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INFLUENCE OF INERT GASES ON HEAT ANDMASS

TRANSFER IN NEXT-GENERATION NUCLEAR REACTORS
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ABSTRACT

Inert gases cause some unique challenges in nuclear fuel development. In this

dissertation, we study the impact of inert gases on the transport behavior in next-

generation fission and fusion reactors. Uranium–molybdenum alloys are potential

nuclear fuels that can replace highly-enriched uranium fuel in research and test

reactors around the world. Developing a uranium fuel with low enrichment is an

important step towards preventing nuclear proliferation and promoting the peace-

ful use of nuclear energy. We look into how fission gas (i.e., krypton and xenon)

impacts the transport properties of U–Mo alloys. We start with an analysis of the

impact of fission gas on the overall thermal conductivity of U–Mo. We find that

the presence of fission gas inside the fuel significantly reduces the overall thermal

conductivity. We then discuss the electronic structure of uranium using density

functional theory (DFT) and introduce a new pseudopotential for uranium. This

pseudopotential is then used to examine xenon migration in U–Mo alloys. Our

results show that the presence of molybdenum in nearest-neighbor lattice posi-

tions increases the migration energy of xenon relative to pure γ-uranium, meaning

molybdenum impedes fission gas transport. Finally, we study the interaction of he-

lium with lithium, which is a potential plasma-facing material for fusion reactors,

using DFT. We find that helium behaves very differently in lithium than it does in

other bcc materials. Our studies show that helium has very lowmigration energies

inside lithium, indicating high mobility.
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CHAPTER 1

INTRODUCTION

Since the discovery of fission in 1938, the world has experienced the impact of

nuclear power on modern society. The primary fuel for fission is
235

U. Naturally-

occurring uranium consists of a combination of different isotopes: about 99.3%
238

U

(wt%), 0.7%
235

U, and trace amounts of
234

U. Uranium can be “enriched” in the

235
U isotope by using various complicated processes that mainly use the difference

in mass and other physical properties. A typical power generating reactor requires

less than 5% uranium enrichment. Research reactors which require higher neutron

fluxes, need a higher percentage of uranium enrichment. The neutron produced

by a research reactor can be used for neutron scattering, testing and analysis of

materials, production of radioisotopes, and training. Research and test reactors are

also referred as non-power reactors. The enrichment, or weight fraction of
235

U,

specifies the key factors of any uranium content, both in terms of research reactor

fuel performance and in nuclear weapons. Above a certain enrichment, the fissile

material can be turned into explosive devices. As a result, low-enriched uranium

(LEU) and high-enriched uranium (HEU) have been introduced. Historically, this

limit has been set at an enrichment of 20% [1, 2].

Using HEU in research reactors leads to a series of unavoidable and apparent

proliferation1 risks that are related to diversion and theft of the fissile material [4].

HEU can be used to make nuclear explosives, such as the one used on Hiroshima

1“proliferation” in the context of nuclear energy is defined as “the spread of nuclear weapons

and technologies and the materials to make them” [3].
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by the United States in World War II. That weapon, code named “Little Boy,”

contained about 50 kilograms of
235

Uwith an average enrichment of about 80% [5].

The neutron production in 60 kg of metallic enriched uranium (from both fission

and (α, n) reactions on oxygen) is about 100 per second. This production rate and

combined with a neutron reflector can be made into a highly-enriched uranium

weapon. Although there is disagreement about the likelihood of a rogue nation

acquiring the necessary technical capabilities to make a nuclear weapon with an

implosion design, there is little argument that it is much easier to design a so-called

gun-type weapon that could work without being tested.

Proliferation concerns about HEU resulted in a global effort, led by the USA,

to eliminate civilian uses of HEU in research and test reactors. One of the impor-

tant HEU reduction programs is known as the Reduced Enrichment for Research

and Test Reactors (RERTR) program. The RERTR program was initiated in the

USA in the late 1970s to develop new nuclear fuels to replace high-enriched ura-

nium (HEU) [6, 7]. The RERTR program is now managed by the U. S. National

Nuclear Security Administration’s (NNSA) Office of Material Management and

Minimization [8]. The development of low-enrichment uranium (LEU) fuels for

high-performance reactors is an important nonproliferation initiative.

The RERTR initiative has completed a total of 69 reactor conversions to use

LEU fuel, and 26 HEU-based reactor facilities have been verified to have been shut

down [9]. The conversion of six domestic high-performance research reactors2 that

still use high-enriched uranium fuel is yet to be achieved. Due to their unique

operating conditions, converting these six reactors will not be easy, and a plethora

of nuclear engineering challenges are associated with their conversion. These

2The Advance Test Reactor (ATR) at Idaho National Laboratory (INL), Idaho; the Advanced Test

Reactor Critical (ATRC) Assembly at INL, Idaho; theHigh Flux Isotope Reactor (HFIR) at Oak Ridge

National Laboratory (ORNL), Tennessee; theMassachusetts Institute of TechnologyReactor (MITR),

Massachusetts; the National Bureau of Standards Reactor (NBSR) in Gaithersburg, Maryland; and

the University of Missouri Research Reactor (MURR) in Columbia, Missouri.
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conversion processes may take longer time periods, but developing a new LEU fuel

is essential to ensure better performance and while limiting nuclear proliferation.

The timeline for the conversion is currently estimated to be 10–16 years [10–12].

Research reactors operate at relatively low peak fuel temperatures, but they are

required to meet fuel performance requirements at high burnup. A typical peak

fuel centerline temperature in a research reactor is around 250°C [13]. For a research

reactor, fission densities are usually in the range of 3×10
21
to 6×10

21
fissions/cm

3
.

In some cases, peak fuel fission density exceeds 7 × 10
21

fissions/cm
3
, requiring a

higher density of
235

U atoms. Consequently, one of the main requirements of LEU

fuels is increased uranium density, such as that found inmetallic uranium, to offset

the decrease in
235

U enrichment.

1.1 Metallic Uranium and Alloys

Uranium, an actinide, has three allotropic forms at atmospheric pressure:

α
662°C−−−−→ β 774°C−−−−→ γ

The orthorhombic (α-phase), stable from below room temperature to 662°C; tetrag-
onal (β-phase), stable from 662 to 774°C; and body-centered cubic (γ-phase), stable

from 772°C to themelting point, 1132 °C [12]. Metallic uraniumat standard temper-

ature is thought to have sufficient density (19.05±0.02 g/cm
3
). α-Uranium belongs

to the orthorhombic system, in which the three axes are mutually perpendicular

(a ⊥ b ⊥ c) but are unequal length (0 ≠ 1 ≠ 2) (Fig. 1.1). This orientation of crystal

is considered anisotropic. A great deal ofwork has gone into studying the properties

of α-uranium. Different heat treatment, corrosion, grain size analysis, mechanical

and elastic property studies, and post irradiation analysis indicate that α-uranium

is a poor candidate to be considered as a nuclear fuel [14–16].
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Figure 1.1. Orthorhombic crystal structure of α-uranium.

Alloying uranium to obtain certain properties was extensively studied in the

early stages of nuclear fuel development. Some of the reasons were (1) to achieve

a finer grain size, (2) to improve mechanical properties, (3) to improve corrosion

resistance, and (4) to increase irradiation performance. Aluminum is the material

of choice for many components of low-temperature research reactors. The irradia-

tion behavior of aluminum at low temperature (< 100°C) shows favorable behav-

ior, which retains significant ductility and metallic property [17]. The uranium–

aluminum system has three intermetallic compounds (Fig. 1.2): UAl2, UAl3 and

UAl4. UAl2 solidifies at 1615°C; UAl3 forms at 1355°C by a peritectic reaction be-

tween the solid phase UAl2 and a liquid phase of Al–60wt%U. UAl4 forms at 740°C
by a peritectic reaction between the solid phase UAl3 and a liquid composition of

Al–18wt%U. Uranium–aluminum alloys in which the matrix is either primarily

4



Figure 1.2. Uranium–aluminum phase diagram. Reprintedwith permission from Springer

Nature: H. Okamoto [19], © 2012.

aluminum or Al+UAl4 eutectic are widely being used as research reactor fuel. This

type of fuel is called a dispersion3 fuel.

Uranium–aluminum alloys can have densities as high as 4.522 gU/cm
3
[20], but

for LEU the required density exceeds 8.5 gU/cm
3
[21]. There are only a few fuel

phaseswith both a high uraniumdensity and stable irradiation properties. The two

types of fuels that meet the density requirements are γ-stable uranium and U6Me

(Me = transition metal). U6Me fuels showed very poor irradiation performance at

low fission density (3 × 10
21

fissions/cm
3
) [22–24]. The γ phase of uranium can be

stabilized by alloying it with suitable elements. Several transition metals stabilize

γ-uranium. Elements such as molybdenum (Mo), niobium (Nb), titanium (Ti), and

zirconium (Zr) have been tried as alloying elements because of their solubility in

3A dispersion fuel is one in which the fissile material is contained as a compound dispersed in

a nonfissile matrix [18].
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Figure 1.3. Uranium–molybdenum phase diagram. Reprinted with permission from

Springer Nature: H. Okamoto [32], © 2012.

γ-uranium [25–27]. The U–Mo phase diagram (Fig. 1.3) has a eutectoid at 11.1 wt%

Mo and 555°C. If the U–Mo γ phase contains more than 5 to 7 wt%Mo, the γ phase

can be retained at room temperature by rapid cooling [28, 29]. To take advantage

of this, uranium alloyed with 10 wt% molybdenum (U-10Mo) is currently being

developed as a potential high-density LEU fuel for high-performance research

reactors [13, 30, 31].

Before the current interest in U–Mo metallic fuels, some early nuclear reactors

usedmetallic fuels because of the combinationof highuraniumdensity andmetallic

properties. The Godiva IV pulsed reactors at Los Alamos (initially known as Lady

Godiva) used U–Mo alloys, which date back to 1960 [33]. The Fast Burst Reactor

(FBR) at White Sands, the Army Pulsed Radiation Facility (Aberdeen, MD), and

the Sandia Pulsed Reactor II also used U–Mo alloys [33–35]. All of these reactors
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utilized the γ-phase of uranium, but because of their short irradiation time, the

impacts of fuel burnupwereminimal [36]. OutsideUSA, theDounreay Fast Reactor

in the U.K. used a number of metal-fuel-based designs, which includes U-9.1Mo

(9.1 wt% Mo) and U-7Mo clad in niobium [37]. The highly alloyed fuel cracked

more, even though the U-9.1Mo fuel swelled slightly less than U-7Mo [38].

The primary concern with γ-uranium alloys is to ensure that the fuel remains

in the γ phase during reactor operation. A series of experiments was performed

to map the fission rate and temperature dependence of the γ phase’s stability [39].

Two types of U–Mo alloy fuels have been designed and tested. One is monolithic

fuel, in which a thin layer of U–Mo foil is bonded to aluminum cladding. The other

is a dispersion fuel, in which U–Mo fuel particles are dispersed in an aluminum

matrix.

For five decades, dispersion fuels have poweredmany test and research reactors

worldwide. The manufacturing process and operating conditions are well-known

for these types of fuels. High-burnup testing of dispersion fuels showed a pattern

of breakaway swelling4 behavior at intermediate burnup. Post-irradiation exami-

nations of U–Mo dispersion fuel revealed that this phenomenon is related to the

formation of a ternary aluminide phase. Reaction between the U–Mo fuel kernels

and aluminumcladding occurs during irradiation and forms a ternary [(U–Mo)AlG]

phase, which releases fission gas at the boundary between the interaction phase

and the aluminummatrix [40–43]. These gas bubbles have a tendency to aggregate

into the gas pockets, which weakens the fuel meat by exerting internal pressure.

The result is mechanical failure and an increase in fuel volume. To eliminate the

fuel–matrix interaction, a ‘monolithic’ U–Mo fuel was suggested. In monolithic fu-

els, a zirconium foil is used as a diffusion barrier between the fuel and the cladding

(aluminum) to prevent diffusion of molybdenum into the cladding [41].

4Breakaway is defined as “the limiting exposure, beyond which there will be a marked increase

in the rate of swelling as a function of burnup” [44].
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1.2 Fission Gas

The behavior of fission gas—xenon and krypton—has perplexed and fascinated

both experimentalists and theorists more thanmany processes that simultaneously

occur in a nuclear fuel elements during irradiation. These inert gases are insoluble

in the fuel matrix, causing them to form small gas bubbles. If the gas is released

from the fuel, the pressure within the cladding rises, which ultimately results in

failure. If the fission gases are retained in the fuel, however, they almost always

precipitate as bubbles and cause swelling in the fuel matrix. Swelling adversely

impacts the fuel’s efficiency. It also impacts the thermal conductivity of the fuel,

thereby disrupting the heat extraction from the fuel. One particular xenon isotope,

135
Xe also has a large neutron absorption cross section, which can lead to a reactor

“poisoning.” As a result, the basic aspects of inert gas behavior are commonly

studied for fuel such as UO2.

Xenon is produced directly from fission: 0.3% of fission products are
135

Xe. It

is also produced by the decay of
135

I via the reaction

135

Te

19s−−−→ 135

I

6.7 h−−−→ 135

Xe.

135
I constitutes almost 6.1%of fissionproducts. Thus, 95%of total xenonproduction

is due to the decay of iodine. Xenon is removed from the fuel by beta decay

135

Xe

9.1 hr−−−−→ 135

Cs + �−,

or by neutron absorption:

135

Xe + 1

0
n −−−→ 136

54
Xe + �.
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In U–Mo fuel, fission gas forms bubbles both inside the grain and on grain

boundaries. Inside the grains, fission gas forms a gas bubble superlattice [45, 46].

This dissertation investigates how fission gas (xenon and krypton) impacts the

transport properties of U–Mo fuel. Chapter 2 summarizes the theoretical methods

used in this work. In Chapter 3, we discuss the reduction of thermal conductivity

in U–Mo alloys due to the presence of fission gas. In Chapter 4, we introduce a

new pseudopotential for metallic uranium to study its properties using density

functional theory (DFT). In Chapter 5, we look into the diffusion mechanism of

xenon in γ-uranium and U–Mo alloys. In Chapter 6, we discuss the interaction of

helium with a potential plasma-facing material for fusion, lithium, using DFT. We

discuss conclusions and potential future work in Chapter 7.
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CHAPTER 2

BACKGROUND

2.1 Electronic Structure Calculations

Electronic structure methods have become an essential tool in materials science

over the last three decades. Any relevant physical property of real materials can,

in principle, be described by the laws of quantum mechanics. The foundation of

thesemethods is the approximate solution of themany-body Schrödinger equation.

Given the positions of the atomic nuclei and the total number of electrons in the

system, the energy and other properties can be approximated. The ability to obtain

a solution that is good enough requires an efficient description of the electronic

system and considerable computational power.

2.1.1 The Many-Body Hamiltonian

The quantum theory of electrons andnuclei controls the characteristics ofmatter

over wide ranges of temperature and pressure. One of the most fundamental

qualities of solids is that they have a variety of properties that result from the

collective behavior of atoms. Electrical conductivity as well as magnetism arise as

collective properties of the atoms in the solid. The wavefunction of the solid can

be described by the Schrödinger equation,

ℋ |Ψ(C)〉 = 8ℏ %
%C
|Ψ(C)〉 , (2.1)
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where ℋ is the Hamiltonian operator. If the Hamiltonian is time-independent,

the Schrödinger equation can be simplified. For time-dependent problems, the

wavefunction can be broken into the product of a time-dependent part and a time-

independent part, the latter of which depends on the positions of the electrons

and nuclei. The solution of the time-dependent Schrödinger equation is of the

following form:1

|Ψ(r, C)〉 = 4−8�C/ℏ
��#(r)〉 (2.2)

The time-dependent part is trivial. The time-independent part obeys the time-

dependent Schrödinger equation,

ℋ
��# 9

〉
= � 9

��# 9

〉
, (2.3)

where the Hamiltonian operator represents the total energy of the particles:

ℋ = −
∑
9

ℏ2

2<4
∇2

9 −
∑
0

ℏ2

2"0
∇2

0

−
∑
9 ,0

/04
2��

r9 − R0

�� + 1

2

9≠:∑
9 ,:

42��
r9 − r:

�� + 1

2

0≠1∑
0,1

/0/14
2

|R0 − R1 |

ℋ (atomic unit)

= −
∑
9

1

2

∇2

9 −
∑
0

1

2"̃0

∇2

0

−
∑
9 ,0

/0��
r9 − R0

�� + 1

2

9≠:∑
9 ,:

1��
r9 − r:

�� + 1

2

0≠1∑
0,1

/0/1

|R0 − R1 |

= )4 + )# ++#4(r,R) ++44(r) ++## (R) (2.4)

It is convenient to use atomic units (see Appendix A), which will be used for

the remainder of the discussion. In these units, the electron mass <4 as well as

1More precisely, the solution would be written as the superpositionΨ(r, C) = ∑
9 � 9# 9(r)4−8�9 C/ℏ,

where # 9(r) are eigenfunctions of the time-independent Schrödinger equation and � 9 are complex

coefficients.
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the elementary charge 4, the reduced Planck constant ℏ, and Coulomb’s constant

1/4�&0 are unity, leaving "̃0 = "0/<4 as the relative atomic mass of the nucleus

of atom 0. r9 denotes the position of the 9th electron, while R0 is the position of

the nucleus of atom 0 and /0 is that nucleus’ atomic number. A solution of the

time-independent Schrödinger equation (2.3) would be a function dependent on

the spatial coordinates of all particles in the system and is, as such, only obtainable

for very idealized systems. The Schrödinger equation with the above Hamiltonian

is impossible to solve exactly for most of systems of interest. A series of approx-

imations and methods were therefore developed to reduce the complexity of the

problem. With the help of Eqn. (2.4) the Schrödinger equation (2.3) becomes

[)4 + )# ++#4(r,R) ++44(r) ++## (R)]Φ(r,R) = �Φ(r,R) (2.5)

In order to simplify the equations, the electronic coordinates and spin indices are

combined into a vector r = (®A, B), and R denotes the nuclear coordinates. The

wavefunction here is a regular function of the atomic positions but a quantum state��Φ(®A)〉 in the Hilbert space for the electrons and nuclei, so that Φ(®A) =
〈
®A
��Φ(r,R)〉.

The nuclear mass exceeds the electron mass by more than three orders of mag-

nitude, and so the electrons and nuclei move on different time scales. Thus, the

wavefunction Φ(r,R) can be separated into an electronic partΨ(r,R) and a nuclear

wavefunction "(R),

Φ(r,R) = Ψ(r,R)"(R) (2.6)

The nuclear wavefunction is much more localized, which is why the Schrödinger

equation can be separated into two parts:

[)4 ++44(r) ++#4(r,R)]Ψ(r,R) = &=(R)Ψ(r, ') (2.7)

[)# ++## (R) + &=(R)]"(r) = �"(R) (2.8)
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The nuclear positions (R) in the equation (2.7) serves only as a parameter and it is

possible to use the adiabatic or Born–Oppenheimer approximation. On the timescale

of the nuclear motion, the electron follow the ions adiabatically. As a further

approximation, the quantum effects on the motion of the nuclei are neglected and

the time-dependent Schrödinger equation is replaced by Newton’s equation of

motion;

%%�
%C

= −∇��0(R) (2.9)

with �0(R) = &0(R) ++## (R) (2.10)

This refers to so-called ab-initio molecular dynamics, where the forces around a

nuclei are calculated from the electronic ground state. Here, %� is the momenta

of the nucleus. Equations (2.7) and (2.8) are not generally applicable. However,

for several physical systems, the Born–Oppenheimer approximation works and

Eqn. (2.7), (2.8) produces meaningful results. In solid state physics, Eqn. (2.8) is

usually written in a classical form and Eqn. (2.7) becomes the problem to be solved.

It is still a very complicated equation, where the term describing the interaction

between electrons would require the knowledge of 33#
(3= number of discrete

points) variables for a system of # electrons. Such a large number of variables

make the problem computationally not tractable and several approximate methods

have been developed. Some of the important methods will be discussed in the next

of this chapter.

These approximatemethods are basedon the independent particle approximation,

in which the Hamiltonian takes the form

ℋ =

∑
9

ℋ9 . (2.11)
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The electronic wavefunction can be written as the product of single-particle wave-

functions. This leads to a further simplification of the Hamiltonian,

ℋ = −
#∑
9

1

2

∇2

9 −
#∑
9

"∑
0

/0��
r9 − R0

�� + 1

2

#∑
9≠:

#∑
:

1��
r9 − r:

��
= )4 ++ext + 1

2

∑
9≠:

 9:
(��

r9 − r:

��) . (2.12)

2.1.2 Hartree–Fock Approach

A very simple way to write the many-electron wavefunction is as a product of

single-particle wavefunctions:

Ψ(A1, A2, . . . , A# ) =
#∏
9

# 9(A 9). (2.13)

The Hamiltonian (2.12) is not just a sum of single-particle Hamiltonians: the true

wavefunctions cannot be written in the product of the form (2.13). Furthermore,

the wavefunction in (2.13) does not have the antisymmetry property required for

fermions.

The fermionic nature of the electrons imposes the Pauli exclusion principle as an

additional constraint. One can achieve an antisymmetric many-bodywavefunction

by writing the electronic wavefunction as a Slater determinant of single-particle

wavefunctions:

Ψ(A1, A2, . . . , A# ) =
1√
# !

������������
#1(r1) #1(r2) . . . #1(r# )

#2(r2) #2(r2) . . . . . .

...
. . .

## (r1) . . . ## (r# )

������������
. (2.14)
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The expectation value of the Hamiltonian (2.12) can be calculated using this wave-

function, which leads to an energy functional that can be minimized variation-

ally (2.15).

� ≤ �′ ≡ 〈Ψ| ℋ |Ψ〉〈Ψ|Ψ〉 (2.15)

Here, any state |Ψ〉 provides an upper bound �′ for the exact ground-state energy

�. An additional constraints is that the single-particle orbitals are to be normalized.

The normalization condition is

〈
#8(r8)

��# 9(r9)
〉
=

∫
#8(r)∗# 9(r)3r = �8 9 . (2.16)

The many-particle wavefunction (2.14) and the Hamiltonian (2.12) give the single

particle Hartree–Fock2 (HF) Equations,

ℋHF

8 #8(r8) =
[
−∇

2

2

+  ext(r8) +  H(r8) +  EX(r8)
]
#8(r8)

= &8#8(r8)
(2.17)

where the kinetic energy term )4 and the external potential +ext
are unchanged

from Eqn. (2.12) and are divided into the single particle contributions, with +ext =∑#
8=1

 ext(r8). The third term in Eqn. (2.12), the interaction between the electrons,

produces two additional operators  H and  EX. The first term is called the Hartree

potential and has the following form:

 H(r8) =
#∑
9=1

∫ ��# 9(r9)2
����

r8 − r9

�� 3r9

=

∫
=(r9)��
r8 − r9

��3r9

(2.18)

2From Hartree [1], who first postulated the factorization of the wavefunction in single particle

states in 1928, and Fock [2], who redefined the method by including Slater determinant.
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where

=(r) = #
∫ ��Ψ0(r1, . . . , r# )

��23r1, . . . , 3r# . (2.19)

The Hartree potential takes account of the mean-field Coulombic interaction be-

tween the 8th electron and the total electron density =(r) as defined in Eqn (2.18).

The second term in Eqn. (2.17) can be written in an integral form,

 EX#8(r8) =
#∑
9=1

∫
#∗9(r9)

1��
r8 − r9

��# 9(r8)#8(r9) 3r9 (2.20)

The quantity  EX is known as the exchange potential and takes account the anti-

symmetric nature of the total wavefunction. When the two particles are the same

coordinates, the Hartree and exchange potential cancel each other, which eleimi-

nates “self interaction”.

The solutions of theHartree–Fock equation are theHForbitals. Since theorbitals

are also part of the equation, the problem needs to be solved iteratively until the

equation is self-consistent. The exchange operator  EX is usually referred to as a

non-local operator, which makes it impossible to carry out full HF calculations for

condensed matter system without introducing the local approximation.

Evaluating  EX is already a non-trivial task, but the HF equation approximates

the fullmany-body problem in away that leaves out important contributions. What

is not considered is usually referred to as correlation which adds an extra term in

Eqn. (2.17). This contribution is small compared to the total energy of the system,

but it is crucial for many solid systems. The correlation contribution to the total

energy mainly takes account of the fact that an electron is screened by others from

the interaction with the nuclei and more distant electrons. The HF method usually

works for systems in which the particles do not “see” each other. HF performs

badly for systems with large number of electrons in metals.
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2.1.3 Density Functional Theory

In the Hartree–Fock approach the wavefunction of the many-body problem is

solved self-consistently. The electron density =(r) plays a prominent role in self-

consistent calculations. This raises the question as to whether there exists an exact

theory for the ground state electronic system of the density =(r). This question

leads to the density functional theory (DFT). The simplest and oldest version of the

DFT formalism is Thomas–Fermi theory [3, 4].

2.1.3.1 Density

The idea to shift focus fromwavefunction (Ψ(r)) to density (=(r)) to solve many-

body Schrödinger equation is very important. For many particle systems the den-

sity, =(r), is calculated by the expectation value of the single-particle density oper-

ator for the many-body wavefunction,

=̂(r) =
#∑
8

�(r − r8). (2.21)

The density can be calculated as follows:

=(r) = 〈Ψ| =̂(r) |Ψ〉 =
#∑
8

∫
�(r − r8)|Ψ(r1, . . . , r# )|23r13r2 . . . 3r#

= #

∫
|Ψ(r, r2, . . . , r# )|23r2 . . . 3r#

(2.22)

where r8 is the position of the 8th electron. Assuming the wavefunction is nor-

malized to unity, the above integration over all spaces yields the total number of

electrons,

# =

∫
=(r) 3r (2.23)

20



2.1.3.2 Energy in Terms of the Density

It is necessary to represent all the energy in terms of density to eliminate wave-

function dependency. This is necessary because the electronic energy needs to

be minimized with respect to density to obtain the ground state energy and cor-

responding electronic density. This is one of the foundations of DFT that was

proposed by Hohenberg and Kohn in 1964 [5].

As we have discussed earlier (HF theory), once the wavefunction is obtained by

solving theHamiltonian the observable of other operator can be calculated by calcu-

lating the expectation value of the operator. This allows us to calculate the separate

energy terms associated to the potential operator given in the Hamiltonian (2.12).

For the sake of completeness lets reproduce the Hamiltonian in a simplest form

ℋ̂4 = )̂ + +̂4= + +̂44

= −
#∑
9=1

1

2

∇2

9 −
#∑
9=1

"∑
0=1

/0��
r9 − R0

�� + 1

2

#∑
9≠:

#∑
:=1

1��
r9 − r:

�� (2.24)

Let’s assume we have managed to solve the many-body problem and have ob-

tained the wavefunction. The expectation value of the nucleus–electron interaction

operator is given by

〈Ψ(r1, . . . , r# )| +̂=4
��#(r1, . . . , r# )

〉
= −

#∑
9

"∑
0

Ψ∗(r1, . . . , r# )
/0��

r9 − R0

��Ψ(r1, . . . , r# )

= �=4 = −
"=#∑
0

∫
=(r) /0

|r − R0 |
3r

=

∫
=(r)+=4(r)3r (2.25)

The equivalent derivation for the electron–electron term is not trivial, because the

electron–electron terms require a two-particle density instead of a single-particle
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density,

�44 =
1

2

∬
=(2)(r, r′)
|r − r

′| 3r3r
′, (2.26)

where =(2) can be interpreted as the probability of finding an electron at location r

given that a second electron exists at location r
′
. Eqn. (2.26)makes themany-particle

problem impossible to solve, as it would be required to know the conditional

probability =(2) to solve the equation exactly. If the two electrons were completely

uncorrelated, then the two-particle density can be written as the product of one-

particle densities,

=(2) = =(r)=(r′) + Δ=(2)(r, r′), (2.27)

where =(2) is a correction term. The electron–electron energy can be written as

�44 =
1

2

∬
=(r)=(r)′
|r − r

′| 3r3r
′ + Δ�44 (2.28)

where the Δ�44 term comes from the correction term in Eqn. (2.27). The kinetic

energy operator has a derivative term, which creates a problem in calculating the

expectation value. This is because of the derivative, it is not possible to collect the

wavefunction and its conjugate as a single norm square,

) = −1

2

∫
Ψ∗(r1, . . . , r# )∇2Ψ(r1, . . . , r# ) 3r. (2.29)

In order to calculate the kinetic energy, DFT expands the electron density as the

sum of squares of single-particle orbitals,

=(r) =
#4∑
9=1

��) 9(r)��2. (2.30)
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These orbitals are called Kohn–Sham orbitals. Now the kinetic energy term can be

written as single-particle kinetic energy plus a correction,

) = −1

2

#4∑
9=1

∫
)∗9(r)∇2) 9(r) 3r + Δ). (2.31)

The total ground state energy can be written as

� = −1

2

#4∑
9=1

∫
)∗9(r)∇2) 9(r)3r +

∫
=(r)+=4(r)3r

+ 1

2

∬
=(r)=(r)′
|r − r

′| 3r3r
′ + Δ�44 + Δ)

= −1

2

#4∑
9=1

∫
)∗9(r)∇2) 9(r)3r +

∫
=(r)+=4(r)3r

+ 1

2

∬
=(r)=(r)′
|r − r

′| 3r3r
′ + �G2

(2.32)

Here, the two correction terms are replaced with �G2 , called the exchange–correlation

energy. The origin of this term is the difference between # interacting and nonin-

teracting particles. Several well-developed approximations exist for the exchange–

correlation energy, and one of them is called the local density approximation (LDA),

�G2 =

∫
=(r)&G2([=(r)])3r (2.33)

where &G2 is the energy per electron at point r that depends only on the density

=(r). Thus, within the local density approximation, the total energy can be written

� = −1

2

#4∑
9

∫
)∗9(r)∇2) 9(r)3r +

∫
=(r)+=4(r)3r

+1

2

∬
=(r) =(r)′
|r − r

′| 3r 3r
′ +

∫
=(r)&G2([=(r)])3r

(2.34)
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The above equation is used to derive to obtain Kohn–Sham (KS) equations, which

make DFT applicable in practice. The functional form of the Eqn. (2.34) can be

written as follows:

�KS[=] = )B[=] +
∫
+ext =(r)3r + �H[=] + �xc[=] (2.35)

Here, +ext is the external potential due to the nuclei and other external fields.

2.1.4 Kohn–Sham Equations

The previous section addressed the formulation of the KS equation and the

idea of self-consistency. In DFT-based calculations, methods are classified based on

their representation of the density, potential, and especially KS orbitals. The choice

of representation is made to increase computational efficiency while maintaining

accuracy. For a particular choice of basis set, the coefficients are the only variable

to be determined (density depends on the KS orbitals). The total energy of DFT is

thus variational, meaning the solution of the self-consistent KS equations requires

one to determine the coefficients on the occupied orbitals that provide a minimum

of the total energy.

According to the second theorem of Hohenberg and Kohn, all properties such

as kinetic energy are uniquely determined if =(r) is specified. Eqn. (2.34) shows

the relationship. To minimize the total energy with respect to the KS orbitals, the

variational principle is usually used. While performing the minimization, it is

preferable to minimize with respect to )∗(r) (both yield the same result). Using the

chain rule for functional derivatives, the Eqn. (2.35) becomes:

��

�)∗
8
(r) =

�)B
�)∗

8
(r) +

[
��ext
�=(r) +

���
�=(r) +

�G2

�=(r)

]
�=(r)
�)∗

8
(r) = 0 (2.36)
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The kinetic energy may be differentiated separately with respect to orbital. In the

above equation the �48 is replaced with �ext which denotes the potential energy

due to nuclei and any other external fields.

− 1

2

∇2)∗8 (r) +
[
+ext(r) +

∫
3(r′) =(r

′)
|r − r

′| + &G2(=) + =(r)
�&G2[=]
�=(r)

]
)8(r) = &8)8(r)

(2.37)

Eqn. (2.37) represents the many-particle system in terms of single-particle orbitals.

Each of these equations resembles a Schrödinger equation.

[
)̂ ++eff

]
)8(r) = &8)8(r) (2.38)

Here, the+eff is the sum of the+� ,+G2 , and+ext, which depends on the density and

indirectly depends on the KS orbitals. This equation is solved self-consistently (see

Fig. 2.1).

2.1.5 Kohn–Sham Problem for an Isolated Atom

For one-electron atom, the Coulombic potential, +(r) = +(A) = −//A is spher-

ically symmetric, meaning the solution can be split into a radial and an angular

part,

#=ℓ<(r) = #=ℓ (A).ℓ<(�, )) = A−1)=ℓ (A).ℓ<(�, )). (2.39)

Here, .ℓ<(�, )) are normalized spherical harmonics. The wave equation reduces

to the radial equation, which is associated with the principle quantum number =,

− 1

2

32#=ℓ
3A2

+
[
ℓ (ℓ + 1)

2A2

++ext(A) − &=ℓ
]
#=ℓ = 0 (2.40)

In the Kohn–Sham approach to the many-particle system, the form of the single-

particle equations is identical to the spherically-symmetric Schrödinger equation
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Initial guess = 8=0(r)

8 = 8 + 1

Calculate +eff(r) = +ext(r) ++�[=] ++G2[=]

Solve KS

[
−1

2
∇2 ++eff(r)

]
) 9(r) = &8)8(r)

=(8)(r) = ∑
9

��) 9(r)2��
Self-consistent ?

Reached self-consistency: Finish

yes

no

Figure 2.1. Schematic representation of the self-consistent loop solution of Kohn–Sham

equations.
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with an effective potential +eff replacing the Coulomb potential. The effective

potential (+eff = +ext(A) + +�(A) + +G2(A)) is spherically symmetric in the Kohn–

Sham approach. The independent-particle Kohn–Sham states may be classified by

the angular quantum numbers (ℓ , <), and the one particle equations are analogous

to the Schrödinger equation for one-electron atom.

− 1

2

32#=ℓ
3A2

+
[
ℓ (ℓ + 1)

2A2

++eff(A) − &=ℓ
]
#=ℓ = 0 (2.41)

2.1.6 Pseudopotentials

In solids, the electrons and nuclei interact strongly through the Coulomb po-

tential. However, according to the Fermi liquid theory (FLT), electronic excitation

near the Fermi energy in metals behave as though the electrons were independent

particles. This leaves the strong interactions between the core electrons and the nu-

clei. In most cases, the core electrons are quite strongly bound and do not respond

significantly to the motion of the valence electrons. Hence, they can be regarded

as essentially fixed. This is the essence of the pseudopotential approximation: the

strong core potential is replaced by a pseudopotential, whose shape resembles

the potential associated with the all-electron wavefunction outside a certain core

radius. In this way both the core states and the nodes (Fig. 2.2) in the valence

wavefunctions are removed. For many metals, the pseudowavefunctions can be

represented by a much smaller number of plane waves.

2.1.7 Basic Phillips–Kleinman Construction

For a givenmany-electronHamiltonian,ℋ = )̂++̂ , where )̂ is the kinetic energy

operator and +̂ is the potential energy operator, the core electron wavefunctions

are defined by the time-independent Schrödinger equation,

ℋ
��#8〉 = �8 ��#8〉 (8 = 1, . . . , =core) (2.42)
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Figure 2.2. Radial distribution function of hydrogenic 1s, 2s and 3s, electron. The electron

has a higher kinetic energy near the nucleus.

Figure 2.3. Schematic of the replacement of the all-electron wavefunction and core poten-

tials by a pseudo-wavefunction and pseudopotential.
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The valence electron wavefunction similarly can be found by the Hamiltonian

ℋ
��# 

〉
= � 

��# 
〉

(2.43)

The valence electron wavefunctions are orthogonal to the core electron wavefunc-

tions

( 〈
# 

��#8〉 = 0

)
, this orthogonality always has to be preserved, even if the

core electrons are not treated explicitly. One way to preserve this orthogonality

is to write the valence electron wavefunction in a basis set that is orthogonal to

the core electrons. The Gram–Schmidt process can be used. Herring [6] was the

first one to use orthogonalized plane waves (OPWs) (Appendix B) as basis for the

first quantitative calculations of bands. Using this idea, we can orthogonalize any

arbitrary basis set {|"=〉} to the core electronwavefunctions by defining a new basis

set {|*=〉} via

|*=〉 = |"=〉 −
=core∑
8=1

〈
#8

��"=〉 ��#8〉 (2.44)

Here each of the new basis set, {|*=〉}, satisfies
〈
"=

��#8〉 = 0 for each

��#8〉. Now we

can express the valence electron wavefunction as a linear combination of the new

basis sets, ��# 
〉
=

∑
=

�= |*=〉 . (2.45)

Inserting Eqn. (2.44) into Eqn. (2.45), the valence electron wavefunction can be

expressed in the followingway. The orthogonality conditionwith the core electrons

is still valid,

��# 
〉
=

∑
=

�=

[
|"=〉 −

=core∑
8=1

��#8〉 〈
#8

��"=〉] = ��)〉
− Ω̂

��)〉
, (2.46)
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Here, Ω̂ is a projection operator for the core electron wavefunction

Ω̂ =

=core∑
8==

��#8〉〈#8 �� (2.47)

andanewwavefunctionwhich is a linear combinationof |"=〉, sometimedesignated

as pseudo-orbital, ��)〉
=

∑
=

�= |"=〉 (2.48)

This technique of representing the valence electron wavefunction in preorthogo-

nalized basis set has been studied and used as a computational tool [6]. It took

the insight of the Phillips and Kleinman [7]. The new pseudo-orbital satisfies the

orthogonality condition, but they also change the Hamiltonian so that the eigen-

values are the same as they would be with the valence electrons. Mathematically,

it can be obtained by replacing original valence electron Hamiltonian (Eqn. (2.43))

with the newly obtained pseudo-wavefunction yields

ℋ
��# 

〉
= ℋ

[��)〉
−

∑
=

��#8〉 〈
#8

��)〉]
= � 

[��)〉
−

∑
=

��#8〉 〈
#8

��)〉]
(2.49)

Rearranging Eqn. (2.49) provides a new effective Hamiltonian,[
ℋ +

=core∑
=

(� − �8)
��#8〉 〈

#8
��] ��)〉

= � 
��)〉

(2.50)

The above equation has the form of the original valence electron eigenvalue prob-

lem (2.43), but with an extra term for orthogonalization. This extra potential(
+=ℓ =

∑
core

=

��#8〉〈#8 �� ) , is a non-local operator, and the pseudo-orbital

(��)〉)
is an

eigenstate of the new effective Hamiltonian, ℋ + +=ℓ . The new Hamiltonian has

an extra potential +=ℓ , which depends on the angular momentum ℓ due to the

spherical symmetry. Because of its spherical symmetry, each angular momentum
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(ℓ , <) combination can be treated separately. The dependence on ℓ means that a

pseudopotential is a non-local operator, can be written in “semilocal” (SL) form:

+̂(! =
∑
ℓ<

|.ℓ<〉+ℓ (A) 〈.ℓ< | , (2.51)

where .ℓ<(�, )) = %ℓ (cos(�))4 8<� and %; is a Legendre polynomial. It is semi-local

because it is non local on the angular variables but local in the radial variable.

The sophistication and accuracy of pseudopotentials have evolved considerably

since the Phillips–Kleinman construction. This development producesmanymeth-

ods of generating pseudopotentials. All of these methods have the following goals:

(1) the pseudopotential should be as soft as possible so that it can allow represen-

tation of pseudo-wavefunctions with fewer plane waves; (2) transferability has to

be maintained, meaning a generated pseudopotential generated to match certain

properties should produce other properties accurately; and (3) the pseudo-charge

density should reproduce the valence charge density as accurately as possible.

2.1.8 Norm-Conserving Pseudopotentials

Hamann, Schlüter, andChiang [8] developed the concept of norm-conservation,

which was a first step in fulfilling all the aforementioned requirements. As the

exchange–correlation energy of the electronic system depends on the electron den-

sity, it is necessary that the real and pseudo wavefunctions be identical outside the

core region. In the outer region (A > A2), both functions coincide. Therefore, the

total charge density created in the core region (A < A2)must be the same,∫ A2

0

#∗04(A)#04(A)3A =
∫ A2

0

#∗?B(A)#?B(A)3A (2.52)

Where #04(A) is the all-electron wavefunction and #?B is the pseudo-wavefunction.

The logarithmic derivatives of the real and pseudo-wavefunction and their energy
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derivatives agree in the outer region. These types of pseudopotentials are the

most transferable because they are able to reproduce the scattering properties of

ions in different chemical environments [8]. The downside of norm-conserving

pseudopotentials is a higher cutoff radius and thus increased memory and CPU

requirements. Troullier and Martins [9] developed a more effective method to

generate norm-conserving pseudopotentials for practical calculations.

2.1.9 Ultrasoft Pseudopotentials (US)

The norm conservation requirement necessitates a very high of cutoff energy

for the plane-wave basis set. In particular, the tightly-bound orbitals have a sub-

stantial fraction of their weight inside the core region of the atom. There are some

important cases in which it is impossible to construct a pseudopotential that allows

a significant reduction of the cutoff energy. Vanderbilt [10] suggested relaxing the

norm conservation criteria in favor of a smoother (i.e., softer) pseudopotential. The

resulting ultrasoft pseudopotentials are difficult to construct and require extensive

testing [11].

2.1.10 Projector Augmented Wave Method (PAW)

The electronic wavefunctions oscillate wildly near the nuclei (Fig. 2.2) than

the valence electrons between the atoms. Expanding the core electrons using

plane-wave creates computational challenges. Augmented-wave methods uses the

separation of the wavefunctions in two regions to address this issue. The first part

is partial wave expansion inside an atom-centered sphere called the augmentation

region and a plane wave expansion outside. Both expansions are continuously

differentiable at the boundary.
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Blöchl [12] suggested that there is a linear transformation from the all-electron

to the pseudo-wavefunctions. The transformation is as follows:

��#〉
=

��#̃〉
+

∑
8

(��)8〉 − ��)̃8〉) 〈
?̃8

��#̃〉
(2.53)

Here)8 are the partialwaveswithin the augmentation regions and

〈
?̃8

��
is a projector

that satisfies the condition

〈
?̃8

��)̃ 9〉 = �8 9 . The tilde quantities are related the pseudo

representation. Kresse and Joubert [11] showed a connection between PAW and

ulstrasoft pesudopotential (US-pp) and how the PAWmethod can be implemented

into existing code.
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CHAPTER 3

ESTIMATION OF EFFECTIVE THERMAL CONDUCTIVITY IN

U-10Mo FUELS WITH DISTRIBUTED XENON GAS BUBBLES

This chapter was published as an article in the Journal of Nuclear Materials. The

authors of that article are A. Rafi M. Iasir and Karl D. Hammond of the University of

Missouri and Nickie J. Peters of the University of Missouri Research Reactor Center.

3.1 Introduction

The Reduced Enrichment for Research and Test Reactors (RERTR) [1] program

was initiated in the USA in the late 1970s to develop new nuclear fission fuels

to replace high-enrichment uranium (HEU). The development of low-enrichment

uranium (LEU) fuels for high-performance reactors is an important nonprolifera-

tion initiative [1]. One of the main requirements of LEU fuels is increased uranium

density, such as that found inmetallic uranium, to offset the decrease in
235

Uenrich-

ment. Metallic uranium is thought to have sufficient density, but the orthorhombic

crystal structure of α-uranium and the anisotropic fuel swelling that results make

it unattractive as a fuel. Uranium alloys that retain the high-temperature γ-phase,

which is body-centered cubic, are more suitable for reactor fuel due to their more

isotropic radiation-induced swelling behavior compared with α-uranium [2].

Various uranium alloys have been tested as alternative metallic fuels under

reactor operating conditions, including U6Fe and U6Mn [3, 4]. Elements such as

molybdenum (Mo), niobium (Nb), titanium (Ti), and zirconium (Zr) have also
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been tried as alloying elements because of their solubility in γ-uranium [5–7].

Molybdenum stabilizes uranium’s γ-phase at concentrations near the eutectoid

point, lowering the phase transition temperature from 776 °C for pure uranium

(corresponding to the β–γ allotropic point) to the eutectoid point of 555 °C for

11.1 percent molybdenum in γ-uranium by weight [8, 9]. To take advantage of this,

uranium alloyedwith 10wt% molybdenum (U-10Mo) is currently being developed

as a potential high-density LEU fuel for high-performance research reactors.

The twomajor fuel types areU–Mo/Al dispersion fuels (U–Mograins dispersed

in an aluminum matrix) and U–Mo monolithic fuels [10]. Dispersion fuels show

poor irradiation performance due to fuel–matrix interaction, which causes break-

away swelling behavior at intermediate burnup [11–13]. In monolithic fuels, a

zirconium foil is used as a diffusion barrier between the fuel and the cladding

(aluminum) to prevent diffusion of molybdenum into the cladding [14].

Thermal conductivity is an important property of any nuclear fuel, since most

of the important physical properties are temperature-dependent. In the case of

high-performance reactors, fuels must undergo high fission density at relatively

low temperatures. For this reason, research reactor fuels are designed for efficient

heat rejection. During test operations, Burkes and coworkers [15] observed that the

thermal conductivity in monolithic fuels decreased significantly with increased

burnup. For a fission density of 3.30×10
21
fissions/cm

3
at 200 °C, thermal conduc-

tivity decreased by approximately 30%; at 4.53 × 10
21

fissions/cm
3
, conductivity

decreased by 45% [15].

Fission also creates a variety of fission products, which result in gas bubbles,

metallic precipitates, and solutes in the fuel matrix [16]. These fission products,

in addition to radiation damage in reactor environments, result in complex mi-

crostructural evolution that restructures the nuclear fuel over time. Fission gas

bubbles are particularly problematic, as they cause changes in thermal conductiv-
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ity and swelling of the fuel. In addition,
135

Xe is a potent neutron absorber. Solid

fission products (e.g., Sr, Y, Zr, La, Ce, and Nd) are also constantly being produced;

these elements can form intermetallic alloys, which can increase the volume of the

fuel and reduce the thermal diffusivity [17, 18]. These solid fission products also

play an important role in the thermal stability of fission gas bubbles [19].

For every four fission events, an average of one inert gas atom (xenon or krypton)

is produced. The dominant gaseous species is xenon, accounting for almost 85%

of fission gas [20, 21]. Xenon atoms in U–Mo alloy fuels have a strong tendency

to precipitate into small bubbles due to their low solubility. The formation and

growth of gas bubbles inside irradiated nuclear fuels has technical importance, as

bubbles influence the microstructure of the material [22]. Recent TEM and SEM

images show that fission bubbles in U-10Mo distribute themselves in both inter-

granular and intra-granular formations [23–26]. High-fission-density fuels show

randomly-distributed, micrometer-sized fission gas bubbles distributed through-

out the grains [25]. Inter-granular bubble density increases with burnup.

Inside themicrometer-sized grains, fission gas forms superlattices [23–25], simi-

lar to those seen in ion-irradiatedmaterials [27–36]. Typical bubble sizes are 2–6 nm

in diameter, and the distance between the bubbles is typically in the 4–12 nm range.

The superlattice usually has the same crystal structure as the host material, but an

exception exists: the superlattice in U-10Mo shows a face-centered cubic structure

in a body-centered cubic matrix. An ion-irradiated bubble superlattice has a lattice

parameter of tens of nanometers [23]; that of fission gas bubbles is typically simi-

lar [37]. The superlattice forms in ion-irradiated materials between approximately

0.15)< and 0.35)< [34], which is within the typical anticipated operating range

of U–Mo fuels, and the superlattice in U-10Mo can survive temperatures up to

approximately 850 °C [37].
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The thermal conductivity of a monolithic U–Mo fuel plate is at a maximum

prior to irradiation [15]. Inclusions and porosity change the thermal and the elec-

trical conductivity of many materials [38]. Solid fission products usually have

minimal impact on overall thermal conductivity, as their conductivities are similar

to the conductivity of the fuel. Gases, on the other hand, have much lower thermal

conductivity than the matrix, and typically have much lower densities and heat

capacities as well. Various models, both empirical and theoretical, have been pro-

posed to describe the changes in conductivity due to gas bubbles. Maxwell [39] was

among the first to derive an expression for the effective thermal conductivity of het-

erogenic media; his model assumed a uniform distribution of spherical particles in

a matrix. A few other empirical models also exist [40–42]; unfortunately, the large

diversity of pore shape, pore size, and type of included material inside nuclear

fuel make it impossible to describe heat transfer with a single equation. Several

theoretical models have been proposed to describe the influence of porosity and

inclusions on the thermal conductivity [39, 43–46]. These theoretical models usu-

ally assume pores with regular geometric shapes and that the pore arrangement is

sufficiently dilute so as to neglect interaction between inclusions.

The microstructure of irradiated nuclear fuels is very complicated due to the

lack of consistency between bubbles. The intra-granular gas bubbles are two or

three orders of magnitude smaller than the inter-granular gas bubbles [47]. The

shapes of the bubbles are also highly variable: the intra-granular gas bubbles are

approximately spherical, whereas inter-granular gas bubbles do not have consistent

shapes. In thiswork,we assess contributions to the thermal conductivity ofU-10Mo

from both inter- and intra-granular gas bubbles. The impact of xenon bubble

pressure on the overall thermal conductivity is also estimated. Because fission gas

is typically a mixture of krypton and xenon, rather than pure xenon, we include
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two comparisons with a krypton–xenon mixture. At the end, we present a study of

the influence of different bubble arrangements on the overall thermal conductivity.

3.2 Methods

A finite element model was used to solve the steady-state heat conduction

equation in the presence of various microstructures. Two types of microstructures

containing xenon gas bubbles were used: a xenon bubble superlattice structure

representing intra-granular bubbles, and a grain boundary structure representing

inter-granular bubbles. Figure 3.1 shows an example of an intra-granular bubble

distribution, while Figure 3.2 shows the inter-granular bubble distribution. In the

intra-granular bubble case, xenon gas bubbles were placed in a variety of spatial

configurations, including configurations consistent with a gas bubble superlattice.

All simulations were performed in a two-dimensional domain. The gas bubble

supperlattice structure was created based on data fromMiller et al. [23]. According

to Miller et al. [23], the bubble size inside the grain boundary superlattice structure

is normally distributed. Based on their experimental values, we chose four bubble

diameters to create our simulation. Because the superlattice in U-10Mo is FCC,

the two-dimensional structure of bubbles was created based on the FCC structure

with a 12 nm lattice parameter, which was also taken from Miller et al. [23]. The

bubble sizes were randomly sampled from this distribution using the discrete

values of 3.1, 3.6, 3.75, and 4.0 nm in diameter. The square domain’s dimensions

were 80 nm × 80 nm, which results in 85 bubbles with a lattice constant of 12 nm.

Triangular elements were used to create the mesh using the Trelis Pro software

package [48].

In the inter-granular bubble case, the grain boundary structure of U-10Mo was

created based on images from Miller et al. [24]. Their SEM (scanning electron

micrograph) of a focused ion beam (FIB) cross-section showed fission gas bubbles
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Figure 3.1. (a) Discretized domain of intra-granular xenon bubbles inside a U-10Mo ma-

trix; (b) Example two-dimensional bubble distribution used for intra-granular xenon gas,

consisting of bubbles with 3.1, 3.6, 3.75, and 4.0 nm diameters, consistent with the work of

Miller and coworkers [23]. The lattice parameter for the gas bubble superlattice is 12.0 nm.
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Figure 3.2. (a) SEM image of the fission gas bubbles along the grain boundaries fromMiller

et al. [24] used for FEM calculations (b) Geometry created based on the grain boundary

fission gas image in (a) (c) FEMmeshwith grain boundary fission gas of the region between

the dotted line in (b).

populating the grain boundaries, as shown in Figure 3.2. This domain was also

discretizedwith triangular elements. The top andbottomboundaries of thedomain

of the FEM domain were assumed to be adiabatic. The left and right boundaries

have fixed-temperature boundary conditions applied. This temperature difference

drives the heat flow.

The thermal conductivity of U-10Mo was estimated from a linear fit of ther-

mal conductivity as a function of temperature between 298 K and 1073 K from

Kaufmann [50]. Burkes et al. [51] also provided a linear fit of the U-10Mo ther-

mal conductivity as a function of temperature up to 873 K; their results were in

good agreement with Kaufmann’s [50]. Xenon conductivity is drawn from the
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Figure 3.3. (a) Thermal conductivity of xenon as a function of pressure and temperature

based on the measurements of Rabinovich et al. [49]. Note that the critical point of xenon

is 289.733 K and 58.42 bar; this is why there is such a drastic change in conductivity at low

temperature between the 1 bar and 70 bar isobars. (b) Comparison between the thermal

conductivities of pure krypton and pure xenon (both at 1 bar and at 1000 bar) with a

mixture of 15% krypton and 85% xenon at both 1 bar and 1000 bar. This composition is

representative of fission gas.
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data of Rabinovich et al. [49]; the thermal conductivity of xenon depends on both

temperature and pressure, as shown in Figure 3.3. The pressure inside a bubble

depends on the radius of the bubble, the surface tension, the magnitude of the

Burgers vector, and the shear modulus of the host material [52, 53]. According to

Xiao et al. [54], the pressure inside a xenon bubble can be as high as 120 kbar. Such

high pressures suggest the possibility of forming solid xenon bubbles inside the

fuel [55–57]. Unfortunately, thermal conductivity data for xenon above 1000 bar are

not available, so we chose two limiting sets of thermal conductivity data: 1 bar and

1000 bar. For each set of data, a polynomial fit (fifth order) was used to interpolate

the conductivity over the temperature range. Fission gas is typically a mixture of

krypton and xenon, so we ran simulations in which the bubbles were filled with

15% krypton, 85% xenon (molar basis), with conductivity data for krypton from

Rabinovich et al. [49]. The mixture’s thermal conductivity was calculated using

Wilke’s mixing rule [58], which uses the full first-order Chapman–Enskog relation

along with Eucken’s relation for the thermal conductivities [59, 60]. Using Wilke’s

approach, the mixture’s thermal conductivity is given by

 =
∑
8

G8 8∑
9 G 9)8 9

, (3.1)

where G8 is the mole fraction and  8 is the conductivity of the pure component.

The coefficients )8 9 can be calculated by the following relation [60]:

)8 9 =

[
1 +

(
�8
�9

)
1/2 (

" 9

"8

)
1/4]2

[
8

(
1 + "8

" 9

)]
1/2 , (3.2)

where "8 is the molar mass of the species and �8 is the viscosity.
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3.2.1 Effective Thermal Conductivity Calculation

The temperature in a composite material in the absence of heat sources is de-

scribed by the heat equation:

∇ · ( ∇)) = 0, (3.3)

where  (G, H) = "1(G, H) 1 + "2(G, H) 2 is the thermal conductivity tensor, ) is

the temperature,  8 (8 = 1 for the matrix and 2 for the bubble) is the thermal

conductivity tensor, and "8(G, H) is the indicator function of phase 8. The local heat

flux can be calculated using the equation

@′′(G, H) = − (G, H) · ∇)(G, H), (3.4)

where @′′(G, H) is the local heat flux vector and ∇)(G, H) is the local temperature

gradient. The local temperature and heat flux are calculated by solving Equa-

tions (3.3) and (3.4). The components of the effective thermal conductivity tensors

are calculated via

 G
eff
= −@′′G

〈
%G

%)

〉
. (3.5)

Where @′′G is the mean heat flux in the G-direction, and
〈
%G
%)

〉
is the average inverse

temperature gradient in the G-direction. The MOOSE Framework [61] was used

to solve Equation (3.3) with Dirichlet boundary conditions at G = 0 and G = !

and Neumann (adiabatic) boundary conditions at H = 0 and H = !. The effective

thermal conductivity was calculated using Equation (3.5).

3.3 Results and Discussion

3.3.1 Effect of Xenon Gas Bubbles on the Thermal Conductivity

We examined two broad categories of bubbles: inter-granular bubbles (i.e.,

bubbles that collect at grain boundaries) and intra-granular bubbles. The intra-
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Figure 3.4. Comparisonbetween the thermal conductivity ofU-10Mo (fromKaufmann [50])

to the effective thermal conductivity of U-10Mo with intra-granular xenon bubbles of

different diameters as arranged in Figure 3.1b.

granular case is intended to represent the effect of a gas bubble superlattice (GBS)

on the conductivity. We will discuss each case in turn.

3.3.1.1 Intra-Granular Bubbles

A two-dimensional representation of a gas bubble superlattice, as shown in

Figure 3.1, was used to simulate the effect of intra-granular bubbles on the thermal

conductivity. Five different bubble sizeswere used, eachwith the same superlattice

constant (resulting in the same center–center distance between bubbles). Figure 3.4

shows the effective thermal conductivity due to the xenon bubble distribution in

the intra-granular region. As is clear from Figure 3.4, the thermal conductivity

decreases with increasing bubble size, and is 20–40 percent lower in all cases than

it is for bubble-free U-10Mo. In these simulations, the thermal conductivity of

xenon was assumed constant at its 1 bar value (it is still a function of temperature).

Figure 3.5 shows the result of the finite elementmethod solution comparedwith the
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theoretical solution for porous materials’ thermal conductivity from the Maxwell–

Eucken equation [39],

� = �B
�? + 2�B + 2�?(�? − �B)
�? + 2�B − �?(�? − �B)

, (3.6)

where � is the effective thermal conductivity of the fuel, �B is the thermal con-

ductivity of the continuous phase (U-10Mo), �? is the thermal conductivity of the

dispersed phase (xenon bubble), �? is the volume fraction of the dispersed phase

(i.e.., the volume fraction of xenon in U-10Mo). Equation (3.6) assumes the pore

volume fraction is less than 15 percent, that the pores are dispersed uniformly in

the solid, and that the distance between the pores is large enough that they do

not interact [62, 63]. The result is also compared with the Hashin–Shtrikman up-

per bound, which is based on a theoretical expression derived for the magnetic

permeability of a multiphase material [64],

� =
1

4

[
�?(3�? − 1) + �B(2 − 3�?) +

( [
�?(3�? − 1) + �B(2 − 3�?)

]
2 + 8�B�?

) 1

2

]
. (3.7)

Figure 3.5 shows the effect of distributed gas bubbles in the intra-granular region

(grain boundary bubbles were not included). Both theoretical models over-predict

the conductivity by 5–10percent, and the absolute error increaseswith temperature.

3.3.1.2 Inter-Granular Bubbles

Inter-granular fission gas bubbles are associated with bubbles that collect on or

near grain boundaries. Bubbles are naturally drawn to grain boundaries because

of the excess volume that accompanies grain boundaries, as well as the decreased

energy associated with void formation at grain boundaries relative to the bulk.

To evaluate the effect of inter-granular fission gas on the overall thermal conduc-

tivity, Figure 3.2b was used as the simulation domain. As can be seen in Figure 3.2,
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Figure 3.5. Comparison of the calculated effective thermal conductivity of U-10Mo with

intra-granular xenon bubble (radius 1.55 nm, 10% porosity) with the Maxwell–Eucken [39]

and Hashin–Shtrikman [64] models. In all cases, we find that the two theoretical models

over-predict the thermal conductivity by about 5–10 percent compared with the numerical

solution.

fission gas bubbles trapped on grain boundaries do not have consistent shapes.

Note that this is only a snapshot in time of the grain structure: as burnup increases,

the stress in the fuel changes, more fission gas is evolved, and the grains can rotate

and change shape. For simplicity, the thermal conductivity values at 1 bar were

used for xenon. It should be noted that this only includes the effect of the bub-

bles gathered at the grain boundary: effects on the conductivity associated with

the grain boundaries themselves, which will result in changes in the conductivity

because of phonon scattering effects (which are a minor contribution to thermal

conductivity in metals), as well as any effects associated with U–Mo segregation at

the grain boundary, are neglected in this model.

The presence of these (intra- and inter-granular) xenon bubbles decreased the

thermal conductivity by more than 25 percent, as shown in Figure 3.6. Accord-

ing to Miller et al. [24], their sample (on which our simulations are based) went
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that of U-10Mo that has xenon bubbles decorating the grain boundaries according to the

distribution in Figure 3.2. A 4% drop is observed, increasing with temperature.

through a fission density of 3.46 × 10
21

fission/cm
3
. At this fission density, Burkes

and coworkers [15] found that the experimental thermal conductivity of U-10Mo

reduced to almost 33 percent of its unirradiated value at 473 K. It should be noted

that the real material has a three-dimensional grain boundary structure with vary-

ing levels of fission gas at each cross section, meaning our estimates of the thermal

conductivity (which effectively assume rod-like inclusions rather than spheres)will

be too low. Past studies [38, 65] have indicated that conductivity in the presence

of inclusions is underestimated in two-dimensional models. This suggests that

the measured conductivity (33% of the conductivity of the unirradiated material)

may be reasonably consistent with the conductivity estimated here (i.e., 25% of the

conductivity of the unirradiated material).
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3.3.2 Effect of Xenon Pressure on the Overall Thermal Conductivity

To evaluate the impact of the pressure of the xenon bubbles on the overall ther-

mal conductivity, we performed a study of the overall conductivity as a function of

temperature for five different xenon bubble pressures given a fixed bubble distribu-

tion (Figure 3.1b). Each pressure has a distinct thermal conductivity (Figure 3.3) as

a function of temperature. In this part of the study, a constant bubble size was used

(radius 1.55 nm). The results are shown in Figure 3.7. The results show little to no

change of the overall thermal conductivity of the fuel due to the bubbles’ pressure

over the range studied. However, though xenon has a wide range of thermal con-

ductivities at different pressures (see Figure 3.3), the effect is negligible relative to

the thermal conductivity of the fuel.

Also shown in Figure 3.7 is the overall conductivity of the system in Figure 3.1b

for bubbles filled with an 85% xenon, 15% krypton mixture, with the mixture’s

conductivity given by Equation (3.1), using pure-component conductivities at both

1bar and1000bar. Theoverall conductivity is nearly identical in all cases, indicating

that the overall conductivity is not a strong function of pressure or composition

under these conditions.

3.3.3 Effect of Bubble Arrangement on Thermal Conductivity

We performed a series of simulations to determine whether bubble distribution

has a significant influence on the overall thermal conductivity. Two cases were

considered. In the first case, we used same number (16) of bubbles of the same

diameter (1 nm) and organized them into five different arrangements. The arrange-

ments are arbitrary, but each has the same area fraction of bubbles (xenon gas). In

the first arrangement (Figure 3.8a), the bubbles are dispersed uniformly through-

out the domain. In Figure 3.8b, the bubbles are arranged in a denser pattern with

bubble-free portions near the high-temperature side. In Figure 3.8c, the bubbles
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Figure 3.7. Overall thermal conductivity of U-10Mo using the thermal conductivity of

xenon at two extremes of pressure (1 bar and 1000 bar), compared to that of pure (bubble-

free) U-10Mo. Bubbles are distributed as in Figure 3.1b with radii of 1.55 nm. Also shown

for reference is the effective thermal conductivity that would result from the same bubbles

filled with a 15 atom% krypton, 85 atom% xenon mixture (representative of fission gas) at

both 1 bar and 1000 bar.

are arranged in one corner. In Figure 3.8d, the bubbles are tightly clustered near

the center of the domain, creating significant bubble-free regions at the top and

bottom. The overall thermal conductivities for these arrangements are presented

in Figure 3.9. In these simulations, heat is flowing from left to right, whereas the

top and bottom boundaries are insulating (adiabatic).

Based on the results from Figure 3.8, arrangement (d) shows a minor devia-

tion, particularly at high temperatures, compared to the other arrangements. The

other four bubble arrangements do not produce significantly different thermal con-

ductivities. The reason for the deviation for case (d) is the relatively wide “heat

channel” in the direction of the heat flow, which is absent in the other arrange-

ments. The highest thermal conductivity difference between Figure 3.8d and the

other arrangements is approximately 0.93 W/m·K, which is also a function of the

open channel’s area.
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Figure 3.8. Different bubble arrangements inwhich the area of each bubble and the number

of bubbles are the same. Heat flows from left to right in these simulations; only arrangement

(d), with its uninterrupted “heat channel” in the top half of the domain, shows significantly

different conductivity.
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Figure 3.9. Comparison of the calculated thermal conductivity of different bubble arrange-

ments (constant bubble area and diameter corresponding to Fig. 3.8). Only arrangement

(d), with its properly-oriented “heat channel,” shows significant differences from the others,

and such differences are relatively insignificant compared to the bubble-free conductivity.

In the second case, different bubble sizes were used with constant total area. As

the first case shows, bubble arrangement has minimal impact on the overall heat

transfer unless it produces a significant heat transfer channel in direction of the

heat flow. In this step, we kept the total area covered by the bubbles the same,

but with different sizes of bubbles. To keep the area same while decreasing the

bubble diameter, the number of bubbles increases. Figure 3.10 shows the four

different arrangements with different bubble sizes. None of the arrangements

creates a heat transfer channel in the direction of heat flow. The results are shown

in Figure 3.11. The results show no significant change in the overall thermal

conductivity. We conclude that the bubble arrangement has little impact unless it

produces a significant bubble-free heat transfer channel.

In our calculation, grain boundary xenon gas bubbles had very minimal impact

on the overall heat transfer. That is because our sample has very lowgrain boundary
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Figure 3.10. Different bubble arrangements where the area is the same but the bubbles

have different diameters. (a) 20 bubbles, (b) 25 bubbles, (c) 32 bubbles, (d) 38 bubbles.

fission gas areal density, less than 2% of the total area. Grain boundary fission

gas bubble size increases with an increase in burnup [22]. With an increase in

fission density, more fission gas usually diffuses to the grain boundary area and

recrystallization [66] subdivides the grains to accommodate the fission gas near the

grain boundaries. This also increases the grain boundary fission gas density. Our

results were also compared with porosity correction models, specifically those of

Bauer [67] andPeddicord [68]. Bauer’smodel (� = �04
−2.14�

, where�0 is the thermal

conductivity of the 100% dense material and � is the porosity) over-predicts the

porosity correction factor for thermal conductivity. Peddicord’s model (� = �0(1 −

�)2.58
) agrees better with the effective thermal conductivity from our simulations.
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Figure 3.11. Comparison of thermal conductivity between different bubble diameters at

constant total bubble area with bubble-free U-10Mo. Bubble arrangements are shown in

Figure 3.10. Bubble diameters are (a) 0.894 nm (b) 0.8 nm (c) 0.707 nm and (d) 0.6488 nm;

the bubble area fraction is 12.6% percent.

All these empiricalmodels are applicable to intragranular gas bubbleswithuniform

distribution and negligible fission gas thermal conductivity. In our calculation,

all the thermal conductivities are measured from two-dimensional finite element

models, but two-dimensional thermal conductivity usually represents the lower

limit of the three-dimensional thermal conductivity [69]. Accurate estimation of

this limit is very important.

3.4 Conclusions

Estimating the thermal conductivity of nuclear fuel is an important part of

understanding fuel behavior in nuclear reactors. In our work, xenon gas was

used to represent fission gas bubbles in U-10Mo monolithic fuels. The impact

of distributed xenon bubbles on the overall thermal conductivity of U-10Mo is

significant, resulting in a 25–35 percent drop in conductivity for the bubble volume
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fractions studied, largely independent of bubble arrangement. Both intra- and

inter-granular gas bubble structures were used. For intra-granular bubbles, a gas

bubble superlattice structure was used. The results indicate that the Maxwell–

Eucken and Hashin–Shtrikman models overestimate thermal conductivities by at

least 5% for the bubble volume fractions studied.

The pressure dependence of xenon’s thermal conductivity was also studied

to estimate the impact of bubble pressure on the overall thermal conductivity of

U-10Mo. Our results indicate that bubble pressure is not a significant factor for

the bubble densities studied—the overall thermal conductivity remains largely un-

changed between 1 bar and 1000 bar. We also find that there is little difference

between pure xenon bubbles and 85% xenon–15% krypton bubbles from the per-

spective of overall thermal conductivity in bubble-laden U-10Mo.

We find that both intra- and inter-granular xenon bubbles reduce the overall

thermal conductivity by more than 25 percent. Different bubble arrangements

have very little impact on the overall heat flow, unless the arrangement leads to

a significant bubble-free channel through which heat can be conducted without

interference from nearby bubbles. Bubble size is also not a significant factor, as

different bubble sizes at the same bubble areal density produce a U-10Mo slabs

with identical overall conductivity.

We did not consider the effects of solid fission products and their influence

on the overall thermal conductivity. We believe that this issue needs a complete

and thorough investigation, because the chemical state and the distribution of the

solid fission products of U–Mo may make important contributions to the overall

conductivity. Future work should also study, quantitatively, the contact resistance

between the cladding and fuel, as well as the evolution of grain boundaries with

time and the influence of localmolybdenumconcentration on thermal conductivity.
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CHAPTER 4

PSEUDOPOTENTIAL FOR PLANE-WAVE DENSITY

FUNCTIONAL THEORY STUDIES OF METALLIC URANIUM

This chapter was largely published as an article in Computational Materials Science.

The authors of that article are A. Rafi M. Iasir and Karl D. Hammond of the University of

Missouri.

4.1 Introduction

Uranium is the heaviest naturally-occurring element on Earth. The discovery

of fission in uranium (specifically, in
235

U) impacted not only scientists and engi-

neers all over the world, it also changed global politics forever. In nuclear research,

the nucleus of the uranium atom is of much more importance than the electrons

surrounding it, but the electronic structure is important to the thermodynamic

properties, including crystal structure. The structural features are particularly im-

portant to the study of next-generation nuclear fuels, such as U–10Mo, that are

based on metallic uranium. The electronic behavior of uranium, along with other

light actinides (Pa–Pu), results in a low-symmetry crystal structure at ambient tem-

perature and pressure—most metallic elements take on relatively high-symmetry

structures (bcc, fcc, and hcp), but the light actinides are either orthorhombic or

monoclinic at standard temperature and pressure [1]. Pure uranium exists in three

different solid phases at atmospheric pressure, depending on the temperature: α
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(base-centered orthorhombic), β (tetragonal) and γ (body-centered cubic). At at-

mospheric pressure, α-uranium transforms to β-uranium at approximately 935 K,

and β-uranium transforms to γ-uranium at approximately 1045 K [2, 3]. The influ-

ence of 5 5 electron–electron correlation plays a pivotal role in the crystallographic

behavior of uranium and other light actinides [4, 5]; with this in mind, proper

representation of uranium’s 5 5 electrons is very important.

The stability of the crystal structures of the inner transition metals has been

the target of several electronic structure studies. Eriksson and coworkers [6, 7]

performed comparative studies of thorium, protactinium, and uranium’s crystal

structures, calculating the equilibrium volume and bulk modulus using the full-

potential linear-muffin-tin-orbital (FP-LMTO) technique and the local density ap-

proximation (LDA). The predicted equilibrium lattice parameters did not compare

well with experiments. However, Söderlind et al. [8] showed a few years later that

the generalized gradient approximation (GGA) provides much better agreement

with experiment for actinides.

Crocombette et al. [9] used norm-conserving pseudopotentials to study three

metallic phases of uranium (α, γ, and a hypothetical fcc structure). The calculated

equilibrium volume for α-uranium was underestimated by more than 6 percent.

Söderlind [10] calculated the equilibrium lattice parameters and also estimated the

elastic moduli of α-uranium using the FP-LMTO method. The calculated equilib-

rium lattice parameters were in good agreement with experimental values, but the

elastic moduli did not agree particularly well with experiments. The calculated

elastic moduli were likely higher than measured values because uranium under-

goes strong phonon softening with increases in temperature, and the measured

values (taken at room temperature) would likely be lower than they would be at

low temperatures [11].
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Söderlind’s [10] was the first attempt to calculate α-uranium’s elastic moduli.

Other theoretical studies of light actinides prior to 2000 using full-core (i.e., non-

pseudopotential-based) techniques are summarized by Jones et al. [12]. Taylor [13]

studied uranium phases using the projector augmented wave (PAW) method [14]

with Perdew and Wang’s 1991 (PW91) exchange–correlation functional [15, 16].

Taylor investigated α, γ, and fcc uranium. The equilibrium lattice parameters of

α-uraniumwerewithin 1%of experimental values at 50K [17]. The latticeparameter

of γ-uraniumwas also in good agreement withmeasured values, though the lattice

parameter of fcc uranium was overestimated compared to the value calculated by

Crocombette et al. [9]. Xiang et al. [18] used the Perdew–Burke–Ernzerhof (PBE)

exchange–correlation functional [19, 20] to study the equilibrium volume of α- and

γ-uranium. They also studied the bct structure, an approximation of the β phase.

Their results were also in good agreement with previous full-potential studies

and experiments. Li et al. [21] also studied the structure, formation energies,

and elastic moduli of α, β, γ, fcc, and hcp uranium using the PW91 exchange–

correlation functional [22]. Their pseudopotential produced reasonably accurate

lattice parameters and cell volumes for α-uranium, accompanied by reasonable

elastic moduli. Beeler et al. [23] utilized the PBE exchange–correlation functional to

study uranium, and found similar values to Li et al., with the exception of the body-

centered tetragonal case (approximating β-uranium). The existing pseudopotential

(norm-conserving) in the QuantumEspresso PS library [24, 25] has a high cut-off

energy, making it computationally expensive to study large supercells. We sought

a PAW-based pseudopotential suitable for studies of uranium alloys.

In the present work, we investigate the crystal structure and elastic properties of

metallic uraniumwith density functional theory (DFT)with a projector augmented

wave (PAW) pseudopotential [14]. We investigate four structures of uranium: α,

γ, bct, and fcc. Our results are compared with previously-published electronic
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structure calculations and experiments. The electronic densities of states for all

four crystal structures are also calculated. During the development of this pseu-

dopotential, no PAWpseudopotential was available in PS library [24, 25]. However,

a PAW pseudopotential (scalar-relativistic) was added recently, so we compare our

results with the newly added pseudopotential in the PS library (PsL) for α- and

γ-uranium. We obtain very similar results for α-uranium, but for γ-uranium, some

of the stress–strain curves show discrepancies around the minima.

4.2 Computational Details

We perform all calculations using density functional theory (DFT) with plane-

wave basis sets as implemented in the software QuantumEspresso [26]. We gener-

ated a uranium pseudopotential for use with the Perdew–Burke–Ernzerhof (PBE)

exchange–correlation functional [19, 20]. The projector augmented wave (PAW)

pseudopotential-generating software atompaw [27, 28] was used to generate the

PAW pseudopotential for uranium. The same pseudopotential was used for all

subsequent calculations.

The calculations are performed with a scalar-relativistic model. Full spin–

orbit coupling was not used. Previous spin–orbit coupling results [10] showed

a very small effect on α-uranium’s equilibrium lattice parameter (within 1% of

experiment [17]). We also have not included on-site electron correlation (DFT+U)

for uranium. Söderlind et al. [29] showed that the addition of on-site Coulomb

repulsion leads to a finite magnetization of γ-uranium, which is not observed in

experiments—it is therefore inadvisable to use such corrections.

One of the major challenges in studying actinides using DFT is how to treat the

large number of electrons. The pseudopotential approach effectively reduces the

number of electrons by modeling the “core” as a potential energy surface, so gen-

erating a pseudopotential requires one to choose the number of electrons that will
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be treated explicitly. There are two approaches common for uranium: “small-core”

pseudopotentials and “large-core” pseudopotentials. In a large-core pseudopo-

tential, the valence electrons are the 5 5 , 6B, 6?, 63 and 7B shells (14 electrons). In

small-core pseudopotentials, the 5B, 5?, and 53 shells are also included,which treats

32 electrons as valence electrons. Iche-Tarrat and Marsden [30] have discussed this

topic and shown that the explicit treatment of 32 electrons only marginally im-

proves the performance of DFT at significantly higher computational cost. The

valence electron configuration of uranium used when generating our pseudopo-

tential was 6B2
6?6

7B2
631

5 5 3
(i.e., it is a large-core pseudopotential). The radius of

the augmentation region was chosen to be 2.5 bohr, which we determined by start-

ing from half the experimental nearest-neighbor interatomic distance in α-uranium

and adjusting based on energy–volume minimization. The pseudo-partial waves

were generated using the RRKJ scheme [31], which uses a sum of Bessel functions

to represent the pseudo-partial waves. A plane-wave cutoff energy analysis was

performed and a 50 Ry energy cutoff was found to be sufficient based on a plot of

total energy against cutoff energy. All calculations were performed on primitive

cells using the cell geometries and coordinates given by Crocombette et al. [9] for

α-uranium, Beeler et al. [23] for bct uranium, and values from the Structure of Crys-

tals database [32] for all other structures. Periodic boundaries were applied in all

directions. TheMonkhorst–Pack scheme [33]was used for Brillouin zone sampling;

the :-point meshes were 20 × 20 × 26, 20 × 20 × 20, 18 × 18 × 18, and 20 × 20 × 20

for the α, bct, γ, and fcc lattices, respectively. A Methfessel–Paxton [34] smearing

method (width 0.02 Ry) was used to integrate the bands at the Fermi level. To

calculate the nine unique elastic moduli of orthorhombic α-uranium, the energy–

strain relationship (see section 4.4) was used as described by Ravindran et al. [35].

For cubic structures, the elastic moduli were evaluated using volume-conserving

orthorhombic and monoclinic distortions as described by Beckstein et al. [36].
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Table 4.1. Parameters used to generate the pseudopotential in atompaw [27, 28].

Cutoff Value (bohr)

A
PAW

2.50

A
shape

2.02

A
vloc

1.50

A
core

1.80

A
2,8

APAW
EXCEPT

A
2,6B

1.50

A
2,7B

1.50

4.3 Results

The pseudopotential itself is generated by atompaw [27, 28], which takes as

input the augmentation radius (APAW), core radius (Acore), shape function cutoff

(Ashape), matching radius (Avloc), valence and core electron configurations, density

functional, and the cutoff radii for each of the partial waves (A2,8). We assumed

A2 = APAW for all valence electrons except the 6B and 7B electrons, for which A2 was

adjusted. The cutoff radii are given in Table 4.1. These cutoffs, combined with the

choice of density functional and valence electrons, are sufficient to reproduce the

pseudopotential in atompaw.

According to our calculations, α phase has the lowest energy (see Fig. 4.1) at

ground state. Properties of several uranium phases as calculated with the pseu-

dopotential presented above are detailed in the rest of this section.

4.3.1 α-Uranium

Uranium’s αphasehas a base-centeredorthorhombic structurewith space group

Cmcm (no. 63). The asymmetric unit has uranium atoms at Wyckoff position 42(
0,±H,±1

4

)
, where the position parameter H has been found to be a function of

temperature [17]. At room temperature, the value of H has been measured to be
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Figure 4.1. Energy vs. volume curve for three different phases of uranium.

0.1024 [17, 37]. There are four atoms in the standard unit cell (two in the primitive

cell). The α phase is thermodynamically favorable at temperatures below 935 K and

pressures up to 100 GPa [3, 38]. This makes the α phase important to the nuclear

energy community because it is the naturally-occurring phase of uranium. The

solid-state physics community also shows interest in α-uranium because of certain

unusual characteristics, including charge density wave transitions and supercon-

ductivity.

The total energy as a function of unit cell volume for α-uranium is shown in

Figure 4.2; Table 4.2 summarizes the optimized lattice parameters, the distance

parameter H, and the calculated elastic moduli, along with results from previously-

published calculations and experiments. We confirm that α-uranium is the lowest-

energy crystal structure among those we tested. Our pseudopotential predicts an
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equilibrium volume of 20.49 Å
3
, which is in close agreement with the experimental

value of 20.530 Å
3
(at 50 K). The position parameter H exhibits a minimum-energy

value of 0.0986 at the equilibrium volume of 20.49 Å
3
. This trend in H is similar to

that observed in the calculations of Wills and Eriksson [6].

Our cell volume results differ from previous calculations using PAW [23], which

obtained an equilibrium volume of 19.987 Å
3
(the work was done using VASP [39–

41]). AMurnaghan [42] fit to the total energy as a function of volume for α-uranium

yielded a bulkmodulus of 132.1 GPa, which is larger than the experimental value of

104± 2 GPa [38], but agrees closely with the quantummolecular dynamics (QMD)

results of Hood et al. [43] (133.5 GPa) and the diamond anvil cell (DAC) experiments

ofYoo et al. [44], which reported a bulkmodulus of 135.5GPa. Ourpseudopotential-

based results are in close agreement with the all-electron FP-LMTO calculations of

Söderlind [10], which gave an equilibrium volume of 20.67 Å
3
and a bulk modulus

of 133.0 GPa. A published PAW-based pseudopotential from Beeler et al. [23] yields

an equilibrium volume of 19.92 Å
3
, which is lower than our result and farther from

both the experimental value and the result from all-electron calculations.

The elastic moduli predicted by our pseudopotential are presented in Table 4.2.

Like all materials with orthorhombic symmetry, α-uranium has nine unique elastic

moduli. Our model overestimates most of the elastic moduli relative to experi-

ments. The three primary-direction elastic moduli (�11, �22, and �33) show good

agreement with other theoretical results and with experiment, though all three

principal elastic moduli are overestimated. The order (�33 > �11 > �22) of these

three elastic moduli is also consistent with experiments. For �55 and �13, the

present results also show good agreement with experiments. The value of �66 is

overestimated relative to experiment, but closer than any existing prediction from

a pseudopotential-based calculation. The other elastic moduli are generally similar

to existing theoretical predictions.
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Figure 4.2. (a) Calculated total energy as a function of volume for α-uranium. (b) Calculated

total energy as a function of the positional parameter H for α-uranium. The calculation of

H is constrained to an equilibrium volume of 20.49 Å
3
.
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4.3.2 γ-U: Crystal Structure and Elastic Moduli

The structure of γ-uranium at high temperature was first elucidated by Wilson

and Rundle [46] at Iowa State University in 1949 using powdered uranium at

800 °C. The γ phase of uranium has a body-centered cubic (bcc; Structurbericht

designation A2) structure with two atoms in the standard unit cell [47, 48]. It is

thermodynamically stable from 1050 K to the melting point of 1406 K [44].

In the nuclear fuels community, γ-uranium is preferred to α-uranium because

it undergoes isotropic thermal expansion and radiation-induced swelling [49]. As

Wilson and Rundle observed [46], it is not possible to quench pure γ-uranium to

room temperature, but a metastable bcc phase can be retained at room temperature

in U–Mo alloys. Recently, it was found that the bcc structure can be retained by

alloying uranium with other metals, such as platinum, palladium, niobium, and

zirconium [50]. In particular, the eutectoid point of γ-uranium with molybdenum

impurities is at approximately 89 weight-percent uranium (see Fig. 1.3); to take

advantage of the depressed phase transition temperature (and the associated in-

crease in stability of the bcc phase), uranium alloyed with 10 wt% molybdenum

(≈ 21.6 at.%; U-10Mo) is currently being developed as a potential high-density

low-enrichment uranium (LEU) fuel for high-performance research reactors. The

lattice parameters, volume per atom, and elastic moduli as calculated with our

pseudopotential-based model are presented in Table 4.3.

The lattice parameters for γ-uranium as calculated with the pseudopotential

presented here are in good agreement with experiments. The elastic moduli are

comparable with those of Beeler et al. [23] and Taylor [13]. The value of �12 is larger

than that of �11, which is a violation of one of the stability criteria for cubic crystals

(�11 − �12 > 0), often called the Born stability criterion [51–53]. This violation

is expected, as the bcc phase of uranium is unstable at low temperatures. The
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Table 4.4. The optimized lattice parameters (Å), volume per atom (Å
3
), and elastic moduli

of bct uranium. Our calculated results are compared with those of Beeler et al. [23], Li et
al. [21], Xiang et al. [18], and Söderlind [54].

present work Beeler [23] Li [21] Xiang [18] Söderlind [54]

0 (Å) 3.44 3.695 3.72 - -

2/0 0.8125 0.8 1.24 - 0.82

vol./atom (Å
3
) 20.44 20.268 31.896 20.5 -

�11 (GPa) 270 264 230 - -

�33 (GPa) 257 254 204 - -

�12 (GPa) 65 55 61 - -

�13 (GPa) 32 68 61 - -

�44 (GPa) 59 56 79 - -

�55 (GPa) 71 56 39 - -

� (GPa) 115.4 130 114 - -

experimental value of bulk modulus by Yoo et al. [44] is in good agreement with

our result.

4.3.3 Body-Centered Tetragonal Uranium

The β phase of uranium is stable at atmospheric pressure between 935 and

1045 K [2]. Tucker [55] determined that it has a tetragonal structure with 30 atoms

per unit cell, but his space group assignmentwas later disputed. The assignment of

a space group remained a controversy until 1988, when Lawson and coworkers [2]

published neutron powder diffraction results. The experimental difficulties lie in

the preparation of a single crystal of β-uranium and the need to operate at high

temperature. Single crystals of a β-uranium alloy containing 1.4 atom% chromium

were created by Tucker [56] and quenched to room temperature, but he did not

establish whether this alloy had the same crystal structure as pure β-uranium [2].

An overview of the development of the crystal structure of β-uranium is given

by Donohue and Einspahr [57, 58]. The present consensus is that β-uranium has a
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Table 4.5. The equilibrium lattice parameter, volume per atom, and elastic moduli of fcc

uranium. Results are compared with PAWpseudopotential calculations of Beeler et al. [23],
Taylor [13], and Crocombette et al. [9].

present work Beeler [23] Taylor [13] Crocombette [9]

0 (Å) 4.300 4.433 4.48 4.30

volume/atom (Å
3
) 21.765 21.774 22.48 19.88

�11 (GPa) 67 46 184 -

�12 (GPa) 130 144 267 -

�44 (GPa) 38 40 28 -

� (GPa) 108.7 111 239 148

tetragonal crystal structurewithwith space group %42/<=< (no. 136) and 30 atoms

in the unit cell.

We chose to simulate a body-centered tetragonal structure instead of β-uranium

because of the latter’s complexity and computational expense. A similar simplifi-

cation was used in studies similar to ours [21, 23]. The bct structure has only two

atomsper unit cell, and is therefore less computationally expensive than β-uranium.

The equilibrium lattice parameters of bct uranium are presented in Table 4.4, along-

side values from Beeler et al. [23] and Li et al. [21]. The volume per atom agrees

well with Beeler et al. but is significantly different from that of Li et al. Xiang et

al. [18] also studied the bct structure of uranium, though they did not provide the

equilibrium lattice parameter or 2/0 ratio; their value of the equilibrium volume

per atom was 20.5 Å
3
, similar but larger than our value. Our 2/0 ratio is in good

agreement with both Beeler et al. [23] (0.8) and Söderlind [54] (0.82).

4.3.4 Face-Centered Cubic Uranium

Face-centered cubic uranium does not exist in nature, but it is a reasonable

way to check the pseudopotential. Beeler et al. [23] and Taylor [13] studied this

structure as well, so we compare our results with theirs. Table 4.5 shows the
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Figure 4.3. Total electronic densities of states of α, γ, bct, and fcc uranium near the Fermi

level.

equilibrium parameters and elastic moduli as calculated with our model and with

several other published pseudopotentials. Our results are in good agreement with

other pseudopotential calculations, particularly those of Beeler et al. [23]; the bulk

modulus shows good agreement with their value as well. It should be noted that

�12 is still higher than �11, confirming that this model predicts the fcc phase to be

unstable.
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near the Fermi level, they are barely visible.
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4.3.5 Electronic Density of States

The electronic densities of states (DOS) of α, bct, γ, and fcc uranium are shown

in Figure 4.3. The partial densities of states for the 5 5 and 63 orbitals are shown

in Figure 4.4. We have only shown the partial densities of states for the 5 5 and 63

orbitals because these are the dominant orbitals near the Fermi level of uranium.

There are also contributions from 6B, 6?, and 7B orbitals near the Fermi level,

but these contributions are not as significant as the dominant 5 5 and 63 orbitals.

Electrons near the Fermi level are important because they are responsible for most

of the metallic behavior. From Figure 4.3, it can be seen that the DOS spreads over

energies between −4 eV and 2 eV relative to the Fermi level. The density of states

with our model is comparable to those calculated by Beeler et al. [23] and Xiang

et al. [18]. For bcc and bct uranium, the 5 orbitals spread over a broader range

of energies near the Fermi level and show multiple peaks above the Fermi level.

The high density of states at energies above the Fermi level in the bct and γ phases

suggests that these phases would be favored over α-uranium at high temperature.

4.4 Conclusion

The equilibrium structures, cell volumes, and elastic moduli have been cal-

culated using DFT with a newly-parameterized pseudopotential model for four

different uranium phases (α, γ, body-centered tetragonal, and face-centered cubic).

Our results are either in good agreement with previous work or show improve-

ment in comparison with experiments. Studying pure uranium is the first step in

exploring different alloys of uranium that are of interest to the nuclear fuels com-

munity. Due to the lower cutoff energies that can typically be used, PAW-based

pseudopotentials allow one to study larger supercells, which in turn provide more

accurate studies of vacancy formation, grain boundaries, and fission gas transport.

76



According to our pseudopotential, α-uranium is the lowest-energy crystal struc-

ture of the ones tested. The calculated elastic moduli show good agreement with

previous DFT studies and experiments. Our model shows good agreement with

previous pseudopotentials, but generally provides results that are either compara-

ble to previously published pseudopotentials or closer to experimental values than

previously published pseudopotentials. The three elastic moduli associated with

shear (�44, �55, and �66) show better agreement with experimental results than the

tensile components. The lattice parameters of the bct structure are also very similar

to those predicted by Beeler et al. [23], but they deviate significantly from those of

Li et al. [21]. The elastic moduli show very similar trends to previously-published

models, apart from �23, which is over-predicted by our model.

For γ-uranium, which is of great interest for the development of low-enrichment

uranium fuel, the lattice parameters are in close agreement with those of of Taylor

et al. [13] and with experiments. Apart from the elastic modulus �11, the values of

all computed parameters show very little discrepancy compared with those from

the work of Taylor et al. [13] and Beeler et al. [23]. The bulk modulus shows very

good agreement with experiment.

For fcc uranium, ahypothetical crystal structure, the computed lattice parameter

is in close agreement with values reported by Beeler et al. [23] and by Crocombette

et al. [9]. The equilibrium volume per atom does show a discrepancy fromCrocom-

bette but is in good agreement with Beeler et al. The elastic modulus �44 is also in

good agreement with Beeler et al., whereas �11 is intermediate between the value

predicted by Beeler et al. and that predicted by Taylor et al. Lastly, the electronic

density of states shows that the 5 5 orbital partial density of states is the largest

contribution to the total density of states at the Fermi energy, and the 5 5 electrons

therefore contribute the most to the bonding and conductivity of uranium. Most

of the 5 5 orbital electron density is spread over energies between −4 and 2 eV
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relative to the Fermi level. We also find that γ-uranium has the highest density

of states at energies above the Fermi level, confirming that it should be favored at

high temperature.
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Appendix: Elastic Parameter Calculation of �-uranium

In this appendix, we will discuss the stress-strain relationships that were used

to calculate the nine independent elastic constants of α-uranium. The base-centered

orthorhombic phase of uranium has three lattice parameters: 0, 1, and 2; with the

Bravais lattice matrix

R =


0
2
− 1

2
0

0
2

1
2

0

0 0 2


. (4.1)

Applying a small strain to the equilibrium lattice changes the total energy, and

from this information, the elastic parameters are deduced. The elastic parameters

are identified as proportional to the second order coefficient in a polynomial fit of

the total energy as a function of the distortion parameter � [59]. The distortion

of the lattice vectors follows the rule R
′ = RD. Here, R

′
is a matrix containing

the components of the distorted lattice vectors and D is the symmetric distortion

matrix.

The internal energy of a crystal under strain � can be expanded in powers of the

strain tensor with respect to initial energy of the unstrained crystal in the following

way:

�(+, �) = �(+0, 0) ++0

©­«
∑
8

�8�831 + 1/2
∑
8 9

�8 9�8�8� 9�9
ª®¬ + O(�3) (4.2)

The unstrained volume is +0, and �(+0, 0) is the energy of the unstrained system.

Voight notation has been used in Eqn. (4.2) (i.e., GG, HH, II, HI, GI, and GH, respec-

tively, are replaced with 1–6). Here, HI, GI, and GH, are equal to IH, IG, and HG,

and for this reason, �8 is equal to 1 for 8 = 1, 2, and 3 and equal to 2 for 8 = 4, 5, and

6. �8 is a component of the stress tensor. The first three elastic constants; �11, �22,

79



and �33; are obtained form the following distortions:

D1 =


1 + � 0 0

0 1 0

0 0 1


(4.3)

D2 =


1 0 0

0 1 + � 0

0 0 1


(4.4)

D3 =


1 0 0

0 1 0

0 0 1 + �


. (4.5)

The internal energies for these three distortions can be obtained from

�(+, �) = �(+0, 0) ++0�8� +
+0�88�2

2

. (4.6)

The constants �44, �55, and �66 are related to the distortions:

D4 =


1

(1−�2)1/3 0 0

0
1

(1−�2)1/3
�

(1−�2)1/3

0
�

(1−�2)1/3
1

(1−�2)1/3


(4.7)

D5 =


1

(1−�2)1/3 0
�

(1−�2)1/3

0
1

(1−�2)1/3 0

�
(1−�2)1/3 0

1

(1−�2)1/3


(4.8)
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and

D6 =


1

(1−�2)1/3
�

(1−�2)1/3 0

�
(1−�2)1/3

1

(1−�2)1/3 0

0 0
1

(1−�2)1/3


. (4.9)

These three elastic constants can be calculated from the corresponding internal

energy:

�(+, �) = �(+0, 0) ++0�8� +
+0�88�2

2

(4.10)

The last three distortions are

D7 =


1+�

(1−�2)1/3 0 0

0
1−�

(1−�2)1/3 0

0 0
1

(1−�2)1/3


(4.11)

D8 =


1+�

(1−�2)1/3 0 0

0
1

(1−�2)1/3 0

0 0
1−�

(1−�2)1/3


(4.12)

and

D9 =


1

(1−�2)1/3 0 0

0
1+�

(1−�2)1/3 0

0 0
1−�

(1−�2)1/3


(4.13)

The internal energies related to these three distortions are given by the following

equations:

�(+, �) = �(+0, 0) ++0 [�1 − �2] � +
1

2

(�11 + �22 − 2�12) �2

(4.14)

�(+, �) = �(+0, 0) ++0 [�1 − �3] � +
1

2

(�11 + �33 − 2�13) �2

(4.15)

�(+, �) = �(+0, 0) ++0 [�2 − �3] � +
1

2

(�22 + �33 − 2�23) �2

(4.16)
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Figure 4.5. Changes in the strain energy as a function of strain using distortion ma-

trix �1 (4.3), �2 (4.4), and �3 (4.5).

The above equations can be used to calculate the remaining elastic constants �12,

�13, and �23. The energy and strain relations are calculated and included in

Figures 4.5, 4.6, and 4.7.
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Figure 4.6. Changes in the strain energy as a function of strain using distortion ma-

trix �4 (4.7), �5 (4.8), and �6 (4.9).
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Figure 4.7. Changes in the strain energy as a function of strain using distortion ma-

trix �7 (4.11), �8 (4.12), and �9 (4.13).
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Appendix: Elastic Parameter Calculation for γ-uranium

Applying a small strain (�) to the equilibrium lattice changes the total energy,

and from this information, the elastic parameters are deduced. The distortion of

a lattice vector follows the rule R
′ = RD. Here, R is the Bravais lattice vector, R

′

is a matrix containing the components of the distorted lattice vectors, and D is the

symmetric distortion matrix.

By symmetry, there are only three independent elastic parameters for a cubic

system (i.e., �11, �12, and �44). Elastic parameters are evaluated from the total en-

ergy of the crystal, to which volume-conserving orthorhombic [�′ = (�11 − �12)/2]

and monoclinic (�44) distortions are applied. The relevant distortion matrices are

Dortho =


1 + �> 0 0

0 1 − �> 0

0 0
1

1−�2

>


(4.17)

and

Dmono =


1 �< 0

�< 1 0

0 0
1

1−�2

<


. (4.18)

The associated total energy change for an orthorhombic distortion is

Δ� = +(�11 − �12)�2

> + O(�4

>). (4.19)

For a monoclinic distortion, the energy change is

Δ� = 2+�44�
2

< + O(�4

<). (4.20)
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Figure 4.8. Energy as a function of lattice parameter for γ-uranium. (a) this work with a

:-point mesh of 30 × 30 × 30; (b) Pseudopotential from PS library [24, 25] with a :-point

mesh of 30 × 30 × 30; (c) Pseudopotential from PS library [24, 25] with 42 × 42 × 42 :-point

mesh.
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CHAPTER 5

XENONMOBILITY IN BCC-URANIUM AND

URANIUM–MOLYBDENUM ALLOYS

This chapter has been submitted as journal article for peer review. The authors are A.

Rafi M Iasir and Karl D. Hammond of the University of Missouri.

5.1 Introduction

High-performance research reactors require high-enrichment uranium (HEU)

fuels to attain the desired neutron flux. The replacement of HEU fuels with low-

enrichment uranium (LEU) is an important antiproliferation initiative. The United

States High-Performance Research Reactor (USHPRR) program is currently aiming

to replace the HEU fuels currently used in high performance reactors with LEU

fuels [1]. LEU fuels require a higher uranium density than that of uranium oxides

to compensate for the decrease in
235

U enrichment. Metallic uranium shows great

promise in this regard.

Metallic fuels are usually chosen because of their high thermal conductivity

and high density. Isotropic swelling behavior is desirable, but uranium, like other

light actinides (Pa–Pu), has a low-symmetry crystal structure (the orthorhombic α

phase) at ambient temperature and pressure, which results in anisotropic thermal

and radiation-induced expansion. Pure uranium has three allotropes at atmo-

spheric pressure: α (base-centered orthorhombic), β (tetragonal), and γ (body-

centered cubic). At atmospheric pressure, α-uranium transforms to β-uranium at
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approximately 935 K, and β-uranium transforms to γ-uranium at approximately

1045 K [2, 3].

Theγ-uraniumallotrope (which is body-centered cubic) is preferred to α-uranium

by nuclear engineers because it undergoes both isotropic thermal expansion and

isotropic radiation-induced swelling [4]. It is not possible to retain pure γ-uranium

under the required processing and radiation conditions; however, a metastable bcc

phase can be obtained at room temperature by alloying with molybdenum [5–8].

A study by Kim-Ngan and Havela [9] showed that the bcc structure can also be

retained at temperatures below the ordinary phase transition temperature by alloy-

ing uranium with metals such as platinum, palladium, niobium, and zirconium.

Molybdenum stabilizes uranium’s γ phase at concentrations near the eutectoid

point (11.1 wt% Mo) and lowers the phase transition temperature from 1045 K for

pure γ-uranium to 828 K for a U–Mo alloy at the eutectoid point [10, 11]. Uranium

alloyed with 10 wt% molybdenum (U-10Mo, which is 21.6 at.% molybdenum) is

currently being developed as a potential high-density, low-enrichment uranium

fuel for high-performance research reactors [12–14].

Uranium–molybdenum alloys have been studied extensively both experimen-

tally [6, 15, 16] and theoretically [17–21]. Castellano et al. [22] showed that the

addition of molybdenum to uranium leads to the stabilization of the γ phase us-

ing ab initio molecular dynamics. This thermodynamic stabilization is important

because un-alloyed γ-uranium is not stable under fuel preparation and irradiation

conditions [6, 8]. Fission creates a variety of products, resulting in gas bubbles,

metallic precipitates, and solutes in the fuel matrix. Among the many fission prod-

ucts, fission gas (i.e., xenon and krypton) produces some of the most significant

challenges associated with nuclear fuel development. Fission gas influences the

thermal conductivity, causes swelling, and impacts the neutron economy of the

reactor [23, 24]. The ratio of xenon to krypton in fission gases is typically nine to
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one [25]. The most important fission gas isotopes with short half lives are
133

Xe

(5.25 d) and
135

Xe (9.1 h). In particular,
135

Xe has a very high neutron absorption

cross-section (�0 = 2.7 × 10
6± 0.1 barns) that can lower the fuel’s reactivity. Hence,

the evolution of fission gases is directly related to the fuel performance.

Large fission gas atoms (i.e., xenon) are mostly insoluble in the fuel matrix [26,

27]. There is a significant driving force for segregation of fission gas atoms to defects

such as grain boundaries or dislocations, and consequently gas bubbles form at

these sinks. Post-irradiation analysis of U–Mo alloys showed that the fission gases

distribute themselves both inside the grains and along grain boundaries [28–31].

Fission gas in U–Mo alloys also forms superlattices, in which the bubbles distribute

themselves in an organized array [31, 32]. To understand the mechanism of the

formation of gas-bubble superlattices, the rate-limiting processes involved in fission

gas transport need to be studied. One of these processes is themotion of individual

gas atoms through the fuel matrix, assisted by vacancies.

The behavior of fission gas has been extensively researched for common fuels

such as UO2 [33–37]. A number of theoretical approaches have also been used to

understand the behavior of fission products in UO2, including electronic structure

theory [26, 27, 38–44]. In particular, vacancies play an important role in thediffusion

of xenon because of its size relative to the metal atoms.

Solute diffusion in light actinides is a very interesting phenomenon because

such solutes typically have very high diffusivities [45–47]. Diffusion of solutes

in metallic uranium has not been studied extensively. However, there are some

early works that provide some information about defect and impurity diffusion in

uranium [48–55]. Recently, Smirnova et al. [56] studied self-diffusion in γ-uranium

and U–Mo alloys using molecular dynamics. They showed that diffusion in γ-

uranium, like that in other light actinides, is anomalously fast compared to bcc

transition metals.
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In recent years, there have been many attempts to calculate diffusion coef-

ficients of impurities using electronic structure and atomistic methods [57–64].

Electronic structure calculations based on DFT and multi-frequency models have

shown their usefulness in various works. Five-frequency models of face-centered

cubic crystals [65–67] and nine-frequency (or sometimes four-frequency) models

of bcc crystals [68, 69] have been widely used. Methods based on electronic struc-

ture theory involve calculating the activation energies of an atom jumping to a

vacancy in one of the atom’s nearest-neighbor positions. This is often referred to

as vacancy-mediated diffusion. The calculations employed here are based on DFT

coupled with classical transition state theory (TST), which treats vibration using

the harmonic oscillator approximation [70, 71].

In this study, we use DFT and TST to study the diffusion of xenon andmolybde-

num in γ-uraniumalloys such asU-7Mo andU-10Moby varying the localmolybde-

num concentration around the diffusing solute atom. We find that molybdenum’s

migration energy is much higher than xenon’s in γ-U alloys and that the presence

of molybdenum in the local environment of a xenon atom tends to decrease the

mobility of xenon in γ-uranium alloys. We also calculate the vacancy–solute bind-

ing energies of several solutes in γ-uranium and find that such binding energies

are generally higher in γ-uranium than in iron or aluminum.

5.2 Theory

Diffusion coefficients in crystalline solids are often described by an Arrhenius

equation over awide range of temperatures. Thismodel consists of twoparameters,

the migration energy, �< , and the pre-exponential factor, �0, with the diffusion

coefficient given by

� = �04
−�</:�) , (5.1)
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where :� is the Boltzmann constant and ) is the absolute temperature. If �0 is

independent of temperature, anArrhenius plot (� against 1/)) gives a straight line;

if �0 changes with ), it yields a curve that falls away from the constant-�0 line at

high temperature (the left of the plot).

Themigration energy is the activation energy for an atom to jump onto a nearby

vacancy. According to classical transition state theory (TST), the rate at which

a vacancy exchanges its place with a neighboring atom can be expressed by the

Eyring–Polanyi equation [71–73],

E = �‡ exp

(
−Δ�<
:�)

)
≈ :�)

ℎ

&TS

&IS

exp

(
−�<
:�)

)
≈ :�)

ℎ
exp

(
−�<
:�)

)
, (5.2)

where &IS is the vibrational partition function of the initial state and &TS is the

vibrational partition function of the transition state with the vibrational mode

along the minimum-energy pathway removed. In the current work, we did not

calculate the jump frequencies, which are part of the &8 terms; we instead make

the approximation that the vibrational partition functions not associated with the

minimum energy pathway are unity (i.e., &TS/&IS ≈ 1). The diffusion coefficient is

proportional to the rate of a jump: � = E�2/6, where � = 0/
√

8 for bcc lattices [74]

and 0 is the lattice parameter.

Metals that undergo irradiation have point defects such as self-vacancies and

self-interstitials in the lattice. The diffusion of these defects results in microstruc-

tural changes that can impact themechanical properties. The diffusion of vacancies

is of significant interest because they form voids, dislocation loops, and clusters,

and they facilitate the diffusion of substitutional solute atoms. This method of so-

lute diffusion is controlled by the interaction between a vacancy and a solute atom.

The diffusion of vacancies is particularly influenced by the presence of nearby sub-

stitutional solute atoms. Sometimes the vacancy and the solute can coexist as an
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atom–vacancy complex. Hence, understanding solute–vacancy interactions is an

important step in developing models of diffusion in irradiated materials [75, 76].

The authors are not aware of anyprevious results regarding solute–vacancybinding

in γ-uranium for any solutes, so we calculated them as part of this work.

Weuseddefects in supercells to calculate the binding energies of solute–vacancy

(X–�) pairs. The binding energy is the difference between the energy at infinite

separation and the energy at nearest-neighbor separation. We used the following

expression to calculate the binding energy of a solute to a vacancy:

�-−�
1

= �
-1

U#−1

+ ��1

U#−1

− �-1�1

U#−2

− �U# . (5.3)

For a bcc supercell with # sites, the cell may contain no defects (energy �U# ),

or it may contain a vacancy (energy �
�1

U#−1

), a solute impurity (�
-1

U#−1

), or a solute–

vacancy pair (�
-1�1

U#−2

). A positive binding energy means the complex is bound.

Equation (5.3) can also be conveniently written as the energy required to form a

vacancy next to a solute (-) atom. The vacancy formation energy is

��5 = �
�1

U#−1

− # − 1

#
�U# , (5.4)

where �U# is the energy of a supercell with# uranium atoms. A positive formation

energy indicates that energy must be added to form the vacancy.

The disordered nature of U–Mo alloys creates some challenges for electronic

structure studies. The manner in which molybdenum is distributed among the

lattice sites produces different diffusion pathways for xenon, and there are several

ways to arrange molybdenum atoms on the lattice sites around a particular xenon

atom. We use a combinatorial approach to estimate the probabilities (Table 5.1) of

having various numbers of molybdenum atoms in the first-nearest-neighbor shell

of the bcc structure around a xenon atom. Assuming the molybdenum atoms are
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Table 5.1. Probability of having different numbers of molybdenum atoms in the nearest-

neighbor (NN) location for a bcc uranium–molybdenum alloy. We have used Eq. (5.5) to

calculate the probabilities.

U-10Mo U-7Mo

# of Mo (GMo = 0.216) (GMo = 0.157)

0 0.182 0.302

1 0.351 0.394

2 0.290 0.221

3 0.133 0.069

4 0.037 0.013

5 0.006 0.001

6 0.0006 8.95 × 10
−5

7 2.19 × 10
−5

2.39 × 10
−6

arranged randomly, the probability (P) of a particular U/Mo combination on the

sites near a xenon atom can be calculated using a binomial distribution:

P =
(
=

:

)
G:
Mo
(1 − GMo)=−: , (5.5)

where = is the number of available nearest-neighbor positions not occupied by the

vacancy (for bcc, = = 7), : is the number of molybdenum atoms in the nearest-

neighbor shell, and GMo is the (overall) mole fraction of molybdenum. According

to Table 5.1, the probability (P) of having more than three molybdenum atoms

in the first nearest-neighbor shell is low (< 5%). We assume, for simplicity, that

GXe ≈ 0.

5.3 Methodology

All calculations used the QuantumESPRESSO [77] simulation package with the

projector augmented wave (PAW) method [78]. A full description of the uranium

pseudopotential can be found in our earlier work [79]. For the elements Mo, Xe,

Fe, Co, Au, Nb, and Zr, we used PAW-based pseudopotentials from the Quantu-
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mESPRESSO PS Library [80, 81]. We used the exchange–correlation functional of

Perdew, Burke, and Ernzerhof (PBE) [82, 83] for all calculations.

DFT calculates the ground state properties of a system; however, γ-uranium is

mechanically unstable at low temperatures, which results in negative shear mod-

uli [84]. Other elements (e.g., Ti, Zr, Pr, and Hf) also have high-temperature bcc

structures that are unstable at low temperature [85, 86]. It is consequently chal-

lenging to study γ-uranium with DFT, particularly using a supercell that includes

vacancies or defects. To perform our calculations, we used the so-called shell

method [87], in which the outer layer of atoms is fixed at crystallographic coordi-

nates and the rest of the atoms are allowed to move freely. We used a 3 × 3 × 3

supercell of bcc uranium, which consists of 54 atoms in the absence of heteroatoms

or vacancies. A convergence test showed that a Monkhorst–Pack [88] :-point mesh

of 5× 5× 5 is suitable to yield formation and migration energies that are converged

to within 0.01 eV/Å.

To calculate the migration energy, each initial state was relaxed with respect

to internal coordinates and volume. We determined the transition state by way

of a nudged elastic band (NEB) [89, 90] calculation with a climbing image as

implemented in QuantumESPRESSO.We used five images in the NEB calculations.

5.4 Results and Discussion

5.4.1 Vacancy Formation and Impurity–Vacancy Binding Energies

The formation energy of a single vacancy is calculated using Eq. (5.4). Our re-

sults are compared with previously-published DFT calculations and experimental

results in Table 5.2. Our results are in good agreement with both previous DFT

studies. Xian et al. [91] also used 54 atoms in their supercell, but our vacancy

formation energy is higher by 0.2 eV. Discrepancies could arise from their use of a

6× 6× 6 :-point mesh, whereas we used 5× 5× 5. Beeler et al. [87] used a supercell
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Table 5.2. Vacancy formation energy (eV) of γ-uranium compared with previously-

published results.

Source Energy (eV)

Present work 1.28

Beeler et al. [87] 1.384

Xian et al. [91] 1.08

Matter et al. (expt.) [92] 1.2 ± 0.3

Lund et al. (expt.) [93] 1.6 ± 0.2

of 128 atoms to calculate the vacancy formation energy. The experimental values

bracket our results and those of Beeler et al. [87]: The earlier work of Matter et

al. [92] found a formation energy of 1.2 ± 0.3 eV, whereas Lund et al. [93] found

1.6 ± 0.2 eV.

We are not aware of any previous reports of calculations of solute–vacancy

(X–�) binding energies in γ-uranium, so we calculated these ourselves. We chose

solutes so as to compare to diffusionmeasurements byRothman and coworkers [49–

51]. The results are shown in Table 5.3. All of the solute–vacancy binding energies

in γ-uranium are substantially higher than in other bcc metals. For example, in

iron and tungsten, the X–� binding energy varies from −0.6 to 0.6 eV for a variety

of solutes [94–97]. In γ-uranium, however, the binding energy varies from 5.715 eV

(Fe–�) to 6.619 eV (Cr–�), which indicates that the solute–vacancy binding energy

is much higher in bcc uranium than it is in other bcc metals.

The solute–vacancy binding energy characterizes the interaction between a so-

lute and a vacancy, which modifies the local concentration of vacancies near a

solute. In the case of γ-uranium, the interaction between solute and vacancy is

strongly attractive. The total solute–vacancy binding energy can be decomposed

into two factors: elastic effects and electrostatic effects [98]. The elastic energy

(or elastic binding energy) is the energy that is released if the strain fields of a
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Table 5.3. Solute–vacancy binding energies in γ-uranium for various solutes near a vacancy.

Positive energies indicate energetically-favorable binding.

Solute Binding energy (eV)

Xe 6.034

Mo 6.249

Fe 5.715

Co 5.876

Au 6.450

Cr 6.619

Zr 6.318

Nb 6.113

solute and a vacancy interact [95, 97]. Due to the unstable nature of γ-uranium

at low temperatures, the elastic binding energy contributes the most to the total

solute–vacancy binding energy and is the primary reason for the high value of the

solute–vacancy binding energy in bcc uranium.

5.4.2 Xenon and Molybdenum Diffusion

Migration energies are calculated using the climbing-image nudged elastic band

method. We calculated the migration energies of xenon and molybdenummoving

from the center of the supercell to one of the nearest-neighbor lattice sites. Such

solute–vacancy exchange is the primary mechanism of diffusion of xenon and

molybdenum because of their size relative to uranium. Table 5.4 presents our

findings. Note that in bcc lattices, all eight nearest-neighbor sites are symmetrically

equivalent, so there is only one unique migration energy for xenon near seven

uranium atoms and one vacancy. As the amount of molybdenum in the nearest-

neighbor shell increases, there aremore andmore symmetrically distinct migration

pathways. Xenon’s migration energy in the absence of any molybdenum in the

nearest-neighbor positions is significantly lower than molybdenum’s migration

energy. The Xe–� binding energy is also lower than the Mo–� binding energy,
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Table 5.4. Xenon migration energy (�<) for different configurations.

Composition
a

Xe Jump �< (eV)

7 U 〈1 1 1〉 (Fig. 5.1a) 0.161

1 Mo 1 (Fig. 5.1b) 0.313

2 (Fig. 5.1b) 0.172

3 (Fig. 5.1b) 0.261

2 Mo 1 (Fig. 5.2a) 0.110

2 (Fig. 5.2a) 0.212

3 (Fig. 5.2b) 0.532

4 (Fig. 5.2b) 0.108

5 (Fig. 5.2b) 0.224

6 (Fig. 5.2c) 0.110

3 Mo 1 (Fig. 5.3a) 0.515

2 (Fig. 5.3a) 0.917

3 (Fig. 5.3a) 0.265

4 (Fig. 5.3a) 0.579

5 (Fig. 5.3b) 0.201

6 (Fig. 5.3b) 0.384

7 (Fig. 5.3b) 0.386

8 (Fig. 5.3c) 1.213

9 (Fig. 5.3c) 0.461

10 (Fig. 5.3c) 0.435

Mo Jump �< (eV)

7 U 〈1 1 1〉 (Fig. 5.1a) 2.067

a
The eight nearest-neighbor sites consist of one

vacancy plus the atoms listed, with the remaining

sites occupied by uranium atoms.

whichmayoccur in part because xenon tends to find its energeticminimum location

in between the empty lattice site and the site closest to the xenon atom, resulting in

shorter jump distances and lower barriers.

We studied the xenon migration energy in the presence of molybdenum in

a systematic way by including various numbers of molybdenum atoms in the

nearest-neighbor (NN) shell around a xenon atomand calculating all symmetrically

distinct xenon migration energies associated with each distinct arrangement of
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molybdenum atoms around a central xenon atom. One molybdenum in the NN

shell creates three symmetrically equivalent xenon jumps (see Fig. 5.1b). These

three migration pathways (labeled 1, 2, and 3) show higher activation energies

than the case with no molybdenum atoms in the NN shell.

In the presence of a vacancy, xenon tends to take a position in between the

vacancy and lattice site at the energyminimum. This results in a very lowmigration

energy for xenon to move to the nearest vacancy. This behavior is very similar to

how xenon moves in UO2 fuel: in UO2, the xenon atoms prefer to find their

lowest energy location in between the original trap site and the second uranium

vacancy [27]. Adding one molybdenum to the nearest neighbor shell increases the

migration energies for all three unique migration pathways. The relative locations

of the molybdenum atom and the vacancy change the minimum energy location

of the xenon atom. Xenon tends to relax towards the vacancy and the extra space

created by the molybdenum atom. It finds a low-energy site in between its original

site, the vacancy, and themolybdenumatom,which increases themigration energy.

There is more than one way to put two molybdenum atoms in the NN shell

around a solute atom in a bcc crystal, and three of these arrangements create

distinct xenon migration pathways. Figure 5.2 shows all symmetrically-distinct

locations for two molybdenum atoms around a xenon atom and the resulting

symmetrically-distinct jumps that could result if a vacancywere in another position

nearby. Migration energies with two molybdenum atoms present range from

0.110 eV to 0.532 eV. Both the positions of the two molybdenum atoms and the

direction of the jump influence the migration energy. Directions 1 and 2 (Fig. 5.2a)

have migration energies of 0.110 and 0.212 eV, respectively; direction 2 has almost

double the migration energy of direction 1. Directions 1, 4, and 6, which all have

a molybdenum atom on the corner of the cube adjacent to the vacancy, have the

lowest migration energies. The lowest-energy locations for xenon for jumps in
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Xe
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(a) (b)
2

1

21

2

1

3

Figure 5.1. Diagram of a xenon jump from the center site to a nearest-neighbor vacancy in

γ-uranium. (a) All eight jumps are symmetrically equivalentwith nomolybdenumpresent;

(b) with onemolybdenum atom in the nearest-neighbor shell, there are three unique solute

jumps (1, 2, and 3).

Xe U Mo

1 1

1 1

2 2

4

4

5 3

53

6

6

6 6

6

6

(a) (b) (c)

Figure 5.2. The three sets of symmetrically-inequivalent hops of xenon from the centerwith

two molybdenum atoms in the nearest-neighbor shell. The numbers denote symmetrically

distinct pathways.

directions 1, 4, and 6 are close to each other, which produces a very low migration

energy.

Figure 5.3 shows the symmetrically-distinct arrangements of threemolybdenum

atoms in the nearest-neighbor shell. This local concentration creates ten distinct

jumps of a xenon atom to a nearest-neighbor vacancy (Fig. 5.3). The migration

energies for three-molybdenum configurations vary from 0.201 eV for direction 5

to 1.213 eV for direction 8. The highest migration energy is for a xenon atom that

jumps to a site between two molybdenum atoms (site 8 in Fig. 5.3c). Figure 5.3a
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Figure 5.3. The three sets of symmetrically-distinct hops from the center site with three

molybdenum atoms in the nearest-neighbor shell. The numbers denote symmetrically

distinct pathways.

shows the arrangements of three molybdenum atoms on the same (1 0 0) plane,

which produces four distinct jumps with migration energies ranging from 0.515 eV

to 0.917 eV, the highest one being for direction 2, where xenonmoves to the opposite

corner from the three molybdenum atoms. Figure 5.3b has a combination of two

molybdenum atoms on one face of the cell and one molybdenum atom in the

lower corner on the opposite site. This configuration reduces the migration energy

compared to the configuration inwhich all threemolybdenum atoms are co-planar.

Direction 8 (Figure 5.3c) produces the highest migration energy for xenon. In this

configuration, the initial minimum energy position for xenon is equidistant from

all three molybdenum atoms. The final position is not equidistant but creates a

larger activation energy. In the cases of directions 9 and 10, the location of the

vacancy changes the lowest-energy location (final position) for xenon and reduces

the barrier.

Wedid not calculate themigration energy of xenonwithmore than threemolyb-

denumatoms in thenearest-neighbor shell. The assumptionof a random (binomial)

distribution (Table 5.1) implies that the probability of having 0–3 molybdenum
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atoms near a xenon solute is much higher (> 96%) than having more than three

molybdenum atoms for either U-10Mo or U-7Mo.

5.5 Conclusions

We calculated solute–vacancy binding energies for different solutes in bcc ura-

nium. Uranium shows relatively high vacancy–solute binding energies compared

to iron and aluminum. The unstable nature of γ-uranium at low temperature con-

tributes to a significant increase in solute–vacancy binding energy relative to other

bcc metals. The higher elastic binding energy in bcc uranium produces a high

solute–vacancy binding energy.

We also calculated migration energies of xenon and molybdenum in pure bcc

uranium. Molybdenum’s migration energy is very high compared to that of xenon,

indicating that in pure bcc uranium, xenon moves much faster than molybdenum.

The relatively low diffusivity of molybdenum also supports our assumption that

molybdenum is randomly distributed in uranium–molybdenum alloys (presuming

that the manufacturing process initially starts with a melt or powder that produces

an ideal mixture). We also studied migration energies of xenon in the presence of

molybdenum inU–Mo alloys. Different arrangements ofmolybdenumatoms in the

nearest-neighbor shell and xenon’s distinct jumps are identified and their activation

energies calculated. The binomial distribution suggests that having up to three

molybdenum atoms in the nearest-neighbor shell is highly probable in U-10Mo

and U-7Mo alloys. The presence of molybdenum in the nearest-neighbor shell of a

xenon atomhas an impact on themigration energy, but it does not generally increase

or decrease themigration energy; both the locations of themolybdenum atoms and

the direction of the jump influence themigration energy. Having onemolybdenum

atom in the nearest-neighbor shell increases the activation energy between 0.01 eV

and 0.15 eV, depending on the location of the molybdenum atom relative to the
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xenon atom and the vacancy. If xenon has two molybdenum atoms nearby, we

found a similar increase, though there are combinations for which the migration

energy is lower than it is in the single-molybdenum cases. For xenon with three

nearby molybdenum atoms, the migration energy increases for all molybdenum/

vacancy arrangements. While there are several molybdenum arrangements that

result in decreased migration energies relative to some of the two-molybdenum

configurations, the general trend with the addition of molybdenum in the nearest-

neighbor shell near xenon is to increase themigration energy, hence reducing xenon

mobility in U–Mo alloys.

We did not consider the influence of molybdenum in the second-nearest neigh-

bor shell in bcc uranium. Future work should include a determination of the

effective diffusion coefficient of xenon in U–Mo alloys using the kinetic Monte

Carlo method.
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CHAPTER 6

HELIUM IMPURITIES AND INTERACTIONWITH LITHIUM

This chapter has been submitted as journal article for peer review. The authors are A.

Rafi M. Iasir and Karl D. Hammond of the University of Missouri.

6.1 Introduction

Lithium is potentially an important element in the context of magnetic fusion

devices. Lithium-coated surfaces have been tested in several fusion devices around

the world [1–6] and have been found to increase plasma confinement and improve

plasma edge conditions [7]. This behavior is due in part to lithium’s ability to trap

hydrogen isotopes [8], which has the net result of decreasing fuel recycling at the

plasma edge, leading to higher confinement and fewer disruptions [7]. Lithium

has also been proposed as a tritium-breeding material in fusion reactors [9] and

as a liquid wall-coating “armor” to protect plasma-facing components [10]. In

the near-surface region of plasma-facing materials, high densities of interstitials

and vacancies are produced and high concentrations of hydrogen and helium

are present. These defects and impurities will change the microstructure of the

material [11]. It is therefore important to determine the energies of defects in

lithium and their interactions with helium. This study calculates the energies of

several point defects in lithium as well as the formation, binding, and migration

energies of helium atoms and clusters trapped in lithium.
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6.2 Methodology

Weperformed all of our calculations using density functional theory (DFT)with

plane-wave basis sets as implemented in the software QuantumESPRESSO [12].

Projector augmentedwave (PAW) [13]pseudopotentials fromQuantumESPRESSO’s

PS library [14, 15] were used. The density functional of Perdew, Burke, and Ernz-

erhof (PBE) was used as the exchange–correlation functional [16, 17]. We used

a 4 × 4 × 4 supercell of bcc lithium, which consists of 128 atoms, to simulate de-

fects. Brillouin zone sampling was performed using the scheme of Monkhorst and

Pack [18] with a :-point mesh of 5 × 5 × 5. The plane wave cutoff energy was 50

Ry. The equilibrium lattice parameter obtained was 3.436 Å for bcc lithium. All

defect calculations were performed by fully relaxing the atomic positions in the

supercell at constant volume using this lattice parameter. The migration energies

were calculated using the nudged elastic band method [19–21] with seven images

along the migration pathway.

The formation energies are calculated as follows:

�oct

5
= �Li+Heoct

− �Li# − �He
isolated

(6.1a)

�tetr

5
= �Li+Hetetr

− �Li# − �He
isolated

(6.1b)

��5 = �Li#−1
− # − 1

#
�Li# (6.1c)

�subs

5
= �Li+He� −

# − 1

#
�Li# − �He

isolated
. (6.1d)

Here, �Li+He
tetr/oct

is the energy of a system in which helium is situated at either

octahedral or tetrahedral sites in bcc lithium. �Li+He� is the energy of a system

in which helium is in a substitutional position, �Li# is the energy of a defect-free

lithium supercell containing # atoms, and �He
isolated

is the energy of an isolated

helium atom. �Li#−1
is the energy of a lithium bcc supercell with a lithium self-

vacancy present.
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The formation energy of a self-interstitial atom (SIA) is calculated using

�SIA

5
= �Li#+1

− # + 1

#
�Li# , (6.2)

where �Li#+1
is the energy of a system with a lithium self-interstitial atom starting

in either an octahedral or tetrahedral position. The binding energy of two helium

atoms is determined via the formula

�
He1–He2

1
= �Li#+He1

+ �Li#+He2
− �Li#+He1+He2

− �Li# . (6.3)

Here, �Li+He1
is the energy of the supercell with a single helium interstitial present,

and �Li#+He1+He2
is the energy of the supercell containing two nearby helium atoms

in interstitial positions. For more than two helium atoms, the following equation

is used to calculate the binding energies between them:

�
He=

1
=

(
=∑
8=1

�Li#+He8

)
−

[
�Li#+He= + (= − 1)�Li#

]
. (6.4)

The helium–helium dumbbell formation energy (two helium atoms sharing a va-

cancy) can be calculated using the following equation:

�He−�−He

5
= �Li#−1+He−�−He −

# − 1

#
�Li# − �He

isolated
. (6.5)

Here, �Li#−1+He−�−He is the energy of a supercell containing the helium dumbbell.

6.3 Results and Discussion

We calculated the formation energies for different configurations of the self-

interstitial atoms and the vacancy formation energy for lithium. The results are

presented in Table 6.1. Our results are comparable with previous DFT calculations
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[1 1 1]

[1 0 1]

[0 1 0]

Figure 6.1. Helium–helium dumbbells in different orientations in the bcc lithium unit cell.

andwith experiments. Earlier DFT studies produced formation energies of lithium

self-vacancies from 0.52 to 0.57 eV [22–25], compared to our value of 0.496 eV.

The discrepancy could come from the size of the supercell, elastic interaction, the

density functional, and the quality of the pseudopotential.

We also calculated the self-interstitial formation energy of lithium. Octahedral

self-interstitials are unstable and relax to a dumbbell oriented in one of the 〈1 0 0〉 di-

rections (Fig. 6.1). Tetrahedral self-interstitials are also unstable and relax to 〈1 1 0〉

dumbbells. The lowest-energy dumbbell orientations are the 〈1 1 1〉 orientations,

which is a similar trend as in other non-ferromagnetic bcc materials. The vacancy

formation energy is slightly lower than Frank et al.’s value (0.52 eV) [25] and Ma

and Dudarev’s value (0.506 eV) [26], while the migration energy of the vacancy in

〈1 1 1〉 directions is slightly higher than that found by Ma and Dudarev [26]. The

self-interstitial dumbbell formation energy is comparable to the values reported by

Ma and Dudarev [27].
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Table 6.1. Calculated vacancy formation energy ��
5
, vacancy migration energy ��< , and

various split-dumbbell and self-interstitial formation energies in lithium. Results are com-

pared with previous theoretical and experimental results (experiments in italics).

Defect Energy (eV) Previous Work

vacancy (��
5
) 0.496 0.506 [26]

0.52 [25]

0.508 [28]
vacancy (��<) 0.086 0.053 [26]

0.038 [28]
〈1 1 1〉 dumbbell (� 5 ) 0.589 0.573 [27]

〈1 1 0〉 dumbbell (� 5 ) 0.646 0.637 [27]

〈1 0 0〉 dumbbell (� 5 ) 0.791 0.782 [27]

tetrahedral (�tetr

5
)
0

0.646 0.696 [27]

octahedral (�oct

5
)
1

0.793 0.785 [27]

0
equivalent to 〈1 1 0〉 dumbbell formation

1
equivalent to 〈1 0 0〉 dumbbell formation

We now turn our attention to helium interactions with lithium. During the

operation of a plasma device in which lithium is present, any lithium-coated sur-

faces will interact with high fluxes of helium and hydrogen isotopes. There will

also be (n,α) reactions that transmute lithium to hydrogen and helium. These

processes will build up a substantial amount of hydrogen and helium inside the

plasma-facing material. Significant research has been and is still being performed

to understand the behavior of helium in metals [11, 31, 32].

One of the major challenges is the low solubility of helium in metals. Helium

atoms in ametalmayfind low-energypositions either in substitutional or interstitial

lattice sites. We calculated the formation energies of different configurations of

helium in substitutional as well as interstitial positions in lithium. The results are

presented in Table 6.2. We compare our results to similar configurations in tungsten

and iron, two common bccmetals used in plasma devices. Our calculations predict
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Table 6.2. Formation energies (� 5 ), binding energies (�1), andmigration energies (�< , all in

eV) for helium located at octahedral or tetrahedral interstitial sites as well as substitutional

sites. The results are compared with helium interactions with tungsten and iron, which

are both bcc metals at standard temperature and pressure.

Quantity Li–He W–He [29] Fe–He [30]

�oct

5
1.142 6.38 4.60

�tetr

5
1.132 6.16 4.37

�subs

5
1.213 4.70 4.08

�T−T

< 0.003 0.06 0.06

�T−O−T

< 0.013

�O−O

< 0.004

�He−He

1

0
0.209 1.03

�
HeB−�
1

1
0.211

�
HeC−�
1

2
0.421

0
both helium at nearest tetrahedral positions

1
one helium at a substitutional position interact-

ing with a vacancy

2
one helium at a tetrahedral position interacting

with a vacancy

Table 6.3. Formation energies (� 5 ) of He–He split dumbbells bound to a vacancy.

Orientation � 5 (eV)

〈1 1 1〉 1.844

〈1 1 0〉 1.863

〈1 0 0〉 1.879
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that the tetrahedral interstitial position is the lowest-energy interstitial site for

helium, which is also the case for other bcc metals such as tungsten and iron [29,

33]. However, the difference between the octahedral and tetrahedral interstitial

formation energies is only 0.01 eV. This is very low compared to tungsten–helium

(0.22 eV [29]) and iron–helium (0.23 eV [30]).

The formation energy of helium in a substitutional position in lithium is 1.213 eV,

which is higher than both the tetrahedral and the octahedral interstitial formation

energies (which are 1.132 eV and 1.142 eV, respectively). This is an atypical result

compared to helium in other bccmetals or in fccmetals, forwhich the substitutional

site has a significantly lower formation energy than the two interstitial sites [29, 30,

34, 35], and is more consistent with the energetics of helium in hexagonal close-

packed (hcp) metals [36, 37]. We reproduced this result using a different DFT

package (i.e., Abinit [38, 39]) and got the same values. We also got similar values

using ultrasoft pseudopotentials in QuantumESPRESSO. This is an intriguing

result, and will have implications for future simulations of helium in lithium.

Next, we calculated the binding energy of helium to a vacancy. The substi-

tutional formation energy is higher than the two interstitial formation energies,

though the substitutional site is still the energetic minimum in the presence of a

vacancy. The binding energy of helium in a substitutional position to a vacancy is

0.21 eV. The binding energy of helium at a tetrahedral interstitial site to a vacancy

is 0.42 eV. The binding energy between two helium atoms at nearby interstitial sites

is 0.209 eV, which is lower than that in the tungsten–helium system (1.03 eV [29]).

The binding energy of multiple helium atoms to a vacancy is also calculated, and

the result is shown in Fig. 6.3. There is a nearly linear increase in the binding energy

as the number of helium atoms increases, which indicates that a group of helium

atomswill tend to aggregate onto a vacancy and that helium bubble self-nucleation

will likely occur in lithium, as it does in other bcc metals [40].
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T−T

T−O
−T

O−O

Figure 6.2. Tetrahedral (©) andoctahedral (�) sites in a bcc crystal. Threedifferent transition
states—tetrahedral to tetrahedral (T–T), octahedral to octahedral (O–O) and tetrahedral

to octahedral to tetrahedral (T–O–T)—are shown.
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Table 6.4. Binding energy of = helium atoms to a vacancy.

= �1

1 0.415

2 0.898

3 1.249

4 1.903

5 2.194

6 3.062

7 3.216

8 3.925
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Figure 6.3. Binding energy of = helium atoms to a vacancy for = ∈ [1, 8].

121



Two helium atoms around a vacancy form a split dumbbell, much like lithium

self-interstitials do. The formation energy varies based on the orientation of the

dumbbell. The helium dumbbell formation energies are presented in Table 6.3.

The lowest-energy dumbbells have 〈1 1 1〉 orientations (Fig. 6.1).

The migration energies of helium from one tetrahedral site to a nearby tetrahe-

dral site (Fig. 6.2) were calculated using the nudged elastic band method [19–21].

The migration energy from one tetrahedral site to an adjacent tetrahedral site

(Fig. 6.2) is only 0.003 eV, indicating that helium interstitials will be very mobile in

lithium. Heliumhas a highermigration energy (�T−T

< ) in tungsten (0.06 eV [29]) and

iron (0.06 eV [33]). The migration energy from one octahedral site to the next octa-

hedral site (�O−O

< ) without passing through a tetrahedral site in lithium is 0.004 eV,

which is also very low. The low migration energies indicate that helium would

be highly mobile in bulk lithium, much more so than in other bcc metals. It also

indicates that bulk helium diffusion in lithium would be more akin to diffusion in

gases or liquids, with a )3/2
dependence of the diffusion coefficient arising from

translational motion, but without the Arrhenius temperature dependence associ-

ated with vibrational motion. This result, combined with the higher formation

energy of substitutional helium compared to interstitial helium, suggests that he-

lium transport in lithium will be fundamentally different than it is in iron, nickel,

tungsten, and other metals.
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CHAPTER 7

CONCLUSIONS AND FUTUREWORK

We have studied the impact of fission gas on U–Mo alloys. Xenon and krypton

gas bubbles inside the fuel have a significant impact on the thermal conductivities of

the fuel. In comparison to pure xenonbubbles inU-10Mo, a xenon–kryptonmixture

makes very little differences in terms of thermal conductivity. This reaffirms that

xenon contributes the most to the thermal conductivity. Both intra- and inter-

granular xenon bubbles impact the heat transfer. The arrangements of the bubbles

also influence the heat transfer.

Since xenon forms a gas-bubble superlattice in U–Mo alloys, we can estimate the

reduction of the thermal conductivity within reasonable precision. Grain bound-

aries also play an important role in the collection of fission gas. The growth of grain

boundaries in U-10Mo should be studied. The current model can be adjusted to

accommodate the expansion of grain boundaries. It is important to mention that,

all of our studies here used a two-dimensional (2D) model. Mathematical models

of thermal conductivity in 2D underestimate the three dimensional thermal con-

ductivities. However, because of the complexities of studying the grain boundaries

in three dimensions, one can get the general idea using a simpler 2D model as was

done here. The growth of grain boundaries and recrystallization may change the

grain structure.

Solid fission products play important roles in metallic fuel. The influence of

intermetallic compounds has already been observed in the case of dispersion U–
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Mo fuel. We have not included solid fission products in our thermal conductivity

model for U–Mo fuel, but this could be a possible improvement. They can influence

both the swelling and transport processes inside the fuel. In monolithic fuel, there

are two layers of cladding around the fuel meat. One is aluminum and other one is

zirconium. These two layers will have significant impact on the heat transfer and

should be studied extensively. A proper thermal conductivity model with contact

pressure analysis would also improve the one discussed in Ch. 3.

We also introduced a new pseudopotential for density functional theory studies

of uranium. The electronic properties of the three phases of metallic uraniumwere

calculated and compared with previous results. The new pseudopotential shows

that α-uranium has the lowest energy in the ground state. The elastic moduli for α-

and γ-uranium were also calculated and compared. We used this model to study

supercells of γ-uranium and uranium–molybdenum alloys. The vacancy formation

energy agrees well with both experiment and previous theoretical studies.

Xenon forms inside the fuel matrix as a fission product. Because of its size,

it uses vacancies to diffuse inside the matrix. We calculated the xenon migration

energy from the lattice site to the nearest vacancy in both γ-uranium and uranium–

molybdenum alloys. In pure γ-uranium, the migration energy is about 0.161 eV,

which is lower than the molybdenum migration energy of 2.067 eV. This higher

migration energy ofmolybdenum indicates that in γ-uranium,molybdenum atoms

move very slowly. Xenon moves significantly faster. In the presence of a vacancy,

xenon tends to find its minimum-energy position in between the lattice site and the

vacancy.

Uranium–molybdenum alloys are disordered (i.e., non-stoichiometric). This

makes ab initio study of uranium–molybdenum alloys challenging. To study xenon

diffusion inside uranium–molybdenum fuel, we systematically included molybde-

num in nearest-neighbor locations of a bcc lattice. We did not include the effects
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of molybdenum in the second-nearest-neighbor shell, which could be a potential

future study to see how the second shell impacts themigration energy of xenon. Ac-

cording to our calculations, the migration energy of xenon increases when a single

molybdenum atom is present in a first-nearest-neighbor location. As the number

of molybdenum atoms increases, the value of migration energy may also increase,

depending on the direction of the migration and the presence of molybdenum at

sites near the pathway. The overall trend is an increase of themigration energywith

molybdenum content. To estimate the diffusion coefficient of xenon in uranium–

molybdenum, a kineticMonte Carlo simulation can be used that incorporates these

different migration pathways.

Finally, we discussed the defect properties of lithium and its interactions with

helium. Lithium, apotential plasma-facingmaterial, is thefirstmetal in theperiodic

table. The vacancy formation and migration energies are calculated and compared

with previous theoretical work. The formation energies of helium in interstitial

positions are calculated. The lowest-energy position is the tetrahedral position in

bcc lithium. Our calculation predicts that the formation energy of helium in a

substitutional position is higher than that of tetrahedral and octahedral interstitial

locations.

The binding energies of helium to vacancies are also calculated. The binding

energies of helium in tetrahedral locations and nearby vacancies are higher than

the binding energy of helium to a lattice (substitutional) site. Multiple helium

atoms bound to a vacancy have higher and higher binding energies as the number

of helium increases. Because of the size of helium relative to lithium and the larger

lattice parameter of lithium, helium canmigrate from one interstitial site to another

without a relatively high barrier. The lowest migration energy is 0.003 eV for the

migration from a tetrahedral site to another tetrahedral site. Future work should

study helium mobility through complex grain boundaries and surfaces in lithium.
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Molecular dynamics methods can be used to study grain boundaries. A robust

pair potential for lithium–helium system is required, and needs to be developed.

The DFT results in the current work can be used to fit a pair potential.
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APPENDIX A

ATOMIC UNITS

There are special units of measurement which is convenient for atomic physics

and DFT calculations. They are named after the physicist Douglas Hartree [1].

In this system of units, the numerical values of the four fundamental physical

constants are assumed to be unity. They are as follows:

• Reduced Planck constant: ℏ = 1, the atomic unit of angular momentum.

• Elementary charge: 4 = 1, the atomic unit of charge.

• Bohr radius: 00 = 1, atomic unit of length.

• Electronic mass: <4 = 1, the atomic unit of mass.

Nowwewill explore how atomic units simplify quantummechanical equations for

the hydrogen atom. The hydrogen atom consists of a heavy proton (charge 4) with

a much lighter electron (charge −4) that orbits around it. The potential energy (in

SI units) is

+(r) = − /42

4�&0A
(A.1)

where / is the atomic number and A is the position relative to the nuclear site. The

radial Schrödinger equation including the centrifugal term is:[
− ℏ2

2<4
∇2

A +
ℏ2ℓ (ℓ + 1)

2<4A2

− /42

4�&0A
− �

]
A'(A) = 0 (A.2)
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This equation can be simplified by introducing dimensionless quantities. Multi-

plying Eq. (A.2) by <4/ℏ2
the equation becomes[

−∇2

A +
ℓ (ℓ + 1)
A2

+ 2<4/4
2

4�&0ℏ
2

1

A
− 2<4�

ℏ2

]
A'(A) = 0[

−1

2

∇2

A +
ℓ (ℓ + 1)

2A2

+ /

00A
− �

�00
2

0

]
A'(A) = 0[

−1

2

∇2

� +
ℓ (ℓ + 1)

2�2

+ /
�
− �

�0

]
�'(�00) = 0

(A.3)

The above equation has two units: one is a length scale, the Bohr radius 00 and the

other is an energy scale, the hartree �0.

A.1 Bohr Radius

00 =
4�&0ℏ

2

<4 42

(A.4)

The Bohr radius is the length unit of the hartree atomic unit system. It corresponds

to the radius of a classical electron circling a proton at the ground state energy of

the hydrogen atom. Using all the fundamental constants in Eq. (A.4) the standard

atomic unit of length is

1 bohr =
4�&0ℏ

2

<4 42

= 0.529 177 25 × 10
−10

m = 0.52917725 Å (A.5)

A.2 Hartree

�0 =
ℏ2

<40
2

0

=
<4 4

4

(4�&0ℏ)2
(A.6)

The Hartree is the energy unit in the Hartree atomic unit system. One Hartree is

twice the binding energy of an electron in the hydrogen atom. To satisfy 00 = 1, the

fundamental constants are defined to be unity (ℏ = <4 = 4 = 4�&0 = 1), according

131



to Eq. (A.4). The unit of Hartree can also be calculated from the fundamental

constants:

1 hartree =
ℏ2

<40
2

0

=
<4 4

4

(4�&0ℏ)2
= 4.359 748 2 × 10

−10

J = 27.211396 eV (A.7)

In Hartree units, the Schrödinger equation of an electron in the Coulomb potential

of the nucleus has the following form:(
−1

2

∇2 − /
A
− �

) ��#〉
= 0 (A.8)

A.3 Rydberg Units

The Rydberg is another useful atomic unit which is widely used in DFT and

atomic physics. In Hartree atomic units, the assumption is ℏ2/2<4 =
1

2
. In Rydberg

atomic units the equivalent assumption is:

ℏ = 2<4 = 4
2/2 = 1

Using the above relations, the length unit does not change:

00 =
4�&0ℏ

2

2<4 42/2 =
4�&0ℏ

2

<4 42

= 0.52917725 Å (A.9)

The energy unit does change:

1 Ry =
ℏ2

2<40
2

0

=
1

2

ℏ2

<40
2

0

= 13.605693 eV =
1

2

Ha (A.10)
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APPENDIX B

ORTHOGONAL PLANEWAVE

For now,wewill try to approximate the time-independent Schrödinger equation

so that we can achieve self-consistency. Let +(A) be the potential seen by each

electron. Then each energy eigenfunction will satisfy the following equation:

ℋ̂#8 =
[
)̂ + +̂(A)

]
#8 = �8#8 (B.1)

Here, )̂ is the kinetic energy operator (−ℏ2∇2/2<), and �8 is the energy of the 8-th

state. The next step is to distinguish between the core and the valence state. The

index 
 will be used for the core electrons and E will be used for the valence band.

The core states are the same as in the isolated ion, but their energies are different

(i.e., �
, is different): [
)̂ + +̂(A)

]
#
 = �
#
 (B.2)

Here, the subscript 
 not only denotes the position of the ion but also the energy

and angular momentum quantum numbers of the state in the equation. This is a

well-defined Sturm–Liouville eigenvalue problem, apart from not knowing +(A).

We can approach the problem in several ways. Themost common is to represent#


by a basis set. Plane-wave basis sets are often used in band structure calculations.

If we expand the Schrödinger Eqn. (B.2) with a complete set of states, then we may

obtain a linear solutionof simultaneous equations in the expansion coefficients. The
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problem of solving differential equations then becomes a matrix diagonalization

problem.

The choice of plane waves has its pros and cons. One of the difficulties of

using plane waves is that, it typically requires a large number of plane waves to

give a reasonable description of the wavefunction. Thus the solution becomes very

difficult. In addition the core electrons have higher kinetic energy near the nucleus

(see Fig. 2.2), which makes it even harder for plane waves to approximate those

electrons. Herring [1] suggested that, rather than expanding the valence electron

wave function in plane waves, a more rapidly convergent procedure is to expand in

orthogonalized plane waves (OPWs). Hopefully, the expansions in terms of OPWs,

would require fewer terms and therefore yield a faster calculation. The OPWswith

wave number k can be defined as follows:

$%,k = 4
8k·r −

∑



#
(r)#∗
4 8k·r3r (B.3)

An example would be sodium, which has a ground state configuration of

1B2
2B2

2?6
3B1

. The core orbitals would be 1B2
2B2

2?6
. For so-called simple met-

als (i.e., Na, Mg, and Al), the electron wavefunction is rapidly convergent in the

OPW basis. Before going any further, let’s check whether this OPW (B.3) is orthog-

onal to the core states. Let’s assume an arbitrary core wavefunction #� and check

the orthogonality with B.3:∫
#∗�(r)$%,k3r =

∫
#∗�(r)4 8k·r3r −

∑



�
�

∫
#∗
(r)4 8k·r3r = 0 (B.4)

It is convenient to normalize the plane waves in the unit cell volume of the metal

Ω, and we will use Dirac’s bra-ket notation for the wave functions from now on.

The plane wave becomes

|k〉 = Ω−1/24 8k·r (B.5)
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For core electron wave functions

|
〉 ≡ #
(r) (B.6)

where 〈
 | = |
〉∗, and

〈
 |k〉 = Ω−1/2
∫

#∗
(r)4 8k·r3r (B.7)

Thus the OPW equations becomes

$%,k = |k〉 −
∑



|
〉 〈
 |k〉 (B.8)

The projection operator % can be defined as follows:

% =
∑



|
〉〈
 | . (B.9)

The % operator projects any function onto the core states. In terms of the % operator

the OPW can take following form:

$%,k = (1 − %) |k〉 . (B.10)

Now, we can expand the valence-band (valence electron) state as a linear combina-

tion of OPWs:

#: =

∑
@

0@(k)(1 − %) |k + q〉 (B.11)

Before going a bit further, lets see howkinetic energy is represented by planewaves.

〈
@′
�� − ℏ2

2<
∇2

��@〉 = 1

2

ℏ2

2<
|q|2�@@′ (B.12)

In the above approximation of kinetic energy we assumed the normalizing factor

is one. Nowwe are going to expand B.2 with OPWs, and the Schrödinger equation
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becomes

ℋ̂#: =

∑
@

0@(k)ℋ̂(1 − %) |k + q〉 = �:
∑
@

0@(k)(1 − %) |k + q〉 (B.13)

where ℋ̂ consists both the kinetic energy and the potential energy. Multiplying on

the left by 〈k + q
′|, and using Equation (B.12) we obtain

0@′(k)
ℏ2

2<
|k + q

′|2 +
∑
@

0@(k)[〈k + q
′|+ |k + q〉 −

∑



�
 〈k + q
′|
〉 〈
 |k + q〉] =

[0@′(k) −
∑
@

0@(k) 〈k + q
′| % |k + q〉]�k (B.14)

The above equation can be solved by diagonalizing some of matrix element. If we

can evaluate some of the various matrix elements (integrals), we obtain a set of

linear algebraic equations.
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APPENDIX C

PROJECTOR AUGMENTEDWAVE

The pseudopotential technique has proven to be accurate for a large variety of

systems, but there is no strict guarantee that it will produce the same results as

an all-electron calculation. The challenge with norm-conserving pseudopotentials

is that they limit the softness. Another way to say it is that, it requires a high

cut-off energy. In the plane-wave basis set for the pseudo wavefunctions is defined

by the shortest wave length � = 2�/|G|, where G is the wave vector. Projector

augmented waves (PAW) introduces projectors and auxiliary localized functions to

increase the softness of the pseudopotential, while at the same time keeping the full

wavefunction. In this section, Iwill try to introduce PAWwith basic formalism. The

origin of the PAWmethod lies in a transformation thatmaps the truewavefunctions

with their complete nodal structure onto auxiliary wavefunctions. The purpose of

this transformation is to have smooth auxiliary wavefunctions that have a rapidly

convergent plane-wave expansion. The PAW method was first proposed by Blöchl

in 1994 [1]. The linear transformation is as follows:

|Ψ=〉 = T̂
��Ψ̃=

〉
(C.1)

where, |Ψ=〉 is the true all-electron Kohn–Sham (KS) single-particle wavefunction,��Ψ̃=

〉
is an auxiliary smoothwavefunction, and T̂ is a linear transformationoperator.

Since the true wavefunctions are already smooth at a certain minimum distance

from the core, T̃ should only modify the wavefunction close to the nuclei. Thus
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the transformation operator becomes

T̃ = 1 +
∑
0

T̃ 0 , (C.2)

where 0 is an atom index and T̃ 0
has no effect outside a certain atom-specific

augmentation region, A0
�
. Inside the augmentation spheres, the true wavefunction

can be expanded in the partial waves )0
8
, for a corresponding auxiliary smooth

partial wave can be defined as )̃0
8
, and they can be connected by the following

relation: ��)08 〉 = (1 + T̂ 0)
��)̃08 〉⇒ T̂ 0

��)08 〉 = ��)08 〉 − ��)̃08 〉 . (C.3)

Here 0 is an atom index and 8 denotes partial waves. Outside the augmentation

sphere, the partial wave and its smooth counterpart should be identical:

)08 (r) = )̃08 (r) for A > A02 (C.4)

Where )0
8
(r) =

〈
r

��)0
8

〉
, and similar for )̃0

8
. If the smooth partial waves form a com-

plete set inside the augmentation sphere, we can expand the smooth all-electron

wavefunctions as ��Ψ̃0
8

〉
=

∑
8

%0=8

��)̃08 〉 |r − R| < A02 (C.5)

where, %0
=8

are expansion coefficients, that need to be determined. The index

0 stands for atomic sites, 8 to dintinguish different partials waves, and = is the

principle to quantum numbers (ℓ , <). The transformation operator connects the

smooth pseudo wavefunction to true wavefunction.

|Ψ=〉 = T̂
��Ψ̃=

〉
=

∑
8

%0=8

��#0
8

〉
|r − R| < A02 (C.6)
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Something really interesting about the above equation is that the truewavefunction

has the same expansion coefficient (%0
=8
) as the pseudo-wavefucntion. The transfor-

mation operator T̂ is required to be linear, the coefficient must be linear functionals

of

��Ψ̃=

〉
, i.e.,

%0=8 =
〈
?̃08

��Ψ̃=

〉
(C.7)

where

��?̃0
8

〉
are some fixed functions termed smooth projector functions. As there

is no overlap between the augmentation spheres, we expect the smooth all-electron

wavefunction,

��Ψ̃0
=

〉
=

∑
8

��)̃0
8

〉 〈
?̃0
8

��Ψ̃=

〉
. The projectors have to be localized within

an augmentation region, so ∑
8

��)̃08 〉〈?̃08 �� = 1. (C.8)

This also implied that

〈
?̃081

���)̃082〉 = �81 ,82 for A < A02 (C.9)

the projector functions should be orthonormal to the smooth partial waves inside

the augmentation sphere. The choice of projectors and partial waves can be found

more detailed form original work of Blöchl [1]. Using the completeness relation

from Eqn. (C.8)

T̂ 0 =

∑
8

T̂ 0
��)̃08 〉〈?̃08 �� = ∑

8

(��)08 〉 − ��)̃08 〉) 〈
?̃08

�� . (C.10)

Remember, the operator T̂ 0
operates only inside the sphere; outside sphere, it

behaves like

��)0
8

〉
−

��)̃0
8

〉
. Thus, the total transformation operator becomes

T̂ = 1 +
∑
0

∑
8

(��)08 〉 − ��)̃08 〉) 〈
?̃08

�� . (C.11)

141



To summarize, we obtain the all-electron KS wavefunction |Ψ=(r)〉 = 〈r|Ψ=〉 from

the transformation

Ψ=(r) = Ψ̃=(r) +
∑
0

∑
8

(
)08 (r) − )̃08 (r)

) 〈
?̃08

��#̃=〉 (C.12)

The equation above has three different components on the right. The first is the

auxiliary wavefunction. The second term is the sum of partial waves, the last term

is the sumof pseudo-partialwaves thatmust be subtracted inside the augmentation

region. To make it a simple KS wavefunction representation

#=(r) = #̃=(r) +
∑
0

(
#0
=(r − R

0) − #̃0
=(r − R

0)
)
. (C.13)

The trouble with the original KS wavefunction was that they display oscillations

near the nucleus and smooth behavior away from the nucleus. By decompos-

ing the wavefunction in the manner of Eqn. (C.12), the achievement is that the

original wavefunction is separated into auxiliary wavefunctions that are smooth

everywhere.
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C.1 PAW Pseudopotential Generation

The PAW calculation method requires a set of basis functions (partial-waves)

and projector functions as well as some additional atomic data in the so called PAW

dataset. The PAW dataset is generated using the following procedure:

• Solve the all-electronatomicproblem in theDFT formalismusinganexchange–

correlation functional (with the scalar-relativistic approximation). It is a

spherical problem and usually solved with a logarithmic grid.

• Separation of core and valence electrons. The core density is then deduced

from the core electron wavefunctions. For a given radius (Acore), the outer

density is calculated so that the core density is identical to the outer.

• Choose the PAW basis (number of partial waves and projectors).

• Generation of the pseudo partial-waves.

• Test the PAW dataset on an electronic structure calculation. Repeat the pro-

cedure if necessary to match the calculated property’s agreement with exper-

iment or with all-electron calculations.
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The atompaw input file used to generate the pseudopotential for uranium in

Ch. 4 is below:

1 U 92
2 GGA-PBE scalarrelativistic loggridv4 700
3 7 6 6 5 0 !6s2 6p6 5f3 6d1 7s2 (from Beelar (2012), ns_max np_max

nd_max nf_max ng_max
4 6 2 1 !6d1, only empty or partially occupied shells are entered
5 5 3 3 !5f3
6 0 0 0
7 c !1s2 1
8 c !2s2 2
9 c !3s2 3

10 c !4s2 4
11 c !5s2 5
12 v !6s2 6 1
13 v !7s2 7 2
14 c !2p6 8
15 c !3p6 9
16 c !4p6 10
17 c !5p6 11
18 v !6p6 12 3
19 c !3d10 13
20 c !4d10 14
21 c !5d10 15
22 v !6d1 16 4
23 c !4f14 17
24 v !5f3 18 5
25 3
26 2.5 2.02 1.5 1.8 !rpaw, rshape, rvloc, rcore, in a.u , changesd the

rshape for the first time below 2.0
27 n
28 y !one additional p partial wave
29 0.00
30 n !no additional p partial wave
31 y !one additional d partial wave
32 0.2 !
33 n !no additional d partial wave
34 y !one additional f partial wave
35 3.0
36 n !no additional f partial wave
37 custom rrkj besselshape !for PWscf, UPF format needs bessels
38 4 0.0 !bessel !l quantum number, reference energy (Ry),

bessel for simplicity
39 1.5 !1 s ! r_c matching radius for second s partial wave
40 1.5 !2 s ! rc for s
41 2.5 !3 p ! rc for p
42 2.5 !4 p ! rc for p
43 2.5 !5 d ! rc for d, 1.3 gives very good result
44 2.5 !6 d ! rc for d, 1.3 gives very good result, 4.0 energy
45 2.5 !7 f ! rc for f
46 2.5 !8 f ! rc for f
47 PWSCFOUT
48 default
49 0
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APPENDIX D

FINITE ELEMENTMETHOD INMOOSE

This appendix discusses how a partial differential equation can be implemented

in the MOOSE Framework. The strong form of the heat diffusion equation without

a source term is

∇ ·
(
 ())∇)

)
= 0.

Multiplying by a test function (T5 ) and integrating over the domain Ω gives∫
Ω

T5
(
∇ ·  ())∇)︸   ︷︷   ︸

G

)
= 0

∫
Ω

T5∇ · G = 0∫
Ω

∇ · (T5G) −
∫
Ω

∇T5 · G = 0 (D.1)

Using the divergence theorem,∫
Ω

∇ · ®g 3G =
∫
%Ω
®g · =̂ 3B (D.2)

Eqn. (D.1) becomes: ∫
%Ω
T5G · =̂ 3B −

∫
Ω

∇T5 · G3G = 0∫
Ω

∇T5 ·  ())∇)3G −
∫
%Ω
T5 ())∇) · =̂ 3B = 0
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Using the inner product notation, the above equation can be written as follows:

(∇T5 ,  ∇)) − 〈T5 ,  ∇) · =̂〉 = 0 (D.3)

Each of these term inherits an existing MOOSE type to solve the problem.

(∇T5 ,  ∇))︸        ︷︷        ︸
Kernel

− 〈T5 ,  ∇) · =̂〉︸          ︷︷          ︸
Boundary Condition

= 0 (D.4)

Source files containing a kernel and boundary conditions are given in Appendix E.
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APPENDIX E

INPUT FILES

Input files for different software are included in this chapter. Because of the

complexity and number, I have only included samples of them.

E.1 MOOSE Framework

This is the main.Cfile forMOOSE simulation. Depends on theproblem,MOOSE

requires a number of header files and source files.

1 /* this is a main app file created for the purpose of simulating
heat conduction

2 * This is file is created by Rafi, Sepetember 27, 2016
3 * ***************************************************** */
4

5 #include "HeatCondRafiApp.h"
6 #include "MooseInit.h"
7 #include "Moose.h"
8 #include "MooseApp.h"
9 #include "AppFactory.h"
10

11 // Creat a performance log
12 PerfLog Moose::perf_log("HeatCondRafi");
13

14 //Begin the main problem.
15 int main(int argc, char *argv[])
16 {
17 // Initialize MPI, solvers and MOOSE
18 MooseInit init(argc, argv);
19

20 // Register this application ’s MooseApp and any it depends on
21 HeatCondRafiApp::registerApps();
22

23 // This creates dynamic memory that we’re responsible for
deleting

24 //MooseApp * app = AppFactory::createAppShared("HeatCondRafiApp
", argc, argv);

25 std::shared_ptr <MooseApp> app = AppFactory::createAppShared("
HeatCondRafiApp", argc, argv);

26

27 //Execute the application
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28 app->run();
29

30 // Free up the memory we created earlier
31 //delete app;
32

33 return 0;
34 }

149



This is a sample of source file (kernel in MOOSE) of heat transfer in U-10Mo.

1 // this file is edited by Rafi for temperature dependent thermal
conductivity

2 #include "Tempdepk.h"
3

4 template <>
5 InputParameters validParams <Tempdepk >()
6 {
7 InputParameters params = validParams <Diffusion >();
8 params.addClassDescription("This will solve heat diffusion with

temperature dependent thermal conductivity");
9 return params;
10 }
11

12 Tempdepk::Tempdepk(const InputParameters & parameters) :
13 Diffusion(parameters),
14 _thermal_conductivity(getMaterialProperty <Real>("

thermal_conductivity")) /*be sure u use the "thermal_conductivity ,
otherwise it will

15 not read the thermal_conductivity from the input*/
16 {
17 }
18

19 Real
20 Tempdepk::computeQpResidual()
21 {
22 //return _grad_u[_qp] * _grad_test[_i][_qp];
23 //Real _k=0.606+0.0351*_u[_qp]; // from D.E. Burkes et al./ Journal

of Nuc Material 2010
24

25 return _thermal_conductivity[_qp]*Diffusion::computeQpResidual();
26 }
27

28 Real
29 Tempdepk::computeQpJacobian()
30 {
31 //Real _k=0.606+0.0351*_u[_qp];
32 //return _grad_phi[_j][_qp] * _grad_test[_i][_qp];
33

34 return _thermal_conductivity[_qp]*Diffusion::computeQpJacobian();
35 }
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1 // this file was edited by Rafi for temperature dependent thermal
conductivity

2 #include "TXenon.h"
3

4

5 template <>
6 InputParameters validParams <TXenon >()
7 {
8 InputParameters params = validParams <Diffusion >();
9 params.addClassDescription("This will solve heat diffusion with

temperature dependent thermal conductivity");
10 return params;
11 }
12

13 TXenon::TXenon(const InputParameters & parameters) :
14 Diffusion(parameters),
15 _thermal_conductivity(getMaterialProperty <Real>("

thermal_conductivity")) /*be sure u use the "thermal_conductivity ,
otherwise it will

16 not read the thermal_conductivity from the input*/
17 {
18 }
19

20 Real
21 TXenon::computeQpResidual()
22 {
23 //return _grad_u[_qp] * _grad_test[_i][_qp];
24 //Real _k=0.606+0.0351*_u[_qp]; // from D.E. Burkes et al./ Journal

of Nuc Material 2010
25

26 /* return _thermal_conductivity[_qp]*Diffusion::computeQpResidual() +
380E3*_test[_i][_qp]; */

27

28 // the above one for a constant forcing function
29

30 return _thermal_conductivity[_qp]*Diffusion::computeQpResidual();
31 }
32

33 Real
34 TXenon::computeQpJacobian()
35 {
36 //Real _k=0.606+0.0351*_u[_qp];
37 //return _grad_phi[_j][_qp] * _grad_test[_i][_qp];
38

39 return _thermal_conductivity[_qp]*Diffusion::computeQpJacobian() +
40 (-2*4.72984E-09*_u[_qp]*2.+2.0891E-5)*_grad_u[_qp]*_grad_test[_i][

_qp];
41 }
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Material source code for U-10Mo properties.

1 // this file was edited by Rafi January 24, 2017
2 //
3 #include "Tconductivity.h"
4

5 template <>
6 InputParameters validParams <Tconductivity >()
7 {
8 InputParameters params = validParams <Material >();
9 // we do not need to add any data from the input file
10 params.addClassDescription("This is to calculate the temperature

dependent thermal conductivity of U-10Mo");
11 // the "temperature" variable has to be defined in the input files
12 params.addCoupledVar("dep_variable", "The thermal conductivity is

calculated from temperature");
13 return params;
14 }
15

16 Tconductivity::Tconductivity(const InputParameters & parameters) :
17 Material(parameters),
18

19 // Declare material properties. This returns references that we
20 // hold onto as member variables
21 //_permeability(declareProperty <Real>("permeability")),
22 _thermal_conductivity(declareProperty <Real>("thermal_conductivity"))

,
23 //_dep_variable(isCoupled("dep_varible"))
24 _dep_variable(coupledValue("dep_variable"))
25 {
26 }
27

28 void
29 Tconductivity::computeQpProperties()
30 {
31

32 // Sample the LinearInterpolation object to get the permeability for
the ball size

33 //_permeability[_qp] = _permeability_interpolation.sample(
_ball_radius);

34 _thermal_conductivity[_qp]=0.606+0.0351*_dep_variable[_qp];
35 }
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Source file for xenon material properties.

1 // this file was edited by Rafi February 13, 2017
2 //
3 #include "XenonT.h"
4

5 template <>
6 InputParameters validParams <XenonT >()
7 {
8 InputParameters params = validParams <Material >();
9 // we do not need to add any data from the input file
10 params.addClassDescription("This is to calculate the temperature

dependent thermal conductivity of Xenon");
11 // the "temperature" variable has to be defined in the input files
12 params.addCoupledVar("dep_variable", "The thermal conductivity is

calculated from temperature");
13 return params;
14 }
15

16

17 XenonT::XenonT(const InputParameters & parameters) :
18 Material(parameters),
19

20 // Declare material properties. This returns references that we
21 // hold onto as member variables
22 //_permeability(declareProperty <Real>("permeability")),
23 _thermal_conductivity(declareProperty <Real>("thermal_conductivity"))

,
24 //_dep_variable(isCoupled("dep_varible"))
25 _dep_variable(coupledValue("dep_variable"))
26 {
27 }
28

29 void
30 XenonT::computeQpProperties()
31 {
32

33 // Sample the LinearInterpolation object to get the permeability for
the ball size

34 //_permeability[_qp] = _permeability_interpolation.sample(
_ball_radius);

35 //_thermal_conductivity[_qp]=0.000000001+0.00000000001*_dep_variable
[_qp];

36 /*abobe correlation is wrong, is calculated wrong, the next equation
is calcuated from Robinovich et al. Thermophy

37 sical property of Neon, Argon, Krypton, and Xenon */
38

39 _thermal_conductivity[_qp]=-4.72984E-09*_dep_variable[_qp]*
_dep_variable[_qp] + 2.0891E-5*_dep_variable[_qp]+ 2.83137E-05 ;

40

41

42 }
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Source file for heat flux calculation.

1

2 #include "HeatFlux.h"
3

4 template <>
5 InputParameters validParams <HeatFlux >()
6 {
7 InputParameters params = validParams <AuxKernel >();
8

9 MooseEnum component("x y z");
10 // Declare the options for a MooseEnum.
11 // These options will be presented to the user in Peacock
12 // and if something other than these options is in the input file
13 // an error will be printed
14 params.addClassDescription("This is to calculate the heat flux for

over all material");
15 // Add a "coupling paramater" to get a variable from the input file.
16 params.addRequiredCoupledVar("field_temperature", "The temperature

field.");
17 params.addRequiredParam <MooseEnum >("component", component , "The

desired component of temperature");
18

19 return params;
20 }
21

22 HeatFlux::HeatFlux(const InputParameters & parameters) :
23 AuxKernel(parameters),
24

25 // Get the gradient of the variable
26 _temperature_gradient(coupledGradient("field_temperature")),
27

28 // Snag thermal_coductivity from the Material system.
29 // Only AuxKernels operating on Elemental Auxiliary Variables can

do this
30 _t_thermal_conductivity(getMaterialProperty <Real>("

thermal_conductivity")),
31 _component(getParam<MooseEnum >("component"))
32

33 {
34 }
35

36 Real
37 HeatFlux::computeValue()
38 {
39 // Access the gradient of the pressure at this quadrature point
40 // Then pull out the "component" of it we are looking for (x, y or z

)
41 // Note that getting a particular component of a gradient is done

using the
42 // parenthesis operator
43 return _t_thermal_conductivity[_qp]*_temperature_gradient[_qp](

_component);
44 }
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This source file is to calculate the gradient of the temperature.

1

2 #include "TGradient.h"
3

4 template <>
5 InputParameters validParams <TGradient >()
6 {
7 InputParameters params = validParams <AuxKernel >();
8

9 // Declare the options for a MooseEnum.
10 // These options will be presented to the user in Peacock
11 // and if something other than these options is in the input file
12 // an error will be printed
13 params.addClassDescription("This is to calculate the temperature

gradient for over all material");
14 // Add a "coupling paramater" to get a variable from the input file.
15 //params.addRequiredCoupledVar("field_temperature", "The temperature

field.");
16 MooseEnum component("x y z");
17

18 // Use the MooseEnum to add a parameter called "component"
19 params.addRequiredCoupledVar("field_temperature", "The Temperature

field");
20 params.addRequiredParam <MooseEnum >("component", component , "The

desired component of velocity.");
21 return params;
22 }
23

24 TGradient::TGradient(const InputParameters & parameters) :
25 AuxKernel(parameters),
26

27 // Get the gradient of the variable
28 _temperature_gradient(coupledGradient("field_temperature")),
29

30 _component(getParam<MooseEnum >("component"))
31 // Snag thermal_coductivity from the Material system.
32 // Only AuxKernels operating on Elemental Auxiliary Variables can

do this
33 //_t_thermal_conductivity(getMaterialProperty <Real>("

thermal_conductivity"))
34

35 {
36 }
37

38 Real
39 TGradient::computeValue()
40 {
41 // Access the gradient of the pressure at this quadrature point
42 // Then pull out the "component" of it we are looking for (x, y or z

)
43 // Note that getting a particular component of a gradient is done

using the
44 // parenthesis operator
45 return _temperature_gradient[_qp](_component);
46 }
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For every source file, we need header files. The required header files are below.

Tempdepk.h

1 // this file created by Rafi, January 24, 2017
2 #ifndef TEMPDEPK_H
3 #define TEMPDEPK_H
4 #include "Diffusion.h"
5 class Tempdepk;
6 template <>
7 InputParameters validParams <Tempdepk >();
8

9 /**
10 * This kernel will solve a temperature dependent thermal conductivity

with diffusion of temperature
11 */
12 class Tempdepk : public Diffusion
13 {
14 public:
15 Tempdepk(const InputParameters & parameters);
16 protected:
17 virtual Real computeQpResidual() override;
18 virtual Real computeQpJacobian() override;
19 // creating a moose array for material property
20 const MaterialProperty <Real> & _thermal_conductivity;
21 };
22 #endif
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TXenon.h

1 / this file created by Rafi, January 24, 2017
2 #ifndef TXENON_H
3 #define TXENON_H
4

5 #include "Diffusion.h"
6

7 class TXenon;
8 template <>
9 InputParameters validParams <TXenon >();
10

11 /**
12 * This kernel will solve a temperature dependent thermal conductivity

with diffusion of temperature
13 */
14 class TXenon : public Diffusion
15 {
16 public:
17 TXenon(const InputParameters & parameters);
18

19 protected:
20 virtual Real computeQpResidual() override;
21

22 virtual Real computeQpJacobian() override;
23 // creating a moose array for material property
24

25 const MaterialProperty <Real> & _thermal_conductivity;
26 };
27 #endif
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1 // this file was created by Rafi on February 13, 2017
2

3 #ifndef TCONDUCTIVITY_H
4 #define TCONDUCTIVITY_H
5

6 #include "Material.h"
7

8 class Tconductivity;
9

10 template <>
11 InputParameters validParams <Tconductivity >();
12

13 /**
14 * Material objects inherit from Material and override

computeQpProperties.
15 *
16 * Their job is to declare properties for use by other objects in the
17 * calculation such as Kernels and BoundaryConditions.
18 */
19 class Tconductivity : public Material
20 {
21 public:
22 Tconductivity(const InputParameters & parameters);
23

24 protected:
25 /**
26 * Necessary override. This is where the values of the properties
27 * are computed.
28 */
29 virtual void computeQpProperties() override;
30

31 private:
32 // The thermal conductivity
33 MaterialProperty <Real> & _thermal_conductivity; // for u-10 Mo
34

35 // const VariableGradient & _dep_variable; // this will get the
temperature

36 //std::vector<const VariableValue > & _dep_variable;
37 //VariableValue <Real> & _dep_variable;
38 const VariableValue & _dep_variable;
39 };
40 #endif //Tconductivity
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XenonT.h

1 / this file was created by Rafi on February 13, 2017
2 // The reference is Rabinovich et al.
3 // Thermophysical Propeties of Neon, Argon, Krypton and Xenon// for

the purpose of temperature dependent thermal condcutivity for U-10
Mo

4 #ifndef XENONT_H
5 #define XENONT_H
6

7 #include "Material.h"
8 class XenonT;
9

10 template <>
11 InputParameters validParams <XenonT >();
12

13 /**
14 * Material objects inherit from Material and override

computeQpProperties.
15 *
16 * Their job is to declare properties for use by other objects in the
17 * calculation such as Kernels and BoundaryConditions.
18 */
19 class XenonT : public Material
20 {
21 public:
22 XenonT(const InputParameters & parameters);
23

24 protected:
25 /**
26 * Necessary override. This is where the values of the properties
27 * are computed.
28 */
29 virtual void computeQpProperties() override;
30 private:
31

32 // The thermal conductivity
33 MaterialProperty <Real> & _thermal_conductivity; // for u-10 Mo
34

35 // const VariableGradient & _dep_variable; // this will get the
temperature

36 //std::vector<const VariableValue > & _dep_variable;
37 //VariableValue <Real> & _dep_variable;
38 const VariableValue & _dep_variable;
39 };
40

41 #endif //XENONT_H

159



HeatFlux.h

1 #ifndef HEATFLUX_H
2 #define HEATFLUX_H
3

4 #include "AuxKernel.h"
5

6 //Forward Declarations
7 class HeatFlux;
8

9 template <>
10 InputParameters validParams <HeatFlux >();
11

12 /**
13 * Constant auxiliary value
14 */
15 class HeatFlux : public AuxKernel
16 {
17 public:
18 HeatFlux(const InputParameters & parameters);
19

20 virtual ~HeatFlux() {}
21

22 protected:
23 /**
24 * AuxKernels MUST override computeValue. computeValue() is called

on
25 * every quadrature point. For Nodal Auxiliary variables those

quadrature
26 * points coincide with the nodes.
27 */
28 virtual Real computeValue() override;
29

30

31 /// The gradient of a coupled variable
32 const VariableGradient & _temperature_gradient;
33

34 /// Holds the permeability and viscosity from the material system
35 const MaterialProperty <Real> & _t_thermal_conductivity;
36 // const MaterialProperty <Real> & _viscosity;
37

38 int _component;
39 };
40 #endif // end of HEATFLUX_H
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TGradient.h

1 #ifndef TGRADIENT_H
2 #define TGRADIENT_H
3

4 #include "AuxKernel.h"
5

6 //Forward Declarations
7 class TGradient;
8

9 template <>
10 InputParameters validParams <TGradient >();
11

12 /**
13 * Constant auxiliary value
14 */
15 class TGradient : public AuxKernel
16 {
17 public:
18 TGradient(const InputParameters & parameters);
19

20 virtual ~TGradient() {}
21

22 protected:
23 /**
24 * AuxKernels MUST override computeValue. computeValue() is called

on
25 * every quadrature point. For Nodal Auxiliary variables those

quadrature
26 * points coincide with the nodes.
27 */
28 virtual Real computeValue() override;
29

30

31 /// The gradient of a coupled variable
32 const VariableGradient & _temperature_gradient;
33

34 /// Holds the permeability and viscosity from the material system
35 //const MaterialProperty <Real> & _t_thermal_conductivity;
36 int _component;
37 // const MaterialProperty <Real> & _viscosity;
38 };
39

40 #endif // end of TGRADIENT_H
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E.2 ATOMPAW

This is an input file for Atompaw to generate the PAW pseudopotential for

electronic structure calculations on uranium.

1 U 92
2 GGA-PBE scalarrelativistic loggridv4 700
3 7 6 6 5 0
4 6 2 1
5 5 3 3
6 0 0 0
7 c !1s2 1
8 c !2s2 2
9 c !3s2 3
10 c !4s2 4
11 c !5s2 5
12 v !6s2 6 1
13 v !7s2 7 2
14 c !2p6 8
15 c !3p6 9
16 c !4p6 10
17 c !5p6 11
18 v !6p6 12 3
19 c !3d10 13
20 c !4d10 14
21 c !5d10 15
22 v !6d1 16 4
23 c !4f14 17
24 v !5f3 18 5
25 3
26 2.5 2.02 1.5 1.8 !rpaw, rshape, rvloc, rcore, in a.u
27 n
28 y !one additional p partial wave
29 0.00
30 n !no additional p partial wave
31 y !one additional d partial wave
32 0.2 !
33 n !no additional d partial wave
34 y !one additional f partial wave
35 3.0
36 n !no additional f partial wave
37 custom rrkj besselshape !UPF format needs bessels
38 4 0.0 !bessel !l quantum number, reference energy (Ry),

bessel for simplicity
39 1.3 !1 s ! rc s partial wave
40 1.3 !2 s ! rc for s
41 2.5 !3 p ! rc for p
42 2.5 !4 p ! rc for p
43 1.55 !5 d ! rc for d, 1.3 gives very good result
44 1.55 !6 d ! rc for d, 1.3 gives very good result, 4.0

energy
45 2.5 !7 f ! rc for f
46 2.5 !8 f ! rc for f
47 PWSCFOUT
48 default
49 0
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E.3 DFT Calculation

E.3.1 SCF of a Primitive Cell

This is sample input file to calculate the self consistent field study using Quan-

tumEspresso. It contains the lattice parameter of α-uranium.

1 &CONTROL
2 title = ’alphaU’
3 calculation = ’scf’
4 restart_mode = ’from_scratch ’
5 outdir = ’/home/iasir/quantum_espresso ’
6 pseudo_dir = ’/home/iasir/quantum_espresso ’
7 prefix = ’alphaU’
8 verbosity = ’default’
9 tstress = .true.
10 tprnfor = .true.
11 /
12 &SYSTEM
13 ibrav = 0
14 A = 2.8383
15 at = 2
16 ntyp = 1
17 ntyp = 1
18 ecutwfc = 50
19 ecutrho = 250
20 smearing = ’methfessel -paxton’
21 /
22 &ELECTRONS
23 diagonalization = ’david’
24 /
25 &IONS
26

27 /
28 CELL_PARAMETERS {alat}
29 0.500000000000000 -1.031658697792153 0.000000000000000
30 0.500000000000000 1.031658697792153 0.000000000000000
31 0.000000000000000 0.000000000000000 1.73379271551118
32 ATOMIC_SPECIES
33 U 238.0290000000 U.GGA-PBE-paw.UPF
34

35 ATOMIC_POSITIONS {crystal}
36 U 0.09860000000000000 -0.0986000000000000 -0.250000000000000
37 U -0.09860000000000000 0.0986000000000000 0.250000000000000
38

39 K_POINTS automatic
40 20 20 26 0 0 0
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E.3.2 Supercell of γ-Uranium

The following input is for performing a relax calculation using supercell of

γ-uranium with molybdenum and xenon.

1 &CONTROL
2 title = ’supercellgammaU ’
3 calculation = ’relax’
4 restart_mode = ’from_scratch ’
5 outdir = ’/group/hammond/sysyphus/3x3/2prim-2

nd/im02’,
6 pseudo_dir = ’/group/hammond/sysyphus/

pp_dir’,
7 prefix = ’supercell_gammaU ’
8 etot_conv_thr = 1.0D-6
9 forc_conv_thr = 1.0D-6
10 verbosity = ’default’
11 tstress = .true.
12 tprnfor = .true.
13 nstep = 200
14 /
15 &SYSTEM
16 ibrav = 0
17 A = 10.35
18 nat = 53
19 ntyp = 3
20 ecutwfc = 50
21 ecutrho = 260
22 occupations = ’smearing ’
23 degauss = 0.02
24 smearing = ’mp’
25 /
26 &ELECTRONS
27 diagonalization = ’david’
28 electron_maxstep = 900
29 mixing_beta = 0.1
30 /
31 &IONS
32

33 /
34 &CELL
35

36 /
37 CELL_PARAMETERS {alat}
38 1.00 0.00 0.00
39 0.00 1.00 0.00
40 0.00 0.00 1.00
41

42 ATOMIC_SPECIES
43 U 238.02800 U.GGA-PBE-paw.UPF
44 Xe 131.29 Xe.GGA-PBE-paw.UPF
45 Mo 95.94 Mo.GGA-PBE-paw.UPF
46

47 ATOMIC_POSITIONS (crystal)
48 U 0.000000000 0.000000000 0.000000000 0 0 0
49 U 0.210984461 0.204688901 0.229195736
50 U 0.000000000 0.000000000 0.333333333 0 0 0
51 U 0.000000000 0.000000000 0.666666667 0 0 0
52 U 0.333333333 0.000000000 0.000000000 0 0 0
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53 U 0.666666667 0.000000000 0.000000000 0 0 0
54 U 0.000000000 0.333333333 0.000000000 0 0 0
55 U 0.000000000 0.666666667 0.000000000 0 0 0
56 U 0.137231091 0.153757182 0.530873483
57 U 0.174376372 0.129124170 0.859923969
58 U 0.526508957 0.134953713 0.159596399
59 U 0.862089662 0.133706169 0.175813941
60 U 0.158683128 0.524614679 0.202129442
61 U 0.148170903 0.848856345 0.127554382
62 U 0.000000000 0.333333333 0.333333333 0 0 0
63 U 0.000000000 0.666666667 0.666666667 0 0 0
64 U 0.000000000 0.666666667 0.333333333 0 0 0
65 U 0.000000000 0.333333333 0.666666667 0 0 0
66 U 0.333333333 0.000000000 0.333333333 0 0 0
67 U 0.666666667 0.000000000 0.666666667 0 0 0
68 U 0.333333333 0.000000000 0.666666667 0 0 0
69 U 0.666666667 0.000000000 0.333333333 0 0 0
70 U 0.333333333 0.333333333 0.000000000 0 0 0
71 U 0.666666667 0.666666667 0.000000000 0 0 0
72 U 0.666666667 0.333333333 0.000000000 0 0 0
73 U 0.333333333 0.666666667 0.000000000 0 0 0
74 U 0.137231091 0.153757182 0.530873483
75 U 0.174376372 0.129124170 0.859923969
76 U 0.526508957 0.134953713 0.159596399
77 U 0.862089662 0.133706169 0.175813941
78 U 0.158683128 0.524614679 0.202129442
79 U 0.148170903 0.848856345 0.127554382
80 U 0.000000000 0.333333333 0.333333333 0 0 0
81 U 0.000000000 0.666666667 0.666666667 0 0 0
82 U 0.000000000 0.666666667 0.333333333 0 0 0
83 U 0.000000000 0.333333333 0.666666667 0 0 0
84 U 0.333333333 0.000000000 0.333333333 0 0 0
85 U 0.666666667 0.000000000 0.666666667 0 0 0
86 U 0.333333333 0.000000000 0.666666667 0 0 0
87 U 0.666666667 0.000000000 0.333333333 0 0 0
88 U 0.333333333 0.333333333 0.000000000 0 0 0
89 U 0.666666667 0.666666667 0.000000000 0 0 0
90 U 0.666666667 0.333333333 0.000000000 0 0 0
91 U 0.333333333 0.666666667 0.000000000 0 0 0
92 U 0.179014193 0.490220525 0.515819257
93 U 0.211529991 0.769018260 0.787411348
94 U 0.174791835 0.807115343 0.456517964
95 U 0.138750516 0.465098823 0.842421942
96 U 0.460277126 0.148072446 0.492479910
97 U 0.853185555 0.205057669 0.814927365
98 U 0.517574914 0.155283842 0.808674767
99 U 0.797006954 0.141631469 0.505322942

100 U 0.472193561 0.445111610 0.164972643
101 U 0.797427656 0.818792499 0.205498630
102 U 0.849105689 0.447077449 0.157067159
103 U 0.477316581 0.824076376 0.198019584
104 U 0.357811109 0.358247142 0.377740929
105 Mo 0.317120589 0.314631326 0.680448732
106 Mo 0.607263578 0.351682511 0.642824966
107 U 0.340594168 0.659454747 0.325699754
108 U 0.361075015 0.621507036 0.637398808
109 Mo 0.660724290 0.302342735 0.343336983
110 U 0.864625684 0.823864687 0.866239386
111 U 0.857300550 0.828682348 0.537389462
112 U 0.459239378 0.501675726 0.851462699
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113 U 0.787353995 0.504077862 0.849782744
114 U 0.483651729 0.821500104 0.546062842
115 U 0.525967152 0.834454416 0.872311707
116 U 0.803327765 0.439115905 0.558594712
117 U 0.678734725 0.684452016 0.648081893
118 Xe 0.649495337 0.596675850 0.354354426
119

120

121

122 !Xe 0.500000000 0.500000000 0.500000000
123

124 K_POINTS automatic
125 4 4 4 0 0 0
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E.3.3 Nudged Elastic Band Calculation

The following input file is to perform nudged elastic band calculation using

QuantumEspresso.

1 BEGIN
2 BEGIN_PATH_INPUT
3 &PATH
4 restart_mode = ’from_scratch ’,
5 string_method = ’neb’,
6 nstep_path = 100,
7 ds = 1.00,
8 opt_scheme = "broyden",
9 num_of_images = 5,
10 k_max = 0.6169D0,
11 k_min = 0.6169D0,
12 CI_scheme = "auto",
13 path_thr = 0.1D0,
14 /
15 END_PATH_INPUT
16 BEGIN_ENGINE_INPUT
17 &CONTROL
18 outdir = ’/group/hammond/sysyphus/3x3/2prim-2nd/neb’,
19 pseudo_dir = ’/group/hammond/sysyphus/pp_dir’,
20 prefix = ’xe01neb’ ,
21 verbosity = ’high’ ,
22 etot_conv_thr = 1e-6 ,
23 forc_conv_thr = 1e-5 ,
24 nstep = 200 ,
25 tstress = .true.,
26 tprnfor = .true.,
27 max_seconds = 1.0D+18,
28 /
29 &SYSTEM
30 ibrav = 0,
31 A = 10.35,
32 nat = 53,
33 ntyp = 3,
34 ecutwfc = 50,
35 ecutrho = 260,
36 occupations = ’smearing ’,
37 degauss = 0.02,
38 smearing = ’mp’,
39 /
40 &ELECTRONS
41 electron_maxstep = 900,
42 conv_thr = 1e-7 ,
43 mixing_beta = 0.1 ,
44 diagonalization = ’david’ ,
45 /
46 &IONS
47 /
48 ATOMIC_SPECIES
49 U 238.02800 U.GGA-PBE-paw.UPF
50 Xe 131.29 Xe.GGA-PBE-paw.UPF
51 Mo 95.94 Mo.GGA-PBE-paw.UPF
52 BEGIN_POSITIONS
53 FIRST_IMAGE
54 ATOMIC_POSITIONS (crystal)
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55 U 0.000000000 0.000000000 0.000000000 0 0 0
56 U 0.175109924 0.144562064 0.206801126
57 U 0.000000000 0.000000000 0.333333333 0 0 0
58 U 0.000000000 0.000000000 0.666666667 0 0 0
59 U 0.333333333 0.000000000 0.000000000 0 0 0
60 U 0.666666667 0.000000000 0.000000000 0 0 0
61 U 0.000000000 0.333333333 0.000000000 0 0 0
62 U 0.000000000 0.666666667 0.000000000 0 0 0
63 U 0.172966137 0.162988305 0.549703444
64 U 0.170611892 0.151612185 0.878052143
65 U 0.495257014 0.208922221 0.160293502
66 U 0.831518767 0.131820848 0.145403232
67 U 0.187663248 0.516383543 0.207043480
68 U 0.141733995 0.833501726 0.124057856
69 U 0.000000000 0.333333333 0.333333333 0 0 0
70 U 0.000000000 0.666666667 0.666666667 0 0 0
71 U 0.000000000 0.666666667 0.333333333 0 0 0
72 U 0.000000000 0.333333333 0.666666667 0 0 0
73 U 0.333333333 0.000000000 0.333333333 0 0 0
74 U 0.666666667 0.000000000 0.666666667 0 0 0
75 U 0.333333333 0.000000000 0.666666667 0 0 0
76 U 0.666666667 0.000000000 0.333333333 0 0 0
77 U 0.333333333 0.333333333 0.000000000 0 0 0
78 U 0.666666667 0.666666667 0.000000000 0 0 0
79 U 0.666666667 0.333333333 0.000000000 0 0 0
80 U 0.333333333 0.666666667 0.000000000 0 0 0
81 U 0.151218039 0.506822556 0.548576738
82 U 0.146390108 0.829542179 0.788362872
83 U 0.185174494 0.843342696 0.464715498
84 U 0.143670888 0.494112883 0.870258462
85 U 0.521448430 0.133334423 0.501328591
86 U 0.833500163 0.136787016 0.798434778
87 U 0.495145627 0.121151838 0.844025002
88 U 0.863545497 0.168786689 0.469156772
89 U 0.509274324 0.548329765 0.145881356
90 U 0.825440636 0.779984312 0.192980330
91 U 0.842423236 0.466015059 0.136756583
92 U 0.534458472 0.865141497 0.169291879
93 U 0.310602920 0.323532531 0.315012292
94 Mo 0.328606490 0.314883686 0.687255302
95 Mo 0.674009341 0.305267841 0.662448637
96 U 0.326631011 0.679870122 0.331479707
97 U 0.371644890 0.679274954 0.665208460
98 Mo 0.672193000 0.303810812 0.317212538
99 U 0.820847752 0.816237464 0.833790833

100 U 0.780071628 0.836705518 0.490628528
101 U 0.493041587 0.450284430 0.842990907
102 U 0.818302670 0.476570581 0.798002061
103 U 0.497363584 0.801441831 0.487806684
104 U 0.478662001 0.802952159 0.852807185
105 U 0.852755368 0.505332549 0.451217549
106 U 0.687902994 0.670557165 0.683653268
107 Xe 0.536400212 0.492947199 0.459667944
108 LAST_IMAGE
109 ATOMIC_POSITIONS (crystal)
110 U 0.000000000 0.000000000 0.000000000 0 0 0
111 U 0.211003121 0.204403180 0.229059646
112 U 0.000000000 0.000000000 0.333333333 0 0 0
113 U 0.000000000 0.000000000 0.666666667 0 0 0
114 U 0.333333333 0.000000000 0.000000000 0 0 0
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115 U 0.666666667 0.000000000 0.000000000 0 0 0
116 U 0.000000000 0.333333333 0.000000000 0 0 0
117 U 0.000000000 0.666666667 0.000000000 0 0 0
118 U 0.137157542 0.154100490 0.530986252
119 U 0.174212597 0.129079723 0.860099413
120 U 0.526361077 0.134914785 0.159501081
121 U 0.862023067 0.133697598 0.175888456
122 U 0.158401680 0.524202200 0.202384340
123 U 0.148244066 0.848143594 0.127034040
124 U 0.000000000 0.333333333 0.333333333 0 0 0
125 U 0.000000000 0.666666667 0.666666667 0 0 0
126 U 0.000000000 0.666666667 0.333333333 0 0 0
127 U 0.000000000 0.333333333 0.666666667 0 0 0
128 U 0.333333333 0.000000000 0.333333333 0 0 0
129 U 0.666666667 0.000000000 0.666666667 0 0 0
130 U 0.333333333 0.000000000 0.666666667 0 0 0
131 U 0.666666667 0.000000000 0.333333333 0 0 0
132 U 0.333333333 0.333333333 0.000000000 0 0 0
133 U 0.666666667 0.666666667 0.000000000 0 0 0
134 U 0.666666667 0.333333333 0.000000000 0 0 0
135 U 0.333333333 0.666666667 0.000000000 0 0 0
136 U 0.178710377 0.490990744 0.516187076
137 U 0.211424168 0.769055779 0.787371675
138 U 0.175042054 0.807911917 0.455992431
139 U 0.138797282 0.465117394 0.842521779
140 U 0.460172734 0.148226288 0.492431541
141 U 0.853214362 0.204001135 0.813615314
142 U 0.517320360 0.155236389 0.808583066
143 U 0.796831649 0.141536092 0.504982369
144 U 0.472082596 0.445170387 0.165199942
145 U 0.797246556 0.819083198 0.205717103
146 U 0.848947010 0.446752941 0.157261389
147 U 0.477337922 0.823974130 0.198045419
148 U 0.357415253 0.358227015 0.377748970
149 Mo 0.316993580 0.314763082 0.680421155
150 Mo 0.607201462 0.351778562 0.642719282
151 U 0.340550068 0.659420403 0.325593019
152 U 0.361166032 0.621614060 0.637522343
153 Mo 0.660553429 0.302407475 0.343460369
154 U 0.864645732 0.824012823 0.866480839
155 U 0.857095779 0.828386743 0.537288219
156 U 0.459295873 0.501704484 0.851504670
157 U 0.787396737 0.503369090 0.850267568
158 U 0.483789070 0.821735869 0.546285283
159 U 0.525937071 0.834449910 0.872642503
160 U 0.803265518 0.439297450 0.559004083
161 U 0.678713059 0.684639768 0.648649342
162 Xe 0.649346200 0.596837093 0.354823657
163 END_POSITIONS
164 K_POINTS automatic
165 4 4 4 0 0 0
166 CELL_PARAMETERS {alat}
167 1.00 0.00 0.00
168 0.00 1.00 0.00
169 0.00 0.00 1.00
170 END_ENGINE_INPUT
171 END
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E.3.4 QuantumEspresso with Python.

A sample code to run distorted lattice in QuantumEspresso with Python. The

following code is valid for bcc lattice only.

1 #! /usr/bin/python3
2

3 import os, subprocess
4 from glob import glob
5 import re
6 import matplotlib.pyplot as plt
7 import numpy as np
8

9 def matprintf(x):
10 for i in range(len(x)):
11 print (’{:16.13f} {:16.13f} {:16.13f}’.format(x[i][0],x[i

][1],x[i][2]))
12

13 #d = np.array([3.42, 3.43, 3.44, 3.455, 3.45, 3.465, 3.46, 3.475,
3.47, 3.48, 3.445, 3.4425])

14 d = np.array
([0,0.01,-0.01,0.005,-0.005,0.0075,-0.0075,0.00625,-0.00625,0.0025,-0.0025,\

15 0.00375,-0.00375,0.00125,-0.00125,0.02,-0.02])
16

17 # Run with different ecutwfc
18 for i in range(len(d)):
19 dd = d[i]
20 A12 = dd
21 A21 = dd
22 A33 = np.float128(1/((1-dd**2)))
23 #crystal axis for bcc
24 R = np.array([[-0.5,0.5,0.5],[0.5,-0.5,0.5],[0.5,0.5,-0.5]],dtype=

np.float128)
25 #distortion matrix for monoclinic distortion
26 Dmono = np.array([[1,A12,0.0],[A21,1,0.0],[0.0,0.0,A33]],dtype=np.

float128)
27 Rprime = np.matmul(R,Dmono)
28

29

30 filename = ’U_qepp_gamma.scf’
31 pseudo = ’/home/scruffy/rafi/Desktop/rafi/quantum_espresso/

supercell_study/pp_dir’
32 with open(filename + str(d[i]) + ’.in’,’w’) as f:
33 f.write("&control\n")
34 f.write("title = ’U_gamma ’\n")
35 f.write(" calculation = ’relax’\n")
36 f.write(" restart_mode = ’from_scratch ’\n")
37 f.write(" pseudo_dir = ’{:s}’ \n".format(pseudo))
38 f.write(" outdir = ’{:s}’\n".format(pseudo))
39 f.write(" prefix = ’gammaU ’\n")
40 f.write(" etot_conv_thr = 1.0e-8\n")
41 f.write(" forc_conv_thr = 1.0e-8 \n")
42 #f.write(" tstress = .true.\n")
43 #f.write(" tprnfor = .true.\n")
44 f.write("/\n")
45 f.write(" ")
46 f.write("&system\n")
47 f.write(" ibrav = 0\n")
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48 f.write(" A = 3.459\n")
49 #f.write(" A = {:3.10f}\n" .format(d[i]))
50 f.write(" nat = 1\n")
51 f.write(" ntyp = 1\n")
52 f.write(" ecutwfc = 50 \n")
53 f.write(" ecutrho = 250 \n")
54 f.write(" smearing = ’methfessel -paxton ’\n")
55 #f.write(" smearing = ’gauss’\n")
56 #f.write(" degauss = 0.01\n")
57 f.write("/\n")
58 f.write(" ")
59 f.write("&electrons\n")
60 f.write(" diagonalization = ’david’\n")
61 #f.write(" conv_thr = 1.0e-8\n")
62 #f.write(" mixing_beta = 0.7\n")
63 f.write("/\n")
64 f.write(" ")
65 f.write("&IONS\n")
66 f.write("/\n")
67 f.write(" ")
68 f.write("&CELL\n")
69 f.write("/\n")
70 f.write("CELL_PARAMETERS {alat} \n")
71 #f.write(" -0.5 0.5 0.5 \n")
72 #f.write(" 0.5 -0.5 0.5 \n")
73 #f.write(" 0.5 0.5 -0.5 \n")
74

75 for j in range (len(Rprime)) :
76 f.write (’{:16.13f} {:16.13f} {:16.13f} \n’.format(

Rprime[j][0],Rprime[j][1],Rprime[j][2]))
77

78 f.write(" \n")
79 f.write("ATOMIC_SPECIES\n")
80 f.write("U 238.029 U.GGA-PBE-paw.UPF\n")
81 f.write(" \n")
82 f.write("ATOMIC_POSITIONS {crystal}\n")
83 f.write("U 0.000 0.000 0.000\n")
84 f.write(" \n")
85 f.write("K_POINTS automatic\n")
86 f.write("35 35 35 0 0 0\n")
87 command = (’mpiexec -n 8 pw.x -i ’ + filename + str(d[i]) + ’.in >

’ + filename + str(d[i]) + ’.out’ )
88 print(command)
89 p = subprocess.Popen(command, shell=True)
90 p.wait()
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