
Nonstationary Bayesian Time Series Models with
Time-Varying Parameters and Regime-Switching

A Dissertation presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Yuelei Sui

Advisor: Scott H. Holan

APRIL 2021



The undersigned, appointed by the Dean of the Graduate School, have examined

the dissertation entitled:

Nonstationary Bayesian Time Series Models with

Time-Varying Parameters and Regime-Switching

presented by Yuelei Sui,

a candidate for the degree of Doctor of Philosophy and hereby certify that, in their

opinion, it is worthy of acceptance.

Dr. Scott H. Holan

Dr. Christopher K. Wikle

Dr. Athanasios C. Micheas

Dr. Lori Thombs

Dr. E. John Sadler



ACKNOWLEDGMENTS

I would like to express my sincere gratitude and thanks to my advisor, Dr. Scott

H. Holan, for introducing me to this challenging yet interesting topic. Without his

continuous encouragement and inspiration, throughout my dissertation this work will

never be possible. I also thank him for his kind help and wise guidance throughout

my PhD study, which make my research life here much easier and more enjoyable.

I am grateful to Dr. Wen-Hsi Yang for his help in conquering hard background

materials and his inspiring suggestions in breakthrough obstacle throughout in the

development of this work.

I extend my thanks to my committee members: Dr. Christopher K. Wikle, Dr.

Athanasios C. Micheas, Dr. Lori Thombs and Dr. E. John Sadler for their insightful

comments and suggestions on this work

ii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Stochastic Volatility Models with Regime Switching . . . . . . . . . . 1

1.2 Bayesian Circular Lattice Filters for Multiple Time Series . . . . . . . 3

1.3 Time-varying Poisson Autoregressive Models . . . . . . . . . . . . . . 4

2 Multi-regime Smooth Transition Stochastic Volatility Models . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Smooth Transition Stochastic Volatility Models . . . . . . . . 10

2.2.2 Semiparametric SV-LRSTAR-Cv . . . . . . . . . . . . . . . . 15

2.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Simulation 1: SV-LSTAR-Cv . . . . . . . . . . . . . . . . . . 19

2.3.2 Simulation 2: SV-MRSTAR-C . . . . . . . . . . . . . . . . . . 23

2.3.3 Simulation 3: Semiparametric SV-LSTAR-Cv . . . . . . . . . 25

2.4 Application and Comparison with SV-TAR: British Petroleum Stock
Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



2.4.1 Application of Multi-Regime Smooth Transition Stochastic Volatil-
ity Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Comparison with the SV-TAR model . . . . . . . . . . . . . . 33

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Appendix: the MCMC Algorithm . . . . . . . . . . . . . . . . . . . . 36

2.6.1 Detailed Sampling Algorithms for SV-LSTAR-Cv . . . . . . . 36

2.6.2 Detailed Sampling Algorithms for SV-MRSTAR-C . . . . . . . 39

2.6.3 Detailed Sampling Algorithms for Semiparametric SV-LSTAR-Cv 41

3 Bayesian Circular Lattice Filters for Multivariate Time Series Anal-
ysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Time-varying Vector Autoregressive Model and Bayesian Infer-
ence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Time-varying Periodic Time Series . . . . . . . . . . . . . . . 51

3.2.3 Circular Lattice Filter . . . . . . . . . . . . . . . . . . . . . . 53

3.2.4 Model Specification and Bayesian Inference . . . . . . . . . . . 56

3.2.5 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.6 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Simulation 1: Bivariate TV-VAR(2) Process . . . . . . . . . . 63

3.3.2 Simulation 2: 20-Dimensional TV-VAR(1) . . . . . . . . . . . 74

3.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

iv



3.4.1 U.S. Economy Data . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.2 Wind Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6.1 Algorithm for Fitting Multivariate Time Series . . . . . . . . . 89

3.6.2 Sequential Filtering and Smoothing Algorithm . . . . . . . . . 90

3.6.3 Generating MC Samples of θ for Model Selection Criteria . . . 92

3.6.4 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Computationally Efficient Time-varying Poisson Autoregressive
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.1 TV-Pois-AR(P ) Model . . . . . . . . . . . . . . . . . . . . . . 96

4.2.2 The Lattice Structure of the TV-AR Process . . . . . . . . . . 97

4.2.3 Model Specification and Bayesian Inference . . . . . . . . . . . 99

4.2.4 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.5 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.2 Simulation 2 - An Empirical Example . . . . . . . . . . . . . . 104

4.4 Case Study: COVID-19 in New York State . . . . . . . . . . . . . . . 109

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

v



4.6.1 Algorithm of Fitting Poisson TV-AR Time Series . . . . . . . 119

4.6.2 Bayesian Lattice Filter . . . . . . . . . . . . . . . . . . . . . . 119

4.6.3 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

vi



LIST OF TABLES

Table Page

2.1 Selection of the mixing distribution to approximate logχ2
1 by Omori

et al. (2007). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Summary of parameter estimation for the SV-LSTAR-Cv model based

on 100 simulated datasets. We report the posterior mean, standard

deviation (s.d.) and mean square error (MSE) of the Bayesian esti-

mates for the series length T = 1000, 2000 in the first simulation study

(Section 2.3). The CP in the parenthesis stands for the coverage prob-

ability of 90% credible interval of the log volatility.

22

2.3 Summary of parameter estimation for the SV-MRSTAR-C model based

on 100 simulated datasets. We report the mean and standard deviation

(s.d.) of the posterior means for the series length T = 1000, 2000 and

λ = 20, 50 in the second simulation study (Section 2.3.2). . . . . . . . 26

vii



2.4 Summary of parameter estimation for regular SV-LSTAR-Cv and semi-

parametric SV-LSTAR-Cv based on 100 simulated stochastic volatility

datasets with Student-t innovations. We report the posterior mean and

standard deviation (s.d.) of the Bayesian estimates in the third simula-

tion study. Note that the semiparametric SV-LSTAR-Cv model has no

intercept in the volatility process (i.e., no “as1” or “as2”) and some pa-

rameters have different interpretations in the two models and therefore

are not directly comparable. . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Model Comparison of SV-AR(1), SV-LSTAR-Cv and semiparametric

SV-LSTAR-Cv for BP returns in terms of log likelihood, DIC, and

Bayesian p-value based on a deviance discrepency measure. . . . . . . 31

2.6 Posterior mean and 95% credible interval of each parameter of SV-

LSTAR-Cv model for BP returns. Recall that a1 and a2 are the lower

limit and upper limit of autoregressive intercept, repectively and b1 and

b2 are the lower limit and upper limit of autoregressive slope, repectively. 33

2.7 Posterior mean and s.d. of each parameter of SV-TAR model, BP stock

return data. Each a, b are the constant regime-wise intercept and slope. 35

2.8 The one-step-ahead prediction MSE of each model, BP stock return

data. This MSE is defined as
∑

(ỹ2
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the estimated ρ̂2
12(t, ω) (right) using BCLF. . . . . . . . . . . . . . . . 73

3.6 Top: True log spectral densities of Components 1, 2, 8, and 15. Bot-

tom: estimated log spectral densities of Components 1, 2, 8, and 15

using the BCLF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Top: True coherence between Components 1 and 5, 2 and 15, 5 and 12,

and 15 and 20. Bottom: Estimated coherences between Components

1 and 5, 2 and 15, 5 and 12, and 15 and 20 using the BCLF. . . . . . 78

xii



3.8 U.S. quarterly economic data from 1960 to 2001. The first series is the

inflation rate. The second series is the unemployment rate. The third

series is the nominal short-term interest rate. . . . . . . . . . . . . . . 81

3.9 Impulse responses of inflation to monetary policy (short-term nomi-

nal interest rate) shocks in 1975:I, 1981:III and 1996:I and their 95%

credible intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.10 Impulse responses of unemployment to monetary policy (short-term

nominal interest rate) shocks in 1975:I, 1981:III and 1996:I and their

95% credible intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.11 The estimated time-varying innovation covariance of a TV-VAR(2)

model on U.S. quarterly economic data. The grey region shows the

credible intervals of each variable. . . . . . . . . . . . . . . . . . . . . 84

3.12 Top Row: Estimated log-spectral densities of the X (East-West) com-

ponents for Monterey (Spectrum 1), Salinas (Spectrum 2), and Wat-

sonville (Spectrum 3). Bottom Row: Estimated log-spectral densities

of the Y (North-South) components for Monterey (Spectrum 4), Sali-

nas (Spectrum 5), and Watsonville (Spectrum 6). The unit of time in

the plots is 4 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiii



3.13 Top Row: Estimated squared coherences between the X (East-West)

component and Y (North-South) component in Monterey, Salinas, and

Watsonville. Middle Row: Estimated squared coherences between the

X (East-West) components of Monterey and Salinas, Monterey and

Watsonville, and Salinas and Watsonville. Bottom Row: Estimated

squared coherences between the Y (North-South) components of Mon-

terey and Salinas, Monterey and Watsonville, and Salinas and Wat-

sonville. The unit of time in the plots is 4 hours. . . . . . . . . . . . . 87

4.1 Boxplots of the MSEs of each of the six time-varying coefficient a1,t

through a6,t for 100 simulated datasets of different length: 200, 300, 400.105

4.2 Boxplots of the MSEs of the intensity and the parameters in the latent

process for 100 simulated datasets of different length. For each of them,

three boxplots of length 200, 300, 400 are put side by side from left to

right. The left plot shows the MSEs of the innovation variance. The

middle plot shows the MSEs of the mean level µ. The right plot shows

the MSEs of the latent varaible y. . . . . . . . . . . . . . . . . . . . . 106

4.3 Boxplots of MSE of the estimated intensity over 100 simulated datasets

using different methods. Note that the scales of the three boxplots are

different. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 The difference between daily new COVID-19 cases in New York State

and the estimated expected values. The black line is the difference and

the grey region shows the corresponding 90% credible intervals. The

top plot shows the difference in the original scale and the bottom plot

show the difference in log scale. . . . . . . . . . . . . . . . . . . . . . 112

xiv



4.5 The estimated a1,t, a2,t, and σ2
t of Poisson TV-VAR(2) model applied

to daily new COVID-19 cases in New York State from top to bottom,

respectively. The grey region shows the corresponding 90% credible

intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6 The 20-day forecast of the daily new COVID-19 cases of the last 20

days in New York State. The posterior means of the intensity are

used as the forecast values. The black overplotted points and lines are

the observed daily new cases used for model fitting from 3/3/2020 to

10/17/2020. The black dots are the true daily new cases in the forecast

region from 10/18/2020 to 11/6/2020. The blue line shows the 20-day

forecast. The light blue region is the 90% prediction interval. . . . . . 114

4.7 The 20-day forecast of the daily new COVID-19 cases of the last 20 days

in New York State. The posterior means of the future observations are

used as the forecast values. The black overplotted points and lines are

the observed daily new cases used for model fitting from 3/3/2020 to

10/17/2020. The black dots are the true daily new cases in the forecast

region from 10/18/2020 to 11/6/2020. The blue line shows the 20-day

forecast. The light blue region is the 90% prediction interval. . . . . . 115

xv



4.8 The 20-day forecast of the daily new COVID-19 cases of the last 20 days

in New York State. The posterior medians of the future observations

are used as the forecast values. The black overplotted points and lines

are the observed daily new cases used for model fitting from 3/3/2020

to 10/17/2020. The black dots are the true daily new cases in the

forecast region from 10/18/2020 to 11/6/2020. The blue line shows

the 20-day forecast. The light blue region is the 90% prediction interval.116

xvi



Nonstationary Bayesian Time Series
Models with Time-Varying

Parameters and Regime-Switching
Yuelei Sui

Scott H. Holan Dissertation Supervisor

ABSTRACT

Nonstationary time series data exist in various scientific disciplines, including

environmental science, biology, signal processing, econometrics, among others. Many

Bayesian models have been developed to handle nonstationary time series. Some of

the models characterize nonstationarity through the mean, e.g., regime-switching time

series models and time-varying coefficients models, whereas other models characterize

nonstationarity through modeling the variance/covariance. Models of nonstationary

behavior can be viewed both in the time domain (e.g., stochastic volatility) or in the

time-frequency domain.

This dissertation proposes a multi-regime smooth transition stochastic volatility

model based on ordered categorical variables and is illustrated using additional in-

formation in the form of covariates (e.g., trading volume). This model can handle

the non-Gaussian behavior often found in return data, address the asymmetric effects

of financial returns, and provide regime-specific inference. The time-varying autore-

gressive (TV-VAR) model is a well-established model for multivariate nonstationary

time series. Nevertheless, in most cases, the large number of parameters presented

by the model results in a high computational burden, ultimately limiting its usage.

This dissertation proposes a computationally efficient multivariate Bayesian Circular

xvii



Lattice Filter to extend the usage of the TV-VAR model to a broader class of high-

dimensional problems. Finally, modeling and forecasting nonstationary count time

series presents many challenges. To address these challenges, this dissertation intro-

duces a computationally efficient Poisson model with a latent Gaussian time-varying

autoregressive process. The model is shown to provide effective multi-step ahead

forecasts for nonstationary count time series, e.g., COVID-19 count data. The utility

of each proposed method is illustrated through simulation and through case-studies.
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Chapter 1

Introduction

Nonstationary time series data exist in various scientific disciplines, including en-

vironmental science, biology, signal processing, econometrics, among others. Many

Bayesian models have been developed to handle nonstationary time series. Some

of the models characterize nonstationarity through the mean, e.g., regime-switching

time series models, and some through modeling the variance/covariance. Modeling

nonstationary variances can occur both in the time domain (e.g., stochastic volatility)

or in the time-frequency domain (Jacquier et al. (1994); Kim et al. (1998); Primiceri

(2005); Zhao and Prado (2020) among others).

1.1 Stochastic Volatility Models with Regime Switch-

ing

Stochastic volatility models can be used to characterize the time-varying variance

typically found in many financial time series data. For example, Bayesian inference

1



for stochastic volatility models have been proposed by Jacquier et al. (1994) and

Kim et al. (1998), with many extensions having been proposed to date. One class of

SV model extensions are regime-switching SV models, including threshold stochastic

volatility models (So et al., 2002; So and Choi, 2009), Markov-switching stochas-

tic volatility models (So et al., 1998; Kalimipalli and Susmel, 2004; Carvalho and

Lopes, 2007; Lopes and Carvalho, 2007; Abanto-Valle et al., 2010; Virbickaitė et al.,

2019b), and smooth transition stochastic volatility models (Lopes and Salazar, 2006;

Livingston Jr and Nur, 2017). Since parametric SV models may not fully capture

the non-Gaussian behaviors of typical of return data (Gallant et al., 1997; Mahieu

and Schotman, 1998; Liesenfeld and Jung, 2000; Durham, 2006), another class of SV

models have been proposed; that is, semiparametric SV models (Jensen and Maheu,

2010, 2014; Yu, 2012; Virbickaitė et al., 2019a).

In Chapter 2, we propose an SV model with volatility following a regime-switching

autoregressive process associated with some auxiliary covariates. The proposed ap-

proach can 1) account for the asymmetry of financial returns and 2) utilize the trading

volume information, which is not typically used in SV models. We use a semipara-

metric prior, proposed by Jensen and Maheu (2010, 2014), in our model to increase

the flexibility and to account for the potential non-Gaussian behavior of the return

innovations.

2



1.2 Bayesian Circular Lattice Filters for Multiple

Time Series

Parametric models of nonstationary multivariate time series play an increasingly im-

portant role as high-dimensional data are increasingly available for analysis. Some of

the parametric models that apply to economic and financial data are cast in the time

domain (Primiceri, 2005; Del Negro and Primiceri, 2015; Nakajima et al., 2011; Naka-

jima and West, 2013). In contrast, some work in the frequency domain reveals features

of the spectrum of each time series as well as the coherence between them (e.g., Zhao

and Prado (2020)). In this dissertation, we are most interested in the time-varying

vector autoregressive (TV-VAR) model. However, when it comes to high-dimensional

data, the computation cost becomes an obstacle in terms of estimation.

In Chapter 3, we develop a computationally efficient Bayesian methodology for

analyzing multivariate nonstationary time series. The approach offers a fast way to fit

time-varying vector autoregressive (TV-VAR) models based on the “one channel at-

a-time” paradigm (Pagano, 1978). Our approach utilizes a Bayesian Circular Lattice

Filter and, thus, accelerates parameter estimation. Compared with existing frequen-

tist and Bayesian approaches, our proposed method can simultaneously estimate the

multivariate time-varying coefficients and the time-varying innovation covariance. We

apply the proposed methodology in both the time and frequency domain. We demon-

strate the effectiveness of our approach through simulation and applications to U.S.

economic data and Northern California wind data.
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1.3 Time-varying Poisson Autoregressive Models

Different types of count time series models have been proposed and applied to pan-

demic incidences, insurance claims, integer financial data, and many others. These

models include the classes of observation-driven and parameter-driven models. The

observation-driven models include the INGARCH model (Ferland et al., 2006; Fokianos

et al., 2009), integer-valued autoregressive model, also called Poisson autoregres-

sive model (Al-Osh and Alzaid, 1987), generalized linear ARMA (GLARMA) model

(Zeger, 1988; Dunsmuir, 2016) and Poisson AR model (Brandt and Williams, 2001),

among others (see Davis et al. (2016) for a comprehensive overview). The parameter-

driven (process-driven) models include the Poisson state space model (Smith and

Miller, 1986), Poisson exponentially weighted moving average (PEWMA) model (Brandt

et al., 2000), and dynamic count mixture model (Berry and West, 2019), among oth-

ers. Some of this research proceeds under a Bayesian framework (Berry and West,

2019; Bradley et al., 2020).

For nonstationary count time series with changing trends, e.g., daily new COVID

cases data, many traditional methods (Ferland et al., 2006; Fokianos et al., 2009;

Brandt et al., 2000; Brandt and Williams, 2001) may not capture local trends and

also may not provide a good multi-step ahead forecast. The motivation of our study

is to propose an efficient method to capture the time-varying pattern of the mean of

such nonstationary count time series and, therefore, make better forecasts than tra-

ditional methods. To capture the evolutionary properties, a parameter-driven model

with a time-varying coefficient latent process provides one good choice. Moreover,

a latent process with appropriate innovations can also address issues surrounding

over-dispersion, which is common in count time series modeling.
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Parameter estimation is an important part of Poisson time series modeling be-

cause the intensity parameter of the Poisson distribution often does not yield a

closed-form estimator. One exception is Bradley et al. (2018), which proposed a

conjugate multivariate log-gamma prior for the intensity and provided efficient mul-

tivariate spatio-temporal models for high-dimensional count-valued data. For esti-

mation of the intensity following an autoregressive process, the particle filter (PF) is

often used, e.g., Aktekin et al. (2018). However, the sampling difficulty of the PF

increases exponentially when the dimension of the data increases and the PF cannot

handle time-varying coefficients. Random-walk Metropolis also presents estimation

challenges for high-dimensional data. For more efficient estimation, we use the No-

U-Turn Sampler (NUTS) instead (Hoffman and Gelman, 2014), which speeds up the

mixing of the sample chains.

We propose a time-varying Poisson autoregressive (TV-Pois-AR) model for non-

stationary count time series. We use a time-varying autoregressive (TV-AR) latent

process to model the nonstationary intensity of the Poisson process. This flexible

model can capture the latent dynamics of the time series and, therefore, make supe-

rior forecasts. The estimation of such a TV-AR process is greatly sped up by using

the Bayesian Lattice Filter (BLF, Yang et al. (2016)). Moreover, in our model and

many other models, the intensity parameter has no closed-form full conditional distri-

bution. To sample the intensity parameter, the No-U-Turn Sampler (NUTS) is used,

instead of a random walk Metropolis algorithm, for faster mixing of the sample chains.

Benefiting from the joint use of the Bayesian lattice filter and No-U-Turn Sampler,

estimation of the TV-Pois-AR model is efficient and fast, especially for higher model

orders and/or longer length time series.

5



In Chapter 4, we propose a Poisson autoregressive (TV-Pois-AR) model for non-

stationary count time series. This model has time-varying parameters and enables

us to forecast changing trends within the count time series. Moreover, this model

benefits from the BLF and provides efficient Bayesian inference.
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Chapter 2

Multi-regime Smooth Transition
Stochastic Volatility Models

2.1 Introduction

Regime-switching has been observed in the volatility of financial returns. For example,

Hamilton and Susmel (1994) proposed a Markov switching autoregressive conditional

heteroskedasticity (SWARCH) model with regime-switching for the volatility level,

whereas So et al. (2002) and Carvalho and Lopes (2007) developed a methodology for

a threshold stochastic volatility model and Markov switching stochastic volatility (SV)

models, respectively. The asymmetric effect of financial returns (i.e., the variance

responds asymmetrically to the past returns) has been previously studied in many

financial time series analyses. In particular, Black (1976), Christie (1982), and Engle

and Ng (1993) believe this phenomenon happens because the “bad” news tends to

drive the variance higher than “good” news does. Lam et al. (1990) and Li and
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Lam (1995) also studied such asymmetric effects in stock returns. They successfully

used a threshold model with conditional heteroscedasticity to capture the asymmetric

behavior of stock returns during bear and bull markets. Specifically, Li and Lam

(1995) showed that the stock returns on one day could significantly affect the variance

of the stock returns on the next day. Many other multi-regime stochastic models were

proposed to address the above multi-regime features, including threshold stochastic

volatility models (So and Choi, 2009), Markov switching stochastic volatility models

(So et al., 1998; Kalimipalli and Susmel, 2004; Lopes and Carvalho, 2007; Abanto-

Valle et al., 2010; Virbickaitė et al., 2019b), and smooth transition stochastic volatility

models (Lopes and Salazar, 2006; Livingston Jr and Nur, 2017).

There is a long history of studying the relationship between stock return volatility

and trading volume in the finance literature. Clark (1973) introduced the mixture of

distributions hypothesis (MDH), which assumes the return and the trading volume

depends on the same underlying latent flow variable, i.e., the changes in the stock

price and the trading volume are driven primarily by the release of new information.

Karpoff (1987) also discussed the relationship between the return and the trading

volume in various financial markets based on a literature review. We consider a

smooth transition process with categorical time series (Davis and Ensor, 2007; Wang

and Holan, 2012) as a good candidate to model such a relationship.

We propose a method to use the trading volume information to model the regime-

switching in the volatility, where the regime-switching is observed through an ordered

categorical variable that denotes the regime the series is in at each time. Considering

that the trading volume might be quite variable across assets, a more stable rela-

tionship should hold for this standardization of volume. Specifically, we propose an
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SV model with the volatility following an ordered regime-switching autoregressive

process based on auxiliary covariates. The flexibility of our approach can account for

the asymmetry of financial returns and utilize the trading volume information. The

latter is not typically used in SV models.

Additionally, the non-Gaussian behavior of return data has not been fully cap-

tured by parametric SV models (Gallant et al., 1997; Mahieu and Schotman, 1998;

Liesenfeld and Jung, 2000; Durham, 2006; Jensen and Maheu, 2010). Some flexible

semiparametric SV models were proposed by Jensen and Maheu (2010, 2014) to cap-

ture these important characteristics. Building on this literature, we use the Dirichlet

process mixture prior (DPM) to increase the flexibility and robustness to potential

non-Gaussian behavior of the return innovations.

The remainder of this chapter is organized as follows. In Section 2.2, we formu-

late several Bayesian multi-regime smooth transition regression models with ordered

categorical variables. In Section 2.3, we present simulation results that illustrate the

frequentist properties of the proposed Bayesian estimators. In Section 2.4, we demon-

strate an application to British Petroleum stock returns (1/1/2009-9/30/2016) and

compare our smooth transition stochastic volatility model with a stochastic volatility

threshold autoregressive model (SV-TAR). Section 2.5 contains concluding remarks.

Finally, the details of our Markov chain Monte Carlo (MCMC) estimation algorithm

are provided in Section 2.6.
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2.2 Models

2.2.1 Smooth Transition Stochastic Volatility Models

Financial returns y = (y1, y2, . . . , yT )′ have been modeled by Jacquier et al. (1994)

and Kim et al. (1998) using the following SV model

yt = exp(ht/2)εt (2.1)

ht = µ+ φ(ht−1 − µ) + σhηt, (2.2)

where it is assumed that {εt} and {ηt} are standard Gaussian white-noise innova-

tions for t ∈ {1, . . . , T}. We call (2.1) the observation equation and (2.2) the state

equation. The latent variable h = (h0, h1, . . . , hT )′ in the state equation follows an

autoregressive process of order 1 (AR(1)), which is interpreted as the volatility of re-

turns. To ensure stationarity of the latent process, the common AR(1) assumption is

that |φ| < 1 and that the initial state is distributed as h0|µ, φ, σ2
h ∼ N(µ, σ2

h/(1−φ2)).

To accommodate the volatility processes with regime switching, we replace {ht} in

(2.2) with the multi-regime smooth transition autoregressive process with ordered

categorical variables presented in Wang and Holan (2012). Before introducing the

proposed model, we define the multi-regime autoregressive process of {ht} as a logis-

tic smooth transition autoregressive model with ordered categorical variables (Wang

and Holan, 2012, LSTAR-Cv model;). First, we define a latent transition variable νt

as

νt = z′tγ + et, et
iid∼ N(0, 1), for t ∈ {1, 2, . . . , T}, (2.3)
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where z′t = (z1t, z2t, . . . , zKt)
′ is a vector of covariates associated with νt. The latent

transition variable νt controls the transition in latent process

ht = φ1,1 + φ1,2ht−1 + (φ2,1 + φ2,2ht−1)
1

1 + exp{−νt−1}
+ σhηt, ηt

iid∼ N(0, 1), (2.4)

where for j = 1, 2, φj,1 and φj,2 denote the additive effect of Regime j on the intercept

and the slope of the autoregressive process {ht}, respectively; i.e., φ1,1 and φ1,2 is the

baseline effect. Neither νt or ht are observed. Instead, ut is observed as the regime

that restricts the range of the latent transition variable νt, such that,

θj−1 ≤ νt < θj if ut = j, (2.5)

where −∞ = θ0 < θ1 < θ2 < · · · < θq = +∞ denote ordered threshold values. The

unknown thresholds {θ0, . . . , θq} divide the autoregressive process into q+ 1 regimes.

The function M(νt; 1, 0) = 1/{1+exp(−νt−1)} works as the transition function in this

equation. To better understand the smooth transition between regimes, we consider

the two-regime model. We reparametrize and let a1 = φ1,1, a2 = φ1,1 + φ2,1, b1 = φ1,2

and b2 = φ1,2 + φ2,2. As the regime smoothly transitions between Regime 1 and

Regime 2, the intercept of the process {ht} varies between a1 and a2 and the slope of

the process {ht} varies between b1 and b2 according to the value of νt.

Conditional on {ht}, the returns {yt} are normally distributed as follows

yt = exp(ht/2)εt, εt
iid∼ N(0, 1). (2.6)

In the model, {yt} and {ut} are the only two observed variables, {zt} are known
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covariates. All of the other variables and parameters are unknown. The {νt} and

{θt} jointly control the regime switching.

In the context of stochastic volatility, to better facilitate the Bayesian sampling,

we model a new variable y∗t instead of yt. Suggested by Shephard (1994) and Carter

and Kohn (1994), (2.1) is approximated as

y∗t = log(y2
t + c) = ht + log(ε2t ) = ht + ε∗t , εt

iid∼ N(0, 1), (2.7)

where y∗t denotes log(y2
t + c). A small positive offset c is here to deal with the very

small value of y2
t . We use c = 10−4 throughout the remainder, while it is possible

to let c depend on the actual value y2
t (Kim et al., 1998). The distribution of ε∗t is

approximated by a mixture distribution with 10 components (Omori et al., 2007).

Consequently, (2.1) and (2.2) can be rewritten in the form of a linear condition-

ally Gaussian state space model. As such, this transformation greatly increases the

sampling efficiency of the MCMC simulation. The distribution of log(ε2t ) can be ap-

proximated by a mixture of normal distributions. Specifically, let rt ∈ {1, . . . , 10}

be the mixture component indicator at time t, while mrt and w2
rt denote the mean

and the variance of the rtth mixture component as shown in Omori et al. (2007).

Noting that ε∗t = log(ε2t ), the logarithm of the squared innovation is distributed as

ε∗t |rt ∼ N(mrt , w
2
rt). The distribution of ε∗t |rt is defined to be a mixture of 10 nor-

mal distributions and the values of pk, mk, w
2
k are given in Table 2.1 (as in Omori

et al. (2007) and further described in Section 2.6). Since the distribution of ε∗t is

approximated, Kim et al. (1998); Omori et al. (2007) proposed an additional step of

reweighting the MCMC samples to correct for the approximation error. But accord-

ing to their experiments, the reweighting has little impact on the parameters in the
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Table 2.1: Selection of the mixing distribution to approximate logχ2
1 by Omori et al.

(2007).

k K = 10
pk mk w2

k

1 0.00609 1.92677 0.11265
2 0.04775 1.34744 0.17788
3 0.13057 0.73504 0.26768
4 0.20674 0.02266 0.40611
5 0.22715 -0.85173 0.62699
6 0.18842 -1.97278 0.98583
7 0.12047 -3.46788 1.57469
8 0.05591 -5.55246 2.54498
9 0.01575 -8.68384 4.16591

10 0.00115 -14.65000 7.33342

latent process, Moreover, the 10 component approximation of Omori et al. (2007)

improved the accuracy and made the effect of reweighting even smaller. Therefore,

we do not use reweighting, though it is straightforward to add a reweighting step.

Combining the observation process and the volatility process, we get the bivariate

SV-LSTAR-Cv model for (yt, ut), t = 1, . . . , T :

y∗t = log(y2
t + c) = ht + ε∗t , ε∗t |rt ∼ N(mrt , w

2
rt),

P r(rt = k) = pk, k ∈ {1, . . . , 10},

ht = φ1,1 + φ1,2ht−1 + (φ2,1 + φ2,2ht−1)
1

1 + exp{−νt−1}
+ σhηt, ηt

iid∼ N(0, 1),

θj−1 ≤ νt < θj if ut = j,

νt = z′tγ + et, et
iid∼ N(0, 1), et ⊥ ηt, for t ∈ {1, 2, . . . , T},

where the transition function M(νt) = 1/{1 + exp(−νt)} is used.
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We extend the above model by (1) specifying regime-wise intercept and slope

(φ′s) to each regime; (2) introducing M(st;λ, θj) = 1/ [1 + exp{−λ(st − θj)}] to re-

place 1/ [1 + exp{−θj}]. We get the bivariate SV-MRSTAR-C model for (yt, ut), t =

1, . . . , T :

y∗t = log(y2
t + c) = ht + ε∗t , ε∗t |rt ∼ N(mrt , w

2
rt),

P r(rt = k) = pk, k ∈ {1, . . . , 10},

ht = φ1,1 + φ1,2ht−1 + (φ2,1 + φ2,2ht−1)M(z′t−1γ;λ, θ1) + · · ·

+ (φq+1,1 + φq+1,2ht−1)M(z′t−1γ;λ, θq) + σhηt, ηt
iid∼ N(0, 1),

h0 ∼ N

(
0,

σ2

1− φ∗2

)
, φ∗ =

q+1∑
j=1

φj,2,

θj−1 ≤ νt < θj if ut = j,

νt = z′tγ + et, et
iid∼ N(0, 1), for t ∈ {1, 2, . . . , T},

where ε∗t |rt is from a mixture of 10 normal distributions and pk, mk, w
2
k are specified

in Table 2.1 (as in Omori et al. (2007) and further described in the Section 2.6),

M(z′tγ;λ, θj) = 1/ [1 + exp{−λ(z′tγ − θj)}] and λ is the parameter that controls the

smoothness of the regime transition. Note that, z′tγ is the mean of νt. If instead we

still use νt in the transition function rather than z′tγ, the MCMC sample chains of

such a model converges slowly and shows large autocorrelations, which is similar to

fitting of MRSTAR-Cv in Wang and Holan (2012). Therefore, throughout the sequel,

we only consider the SV-LSTAR-Cv model and the SV-MRSTAR-C model.

Conditional on the transition variable νt, smoothness parameter λ, and the thresh-

old parameters θj, j = 1, . . . , q, the model becomes a dynamic linear model with

time-varying evolution parameter. Many well-established techniques have been de-
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veloped to sample from the posterior distribution of the volatility {ht}. Here we use

the Forward Filtering Backward Sampling (FFBS) algorithm (Carter and Kohn, 1994;

Frühwirth-Schnatter, 1994) to sample {ht} from its full conditional distribution.

The volatility variable {ht} and the latent variable {νt} follow a typical multi-

regime smooth transition autoregressive model. Conditional on {ht}, θq, and {νt}

can be sampled as in Wang and Holan (2012). As mentioned previously, even with a

known transition variable, there is still some difficulty in estimating the smoothness

parameter λ. Moreover, our model has an additional level in the hierarchy for the

smooth transition autoregressive models, which makes λ difficult to estimate (i.e., λ

is farther away from the data). Also, as noted in Lubrano (2000) and Lopes and

Salazar (2006), for the logistic smooth transition autoregressive (LSTAR) model, the

prior distribution for λ should assign small weight to the region near 0 and its density

should decrease at the rate of O(λ−1−d) for d > 0. Therefore, similar to Wang and

Holan (2012), we assume that λ has an informative inverse gamma (IG) prior. See

Section 2.6 for computational details.

2.2.2 Semiparametric SV-LRSTAR-Cv

As discussed previously, the asymmetry and leptokurtotic behavior of return data

has not been fully captured by parametric SV models. Therefore, to model the

skewness and kurtosis of returns better, we introduce an SV model with a flexible

nonparametric innovation distribution (Jensen and Maheu, 2010, 2014; Virbickaitė

et al., 2019a), which specifies both parametric and nonparametric features for the re-

turn process. The nonparametric part of this model consists of an infinitely ordered

mixture of normal distributions with each component probability and associated pa-
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rameters modeled through Dirichlet process mixture prior (DPM). In this context, we

use the simplified version, DPM-P which is also defined in Jensen and Maheu (2010),

which assumes that the mixture of normal distributions is centered at zero and that

only the mixture probabilities and the mixture precision parameter follow a DP prior.

The model comparison in Jensen and Maheu (2010) indicates the fitting of stochastic

volatility DPM-P (SV-DPM-P) model is no worse than the stochastic volatility DPM

(SV-DPM) model in terms of DIC. Considering that the latent smooth transition

adds significant flexibility, we want the DPM in the model to be more restrictive to

make the estimation more stable, and to make the MCMC sample chains converge

faster. Therefore, SV-DPM-P is preferred and used throughout this context. The

SV-DPM-P is defined in Jensen and Maheu (2010) as

yt|ht, µ, ωt
⊥∼ N

(
µ, ω−2

t exp{ht}
)
, (2.8)

ht|ht−1, φ, σ
2
h ∼ N

(
φht−1, σ

2
h

)
, ht ⊥ yt (2.9)

ωt|G
iid∼ G, (2.10)

G|G0, α ∼ DP(G0, α), (2.11)

G0(ω2
t ) ≡ Γ(ν0, s0), (2.12)

where
⊥∼ denotes independently distributed. The latent log volatility {ht} follows the

autoregressive (AR) process defined by (2.9) with AR parameter φ. The identifiability

of this model requires the unconditional mean of {ht} to be zero. Thus, the intercept

of the return’s innovation variance is controlled by ω2
t . The autoregressive coefficient

φ is restricted to the interval (−1, 1) to ensure stationary returns. This guarantees

the volatility process {ht} has finite mean and variance. The unconditional return
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distribution is given a nonparametric prior defined by (2.10)-(2.12), which consists of

an overall mean and a potentially infinite ordered mixture of normals centered at zero.

It is assumed that the mixture probabilities and parameters ω2
t follow the Dirichlet

process prior (DP) of Ferguson (1973) as (2.10) and (2.11). The DP prior consists of

the base distribution G0 with nonnegative concentration parameter α, where G0 is

defined in (2.12) as a conjugate gamma distribution.

We embed this semiparametric prior into the proposed smooth transition SV mod-

els and specify the semiparametric bivariate SV-LSTAR-Cv model for (yt, ut), t =

1, . . . , T as

yt|ht, µ, ωt ∼ N
(
µ, ω−2

t exp{ht}
)
,

ht|ht−1,φ, σ
2
h ∼ N

(
φ1ht−1 + φ2ht−1

1

1 + exp{−νt−1}
, σ2

h

)
, (2.13)

h0 ∼ N

(
0,

σ2
h

1− (φ1 + φ2)2

)
,

θj−1 ≤ νt < θj if ut = j, (2.14)

νt = z′tγ + et, et
iid∼ N(0, 1),

ωt|G ∼ G, (2.15)

G|G0, α ∼ DP(G0, α), (2.16)

G0(ω2
t ) ≡ Γ(ν0, s0). (2.17)

The latent log volatility {ht} follows the LSTAR-Cv process defined by (2.13) with

AR parameter φ = (φ1, φ2)′, which has regimes and thresholds defined by (2.14).

The identifiability of this model requires the unconditional mean of {ht} to be zero.

Thus, the intercept of the return’s innovation variance is controlled by ω2
t . We assume
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a restricted normal piror on π to ensure the latent autoregressive process is nonex-

plosive within each regime, such that, φ ∼ N|φ1|<1,|φ1+φ2|<1

(
0, diag{σ2

φ1
, σ2

φ2
}
)
, where

NA(µ,Σ) denotes a restricted normal distribution with mean µ and covariance Σ and

restriction conditions A. We also assign priors σ2
h ∼ IG(aσ, bσ), γ ∼ N(0, δ2

γI), and

µ ∼ N(mµ, σ
2
µ), with fixed hyperparameters. Thus, the full conditional distributions

of both φ and σ2
h have analytical forms. The volatility {ht} can not be sampled using

FFBS because the current model is no longer a dynamic linear model. Instead, we use

the random length block sampler proposed by Jensen and Maheu (2010). Conditional

on {ht}, θq, λ, and ν can be sampled in a similar way to Section 2.2.1. The DPM-P

uses conjugate priors and the corresponding parameters are sampled using a two-step

procedure. According to Escobar and West (1995), we assign α ∼ Γ(a, b), the hyper-

parameters of which are selected to make these priors vague. Computational details

are provided in Section 2.6.

As a mixture of distribution, DPM suffers from “label switching,” which results

in the drawback that the mixture parameters are unidentified (Jensen and Maheu,

2010). Nevertheless, our purpose is to use DPM to model the asymmetry and lep-

tokurtotic distribution of yt exp(−ht/2). The “label switching” does not result in any

problems for the inference of the other parameters of a stochastic volatility model.

Geweke (2007); Frühwirth-Schnatter (2006) provide additional discussion of this issue

in mixture models.

We embed the DPM-P into the MRSTAR-C model. However, the result of the

simulation studies indicate that the smoothness parameter of the transition, λ, is

not easily identified together within the flexible semiparametric sampler. Therefore,

instead, we focus on the semiparametric SV-LSTAR-Cv model.
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2.3 Simulation Studies

2.3.1 Simulation 1: SV-LSTAR-Cv

In the simulation study, we generate {yt}, {ht}, {νt} and {ut} series of length T =

1000, 2000, where the ordinal variable ut has q = 3 regimes. The transition process

{νt} and the categorical process {ut} are generated similar to the examples of Davis

and Ensor (2007) and Wang and Holan (2012). That is, for t = 1, . . . , T ,

νt = z′tγ + εt = γ1lt + γ2ut−1,1 + γ3ut−1,2 + et, (2.18)

ut = j ⇐⇒ θj−1 ≤ νt < θj, (2.19)

where lt is the log daily trading volume of British Petroleum (BP) stock starting from

1/2/2009, ut,j = 1 if ut = j, ut,j = 0 otherwise for j = 1, 2, 3, γ = (0.2,−0.3, 0.5)′,

εt
iid∼N(0, 1), and θ = (θ1, θ2)′ = (2.23, 4.8)′. Next, the observation process {yt} and

the latent process {ht} are generated from

yt = exp(ht/2)εt,

ht = φ1 + φ2ht−1 + (φ3 + φ4ht−1)
1

1 + exp{−vt−1}
+ σhηt,

with (φ1, φ2, φ3, φ4)′ = (−0.3, 0.6,−0.3, 0.35)′, σ2
h = 0.1, 0.5, 1 and {εt} and {ηt} are

standard Gaussian white-noise. The values of the thresholds θ and the covariate, log

trading volume, are used to make the simulated data closer to the real data example

in Section 2.4. When generating series of length 1000, we use the first 1000 log daily

trading volume of BP starting from 1/2/2009 as the covariate lt. When generating

series of length 2000, we use the first 1000 log volumes sequentially, as the covariate.
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By doing so, we focus on the effect of the sample size.

We generated 100 datasets as stated above and estimated the parameters (φ, σ2; γ, θ)

via MCMC for each simulated dataset. In the MCMC algorithm, we specify the hy-

perparameters as σ2
φ1

= 100, σ2
φ2

= 100, δ2
γ = 10, 000, aσ = 1 and bσ = 1. We

run the MCMC simulation of 15, 000 draws for each simulated dataset and keep the

last 10, 000 for inference in each MCMC sample chain. We assess the convergence

of the MCMC algorithm through visual inspection of the trace plots of the sample

chains and the Gelman-Rubin diagnostic (Brooks and Gelman, 1998). In particular,

we randomly pick 10 of the 100 simulated datasets and generate three sample chains

for each of the parameters and assess their convergence. Visual inspection of the

trace plots of the sample chains does not show any evidence of lack of convergence

for any of the parameters and the Gelman-Rubin statistic, R̂, is less than 1.01 for

all parameters. A typical example of the estimated volatility compared with the true

volatility is provided in Figure 2.1. The sampling properties of the Bayesian MCMC

estimators are shown in Table 2.2. From this table, we see that when the sample size

increases from 1000 to 2000, the frequentist coverage probability of the log volatility

gets closer to the ideal value 0.9.

In the SV-LSTAR-Cv model, the intercept of the process {ht} varies between

a1 and a2 and the slope of the process {ht} varies between b1 and b2 according to

the value of νt. More specifically, in Regime 1, the intercept varies between a1 and

a1 + φ3/(1 + e−θ1) and the slope varies between b1 and b1 + φ4/(1 + e−θ1); in Regime

2, the intercept varies between a1 + φ3/(1 + e−θ1) and a1 + φ3/(1 + e−θ2) and the

slope varies between b1 + φ4/(1 + e−θ1) and b1 + φ4/(1 + e−θ2); in Regime 3, the

intercept varies between a1 + φ3/(1 + e−θ2) and a2 and the slope varies between
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Figure 2.1: Comparison of the estimated log-volatility (black line) for one simulated
dataset from the SV-LSTAR-Cv model and the true log-volatility (red line). The

grey region is the 90% credible interval. Note, the estimated log-volatility is {ĥt}.
The first 200 of the series are enlarged to show the details.
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Table 2.2: Summary of parameter estimation for the SV-LSTAR-Cv model based on 100 simulated datasets. We
report the posterior mean, standard deviation (s.d.) and mean square error (MSE) of the Bayesian estimates for
the series length T = 1000, 2000 in the first simulation study (Section 2.3). The CP in the parenthesis stands for
the coverage probability of 90% credible interval of the log volatility.

T a1 b1 a2 b2 θ1 θ2 γ1 γ2 γ3 σ2
h

(CP) σ2
h -0.300 0.600 -0.600 0.950 2.230 4.800 0.200 -0.300 0.500

1000 1 Mean -0.519 0.477 -0.643 0.946 2.232 4.811 0.199 -0.294 0.513 0.975
s.d. 0.745 0.275 0.123 0.013 0.690 0.695 0.042 0.170 0.138 0.099

(0.889) MSE 0.598 0.089 0.017 0.00018 0.471 0.478 0.00175 0.029 0.0191 0.0104
1000 0.5 Mean -0.599 0.455 -0.679 0.942 2.278 4.856 0.202 -0.293 0.516 0.547

s.d. 0.705 0.270 0.132 0.015 0.672 0.686 0.042 0.167 0.136 0.072
(0.906) MSE 0.581 0.093 0.024 0.00028 0.449 0.469 0.00174 0.028 0.0186 0.0073
1000 0.1 Mean -0.658 0.420 -0.871 0.921 2.314 4.893 0.204 -0.294 0.516 0.178

s.d. 0.576 0.285 0.200 0.021 0.655 0.654 0.040 0.170 0.138 0.036
(0.912) MSE 0.457 0.113 0.113 0.00127 0.432 0.433 0.00159 0.029 0.0192 0.0074
2000 1 Mean -0.306 0.596 -0.613 0.947 2.191 4.762 0.198 -0.313 0.487 0.954

s.d. 0.710 0.172 0.120 0.011 0.452 0.450 0.029 0.124 0.094 0.085
(0.892) MSE 0.499 0.029 0.014 0.00013 0.204 0.202 0.00082 0.015 0.0089 0.0092
2000 0.5 Mean -0.472 0.567 -0.593 0.946 2.161 4.731 0.196 -0.312 0.488 0.518

s.d. 0.686 0.187 0.127 0.012 0.457 0.459 0.029 0.122 0.094 0.056
(0.903) MSE 0.496 0.036 0.016 0.00016 0.212 0.212 0.00083 0.015 0.0088 0.0036
2000 0.1 Mean -0.491 0.534 -0.657 0.935 2.216 4.787 0.200 -0.313 0.488 0.142

s.d. 0.558 0.174 0.186 0.014 0.437 0.445 0.028 0.121 0.093 0.025
(0.909) MSE 0.345 0.035 0.037 0.00042 0.189 0.196 0.00075 0.015 0.0088 0.0024

Note: a1 = φ1, a2 = φ1 + φ3, b1 = φ2 and b2 = φ2 + φ4.
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b1 + φ4/(1 + e−θ2) and b2. In the simulation examples, based on the true values of

parameters, we expect to see that in Regime 1 the intercept varies between −0.3 and

−0.571 and the slope varies between 0.6 and 0.916; in Regime 2, the intercept varies

between −0.571 and −0.598 and the slope varies between 0.916 and 0.947; in Regime

3, the intercept varies between −0.598 and −0.6 and the slope varies between 0.947

and 0.95. As expected, the increase of the sample size helps to reduce the bias and

standard deviations of the Bayesian estimates. When we increase the true value of σ2
h,

that is, the signal-to-noise ratio, the mean square error (MSE) of each parameter in

the latent process of yt decreases. When σ2
h becomes too small, its estimation becomes

significantly biased. Nevertheless, as the sample size T increases, the biases and the

standard deviations of these estimators still decrease. In SV models it is common to

moderately overestimate σ2
h. In this simulation, it appears that the overestimation of

σ2
h leads to the underestimation of b2 as well as the overestimation of a2.

2.3.2 Simulation 2: SV-MRSTAR-C

Similar to the first simulation, we generate 100 datasets of {ut}, {νt}, {ht}, and {yt}

of lengths T = 1000, 2000 using a three-regime SV-MRSTAR-C model. The only

difference is that the transition function is M(st;λ, θj) = 1/[1+exp{−λ(z′t−1γ−θj)}].

Therefore,

yt = exp(ht/2)εt,

ht = φ1,1 + φ1,2ht−1 +
φ2,1 + φ2,2ht−1

1 + exp{−λ(z′t−1γ − θ1)}
+

φ3,1 + φ3,2ht−1

1 + exp{−λ(z′t−1γ − θ2)}
+ σhηt,
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where Φ1 = (φ1,1, φ1,2)′ = (0, 0.7)′, Φ2 = (φ2,1, φ2,2)′ = (−0.5, 0.1)′, Φ3 = (φ3,1, φ3,2)′ =

(−1, 0.15)′, λ = 20, 50, σh = 1, and {εt}, {ηt} are standard Gaussian white-noise.

The ordinal process {νt} has three categories and is generated using (2.18) with γ =

(1,−1.5, 2.5)′. The categorical process {ut} is defined using (2.19) with θ = (−1, 1)′.

We estimate the parameters (φ, σ2; γ,θ, λ) via MCMC for each simulated dataset. In

the MCMC, we specify the hyperparameters as σ2
φ1

= 100, σ2
φ2

= 100, δ2
γ = 10, 000,

aσ = 1, bσ = 1. For each simulated dataset, we run an MCMC simulation of 15, 000

draws and keep the last 10, 000 for inference in each MCMC sample chain. We assess

the MCMC algorithm’s convergence using both trace plots of the sample chains and

the Gelman-Rubin diagnostic. We randomly pick 10 of the 100 simulated datasets and

generate three sample chains for each of the parameters and assess their convergence.

Visual inspection of the trace plots of the sample chains does not show any evidence

of lack of convergence for any of the parameters, and the Gelman-Rubin statistic,

R̂, is less than 1.01 for all parameters. The sampling properties of the Bayesian

estimators are given in Table 2.3. In this simulation, we set θ = (−1, 1)′ and this

makes the transition very smooth when λ < 5. Thus, we set λ = 20, 50 to investigate

the performance of SV-MRSTAR-C model when the transition is not as smooth. This

simulation shows that when λ is large enough, it is hard to distinguish between two

different large λs because large values of λ make the transition function nearly a step

function. However, a large λ value leads to a larger separation between regimes so that

the smooth transition parameters are easier to estimate. In other words, large values

of λ lead to better estimations of the smooth transition parameters in terms of the

mean and the standard deviation, while smaller values of λ are easier to be estimated.

Moreover, this simulation also suggests a larger sample size improves the estimation of
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small values of λ; i.e., under large sample sizes, the average of the posterier means of

every parameter is closer to the true value and the standard deviation of the posterior

means of every parameter is smaller.

2.3.3 Simulation 3: Semiparametric SV-LSTAR-Cv

Similar to SV-LSTAR-Cv, we generate 100 datasets of {ut}, {νt}, {ht}, and {yt}

processes of length T = 1000 with M(st;λ, θj) = M(νt−1; 1, 0) = 1/{1 + exp(−νt−1)}.

The observation process {yt} and the latent process {ht} are generated as

yt = exp(ht/2)εt, εt
iid∼ St(1/3, 3),

ht = φ1ht−1 + φ2ht−1
1

1 + exp{−νt−1}
+ σhηt,

where φ1 = 0.8, φ2 = 0.15, σh = 1, and {ηt} is Gaussian white-noise and St{(v −

2)/v, v} denotes a Student-t density standardized to variance 1 and v degree of

freedom. Under simulation, we compare the estimation of the SV-LSTAR-Cv and

the semiparametric SV-LSTAR-Cv models. For each simulated dataset, we run the

MCMC simulation with 15, 000 draws and keep the last 10, 000 for inference in each

MCMC sample chain. We assess the MCMC algorithm’s convergence using both trace

plots of the sample chains and the Gelman-Rubin diagnostic. We randomly pick 10 of

the 100 simulated datasets and generate three sample chains for each of the parame-

ters and assess their convergence. Visual inspection of the trace plots of the sample

chains does not show any evidence of lack of convergence for any of the parameters

and the Gelman-Rubin statistic, R̂, is less than 1.02 for all parameters. The con-

vergence of the nonparametric parameters of the DPM-P model can not be directly

25



Table 2.3: Summary of parameter estimation for the SV-MRSTAR-C model based
on 100 simulated datasets. We report the mean and standard deviation (s.d.) of the
posterior means for the series length T = 1000, 2000 and λ = 20, 50 in the second
simulation study (Section 2.3.2).

T = 1000 a1 b1 a2 b2 a3 b3 θ1 θ2
True 0 0.7 -0.5 0.8 -1.5 0.95 -1 1
Mean 0.0019 0.7020 -0.4960 0.8447 -1.5510 0.9475 -1.0185 1.0402
s.d. 0.1924 0.0360 0.2486 0.0337 0.1912 0.0223 0.0730 0.0644

λ = 20 γ1 γ2 γ3 σ2
h λ

True 1 -1.5 2.5 1 20
Mean 0.9748 -1.5032 2.5277 1.0594 26.2819
s.d. 0.0705 0.0953 0.1193 0.1313 5.3307

T = 2000 a1 b1 a2 b2 a3 b3 θ1 θ2
True 0 0.7 -0.5 0.8 -1.5 0.95 -1 1
Mean 0.0016 0.6972 -0.5012 0.8451 -1.4802 0.9481 -1.0213 1.0327
s.d. 0.1582 0.0304 0.1861 0.0276 0.1595 0.0207 0.0570 0.0490

λ = 20 γ1 γ2 γ3 σ2
h λ

True 1 -1.5 2.5 1 20
Mean 0.9805 -1.5061 2.5302 1.0538 24.1877
s.d. 0.0612 0.0731 0.0891 0.1074 4.6723

T = 1000 a1 b1 a2 b2 a3 b3 θ1 θ2
True 0 0.7 -0.5 0.8 -1.5 0.95 -1 1
Mean 0.0016 0.7017 -0.4965 0.8443 -1.5570 0.9479 -1.0193 1.0322
s.d. 0.1854 0.03643 0.2444 0.0302 0.1864 0.0221 0.0704 0.0633

λ = 50 γ1 γ2 γ3 σ2
h λ

True 1 -1.5 2.5 1 50
Mean 0.9901 -1.5034 2.5138 1.0565 92.9030
s.d. 0.0700 0.0927 0.1120 0.1288 16.0126

T = 2000 a1 b1 a2 b2 a3 b3 θ1 θ2
True 0 0.7 -0.5 0.8 -1.5 0.95 -1 1
Mean 0.0014 0.7013 -0.4968 0.8376 -1.5331 0.9485 -1.0134 1.0308
s.d. 0.1574 0.0305 0.1783 0.0269 0.1455 0.0203 0.0542 0.0472

λ = 50 γ1 γ2 γ3 σ2
h λ

True 1 -1.5 2.5 1 50
Mean 0.9884 -1.5036 2.4921 1.0550 96.1298
s.d. 0.0566 0.0727 0.0883 0.1079 15.2207

Note: ai denotes
∑i

j=1 φ2j−1 = φ1 + φ3 + · · ·+ φ2i−1

and bi denotes
∑i

j=1 φ2j = φ2 + φ4 + · · ·+ φ2i.
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Table 2.4: Summary of parameter estimation for regular SV-LSTAR-Cv and semi-
parametric SV-LSTAR-Cv based on 100 simulated stochastic volatility datasets with
Student-t innovations. We report the posterior mean and standard deviation (s.d.) of
the Bayesian estimates in the third simulation study. Note that the semiparametric
SV-LSTAR-Cv model has no intercept in the volatility process (i.e., no “as1” or “as2”)
and some parameters have different interpretations in the two models and therefore
are not directly comparable.

Parametric ap1 bp1 ap2 bp2 θ1 θ2 γ1 γ2 γ3 σ2
h

True 0.0 0.8 0.0 0.95 -1 1 0.2 -0.3 0.5 1
Mean 0.110 0.747 0.079 0.849 -1.013 0.996 0.178 -0.297 0.494 1.914
s.d. 0.223 0.080 0.181 0.067 0.056 0.059 0.054 0.134 0.058 0.298

Semiparametric bs1 bs2 θ1 θ2 γ1 γ2 γ3 σ2
h

True 0.8 0.95 -1 1 0.2 -0.3 0.5 1
Mean 0.787 0.919 -1.030 1.002 0.189 -0.269 0.492 1.334
s.d. 0.044 0.033 0.051 0.062 0.045 0.123 0.063 0.232

Note: a1 = φ1, a2 = φ1 + φ3, b1 = φ2 and b2 = φ2 + φ4.

assessed as these mixture parameters cannot be identified (Jensen and Maheu, 2010).

The properties of the Bayesian MCMC estimators are shown in Table 2.4. Specif-

ically, when the innovations of the returns have heavy-tailed distributions, the as-

sumption of Gaussian innovations for the returns makes the SV-LSTAR-Cv model

overestimate the innovation variance of the volatility and significantly underestimate

the slope of the autoregressive process of the volatility, whereas the bias of slope esti-

mated by semiparametric SV-LSTAR-Cv is substantially less (Table 2.4). Thus, the

flexible semiparametric prior can better characterize the variations of the volatility

when the innovations of the volatility are significantly non-Gaussian.
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2.4 Application and Comparison with SV-TAR:

British Petroleum Stock Returns

We use an application of the proposed model to evaluate the performance of each

model to real data. Also, a comparison between the proposed models and SV-

TAR model shows the necessity of introducing a smooth transition into the regime-

switching in some cases.

2.4.1 Application of Multi-Regime Smooth Transition Stochas-
tic Volatility Models

We analyze the British Petroleum (BP) stock series listed on the New York Stock

Exchange (NYSE). The variables of interest are the return of its daily closing prices

and its trading volume, both of which are corrected by dividends and stock splits. The

analysis period of the BP stock return series begins 1/2/2009, and ends on 9/30/2016.

The first 1850 returns, which end on 5/10/2016, are used as the in-sample period.

The one-step-ahead rolling prediction of returns starts from 5/11/2016, and ends on

9/30/2016. A one-step-ahead prediction forecasts the response variable at the next

step (next day in our cases) based on the observed data. In our stock return cases,

one-step-ahead rolling predictions are the predicted returns of successive days, and

each of the predictions is based on the observed data until that day.

An exploratory analysis is first conducted to examine the behavior of the returns

in different regimes. We utilize daily trading volume as one of the covariates in the

multi-regime process and consider three regimes: high volume (top five daily trading

volume over the previous 50 days), low volume (bottom five daily trading volume over

the previous 50 days), and medium volume (otherwise). Thus, every day is classified
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into one of the three regimes according to their rank of trading volumes among the

previous 50 days (including itself). This classification was previously used in Gervais

et al. (2001) to characterize the different behavior of returns in different regimes.

Thus, we believe that these three regimes may be useful in our case.

In our analysis, we apply the classic SV-AR(1) (Kim et al., 1998), SV-LSTAR-Cv,

SV-MRSTAR-C and semiparametric SV-LSTAR-Cv models to the BP data. Using

SV-MRSTAR-C model, the sample chain of the smoothness parameter in the MCMC

algorithm does not achieve convergence. As previously discussed, depending on the

smoothness of transitioning between regimes, this parameter can be difficult to es-

timate. Therefore, the SV-MRSTAR-C model is removed from consideration and

we compare the remaining models. We use the proposed three regimes and choose

zt = (lt, ut−1,1, ut−1,2)′, where lt is the logarithm of daily trading volume of the BP

stock, and ut,j = 1 if ut = j, ut,j = 0 otherwise for j = 1, 2, 3. We run the MCMC

algorithm of 15, 000 draws and keep the last 10, 000 for inference in each MCMC

sample chain. We assess the MCMC algorithm’s convergence using both trace plots

of the sample chains and the Gelman-Rubin diagnostic. We generate three sample

chains for each of the parameters and assess their convergence. Visual inspection of

the trace plots of the sample chains does not show any evidence of lack of convergence

for any of the parameters, and the Gelman-Rubin statistic, R̂, is less than 1.02 for

all parameters. The model comparison in Table 2.5 contains parameter estimates,

log-likelihood, the deviance information criterion (DIC), and the Bayesian p-value.

DIC proposed by Spiegelhalter et al. (2002) is a criterion used in Bayesian model

selection, and models with smaller DIC values are preferred. The Bayesian p-value

is used as a check of goodness-of-fit (Gelman et al., 1996). A Bayesian p-value close
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to 0.5 indicates a good model fit, while a Bayesian p-value close to one or zero indi-

cates overfitting or underfitting, respectively. In this case, we use the deviance as the

discrepancy measure, i.e., −2log p(y|·). The Bayesian p-values of the SV-AR(1), the

SV-LSTAR-Cv and the semiparametric SV-LSTAR-Cv are 0.413, 0.507 and 0.773,

respectively. This suggests that both the SV-AR(1) and the SV-LSTAR-Cv do not

exhibit lack of fit, while the semiparametric SV-LSTAR-Cv may not fit the data well.

It is very likely that the innovations of the BP returns do not substantially devi-

ate enough from a Gaussian distribution so that the semiparametric SV-LSTAR-Cv

model can benefit from the flexible semiparametric prior. Moreover, the DIC is hard

to obtain for the semiparametric SV-LSTAR-Cv model. We focus on the comparison

of the SV-AR(1) and the SV-LSTAR-Cv models. The DICs of the SV-AR(1) and

the SV-LSTAR-Cv are 5210.219 and 5257.157, respectively, which can be viewed as

similar. Although, the SV-AR(1) has slightly lower DIC, the SV-LSTAR-Cv provides

additional regime specific inferences.

Parameter estimates of the SV-LSTAR-Cv are shown in Table 2.6. Particularly,

the posterior mean (95% credible interval) of the intercept parameters a1 and a2

are −0.2116 (−0.4540, 0.0969) and −0.3772 (−0.5811,−0.1299), respectively. The

posterior mean (95% credible interval) of the slope parameters b1 and b2 are 0.6312

(0.5161, 0.8742) and 0.9547 (0.9171, 0.9811), respectively. Based on non-overlapping

95% CIs, these Bayesian estimates show a significant regime-switching in the slope of

the volatility process. This result suggests that when the trading volume is relatively

high over the previous 50 trading days, there is a higher persistence in the volatility

level. When the trading volume is relatively low, higher persistence in the volatility

level is low. That is, when the trading volume grows from a small value to a large

30



Table 2.5: Model Comparison of SV-AR(1), SV-LSTAR-Cv and semiparametric SV-
LSTAR-Cv for BP returns in terms of log likelihood, DIC, and Bayesian p-value based
on a deviance discrepency measure.

SV-AR(1) SV-LSTAR-Cv
Log likelihood 5151.599 5179.191

DIC 5210.219 5257.157
Bayesian p-value 0.413 0.507

value, the expected value of the persistence of the volatility moves from 0.6312 towards

0.9547.

The estimated volatility using SV-LSTAR-Cv is shown together with returns and

daily trading volumes in Figure 2.2. From this plot, we can see that the returns, the

trading volume, and the estimated volatility all show a significant peak between April

2010 and July 2010 and a minor peak around August 2011. The BP oil spill happened

in April 2010; that is, the oil rig explosion occurred on the night of 4/20/2010. This

event is noted in Figure 2.2 by the left vertical dashed line. Since this event, the BP

stock returns exhibited high volatility through July 2010. The right dashed line in

Figure 2.2 denotes 8/1/2011, around which the oil slick was reported for a second time

and raised the volatility of the BP stock returns once again. In short, using daily

trading volumes, the SV-LSTAR-Cv model successfully identifies regime-switching

and provides inference on the volatility behavior under different regimes, which is

something the SV-AR(1) model is unable to achieve. Finally, the estimated volatility

corroborates historical events relevant to the BP stock returns.

31



Figure 2.2: The top plot shows the absolute values of returns (grey line) and the
estimated volatility, exp(ht/2) (black line) from 1/2/2009 to 5/9/2016. The bottom
plot shows the log daily trading volume from 1/2/2009 to 5/9/2016. The left vertical
dashed line denotes 4/20/2010, the day of the BP oil rig explosion. The right dashed
line denotes 8/1/2011, the date around which the oil slicks were reported a second
time.
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Table 2.6: Posterior mean and 95% credible interval of each parameter of SV-LSTAR-
Cv model for BP returns. Recall that a1 and a2 are the lower limit and upper limit
of autoregressive intercept, repectively and b1 and b2 are the lower limit and upper
limit of autoregressive slope, repectively.

a1 b1 a2 b2 θ1 θ2
Posterior mean -0.2116 0.6312 -0.3772 0.9547 -1.8111 3.6494

Lower limit of 95% CI -0.4540 0.5161 -0.5811 0.9171 -2.4987 3.9590
Upper limit of 95% CI 0.0969 0.8742 -0.1299 0.9811 -1.2843 4.0599

γ1 γ2 γ3 σ2
t

Posterior mean 0.6404 -2.0085 -1.0152 0.0561
Lower limit of 95% CI 0.6232 -2.3790 -1.3178 0.0320
Upper limit of 95% CI 0.6674 -1.7018 -0.7590 0.0803

Note: a1 = φ1, a2 = φ1 + φ3, b1 = φ2 and b2 = φ2 + φ4.

2.4.2 Comparison with the SV-TAR model

To assess the necessity of smooth transition in the latent volatility process, we com-

pare SV-LSTAR-Cv model with a reduced model without smooth transition model

(SV-TAR). This model is defined as follows

yt = exp(ht/2)εt (2.20)

ht = aut−1 + but−1ht−1 + σhηt, (2.21)

where {at} and {bt} are fixed intercepts and slopes of autoregressive process under

different known regimes. The comparison is conducted using the same BP stock data

as the application example so that the BP stock returns are yt for t = 1, . . . , T . We

use the same regimes ut, t = 1, . . . , T , defined as in the application of SV-LSTAR-Cv.

As such, the comparison is focused on the introduction of a smooth transition.

The inference of parameters in the SV-TAR is conducted through MCMC. Similar
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to SV-LSTAR-Cv model, we run the MCMC algorithm of 15, 000 draws and keep

the last 10, 000 for inference in each MCMC sample chain. We assess convergence

of the MCMC using both trace plots of the sample chains and the Gelman-Rubin

diagnostic. We generate three sample chains for each of the parameters and assess

their convergence. Visual inspection of the trace plots of the sample chains does

not indicate any lack of convergence for any of the parameters, and the Gelman-

Rubin statistic, R̂, is less than 1.01 for all parameters. The parameter estimate of

SV-TAR (Table 2.7) shows that the constant regime-wise intercepts and slopes do

not explain a large proportion of the volatility variations. Instead, the variations are

attributed to the innovation variance of the volatility. Large estimated innovation

variance leads to an unstable prediction of returns. One-step-ahead rolling prediction

MSE is used to assess the performance of each model. Among the one-step-ahead

predictions of the 100 returns from time t = 1001 to 1100, many MCMC samples of

the predicted of yt are extremely large. So, the posterior mean of the samples may

not be a good predictor. Thus, we use both posterior mean and median as predictors.

The prediction MSE of SV-TAR is the worst (see Table 2.8).

From the above result, we can see the SV-TAR model does not fit this BP stock

return data well. By considering a smooth transition in regime-switching, we can

explain the variations of the volatility better and obtain a better prediction of the

volatility.
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Table 2.7: Posterior mean and s.d. of each parameter of SV-TAR model, BP stock
return data. Each a, b are the constant regime-wise intercept and slope.

a1 b1 a2 b2 a3 b3 σ2
h

Posterior mean -7.0746 0.1075 -7.2204 0.0863 -6.4383 0.0815 30.3238
S.D. 1.6949 0.1922 0.6998 0.0850 1.5053 0.2230 1.9281

Table 2.8: The one-step-ahead prediction MSE of each model, BP stock return data.
This MSE is defined as

∑
(ỹ2
t − y2

t )
2. SV-TAR (mean) uses the posterior mean as

predictor and the SV-TAR (median) uses the posterior median as the predictor.

Model MSE
SV-LSTAR-Cv 3.0850e− 08

SV-TAR (mean) 2.2725e+ 04
SV-TAR (median) 1.1213e+ 00
Regular SV-AR(1) 2.8755e− 08

2.5 Discussion

In this chapter, we proposed a new Bayesian smooth transition stochastic volatil-

ity model with ordered categorical variables. This model allows us to utilize other

auxiliary variables to characterize the regime-switching behavior of the volatility. Ad-

ditionally, a flexible Dirichlet mixture prior was introduced in the model for the case

when the innovations show significant non-Gaussian behavior. Similar to the SV-

AR(1) model, in our examples, the proposed multi-regime smooth transition model

provided an adequate fit to the return data. In contrast, the multi-regime smooth

transition models can provide an additional layer of inference on the volatility be-

havior under each regime. The comparison with SV-TAR shows that the smooth

transition between different regimes of the volatility is necessary to explain the vari-

ations of the volatility.
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For the different financial assets, the choice of categorical variables can vary, e.g.,

stock index (SP500, Dow Jones Industrial Average), crude oil prices, or any other in-

formation affecting the volatility. Moreover, the proposed smooth transition stochas-

tic volatility models with ordered categorical variables applies to different types of

time series with time-varying variance, e.g., environmental data and ecological data,

among others.

2.6 Appendix: the MCMC Algorithm

For convenience, we make X̃(s;λ,θ) and Z denote the design matrices, such that

X̃(s;λ,θ) =



x′1 x′1M(s1;λ, θ1) · · · x′1M(s1;λ, θq)

x′2 x′2M(s2;λ, θ1) · · · x′2M(s2;λ, θq)

...
...

...

x′T x′TM(sT ;λ, θ1) · · · x′TM(sT ;λ, θq)


, Z =



z′1

z′2
...

z′T


,

where and x′t = (1, ht−1)′, are respectively the design matrices of the autoregressive

process of {ht} and the transition process {νt}. The transition function M(·) will be

specified in each of the following models.

2.6.1 Detailed Sampling Algorithms for SV-LSTAR-Cv

In the kth iteration of the MCMC simulation, do the following steps and move onto

next iteration.

1) Generate {h(k)
t } from p(h1, h2, . . . , hT |·) using FFBS (Carter and Kohn, 1994;

Frühwirth-Schnatter, 1994). Conditional on all the other parameters, {ht} are the
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latent variable in the following dynamic linear model

y∗t = log(y2
t ) = ht + ε∗t , ε∗t ∼ N(mrt , w

2
rt), rt ∈ {1, . . . , 10} with known {mrt , w

2
rt}

ht =

(
φ1 +

φ3

1 + exp{−νt−1}

)
+

(
φ2 +

φ4

1 + exp{−νt−1}

)
ht−1 + ηt

= Ct−1 +Dt−1ht−1 + ηt

h0 ∼ N

(
0,

σ2

1− (φ2 + φ4)2

)
,

(2.22)

2) Sample σ
2(k)
h from σ2

h|h, µ,φ ∼ IG(a∗, b∗), where a∗ = T/2 + aσ and

b∗ = 1
2

(
(h− X̃(k−1)φ(k−1))′(h− X̃(k−1)φ(k−1)) + h0/(1− φ2 − φ4)2

)
+bσ, where X̃(k−1)

denotes X̃(k−1)(ν(k−1); 1,0).

3) Sample φ(k) from its full conditional distribution

N
(

(X̃
′(k−1)X̃(k−1) + σ

2(k)
h δ2I)−1X̃

′(k−1)h, (X̃
′(k−1)X̃(k−1) + σ

2(k)
h δ2I)−1

)
.

4) Sample γ(k) from its full conditional distribution

N
(

(Z ′Z + σ
2(k)
h δ2I)−1Z ′ν(k−1), σ

2(k)
h (Z ′Z + σ

2(k)
h δ2I)−1

)
.

5) Draw samples of θj sequentially from the following truncated normal proposal

distribution for j = 1, . . . , q, J(θ
(k)
j |θ(j−1), θ

(k−1)
j , θ

(k−1)
(j+1) ) = N

[θ
(k)
(j−1)

,θ
(k−1)
(j+1)

]
(θ

(k−1)
j , σ2

θ),

where σ2
θ is a tuning parameter and controls the acceptance rate and N[a,b](µ, σ

2) de-

notes a truncated normal distribution with mean µ and variance σ2 and a truncated
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range [a, b]. Next, calculate

Rθ =

q∏
j=1

Φ

(
θ
(k−1)
(j+1)

−θ(k−1)
(j)

σθ

)
− Φ

(
θ
(k)
(j)
−θ(k−1)

(j−1)

σθ

)
Φ

(
θ
(k)
(j+1)

−θ(k)
(j)

σθ

)
− Φ

(
θ
(k−1)
(j)

−θ(k)
(j−1)

σθ

)

×
N∏
j=1

N∑
j=1

Iut=j Φ
(
θ

(k)
j − z′tγ(k)

)
− Φ

(
θ

(k)
j − z′tγ(k)

)
Φ
(
θ

(k−1)
j − z′tγ(k)

)
− Φ

(
θ

(k−1)
j − z′tγ(k)

)


and accept the new draw θ(k) with probability min(Rθ, 1).

6) Sample {νt} from its full conditional distribution

p(νt|.) ∝ exp

{
−1

2
(νt − z′tγ)2

}
× exp

{
−1

2
(ht+1 − Ct −Dtht)

2

}
I(θj−1≤νt<θj),

where Ct and Dt are defined in (2.22). Using a Metropolis-Hastings step, we choose

a truncated normal proposal distribution for each νt as follows

J(ν
(k)
t |ν

(k−1)
t ) =N(ν

(k−1),σ2
ν

t )I
[θ

(k)
j−1,θ

(k)
j )

=
1

Φ

(
θ
(k)
j −ν

(k−1)
t

σν

)
− Φ

(
θ
(k)
j−1−ν

(k−1)
t

σν

)

× 1√
2πσ2

ν

exp

−1

2

(
ν

(k)
t − ν

(k−1)
t

σν

)2
 I

(θ
(k)
j−1≤ν

(k)
t <θ

(k)
j )
.

38



Finally, we calculate the ratio

Rν = min

{
p(ν

(k)
t |·)J(ν

(k−1)
t |ν(k)

t )

p(ν
(k−1)
t |·)J(ν

(k)
t |ν

(k−1)
t )

, 1

}

and accept the new draw ν
(k)
t with probability Rν .

7) Observe that y∗t − ht = ε∗t with εt|r∗t ∼ N(mrt , w
2
rt), one can easily obtain the

posterior probability P (rt = k|·) for k ∈ {1, . . . , 10} and t ∈ {1, . . . , T} according to

P (rt = k|·) ∝ P (rt = k)
1

wk
exp

{
−(ε∗t −mk)

2

2w2
k

}
,

where P (rt = k) denotes the mixture weights of the kth components (Omori et al.,

2007).

2.6.2 Detailed Sampling Algorithms for SV-MRSTAR-C

In the kth iteration of MCMC, do the following steps and move onto next iteration.

1) Generate {h(k)
t } from p(h1, h2, . . . , hT |·) using FFBS analogous to SV-LSTAR-Cv.

2) Sample σ
2(k)
h from σ2

h|h, µ,φ ∼ IG(a∗, b∗), where a∗ = T/2 + aσ and

b∗ = 1
2

(
(h− X̃(k−1)φ(k−1))′(h− X̃(k−1)φ(k−1)) + h0/(1− φ2 − φ4)2

)
+bσ, where X̃(k−1)

denotes X̃(k−1)(z′t−1γ
(k−1);λ,θ).

3) Sample φ(k) from its full conditional distribution

N{(X̃ ′(k−1)X̃(k−1) + σ
2(k)
h δ2I)−1X̃

′(k−1)h,(X̃
′(k−1)X̃(k−1) + σ

2(k)
h δ2I)−1}.
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4) Sample γ(k) from its full conditional distribution

N{(Z ′Z + σ
2(k)
h δ2I)−1Z ′ν(k−1),σ

2(k)
h (Z ′Z + σ

2(k)
h δ2I)−1}.

5) Draw samples of θj sequentially from the following truncated normal proposal

distribution for j = 1, . . . , q, J(θ
(k)
j |θ(j−1), θ

(k−1)
j , θ

(k−1)
(j+1) ) = N

[θ
(k)
(j−1)

,θ
(k−1)
(j+1)

]
(θ

(k−1)
j , σ2

θ).

Then, use a normal proposal distribution for the logarithm of λ such that

J(log(λ(k))|log(λ(k−1))) = N(log(λ(k−1)), σ2
λ) and a normal proposal distribution for γ

such that J(γ(k)|γ(k−1)) = N(γ(k−1),Σγ), where σ2
θ , σ

2
λ and Σγ are tuning parameters

and control the acceptance rate. Finally, calculate

Rθ =

q∏
j=1

Φ

(
θ
(k−1)
(j+1)

−θ(k−1)
(j)

σθ

)
− Φ

(
θ
(k)
(j)
−θ(k−1)

(j−1)

σθ

)
Φ

(
θ
(k)
(j+1)

−θ(k)
(j)

σθ

)
− Φ

(
θ
(k−1)
(j)

−θ(k)
(j−1)

σθ

)
×

T∏
t=1

q∑
j=1

{
Iut=j

Φ(θ
(k)
j − z′tγ(k))− Φ(θ

(k)
j − z′tγ(k))

Φ(θ
(k−1)
j − z′tγ(k))− Φ(θ

(k−1)
j − z′tγ(k))

}

×
exp

(
− 1

2σ
2(k)
h

(h− X̃(k)φ(k))′(h− X̃(k)φ(k))

)
exp

(
− 1

2σ
2(k)
h

(h− X̃(k−1)φ(k))′(h− X̃(k−1)φ(k))

) × IG(λ(k);Aλ, Bλ)

IG(λ(k−1);Aλ, Bλ)

and accept the new draw (θ(k), λ(k), γ(k)) with probability min(Rθ,1). In cases where

the acceptance rate is low, the sampling can be speeded up by iteratively drawing

samples of (θ(k), λ(k), γ(k)) for multiple times and taking the sample of the last itera-

tion. In practice, we find 20 typically yields satisfactory acceptance rates.

6) Observing that y∗t − ht = ε∗t with ε∗t |rt ∼ N(mrt , w
2
rt), we obtain the posterior
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probabilities P (rt = k|·) for k ∈ {1, . . . , 10} and t ∈ {1, . . . , T} according to

P (rt = k|·) ∝ P (rt = k)
1

wk
exp

{
−(ε∗t −mk)

2

2w2
k

}
,

where P (rt = k) denotes the mixture weights of the kth components (Omori et al.,

2007) shown in Table 2.1.

2.6.3 Detailed Sampling Algorithms for Semiparametric SV-
LSTAR-Cv

In the kth iteration of MCMC, do the following steps and move onto next iteration.

1) Generate σ
2(k)
h from IG

(
T/2 + aσ, (h− X̃(k−1)φ(k−1))′(h− X̃(k−1)φ(k−1))/2 + bσ

)
,

where X̃(k−1) denotes X̃(k−1)(ν(k−1); 1,0) and x′t = (ht−1)′.

2) Sample φ(k) from its full conditional distribution

N
(

(X̃
′(k−1)X̃(k−1) + σ2(k)δ2I)−1X̃

′(k−1)h, (X̃
′(k−1)X̃(k−1) + σ2(k)δ2I)−1

)
.

3) Sample γ(k) from its full conditional distribution

N
(
(Z ′Z + σ2(k)δ2I)−1Z ′ν(k−1), σ2(k)(Z ′Z + σ2(k)δ2I)−1

)
.

4) Draw samples of θj sequentially from the following truncated normal proposal

distribution for j = 1, . . . , q, J(θ
(k)
j |θ(j−1), θ

(k−1)
j , θ

(k−1)
(j+1) ) = N

(θ
(k)
(j−1)

,θ
(k−1)
(j+1)

)
(θ

(k−1)
j , σ2

θ),
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where σ2
θ is a tuning parameter and controls the acceptance rate. Next, calculate

Rθ =

q∏
j=1

Φ

(
θ
(k−1)
(j+1)

−θ(k−1)
(j)

σθ

)
− Φ

(
θ
(k)
(j)
−θ(k−1)

(j−1)

σθ

)
Φ

(
θ
(k)
(j+1)

−θ(k)
(j)

σθ

)
− Φ

(
θ
(k−1)
(j)

−θ(k)
(j−1)

σθ

)

×
T∏
t=1

q∑
j=1

Iut=j Φ
(
θ

(k)
j − z′tγ(k)

)
− Φ

(
θ

(k)
j − z′tγ(k)

)
Φ
(
θ

(k−1)
j − z′tγ(k)

)
− Φ

(
θ

(k−1)
j − z′tγ(k)

)


and accept the new draw θ(k) with probability min(Rθ, 1).

5) Given that the full conditional distribution of latent variable νt is

p(νt|.) ∝ exp

{
−1

2
(νt − z′tγ)2

}
exp

{
−1

2
(ht+1 − at − btht)2

}
I(θj−1≤νt<θj),

it is sampled through a Metropolis-Hastings (MH) step. We use truncated normal

proposal distribution for each νt as follows

J(ν
(k)
t |ν

(k−1)
t ) =N(ν

(k−1),σ2
ν

t )I
[θ

(k)
j−1,θ

(k)
j )

=
1

Φ

(
θ
(k)
j −ν

(k−1)
t

σν

)
− Φ

(
θ
(k)
j−1−ν

(k−1)
t

σν

)

× 1√
2πσ2

ν

exp

−1

2

(
ν

(k)
t − ν

(k−1)
t

σν

)2
 I

(θ
(k)
j−1≤ν

(k)
t <θ

(k)
j )
.

Finally, we calculate the ratio

Rν = min

{
p(ν

(k)
t |·)J(ν

(k−1)
t |ν(k)

t )

p(ν
(k−1)
t |·)J(ν

(k)
t |ν

(k−1)
t )

, 1

}
,
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and accept the new draw ν
(k)
t with probability Rν .

6) Sampling ht by random length blocks using Metropolis-Hastings algorithm as

mentioned in Section 2.2.2. Let h(t,τ) = (ht, ht+1, . . . , , hτ )
′, 1 ≤ t ≤ τ ≤ T and

its length lt = τ − t + 1 is one plus a random draw from a Poisson distribution with

the hyperparameter κh = 3; i.e., E[lt] = 4 (κh was selected by Jensen and Maheu

(2010) to minimize the numerical inefficiency of model parameters). Following the

approximation of Jensen and Maheu (2010) the proposal density of h(t,τ) is obtained

as

fSt(h(t,τ)|, ζ(t,τ),Σ(t,τ), ν) ∝
[
1 + h(t,τ) − ζ ′(t,τ)Σ

−1
(t,τ)(h(t,τ) − ζ(t,τ))/ν

]−(lt+ν)/2

,

where fSt(h(t,τ)|, ζ(t,τ)Σ(t,τ), ν) is the density of a lt-variate Student-t distribution with

mean ζ(t,τ) = m(t,τ) − 0.5Σ(t,τ)(1lt − D(t,τ)ỹ
2
(t,τ)), covariance Σ(t,τ)ν/(ν − 2), and ν

degrees of freedom. For the endpoints h1 and hn, we generate them individually

using the same proposal density. Given the previous draw of h(t,τ), the candidate

draw from ĥ(t,τ) ∼ St(ζ(t,τ),Σ(t,τ), ν), will be accepted with the probability as given

below

min

{
f(y(t,τ)|φ(t,τ), ĥ(t,τ))π(ĥ(t,τ)|ht−1, ht+1, ψ)fSt(h(t,τ)|ζ(t,τ),Σ(t,τ), ν)

f(y(t,τ)|φ(t,τ), h(t,τ))π(h(t,τ)|ht−1, ht+1, ψ)fSt(ĥ(t,τ)|ζ(t,τ),Σ(t,τ), ν)
, 1

}
,

where f(y(t,τ)|φ(t,τ), h(t,τ)) =
∏τ

j=t fN(yj|ηj, ω−2
j exp{hj}) and π(h(t,τ)|ht−1, ht+1, φ) =∏τ+1

j=t exp
{
− (hj−φ1hj−1G(sj−1;νj−1,θ1)−···−φqG(sj−1;νj−1,θq))

2

2σ2
ν

}
.

7) Sampling θω and sω with a two-step procedure:
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Step 1. Sample sω and kω by drawing ω2
t for t = 1, . . . , T from

ωt|y∗t , ω(t), s(t)
ω ∼c

α

α + T − 1
g(yt)G(dωt|y∗t )

+
c

α + T − 1

κ(t)∑
j−1

n
(t)
j f(yt|µ, exp{ht}ω−2

t )δω2
j
(dω2

t ),

where g(yt) = fSt(yt|µ, exp{ht}ν0/s0, ν0), and G(dωt|yt) is the distribution Γ(ν̄, s̄t)

with ν̄ = ν0 + 1/2 and s̄t = s0 + (yt − µ)2/(2exp{ht}), c is the integrating constant

and n
(t)
j is the number of times that the jth cluster occurs at tth iteration.

Step 2. Given the sω and kω from Step 1, sample ω2
j for j = 1, . . . , kω, from

ω2
j |{yt : sωt = j} ∝

∏
t:sωt=j

fN(yt|µ, exp{−ht/2}, ω−2
j )K0(dωj),

which is the Γ(ν̄j, s̄j) distribution with ν̄j = ν0 + nj/2 and s̄j = s0 +
∑

t:sωt=j
(yt −

µ)2/(2exp{ht}).

8) Sample α from π(α|kω) by first sampling ξ, s.t., ξ|α, kω ∼ Beta(α + 1, T ), and

next sampling α from the mixture distribution, s.t., α|ξ, kω ∼ πξΓ(a+ kω, b− logξ) +

(1− πξ)Γ(a+ kω − 1, b− logξ), where πξ/(1− πξ) = (a+ kω − 1)/[n(b− logξ)].
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9) Sampling µ from N(µ̄, τ̄) where

µ̄ =

m/τ +
∑
t

ytexp{−ht}ω2
t

1/τ +
∑
t

exp{−ht}ω2
t

,

τ̄ =

(
1/τ +

∑
t

exp{−ht}ω2
t

)−1

.
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Chapter 3

Bayesian Circular Lattice Filters
for Multivariate Time Series
Analysis

3.1 Introduction

Multivariate time series data are measured and recorded for inquiries of interest in

subject-matter disciplines such as biology, ecology, economics, finance, and medicine.

For example, multivariate nonstationary time series models work well on correlated

economic indicators not only to use time-varying parameters to evaluate the effect of

policy changes and the resulting private sector behavior changes but also to under-

stand the effect of the changes in policy on other factors of the economy (Huerta and

Lopes, 2000; Primiceri, 2005; Nakajima et al., 2011; Hunter et al., 2017). Another ex-

ample is that multi-channel electroencephalography (EEG) data are analyzed through

their time-frequency representation to reveal how the neuronal activity in one area of
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the human brain may influence another (Ombao et al., 2005; Zhao and Prado, 2020).

In the big data era, the number of series of multivariate time series data and their

length have been increasing due to technological advances. Such an expansion is also

increasing data complexity. Thus, developing efficient methods that scale to such an

enormous amount of time series data is imperative.

Parametric and nonparametric approaches for analyzing multivariate time series

have been developed to reveal features both between multiple time series and within a

single time series itself. Some parametric methods, e.g., vector autoregressive (VAR)

models, are designed for stationary time series. Time-varying vector autoregressive

(TV-VAR) models and many other parametric models (Ombao et al., 2005; Kowal

et al., 2017), deal with multivariate nonstationary time series. There are also non-

parametric methods, e.g., multivariate time-dependent spectral analysis (Guo and

Dai, 2006), multivariate polynomial regression (Masry, 1996; Fan and Yao, 2008).

Parametric models of nonstationary multivariate time series play an increasingly

important role when modern techniques make high-dimensional data available for

analysis. They have several advantages: (1) easy to make forecasts, (2) straight-

forward assessment of uncertainty, (3) concise descriptions of the underlying model

scheme. The TV-VAR model is arguably the most widely used model among the

parametric methods. In the time domain, such models have been developed and ap-

plied to correlated economic and financial data variables (Primiceri, 2005; Del Negro

and Primiceri, 2015; Nakajima et al., 2011; Nakajima and West, 2013). In contrast,

the frequency domain helps to reveal features of the spectrum of each time series as

well as the coherence between them. For example, the applications of such approaches

to multi-channel EEG data can help us understand the brain’s connective activities
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(Ombao et al., 2005; Zhao and Prado, 2020), human speech signals (Ombao et al.,

2001) and multi-location climate data (Zhao and Prado, 2020) by estimating their

spectrum and coherence.

According to the assumptions often imposed on the innovation variance of TV-

VAR models, some of these methods belong to the class of stochastic volatility models

(Shephard, 2005), e.g., Primiceri (2005); Del Negro and Primiceri (2015); Nakajima

et al. (2011). In the Bayesian settings, these methods typically require Markov chain

Monte Carlo (MCMC) methods for estimation and, therefore, are computationally

expensive. Besides the class of models, some other methods for TV-VAR models as-

sume the innovation variance follows a random walk process. Gersch and Stone (1995)

proposed a frequentist method to estimate the (univariate) time-varying autoregres-

sive (TV-AR) model by imposing smoothing priors on the time-varying coefficients.

These methods used a two-stage estimation approach and assumed a constant inno-

vation covariance. The multivariate dynamic linear models (MDLMs) by West and

Harrison (1997) imposed random walk priors on the parameters. This method is less

stable and has a high computational cost. Based on MDLMs, Zhao and Prado (2020)

proposed multivariate Bayesian Lattice Filters (BLFs), that extend the approach of

Yang et al. (2016) for TV-VAR models and assumed a constant innovation covariance

to reduce the computation cost. The constant innovation covariance was estimated

by an approximate estimator (Triantafyllopoulos, 2007). Although the use of BLFs

dramatically reduces the computation cost, the computation time still increases ex-

ponentially with the increase of the dimension of the data. Moreover, the assumption

of constant innovation covariance may not be reasonable for many types of data. Sev-

eral methods (e.g., Primiceri (2005); Del Negro and Primiceri (2015); Nakajima et al.
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(2011)) successfully assumed and estimated a time-varying innovation covariance for

the multivariate economic index data and wind data.

To overcome the drawbacks of the high computation cost and the constant in-

novation covariance assumption, we propose an approach that uses a “one channel

at-a-time” scheme (Pagano, 1978) to transform the multivariate time series model

into a periodic univariate process and estimates it using a circular lattice filter ap-

proach. This “one channel at-a-time” algorithm efficiently reduces the computation

cost and makes parallel computing possible for high-dimensional data. Moreover,

this approach uses dynamic linear models (DLMs) to facilitate the estimation in each

stage of the lattice structure, allowing both the coefficients and the innovation vari-

ances to vary with time. By modeling the time-varying innovation covariance, the

resulting models are more broadly applicable.

The remainder of the chapter is organized as follows. First, we introduce the

Bayesian circular lattice filters (BCLFs) in Section 3.2 and evaluate the method via

simulation studies in Section 3.3. In Section 3.4, we apply the method to several

real datasets. Finally, Section 3.5 contains conclusion and discussion. We include the

detailed procedures and algorithms for parameter estimation, model selection, and

forecasting in the Appendix.

3.2 Methodology

In this chapter, we propose BCLFs to estimate the order and parameters of a TV-VAR

model. This approach is computationally efficient for high-dimensional multivariate

time series data due to its “one channel at-a-time” scheme and Bayesian lattice struc-
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ture. To introduce this approach, we begin with a general description of TV-VAR

models.

3.2.1 Time-varying Vector Autoregressive Model and Bayesian
Inference

Suppose an observed K-variate time series is defined as xt = (x1,t, . . . , xK,t)
′ for

t = 1, . . . , T . For this time series, we define the time-varying vector autoregressive

model with order P (TV-VAR(P )) as follows

xt =
P∑
p=1

Φp,txt−p + ut, ut ∼ N(0,Σt), (3.1)

where Φp,t and ut are the K × K autoregressive coefficient matrix for time lag p

and the K × 1 innovation vector at time t, respectively. The innovations, ut, at

time t are assumed to follow the multivariate Gaussian distribution with zero-mean

and time-dependent covariance matrix, Σt. Consequently, the TV-VAR model exem-

plifies nonstationary vector autoregressive models by the coefficient and innovation

covariance matrices varying over time.

Among many Bayesian inference approaches to TV-AR models, Φp,t are often

assumed to follow a random walk process, but the assumptions on ut vary. The

stochastic volatility class of TV-VAR models (Primiceri, 2005; Del Negro and Prim-

iceri, 2015; Nakajima et al., 2011) assume the logarithm of the innovation covariance

follows a random walk or an autoregressive process. As such, these models can capture

abruptly changing innovation variance. Alternatively, MDLMs provide full posterior

inference for TV-VAR models and assume the innovation covariance follows a ran-
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dom walk process. This assumption allows us to use the idea of BLFs to improve

the efficiency of the estimation. The inference of MDLMs involves potentially high-

dimensional matrix computation. Thus, the usage is limited to those time series of

a small number of series and TV-VAR models of low orders. Zhao and Prado (2020)

proposed a multivariate BLF in which the computational cost increases linearly with

the model order. Nevertheless, this approach is still computationally expensive be-

cause the computational cost still increases exponentially with the number of series.

To completely address this issue, we propose a way to avoid cumbersome matrix

calculations in the Bayesian BLFs.

3.2.2 Time-varying Periodic Time Series

Pagano (1978) proposed a “one-channel-at-a-time” modeling approach to break the

vector autoregressive (VAR) model into scalar periodic AR processes. This approach

makes the computational cost increase linearly rather than exponentially with the

model order. Using this idea, for a K-variate TV-VAR model as (3.1), we consider

an LDL decomposition (also called modified Cholesky decomposition), such that,

Σt = LtWtL
′
t, where Lt is a lower unit triangular matrix and Wt is a diagonal matrix.

With both sides of (3.1) premultiplied by the inverse of Lt, the covariance matrix

reduces to a diagonal matrix Wt, such that Wt = diag(σ2
1,t, . . . , σ

2
K,t), we obtain the

instantaneous response-orthogonal innovations model (Gersch and Stone, 1994, 1995;

Kitagawa and Gersch, 1996)

L−1
t xt =

P∑
p=1

Ap,txt−l + εt, εt ∼ N(0,Wt), (3.2)
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with εt is transformed from ut and Ap,t is transformed from Φp,t, such that Ap,t =

L−1
t Φp,t. (3.2) is the model we actually estimate. The parameter estimation of (3.1)

is achieved through a transformation from that of (3.2). By interlacing the mul-

tiple series in this instantaneous response-orthogonal innovations model, we obtain

an equivalent periodic TV-AR model, in which it is defined that yk+Kt = xk,t+1,

k = 1, . . . , K, t = 0, . . . , T − 1. This periodic TV-AR model is given as

yk+Kt =

Mk∑
m=1

am,k+Ktyk+Kt−m + εk+Kt, k = 1, . . . , K, t = 1, . . . , T, (3.3)

where εk+Kt is the innovation with variance σ2
k+Kt = σ2

k,t and Mk = KP +k−1 is the

order of the kth series , yk+Kt for t = 0, . . . , T − 1. As such, a TV-VAR model given

by (3.1) is rewritten as a periodic TV-AR model as in (3.3). As an example, for K

= 3, P = 2, (3.3) can be written in matrix form as


1 0 0

−a1,3t+2 1 0

−a2,3t+3 −a1,3t+3 1



y3t+1

y3t+2

y3t+3

 =


a3,3t+1 a2,3t+1 a1,3t+1

a4,3t+2 a3,3t+2 a2,3t+2

a5,3t+3 a4,3t+3 a3,3t+3



y3t−2

y3t−1

y3t

+


a6,3t+1 a5,3t+1 a4,3t+1

a7,3t+2 a6,3t+2 a5,3t+2

a8,3t+3 a7,3t+3 a6,3t+3



y3t−5

y3t−4

y3t−3

+


ε3t+1

ε3t+2

ε3t+3

 , t = 1, . . . , T.

(3.4)

The parameters in (3.1) and the parameters in the corresponding periodic TV-AR
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model as in (3.3) have the relationship:

Φp,t = −LtAp,t (3.5)

Σt = LtWtL
′
t. (3.6)

This relationship allows us to rewrite a TV-VAR model as a periodic TV-AR model,

and vice versa.

3.2.3 Circular Lattice Filter

For multivariate autoregressive models, Sakai (1982) developed a circular lattice struc-

ture to estimate the autoregressive coefficients iteratively. This approach allows us to

estimate the autoregressive coefficients one series at a time and, therefore, minimizes

the need to calculate big matrices. This strategy makes the computational cost in-

crease linearly, rather than exponentially, with the model order. Gersch and Stone

(1995) applied this circular lattice to the time-varying multivariate AR model with

smoothness prior (Kitagawa and Gersch, 1996) on the autoregressive coefficients. This

method uses a two-stage estimation approach for the coefficients and innovation co-

variance and only allows coefficients to be time-varying. The assumption of constant

innovation covariance limits application for many types of data.

To better model multivariate nonstationary time series data, we propose a BCLF

model, which can handle both time-varying coefficients and time-varying innovation

covariance. According to the Levinson–Durbin algorithm, there exists a unique cor-

respondence between the PARCOR coefficients and the AR coefficients, (Shumway

and Stoffer, 2006; Kitagawa, 2010; Yang et al., 2016). This lattice structure provides
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a direct way of using the observed time series to estimate the PARCOR coefficients,

which are associated with particular AR model (see Hayes (1996) and the Supple-

mentary Appendix Yang et al. (2016)). Here, we modify the above lattice filter for

TV-VAR models. By interlacing the K-variate time series {xt} into a scalar series

{yt} as in (3.3), a TV-VAR(P ) is transformed into a time-varying periodic AR model,

which is equivalent to K independent TV-AR models of order Mk (Mk = KP +k−1)

(Gersch and Stone, 1994, 1995; Kitagawa and Gersch, 1996). Each season is fitted by

a TV-AR model. Efficient estimation of a TV-AR model can be conducted by associ-

ating the PARCOR coefficients with the AR coefficients through the circular lattice

structure. Before going through the details of the circular lattice structure, recall

that yk+(t−1)K = xk,t. We denote f
(Mk)
k+(t−1)K and b

(Mk)
k+(t−1)K to be the prediction error

of kth series at time t for the forward and backward time-varying AR(Mk) models,

respectively, where

f
(Mk)
k+(t−1)K = yk+(t−1)K −

Mk∑
m=1

a
(Mk)
m,k+(t−1)Kyk+(t−1)K−m

b
(Mk)
k+(t−1)K = yk+(t−1)K −

Mk∑
m=1

d
(Mk)
m,k+(t−1)Kyk+(t−1)K+m

and a
(Mk)
m,k+(t−1)K and b

(Mk)
m,k+(t−1)K are the forward and backward autoregressive coeffi-

cients of the corresponding time-varying periodic AR(Mk) models. Then, in the mth

stage of the lattice filter for m = 1, . . . ,Mk, the forward and the backward coefficients
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and the forward and the backward prediction errors have the relationship

f
(m)
k+(t−1)K = f

(m−1)
k+(t−1)K − α

(m)
f,m,k+(t−1)Kb

(m−1)
k−1+tK , (3.7)

b
(m)
k+(t−1)K = b

(m−1)
k−1+tK − α

(m)
b,m,k+(t−1)Kf

(m−1)
k+(t−1)K , (3.8)

with the initial condition, f
(0)
k+(t−1)K = b

(0)
k+(t−1)K = yk+(t−1)K , and where α

(m)
m,k+(t−1)K

and β
(m)
b,m,k+(t−1)K are the lag m forward and backward PARCOR coefficients of the kth

series at time t, respectively. At the mth stage of the lattice structure, we fit a time-

varying AR(1) model for the kth series and there are m time-varying autoregressive

coefficients in this model. The kth series jth lag forward and backward autoregressive

coefficients at time t, a
(m)
j,k+(t−1)K and d

(m)
j,k+(t−1)K , can be obtained according to the

following equations

a
(m)
j,k+(t−1)K = a

(m−1)
j,k+(t−1)K − a

(m)
m,k+(t−1)Kd

(m−1)
m−j,k+(t−1)K ,

d
(m)
j,k+(t−1)K = d

(m−1)
j,k+(t−1)K − d

(m)
m,k+(t−1)Ka

(m−1)
m−j,k+(t−1)K ,

(3.9)

with j = 1, . . . ,m− 1, a
(m)
m,k+(t−1)K = α

(m)
m,k+(t−1)K and d

(m)
m,k+(t−1)K = α

(m)
b,m,k+(t−1)K . Go-

ing from the first stage through the end, {a(Mk)
m,k+(t−1)K}, t = 1, . . . , T , m = 1, . . . ,Mk,

are the coefficients in (3.3). The estimated autoregressive coefficients are then ob-

tained through (3.5) and (3.6). For kth series, when the true process is TV-AR(Mk),

the forward innovation variance at stage Mk, {σ2(Mk)
f,k+(t−1)K} is equal to the innovation

variance {σ2
k,t} for t = 1, . . . , T . The estimation algorithm of the coefficients and

innovation covariance is given in the Appendix.
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3.2.4 Model Specification and Bayesian Inference

To give time-varying structures to the forward and backward PARCOR coefficients

and innovation variances in (3.7) and (3.8), we define (3.7) and (3.8) as DLMs with

time-varying parameters (West and Harrison, 1997; West et al., 1999). We consider

random walks for the PARCOR coefficients and multiplicative random walks for the

innovation variance. The PARCOR coefficients are modeled as

α
(m)
f,m,k+tK = α

(m)
f,m,k+(t−1)K + εf,m,k+tK , εf,m,k+tK ∼ N(0, ζf,m,k+tK),

α
(m)
b,m,k+tK = α

(m)
b,m,k+(t−1)K + εb,m,k+tK , εb,m,k+tK ∼ N(0, ζb,m,k+tK),

where ζf,m,k+tK and ζb,m,k+tK are time dependent evolution variance. These evolu-

tion variances are defined via the discount factors γf,k,m and γb,k,m within the range

(0, 1), respectively (see Appendix, Yang et al. (2016) and West and Harrison (1997)

for details). The discount factor γ actually controls the smoothness of PARCOR

coefficients. Here, we assume γf,k,m = γb,k,m = γk,m at each stage m and select their

value through a grid-search based the likelihood of the fitted TV-AR model at each

stage. Similarly, the forward and backward innovation variances are modeled as

σ2
f,m,k+tK = σ2

f,m,k+(t−1)K(δf,m/ηf,m,k+tK), ηf,m,k+tK ∼ Beta(gf,m,k+tK , hf,m,k+tK),

σ2
b,m,k+tK = σ2

b,m,k+(t−1)K(δb,m/ηb,m,k+tK), ηb,m,k+tK ∼ Beta(gb,m,k+tK , hf,m,k+tK),

where δf,m and δb,m are also discount factors in the range (0,1), and the multi-

plicative innovations, ηf,m,k+tK and ηb,m,k+tK follow beta distributions with parame-

ters (gf,m,k+tK , hf,m,k+tK) and (gb,m,k+tK , hb,m,k+tK), respectively (see Appendix, Yang
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et al. (2016) and West and Harrison (1997) for details). The smoothness of innovation

variance is controlled by both γ and δ. Similar to the PARCOR coefficients, we as-

sume δf,k,m = δb,k,m = δk,m at each stage. Note that εb,m,k+tK , εb,m,k+tK , ηf,m,k+tK and

ηb,m,k+tK are mutually independent and are also independent of any other variables

in the model.

We use conjugate normal priors for the forward and backward PARCOR coeffi-

cients, so that

p(αf,m,k−K |Df,m,k−K) ∼ N(µf,m,k−K , Cf,m,k−K),

p(αb,m,k−K |Db,m,k−K) ∼ N(µb,m,k−K , Cb,m,k−K),

where m = 1, . . . ,Mk, k = 1, . . . , K, Df,m,k−K and Db,m,k−K denotes the information

available at the initial time t = 0, µf,m,k−K and Cf,m,k−K are the mean and the

variance of the normal prior distribution. We also specify conjugate initial priors for

the forward and backward innovation variance, so that

p(σ2
f,m,k−K |Df,m,k−K) ∼ G(νf,m,k−K/2, κf,m,k−K/2),

p(σ2
b,m,k−K |Db,m,k−K) ∼ G(νb,m,k−K/2, κb,m,k−K/2),

where G(·, ·) is the gamma distribution, and νf,m,k−K/2 and κf,m,k−K/2 are the shape

and rate parameters of the gamma prior distribution. Typically, we suppose these

starting values as constants over all stages. In order to reduce the effect of the prior

distribution, we choose µf,m,k−K/2 and Cf,m,k−K to be zero and one, respectively and

fix νf,m,0 = 1 and set κf,m,k−K to equal to the sample variance of the initial part

of each series. Following these settings, we can obtain the DLM sequential filtering
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and smoothing algorithms (West and Harrison, 1997) to derive the marginal posterior

distributions of the forward and backward parameter parameters in (3.7) and (3.8).

The detailed algorithm of the sequential filtering and smoothing are given in the

Appendix.

3.2.5 Model Selection

To apply the BCLF, we need to find not only the optimal order but also the optimal

discount factors. For selection an optimal model order, we can do it visually using

scree plots or numerically using the model selection criterion shown below. We start

with setting up a maximal order, Pmax, and start from the first stage of the lattice

filter through the Mk,max-th stage (Mk,max = KPmax + k − 1) for each series. At

the mth stage, for the kth series, we search a group of pre-specified sets of discount

factors {γk,m, δk,m} to find the set which maximizes the likelihood of the fitted DLM,

and use the corresponding estimated parameters as the result. Having all the optimal

discount factors and the corresponding estimated parameters, the model selection

criterion for the order P can be computed based on the estimation obtained from the

first through the (PK + K − 1)th stage. According to the model selection criterion

values, the optimal order is selected. The details are shown in the Appendix. For the

model order selection, we consider several criteria as follows.

Scree Plot

Yang et al. (2016) used a scree plot method to visually (and analytically) select the

model order by plotting the log-likelihood against the order p. If the observed time se-

ries indeed follows a multivariate time-varying autoregressive model, the log-likelihood
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will increase with the model order until an optimal number, and this number is then

selected as the best order. A numerical way to determine where the likelihood stops

increasing is to compute the percent of change in the log-likelihood from one order to

next. Additionally, for each model order, a grid search of the discount factors is con-

ducted, and when the percent change is small enough, we regard the likelihood stops

increasing. The discount factors that achieve the largest log-likelihood is selected and

the corresponding likelihood is used in model selection.

In our case, by plotting the log-likelihood against the order, we can find the order

after which the log-likelihood stops increasing. The stopping point can be evaluated

by the percent change. If the percent change is less than a prespecified threshold,

this point is identified as the best order.

Bayesian Information Criterion (BIC)

We consider an approach based on BIC to select the statistically “best” model order.

For a TV-VAR(P ) model with parameters denoted as θ, BIC is defined as

BIC(P ) = −2L+ nΘlog(KT ).

BIC is computed for each of the fitted models of order P = 1, . . . , Pmax to a K-

dimensional time series of length T . L is the log likelihood based on multivariate

time-varying autoregressive model of order P as (3.1). nΘ is the number of parameters

estimated in the initial state of the state space model. In our case, nΘ = 2PK2 +

(K−1)K, which is the total number of estimated time-varying variables in all stages.

We use BIC as the model selection criterion throughout this chapter. BIC works well
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on identifying the correct order on simulated examples. The penalty term of BIC

considers the length of the series. For a given time series, the longer series leads to a

larger likelihood. Therefore, we need a penalty term changing with the series length.

Deviance Information Criterion (DIC)

We can also use the deviance information criterion (DIC) to choose the model order

(see Gelman et al. (2013) and references therein). With parameters denoted as θ and

data denoted as y, the DIC of a model is defined as

DIC = −2logp(y|θ̂Bayes) + 2pDIC ,

where θ̂Bayes is the Bayes estimator of θ and pDIC is the effective number of param-

eters. The effective number of parameters is given by

pDIC = 2
[
logp(y|θ̂Bayes)− Epost(logp(y|θ))

]
,

where Epost is the expectation under the posterior distribution. In our case, the terms

above are estimated through MC samples θ(s) as

pDIC = 2

[
logp(y|θ̂Bayes)−

1

S

S∑
s=1

(logp(y|θ(s)))

]
.

where samples θ(s), s = 1, . . . , S, are generated from p(θ|y), the posterior distribution

of θ (See the Appendix for details).
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Widely Applicable Akaike Information Criterion (WAIC)

WAIC is a generalized version of AIC and is more appropriate for Bayesian hierarchi-

cal models (Watanabe, 2010). For a model with parameters denoted as θ, considering

data y = (y1, . . . , yT )′, the WAIC is defined as

WAIC = −2logp(y|θ̂Bayes) + 2pWAIC ,

where

pWAIC = 2
T∑
t=1

(log(Epostp(yt|θ)− Epost(logp(yt|θ))) .

WAIC is estimated by using MC samples from the S posterior draws θ(s) as

p̂WAIC = 2
T∑
t=1

(
log(

1

S

S∑
s=1

p(yt|θ(s))− 1

S

S∑
s=1

(logp(yt|θ(s)))

)
.

θ(s) is generated from p(θ|y), the posterior distribution of θ. See the Appendix for

details.

To achieve a best model selection, we first search for an order which achieves the

smallest BIC, DIC, WAIC. If the numerical criteria, BIC, DIC, WAIC, do not agree

with each other, we use the visual scree plot to assist the model selection. In practice,

for BCLF, BIC works best for selecting the model order among the numerical criteria

in most of the simulation cases we conducted.
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3.2.6 Forecasting

Having estimated all parameters, we consider 1-step ahead forecasts of the TV-

VAR(P ) model. The 1-step ahead predictive distribution of the PARCOR coefficients

can be obtained according to West and Harrison (1997). We generate J samples

for each of the PARCOR coefficients can be drawn from their 1-step-ahead predic-

tive distribution as {α(m)(j)
f,m,k+TK , α

(m)(j)
b,m,k+TK for all k,m}, j = 1, . . . , J . The samples

of the 1-step ahead prediction of TV-VAR parameters, Φp,T+1 can be obtained as

{Φ(j)
p,T+1, j = 1, . . . , J}, for p = 1, . . . , P , by transforming the samples of the PAR-

COR coefficients according to (3.5) and (3.6). Finally, the 1-step ahead forecast is

given as

x
(j)
T+1 =

P∑
p=1

Φ
(j)
p,T+1xT+1−p. (3.10)

We use the posterior mean of x
(j)
T+1 (j = 1, . . . , J) obtained through the samples in

(3.10) as the 1-step ahead forecast. This forecast can be easily extended to h-steps.

The details of forecasting up to h-steps can be found in the Appendix.

3.3 Simulation Studies

To assess the effectiveness of our method, we conducted similar simulation studies to

Zhao and Prado (2020) and compared our results with results obtained using their

approach and a TV-VAR(P ) model. The comparison were on spectral analysis and

forecasting. In spectral analysis. the results are assessed using the average squared

error (ASE) (Ombao et al., 2001) between the true spectral density and the estimated

spectral density. In forecasting, the mean squared predictive error (MSPE) is used to
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evaluate the forecasting performance.

3.3.1 Simulation 1: Bivariate TV-VAR(2) Process

We considered 500 bivariate time series of length T = 1034 simulated from a TV-

VAR model (Zhao and Prado, 2020) as follows: xt = Φ1,txt−1 + Φ2,txt−2 + ut, ut ∼

N (0,Σt) with

Φ1,t =

r1,tcos( 2π
λ1,t

) φ1,1,2,t

0 r2,tcos( 2π
λ2,t

)

 and Φ2,t =

−r2
1,t φ2,1,2,t

0 −r2
2,t


where r1,t = 0.1

T
t + 0.85, r2,t = −0.1

T
t + 0.95, r3,t = 0.2

T
t − 0.9, r4,t = 0.2

T
t + 0.7,

λ1,t = 15
T
t+5, and λ2,t = −10

T
t+15. We considered three different cases for the values

of φ1,1,2,t and φ2,1,2,t , namely (i) φ1,1,2 = 0, φ2,1,2 = 0; (ii) φ1,1,2 = −0.8, φ2,1,2 = 0;

(iii) φ1,1,2 = r3,t, φ2,1,2 = r4,t. These three cases have the covariance Σt = I2, 2I2, 3I2,

where I2 denotes a 2 × 2 identity matrix. We also consider cases (iv), (v), (vi) with

the same Φt as (i), (ii), (ii), respectively, but with different covariance Σt, such that

Σ1,1,t = Σ2,2,t = 1 + t
T

, Σ1,2,t = Σ2,1,t = 0 for t = 1, . . . , T . The bivariate spectral

matrix of this process can be obtained by

g(t, ω) = Ψ(t, ω)−1 ×Σt ×Ψ∗(t, ω)−1,

where Ψ(t, ω) = I2 −
P∑
p=1

Φp,texp{−2pπiω}, Σt is time-varying innovation covariance

and ∗ stands for the Hermitian transpose of a matrix. The spectral matrix g(t, ω)

is symmetric and consists of series g11(t, ω), g22(t, ω) and g12(t, ω), representing the

spectrum of the first series, the spectrum of the second series and the cross-spectrum
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between the first and the second series, respectively. The squared coherence between

the first and the second series is defined as

ρ2
12(t, ω) =

|g12(t, ω)|2

g11(t, ω)g22(t, ω)
.

The spectral matrix can be estimated by

ĝ(t, ω) = Ψ̂(t, ω)−1 × Σ̂t × Ψ̂
∗
(t, ω)−1,

where Ψ̂(t, ω) = |I2 −
P∑
p=1

Φ̂p,texp{−2pπiω}| and Σ̂t are estimated values. The esti-

mated squared coherence ρ̂2
12(t, w) can be obtained accordingly.

To evaluate the performance in estimating the time-frequency representations, we

compared different models by the mean and standard deviations of the ASEs. We

calculate ASE for each realization as follows (Ombao et al., 2001):

ASEn = (TL)−1

T∑
t=1

L∑
l=1

(log(ĝ(t, ωl))− log(g(t, ωl)))
2 , (3.11)

where n = 1, . . . , 500, wl is the lth frequency, and L is the number of frequencies

in the time-frequency representation. We denote the average over all realizations as

ASE = 1/500
500∑
n=1

ASEn.

To evaluate the performance of our proposed method (BCLF), we choose a Pmax =

5 and fit the simulated datasets with the TV-VAR order adaptively selected based

on BIC as we suggest. The other model selection criteria were also obtained and

are shown in Table 3.1. BIC suggests that TV-VAR(2) is the best model for most

simulated datasets. In practice, BIC works extremely well for model selection of
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the BCLF and significantly better than DIC and WAIC. Consequently, we use BIC

for model order selection of the BCLF throughout this chapter. Our method is

compared with TV-VPARCOR and TV-VAR (a method denoted by TV-VAR in

the simulations of Zhao and Prado (2020)), which are the methods used in Zhao

and Prado (2020). For every dataset, TV-VPARCOR and TV-VAR have the model

orders selected based on DIC while BCLF has the model order selected based on

BIC. All model selections have a maximum order of 5. The discount factors in all

of BCLF, TV-VPARCOR and TV-VAR are chosen from a grid of values in [0.99, 1]

based on the likelihood. We select this range to make our results comparable to

those of Zhao and Prado (2020). Note that TV-VAR and BCLF consider time-

varying covariance while TV-PARCOR assumes constant covariance. Figures 3.1

and 3.2 are the boxplots, which summarize the ASE based on ASEn for six cases

compared with TV-VAR and TV-VPARCOR as Zhao and Prado (2020). Figures 3.3,

3.4, and 3.5 summarize the posterior inference by the BCLF approach on the 500

simulated datasets. These figures show the average of the estimated spectrum of the

two series and the average of the estimated coherence between them over the 500

simulated datasets. Moreover, we compare the forecast of BCLF with TV-PARCOR

in the following ways. The forecast of TV-VPARCOR can be conducted in two ways.

The first way (TV-VPARCOR 1) is that we obtain predicted values of PARCOR

coefficients from their forecast distribution, transform them into predicted values of

the autoregressive coefficients, and then compute the predicted values. The other way

(TV-VPARCOR 2) is that we draw MC samples of PARCOR coefficients from their

forecast distribution and transform these samples into the samples of autoregressive

coefficients, and, finally, obtain the samples of predicted observations. The posterior
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mean of the samples of predicted observations are used to be the predicted values of

the observations. We introduce another forecasting method for the BCLF (BCLF 1) to

compare with the forecasts of TV-VPARCOR. Specifically, for BCLF 1, we first obtain

predicted values of PARCOR coefficients from their forecast distribution, transform

them into predicted values of the autoregressive coefficients, and then compute the

predicted values of the observations. The formal forecast method for the BCLF is

given in Sections 3.2.6 and 3.6.4 (BCLF 2). Using the four forecasting approaches, we

conduct one-step ahead rolling prediction for t = 1025:1034 for the first 3 simulation

cases. For each case and each method, 100 series of length 1034 are generated, the

last 10 observations of the series are held out for prediction. Table 3.2 shows the mean

and the standard deviation of the 100 MSPEs for each case and each method. TV-

VPARCOR 1 and BCLF 1 are not fully Bayesian predictions while TV-PARCOR 2

and BCLF 2 are Bayesian predictions, which may be more appropriate for uncertainty

quantification. BCLF 2 one-step ahead prediction works slightly better than TV-

PARCOR 2 in this study. Table 3.3 shows the computation time of the simulation

studies. The time of Simulation 1 is the time used for fitting one dataset of case (i),

including the selection of discount factors, the selection of the model order and the

estimation of parameters. Note that the TV-VPARCOR method is conducted using

Rcpp and parallel computing while the BCLF is coded in pure R. If TV-VPARCOR is

conducted using pure R, it would take significantly longer computation time than that

shown in this table. Moreover, BCLF can be accelerated by using Rcpp and parallel

computing. Therefore, the computation time will be greatly reduced if BCLF is also

conducted using Rcpp and parallel computing. All of the six cases take approximately

the same time and therefore, we use case (i) as an example.
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Table 3.4 shows BCLF has smaller ASEs in all cases except Case 1, which is

described further below. Each of the methods TV-VAR, TV-VPARCOR and BCLF

has some drawbacks that lower their performance. TV-VAR and TV-VPARCOR use

an approximate estimator to estimate the covariance, which does not work as well as

our time-varying covariance estimator in some cases. Additionally, TV-VAR uses one

discount factor for all coefficients. This produces larger ASEs for TV-VAR in most

cases. BCLF uses the modified Cholesky decomposition due to the “one-channel-at-

a-time” algorithm. This results in some small loss in ASEs.

Table 3.4 shows the ASEs of each method for different true coefficients and inno-

vation covariance when the innovation covariance is time-invariant. It suggests that

the BCLF performs better for the spectrum estimation in most cases. In other words,

BCLF is more robust to the level of the covariance. That is, when the true covariance

increases from I2 to 2I2 and to 3I2, the ASEs of BCLF stay at approximately the same

level, while the ASEs of TV-VAR and TV-VPARCOR become significantly larger.

Moreover, Table 3.5 shows that when the innovation covariance is time-varying, BCLF

works better than the constant covariance models TV-VAR and TV-VPARCOR as

expected.

67



Table 3.1: Model selection of TV-VAR model for 500 simulated datasets from bivari-
ate TV-VAR(2) process. Each column gives the model order P and the percentage
of the datasets that are selected to this order according to BIC, DIC, and WAIC.

Case P 1 2 3 4 5
1 BIC 0% 100% 0% 0% 0%
1 DIC 0% 20% 10% 23% 47%
1 WAIC 90% 10% 0% 0% 0%
2 BIC 0% 100% 0% 0% 1%
2 DIC 0% 92% 1% 4% 3%
2 WAIC 99% 1% 0% 0% 0%
3 BIC 0% 100% 0% 0% 0%
3 DIC 0% 87% 8% 0% 5%
3 WAIC 100% 0% 0% 0% 0%
4 BIC 0% 100% 0% 0% 0%
4 DIC 0% 18% 11% 19% 52%
4 WAIC 100% 0% 0% 0% 0%
5 BIC 0% 100% 0% 0% 0%
5 DIC 0% 88% 4% 0% 8%
5 WAIC 100% 0% 0% 0% 0%

Table 3.2: MSPE values for the 1-step ahead rolling forecast (t = 1025:1034) and
corresponding standard deviations (in parentheses) obtained from BCLF and TV-
VPARCOR methods for the TV-VAR(2) simulated data. All four methods are de-
scribed in the simulation example.

Model Case (i) Case (ii) Case (iii)
TV-VPARCOR 1 1.029(0.315) 1.036(0.318) 1.046(0.322)
TV-VPARCOR 2 1.046(0.332) 1.061(0.327) 1.103(0.371)

BCLF 1 1.069(0.327) 1.046(0.325) 1.100(0.434)
BCLF 2 1.038(0.317) 1.046(0.325) 1.085(0.354)
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Figure 3.1: Boxplots of ASEs by three methods in cases (i), (ii), (iii) when Σt = I2.
In each plot, the index 1, 2, and 3 denotes TV-VAR, TV-, and BCLF, respectively.
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Figure 3.2: Boxplots of ASEs by three methods in cases (iv), (v), (vi). In each plot,
the index 1, 2, and 3 denotes TV-VAR, TV-PARCOR, and BCLF, respectively.
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Figure 3.3: Case with φ1,1,2,t = 0 and φ2,1,2,t = 0. Top: True log spectral density
g11(t, ω) (left), true log spectral density g22(t, ω) (middle), true squared coherence
ρ2

12(t, ω) (right). Bottom: Average of the estimated ĝ11(t, ω) (left), average of the
estimated ĝ22(t, ω) (middle), average of the estimated ρ̂2

12(t, ω) (right) using BCLF.
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Figure 3.4: Case with φ1,1,2,t = −0.8 and φ2,1,2,t = 0. Top: True log spectral density
g11(t, ω) (left), true log spectral density g22(t, ω) (middle), true squared coherence
ρ2

12(t, ω) (right). Bottom: Average of the estimated ĝ11(t, ω) (left), average of the
estimated ĝ22(t, ω) (middle), average of the estimated ρ̂2

12(t, ω) (right) using BCLF.
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Figure 3.5: Case with φ1,1,2,t = r3,t and φ2,1,2,t = r4,t. Top: True log spectral density
g11(t, ω) (left), true log spectral density g22(t, ω) (middle), true squared coherence
ρ2

12(t, ω) (right). Bottom: Average of the estimated ĝ11(t, ω) (left), average of the
estimated ĝ22(t, ω) (middle), average of the estimated ρ̂2

12(t, ω) (right) using BCLF.
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Table 3.3: Computation times (in seconds) for TV-VPARCOR and BCLF models.

Model Simulation 1 Simulation 2
TV-VPARCOR (Rcpp) 10.83 seconds 17874.36 seconds

BCLF (R) 9.86 seconds 279.76 seconds

3.3.2 Simulation 2: 20-Dimensional TV-VAR(1)

We consider a simulation in Zhao and Prado (2020) and generate data from a 20-

dimensional nonstationary TV-VAR(1) process of length T = 300. The elements Φi,j,t

of the autoregressive coefficients at time t, Φt, are given as follows:

φi,j =



0.7 + 0.2
299
× t for all i = j, i = 1, . . . , 10,

0.7 + 0.2
299
× t for all i = j, i = 1, . . . , 10,

0.9 for (i, j) ∈ [(1, 5), (2, 15)]

−0.9 for (i, j) ∈ [(6, 12), (15, 20)]

0 otherwise,

for t = 1, . . . , 300. Additionally, the innovation covariance is specified as Σ = 0.1I

Similar to Zhao and Prado (2020), we choose a Pmax = 3 and fit the simulated

datasets with the TV-VAR order adaptively selected based on BIC as we suggest.

The other model selection criteria were also obtained. All of BIC, DIC, and WAIC

suggest that TV-VAR(1) is the best model for the simulated datasets. The discount

factors are chosen from a grid of values in [0.99, 1] based on the likelihood of the fitted

TV-AR models in each stage. Figures 3.6 and 3.7 summarize the posterior inference

obtained from the BCLF approach on the 100 simulated datasets. These figures
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Table 3.4: Mean ASEs and corresponding standard deviations (in parentheses) using
different methods for 500 simulated datasets from TV-VAR(2).

Model g11 g22 ρ2
12

Case (i): φ1,1,2,t = 0, φ2,1,2,t = 0,Σt = I2

TV-VAR 0.05393 (0.02349) 0.05497 (0.04214) 0.00292 (0.00194)
TV-VPARCOR 0.03302 (0.01313) 0.04062 (0.02288) 0.00353 (0.00424)

BCLF 0.04037 (0.01905) 0.03643 (0.01713) 0.00123 (0.00107)
Case (i): φ1,1,2,t = 0, φ2,1,2,t = 0,Σt = 2I2

TV-VAR 0.07538 (0.03663) 0.07748 (0.0852) 0.00484 (0.00357)
TV-VPARCOR 0.04144 (0.02542) 0.04960 (0.0305) 0.00582 (0.00595)

BCLF 0.03509 (0.01680) 0.03622 (0.0169) 0.00124 (0.00112)
Case (i): φ1,1,2,t = 0, φ2,1,2,t = 0,Σt = 3I2

TV-VAR 0.10443 (0.05255) 0.10575 (0.05543) 0.00643 (0.00574)
TV-VPARCOR 0.05114 (0.04774) 0.06347 (0.05972) 0.00804 (0.00877)

BCLF 0.03513 (0.01634) 0.03623 (0.01699) 0.00124 (0.00111)
Case (ii): φ1,1,2,t = −0.8, φ2,1,2,t = 0,Σt = I2

TV-VAR 0.09164 (0.08122) 0.0870 (0.070740) 0.00583 (0.00364)
TV-VPARCOR 0.06124 (0.02644) 0.0475 (0.021017) 0.00491 (0.00480)

BCLF 0.03712 (0.01255) 0.0384 (0.012639) 0.00262 (0.00133)
Case (ii): φ1,1,2,t = −0.8, φ2,1,2,t = 0,Σt = 2I2

TV-VAR 0.10632 (0.07053) 0.09847 (0.07628) 0.00733 (0.00551)
TV-VPARCOR 0.19222 (0.30678) 0.12383 (0.19629) 0.01293 (0.01698)

BCLF 0.03833 (0.01303) 0.03937 (0.01285) 0.00259 (0.00125)
Case (ii): φ1,1,2,t = −0.8, φ2,1,2,t = 0,Σt = 3I2

TV-VAR 0.26823 (0.96065) 0.16537 (0.28518) 0.00978 (0.00817)
TV-VPARCOR 0.28447 (0.50113) 0.17805 (0.33872) 0.01791 (0.02220)

BCLF 0.03836 (0.01304) 0.03937 (0.01285) 0.00258 (0.00125)
Case (iii): φ1,1,2,t = r3,t, φ2,1,2,t = r4,t,Σt = I2

TV-VAR 0.09722 (0.09334) 0.09132 (0.07920) 0.00493 (0.00310)
TV-VPARCOR 0.11324 (0.12927) 0.07579 (0.07308) 0.00807 (0.01014)

BCLF 0.06804 (0.05361) 0.03902 (0.01943) 0.00442 (0.00372)
Case (iii): φ1,1,2,t = r3,t, φ2,1,2,t = r4,t,Σt = 2I2

TV-VAR 0.10583 (0.07045) 0.10023 (0.08221) 0.00622 (0.00492)
TV-VPARCOR 0.19213 (0.30681) 0.12378 (0.19631) 0.01292 (0.01698)

BCLF 0.06968 (0.05467) 0.03996 (0.01970) 0.00446 (0.00377)
Case (iii): φ1,1,2,t = r3,t, φ2,1,2,t = r4,t,Σt = 3I2

TV-VAR 0.19117 (0.68771) 0.15403 (0.28426) 0.00836 (0.00907)
TV-VPARCOR 0.28374 (0.49940) 0.17709 (0.33651) 0.01791 (0.02219)

BCLF 0.06980 (0.05447) 0.04005 (0.01978) 0.00445 (0.00378)
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Table 3.5: Mean ASE values and corresponding standard deviations (in parentheses)
for 500 simulated datasets from TV-VAR(2).

Case (iv): φ1,1,2,t = 0, φ2,1,2,t = 0
Model g11 g22 ρ2

12

TV-VAR 0.0916 (0.0812) 0.0870 (0.0707) 0.0058 (0.0036)
TV-VPARCOR 0.0614 (0.0264) 0.0475 (0.0210) 0.0049 (0.0048)

BCLF 0.0371 (0.0126) 0.0384 (0.0126) 0.0026 (0.0013)
Case (v): φ1,1,2,t = −0.8, φ2,1,2,t = 0

Model g11 g22 ρ2
12

TV-VAR 0.1174 (0.0819) 0.1232 (0.0701) 0.0056 (0.0034)
TV-VPARCOR 0.0938 (0.0296) 0.0871 (0.0204) 0.0048 (0.0045)

BCLF 0.0396 (0.0129) 0.0427 (0.0130) 0.0027 (0.0012)
Case (vi): φ1,1,2,t = r3,t, φ2,1,2,t = r4,t

Model g11 g22 ρ2
12

TV-VAR 0.1228 (0.0934) 0.1281 (0.0782) 0.0047 (0.0029)
TV-VPARCOR 0.1465 (0.1270) 0.1159 (0.0736) 0.0073 (0.0087)

BCLF 0.0788 (0.0660) 0.0449 (0.0206) 0.0051 (0.0040)

show the average of the estimated spectrum of the two series and the average of the

estimated coherence between them over the 100 simulated datasets. Table 3.3 shows

the computation time of the simulation studies, including the selection of discount

factors, the selection of the model order and the estimation of parameters.

3.4 Case Studies

3.4.1 U.S. Economy Data

We analyze a U.S. economic time series from the first quarter of 1960 to the fourth

quarter of 2001, which contains three variables: inflation rate and unemployment

rate and a short-term nominal interest rate. This dataset is also used by Primiceri
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Figure 3.6: Top: True log spectral densities of Components 1, 2, 8, and 15. Bottom:
estimated log spectral densities of Components 1, 2, 8, and 15 using the BCLF.
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Figure 3.7: Top: True coherence between Components 1 and 5, 2 and 15, 5 and 12,
and 15 and 20. Bottom: Estimated coherences between Components 1 and 5, 2 and
15, 5 and 12, and 15 and 20 using the BCLF.
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(2005) to analyze the effect of the monetary policy to the high unemployment and

inflation in 1970s and early 1980s. We apply the BCLF to 168 quarters of the three

series, each of them has been mean centered (using the series sample mean). We set

the maximal order Pmax = 10 and assume each variable has its own optimal discount

factor values. According to the simulation studies and some experiments on real data,

we find that a discount factor close to 1 would make the estimated parameters more

smooth and significantly biased. Therefore, we select [0.90, 0.995] as the range of the

discount factor. The series plots of the three variable are given as Figure 3.8. The

model selection criteria (see Table 3.6) suggest that the best model order is 2 and for

the order 1 is nearly as good. Considering the order 2 is used in Primiceri (2005), we

pick order 2 for this data example.

The two major differences between our model and Primiceri (2005): (1) our model

does not have intercept, (2) our method is a fully Bayesian approach, which selects

the smoothness of time-varying parameters adaptively as part of the MCMC while

Primiceri (2005) uses an empirical Bayes approach with the priors estimated from an

exploratory analysis of the data. Therefore, the application of our method should not

give the same results as the application in Primiceri (2005). The estimated impulse

responses at three different dates are shown in Figures 3.9 and 3.10. These dates are

selected as Primiceri (2005) to represent three Federal Reserve chairmanships. These

impulse responses move with the change of monetary policy (short-term nominal

interest rate). The short-term interest rate was from low to high in 1975:I, 1996:I and

1981:III. This order matches the plots that the curves of 1975:I and 1981:III are at two

ends and 1996:I in the middle. Figure 3.11 shows the estimated innovation covariance

and their 90% credible interval. Some of the credible intervals are extremely narrow
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Table 3.6: Model selection of TV-VAR model for quarterly economic data. This table
displays the BIC for model orders 1 through 10.

Model Order 1 2 3 4 5
BIC -169.16 -169.36 -83.12 -99.62 -138.79

Model Order 6 7 8 9 10
BIC -68.34 32.08 125.04 195.89 310.11

and, therefore, difficult to see in the plot. We can see that the innovation variance

of the short-term interest rate is significantly higher in the period 1979-1983. It

coincided with Paul Volcker’s first term of chairmanship of the Federal Reserve. The

changing pattern of the interest rate’s response to inflation and unemployment and the

interest’s effect on inflation and unemployment confirm with the results of Primiceri

(2005). Providing similar results, our method is much more efficient in the sense

that the estimation does not require MCMC simulation and the model selection is

conducted simultaneously for all orders under the maximal order. Moreover, the

smoothness of the time-varying variables are automatically tuned in the model fitting

and does not need to estimate the smoothness through an exploratory analysis of the

data. These features make this method easy to use and allow us to extend similar

analyses to much longer series and more variables.

3.4.2 Wind Data

We analyze the wind data used by Zhao and Prado (2020), which contains the me-

dian wind speed and direction measurements collected every 4 hours from 6/1/2010

to 8/15/2020 in Monterey, Salinas and Watsonville, 3 stations located near Mon-

terey Bay, Northern California. These data were obtained from a publicly avail-
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Figure 3.8: U.S. quarterly economic data from 1960 to 2001. The first series is the
inflation rate. The second series is the unemployment rate. The third series is the
nominal short-term interest rate.

1960 1970 1980 1990 2000

1
.1

1
.3

1
.5

Date

In
fla

tio
n

 R
a

te

1960 1970 1980 1990 2000

4
6

8
1

0

Date

U
n

e
m

p
lo

ym
e

n
t 
R

a
te

1960 1970 1980 1990 2000

2
6

1
0

1
4

Date

S
h

o
rt

−
te

rm
 I
n

te
re

st
 R

a
te

81



Figure 3.9: Impulse responses of inflation to monetary policy (short-term nominal
interest rate) shocks in 1975:I, 1981:III and 1996:I and their 95% credible intervals.
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Figure 3.10: Impulse responses of unemployment to monetary policy (short-term
nominal interest rate) shocks in 1975:I, 1981:III and 1996:I and their 95% credible
intervals.
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Figure 3.11: The estimated time-varying innovation covariance of a TV-VAR(2)
model on U.S. quarterly economic data. The grey region shows the credible intervals
of each variable.
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able database, the Iowa Environmental Mesonet (IEM) (see http://mesonet.agron.

iastate.edu/ASOS/). ASOS stations are located at airports and take observations

and basic reports from the National Weather Service (NWS), the Federal Aviation

Administration (FAA), and the Department of Defense (DOD). We use the BCLF

approach for a multivariate analysis of the six-dimensional time series of the wind

speed component and wind direction component for the 3 stations. We set Pmax = 10

and consider discount factor values on a grid in the (0.95, 0.99] range and assume that

each station has their own optimal discount factor values. The BIC selects the model

order 6 for the TV-VAR model. After applying BCLF to fit the TV-VAR(6) model

to the six-dimensional data, we obtain the estimate of its time-frequency represen-

tation. Figure 3.12 shows the estimated log spectral densities of the X (East-West)

component and the Y (North-South) component for each location. Figure 3.13 shows

the estimated squared coherence between each pair of wind components across the

three locations. Generally, the results reveal a 24-hour cycle in X components, Y

components and their coherence and the magnitude of the cycles vary with time.

3.5 Discussion

We propose a computationally efficient model-based parametric approach for nonsta-

tionary multivariate time series. We use a response-orthogonal reparameterization

to transform a TV-VAR model into a scalar periodic AR model and further use the

Bayesian Lattice filter together with PARCOR to speed up the estimation. Our ap-

proach can simultaneously estimate the time-varying coefficients and the time-varying

innovation covariance. The “one channel at-a-time” modeling avoids matrix inver-
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Figure 3.12: Top Row: Estimated log-spectral densities of the X (East-West) compo-
nents for Monterey (Spectrum 1), Salinas (Spectrum 2), and Watsonville (Spectrum
3). Bottom Row: Estimated log-spectral densities of the Y (North-South) compo-
nents for Monterey (Spectrum 4), Salinas (Spectrum 5), and Watsonville (Spectrum
6). The unit of time in the plots is 4 hours.
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Figure 3.13: Top Row: Estimated squared coherences between the X (East-West)
component and Y (North-South) component in Monterey, Salinas, and Watsonville.
Middle Row: Estimated squared coherences between the X (East-West) components
of Monterey and Salinas, Monterey and Watsonville, and Salinas and Watsonville.
Bottom Row: Estimated squared coherences between the Y (North-South) compo-
nents of Monterey and Salinas, Monterey and Watsonville, and Salinas and Wat-
sonville. The unit of time in the plots is 4 hours.
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sion computations in the estimation, which significantly reduces the computation cost

and makes the computation time increase linearly, rather than exponentially, with the

data dimension. Additionally, this “one channel at-a-time” modeling makes it possi-

ble for our approach to benefit from parallel computing in the future. Moreover, the

use of Bayesian lattice filters makes the computation time increase linearly, rather

than exponentially, with the model order. We also provide a model selection method

to choose the discount factors and the optimal model order. The simulation cases

show that the parameter estimation is fairly accurate. The real data example shows

that the time-varying coefficients and innovation covariance can be effectively used

to reveal the time-varying structure.

Our method benefits from the LDL decomposition (modified Cholesky decomposi-

tion) of the innovation covariance as (3.6). This assumption has a drawback as stated

in Primiceri (2005). In particular, the ordering of the multiple variables matters be-

cause any permutation of the ordering can lead to different prior distributions for the

autoregressive coefficients. The prior distributions are firstly assigned to the PAR-

COR coefficients after making a transformation through the Cholesky decomposition.

When transforming back to the original model space, these priors are transformed to

the priors of the autoregressive coefficients. This transformation depends on the order

of the variables in the multivariate model. This difference in the prior distributions

does not have a significant effect on the time-invariant parameter models. However,

it may show a more noticeable difference in the time-varying parameter models when

using different ordering. In Simulation 1, we see this phenomenon. However, in both

our real data application and in Primiceri (2005), different orders of the variables led

to very similar results. This issue also received attention from other research (Kastner
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et al. (2017), among others). A solution to this issue in the context of the BCLF is

a subject of future research.

3.6 Appendix

3.6.1 Algorithm for Fitting Multivariate Time Series

We summarize the algorithm of our approach to fitting a TV-VAR model as follows:

• Step 1. Interlace the multivariate times series as in (3.1) into a periodic time

series as in (3.3).

• Step 2. Set up a value for order P and a set of values for γk,m, δk,m for m =

1, . . . ,Mk, k = 1, . . . , K, where Mk = kPmax+K−1, as well as the initial values

of parameters at t = 0.

• Step 3. Repeat Step 4 for stage m = 1, . . . ,Mk, k = 1, . . . , K.

• Step 4. Apply the sequential filtering and smoothing algorithm to the prediction

errors of last stage, f
(m−1)
k,t and b

(m−1)
k,t to obtain α

(m)
t = µ

(m)
t,T and σ

2(m)
t = s

(m)
t,T of

the forward and backward equations, and the forward and backward prediction

errors, f
(m)
k,t and b

(m)
k,t for t = 1, . . . , T .

• Step 5. To compute the model selection criterion of TV-VAR(P ), collect the

computed parameters up to order kP +K−1 for the kth series, k = 1, 2, . . . , K.

Transform the computed parameters to obtain the estimated values of the

parameters {Φp,t} and {Σt} in (3.1). Compute the criterion following Sec-

tion 3.2.5. Pick the best order according to the model selection criterion.
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• Step 6. (Optional) Compute the spectrum and cross-spectrum based on the

parameter estimation following Section 3.3.1.

• Step 7. (Optional) Make h-step ahead forecasting following Section 3.2.6.

3.6.2 Sequential Filtering and Smoothing Algorithm

Suppose we need to fit (3.7) and (3.8) to estimate the PARCOR coefficients and

innovation variance. Their posterior distributions can be obtained by following a

sequential filtering and smoothing algorithm. The algorithm given here is for the

forward autoregression case as in (3.7). Filtering and smoothing algorithm can be

obtained for the backward case in a similar manner. For any series, any stage, we

denote the posterior distribution at time t as (αt|Dt) ∼ Tνt(µt, Ct) a multivariate T

distribution with νt df, location parameter µt, and scale matrix Ct, and (σ−2
t |Dt) ∼

G(νt/2, κt/2), a gamma distribution with shape parameter νt/2 and scale parameter

κt/2. These parameters can be computed for all t using the filtering equations below.

Note we use st = κt/νt to denote the usual point estimate of σ2
t . ft in the equation is

the forward prediction error. For t = 2, . . . , T , we have

µt = µt−1 + ztet,

Ct = (Rt − ztz′tqt)(st/st−1),
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and

νt = δνt−1 + 1,

κt = δκt−1 + st−1e
2
t/qt,

where

et = ft − z′t−1mt−1,

qt = z′t−1Rtz
′
t−1 + st−1,

and

zt = Rtft−1/qt,

Rt = Ct−1 +Gt,

Gt = Ct(1− β)/β.

After the filtering equations up to T , we compute the full marginal posterior distribu-

tion (αt|DT ) ∼ Tνt(µt,T , Ct) and (σ−2
t |DT ) ∼ G(νt,T/2, κt,T/2) through the smoothing

equations

µt,T = (1− β)µt + βµt+1,T

Ct,T = [(1− β)Ct + β2Ct+1,T ](st,T/st)

νt,T = (1− δ)νt + δνt+1,T

1/st,T = (1− δ)/st + δst+1,T
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and κt,T = νt,T st,T for t = T − 1, . . . , 1.

3.6.3 Generating MC Samples of θ for Model Selection Cri-
teria

First, generate samples {αt} from Tνt(µt, Ct) and samples {σ−2
t } fromG(νt/2, κt/2) for

t = 1, . . . , T as Section 3.6.2. Then, transform them into TV-VAR parameters, {Φp,t}

and {Σt}, by (3.5) and (3.6). Finally, generate S sets of samples {θ = (Φ
(s)
t,p ,Σ

(s)
t ), s =

1, . . . , S}, which are used to compute DIC and WAIC.

3.6.4 Forecasting

We can make h-step ahead forecasting by following these steps.

• For stage m = 1, . . . ,Mk and series k = 1, . . . , K, compute the h-step ahead

posterior predictive distribution of the PARCOR coefficients following West and

Harrison (1997): (α
(m)
f,m,k+(T+h−1)K |DT ) ∼ N(µ

(m)
f,m,k+(T−1)K(h), C

(m)
f,m,k+(T−1)K(h))

where µf,m,k+(T−1)K(h) = µ
(m)
f,m,k+(T+h−1)K and C

(m)
f,m,k+(T−1)K(h) = C

(m)
f,m,k+(T−1)K+

hG
(m)
f,m,k+TK with G

(m)
f,m,k+TK = C

(m)
k+(T+h−1)K(1− β)/β.

• For stage m = 1, . . . ,Mk and series k = 1, . . . , K, draw J samples for each of

the h-step ahead of the AR coefficients {a(Mk)
m,k+(T+h−1)K , m = 1, . . . ,Mk} from

the samples of {α(m)
f,m,k+(T+h−1)K} and {α(m)

b,m,k+(T+h−1)K} for series k = 1, . . . , K.

• Transform the samples of {a(Mk)
m,k+(T+h−1)K , m = 1, . . . ,Mk} into the samples of

TV-VAR parameters {Φp,T+h, p = 1, . . . , P}.
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• The samples of the h-step ahead forecast is obtained as

x
(j)
T+h =

P∑
p=1

Φ
(j)
p,T+hx

(j)
T+h−p, (3.12)

where x
(j)
T+h−p = xT+h−p if h− p ≤ 0.

• We use the posterior mean of xT+h obtained through the samples in (3.12) as

the h-step ahead forecast.
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Chapter 4

Computationally Efficient
Time-varying Poisson
Autoregressive Models

4.1 Introduction

Modeling count time series is essential in many applications such as pandemic inci-

dences, insurance claims, and integer financial data such as transactions. Different

types of count time series models have been broadly developed within the classes

of observation-driven and parameter-driven models. The observation-driven models

include the INGARCH model (Ferland et al., 2006; Fokianos et al., 2009), integer-

valued autoregressive model, also called Poisson autoregressive model (Al-Osh and

Alzaid, 1987), generalized linear ARMA (GLARMA) model (Zeger, 1988; Dunsmuir,

2016) and Poisson AR model (Brandt and Williams, 2001), among others (see Davis

et al. (2016) for a comprehensive overview). The parameter-driven models include the
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Poisson state space model (Smith and Miller, 1986), Poisson exponentially weighted

moving average (PEWMA) model (Brandt et al., 2000), and dynamic count mixture

model (Berry and West, 2019), among others. Some of this research is proceeds under

a Bayesian framework (Berry and West, 2019; Bradley et al., 2020).

For nonstationary count time series with changing trends, e.g., daily new COVID

cases data, many traditional methods (Ferland et al., 2006; Fokianos et al., 2009;

Brandt et al., 2000; Brandt and Williams, 2001) may not capture local trends or give

good multi-step forecasts. The motivation for our study is to propose an efficient

method to capture the time-varying pattern of the means for such nonstationary

count time series and, therefore, make better forecasts than traditional methods. To

capture the evolutionary properties, a parameter-driven (process-driven) model with

a time-varying coefficient latent process provides one good choice. Moreover, a latent

process with appropriately modeled innovations can address the over-dispersion issue,

which is common in count time series modeling.

We propose a time-varying Poisson autoregressive (TV-Pois-AR) model for non-

stationary count time series. We use a time-varying autoregressive (TV-AR) latent

process to model the nonstationary intensity of the Poisson process. This flexible

model can capture the latent dynamics of the time series and, therefore, make supe-

rior forecasts. The estimation of such a TV-AR process is greatly sped up by using the

Bayesian Lattice Filter (BLF, Yang et al. (2016)). Moreover, in our model and many

other models, the intensity parameter does not exhibit a closed-form full conditional

distribution. To sample the intensity parameter, the No-U-Turn Sampler (NUTS,

Hoffman and Gelman (2014)) is used, instead of a random walk Metropolis-Hastings

algorithm, for faster mixing of the sample chains. Martino et al. (2015) investigated
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the use of the Hamilton Monte Carlo (HMC) method inside the Gibbs sampling. Ac-

cording to this paper, as a self-tuned extension to HMC, NUTS should work well as

a univariate sampler inside the Gibbs sampling. Benefiting from the joint use of the

Bayesian lattice filter and No-U-Turn Sampler, estimation of the TV-Pois-AR model

is efficient and fast, especially for higher model orders or longer length time series.

The rest of the chapter is organized as follows. Section 4.2 describes the proposed

Bayesian method. Section 4.3 shows the results of several simulation studies. In

Section 4.4, our proposed model is demonstrated through an example of COVID-19

spread for New York State. In Section 4.5, we summarize the proposed method and

discuss possible future research.

4.2 Methodology

4.2.1 TV-Pois-AR(P ) Model

We propose a Poisson model with latent Gaussian process (LGP). For a univariate

count-valued series, zt, t = 1, . . . , T , a TV-Pois-AR model of order P (TV-Pois-

AR(P )) is defined as

zt|µ, yt ∼ Pois(exp(µ+ yt)),

yt =
P∑
j=1

aj,tyt−j + ξt, ξt ∼ N (0, σ2
t ),

(4.1)

where µ is the mean level of the logarithm of the Poisson intensity and yt is the

autoregressive component of the logarithm of the Poisson intensity which follows a
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TV-AR process. It can also be interpreted that exp(µ) is the scale parameter of

the intensity. We define aj,t and σ2
t to be time-varying AR coefficients of TV-AR(P )

associated with time lag j at time t and the innovation variance at time t, respectively.

The innovations, ξt, are defined to be independent Gaussian errors. For this Bayesian

model, we use Gibbs sampling to estimate the parameters and latent variables. The

later sections show the derivation of the full conditional distributions,

4.2.2 The Lattice Structure of the TV-AR Process

Conditional on the latent variable yt for t = 1, . . . , T , the conditional distribution

parameters in the latent TV-AR process of yt can be inferred through the BLF Yang

et al. (2016). According to the Durbin-Levinson algorithm, there exists a unique cor-

respondence between the PARCOR coefficients and the AR coefficients, (Shumway

and Stoffer, 2006; Kitagawa, 2010; Yang et al., 2016). This lattice structure provides

a direct way of using the observed time series to estimate the PARCOR coefficients,

which are associated with particular AR model (see Hayes (1996) and the Supplemen-

tary Appendix Yang et al. (2016)). The efficient estimation of this TV-AR process

can be conducted through the following P -stage lattice filter. We denote f
(P )
t and

b
(P )
t to be the prediction error at time t for the forward and backward TV-AR(P )

models, respectively, where

f
(P )
t = yt −

P∑
j=1

a
(P )
j,t yt−j

b
(P )
t = yt −

P∑
j=1

d
(P )
j,t yt+j,

(4.2)
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and a
(P )
j,t and b

(P )
j,t are the forward and backward autoregressive coefficients of the

corresponding TV-AR(P ) models. Then, in the jth stage of the lattice filter for

j = 1, . . . , P , the forward and the backward coefficients and the forward and backward

prediction errors have the following relationship

f
(j)
t = f

(j−1)
t − α(j)

j,t b
(j−1)
t−1 ,

b
(j)
t = b

(j−1)
t−1 − β

(j)
j,t f

(j−1)
t ,

(4.3)

where α
(j)
j,t and β

(j)
j,t are the lag j forward and backward PARCOR coefficients at

time t, respectively. The initial condition, f
(0)
t = b

(0)
t = yt can be obtained from the

definition by (4.3). It means that the samples of yt are plugged in as the initial values

of f
(0)
t and b

(0)
t in the Gibbs sampling. At the jth stage of the lattice structure, we fit

time-varying AR(1) models to estimate α
(j)
j,t and β

(j)
j,t . The corresponding forward and

backward autoregressive coefficients at time t, a
(j)
j,t and d

(j)
j,t can be obtained according

to the following equations:

a
(j)
i,t = a

(j−1)
i,t − a(j)

j,t d
(j−1)
j−i,t ,

d
(j)
i,t = d

(j−1)
i,t − d(j)

j,t a
(j−1)
j−i,t ,

(4.4)

with i = 1, . . . , j − 1, a
(j)
j,t = α

(j)
j,t and d

(j)
j,t = β

(j)
j,t . Finally, the distribution of a

(P )
j,t

and ξt for j = 1, . . . , P are obtained. These distributions are used as conditional

distributions of aj,t and ξt in the Gibbs sampling.
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4.2.3 Model Specification and Bayesian Inference

We assume that the mean level µ follows a normal distribution, i.e., µ ∼ N(µ0, τ
2
0 )

and the initial state of the latent variable y0 follows a normal distribution, s.t.,

y0 ∼ N(m0, s
2
0). In Gibbs sampling, µ is sampled efficiently by NUTS and this

speeds up the mixing of the sample chains. NUTS is an extension to Hamilton Monte

Carlo (HMC, Neal (1994); Neal et al. (2011); Duane et al. (1987)) algorithm through

automatic tuning. Compared to Metropolis-Hastings algorithm, which uses a Gaus-

sian random walk as proposal distribution, HMC proposes moves using the leapfrog

integration and, therefore, generates samples converging to the target distribution.

The target distribution of yt, for t = 1, . . . , T , is its conditional distribution with the

density function

p(yt|zt,y−t,θ) = p(zt|µ, yt)p(yt|y−t,θ)

∝ p(zt|µ+ yt)p(yt|yt−1,θ)p(yt+1|yt,θ)

= pPois(zt| exp(µ+ yt))pN(yt|atyt−1, σ
2
t )pN(yt+1|atyt, σ2

t+1),

where yt = (yt, . . . , yt−P+1)′, at = (a1,t, . . . , aP,t)
′, θ denotes aj,t and σ2

t for all t and

y−t denotes yi for all i but t. Having the target distribution, NUTS can adaptively

draw samples of yt conditional on all other variables for all t.

To use the BLF to derive the conditional distributions of the parameters in the

latent autoregressive process of yt, we define the distribution of its coefficients a
(P )
j,t by

defining the distributions of the forward and backward PARCOR coefficients in (4.3).

To give time-varying structures to the forward and backward PARCOR coefficients,

we consider random walks for the PARCOR coefficients. The PARCOR coefficients
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are modeled as

α
(j)
j,t = α

(j)
j,t−1 + εα,j,t, εα,j,t ∼ N(0, ωα,j,t),

β
(j)
j,t = β

(j)
j,t−1 + εβ,j,t, εβ,j,t ∼ N(0, ωβ,j,t),

where ωα,j,t and ωβ,j,t are time dependent evolution variance. These evolution vari-

ances are defined via the standard discount method in terms of the discount factors

γf,j and γb,j within the range (0, 1), respectively (see Appendix and West and Har-

rison (1997) for details). The discount factor γ actually controls the smoothness of

PARCOR coefficients. Here, we assume γf,j = γb,j = γj at each stage j. Similarly, the

innovation variances are assumed to follow multiplicative random walks and modeled

as

σ2
f,j,t = σ2

f,j,t−1(δf,j/ηf,j,t), ηf,j,t ∼ Beta(gf,j,t, hf,j,t),

σ2
b,j,t = σ2

b,j,t−1(δb,j/ηb,j,t), ηb,j,t ∼ Beta(gb,j,t, hf,j,t),

where δf,j and δb,j are also discount factors in the range (0,1), and the multiplicative

innovations, ηf,j,t and ηb,j,t follow beta distributions (see Appendix and West and

Harrison (1997) for details). The smoothness of innovation variance is controlled by

both γ and δ. Similar to the PARCOR coefficients, we assume δf,j = δb,j = δj at each

stage. Note that εβ,j,t, εβ,j,t, ηf,j,t and ηb,j,t are mutually independent and are also

independent of any other variables in the model. The discount factors γ and δ are

selected adaptively through a grid-search based on the likelihood (see the Appendix

for details) in each iteration of MCMC.

We specify conjugate initial priors for the forward and backward PARCOR coef-
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ficients, so that

p(αj,0|Df,j,0, σf,j,0) ∼ N(µf,j,0, Cf,j,0),

p(βj,0|Db,j,0, σb,j,0) ∼ N(µb,j,0, Cb,j,0),

where p = 1, . . . , P , Df,j,0 and Db,j,0 denotes the information available at the initial

time t = 0, µf,j,0 and Cf,j,0 are the mean and the variance of the normal prior

distribution. We also specify conjugate initial priors for the forward and backward

innovation variance, so that

p(σ2
f,j,0|Df,j,0) ∼ G(νf,j,0/2, κf,j,0/2),

p(σ2
b,j,0|Db,j,0) ∼ G(νb,j,0/2, κb,j,0/2),

where G(·, ·) is the gamma distribution, and νf,j,0/2 and κf,j,0/2 are the shape and rate

parameters for the gamma prior distribution. Usually, we treat these starting values

as constants over all stages. In order to reduce the effect of the prior distribution, we

choose µf,j,0/2 and Cf,j,0 to be zero and one, respectively and fix νf,j,0 = 1 and set

κf,j,0 to equal to the sample variance of the initial part of each series. In such prior

settings, we can use the DLM sequential filtering and smoothing algorithms (West and

Harrison, 1997) to derive the joint conditional posterior distributions of the forward

and backward PARCOR coefficients and innovation variances in (4.3). Conditional on

other the variables and the data, the full conditional distribution of the latent variable

yt can be easily obtained individually. To efficiently draw samples from individual

yt’s full conditional distribution, we use the NUTS algorithm (Hoffman and Gelman,

2014) instead of a traditional random walk Metropolis. The detailed algorithm of the
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sequential filtering and smoothing are given in the Appendix.

4.2.4 Model Selection

In order to determine the model order, we set a maximal order Pmax and fit TV-

Pois-AR(P ) for P = 1, . . . , Pmax. The model selection criteria is computed one by

one for any specified order. By comparing model selection criteria, we can select the

best model order. Since Bayesian inference for the TV-Pois-AR model is conducted

through MCMC simulations, we choose DIC (Spiegelhalter et al., 2002; Gelman et al.,

2013) and WAIC (Watanabe, 2010, 2013) introduced in Section 3.2.5 as the model

selection criteria.

4.2.5 Forecasting

Having estimated all parameters, we consider 1-step ahead forecasts of the TV-Pois-

AR(P ) model. Then, the 1-step ahead predictive posterior distribution of the PAR-

COR coefficients and innovation variance can be obtained according to West and

Harrison (1997). The samples of the PARCOR coefficients and innovation variance

can be drawn from their predictive distribution. The samples of the 1-step ahead

prediction of the parameters aT+1 = (a1,T+1, . . . , aP,T+1)′ can be obtained through

the Durbin-Levinson algorithm from the samples of the PARCOR coefficients. After

drawing the samples of innovation variance σ2
T+1 from its predictive distribution, the

samples of yT+1 are drawn from its predictive distribution, such that,

y
(j)
T+1|y1:T , a

(j)
T+1, σ

2(j)
T+1 ∼ N(

P∑
p=1

a
(j)
p,T+1yT+1−p, σ

2(j)
T+1), j = 1, . . . , J.
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With the samples of µ from its posterior distribution, the samples of the 1-step ahead

forecast are given as

z
(j)
T+1|y

(j)
T+1, µ

(j) ∼ Pois(exp(y
(j)
T+1 + µ(j))), j =, . . . , J. (4.5)

We use the posterior mean or median of zT+1 obtained through the samples in (4.5)

as the 1-step ahead forecast. This forecast can be easily extended to h-steps ahead.

The details of forecasting up to h-steps ahead can be found in the Appendix.

4.3 Simulation Study

In this section, first, we simulate the nonstationary Poisson time series from the exact

TV-Pois-AR(P ) model to evaluate the parameter estimation of the latent TV-AR

process. Second, we generate a nonstationary Poisson time series based on a known

time-dependent intensity parameter in order to compare our TV-Pois-AR model with

other models.

4.3.1 Simulation 1

We simulated 100 time series for each of the lengths T = 200, 300, 400 from the

following Poisson TV-AR(6) model, for t = 1, . . . , T ,

zt|µ, yt ∼ Pois(exp(µ+ yt)),

yt =
6∑
j=1

aj,tyt−j + ξt, ξt ∼ N (0, 1),
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where µ = 3. The latent process of yt is the same time-varying TV-AR(6) process as

in Rosen et al. (2009). This TV-AR(6) process can be defined as at(B)yt = ξt, t =

1, . . . , T , through a characteristic polynomial function at(B), with B is the backshift

operator (i.e., Bpyt = yt−p). In this TV-AR(6) process, the characteristic polynomial

function is factorized as

at(B) = (1− at,1B)(1− a∗t,1B)(1− at,2B)(1− a∗t,2B)(1− at,3B)(1− a∗t,3B),

where the superscript ∗ denotes the complex conjugate of a numbers. Also, let a−1
t,j =

Apexp(2πidt,j) for p = 1, 2, 3, where the dt,js are defined by dt,1 = 0.05+(0.1/(T−1))t,

dt,2 = 0.25, and dt,3 = 0.45−(0.1/(T−1))t and the values ofA1, A2 andA3 equal to 1.1,

1.12, and 1.1, respectively. Based on DIC and WAIC, a model order of 6 is correctly

selected. According to DIC and WAIC, 98% of the simulated datasets are identified

to follow an order 2 model (TV-Pois-AR). Figure 4.1 and 4.2 shows the MSEs of

6 coefficients, the innovation variance, the mean level µ and the latent variable y

over 100 simulated datasets. As expected, when the length of series increases, the

TV-Pois-AR model gives more accurate estimation of each parameter.

4.3.2 Simulation 2 - An Empirical Example

In this study, we simulated the signals in a way, so that they exhibit similar properties

as the COVID-19 data in New York State (see Section 4.4 for a complete discussion).

We generated 100 time series of length T = 278 from the following Poisson process,

zt|λt ∼ Pois(λt), t = 1, . . . , T,
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Figure 4.1: Boxplots of the MSEs of each of the six time-varying coefficient a1,t

through a6,t for 100 simulated datasets of different length: 200, 300, 400.
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Figure 4.2: Boxplots of the MSEs of the intensity and the parameters in the latent
process for 100 simulated datasets of different length. For each of them, three boxplots
of length 200, 300, 400 are put side by side from left to right. The left plot shows the
MSEs of the innovation variance. The middle plot shows the MSEs of the mean level
µ. The right plot shows the MSEs of the latent varaible y.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

1 2 3

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

Innovation Variance

M
S

E

●●●●●●●●●●

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

µ

M
S

E
●

●

●

●

●

●

●

●

●

●

4
0

6
0

8
0

1
0

0

y

M
S

E

106



Table 4.1: Average Mean Squared Error (AMSE) of the estimated intensity over the
100 simulated datasets using different methods.

P INGARCH GARMA TV-Pois-AR
AMSE 597041.3 621732.5 2568.6

where λt = xt + 1 with xt was daily new COVID-19 cases in New York State from

3/3/2020 to 12/5/2020. With this type of nonstationary signal, different models are

compared by the estimation of the known time-varying intensity parameter λt, includ-

ing the generalized autoregressive conditional heteroscedasticity model (INGARCH)

and generalized linear autoregressive moving average (GARMA) model. The IN-

GARCH and GARMA models are conducted by tsglm from R package tscount. Using

the Akaike information criterion (AIC) and the quasi information criterion (QIC) Pan

(2001), INGARCH(1,0) and GARMA(1,0) are selected. Both DIC and WAIC indi-

cate that TV-Pois-AR(1) is the best model on these simulated datasets (see details

in Section 4.2.4). To compare the parameter estimation of frequentist and Bayesian

models, the average MSE (AMSE) of the Poisson intensity parameter is computed and

shown in Table 4.1, where AMSE = 1
100T

100∑
s=1

T∑
t=1

(λt − λ̂t)2. The boxplots in Figure 4.3

summarize the MSEs of 100 simulated datasets. As shown, TV-Pois-AR makes better

forecasts on these simulated datasets. We expect the TV-Pois-AR model to have bet-

ter performance than INGARCH and GARMA on similar pandemic data and other

nonstationary count time series that shows similar characteristics.
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Figure 4.3: Boxplots of MSE of the estimated intensity over 100 simulated datasets
using different methods. Note that the scales of the three boxplots are different.
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4.4 Case Study: COVID-19 in New York State

We collect the number of daily new confirmed COVID-19 cases in New York State

from 3/3/2020 to 12/5/2020 from The COVID Tracking Project (https://covidtracking.

com). We pick New York State data, as New York city remained an epicenter in the

U.S. for about a month. Our research is motivated by the time-varying nature of

the COVID-19 data. Inferences on the trend of the data may give us some insight

into the spread of the COVID-19 and possibly insight into the effect of government

interventions.

A TV-Pois-AR model is applied with the model order selected based on DIC

and WAIC (see details in Section 3.2.5). By setting a maximum order of 5, order

2 is considered as the best. The difference between the estimated exponential of

the intensity parameter, exp(λt) and the observed series are shown in Figure 4.4.

Figure 4.5 shows the estimated parameters. Table 4.2 shows the model selection

results. A series of restrictions in New York State began on 3/12/2020 and a state-

wide stay-at-home order was declared on 3/20/2020. The number of new cases reached

its peak about two week after the lockdown. In Figure 4.5, the first dashed line in

the first two plots denotes 3/20/2020 the time when state-wide stay-at-home order

was declared. We can see the estimated autoregressive coefficients keep changing

significantly after this date. This change in the autoregressive coefficients coincides

with the lockdown process. The second dashed line in the first two plots denotes

9/26/2020. On that day, the number showed an uptick in cases, with more than

1,000 daily COVID-19 cases, which was the first time since early June. About two

weeks before this date, the coefficients show some evidence of pattern change. This

may be an indication that the lockdown affected the spread of the COVID-19. The
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innovation variance of the intensity is getting smaller and smaller probably due to

the improvement in testing and reporting. The dashed line in the third plot denotes

the date when the peak number of new cases occurred. Since then, the innovation

variance was stabilized to a low level.

To evaluate the performance of forecasting, we make rolling 20-day-ahead pre-

diction and compare the mean squared prediction error (MSPE). We pick a starting

date and make 20-day-ahead prediction based on the data up to this date. Then, we

move to the next day and make 20-day-ahead prediction based on the data up to the

new date. By repeating this until 20 days before the last day, we obtain the rolling

20-day-ahead prediction.

We compare the forecast performance of four methods, where Naive denotes the

naive forecast, that is, using the previous period to forecast for the next period

(carry-forward). Table 4.3 shows the percentage of TV-Pois-AR model’s 20-day-

ahead forecast performance beating other methods in terms of MSPE over the rolling

observed COVID data. Tables 4.4 and 4.5 show the same percentage when using the

posterior mean and the posterior median as forecast values. We pick two starting

dates for the rolling predictions: 7/19/2020 and 9/19/2020. The first date is picked

to give at least 100 observations of fitting data and 7/19/2020 is two weeks after

the New York state entered Phase 3 of reopening. Since, at the time, the common

COVID-19 quarantine period was 14 days, we use it as a starting date to conduct

prediciton. In other words, we suppose the reopening took 14 days to show an impact.

The second date allows at least 200 observations for model fitting. Our simulations

studies showed the model fitting and the model selection works ideally for at least

200 observations. The rolling prediction is conducted from the selected start day to
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Table 4.2: Model selection of Poisson TV-AR model for the daily new COVID-19
cases in New York State. Each column gives the model order P and the value of the
model selection criteria.

P 1 2 3 4 5
DIC 1738.540 1735.748 1783.484 1779.946 1796.255

WAIC 303.004 295.531 317.326 316.626 320.476

Table 4.3: Percentage of TV-Pois-AR(2) giving better forecasts of 20-step-ahead
rolling prediction on COVID-19 data in New York State from 3/3/2020 to 12/5/2020.
The posterior means of the intensity are used as the forecast values. There are two
start dates of the rolling predictions.

Start Date 7/19/2020 9/19/2020
GARMA(1,0) 94.2% 89.8%

INGARCH(12,2) 83.5% 78.0%
Naive 56.2% 71.2%

the last available day. The average MSPE over these days is used for comparison.

We evaluate three different forecast values (Tables 4.3 through 4.5). The rolling

prediction results suggest that the posterior median of the future observations gives a

better forecasts than the posterior mean of the future observations and the posterior

mean of the intensity (see Appendix for additional forecasting details). Moreover, the

posterior median of the future observations outperforms the two existing models and

the Naive forecasting. Figure 4.6 shows an example of 20-day forecast of the daily

new COVID-19 cases from 10/18/2020 to 11/6/2020 in New York State using the

posterior mean of the intensity as the forecast values. Figures 4.7 and 4.8 show the

same example with the posterior mean and the posterior median as forecast values.

The example demonstrates how the TV-Pois-AR model captures the time-varying

trend.
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Figure 4.4: The difference between daily new COVID-19 cases in New York State and
the estimated expected values. The black line is the difference and the grey region
shows the corresponding 90% credible intervals. The top plot shows the difference in
the original scale and the bottom plot show the difference in log scale.
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Figure 4.5: The estimated a1,t, a2,t, and σ2
t of Poisson TV-VAR(2) model applied to

daily new COVID-19 cases in New York State from top to bottom, respectively. The
grey region shows the corresponding 90% credible intervals.
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Figure 4.6: The 20-day forecast of the daily new COVID-19 cases of the last 20 days
in New York State. The posterior means of the intensity are used as the forecast
values. The black overplotted points and lines are the observed daily new cases used
for model fitting from 3/3/2020 to 10/17/2020. The black dots are the true daily
new cases in the forecast region from 10/18/2020 to 11/6/2020. The blue line shows
the 20-day forecast. The light blue region is the 90% prediction interval.
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Figure 4.7: The 20-day forecast of the daily new COVID-19 cases of the last 20 days
in New York State. The posterior means of the future observations are used as the
forecast values. The black overplotted points and lines are the observed daily new
cases used for model fitting from 3/3/2020 to 10/17/2020. The black dots are the
true daily new cases in the forecast region from 10/18/2020 to 11/6/2020. The blue
line shows the 20-day forecast. The light blue region is the 90% prediction interval.
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Figure 4.8: The 20-day forecast of the daily new COVID-19 cases of the last 20 days
in New York State. The posterior medians of the future observations are used as the
forecast values. The black overplotted points and lines are the observed daily new
cases used for model fitting from 3/3/2020 to 10/17/2020. The black dots are the
true daily new cases in the forecast region from 10/18/2020 to 11/6/2020. The blue
line shows the 20-day forecast. The light blue region is the 90% prediction interval.
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Table 4.4: Percentage of TV-Pois-AR(2) giving better forecasts of 20-step-ahead
rolling prediction on COVID-19 data in New York State from 3/3/2020 to 12/5/2020.
The posterior means of the future observations are used as the forecast values. There
are two start dates of the rolling predictions. Posterior mean used as forecasts.

Start Date 7/19/2020 9/19/2020
GARMA(1,0) 56.2% 94.9%

INGARCH(12,2) 65.3% 86.4%
Naive 50.41% 89.8%

Table 4.5: Percentage of TV-Pois-AR(2) giving better forecasts of 20-step-ahead
rolling prediction on COVID-19 data in New York State from 3/3/2020 to 12/5/2020.
The posterior medians of the future observations are used as the forecast values. There
are two start dates of the rolling predictions. Posterior median used as forecasts.

Start Date 7/19/2020 9/19/2020
GARMA(1,0) 82.6% 100%

INGARCH(12,2) 96.6% 96.6%
Naive 57.9% 100%
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4.5 Discussion

We develop a novel hierarchical Bayesian model to model the nonstationary count

time-varying models and propose an efficient estimation approach using a MCMC

sampling scheme with embedded NUTS algorithm. We also provide a model selection

method to choose the discount factors and the optimal model order. The simulation

cases show that the estimation of parameters is extremely accurate. The real data

example shows that the time-varying coefficients and innovation covariance can reveal

the changing pattern over time. The proposed method can be applied to not only the

confirmed cases of COVID-19 but also the number of deaths, number of recovered

cases, number of critical cases, and many others for different diseases. Such studies

may provide important insights into the spread and measures required.

One subject of future research is an extension to multivariate and/or spatio-

temporal cases by adding some region-specific effects and modeling the series in

multiple regions jointly. Modeling multivariate count-valued time series data is an

important research topic in ecology and climatology. Moreover, regarding univariate

applications on epidemic disease data, we can consider different government inter-

vention as covariates, which usually has an essential impact on the spread of any

infectious disease.
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4.6 Appendix

4.6.1 Algorithm of Fitting Poisson TV-AR Time Series

To fit a TV-Pois-AR model We use Gibbs sampling to generate samples from the full

conditional distribution of each of the parameters and the latent variables iteratively.

After burn-in, the sample distributions of these parameters and latent variables are

the estimated posterior distributions. These samples are generated by a Gibbs sam-

pling with the following steps:

• Draw samples of y = (y1, . . . , yT )′ from the full conditional distritbuion p(y|z, µ, a,σ2) ∝

p(z|y, µ)p(y|a,σ2) using a No-U-Turn Sampler (Hoffman and Gelman, 2014).

• Draw samples of a and σ2 from the the joint full conditional distribution

p(a,σ2|y) obtained from the BLF, where a = (a1, . . . , aT )′ and σ2 = (σ2
1, . . . , σ

2
T )′.

• Draw samples of µ from the full conditional distribution p(µ|z,y) ∝ p(z|y, µ)p(µ)

using a a No-U-Turn Sampler.

4.6.2 Bayesian Lattice Filter

• Step 1. Repeat Step 2 for stage p = 1, . . . , P .

• Step 2. Apply the sequential filtering and smoothing algorithm (see 3.6.2)

to the prediction errors of last stage, f
(p−1)
t and b

(p−1)
t to obtain α̂

(p)
t = µ

(p)
t

and σ̂2
(p)

t = s
(p)
t of the forward and backward equations, and the forward and

backward prediction errors, f
(p)
t and b

(p)
t for t = 1, . . . , T .
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• Step 3. Compute the full conditional distribution of a and σ2 based on the

results of Step 2.

4.6.3 Forecasting

We can make h-step ahead forecasting by following these steps.

• For stage p, compute the h-step ahead predictive distribution of the PARCOR

coefficients following West and Harrison (1997): (α
(p)
p,T+h|DT ) ∼ N(µ

(p)
T (h), C

(p)
T (h))

where µT (h) = µ
(p)
T and C

(p)
T (h) = C

(p)
T + hG

(p)
T+h with G

(p)
T+1 = C

(p)
t (1− β)/β.

• Draw J samples of {α(p)
p,T+h, p = 1, . . . , P} from their predictive distribution.

• For stage p, compute the h-step ahead predictive distribution of innovation vari-

ance following West and Harrison (1997): (σ
2(p)
T+h|DT ) ∼ G(ν

(p)
T (h)/2, κ

(p)
T (h)/2)

where ν
(p)
T (h) = δhν

(p)
T and κ

(p)
T (h) = δhκ

(p)
T .

• For stage p, draw J samples of σ
2(p)
T+h from the its predictive distribution

G(ν
(p)
k+(T−1)K(h)/2, κ

(p)
k+(T−1)K(h)/2).

• Compute the samples of the AR coefficients {a(P )
p,T+h, p = 1, . . . , P} through the

Durbin-Levinson algorithm from the samples of {α(P )
p,T+h, p = 1, . . . , P}.

• The samples of yT+h are generated from its predictive distribution, such that,

y
(j)
T+h|y1:T , y

(j)
T :(T+h−1), a

(j)
T+h, σ

2(j)
T+h ∼ N(

P∑
p=1

a
(j)
p,T+hy

(j)
T+h−p, σ

2(j)
T+h), j = 1, . . . , J,

where y
(j)
T+h−p = yT+h−p if h− p ≤ 0.
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• With the samples of µ from its posterior distribution, the samples of the h-step

ahead forecast are drawn as

z
(j)
T+h|y

(j)
T+h, µ

(j) ∼ Pois(exp(y
(j)
T+h + µ(j))), j =, . . . , J. (4.6)

• We use the posterior mean or median of zT+h obtained through the samples in

(4.6) as the h-step ahead forecast.
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