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First-order formula is formed using the atomic sentences connected with logical

connectives and/or quantifiers like conjunction, disjunction, negation, implication, equiv-

alence and universal and existential quantifiers. They are constructed recursively. A set

of first-order formulas is referred to as first-order knowledge base (KB). Fig. 3 shows an

example of predicates, domain and the first-order KB that can be formulated from this

predicates. A formula or a predicate can make a closed-world assumption (CWA), i.e. all

ground predicates that are not known to be true are be false, or an open-world assumption

(OWA), i.e. if unknown, then it may be assumed to be either true or false.

It is not possible to have a complete inference on first-order logic. Therefore,

knowledge bases are usually constructed with only a desirable subset of first-order logic,

in the form of Horn clauses. The first-order logic examples in Fig. 3 are some of the

simplest examples and do not necessarily cover all possible use-cases in that domain.

Often, it is not possible to come up with all possible formulas in a given domain, because

a formula may be true for a subset of the data, and contradict completely for the remaining

subsets. In other words, there exists no measure of gauging the truth of a formula in a

given domain. Therefore, despite the flexibility and ease of expressiveness of first-order

logic, its applicability is limited to practical AI applications. The solution to this problem

is addressed through the probabilistic nature of the Markov Logic Networks described in

the next section.
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Smokes(x)
Cancer(x)
Friends(x,y)

Predicates

x,y:{Alice, Bob, Charles}

Domain

∀x Smoker(x) => Cancer(x)
∀x∀y Friends(x,y) => (Smoker(x)⇔Smoker(y))
∀x Smoker(x)

First-order formulas

Figure 3: First-order logic fundamentals

2.4 Markov Logic Networks

While first-order KB can be understood as hard constraints in a domain, Markov

Logic Networks (MLN) [42] provide a more practical representation of these constraints

through a numeric weight. In other words, when a domain subset contradicts a given first-

order formula, the formula becomes less probable. The more domain subsets that exist

validating with the first-order formula, the more probable it becomes.

Richardson and Domingos [42], and Domingos and Lowd [9] define a Markov

Logic Network as a first-order knowledge base with a weight attached to each formula (or

clause). Together with a set of constants representing objects in the domain, it specifies

a ground Markov network containing one feature for each possible grounding of a first-

order formula in the KB, with the corresponding weight.
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Table 1: Example of a first-order knowledge base and MLN. Fr() is short for
Friends(), Sm() for Smokes(), and Ca() for Cancer()
English First-order logic Weight
Friends of friends are friends ∀x∀y∀zFr(x, y) ∧ Fr(y, z) ⇒

Fr(x, z)
0.7

Friendless people smoke ∀x(¬(∃yFr(x, y))⇒ Sm(x)) 2.3
Smoking causes cancer ∀xSm(x)⇒ Ca(x) 1.5
If two people are friends, either
both smoke or neither does

∀x∀yFr(x, y) ⇒ (Sm(x) ⇔
Sm(y))

1.1

Definition 1. A Markov logic network L is a set of pairs (Fi,wi), where Fi is a formula

in first-order logic and wi is a real number. Together with a finite set of constants C =

{c1, c2, ..., c|C|}, it defines a Markov network ML,C (Equations 1 and 2) as follows.

1. ML,C contains one binary node for each possible grounding of each predicate ap-

pearing in L. The value of the node is 1 if the ground atom is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi in L.

The value of this feature is 1 if the ground formula is true, and 0 otherwise. The

weight of the feature is the wi associated with Fi in L.

An MLN can be viewed as a template for constructing Markov networks. Given

different sets of constants, it will produce different networks, and these may be of widely

varying size, but all will have certain regularities in structure and parameters, given by the

MLN (e.g., all groundings of the same formula will have the same weight). We call each

of these networks a ground Markov network to distinguish it from the first-order MLN.

The graphical structure of ML,C follows from Definition 1: there is an edge between

two nodes of ML,C iff the corresponding ground atoms appear together in at least one
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Friends(A,B)

Friends(A,A) Smokes(A) Smokes(B) Friends(B,B)

Cancer(A) Cancer(B)Friends(B,A)

Figure 4: First-order logic fundamentals

grounding of one formula in L.

Fig. 4 shows the graph of the ground Markov network defined by the last two

formulas in Table 1 and the constants Anna and Bob. Each node in this graph is a ground

atom (e.g., Friends(Anna,Bob)). The graph contains an arc between each pair of

atoms that appear together in some grounding of one of the formulas. ML,C can now be

used to infer the probability that Anna and Bob are friends given their smoking habits,

the probability that Bob has cancer given his friendship with Anna, and whether she has

cancer, etc.

2.5 Relational Dependency Networks

Most relational data sets have instance dependencies. For example, in citation

data [38] there are dependencies among the topics of a paper’s references, and in genomic
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data, there are dependencies among the functions of interacting proteins. This is where

the use of Relational Dependency Networks (RDNs) comes into the picture. RDNs [38]

are graphical models that are capable of expressing and reasoning with such dependencies

in relational data. RDNs can represent and reason with the cyclic dependencies required

to express and exploit auto correlation dependencies. They also offer a relatively sim-

ple method for structure learning and parameter estimation, which results in models that

are easier to understand and estimate.RDNs approximate the full joint distribution and

thus are not guaranteed to specify a consistent probability distribution. The quality of

approximation will be determined by the data available for learning.

Dependency networks [38] are particularly desirable for modeling relational data.

First, learning a collection of conditional models offers significant efficiency gains over

learning a full joint model. This is generally true, but it is even more pertinent to relational

settings where the feature space is very large. Second, networks that are easy to interpret

and understand aid analysts’ assessment of the utility of the relational information. Third,

the ability to represent cycles in a network facilitates reasoning with autocorrelation, a

common characteristic of relational data. In addition, whereas the need for approximate

inference is a disadvantage of DNs for propositional data, due to the complexity of re-

lational model graphs in practice, all PRMs use approximate inference. RDNs are an

extension of dependency networks [19] for relational data.

When modelling relational data, it has three associated graphs: the data graph

GD, the model graph GM and the inference graph GI First, the relational data set is

represented as a typed, attributed data graph GD = (VD,ED). For example, consider the
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Figure 5: Example (a) data graph and (b) model graph
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data graph in Fig. 5a. The nodes VD represent objects in the data (e.g., authors, papers)

and the edges ED represent relations among the objects (e.g. author-of, cities). Each

node vi ∈ VD and edge ej ∈ ED is associated with a type, T (vi) = tvi and T (ej) = tej

(e.g., paper, cited-by). Each item type t ∈ T has a number of associated attributes X t

= (X t
1, ..., X

t
m) (e.g., topic, year). Consequently, each object vi and link ej is associated

with a set of attribute values determined by their type, X tvi
vi = (X

tvi
vi 1, ..., X

tvi
vi m) and X

tej
ej

= (X
tej
ej 1

, ..., X
tej
ej m

).

The dependencies among attributes are represented in the model graph GM =

(VM ,EM ) in Fig. 5b. Attributes of an item can depend probabilistically on other attributes

of the same item, as well as on attributes of other related objects or links in GD. For

example, the topic of a paper may be influenced by the attributes of the authors that wrote

the paper. The relations in GD are used to limit the search for possible statistical depen-

dencies, thus they constrain the set of edges that can appear in GM . In GM , each item

type is represented by a plate, and each attribute of each item type is represented as a

node. Edges characterize the dependencies among the attributes at the type level. The

representation uses a modified plate notation. Dependencies among attributes of the same

object are represented by arcs within a rectangle; arcs that cross rectangle boundaries rep-

resent dependencies among attributes of related objects, with edge labels indicating the

underlying relations. For example, monthi depends on typei, while avgrankj depends on

the typek and topick for all papers k written by author j in GD.

The graphical representation illustrates the qualitative component (GD) of the

RDN. It does not depict the quantitative component (P ) of the model, which consists
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of the Conditional Probability Distributions (CPDs) that use aggregation functions. Al-

though conditional independence is inferred using an undirected view of the graph, di-

rected edges are useful for representing the set of variables in each CPD. For example, in

Fig. 5b the CPD for year contains topic but the CPD for topic does not contain year. This

represents any inconsistencies that result from the RDN learning technique.

A consistent RDN specifies a joint probability distribution p(x) over the attribute

values of a relational data set from which each CPD ∈ P can be derived using the

rules of probability. There is a direct correspondence between consistent RDNs and rela-

tional Markov Networks. It is similar to the correspondence between consistent DNs and

Markov Networks [19], but the correspondence is defined with respect to the template

model graphs GM and GD.

2.6 Statistical Relational Learning

The vast majority of work in learning has focused on propositional data which

consists of identically structured entities that are assumed to be independent. However,

many real-world data sets are relational. Relational data consists of different types of

entities where each entity is characterized with a different set of attributes. Relational

data are more complex and better suited with our surroundings where examples are given

as multiple related tables. The structure of relational data provides an opportunity for

objects to carry additional information via their links and enables the model to show

correlations among objects and their relationships. [25]

On one hand, statistical learning addresses the uncertainty in the data. On the
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other hand, relational learning addresses the complexity of relations in domains. The two

types of learning have been combined to be implemented with real-world data, and also

due to the growth of research interest in these areas. Statistical relational learning (SRL)

combines both types of learning. Two of the vital steps in this learning mechanism are

structure learning and parameter learning. Structure learning learns the nodes and edges

of a graphical structure, whereas parameter learning learns the prior and conditional prob-

ability distributions [34]. SRL models predominantly belong to the following categories.

• Probabilisitic Relational Models (PRMs): PRMs [16] are a rich representation

language and one of the successful models for statistical learning. PRMs extend

the concept of Bayesian networks and that of objects to represent relational data

logically with probabilistic semantics on the directed graphical models.

• Relational Dependency Network (RDN): RDNs [38], an extension of Depen-

dency Networks (DNs) [19] are a class of graphical models that approximate a

joint distribution using a bidirected graph with conditional probability tables for

variables. The RDNs are thus able to represent cyclic dependencies, employ sim-

ple methods for parameter estimation with efficient structure learning. The reason

RDNs are popular is due to the use of pseudo-likelihood [1] learning algorithm that

estimates an acceptable approximation of joint distribution.

• Bayesian Logic Programming (BLP): Bayesian Logic programs [23] are a model

based on Bayesian networks. BLPs use logic programming [35] to unify Bayesian

networks with logic programming. This unification overcomes the propositional
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character of Bayesian networks and logical programs. BLPs use Bayesian clauses

that use a conditional probability table to present the distribution of the head of the

clause conditional on its body and use combining rules to unite the information on a

single literal that is the head of several clauses. BLPs are implemented in a software

called BALIOS [23].

• Markov Logic Networks (MLNs): As described in the prior section, syntactically

MLNs extend first-order logic and put weight for each formula. Semantically, they

can represent a probability distribution over possible worlds using formulas and

their corresponding weights. [25]

One such type of statistical relational learning is through probabilistic graphical

models like Bayesian Networks or Markov Logic Networks. Learning with Bayesian

Networks involves a combination of Prolog language with Bayesian networks. [15] [24].

In order to avoid cycles in learning with Bayesian networks, Markov networks provide an

alternative to use undirected graphical models. [16] In the following section we describe

the details of structure learning of MLNs and RDNs.

2.6.1 Structure Learning in Markov Logic Networks (MLN)

In this subsection, we describe in detail the learning and inferencing techniques

used in the case of Markov Logic Networks.
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2.6.1.1 Structure Learning

MLN structure learning [28] can start from an empty network or from an existing

KB. Richardson and Domingos (2004) [42] and, Kok and Domingos (2005) [28] have

found it useful to start by adding all unit clauses (single predicates) to the MLN. The

weights of these captures (roughly speaking) the marginal distributions of the predicates,

allowing the longer clauses to focus on modeling predicate dependencies. This phase is

able to learn first-order formulas and not just horn clauses

Kok and Domingos (2005) [28] have defined the weighted pseudo-log-likelihood

(WPLL) as

logPw(X = x) =
∑
r∈R

cr

gr∑
k=1

logPw(Xr,k = xr,k|MBx(Xr,k)) (2.1)

where R is the set of first-order predicates, gr is the number of groundings of first-order

predicate r, and xr,k is the truth value (0 or 1) of the kth grounding of r. The choice of

predicate weights cr depends on the user’s goals.

MLNs use the close-world assumption [12] that if a ground atom is absent in the

database, it is assumed to be false.

2.6.1.2 Inference

Inference has two main phases in MLNs. In the first phase, a minimal subset of

GI the ground Markov network is selected. Many predicates that are independent of the

predicates of the query may be filtered in this phase. As a result inference carried out over

a smaller Markov network. In the second phase inference is performed on the Markov

network using Gibbs sampling [2] where the evidence nodes are observed and are set to
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their values. Gibbs sampling first randomly initialize and orders unobserved variables

in the network, i.e. {X1 = x1...Xn = xn}, and then iterate through the variables. In

step 1 a new value x′1 for variable X1 is sampled conditional on all the other variables

P (X1|X2 = x2...Xn = xn), and in step i a new value x′1 for variable xi is sampled

conditional on all the other variables P (Xi|X1 = x′1...Xi−1 = x′i−1, Xi+1 = xi+1...Xn =

xn). . Conditional independence eases the computation as Vi conditional on its immediate

neighbors, Markov Blanket, is independent of all other variables.

2.6.2 Structure Learning in Relational Dependency Networks (RDN)

In this subsection, we describe in detail the learning and inferencing techniques

used in the case of RDN

2.6.2.1 Learning

RDNs [25] extend the learning of DNs to a relational setting. The set of the con-

ditional probability tables CPTs describes both the structure and the parameters of the

model. RDNs use pseudo-likelihood techniques [1] to avoid the complexities of estimat-

ing the partition function. Instead of optimizing the log-likelihood of the joint distribu-

tion, RDNs optimize the pseudo-likelihood for each node separately conditioned on all its

neighbors. Equation 2.2 computes the pseudo-likelihood for each node in GM separately,

where θGM is the parameters for GM , D(v) is the domain of values for variable v, and

D(p(v)) is the domain of values for parents of v.

Pl(θGM |GD, GM) =
∑
v∈VM

∑
k∈D(v)

∑
u∈D(pa(v))

P (v = k|pa(v) = u) (2.2)
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where, P (v = k|pa(v) = u) is computed by two main relational learners

• Relational Bayesian Classifier (RBC) is a non selective model that treats heteroge-

neous relational subgraphs as a homogeneous set of attribute multisets. The classi-

fier assumes that each value in the multiset is drawn independently from the same

multinomial distribution. For example, the difficulty of the courses taken by a stu-

dent form a multiset Hard, Hard, Easy, Medium. RBC selects values independently

from the multiset distribution.

• Relational probability trees are a selective model that extends traditional classifica-

tion trees to relational settings. Relational probability trees also treat heterogeneous

relational subgraphs as a set of attribute multisets; however, instead of treating the

values as an independent set, Relational probability trees use aggregation functions

to map the set of values into a single value.

2.6.2.2 Inference

RDNs use Gibbs sampling for inference on GI . The values of unobserved vari-

ables are initialized with their prior distribution and are iteratively relabeled using the

current state on the model and the CPT of the node. Gibbs sampling is generally an inef-

ficient approach to estimate the joint probability of the model, however, it is reasonably

fast to estimate conditional probabilities for each node given its parents.
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CHAPTER 3

RELATED WORK

In statistical relational learning, a Markov logic network (MLN) [42] is regarded

as one of the most flexible representations as it combines first-order logic and probabilistic

graphical models. First-order logic enables the complexity of the data to be modeled,

and probability allows expressing the uncertainty in the data. An MLN is a knowledge

base (KB) and can model the complex, diverse nature of Twitter posts (a.k.a. tweets)

containing 100+ attributes. Once the KB is learned, which includes the first-order rules

(or formulas) and their weights, probabilistic inference can be conducted on the KB to

reason about the content in the posts and users’ behavior. For example, one can compute

the marginal probability of a URL being malicious, a tweet being sensitive, a user account

is an adversary or social bot [46], and so on.

So far in the literature, significant work has been done in the rule mining do-

main which has led to the development of state-of-the-art techniques. However, those

techniques are not suitable for the large-scale data that gets generated on social media

platforms. We describe in further detail in the following sections the related work done

on first-order rules and/or scalable systems.
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3.1 Rule Mining Techniques

Extensive work has been done in the field of first-order rule learning and MLN

structure learning in literature. One approach is to use handcrafted first-order rules based

on prior observations or knowledge [41]. This approach has shown good accuracy but the

rules need to be handcrafted by a domain expert. Therefore, this is not the most viable

option for rule learning on large-scale data, especially highly volatile social media data.

Alternatively, the first-order rules can be learned over the data, which is appealing

when the significance of a rule changes over time. Although a number of methods have

been proposed for structure learning for first-order rules, we highlight a subset of them. Li

et al. [31] developed an unsupervised data repairing system that performs structure learn-

ing on a real-world dataset but through Bayesian Networks. Alps [10] on the other hand

implements first-order logic to perform relational representation learning. This tool has

also been tested on small-scale data so far. Dhami et al. address the problem of scalable

structure learning through relational learning using first-order rules for Gaifman mod-

els [8] as opposed to MLNs. Another recent framework called Probabilistic Logic Graph

Attention Network (pGAT) [18] combines MLNs and graph attention networks, for the

task of link prediction in knowledge graphs and aims to achieve knowledge graph comple-

tion. Another preliminary study has been done in the field of scalable spatial probabilistic

graphical modeling (SPGM) using MLNs [43]. This system exploits MLN to scale up the

performance of SPGM techniques, however, the evaluation has been preliminary has not

been tested for scalability. Numerical Markov Logic Network (NMLN) [55] is yet another

probabilistic framework for hybrid knowledge inference. However, the model proposed
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relies on hybrid knowledge rules which consist of first-order logic and mathematical ex-

pressions.

Despite extensive work being done in the field of MLNs and first-order rule learn-

ing, we believe the following work has more relevance with respect to the niche of prob-

lems we are attempting to address. Several state-of-the-art MLN structure learning tech-

niques have been implemented over time to learn first-order rules [14, 20, 26, 29, 30, 48]

have been tested only on small datasets using a single machine. Ontological pathfind-

ing [4] is a recent work on scalable first-order rule mining using cluster computing. How-

ever, it learns only Horn clauses [4], whereas MLNs use general first-order rules, which

are more expressive than Horn clauses. Thus, our goal is to scale MLN structure learn-

ing on large-scale Twitter data by (a) leveraging cluster computing and (b) exploiting the

capability of existing structure learning tools [30] for learning rules on small datasets.

In the following sections, we describe in detail specific frameworks that have con-

tributed significantly to the area of first-order rule learning using MLNs.

3.1.1 SocialKB

SocialKB [41] is a one-of-its-kind unified modeling framework specializing in so-

cial media data. It focuses on modeling the social media data and reasoning the reliability

of the content. The goal of this framework is to discover suspicious users and malicious

content on social media, building upon statistical relational learning on knowledge repre-

sentation.
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This framework learns over a knowledge base to capture the complex user behav-

ior on social media. The knowledge base further contains multiple entities pertaining to

the user, their posts, as well their interactions on social media. Using the KB, one can

efficiently reason about the veracity of the social media posts and users’ behavior to flag

suspicious content/activity in a timely manner. [41] This method of modeling the social

media information into a knowledge base and relying on user behavior forms the founda-

tion of the logic behind SRLearn.

SocialKB, however, relies on hand-crafted social media rules, that can either be

created by people with a basic understanding of how a particular social media platform

might function, or by domain experts of user behavior. Nevertheless, given the size of

social media data and the rate at which data evolves in today’s scenario, hand-crafted

rules are likely not to be efficient enough to capture interesting patterns to design the

rules from. This gives rise to the need for a system that can automatically learn interesting

rules, possibly through probabilistic inferencing.

3.1.2 Alchemy

Alchemy1 is a software package system that provides a set of algorithms for sta-

tistical relational learning as well as probabilistic inference on Markov Logic Networks.

Kok and Domingos [29, 30] have developed a codebase that performs structure learning

via MLNs on a given knowledge base.

They proposed MSL [30] that learns the structure of MLNs from relational databases

1http://http://alchemy.cs.washington.edu/
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by performing a shortest-first search of the clausal space through optimized pseudo-

likelihood weights. It begins by adding all possible clauses to an MLN while calculating

the score improvement upon each addition. It keeps adding n clauses with the highest

improvement in its weighted pseudo-log-likelihood (WPLL) (Equation 2.1) to the prior

maintained MLN set. This step continues when no more clauses can be added, and the al-

gorithm restarts all over again. This is an overall greedy approach that generates candidate

clauses and is susceptible to local optima.

Kok and Domingos went on to further address this problem by proposing an ap-

proach that directly utilizes the data in constructing candidate clauses [29]. This approach

is referred to as Learning via Hypergraph Lifting (LHL). LHL uses a relational pathfind-

ing technique through lifting hypergraphs by creating clusters of constants and then find-

ing paths in them. It, therefore, learns MLNs through a more compact data modeling,

rather than the greedy approach of MSL, and therefore surpasses MSL in performance.

The above approaches are supported by Alchemy’s umbrella package, even though

are versatile with a wide variety of knowledge bases, they function well with a small

set of data. The systems fail to scale up when the size of knowledge bases increases

significantly. In the case of social media, given the amount of data that is being generated

on a regular basis, Alchemy fails to run on such scaled-up data.
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3.1.3 BoostSRL

Boosting for Statistical Relational Learning (BoostSRL) 2 is a gradient-boosting

based approach developed by the Statistical Artificial Intelligence and Relational Learn-

ing (StARLinG) Lab at UT Dallas to learning different types of SRL models. This ap-

proach learns models in the form of a series of relational regression models based on

relational data. BoostSRL also operates on data in the form of predicate logic and outputs

first-order regression trees, thus relying heavily on probabilistic graphical models.

This approach considers Relational Dependency Networks (RDNs) and tries to ad-

dress the prior problem of learning a single probability tree per variable, through gradient-

based boosting of a series of relational function-approximation problems [37]. BoostSRL

learns both the structure and parameters of RDN models simultaneously while achieving

better predictive performance over comprehensibility. Moreover, the regression trees used

by BoostSRL are much richer in the case of representation. It implements an algorithm for

learning RDNs called RDN-B. RDN-B iterates over all predicates, by generating examples

for the regression tree learner to get a new regression tree. This process again repeats for

M iterations. During each iteration, for a new predicate considered, the algorithm com-

putes the probability as well as the gradient. It further calculates the regression values

based on the current example’s groundings. It then assigns the gradient as the weight of

the example. In this manner, the algorithm is able to learn the structure of the relational

data through sets of regression trees learned and learns the parameters through the set of

leaves of this conditional distribution.
2https://starling.utdallas.edu/software/boostsrl/wiki/
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Yang, Khot, Kersting, Kunapuli, Hauser, and Natarajan in 2014 [51] also pro-

ceeded to address a prevalent problem of class imbalance in relational data sets. Class

imbalance is a very common problem of learning probabilistic models, where the num-

ber of negative examples exceeds the number of positive examples by a large difference.

They proposed Cost-sensitive Statistical Relational learning (CSSRL) that includes a soft

margin to trade-off between the false positives and false negatives, in the objective func-

tion of learning. This makes sure the positive examples and the negative examples are

weighted fairly, rather than being weighted equally.

BoostSRL holds a lot of potential with its highly predictive capabilities. It also

considers the fact that we need a large number of clauses to express a relational model,

as opposed to the traditional learners that select a single model from the data. It is one

of its kind that implements boosting for relational probabilistic models, even though it

does not really consider MLNs. Furthermore, the tests done with this algorithm have

been limited to concise data, and not that of practical big data that one can expect in a

real-world scenario, with high unpredictability as well as noise.

3.2 Scalable Tools for Rule Mining

3.2.1 ProbKB

PROBabilistic Knowledge Base [4] [5] [52] (ProbKB) is a scalable system that

aims at constructing a web scale probabilistic knowledge base. It involves mining first

order rules and inferring implicit knowledge. ProbKB combines numerous parallelization

and optimization techniques that enable it to scale to web scale knowledge bases.
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3.2.2 XGBoost

Tree boosting is a highly effective and widely used machine learning method.

XGBoost [3] is a scalable end-to-end tree boosting system, which is used widely by data

scientists to achieve state-of-the-art results on many machine learning challenges. It is

available as an open-source package3. Furthermore, it also integrates well with Spark and

Hadoop to take advantage of distributed computing

The most important factor behind the success of XGBoost is its scalability in all

scenarios. The system runs more than ten times faster than existing popular solutions

on a single machine and scales to billions of examples in distributed or memory-limited

settings. The scalability of XGBoost is due to several important systems and algorithmic

optimizations. These innovations include: a novel tree learning algorithm is for handling

sparse data; a theoretically justified weighted quantile sketch procedure that enables han-

dling instance weights in approximate tree learning. Parallel and distributed computing

make learning faster which enables quicker model exploration. More importantly, XG-

Boost exploits out-of-core computation and enables data scientists to process hundreds

of millions of examples on a desktop. Finally, it is even more exciting to combine these

techniques to make an end-to-end system that scales to even larger data with the least

amount of cluster resources.

3https://github.com/dmlc/xgboost
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CHAPTER 4

SRLEARN

In this chapter, we present our approach called SRLearn [45] (Scalable Rule

Learning) to scale the learning of relevant first-order rules over large scale social media

data (Twitter1) using a commodity cluster. The original design of SRLearn was proposed

by Rao et.al [39] and [40]. However, it was not implemented or evaluated on real-world

datasets. The salient features of SRLearn are as follows.

a. A divide-and-conquer approach to rule learning by first employing graph-based

modeling of ground predicates and users, and applying graph partitioning to create

partitions of ground predicates to minimize the chance of missing interesting rules;

b. Exploiting data parallelism at different stages during rule learning using a commod-

ity cluster (CloudLab2);

c. Leveraging the power of Alchemy’s structure learning [30] as well as BoostSRL’s

structure learning using RDNs [36] on small datasets.

The architecture of the SRLearn is shown in Fig. 6. We describe the details of

each of the above features in the subsequent sections, simultaneously describing the ar-

chitecture in the following stages.

a. Ground predicates
1www.twitter.com
2https://www.cloudlab.us/

33



Figure 6: SRLearn architecture

b. Ground predicate graph

c. User-centric graph

d. Graph partitioning

e. Regroup ground predicates and Rule Mining

4.1 Ground Predicates from Tweets

Twitter is a popularly used social media platform, with over 300 million active

users across the globe per month. The platform is estimated to generate 6000 tweets per

second each day.
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Table 2: Set of first-order predicates generated from Twitter data based on CWA (denoted
by *) and OWA

*tweeted(userID, tweetID) *containsLink(tweetID, link)
*containsHashtag(tweetID, hashtag) malicious(link)

*verified(userID) attacker(userID)
*mentions(tweetID, userID) *retweeted(userID, tweetID)
isPossiblySensitive(tweetID) *retweetCount(tweetID, count)

friend(userID1, userID2) isFollowedBy(userID1, userID2)
*friendsCount(userID, count) *followersCount(userID, count)
*statusesCount(userID, count) *favouritesCount(userID, count)

Tweets [45] are short messages created by users on Twitter. Each tweet collected

from Twitter is assigned a unique ID; each user account is also assigned a unique ID.

There are attributes whose values embed the actual text of a tweet, the URLs contained

in a tweet, hashtags used in a tweet, users mentioned in a tweet, who retweeted a tweet,

and so on. There are attributes that provide counts about the number of friends of a user,

the number of followers of a user, and the number of posts of a user (i.e., statuses count).

For our evaluation purpose, we collect the tweets from Twitter API, using a given set of

keywords. We refer to the retweet associated with the tweet object as the ”inner tweet”

for that tweet. Each tweet, including the inner tweet, has an associated non-zero tweet ID

generated by Twitter.

We map the tweets collected from the Twitter API into first-order predicates as

shown in Table 2 to build the evidence KB. These predicates are a representation of the

rich and complex relationships in the tweet entities. A predicate can make a closed-world

assumption (CWA) or an open-world assumption (OWA). CWA assumes that what is not

known to be true must be false. On the other hand, OWA assumes that what is not known
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may or may not be true.

We derive most of the first-predicates directly from the elements as is from JSON

object. A tweet does not contain the list of friends or followers of a user. These pieces of

information, however, can be obtained using Twitter APIs. The predicate tweeted(userID,

tweetID) states whether a user posted a particular tweet or not; containsLink(tweetID,

link) states whether a tweet contains a particular URL or not; containsHashtag(tweetID,

hashtag) states whether a tweet contains a particular hashtag or not; mentions(tweetID,

userID) states whether a particular user is mentioned in a tweet (using the @ symbol)

or not; retweeted(userID, tweetID) states whether a user retweeted a particular tweet

or not; finally, verified(userID) states whether a user has been verified or not. Twit-

ter independently verifies user accounts that are of public interest in domains such as

government, fashion, music, politics, sports, etc. For the OWA predicates, The predi-

cate malicious(link) states whether a URL is malicious or not; friend(userID1, userID2)

states whether a user denoted by userID1 has a friend denoted by userID2 or not. Twit-

ter defines a friend as someone who a user is following. The predicate attacker(userID)

indicates whether a user is a suspicious user or not; isFollowedBy(userID1, userID2) indi-

cates whether a user denoted by userID1 is followed by another user denoted by userID2

or not; and finally, isPossiblySensitive(tweetID) indicates whether a tweet is possibly sen-

sitive or not. Twitter flags a tweet as possibly sensitive based on users’ feedback and by

monitoring if the tweet follows Twitter’s rules and policies3. The count predicates model

the friends count/followers count/statuses count of a user, the retweet count of a tweet,
3https://help.twitter.com/en/rules-and-policies/media-policy
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and the number of tweets a user has ”liked”. These predicates are based on a CWA. [41]

friendsCount(userID, count) denotes the number of friends a user denoted by userID has.

followersCount(userID, count) indicates the number of followers a user has. We derive

the predicates such as malicious, attacker, friend, isFollowedBy through additional Twitter

API calls or from external sources. We make additional calls to the Twitter API to collect

friend and isFollowedBy predicates. For evaluation purpose, we retain only those friend

and isFollowedBy predicates, whose user IDs are present in the set of tweeted predicates.

In other words, for each friend and isFollowedBy predicate, we retain the predicate, if for

both userID1 and userID2, tweeted(userID1, tweetID1) and tweeted(userID2, tweetID2)

are present in the evidence data, else we refrained to consider the predicate for further

evaluation. The intention is to have friends and followers for only those users, whose

tweets had been used to build the evidence KB. For the malicious predicates, we use

VirusTotal4 to determine whether a given URL is malicious or not. We acquire academic

keys to stream URLs via the VirusTotal API and check each URL from the set of unique

URLs present in containsLink predicate, with the VirusTotal database. We add the URL to

the evidence KB, mapped as malicious(url) if at least one of the engines in the VirusTotal

server flagged the URL as malicious. We match URLs with VirusTotal at two levels.

a. Level 1: Direct matching of the original URL.

b. Level 2: Indirect matching of the expanded form of the original URL. In other

words, If the original URL was shortened, then we expanded it. We perform direct

match (Level 1 matching) on this expanded URL.

4https://www.virustotal.com/gui/
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We curate these ground predicates for each set of N number of tweets we collect

for multiple experiments. This forms the primary input on which the SRLearn system

operates. We store this input set of ground predicates in the Hadoop Distributed File

System (HDFS) set up on CloudLab, a commodity cluster.

4.2 Ground Predicate Graph

The first step of the data modeling is to group the ground predicates for each user.

In the process we create a ground predicate graph [45]. Suppose a user posted two tweets

containing a link flagged as malicious and a hashtag that is trending. Fig. 7 shows an

example ground predicate graph constructed on 19 predicates.

We define a ground predicate graph for a user, as a graph representing all the

ground predicates associated with the user, either directly or indirectly. Each user node

is connected to all the tweet ID nodes, and their associated ground predicates with the

tweet ID, or user ID, or both. The ground predicates containing the user ID as one of

the variables are connected to the corresponding user ID node. The remaining ground

predicates, that do not have the user ID as one of the variables, are connected to the tweet

nodes and are then associated with the user ID node as in Fig. 7.

We use a divide-and-conquer approach using a distributed system on CloudLab,

as well as Spark’s MapReduce [7] capabilities to map the list of first-order ground pred-

icates into a ground predicate graph. The algorithm for this transformation is shown in

Algorithms 1, 2 and 3.

First, following Algorithm 1, we build an associative array containing (tweet ID,
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Figure 7: Example of ground predicate graph

user ID) pairs on the input data set. Then we broadcast to all workers on the nodes in the

distributed cluster (Line 3). This is required for associating ground predicates that do not

contain user ID as a variable, to the right user. We then implement the map (Lines 5-6)

and reduce (Lines 7-8) functions.

In the map phase (Algorithm 2), on each worker node, each block of ground predi-

cates is processed by invoking MapPredicates function and appending the mapped ground

predicate into a distributed collection G initialized in Line 2 of Algorithm 1. This collec-

tion is in the format (userID, groundpredicate).The predicates which have user ID as

the first parameter are associated with the user ID and then added to G. We process those

39



Algorithm 1: Grouping the ground predicates by users
1: Let F denote the HDFS file containing ground predicates
2: Let G, H , and I denote distributed collections
3: Using map and reduce operations on F , construct an associative array A
containing key-value pairs (t, u), where t is tweetID and u is userID

4: Broadcast A to all workers on nodes
{/* Map phase in algorithm 2 */}

5: for each block Bi of F in HDFS do
6: Invoke MapPredicates(Bi)
{/* Reduce phase in algorithm 3*/}

7: for each (K,V ) in G do
8: Invoke ReducePredicates(K,V )
9. Run a reduce-by-key operation to process H by grouping the tuples by userID
and store the result into I

10: return I

predicates whose first argument is not of the type user ID (e.g., malicious(l), contain-

sHashtag(t, h)) (Lines 5-14 in algorithm 2) specially in order to associate them with the

right user in the reduce phase. We add ground predicates malicious(l), trending(hashtag)

to G in the form of (malicious(l), ”EXISTS”) and (trending(hashtag), ”EXISTS”), re-

spectively. For containsLink(tweet ID, link), we add (malicious(link), tweet ID) to G.

Simultaneously, we find the user ID corresponding to this tweet ID from the associative

array A, and append this to G in the form (user ID, containsLink(tweet ID, link)) (Lines

7-9). For containsHashtag(tweet ID, hashtag), we add (trendingHashtag(link), tweet ID)

to G. Simultaneously, we find the user ID corresponding to this tweet ID from the as-

sociative array A, and append this to G in the form (user ID, containsHashtag(tweet ID,

hashtag)) (Lines 10-12). Similarly, for predicates mentions(tweet ID, user ID1), isPos-

siblySensitive(tweet ID) and retweetCount(tweet ID, count, we find the tweet ID from A
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and append the predicate with the user ID corresponding to the tweet ID to G (Lines 13-

14). Finally, for retweeted(user ID, tweet ID, we append (user ID1,retweetedBy(tweet ID,

user ID) to G if there exists (tweet ID, user ID1) in A (Lines 15-16).

The reduce phase (Algorithm 3) invokes ReducePredicates function and generates

key-value pairs where user ID is the key, and the value is a group of predicates belonging

to the ground predicate graph of that user. Here we use distributed collectionH , initialized

in Line 2 of Algorithm 1. We append this (K,V ) pair to H . At this stage, there can be

more than one key-value pair with the same key. We also, take care of the (malicious(l),

”EXISTS”) and (trending(hashtag), ”EXISTS”) generated in Algorithm 2, and append

them to H with the corresponding tweet ID from A. Finally, we execute a reduce-by-key

operation group of all the ground predicates for a particular user into a key-value pair

(Line 9 in algorithm 1).

4.3 User-centric Graph

The second step of the data modeling is to group the ground predicate graphs for

each user ID. In the process, we create a user-centric predicate graph, where we group

the ground predicate graphs from the previous section around each user ID. Fig. 8 shows

an example of user-centric graph. Each edge in the user-centric graph is a representation

of the interaction of users on Twitter.
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Algorithm 2: Map function for grouping the ground predicates by users
1: begin func MapPredicates(block B)
2: for each ground predicate p in B do
3: if p is a predicate with userID u as the first parameter then
4: Output (u, p) to G
5: if p is type of malicious(link) or trending(hashtag) then
6: Output (p,”EXISTS”) to G
7: if p is of type containsLink(t, link)) then
8: Output (”malicious(link)”, t) to G
9: Find (t, ū) in A; Output (ū, p) to G
10: if p is of type containsHashtag(t, hashtag)) then
11: Output (”trending(hashtag)”, t) to G
12: Find (t, ū) in A; Output (ū, p) to G
13: if p is of type mentions(t, u’) or isPossiblySensitive(t) or retweetCount(t,
c) then

14: Find (t, ū) in A; Output (ū, p) to G
15: if p is of type retweeted(u, t) and ((t, ū) exists in A then
16: Output (ū,”retweetedBy(t,u)”) to G
17: end func

Algorithm 3: Reduce function for grouping the ground predicates by users
1: begin func ReducePredicates(K,V )
2: if K is a userID then
3: Output (K,V ) to H
4: else if any item V =”EXISTS” then
5: for each item t′ 6= ”EXISTS” in V do
6: Find (t′,ū) in A; Output(ū,K) to H
7: end func
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Figure 8: Example of user-centric graph
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Algorithm 4: Constructing the user-centric graph
1: Let I denote the output of Algorithm 1
2: Let J and L denote distributed collections
{/* Map phase in algorithm 5 */}

3: for each (K,V ) in I do
4: Invoke MapWts(K,V )
{/* Reduce phase in algorithm 6*/}

5: for each (K,V ) in J do
6: Invoke ReduceWts(K,V )
7: Store L as a file to HDFS
8: return

Table 3: Social relationships between users
Condition Edge(u, u’)

tweeted(u, t) ∧ mentions(t, u’) TRUE
tweeted(u’, t’) ∧ mentions(t’, u) TRUE

friend(u, u’) ∨ friend(u’, u) TRUE
isFollowedBy(u, u’) ∨ isFollowedBy(u’, u) TRUE

tweeted(u, t) ∧ retweeted(u’, t) TRUE
tweeted(u’, t) ∧ retweeted(u, t) TRUE

Algorithm 4 shows the steps involved in constructing the user-centric graph. It

has a map phase (Lines 3-4) and a reduce phase (Lines 5-6). In the map phase (Algorithm

5), we use the output of Algorithm 1 as the input for the function MapWts. On each

(K,V ) we invoke MapWts function, where K is a user ID and V denotes all the ground

predicates for that user ID.

We determine the vertex weights for the corresponding vertex ID. (Lines 2-3 of

Algorithm 5). The vertex weight is the number of predicates in V . In other words, each

predicate has a unit weight contribution towards the total vertex weight of the vertex.
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Algorithm 5: Map function for constructing the user-centric graph
1: begin func MapWts(K,V )
2: Let c denote the no. of predicates in V excluding retweetedBy
3: Output (K, c) to J
4: edgeList← ∅
5: for each p in V do
6: if is of type friend(u,u’) or isFollowedBy(u,u’) or mentions(t,u’) or
retweetedBy(t,u’) then

7: x← min(u, u′); y ← max(u, u′)
8: Create edge (x, y)
9: if (x, y) ∈ edgeList then
10: Increase edge weight wx,y by 1
11: else
12: Add (x, y) to edgeList with wx,y = 1
13: for each (x, y) in edgeList do
14: Output ((x, y), wx,y) as the edge to J
15: end func

Next, we determine the social interaction between two users based on the rules in Table 3.

We define an edge between two users u and u′ in the graph if (a) u mentions u′ or vice-

versa, (b) u is friends with u′ or vice-versa, (c) u is followed by u′ or vice-versa, or (d)

u retweets a tweet of u′ or vice-versa. Each of the above conditions defines an edge with

unit weight. We compute partial edge weights and output them along with the edge (Lines

4-14 in Algorithm 5).

Algorithm 6: Reduce function for constructing the user-centric graph
1: begin func ReduceWts(K,V )
2: if K is a userID then
3: Output (K,V ) to L {/* weighted vertex */}
4: else
5: Let w̄ denote the sum of all wt. values in V
6: Output (K, w̄) to L /* weighted edge */
7: end func
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We combine the partial edge weights for the same edge from different map op-

erations to reduce phase by ReduceWts function (Algorithm 6). Finally, we store the

weighted graph (with both vertex weights and edge weights) in HDFS (Line 7 in Algo-

rithm 4). The output graph is in the form of a METIS graph [22]. Thus, we store the user-

centric graph G = (V,E) has n vertices and m edges in a single text file, containing n+1

lines. Line 1 holds the information in the format: number of vertices, number of edges,

type of graph. The type of graph in our case is 011, implying it is both edge-weighted

and vertex-weighted. The subsequent lines 2 through n+ 1 contain the adjacency lists for

each vertex. Each line represents a vertex in the user-centric graph along with its vertex

weight, neighboring vertex, and the edge weight associated with the edge between two

vertices.

4.4 Graph Partitioning

At this stage, we have successfully modeled the tweets into a user-centric graph-

ical structure. In other words, we have grouped the ground predicates in a systematic

manner with their corresponding users, as well as established a connection among the

users based on their social relationships for a given data set. Algorithm 7 shows the

divide-and-conquer approach of SRLearn. The user-centric graph is partitioned into k

number of partitions by minimizing the total weight of the cut edges (Line 4). The intu-

ition is to group predicates of users that have a high degree of social interaction, in the

same partition so that interesting rules can be discovered between them. Alternatively,

users with a low degree of social interaction can be placed in different partitions without
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missing interesting rules spanning across partitions.

We use an existing graph partitioning technique to partition this single graph into

smaller partitions. This results in the partitioning of vertices (user IDs) along with their

neighbors (user IDs) and corresponding predicates into these partitions. For our exper-

imentation, we have tested with both the Karlsruhe Fast Flow Partitioner Evolutionary

(KaFFPaE) and Parallel High Quality Partitioning (ParHIP) algorithms from the Karl-

sruhe High Quality Partitioning5 (KaHIP) [44] family of graph partitioning algorithms.

With the KaFFPaE, we use a ”strongsocial” preconfiguration on a single machine due to

the smaller size of the graph built from 20,000 tweets. The ”strongsocial” configuration

is used to achieve the highest quality of graph partitioning possible on a social network or

web graph.

Since KaFFPaE is localized to one machine, it forms a bottleneck when scaling

up. Therefore, we implement the parallel and memory distributed ParHIP algorithm [33],

which is specifically designed to process large complex networks like social networks or

web graphs. It parallelizes and adopts the label propagation technique to the coarsening

and refinement phase of multilevel graph partitioning. The algorithm claims to be more

scalable, efficient and of higher quality than state-of-the-art systems like ParMetis [21].

The user-centric graph from the previous section carries both edge weights as well

as vertex weights. With the help of the authors of ParHIP, we were able to obtain a pri-

vate version of the algorithm that is compatible with a graph with both vertex weights

and edge weights, i.e. the user-centric graph. The available options for preconfiguration

5https://kahip.github.io/
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Table 4: Runtime for different preconfiguration on 2 million tweets’ graph partitioned
into 32 partitions on 16 nodes

Preconfiguration Runtime
strong 17h 33m 29s

eco 3m 16s
fast 28s

ultrafast 16s

in this tool are: strong, fast, eco, ultrafast. We retrieve the user-centric graph obtained

in the graph-construction phase from HDFS and move it to a shared file system on the

cluster. Using this graph partitioning tool, we create n partitions of the user-centric graph

on the distributed cluster (Lines 1-4 of Algorithm 7). It is recommended to use strong

preconfiguration if the quality of graph partitioning is of utmost importance. The precon-

figuration eco is recommended if a tradeoff between partitioning quality and run time is

acceptable. The preconfigurations fast and ultrafast are recommended for fast run time,

despite a poor quality of graph partitioning. To finalize this knob in the pipeline, we have

tested the available preconfigurations for ParHIP. We use the user-centric graph built from

2 million tweets and partition it into 32 partitions using a 16-node cluster. Using strong

preconfiguration, despite the highest run time (Table 4), ensures the most balanced parti-

tioning of a graph possible (Fig. 9 and Fig. 10). This is followed by eco preconfiguration,

which not just provides a balanced partitioning outcome, but also has a significantly re-

duced runtime. Therefore, with the aim to build a fast and scalable system, we choose to

use eco preconfiguration for the graph partitioning in our pipeline.
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Figure 9: Distribution of ground predicates with varying preconfiguration on 32 partitions

4.5 Regroup Ground Predicates and Rule Mining

Once we partition the graph (with K edges and V vertices) into k-number of parts,

we push the resulting partition file back to HDFS. This partition file contains V number

of lines denoting the vertex or user ID that went into the corresponding partition. We

use the predetermined map of user IDs with their set of ground predicates, to place the

ground predicates associated with a user ID into the corresponding partition bucket. We

then distribute the k partitions containing the ground predicates from HDFS across all

nodes of the cluster in a round-robin fashion. Then we initiate the rule mining process on

all the partitions across the nodes. (Lines 5-14 of Algorithm 7)
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Figure 10: Distribution of vertices (user IDs) with varying preconfiguration on 32 parti-
tions

Algorithm 7: Graph partitioning and rule learning in parallel
1: Let U denote the user-centric graph file output by Algorithm 4
2: Let m denote the number of required partitions
3: Let n denote the number of machines
4: Run graph partitioning (in parallel) on U to generate partitions p1, ..., pm of the
ground predicates (in F ) by minimizing the total weight of the cut edges in U

5: Assign partitions in a round-robin fashion to the n machines
6: In parallel, invoke LearningAndInferencing() on each node
7: Wait for all the nodes to finish
8: Let R denote the union of all predicted probabilities to calculate the AUC
9: Calculate the global AUC ROC on R
10: return global AUC ROC
11: begin func LearningAndInferencing()
12: for each partition pi on the node do
13: Run BoostSRL on pi
14: end func
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4.5.1 Set up for rule mining

In order to assess the effectiveness of the model, as well as to ensure a fair training

process, we implement a process similar to 5-fold cross-validation. The idea is to group

the ground predicates into a training set and testing set for all 5 folds of cross-validation

and compare the AUC across all folds. This makes sure, we avoid any bias or overfit-

ting. Fig. 11 shows the distribution of partitions in a round-robin fashion across all folds.

We initiate BoostSRL training and inferencing for rule mining on the partitions after the

completion of this setup process.

Once we place these k partitions on the n-node cluster, we sort the respective

partitions on each node, according to their size, and group them into m-subgroups in a

round-robin order. This ensures that each subgroup gets the largest partition and small-

est partition, with an even grouping of predicates. For example, let us consider a graph

divided into 128 partitions, on a 16-node cluster. In this case, k=128 and n=16. On each

node, we have 8 partitions on each node. Now we group these partitions together ac-

cording to the number of subgroups. For an experiment with the number of subgroups

parameter set to 4, we group the largest and smallest partition into sub-group 1, the next

largest and smallest partition into sub-group 2. Similarly, we group the remaining parti-

tions for sub-groups 3 and 4.

To factor in the 5-fold cross validation, we create 5 folders representing 5 folds of

cross validation. BoostSRL takes the following files as input:

1. facts, positive examples, negative examples as training set;
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Figure 11: Distribution of grouped predicates, i.e. partitions amongst the nodes in the
cluster
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2. facts, positive examples, negative examples as test set; and

3. the background file providing context on the ground predicates.

Facts file contains all ground predicates in the evidence data, except the target ground

predicates isPossiblySensitive and malicious. For each fold of cross-validation, these facts

file remain constant. We vary the ground predicates set in the positive and negative exam-

ples files for training and testing.

To build the positive examples of training data for the target isPossiblySensitive

predicate, we extract the tweet IDs from the tweeted predicates in the facts file in the

k-th fold of cross-validation and that particular inner sub-group. Similarly, for the target

malicious predicates, we place the URLs present in containsLink predicates in the facts

file as positive examples of training, if they were identified as malicious by VirusTotal.

We achieve this by providing a copy of a file with a list of all URLs in the evidence db

that was flagged as malicious. This was done to make sure if a URL, say url1 is present

in containsLink on node 1 and node 3 (having been tweeted by two different users), they

are still flagged as malicious or not malicious on the respective nodes for the respecting

BoostSRL instances. For determining the negative examples for training set, we take the

subset of the tweet IDs from tweeted and URLs from containsLink predicates in question

that were neither flagged as isPossiblySensitive nor malicious, respectively.

We follow a similar approach for the input files of the test set. Furthermore, to de-

termine the distribution of predicates into the cross-validation folder, we split the positive

and negative examples files into 5 parts (parts 1,2,3,4,5). For fold 1 of cross-validation,

we placed the first 4 parts (parts 1,2,3,4) into training and the 5th part into testing (part 5).
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For fold 2, we place the next 4 parts (parts 2,3,4,5) into training and the 1st part into test-

ing (part 1). Fig. 11 denotes how we organize the rest of the parts, along with an overall

summary of the arrangement of predicates into test and training data.

4.5.2 Initiation of rule mining: Learn and Infer

We start the structure learning phase one the prerequisites6 of BoostSRL, in terms

of the training and test data sets that have been established. Here we have experimented

with the default BoostSRL, i.e. RDN-Boost7, which does not take into account the class

imbalance, as well as the CSSRL that considers a soft margin to fairly deal with the class

imbalance in our data sets.

For the default RDN-Boost, we fork each instance into further 10 instances and

trigger the jar file using the command:

java -jar BoostSRL.jar -l -train train/

-target isPossiblySensitive

In the above command:

• -l enables training (learning);

• -train <Training directory> denotes the path to the training directory;

• -target <target predicates> are the comma-separated list of predicates

to be learned/inferred upon.

6facts, positive examples and negative examples of training and test data for each fold of cross-validation
and each inner sub-group

7https://starling.utdallas.edu/software/boostsrl/wiki/rdn-boost/
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Once the jar for the learning phase has been forked, we pick the instance that

finishes training the earliest, and use the model learned in that instance to infer on the

target predicates using the following command:

java -jar BoostSRL.jar -i -model train/models/

-test test/ -target isPossiblySensitive

-aucJarPath /mydata/ -testNegPosRatio -1

In the above command:

• -i enable testing (inference);

• -test <Testing directory> denotes the path to the testing directory;

• -target <target predicates> are the comma-separated list of predicates

to be learned/inferred upon;

• -aucJarPath <path to auc.jar> denotes the path to the auc.jar that is

used to compute the AUC ROC and AUC PR values at the end of learning and

inferencing;

• -testNegPosRatio <Negative/Positive ratio> : denotes the ratio

of negatives to positive for testing. It is set to -1 to disable sampling.

Unlike the learning phase, where we use multiple cores through the creation of

multiple forks of BoostSRL’s jar, we infer using only one core. Although we attempted

using multiple cores to speed up the inferencing further, it resulted in an out-of-memory

error for certain instances during the inference phase.
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Taking into account the class imbalance in our data set, we repeat the learning

and inferencing using the CSSRL algorithm of BoostSRL family. Furthermore, with the

aim of improving our system further, we coupled with SRLBoost8, which is smaller in

size than BoostSRL and significantly faster than BoostSRL. For the CSSRL, we use only

one instance per partition, instead of forking as we did above. We thus run the following

command to initiate the structure learning:

java -jar srlboost-0.1.0-jar-with-dependencies.jar -l

-train train/ -target isPossiblySensitive

-softm -alpha {0,40} -beta 40

In the above command:

• -l enables training (learning);

• -train <Training directory> denotes the path to the training directory;

• -target <target predicates> are the comma-separated list of predicates

to be learned/inferred upon;

• -softm is set to activate the CSSRL learning;

• -alpha is to assign the weight on false negative examples. This is set to 0 and 40

one after the other;

• -alpha is to assign the weight on false positive examples. This is set to 40 both

times.
8https://github.com/srlearn/SRLBoost
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Once the jar for learning phase has been forked, we pick the instance that fin-

ishes training the earliest, and use the model learnt in that instance to infer on the target

predicates using the following command:

java -jar srlboost-0.1.0-jar-with-dependencies.jar -i

-model train/models/ -test test/

-target isPossiblySensitive -aucJarPath /mydata/

-softm -alpha {0,40} -beta 40

In the above command:

• -i enable testing (inference);

• -test <Testing directory> denotes the path to the testing directory;

• -target <target predicates> are the comma-separated list of predicates

to be learned/inferred upon;

• -aucJarPath <path to auc.jar> denotes the path to the auc.jar that is

used to compute the AUC ROC and AUC PR values at the end of learning and

inferencing;

• -softm is set to activate the CSSRL learning;

• -alpha is to assign the weight on false negative examples. This is set to 0 and 40

one after the other;

• -beta is to assign the weight on false positive examples. This is set to 40 both

times.
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Unlike the learning phase, where we use multiple cores through the creation of

multiple forks of BoostSRL’s jar, we infer using only one core. Although we attempted

using multiple cores to speed up the inferencing further, it resulted in an out-of-memory

error for certain instances during the inference phase.

Once the BoostSRL learning and inferencing is complete on all instances, we

gather all the results together onto one node for further evaluation. For the learning time

of the k-th fold of cross-validation, we consider the maximum learning time across all

nodes for each target. Similarly, we record the inference time. Further, we calculate a

global run-time for learning on each target by averaging the times for each fold of cross-

validation for each target. Since AUC-ROC and AUC-PR are considered as the evaluation

metrics for the classification models, we record the global AUC-ROC and global AUC-PR

values in a similar fashion, by averaging the AUC-ROC and AUC-PR values respectively,

for 5 folds of cross-validation. In order to calculate the individual AUCs for each fold, for

target isPossiblySensitive, we accumulate the predicted results in one single location and

calculate the AUC values.
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CHAPTER 5

EXPERIMENTATION AND EVALUATION

In this chapter, we elaborate on the details of experimentation done on SRLearn,

as well as its competitive tools ProbKB and XGBoost. We also compare our results with

a scenario, where the SRLearn methodology is not present, i.e. Vanilla SRLearn.

For each of the methodologies, we describe the following aspects:

• Hardware environment

• Datasets

• Evaluation Metrics

• Results

5.1 Hardware Environment

CloudLab1 [11] is the primary platform for conducting the experiments. Cloud-

Lab is a ”meta-cloud” - that is, it is not a cloud itself; rather, it is a facility for building

clouds. It provides bare-metal access and control over a substantial set of computing, stor-

age, and networking resources; on top of this platform, users can install standard cloud

software stacks, modify them, or create entirely new ones. The current CloudLab deploy-

ment consists of more than 25,000 cores distributed across three sites at the University of

1https://www.cloudlab.us/
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Wisconsin, Clemson University, and the University of Utah. CloudLab interoperates with

existing testbeds including GENI2 and Emulab3, to take advantage of hardware at dozens

of sites around the world.

We set up a cluster of 16 physical nodes. We used Clemson and Wisconsin data

centers based on the availability of machines. The machines used had Ubuntu 16.04.1

LTS as the operating system. At the Clemson data center, each machine had a 10-core

Intel processor with 256 GB RAM and two 1 TB SATA HDDs. At the Wisconsin data

center, each machine had a 10-core Intel processor with 160 GB RAM, 480 GB SSD,

and two 1.2 TB HDDs. We ran our experiments for all the proposed methodologies

on the two datasets comprising of COVID-19 related tweets: (1) 2 million (2M) tweets

with 27,888,395 ground predicates and (2) 4 million (4M) tweets with 62,076,958 ground

predicates.

Scala 2.11.8, Apache Spark 2.4.64, and Apache Hadoop 2.7.65 were the primary

software tools used throughout the entire experimentation. We also used Python 2.7.12

and Bash scripting for additional automation of processes and intermediary data trans-

formation. We built and ran the SRLearn experiment pipeline through a series of Bash

scripts for ease of experimentation and evaluation.

2https://www.geni.net/
3https://www.emulab.net/portal/frontpage.php
4http://spark.apache.org
5http://hadoop.apache.org
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5.2 Datasets

Twitter is the primary source of data for all our experimentation. We collected

tweets from Twitter API on Covid-19 topic. We used the following keywords to collect the

tweets. ”Corona virus”, ”Coronavirus”, ”coronavirus”, ”corona virus”, ”bats”, ”COVID-

19”, ”COVID”, ”COVID19”, ”coronavirususa”, ”COVID19US”, ”CoronaVirusUpdates”,

”Corona virus outbreak”, ”Coronavirus travel risk”, ”Wuhan”, ”lockdown”, ”pandemic”,

”fatalities”, ”quarantine”, ”Quarantine”, ”positive cases”, ”stimulus package”, ”social dis-

tancing”, ”social-distancing”, ”PhysicalDistancing”, ”physical distancing”, ”StayHome”,

”stayhome”, ”stay at home”, ”StayAtHome”, ”hospitalization”, ”virus” and ”Virus”. We

curated two sets of input data in JSON format: (1) 2 million tweets, (2) 3 million tweets

and 4 million tweets. The 2 million tweets comprise tweets dated from March 17, 2020,

9:18:30 AM to March 17, 2020, 8:25:14 PM. The 4 million tweets dataset was made by

concatenating another 2 million tweets, streamed from Jul 27, 2020, 9:01:05 PM to Jul

28, 2020, 8:08:51 AM with the former 2 million tweets. The 3 million tweets were a fresh

dataset collected in early 2021.

We then created evidence data each from these 3 JSON files, consisting of our pre-

viously defined ground predicates. The 2 million evidence dataset consists of 27,888,395

ground predicates (excluding retweetedBy predicates, which are introduced in the later

stages of graph construction). The 3 million dataset consists of a total of 36,545,836 such

ground predicates (excluding retweetedBy predicates). The 4 million dataset consists of

a total of 62,076,958 such ground predicates (excluding retweetedBy predicates). Table 5

denotes the constituents of the evidence datasets, i.e. number of each type of ground

61



Table 5: Number of ground predicates in each dataset
# of ground predicates 2M 3M 4M
tweeted(userID,tweetID) 2,061,498 3,000,000 4,482,693

containsLink(tweetID,link) 300,604 609,983 763,882
containsHashtag(tweetID,hashtag) 508,692 1,799,455 1,077,197

mentions(tweetID,userID) 1,917,996 2,868,590 4,057,902
friendsCount(userID,count) 1,999,772 3,000,000 3,999,772

followersCount(userID,count) 1,999,772 3,000,000 3,999,772
statusesCount(userID,count) 1,999,772 3,000,000 3,999,772
retweetCount(tweetID,count) 1,586,013 701,237 3,103,096

retweeted(tweetID,userID) 1,586,013 1,942,390 3,103,096
verified(userID) 26,529 58,082 58,165

friend(userID1,userID2) 7,857,534 8,094,294 18,004,700
isFollowedBy(userID1,userID2) 4,494,404 7,199,702 12,765,116

isPossiblySensitive(userID2) 20,062 30,950 32,870

predicate present in the evidence dataset.

5.3 Evaluation and Results

We have used the three evidence datasets (one each from 2M, 3M, and 4M tweets)

for evaluating the performance of SRLearn and comparing it with Vanilla SRLearn, ProbKB,

and XGBoost in the following sections.

5.3.1 SRLearn

We implemented the algorithms 1 and 4 to build the user-centric graphs using the 2

million tweets data set (2M), 3 million tweets data set (3M), and 4 million tweets data set

(4M), simultaneously. Table 6 shows the dimensions of the user-centric graphs built. In

the subsequent subsections, we elaborate on the experimentation results at various stages.
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Table 6: Graph dimensions for evidence datasets considered
Dataset Number of vertices Number of edges

2million tweets 1,655,350 12,171,014
3million tweets 1,705,926 14,017,453
4million tweets 2,653,154 26,444,708

5.3.1.1 Graph partitioning

Using the ParHIP graph partitioning tool, we created 32 and 64 partitions of each

of the 2M, 3M, and 4M tweets using ”eco” preconfiguration. 2 cores per node in the

cluster were used for this tool. Thus we now have 4 different data sets to be executed

by BoostSRL in the later stages: (a) 2 million tweets with 32 partitions, (b) 2 million

tweets with 64 partitions, (c) 3 million tweets with 32 partitions, (d) 3 million tweets

with 64 partitions, (e) 4 million tweets with 32 partitions and (d) 4 million tweets with 64

partitions

For the 2M and 4M datasets, that were part of our former evaluation, we calculated

the vertex distribution (Fig. 13 and Fig. 15 for 2M data set and, Fig. 17 and Fig. 19 for 4M

data set) to gain an understanding of vertex distribution for all partitioning techniques. We

also calculated the total number of ground predicates per partition (Fig. 12 and Fig. 14 for

2M data set and, Fig. 16 and Fig. 18 for 4M data set) to visualize how large or small the

partitions were in terms of the total number of ground predicates associated with them.

This evaluation was essential to understand how balanced or sparse the graph partitioning

technique is. Furthermore, this was a learning curve for us to understand and implement

this tool on the weighted social graphs we were working with.

This confirms our prior observation that eco preconfiguration gives a comparable
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Figure 12: Distribution of ground predicates with varying preconfiguration on 32 parti-
tions (2M tweets)
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Figure 13: Distribution of vertices (user IDs) with varying preconfiguration on 32 parti-
tions (2M tweets)
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Figure 14: Distribution of ground predicates with varying preconfiguration on 64 parti-
tions (2M tweets)
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Figure 15: Distribution of vertices (user IDs) with varying preconfiguration on 64 parti-
tions (2M tweets)

Figure 16: Distribution of ground predicates with varying preconfiguration on 32 parti-
tions (4M tweets)
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Figure 17: Distribution of vertices (user IDs) with varying preconfiguration on 32 parti-
tions (4M tweets)

balanced set of partitions for all the graphs like strong preconfiguration but at a much

faster rate (Table 4). This significantly reduces our overall runtime. Table 7 shows the

time taken for the initial first stages of SRLearn.

5.3.1.2 Alchemy evaluation

We implemented Alchemy’s structure learning [30] for our preliminary phase of

experimentation. We began with a small sample of tweets (20,000 tweets) collected dur-

ing 2016-2017 and created an input file with 22.4 million ground predicates containing 17

unique predicates. The file size was 741 MB. We first ran Alchemy’s structure learning

approach on a single machine. Unfortunately, it was very slow even on a small number of

ground predicates. It ran for 138 hours on just 15,417 ground predicates and eventually
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Figure 18: Distribution of ground predicates with varying preconfiguration on 64 parti-
tions (4M tweets)

failed due to a memory allocation error. This is a clear indication of the problem of MLN

structure learning in a centralized setting.

We then experimented SRLearn’s performance on 22.4 million ground predicates.

We first ran SRLearn on a 16-node cluster to produce 128 partitions of the ground pred-

icates. This required a total of 2 hours and 30 minutes. For graph partitioning, we used

KaHIP [33] and tested different strategies that provide a tradeoff between partition quality

and time for different types of graphs. Fig. 20 shows the quality of partitioning in terms of

the number of vertices (i.e., users) of the user-centric graph per partition in sorted order.

Compared to the Eco, EcoStrong, and Strong settings in KaHIP, StrongSocial produced

the most balanced partitions.
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Figure 19: Distribution of vertices (user IDs) with varying preconfiguration on 64 parti-
tions (4M tweets)

Figure 20: Quality of graph partitioning by KaHIP
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Table 7: Runtime for different stages of SRLearn prior to structure learning
Dataset User-centric graph creation Graph partitioning Regroup predicates

2M 32 partitions 4m 43s 3m 20s 1m 27s
2M 64 partitions 4m 55s 6m 23s 2m 22s
3M 32 partitions 3m 58s 3m 9s 2m 20s
3M 64 partitions 3m 52s 6m 1s 2m 6s
4M 32 partitions 8m 18s 4m 20s 2m 53s
4M 64 partitions 8m 36s 4m 11s 3m 7s

Table 8: Sample of rules learnt by SRLearn coupled with Alchemy
First-order rules (in clausal form)

friend(v0,v1) ∨ !verified(v0)

!mentions(v0,v1) ∨ !retweeted(v2,v3) ∨
!tweeted(v1,v3) ∨ !tweeted(v2,v0)

!containsHashtag(v0,v1) ∨ containsHashtag(v2,v1) ∨
!mentions(v0,v3) ∨ !mentions(v2,v3)

Next, we ran Alchemy’s structure learning on each partition to generate rules using

a 32-node cluster. The 128 partitions were distributed across 32 nodes. It took a total of

66 hours and 33 minutes to run the structure learning on the partitions. Although a node

had many cores, we ran Alchemy on the partitions serially on the node. Some of the

learned rules learned are displayed in Table 8.

Alchemy did provide a promising solution to rule learning and was a good candi-

date for our system. However, considering 66 and 1/2 hours on merely 20,000 tweets, it

was not a lucrative option for large-scale data going further.

71



Table 9: Class imbalance, i.e. ratio of negatives to positives in 2M, 3M and 4M datasets
Dataset Number of negatives: Number of positives

2M 296:3
3M 96:1
4M 362:3

5.3.1.3 BoostSRL evaluation

Once the predicates are grouped into the respective partitions and the input files

are set up on all nodes for 5-fold cross-validation, we began the learning and inferencing

using BoostSRL. We learnt the models on the target ground predicate isPossiblySensi-

tive. Table 9 highlights the class imbalance present in each of the datasets for this target

predicate.

For this stage, we experimented with both the RDN-Boost as well as CSSRL

algorithms of BoostSRL. Table 10 describes the runtime for both algorithms. Note that

we ran CSSRL using a library of BoostSRL, i.e SRLBoost6, that is both lighter and hence

runs faster than the former jar.

Table 11 shows the AUC ROC values for both algorithms. Since the AUC ROC

values are almost similar for both approaches, while the CSSRL also considers the class

imbalance, we choose to use the CSSRL algorithm through the SRLBoost library for

structure learning.

Table 18 shows the global AUC PR for the target ground predicate isPossiblySen-

sitive for SRLearn. Table 19 shows the global AUC ROC for the target ground predicate

isPossiblySensitive for SRLearn.
6https://github.com/srlearn/SRLBoost
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Table 10: Time taken to train models by BoostSRL for target predicate isPossiblySensitive
Dataset Alpha/Beta Algorithm Train time

2M 32
partitions

- RDN-Boost 6h 16m 4s±41m 1s
0/40 CSSRL 17m 47s±5m 34s

40/40 CSSRL 12m 27s±1m 21s
2M 64
partitions

- RDN-Boost 6h 57m 19s±1h 53m 6s
0/40 CSSRL 11m 33s±3m 13s

40/40 CSSRL 2m 50s±20s
3M 32
partitions

- RDN-Boost 2h 33m 02s±34m 07s
0/40 CSSRL 2h 41m 17s±52m 58s

40/40 CSSRL 6h 27m 15s± 10m 04s
3M 64
partitions

- RDN-Boost 3h 17m 22s±1h 14m 11s
0/40 CSSRL 2h 31m 44s±16m 07s

40/40 CSSRL 4h 27m 46s±20m 27s
4M 32
partitions

- RDN-Boost 7h 35m 30s±2h 24m 44s
0/40 CSSRL 19m 13s±03m 42s

40/40 CSSRL 19m 40s±8m 48s
4M 64
partitions

- RDN-Boost 5h 50m 35s±1h 14m 19s
0/40 CSSRL 1h 02m 15s±10m 22s

40/40 CSSRL 1h 35m 20s±23m 25s

5.3.2 Vanilla SRLearn

Vanilla SRLearn is to show the effectiveness of rule mining in the absence of

SRLearn. This version of the experimentation is intended to study the performance of

BoostSRL on the group of ground predicates that are ”randomly” distributed, without the

intricacies of graph building, partitioning, and regrouping predicates into the respective

partitions.

We distribute the ground predicates randomly across the machines on the basis

of tweet IDs. We group the predicates tweeted(userID, tweetID), containsLink(tweetID,
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Table 11: AUC ROC for both algorithms of BoostSRL for target predicate isPossiblySen-
sitive

Dataset Alpha/Beta Algorithm AUC ROC

2M 32 partitions
- RDN-Boost 0.823±0.004

0/40 CSSRL 0.814±0.002
40/40 CSSRL 0.783±0.005

2M 64 partitions
- RDN-Boost 0.827±0.005

0/40 CSSRL 0.818±0.003
40/40 CSSRL 0.793±0.003

3M 32 partitions
- RDN-Boost 0.787±0.004

0/40 CSSRL 0.7781±0.004
40/40 CSSRL 0.7485±0.003

3M 64 partitions
- RDN-Boost 0.802±0.002

0/40 CSSRL 0.7917±0.004
40/40 CSSRL 0.7696±0.004

4M 32 partitions
- RDN-Boost 0.826±0.002

0/40 CSSRL 0.817±0.002
40/40 CSSRL 0.786±0.002

4M 64 partitions
- RDN-Boost 0.836±0.004

0/40 CSSRL 0.828±0.002
40/40 CSSRL 0.804±0.004

link), mentions(tweetID, userID), containsHashtag(tweetID, hashtag), isPossiblySensi-

tive(tweetID) and retweetCount(tweetID, count) by user ID first. We group the remaining

predicates into partitions with respect to the tweet ID. For example, consider there are

two predicates: tweeted(userID1, tweetID1), and tweeted(userID1, tweetID2), which are

placed in partition 1 and partitition 2 respectively. We place the predicate friend(userID1,

userID2) only in either partition 1 or partition 2, not both. Thus, we divide the predicates

for both 2 million and 4 million tweets, into 32 and 64 partitions. Once the predicates

are divided into the partitions, we distributed these partitions across the nodes in the same
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manner as before (with SRLearn) with 5-fold cross validation folders. We then trigger

BoostSRL to learn and infer on these randomly distributed predicates on the target ground

predicate isPossiblySensitive. As we can see in Table 19, Vanilla SRLearn fails to build

an effective classification model with random distribution of tweets and their predicates.

5.3.3 ProbKB

In this section, we describe our experimental setup and evaluation criteria for

ProbKB. We first list out the data preprocessing steps to create the knowledge base and

the set of rules to be learned, followed by the experimental setup used and the evaluation

technique followed.

5.3.3.1 Data Preprocessing

A knowledge base is first constructed using the evidence files used to learn rules

with SRLearn. With tweets originating from different countries and tweeted in diverse

languages, many of the characters are not UTF-8 encoded. Hence the first step involved

in creating the knowledge base for ProbKB was converting these characters into a hex-

adecimal format.

The knowledge base used by ProbKB is represented as a collection of subjects,

predicates, and objects represented as predicate subject object. We converted the evi-

dence into the following format. The predicates verified, isPossiblySensitive and mali-

cious operate on a subject and do not have an object tag. To transform them to a form

that is easily parsed by ProbKB, we added a constant object to these predicates. In addi-

tion to this, we introduced a new predicate, which relates the constant object to a tweet
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Table 12: Graph dimensions for evidence datasets considered
p(x, y)← q(x, y)
p(x, y)← q(y, x)

p(x, y)← q(z, x), r(z, y)
p(x, y)← q(x, z), r(z, y)
p(x, y)← q(z, x), r(y, z)
p(x, y)← q(x, z), r(y, z)

ID or user ID from which the evidence originated initially. For example, for a tweet ID

X that contains a malicious link Y, we represent it as malicious(Y), we use malicious Y

malConst and existsMalTweet malConst X as the facts. Similarly, for a tweet id X that

is tweeted by a user, with the id X, verified by Twitter, is represented in the evidence as

verified(Y). We generate corresponding facts from the evidence as verified Y isVerConst

and existsVerTweet isVerConst X.

5.3.3.2 Rule Description

With the aim to mine implied knowledge from known facts, ProbKB is designed

to mine just first-order Horn clauses. It supports 6 rule types listed in Table 12, where p, q

and r represent the predicates. The variables x, y and z represent the subjects and objects.

In order to learn all possible implied facts, we use all permutations of the predi-

cates to create the rules. In total, there were 168 type 1 and 2 rules and 2196 rules of type

3, 4, 5 and 6. The Schema closure graph, represented as G = (Predicate, Edge 1 ∪ Edge

1), used for parallel rule mining is shown in Table 13.
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Table 13: The schema closure graph used for rule mining
Predicate Edge 1 Edge 2

containsHashtag tweetID hashtag
containsLink tweetID link

followersCount userID flCount
friendsCount userID frCount

isPossiblySensitive tweetID isPSConst
malicious link malConst
mentions tweetID userID

retweetCount tweetID rtCount
retweeted userID tweetID

retweetedBy tweetID userID
statusesCount userID stCount

tweeted userID tweetID
verified userID verConst

existsMalTweet malConst tweetID
existsPSTweet isPSConst tweetID
existsVerTweet verConst tweetID

friend userID secUserID
isFollowedBy userID secUserID

5.3.3.3 ProbKB evaluation

We also used AUC ROC and AUC PR to evaluate ProbKB’s performance on the

datasets. As we can see in Table 19, Table 18 Table 22 and Table 21, ProbKB, even though

is scalable, is unable learn a reliable model, and hence its results are not as accurate as the

contemporaries.

5.3.4 XGBoost

We also compare our results to that with XGBoost, a state-of-the-art gradient tree

boosting algorithm used to address machine learning problems. To make it comparable
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with the distributed nature of SRLearn, we implement XGBoost through the Spark API

on a 16-node cluster of CloudLab.

5.3.4.1 Data Preprocessing

XGBoost, although scalable, ingests data in the relational form. Therefore, the

ground predicates are converted into a tabular format, where each row represents a tweet.

The columns translate to each of the ground predicate corresponding to the tweet. This is

either a direct translation of the predicate or is one-hot-encoded manually.

With the direct translation of ground predicates, which have a one-to-one relation-

ship with a tweet ID, we obtain the following columns.

• tweetID: Tweet ID of the tweet represented in the row;

• userID: User ID which tweeted the corresponding tweet ID;

• isVerified: 1 if user ID is verified on Twitter, 0 otherwise;

• friendsCount: Number of friends the user ID has;

• followersCount: Number of followers the user ID has;

• statusesCount: Number of statuses/posts made by the user;

• retweetCount: Number of times the tweet has been retweeted;

• isPossiblySensitive: 1 if the tweet ID is marked as isPossiblySensitive by Twitter, 0

otherwise.
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For remaining ground predicates that have a many-to-one relationship with tweet

ID, we employ a one-hot encoding mechanism. An example of a ground predicate demon-

strating this behavior is containsHashtag. Multiple hashtags can be used in one tweet.

Therefore, we have multiple containsHashtag predicates associated with the tweet ID.

The predicates containsLink and mentions also exhibit a similar behaviour. To one-hot

encode, these predicates, we create a column with the suffix onehotencoded, which con-

tains the one-hot encoding in the form of a binary string. This binary string is of length

n, which is the total number of unique hashtags or URLs or mentioned user IDs present

in the aggregated input. The ith character in the string corresponds to the ith hashtag or

URL or mentioned user ID. If the ith character in the string is 0, then the ith hashtag or

URL or mentioned user ID is not associated with the tweet ID. If the ith character in the

string is 1, then the ith hashtag or URL or mentioned user ID is associated with the tweet

ID.

For ground predicates, retweeted, friend and isFollowedBy, which do not have

the tweet ID in their variables, we use the user ID corresponding to the tweet ID as a

deciding factor in the one-hot encoding process. We get the following columns after one-

hot encoding.

• containsHashtag onehotencoded: One-hot encoding of ground predicate con-

tainsHashtag;

• containsLink onehotencoded: One-hot encoding of ground predicate containsLink;

• mentions onehotencoded: One-hot encoding of ground predicate mentions;
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Table 14: Spark-submit configuration
Parameter Value

driver-memory 100G
num-executors 15
executor-core 1

executor-memory 150G

• retweeted onehotencoded: One-hot encoding of ground predicate retweeted;

• friend onehotencoded: One-hot encoding of ground predicate friend;

• isFollowedBy onehotencoded: One-hot encoding of ground predicate isFollowedBy.

We use these one-hot encoded files as input for XGBoost to build a classification

model for isPossiblySensitive.

5.3.4.2 Training and testing with XGBoost

Table 14 denotes the spark-submit configuration used to run XGBoost on the 2M

and 4M dataset. Table 15 denotes the XGBoost parameters that were finalized after iterat-

ing over a varied set of parameter configuration. In order to train the model, we used the

rows corresponding to the tweet IDs that were also used in the positive and negative exam-

ples of training dataset for SRLearn. Similarly, we determined the sample for testing the

classification model efficiency. We created similar sets for all 5 folds of cross-validation.
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Table 15: XGBoost Classifier parameters
Parameter Value

missing 0.0
eta 0.1f

max depth 2
objective binary:logistic

scale pos weight Numberofnegativeexamples
Numberofpositiveexamples

num round 10
num early stopping rounds 15

num workers 15
tree method hist

Table 16: Time taken to learn models for XGBoost and SRLearn
Dataset SRLearn train time XGboost train time

2M 32 partitions 12m 27s±1m 21s 14h 37m 22s±32m 35s
2M 64 partitions 2m 50s±20s 14h 37m 22s±32m 35s
3M 32 partitions 2h 41m 17s±52m 58s 2d 10h 35m 30s±3h 46m 10s
3M 64 partitions 2h 31m 44s±16m 07s 2d 10h 35m 30s±3h 46m 10s
4M 32 partitions 19m 13s±3m 42s 2d 0h 17m 11s±33m 26s
4M 64 partitions 1h 2m 15s±10m 22s 2d 0h 17m 11s±33m 26s

5.3.4.3 AUC calculation for XGBoost

To ensure fair evaluation, we use the results from XGBoost (i.e. the predicted

class, and the predicted class probabilities) to calculate the AUC ROC and AUC PR values

using the same compiled jar that was used for the AUC calculation in the case of SRLearn.

The outcomes are shown in Table 18 and Table 19.

5.3.5 Performance evaluation of SRLearn with its contemporaries

From Table 18 and Table 19 we see that SRLearn outperforms it’s competitive

methodologies in terms of AUC ROC. ProbKB, on the other hand, does not provide a very
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Figure 21: AUC PR curve for 2M 32 partitions

Figure 22: AUC PR curve for 2M 64 partitions
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Figure 23: AUC PR curve for 3M 32 partitions

Figure 24: AUC PR curve for 3M 64 partitions
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Figure 25: AUC PR curve for 4M 32 partitions

Figure 26: AUC PR curve for 4M 64 partitions
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Figure 27: AUC ROC curve for 2M 32 partitions

Figure 28: AUC ROC curve for 2M 64 partitions
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Figure 29: AUC ROC curve for 3M 32 partitions

Figure 30: AUC ROC curve for 3M 64 partitions
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Figure 31: AUC ROC curve for 4M 32 partitions

Figure 32: AUC ROC curve for 4M 64 partitions
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Table 17: Comparision of total runtime for SRLearn and XGBoost
Dataset SRLearn XGboost

2M 32 partitions 21m 57s±1m 21s 14h 37m 22s±32m 35s
2M 64 partitions 16m 30s±20s 14h 37m 22s±32m 35s
3M 32 partitions 2h 50m 44s±52m 58s 2d 10h 35m 30s±3h 46m 10s
3M 64 partitions 2h 44m 3s±16m 07s 2d 10h 35m 30s±3h 46m 10s
4M 32 partitions 34m 44s±3m 42s 2d 0h 17m 11s±33m 26s
4M 64 partitions 1h 18m 9s±10m 22s 2d 0h 17m 11s±33m 26s

Table 18: AUC PR for target isPossiblySensitive: SRLearn vs Competitive methodologies
Dataset SRLearn Vanilla SRLearn ProbKB XGBoost

2M 32 partitions 0.048±0.002 0.020±0.000 0.009±0.000 0.0205±0.000
2M 64 partitions 0.043±0.001 0.019±0.000 0.009±0.000 0.0205±0.000
3M 32 partitions 0.0408±0.003 0.022±0.000 0.006±0.001 0.019±0.0004
3M 64 partitions 0.0448±0.003 0.022±0.001 0.006±0.001 0.019±0.0004
4M 32 partitions 0.035±0.002 0.020±0.000 0.007±0.000 0.198±0.005
4M 64 partitions 0.039±0.001 0.02±0.000 0.007±0.000 0.198±0.005

reliable rule learning methodology. We also show through AUC curves how XGBoost and

SRLearn perform. Fig. 21, Fig. 22, Fig. 23, Fig. 24, Fig. 25 and Fig. 26 represent the area

under the PR curves for the models learnt by SRLearn and XGBoost. Fig. 27, Fig. 28,

Fig. 29, Fig. 30, Fig. 31 and Fig. 32 represent the area under the ROC curves for the

models learnt by SRLearn and XGBoost. Davis and Goadrich in [6] have observed that

algorithms that optimize the area under the ROC curve are not guaranteed to optimize the

area under the PR curve. In our case, for the area under the ROC curve for SRLearn for

2M tweets (Fig. 27 and Fig. 28) and 3M tweets (Fig. 29 and Fig. 30), remains constantly

higher than that for XGBoost. For the 4M tweets, the area under the ROC curve for

SRLearn starts below that of XGBoost. However, it gradually picks up after a threshold
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Table 19: AUC ROC for target isPossiblySensitive: SRLearn vs Competitive methodolo-
gies

Dataset SRLearn Vanilla SRLearn ProbKB XGBoost
2M 32 partitions 0.814±0.002 0.704±0.002 0.5±0.000 0.687±0.004
2M 64 partitions 0.818±0.003 0.736±0.001 0.5±0.000 0.687±0.004
3M 32 partitions 0.778±0.002 0.703±0.004 0.5±0.0 0.670±0.004
3M 64 partitions 0.792±0.004 0.708±0.003 0.5±0.0 0.670±0.004
4M 32 partitions 0.817±0.002 0.737±0.003 0.5±0.000 0.696±0.003
4M 64 partitions 0.828±0.002 0.696±0.006 0.5±0.000 0.696±0.003

of around 0.6 (Fig. 31 and Fig. 32) indicating a better performance.

Furthermore, considering the time taken to learn a model on these datasets, we

also see the SRLearn is significantly faster than XGBoost (Table 16). We finally calculate

the end-to-end time taken by SRLearn and XGBoost. The results are in Table 17. We

can see that SRLearn fares well compared to XGBoost in terms of runtime, as well as

scalability. On one hand, we can see XGBoost drastically increase in runtime with respect

to the increase in the input data. On the other hand, the runtime increase in SRLearn is

comparatively smooth.

5.3.6 Evaluation on additional target predicate

We also evaluated SRLearn along with it’s competitive approaches on the ground

predicate malicious. Table 20 shows the time taken by SRLearn’s underlying rule learning

tool, BoostSRL to train models for target predicate malicious.

Similarly, we also calculated the AUC ROC and AUC PR with SRLearn, Vanilla

SRLearn and ProbKB on target ground predicate malicious as shown in Table 22 and

Table 21. As we can see, the SRLearn performs better than other methodologies in terms
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Table 20: Time taken to train models by SRLearn for target predicate malicious
Dataset Train time

2M 32 partitions 56m 43s±19m 30s
2M 64 partitions 40m 15s±14m 20s
4M 32 partitions 2h 11m 33s±32m 18s
4M 64 partitions 1h 54m 58s±21m 43s

Table 21: AUC PR for target malicious: SRLearn vs Competitive methodologies
Dataset SRLearn Vanilla SRLearn ProbKB

2M 32 partitions 0.202±0.010 0.095±0.002 0.026±0.000
2M 64 partitions 0.239±0.021 0.078±0.005 0.027±0.000
4M 32 partitions 0.094±0.007 0.06±0.002 0.018±0.000
4M 64 partitions 0.097±0.004 0.052±0.002 0.018±0.000

of AUC ROC. The evaluation with XGBoost remains open for further consideration. In

the case of the target ground predicate malicious, the one-hot encoding centered around

tweet IDs, similar to that of XGBoost for target ground predicate isPossiblySensitive,

becomes overly complicated, leading to lack of disk space. Unlike tweet IDs, which have

a 1:1 relationship with the tweets, a tweet can contain multiple tweets and therefore the

URLs can have a many-to-one relationship with a tweet. Hence, the implementation of

XGBoost on the target predicate malicious, is open to later evaluation and is beyond the

scope of this dissertation.
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Table 22: AUC ROC for target malicious: SRLearn vs Competitive methodologies
Dataset SRLearn Vanilla SRLearn ProbKB

2M 32 partitions 0.735±0.009 0.701±0.003 0.5±0.000
2M 64 partitions 0.737±0.015 0.652±0.002 0.5±0.000
4M 32 partitions 0.702±0.006 0.661±0.007 0.5±0.000
4M 64 partitions 0.711±0.006 0.688±0.004 0.5±0.000
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CHAPTER 6

CONCLUSION AND FUTURE WORK

During the course of this dissertation, we have seen how crucial the problem to

finding a scalable system for structure learning is. The capability to learn first order rules,

not only helps build a more accurate system that can predict/classify the target variables,

but also is able to identify interesting patterns from an ever evolving and growing dataset.

This helps address an existing problem in today’s practical scenario. Despite the existing

state-of-the art structure learning algorithms for MLNs, the problem to use these algo-

rithms with a large scale data persisted. Through this dissertation, we were successfully

able to build a fast and scalable rule mining system on social media data. Through a se-

ries of data modelling techniques as well as taking advantage of the distributed nature of

the tools like Spark and Hadoop, we are able to transform the tweets originally centered

around the tweet IDs into a social graph, representing these attributes centered around

user IDs instead. The social graph captures all the common social interactions users may

have on social media. This is an effective mechanism to make sure the information re-

mains intact and that we do not loose out on these signals once we partition the input data

set into smaller sizes for further rule learning.

We deploy the state-of-the-art graph partitioning tool, ParHIP to partition the

large social user-centric graph into a balanced set of partitions. This not only scales up

smoothly, but also, makes an optimal use of the distributed node setup on CloudLab by
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using multiple cores.

We also take advantage of the efficient state-of-the-art rule mining tools on these

partitioned data sets. Thus, instead of having one instance consume the largely scaled

social media data, we are now able to run multiple instances of the same tool on smaller

meaningful partitions of the evidence data, resulting in a smaller throughput and a higher

accuracy. Moreover, with the evaluation done on two different ground predicates, shows

that SRLearn can be extended to other ground predicates in the social media domain.

One can expect several challenges while trying to solve a research problem. Not

surprisingly, we too faced our fair share of roadblocks. A few deserve to be mentioned

in this manuscript. With Alchemy, we were able to learn first order rules as well as get

the rules in a clear and concise manner. But determining the accuracy and efficiency

became a question. Also, not to ignore the fact that Alchemy’s structure learning was not

fast enough. We continued to believe that we could ultimately build a fast and scalable

rule learning system. That is when we switched our rule learning component to that of

BoostSRL, which finally gave us the speed and efficiency we were aiming for.

The next roadblock was to find any existing rule learning systems that can be im-

plemented in a distributed environment. But except ProbKB, there was no scalable tool

available then. Finally we incorporated a machine learning algorithm, called XGBoost, to

gauge whether we are still comparable to any available scalable and/or distributed tools.

XGBoost’s Spark implementation is a significantly popular tool used to address classifi-

cation problems in large scale data.

Modeling the data for XGBoost again posed further challenges in terms of storage.
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We have gone through multiple iterations of data modeling to transition the relational first

order predicates into a tabular structure that can potentially encompass the rich details of

a social network. This transformed data is not only memory-greedy, but also is extremely

sparse. By the time we reached 4 million tweets, we started to face storage issues for the

one hot encoded files in a cluster. We believe that this approach of one hot encoding can

possess a serious storage problem as the data scales up. Moreover, modeling the tweets

for a different target predicate has its own challenges in terms of representation.

Challenges aside, keeping in mind the rate at which a social media platform like

Twitter, produces data every minute, SRLearn is a novel mechanism that is able to con-

sume millions of tweets at a given time, in order to make classification as accurate as

possible. This is a stepping stone into making existing MLN-based rule mining systems,

to consume data at a practical scale and infer meaningful relations from the data.

We believe that this system can be extended into a variety of usecases as well as

datasets from other domains. Theoretically, one usecase can be to identify the users that

could potentially pose a threat to the social media platform, or could help address the

issue of fake news. The idea behind SRLearn is not only limited to social media, but also

can be engineered to tackle big data problems in other domains. The challenges in the

domain of big data are endless. We believe, SRLearn can serve well to address at least a

few of them.
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