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Statistical Methods to Detect Allele Specific Expression,

Alterations of Allele Specific Expression and Differential

Expression

Jing Xie

Dr. Jianguo (Tony) Sun, Dissertation Supervisor

ABSTRACT

The advent of next-generation sequencing (NGS) technology has facilitated the

recent development of RNA sequencing (RNA-seq), which is a novel mapping and

quantifying method for transcriptomes. By RNA-seq, one can measure the expres-

sion of different features such as gene expression, allelic expression, and intragenic

expression in the forms of read counts. These features have provided new opportuni-

ties to study and interpret the molecular intricacy and variations that are potentially

associated with the occurrence of specific diseases. Therefore, there has been an

emerging interest in statistical method to analyze the RNA-seq data from different

perspectives. In this dissertation, we focus on three important challenges: identifying

allele specific expression (ASE) on the gene level and single nucleotide polymorphism

(SNP) level simultaneously, the detection of ASE regions in the control group and

regions of ASE alterations in case group simultaneously, and detecting genes whose

expression levels are significantly different across treatment groups (DE genes).

In Chapter 2, we propose a method to test ASE of a gene as a whole and variation

in ASE within a gene across exons separately and simultaneously. A generalized

linear mixed model is employed to incorporate variations due to genes, SNPs, and

xi



biological replicates. To improve reliability of statistical inferences, we assign priors

on each effect in the model so that information is shared across genes in the entire

genome. We utilize the Bayes factor to test the hypothesis of ASE for each gene and

variations across SNPs within a gene. We compare the proposed method to competing

approaches through simulation studies that mimicked the real datasets. The proposed

method exhibits improved control of the false discovery rate and improved power over

existing methods when SNP variation and biological variation are present. Besides,

the proposed method also maintains low computational requirements that allows for

whole genome analysis. As an example of real data analysis, we apply the proposed

method to four tissue types in a bovine study to de novo detect ASE genes in the

bovine genome, and uncover intriguing predictions of regulatory ASEs across gene

exons and across tissue types.

In Chapter 3, we propose a new and powerful algorithm for detecting ASE re-

gions in a healthy control group and regions of ASE alterations in a disease/case

group compared to the control. Specifically, we develop a bivariate Bayesian hidden

Markov model (HMM) and an expectation-maximization inferential procedure. The

proposed algorithm gains advantages over existing methods by addressing their lim-

itations and by recognizing the complexity of biology. First, the bivariate Bayesian

HMM detects ASEs for different mRNA isoforms due to alternative splicing and RNA

variants. Second, it models spatial correlations among genomic observations, unlike

existing methods that often assume independence. At last, the bivariate HMM draws

inferences simultaneously for control and case samples, which maximizes the utiliza-

tion of available information in data. Real data analysis and simulation studies that

mimic real data sets are shown to illustrate the improved performance and practical

utility of the proposed method.

In Chapter 4, we present a new method to detect DE genes in any sequencing

xii



experiment. The number of read counts for different treatment groups are modelled

by two Negative Binomial distributions which may have different means but share

the same dispersion parameter. We propose a mixture prior model for the dispersion

parameters with a point mass at zero and a lognormal distribution. The mixture

model allows shrinkage across genes within each of the two mixture components, thus

prevents the overcorrection resulting from shrinkage across all genes. The simulation

studies demonstrate that the proposed method yields a better dispersion estimation

and FDR control, and a higher accuracy in gene ranking. In addition, the proposed

method exhibits robustness to the misspecification of the bimodal distribution for the

dispersion parameters, thus is flexible and can be easily generalized.
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Chapter 1

General Introduction

1.1 RNA-seq data

The advent of next-generation sequencing (NGS) technology has facilitated the recent

development of RNA sequencing (RNA-seq), which is a novel mapping and quanti-

fying method for transcriptomes. In a typical RNA-seq experiment, a population of

RNA is at first converted to a library of cDNA fragments. With or without amplifi-

cation, in the second step, each molecule is sequenced in a high-throughput manner

to obtain short sequences (reads). Depending on the DNA-sequencing technology

used, length of the reads are usually between 30 and 400 base pairs (bps). Example

DNA-sequencing platforms include the Illumina IG [73, 62, 123], Applied Biosystems

SOLiD [16, 123], and Roche 454 Life Science [23, 123], etc. The last step following

sequencing is to align the resulting reads to either a reference genome or reference

transcripts. The end-product of a RNA-seq experiment is a genome-scale transcrip-

tion map that consists of both the transcriptional structure and/or level of expression

for each gene [123].
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Compared with other transcriptomics methods, such as hybridization-based ap-

proach (microarrays), sanger sequencing of cDNA or EST sequencing, and tag-based

sequencing approach (SAGE, CAGE, MPSS) [46, 120, 123], RNA-seq is based on high-

throughput sequencing and has several advantages. First, RNA-seq is not limited to

detecting transcripts that correspond to existing genomic sequence. Second, since

DNA sequences can been unambiguously mapped to unique regions of the genome,

RNA-seq is believed to be more accurate with a lower background noise. Thrid, the

required amount of RNA and the cost for mapping transcriptomes of large genomes

using RNA-seq technique are relatively low [120]. These advantages makes RNA-

seq gradually replace microarrays and become the new standard for transcriptomics

studies [123].

By RNA-seq, one can measure the expression of different features such as gene

expression, allelic expression, and intragenic expression in the forms of read counts.

Table 1.1 shows a table of read counts from a hypothetical RNA-seq experiment.

In this example, there are two biological replicates (samples) for each of two treat-

ment groups. As the hypothetical table indicates, the typical data from RNA-seq

experiment has three important features: (1) there are a large number of genes avail-

able, usually tens of thousands; (2) the number of replicates is limited, often three or

four due to the high expense associated with acquiring biological replicates and high-

throughput sequencing experiments; (3) the data is discrete rather than continuous.

These features has led to an emerging interest in statistical method to analyze the

data from different perspective, such as differential expression analysis, and allelic

expression analysis.
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Table 1.1: Table of read counts from a hypothetical RNA-seq experiment.

Gene SNP

Control group Case group

sample 1 sample 2 sample 1 sample 2

M P Total M P Total M P Total M P Total

1

1 50 89 139 45 79 124 100 110 210 107 123 230
2 48 90 138 40 80 120 110 100 210 120 112 232
3 55 80 135 48 75 123 106 90 196 110 105 215

2

1 12 40 52 20 38 58 10 45 55 16 39 55
2 14 42 56 22 40 62 12 47 59 18 41 59
3 11 39 50 19 37 56 9 44 53 15 38 53
4 22 50 72 30 48 78 20 55 75 26 49 75

...
...

...
...

...
...

...
...

...
...

...
...

...
...

10,000
1 10 12 22 13 11 24 11 40 51 10 38 48
2 20 18 38 19 18 37 10 30 40 12 29 41

1.2 Allele specific expression

Allele specific expression (ASE) in diploid genomes refers to a phenomenon that the

two alleles of a gene express substantially differently. One such example involves

imprinted genes whose allele expression is based on the parent of origin [11, 7]. Im-

printed genes are mainly or completely expressed from either the maternally or pa-

ternally inherited allele but not both, so the total expression from genomic copies

is the appropriate amount for healthy and viable organisms [100]. Another promi-

nent example is X-chromosome inactivation in mammals [128, 54], where one copy

of the X chromosome is inactivated in female cells to maintain the same dosage of

X-linked genes compared to male cells. The choice of which X chromosome is silenced

is random initially, but once chosen, the same X chromosome remains inactive in sub-

sequent cell divisions. In a third and rather random case, allelic imbalance occurs

when there are mutations in cis-regulatory regions of one allele, leading to differential

expression of two alleles [27, 78].
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ASE presents in both healthy and tumor tissues [29, 103] across species. Studies

that analyzed genome-wide ASE in humans [63, 117], mouse [31], bovine [129], and

drosophila [31] have discovered hundreds to a few thousands of genes that exhibit

significant ASE [36]. ASE is essential for normal development and many cellular pro-

cesses, and may lead to phenotypic variation depending on the function of the genes

or result in disease if impaired [95, 8]. However, it is not biologically clear what series

of mechanisms a cell employs to precisely initiate ASE during fetal development and

consistently maintain it through a lifetime. Therefore, a tremendous recent interest

has been focused on understanding the underlying mechanisms of ASE, and on uti-

lizing ASE as a direct approach to connect genotype and disease susceptibility. For

example, [80] used ASE analysis as a marker to identify candidate genes associated

with alcohol use disorders. [20] found that colorectal cancer risk increased as the

imbalance of ASE in gene adenomatous polyposis coli increased.

To understand diseases associated with ASE or aberrations in ASE, a fundamental

approach is to compare ASE status between a healthy control group and a case/disease

group. That is, to seek for the answers to two questions. First, which genes exhibit

ASE in the normal samples. Second, which regions of a specific chromosome exhibit

ASE and how the ASE status varies across normal and case samples. To that end,

researchers need to estimate genome-wide ASE status in the control group and whole

genome ASE status changes between the case and control groups.

High-throughput sequencing experiments, which can determine allele origins, have

been used to assess genome-wide ASE. Despite the amount of data generated from

high-throughput experiments such as RNA-seq, statistical methods are either too

simplistic to understand the complexity of gene expression, or too computational

expensive to apply to the entire genome. [70], [35] and [97] are exanples of the ex-

isting methods which can answer the first aforementioned question. However, [70]
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and [35] assume that ASE of a gene or a region is constant across single nucleotide

polymorphisms (SNPs), and they do not test ASE of a gene as a whole and varia-

tion in ASE within a gene across exons separately and simultaneously. [97] adopts a

Markov chain Monte Carlo (MCMC) method to compute posterior probabilities for

inferences of genes and SNPs and thus requires an extensive computational power.

Alternatively, we propose a generalized linear mixed model to incorporate variations

due to genes, SNPs, and biological replicates. The proposed approach can detect

ASE genes and ASE variations within genes simultaneously while maintaining a low

computational requirement. Coupled with exon and RNA transcript information, the

statistical predictions provided by the proposed method can produce detailed, bio-

logically relevant, intriguing results that enable researchers to examine the molecular

mechanisms of ASE regulation in detail.

For the exploration of the answer to the second question, existing methods usually

fail to identify boundaries of ASE regions precisely [89, 77, 66, 70, 35, 24], and ignore

the potential spatial correlation between SNPs and the correlation between ASE in

the control sample and ASE alterations in the case samples [97, 35, 70, 24]. To close

these research gaps, we further take into account the spatical correlation between

adjcent SNPs, and develop a bivariate Bayesian hidden Markov model (HMM) and

an expectation-maximization (EM) method for detecting ASE in control group and

alternations of ASE in case group simultaneously. We refer to the proposed method as

hmmASE algorithm. The hmmASE algorithm gains advantages over existing meth-

ods by addressing the limitations of current practice and recognizing the complexity

of biology. Specifically, the bivariate Bayesian HMM detects ASE at the exon level

(SNPs) rather than testing ASE for a whole gene. In addition, it models spatial corre-

lations among SNPs, unlike existing methods that often assume independence across

observations. The bivariate HMM draws inferences simultaneously for control and

5



case samples that exploits information among observations at the same SNP locus.

1.3 Differential expression

As the most common form of transcriptome analysis, differential expression analysis

plays an important role in the characterization and understanding of the molecular

basis of phenotypic variation in biology, including diseases [101]. Differential expres-

sion analysis involves searching for a set of genes in the whole genome whose mean

expression levels are substantially different across treatment conditions, such as con-

trol versus disease. With the development of novel high-throughput DNA sequencing

methods (RNA-seq), developing statistical methods for detecting differentially ex-

pressed (DE) genes has been an extensively studied research area.

Negative Binomial has been widely used to model the gene expression data in the

form of read counts by virtue of its flexibility to embrace overdispersion. To over-

come the small sample size problem in dispersion estimation, Bayesian method by

shrinking dispersion estimates towards the mean dispersion estimates of all genes has

been universally adopted by many statistical methods to detect DE genes [88, 87, 84,

69, 2, 64, 34]. However, biologically and empirically speaking, genes have intrinsic

dispersions that are related with their functions. Forcing dispersions of all genes to

be “similar” to each other could introduce biases for genes intrinsically with high or

low dispersions. We propose a mixture prior model for dispersion parameters with

a point mass at zero and a lognormal distribution, where the former models genes

whose dispersion parameter is low and close to zero; and the latter models genes ex-

hibiting uncontrolled high dispersion due to technical and biological replications. The

mixture model allows shrinkage across genes within each of the two mixture compo-
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nents, preventing overcorrection resulting from shrinking across all genes. Through

real data analysis and simulation studies, we demonstrate the flexibility of the pro-

posed model, and previous statistical methods with lognormal prior (or normal prior)

are special cases of the proposed mixture model. Simulation studies also suggest im-

proved estimation of dispersion parameters and power in differentially expressed gene

detection.

1.4 Organization of dissertation

In the rest of this dissertation, each main chapter corresponds to a proposed method

targeting at each of the aforementioned challenges. Chapter 2 presents the proposed

Bayesian linear mixed regression model for the detection of ASE genes and ASE vari-

ations across SNPs within a gene. Chapter 3 extends the work in Chapter 2 by taking

into account the spatial correlation among SNPs and by incorporating the comparison

between control samples and case samples. The new proposed method hmmASE is

based on a bivariate Bayesian Hidden Markov Model, and can simultaneously detect

the ASE region in the control group and region of ASE alterations in the case group.

In Chapter 4, we switch the focus from allelic expression to differential expression.

We propose a mixture prior model on dispersion parameters with a point mass at

zero and a lognormal probability distribution, The former mixture component rep-

resents genes whose dispersion parameter is small and close to zero, and the latter

corresponds to genes with high uncontrolled dispersion across biological replicates.

For each of the proposed method depicted in Chapters 2-4, simulation studies and

real data analysis are conducted to evaluate the performance and empirical utility.

Chapter 5 discusses the potential directions for future research.
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Chapter 2

Modeling Allele Specific
Expression at the Gene and SNP
Levels Simultaneously by a
Bayesian Logistic Mixed
Regression Model

2.1 Introduction

In a diploid cell, the two alleles of a gene inherited from maternal and paternal parents

express roughly equally for most genes. However, research has uncovered a group of

genes in the genome where two copies of a gene express substantially differently, a

phenomenon known as allelic imbalance. One such example involves imprinted genes

whose allele expression is based on the parent of origin [11, 7]. Imprinted genes are

mainly or completely expressed from either the maternally or paternally inherited

allele but not both, so the total expression from genomic copies is the appropriate

amount for healthy and viable organisms [100]. Another prominent example is X-
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chromosome inactivation in mammals [128, 54], where one copy of the X chromosome

is inactivated in female cells to maintain the same dosage of X-linked genes compared

to male cells. The choice of which X chromosome is silenced is random initially, but

once chosen, the same X chromosome remains inactive in subsequent cell divisions.

In a third and rather random case, allelic imbalance occurs when there are mutations

in cis-regulatory regions of one allele, leading to differential expression of two alleles

[27, 78].

Allelic imbalance affects approximately 5-10% of genes in the mammalian genome

[54], but it is not biologically clear what series of mechanisms a cell employs to

precisely initiate allele-specific expression (ASE) during fetal development and con-

sistently maintain it through a lifetime. Several common congenital human disorders

are caused by mutations or deletions within these ASE regions, such as Beckwith-

Wiedemann syndrome (BWS) [17, 124], which characterizes an array of congenital

overgrowth phenotypes; Angelman syndrome [3], which characterizes nervous system

disorders; and Prader-Willi syndrome, in which infants suffer from hyperphagia and

obesity.

To understand the molecular mechanisms underlying ASEs and human develop-

mental defects due to misregulated ASE regions, a powerful and accurate compu-

tational algorithm to detect genome-wide ASEs is urgently needed. The binomial

exact test, employed in AlleleSeq [89], is one of the most widely used methods to test

ASEs due to its simplicity. [77] uses analysis of variance (ANOVA) in their proposed

pipeline Allim. [66] fits a mixture of folded Skellam distributions to the absolute val-

ues of read differences between two alleles. However, these abovementioned statistical

methods draw conclusions based on observations produced from one gene; due to the

expensive cost of acquiring tissue samples and sequencing experiments, most labora-

tories can only afford three or four biological replicates. Depending on sequencing
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depth, genes may also have low read counts, limiting the power of the aforementioned

methods.

In searching for more powerful and reliable ASE detection methods, several groups

have proposed Bayesian approaches to share information across genes and thus im-

prove gene-related inferences on average. For instance, the MBASED method [70]

and the QuASAR method [35] all assume the read counts follow binomial distribu-

tions with a beta prior on the probability parameter. In their statistical models, they

assume that ASE of a gene or a region is constant across SNPs. However, ASE is

known to vary within a gene due to alternative splicing [75, 119], which is essentially

universal in human multi-exon genes that comprise 94% of genes overall [30, 119].

Therefore, a highly desirable feature of ASE detection methods is identification of

ASE genes and ASE variations within genes across multiple exons. [97] developed

a flexible statistical framework that satisfied this requirement. It assumes a bino-

mial distribution with a beta prior. Additionally, it places a two-component mixture

prior on the parameters of the beta-binomial model. A Markov chain Monte Carlo

(MCMC) method was adopted to compute posterior probabilities for inferences of

genes and SNPs. However, due to the extensive computational power required in

the MCMC calculation for one gene and the large number of genes in the entire

genome, this method is not empirically appealing. Other relevant methods include

the EAGLE method [50] that detects associations between environmental variables

and ASEs, the WASP method [116] that addresses incorrect genotype calls, and the

RASQUAL method [51] that detects gene regulatory effects.

In this chapter, we propose a new statistical method that addresses the above-

mentioned challenges. Specifically, the proposed approach can detect ASE genes and

ASE variations within genes simultaneously while maintaining a low computational

requirement. Coupled with exon and RNA transcript information, the statistical
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predictions provided by the proposed method can produce detailed, biologically rele-

vant, intriguing results that enable researchers to examine the molecular mechanisms

of ASE regulation in detail.

Particularly, we model the logistic transformation of the probability parameter

in the binomial model as a linear combination of the gene effect, single nucleotide

polymorphism (SNP) effect, and biological replicate effect. The random SNP effect

permits ASE to vary within a gene; the random replicate effect accounts for extra

dispersion among biological replicates beyond binomial variation. To overcome the

low number of biological replicates and/or low number of read counts of a gene, we

propose a hierarchical model with a Gaussian prior on the fixed gene effect and in-

verse gamma priors, respectively, on the variance components of the random SNP and

replicate effects. We test hypotheses via Bayesian model selection method based on

model posterior probabilities. To compute posterior probabilities, we propose com-

bining the empirical Bayes method and Laplace approach to approximate integra-

tions, leading to substantially reduced computational power requirements compared

to MCMC. We illustrate the utility of the proposed method by applying it to the

bovine genome in [13], which motivated this chapter; findings reveal for the first time

highly detailed information regarding the testing results for whole-genome ASEs, un-

veiling inspiring ASE variations across exons and across tissue types. To compare

the proposed method with existing approaches, we simulate data that mimic real

datasets to ensure that the comparison results can be reproduced in practice. The

proposed method outperforms existing methods in false discovery rate (FDR) con-

trol of detecting ASEs and variations therein across SNPs. We call the proposed

method the Bayesian Logistic Mixed Regression Model (BLMRM) method. The R

package, BLMRM, for the proposed method is publicly available for download at

https://github.com/JingXieMIZZOU/BLMRM.
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2.2 Bayesian generalized linear mixed model

Let ngjk denote the total number of read counts for the kth biological replicate of gene

g at its jth SNP, where g = 1, 2, . . . , G, j = 1, 2, . . . , Jg, and k = 1, 2, . . . , K. Let ygjk

denote the number of read counts from the maternal allele of replicate k. We model

ygjk ∼ Binomial(ngjk, pgjk), where pgjk denotes the proportion of gene expression

from the maternal allele for gene g at SNP j of replicate k. It is known that using

the RNA-seq approach to detect ASEs can produce bias during mapping because

reads from the reference allele are more likely to be mapped due to fewer number

of mismatches compared to reads from alternative alleles [21]. Potential solutions

have been proposed in [21, 92, 13] to correct mapping bias. Here and throughout this

dissertation, ngjk’s and ygjk’s denote the read counts after bias correction.

The objective of this chapter is to detect genes and regions within a gene whose

expression is significantly different between the maternal and paternal alleles. Most

existing methods assumed equal gene expression across all SNPs of a given gene;

however, research discoveries have disproven this assumption for several reasons [10,

18], including alternative splicing and RNA variants. Thus, we model ygjk as

ygjk ∼ Binomial(ngjk, pgjk), and

log
pgjk

1− pgjk
= βg + Sgj +Rgk, (2.1)

where βg is the fixed gene effect; Sgj is the random SNP effect and Sgj
iid∼ N(0, σ2

sg);

Rgk is the random replicate effect and Rgk
iid∼ N(0, σ2

rg). We also assume Sgj’s and

Rgk’s are mutually independent. Therefore, the null hypothesis H0 : βg = 0 is to test

whether gene g exhibits imbalanced allelic expression. Furthermore, H0 : σ2
sg = 0

is to examine whether maternal (and/or paternal) gene expression percentage is the
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same across all SNPs of a gene.

Due to the expense of sample collection and sequencing experiments, most labora-

tories can only afford a few biological replicates, such as K = 3 or 4. In addition, the

number of available SNPs in a gene also depends on the diversity between parental

alleles. Often, only a small number of genes contain a large number of SNPs. Thus,

for most genes, the estimates of βg, σ
2
sg, and σ2

rg are not robust, leading to unreliable

statistical inferences. To improve estimation accuracy, we assume hierarchical priors

on βg, σ
2
sg, and σ2

rg to share information across all genes in the genome. Specifically,

we assume σ2
sg

iid∼ IG(as, bs), σ
2
rg

iid∼ IG(ar, br), and a Gaussian prior on the gene effect

βg
iid∼ N(µ, σ2). The hyperparameters as, bs, ar, br, µ, and σ2 no longer have the

subscript g because they are estimated by pooling observations from all genes. Given

that there are tens of thousands of genes in the genome, the estimates of these prior

hyperparameters are accurate.

2.3 Detection of imbalanced allelic gene expres-

sion through Bayesian model selection

Next, we describe the proposed Bayesian model selection method to detect ASE at

the gene level and corresponding variations across SNPs. Based on model (2.1), there

are four models, indexed by m ∈ {1, 2, 3, 4}, in model space M, where βg = 0 and

σ2
sg = 0 in Model 1; βg 6= 0 and σ2

sg = 0 in Model 2; βg = 0 and σ2
sg 6= 0 in Model 3;

and βg 6= 0 and σ2
sg 6= 0 in Model 4. For each gene g, we select model m inM, which

has the largest posterior probability defined as

P (m|yg,ng) =
P (m)P (yg|m,ng)∑4
m=1 P (m)P (yg|m,ng)
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∝ P (m)P (yg|m,ng), (2.2)

where yg = (yg11, . . . , ygJgK)′ and ng = (ng11, . . . , ygJgK)′. P (m) denotes the prior

probability of model m. Without prior information, we assume a uniform prior on

space M. Thus, our objective is to select a model m in M that maximizes the

marginal likelihood P (yg|m,ng), which, when comparing two models, is equivalent to

choosing the model m using the Bayes factor. Let bg denote all random effects; that

is, bg = (Sg1, . . . , SgJg , Rg1, . . . , RgK)′. Hence,

P (yg|m,ng) =

∫∫∫∫
P (yg|βg,bg,ng,m)P (βg)×

P (bg|σ2
sg, σ

2
rg)P (σ2

sg, σ
2
rg)×

dβg dbg dσ
2
sg dσ

2
rg. (2.3)

A direct integration of (2.3) is difficult because an analytical result of the density

is not a closed form. An alternative approach is to use Laplace approximation to

iteratively approximate each integral; however, in our experience, this leads to error

accumulated through each layer of integration and thus affects the accuracy of results.

To overcome this problem, we propose a combination of empirical Bayes estimation

and Laplace approximation. Inspired by the approach in [82], we obtain the following

empirical Bayes estimators.

β̃g = E(βg|β̂g) ≈
V̂ar(βg)µ̂+ σ̂2β̂g

V̂ar(βg) + σ̂2
, (2.4)

σ̃2
sg = E(σ2

sg|σ̂2
sg) ≈

dsgσ̂
2
sg + 2b̂s

dsg + 2âs
, and (2.5)

σ̃2
rg = E(σ2

rg|σ̂2
rg) ≈

drgσ̂
2
rg + 2b̂r

drg + 2âr
, (2.6)
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where β̃g, σ̃
2
sg, and σ̃2

rg denote the empirical Bayes estimates of βg, σ
2
sg, and σ2

rg,

respectively. β̂g, V̂ar(βg), σ̂
2
sg, and σ̂2

rg are maximum likelihood estimates from model

(2.1). µ̂, σ̂2, âr, b̂r, âs, and b̂s are estimated hyperparameters whose estimation

method will be introduced in detail later in this section. drg and dsg are degrees of

freedom of the random SNP and random replicate effect, respectively, with dsg = Jg−1

and drg = K − 1. We enter these empirical Bayes estimates directly into (2.3),

obtaining the approximation:

P (yg|m,ng) ≈
∫
P (yg|β̃g,bg,m,ng)×

P (bg|σ̃2
sg, σ̃

2
rg) dbg. (2.7)

Accordingly, (2.3) is reduced to (2.7), which requires only one step of Laplace

approximation. The objective in combining empirical Bayes estimates and Laplace

approximation is to develop a method with improved power and accuracy while main-

taining affordable computational power that allows for empirical application. In the

simulation study, we compared the proposed approach with the method using pure

Laplace approximation. We found that the proposed method is superior than purely

using Laplace approximation with respect to FDR control and true positive rate (see

simulation results section). This approach also greatly decreases computational re-

quirements compared to MCMC, considering there are tens of thousands of genes in

an entire genome [42]. For instance, the method in [97] employs an MCMC algorithm

for identifying ASE. With the default setting, their approach took approximately

1.5 hour to analyze 50 genes, whereas the proposed method took approximately 3

minutes.

We still need to estimate hyperparameters µ, σ2, as, bs, ar, and br. To avoid

extreme values that produce unstable estimates, we first let y∗gjk = ygjk + 1 and

15



n∗gjk = ngjk + 2. Then, based on y∗gjk’s and n∗gjk’s, µ and σ2 are estimated by the

method of moments using significant β̂g via likelihood ratio tests when controlling

FDR at 0.05. as, bs, ar, and br are estimated based on y∗gjk’s and n∗gjk’s by the

maximum likelihood method, where as and bs are based on significant estimates of

σ̂2
sg’s via likelihood ratio tests and controlling FDR at 0.05, and as and bs are based

on σ̂2
rg’s from all genes.

Finally, we test H0 : βg = 0 and H0 : σ2
sg = 0 for gene g by choosing Model m,

where m = arg max
γ∈{1,2,3,4}

P (γ|yg,ng) for g = 1, . . . , G. Let P (g ∈ {m}|yg,ng) denote

the posterior probability of gene g being sampled from Model m. The posterior

probability of a gene exhibiting an ASE gene effect is P (g ∈ {2, 4}|yg,ng). Similarly,

the posterior probability of a gene exhibiting ASE variations across SNPs is P (g ∈

{3, 4}|yg,ng). Finally, the posterior probability of a gene exhibiting an ASE gene

effect and ASE variations across SNPs simultaneously is P (g ∈ {4}|yg,ng). We

adopt the following method to control FDR that have been used in [42, 19]. To

control the FDR when testing the ASE gene effect, we order P (g ∈ {2, 4}|yg,ng),

g = 1, . . . , G, from largest to smallest. Let g(1), . . . , g(G) be the ordered genes; then,

we find the largest l such that
∑l

i=1(1−P (g(i) ∈ {2, 4}|yg(i) ,ng(i)))/l ≤ α, where α is

a pre-defined FDR threshold. We declare the first l genes are significant for testing

H0 : βg = 0 when FDR is controlled at α level. The same strategy is used to control

FDR for testing ASE variations among SNPs and gene and SNP variation effects

simultaneously.

16



2.4 Simulation study

Simulation studies based on real datasets can best evaluate empirical usage and per-

formance. In this section, we describe the simulation design which is based on the

real dataset in [13], and compare the proposed BLMRM method with the binomial

test, ANOVA, MBASED, generalized linear mixed model (GLMM), and the BLMRM

method with pure Laplace approximation.

In each simulation, we simulated 4,000 genes in total with 1,000 genes for each of

the four models inM. To base the simulation study upon real datasets, we randomly

selected 4,000 genes from liver tissue in the real dataset and used the numbers of

SNPs of these genes as the numbers of SNPs for the 4,000 simulated genes. To ensure

consistency with the real dataset, we set the number of biological replicates to be

four.

Real data from liver tissue in [13] indicates a linear relationship between the loga-

rithm of average total read counts and that of the sample standard deviation of total

read counts within a gene across SNPs. Real data also indicates a roughly linear re-

lationship between the logarithm of average total read counts and that of the sample

standard deviation of total read counts within a SNP across four replicates. To simu-

late ngjk, we utilized these two linear relationships. Specifically, let n̄g denote the sam-

ple average of the total read count of gene g across SNPs; that is, n̄g =
∑Jg

j=1(n̄gj)/Jg

where n̄gj =
∑K

k=1 ngjk/K. For the liver tissue in real data, by regressing log S(n̄g)

on log (n̄g) with a simple linear model where S(·) denotes the sample standard devi-

ation, we obtained fitted intercept α̂1 = −0.36 and slope α̂2 = 0.97. Hence, for each

simulated gene, we independently sampled log n̄g1, . . . , log n̄gJg ∼ N (µ = log n̄g, and

σ = α̂1+α̂2log n̄g), where n̄g’s were computed from the 4,000 genes randomly selected

from the real dataset. Next, we fit a linear regression model between log S(n̄gj) and
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log (n̄gj), which yielded an estimated intercept α̂3 = −0.53 and slope α̂4 = 0.77. Sim-

ilarly, we simulated ngj1, . . . , ngj4 ∼ N (µ = log n̄gj, σ = α̂3 + α̂4log n̄gj). We rounded

the simulated values to ensure ngjk’s were integers.

Given the simulated ngjk’s, to simulate ygjk’s, we needed to simulate pgjk’s. We

simulated gene effect βg uniformly from {−4.39,−1.20,−0.41, 0.41, 1.20, 4.39} for

genes where βg 6= 0. 0.41, 1.20, and 4.39 are the 10th, 50th, and 90th percentiles

of absolute values of β̂g’s, respectively, when significant gene ASEs are reported by

the GLMM in (2.1). We simulated σ2
sg

iid∼ IG (âs, b̂s), Sgj
iid∼ N (0, σ2

sg), and simulated

σ2
rg

iid∼ IG (âr, b̂r), Rgk
iid∼ N (0, σ2

rg), where âs, b̂s, âr, and b̂r are hyperparameter esti-

mates from the liver tissue whose values are given in real data analysis section. pgjk

was computed as exp(βg +Sgj +Rgk)/(1+exp(βg +Sgj +Rgk)). At last, we simulated

ygjk ∼ Binomial(ngjk, pgjk). We repeated such simulation 10 times to assess variations

in performance.

We compared the BLMRM method with the binomial test, ANOVA test in [77],

MBASED method in [70], and GLMM in (2.1) without Bayesian priors. The binomial

test and ANOVA test only detect the gene effect; the MBASED method can detect

gene ASE and SNP variation separately but not simultaneously; and the GLMM

and BLMRM methods can detect the gene effect, SNP variation, and gene ASE and

SNP variation simultaneously. For the binomial, ANOVA, MBASED, and GLMM

methods, we applied Storey’s method [108] to estimate and control FDR. The FDR

control for the BLMRM method was described in the Method section.

For the proposed BLMRM method, the hyperparameter estimation is accurate

and stable across 10 simulations. The mean of absolute biases across 10 simulations

are 0.61, 0.12, 0.08, and 0.06, respectively, for âs, b̂s, âr, and b̂r; and the standard

deviations of these 10 absolute biases are 0.17, 0.08, 0.04, and 0.00.

Table 2.1 summarizes the average true FDR and average true positive rate (TPr)
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Table 2.1: Assess of FDR control and TPr when controlling estimated FDR at 0.05.

Method
True FDR TPr(%)

gene SNP gene-SNP gene SNP gene-SNP

BLMRM
0.053 0.028 0.059 66.37 60.82 17.51

(0.006) (0.004) (0.014) (0.87) (1.80) (1.65)
BLMRM 0.060 0.030 0.094 68.87 56.82 17.50
(pure Laplace) (0.006) (0.002) (0.008) (0.29) (1.19) (0.91)

GLMM
0.073 0.006 0.625 68.66 57.20 86.72

(0.010) (0.002) (0.004) (1.52) (1.49) (0.86)

MBASED
0.358 0.032 - 91.34 64.32 -

(0.006) (0.005) - (0.54) (1.51) -

ANOVA
0.194 - - 82.02 - -

(0.007) - - (1.04) - -

Binomial
0.314 - - 88.26 - -

(0.003) - - (0.80) - -

across 10 simulations when we control the estimated FDR at 0.05. Numbers in

parentheses are sample standard deviations. Results suggested that among all meth-

ods under investigation, only the proposed BLMRM method controlled FDR at the

nominal level. The BLMRM method with pure Laplace approximation does not con-

trol FDR for simultaneous test on both gene effect and SNP variation. In addition,

the proposed BLMRM method also has slightly higher TPr than the pure Laplace

approximation approach in testing SNP variation. This suggests that the combined

method of empirical Bayes and one time of Laplace approximation provides more ac-

curate results than three layers of Laplace approximation. The GLMM method was

slightly liberal in testing gene ASE, overly conservative in testing the random SNP

effect, and overly liberal in testing simultaneous gene ASE and SNP variation. The

MBASED and binomial test methods did not control FDR when testing the gene

effect. The MBASED method can not test gene ASE and ASE variation across SNPs

simultaneously. Thus, under our simulation scenario, the MBASED method does not
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correctly separate observed variations among multiple sources of variations; i.e., gene

ASE, SNP variation, biological variation, and error variation.

We plotted the box plots of true FDRs across 10 simulations in the left panel of

Figure 2.1, respectively, on testing the gene effect, SNP effect, and gene and SNP

effects simultaneously when controlling the estimated FDR at 0.05, which represents

same conclusions on FDR control in Table 2.1. The right panel in Figure 2.1 displays

the ROC curves when the false positive rate (FPr) was between 0 and 0.3. Compared

to the other competing methods, the BLMRM method showed greater partial area

under the ROC curves (AUCs) in testing gene ASE, SNP variation in ASE, and

gene and SNP variation simultaneously. The GLMM and BLMRM methods were

competitive for gene ranking when testing gene and SNP variation; however, the

BLMRM method substantially outperformed the GLMM method in gene ranking

when detecting simultaneous ASE gene effect and ASE variation within a gene.
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Figure 2.1: FDR and ROC comparison. Top row shows results for testing the gene
effect; middle row shows results for testing SNP variation within a gene; bottom row
shows results for simultaneously testing gene ASE and SNP variation. Left panel
shows box plots of true FDR across 10 simulations when controlling estimated FDR
= 0.05; right panel presents ROC curves.
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2.5 Real data analysis

Most of the imprinted genes identified to date have been in the mouse [125]. Original

work, identified the non-equivalency of the parental alleles by generating embryos

which only had maternal chromosomes (gynogenotes and parthenogenotes) or pa-

ternal chromosomes (androgenotes) [71, 112]. By doing this, investigators identified

which genes are expressed exclusively from each chromosome. In mouse genome,

there are various types of genetic rearrangements including translocations, duplica-

tions and deletions . Other studies that used mice have noticed that the direction

in which the allele was inherited (either through the mother or the father) mattered

for the successful development and wellbeing of the offspring [6]. Subsequent work

turned to genetic manipulations to identify the function of imprinted genes in mice.

More recently, with the advent of genome wide approaches, investigators have gen-

erated large datasets from F1 individuals generated from the breeding of two inbred

(homozygous) strains of mice [37]. An advantage of using mice to do this type of

work is that most strains have been sequenced and all animals within a strain will

have the same maternal and paternal DNA sequence. While useful, the mouse model

does not always faithfully represent other mammals [76]. In addition, most laboratory

mice are inbred (homozygous) while other mammals are heterozygous which incor-

porates complexity to the analysis of identifying parental alleles. As imprinted gene

expression is species-specific, tissue-specific, and developmental stage specific [125],

investigators would have to do monetary and animal expensive studies to identify

novel imprinted genes and their potential function in health and disease.

A current limitation for investigators working in the area of genomic imprinting

in heterozygote animals such as bovine, is the difficulty to assess whether a gene or

a region in a gene has ASE for the entire genome. For example, in the case in which
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4 fetuses are obtained from the breeding of one cow and one bull, each of the fetuses

may have a specific combination of alleles (penitentially 4 combinations), making the

identification of imprinted gene expression a daunting task, not to mention extremely

expensive. Therefore, new computational tools and analyses must be devised in order

to provide investigators knowledge of allelic imbalances in the transcriptome which

may then be used to do locus-specific wet bench work to determine the accuracy of

the predictions.

Specifically, [13] measured gene expressions of four normal female F1 conceptuses

(fetus and placenta) generated from the mating of Bos taurus taurus (mother) and

Bos taurus indicus (father). Tissues were retrieved from the brain, kidney, liver,

skeletal muscle, and placenta of these four conceptuses. RNA-seq experiments were

conducted on each tissue type for each replicate.

Aligning RNA-seq reads to a non-identical reference genome has been shown to

introduce alignment bias [21, 106]. To address the mapping bias problem, [13] com-

bined the reference genome (i.e., the B. t. taurus reference genome UMD3.1 build)

and the pseudo B. t. indicus genome to create a custom diploid genome. Specifically,

the sire’s DNA was subjected to next generation sequencing (DNA-seq) to identify

all SNPs between his genome and the B. t. taurus reference genome. Then Genome

Analysis Toolkit (GATK) [72] and SAMtools [59] pipelines were applied for SNP call-

ing and only SNPs identified by both pipelines were used to generate a pseudo B. t.

indicus genome. At last, RNA-seq reads from the B. t. indicus × B. t. taurus F1 con-

ceptuses were mapped to the diploid genome using both the HISAT2 [49] and BWA

[60] pipelines and only variants identified by both methods were retained to minimize

the potential effects of false positives. The resulting datasets are publicly available

at the Gene Expression Omnibus database under accession number GSE63509.

We used the BLMRM method to separately analyze liver, kidney, muscle, and
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brain tissue data from [13]. Missing values are not uncommon in real datasets, espe-

cially when dealing with heterozygous species (for example, cattle and humans), as

not all replicates share the same set of SNPs among parental alleles. We first filtered

out genes containing only one SNP or for which all SNPs were not represented by

at least two individuals. We also removed genes for which the observed maternal

and paternal expression percentages were constant across all replicates and all SNPs

as statistical inferences are straightforward in such a scenario. In total, 9,748 genes

remained for analysis, among which many had low numbers of total RNA-seq read

counts.

We then applied the proposed BLMRM method to these 9,748 genes. Hyper-

parameters were estimated using the method described in the Method section. For

example, for liver tissue, we have µ̂ = 0.43, σ̂2= 4.62, âs = 2.35, b̂s = 1.37, âr = 2.03,

and b̂r = 0.09.

We identified several examples containing varied and informative patterns of

tissue-specific and/or exon-specific ASEs. Here, we present four genes: AOX1, HACL1,

TMEM50B, and IGF2R. Aldehyde oxidase 1 (AOX1; XLOC 003018) is a cytosolic

enzyme expressed at high levels in the liver, lung, and spleen but at a much lower

level in many other organs since this gene plays a key role in metabolizing drugs con-

taining aromatic azaheterocyclic substituents [61, 26]. By controlling FDR at 0.05,

the BLMRM method identified gene AOX1 as exhibiting ASE at the gene level in the

brain, kidney, and muscle, and biallelically expressed in the liver (top panel in Figure

1). The vertical axis in Figure 1 indicates the observed sample average percentage of

gene expression from the maternal allele. The bar around each sample average denotes

the 95% confidence interval at each SNP. SNPs are drawn with ascending genomic

locations in a chromosome. The bottom of each panel in Figure 1 shows the distri-

bution of SNPs in exons from annotated RefSeq transcripts of this gene. Conclusions
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from the proposed BLMRM method coincide with AOX1 gene functional analysis.

Using the binomial exact test, [13] only found that AOX1 had preferential paternal

expression in bovine muscle and failed to detect ASE in the brain and kidney. The

proposed method also suggests significant ASE variations across SNPs in the liver,

kidney, and muscle with FDR at the 0.05 level. Interestingly, regions in the liver

showing ASE variations corresponded to the 16th, 17th, and 18th exons housing the

5-7th and 14-16th SNPs. Given this exon- and tissue-specific information, biologists

can examine the ASE regulatory mechanism in detail.

2-hydroxyacyl-CoA lyase (HACL1; XLOC 001524) is involved in perixosomal bra-

nched fatty acids oxidation and primarily expressed in the liver [25]. The proposed

BLMRM method identified HACL1 as exhibiting significant ASE at the gene level

and its variations across SNPs. Figure 1 Panel 2 visualizes our observations and shows

a clear maternal preference of expression for the first 15 SNPs, whereas the remaining

six suggest biallelic expression of this gene. This surprising finding spurred further in-

vestigation, upon which we identified that the first 15 SNPs belong to exon 17 of alter-

native splice variant XM 010801748.2 while the last SNPs are shared between two or

three splice isoforms (i.e. NM 001098949.1, XM 015474169.1, and XM 010801748.2).

No further information is available regarding the ASE mechanism of this gene, as

this is the first time we have retrieved such detailed statistical results for each gene

in an entire genome within a short computational window. Future work will identify

whether this ASE gene is a novel imprinted gene and if, in fact, this gene shows

variant-specific imprinted expression as has been documented for other genes [104].

Transmembrane protein 50B (TMEM50B; XLOC 000329) is a ubiquitously ex-

pressed housekeeping gene. The proposed method identified this gene to be biallel-

ically expressed in all analyzed tissues (Figure 1, Panel 3) as expected for a house-

keeping gene. Interestingly, The proposed method also predicted significant variations
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across SNPs in each of these four tissue types. Upon investigating detailed activity

of this gene, Figure 1 indicates that a portion of the 3’ UTR of this transcript ap-

pears to have maternal preference. The consistent pattern across tissues motivated

us to understand the importance of this SNP variation. We hypothesize that this

corresponds to a specific RNA variant required for maintaining cellular function.

Finally, insulin-like growth factor 2 receptor (IGF2r; XLOC 018398) is a well-

known maternally expressed mannose receptor that targets IGF2 for degradation

[22]. This gene is imprinted in the liver, kidney, and muscle (Figure 1, Panel 4) but

has biallelic expression in the brain of mice and cattle [67, 12]. In addition, IGF2r is

lowly expressed in the cattle brain [12]. Prediction results from the proposed method

coincide with the literature.

By controlling FDR at 0.05, Figure 2 summarizes the numbers of detected ASE

genes, numbers of genes with ASE variations across SNPs, and numbers of genes

exhibiting ASE at the gene level and ASE variations across SNPs simultaneously,

respectively, among the four tissues. We conducted some further analysis on these

detected genes. For instance, in the top Venn diagram, among the 37 detected ASE

genes shared by all four tissue types, 11 of them cannot be mapped to the set of

annotated genes using the UMD 3.1 build. Among the rest of 26 annotated and de-

tected ASE genes, we found that three of them had been documented as imprinted

genes across all or most of these four tissue types. These three imprinted genes are

(1) GSTK1 that is maternally expressed in human placenta but unknown in other

human tissues [1], paternally expressed in mouse kidney, liver, muscle, and maternally

expressed in mouse brain [79], maternally expressed in bovine oocyte and unknown

in other bovine tissues [90]; (2) PLAGL1 that is paternally expressed in human kid-

ney, muscle, and unknown in other human tissues [45], paternally expressed in mouse

muscle, kidney, and brain [79], and paternally expressed in bovine brain, kidney, mus-
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cle, and liver [83]; (3) BEGAIN, which is unknown in human genome, preferentially

expressed from the paternal allele in mouse neonatal brain [114], paternally expressed

in bovine kidney and muscle with strong statistical evidence though no biological ver-

ification yet [12], and found to be paternally expressed in sheep kidney, liver, muscle,

and brain (all four) tissue types [98]. Excluding these three documented imprinted

genes, the other 23 annotated ASE genes detected by the BLMRM method are de

novo detected ASE genes and their biological relevance await experimental verifica-

tion.

Collecting all ASE genes from the first Venn diagram in Figure 2.3, we summa-

rized the number of detected ASE genes on each chromosome (see Supplementary

Table 1). We found several interesting patterns. For instance, chromosomes 11 and

21 tend to have more ASE genes than other chromosomes for all tissue types. Be-

sides, the X chromosome has more ASE genes in brain tissue than other tissue types.

Supplementary Figure 2.2 plots distributions of these ASE genes in each chromosome,

revealing several ASE clusters. Among all detected ASE genes, most ASE genes show

preference of the maternal allele than the paternal allele. Specifically, 79%, 74%, 68%,

and 71% ASE genes show maternal preference in the brain, liver, kidney, and muscle

tissues, respectively.

At this stage, we are not able to statistically distinguish imprinted genes from other

type of ASE genes as further experiment data are required to separate imprinting from

other ASE molecular mechanisms. However, collecting all the detected ASE genes

from all three Venn diagrams in Figure 2.3, we found that seven de novo detected

ASE genes are highly likely to be imprinted in the bovine genome but they have not

been documented in any bovine study. They are: (1) GATM, SNX14, and NT5E,

which are imprinted in mouse [91, 38]; (2) IGF1R and RCL1, which are imprinted in

human [111, 105]; and (3) KLHDC10 and SLC22A18, which are imprinted in both
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human and mouse [33, 5]. These genes are involved in varied physiological functions.

For example, GATM encodes an arginine glycine amidinotransferase (AGAT) which

is involved in creatine synthesis [44, 107]. NT5E encodes the protein CD73 (cluster of

differentiation 73), a cell surface anchored molecule with ectoenzymatic activity that

catalyzes the hydrolysis of AMP into adenosine and phosphate and has been shown

to mediate the invasive and metastatic properties of cancers [131, 28]. SNX14 is a

protein coding gene involved in maintaining normal neuronal excitability and synaptic

transmission [38] and may be involved in intracellular trafficking [113]. IGF1R is a

receptor tyrosine kinase that mediates the actions of insulin-like growth factor 1

(IGF1). IGF1R is involved in cell growth and survival and has a crucial role in tumor

transformation and survival of malignant cells [122, 48]. RCL1 is a protein-coding

gene with roles in 18 S rRNA biogenesis and in the assembly of the 40 S ribosomal

subunit [9, 47]. The Kelch repeat protein KLHDC10 activates the apoptosis signal-

regulating kinase 1 (ASK1) through the suppression of protein phophatase 5 [94] and

activation of the ASK1 contributes in oxidative stress-mediated cell death through the

activation of the JNK and p38 MAPK pathways [99]. SLC22A18 plays a role in lipid

metabolism [40] and also acts as a tumor suppressor [93]. Visualization of significant

expression pattern of these seven genes are plotted in Supplementary Figure 2 along

with its significance level assessed by FDR.

So far, no existing statistical methods can provide simultaneous inferences at both

gene and exon (SNPs) levels for the entire genome in a short computational window,

like the de novo detection for the bovine genome shown here. We are able to achieve

this goal because we model multiple sources of variations (i.e., genes, SNPs, biological

replicates, error variation) in one statistical model and adopt an efficient estimation

method (i.e., a combination of empirical Bayes and Laplace approximation) for model

selection, that is designed for whole genome analysis.
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Figure 2.2: Percentage of gene expression from maternal allele in brain, liver, kidney,
and muscle, respectively. The top panel shows gene AOX1. The second panel shows
gene HACL1. The third panel shows gene TMEM50B, and the bottom panel shows
gene IGF2r. SNPs are drawn with ascending genomic locations. The bottom of each
panel shows distribution of SNPs in exons from all RefSeq annotated transcripts of
this gene. Rectangles represent exons (only those with SNPs are shown) with exon
numbers indicated under each rectangle. Lengths of exons are not drawn to scale.
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Figure 2.3: Venn Diagram of detected ASEs across tissue types. Number of significant
genes (estimated FDR=0.05) across four tissue types when testing ASE at the gene
level, testing ASE variations across SNPs, and testing ASE gene and ASE variations
within a gene simultaneously.
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2.6 Conclusions

We have proposed a new method, BLMRM, to detect ASE for any RNA-seq ex-

periment. Specifically, we propose a Bayesian logistic mixed regression model that

accounts for variations from genes, SNPs, and biological replicates. To improve the

reliability of inferences on ASE, we assign hyperpriors on genes, SNPs, and repli-

cates, respectively. The hyperprior parameters are empirically estimated using ob-

servations from all genes in an entire genome. We then develop a Bayesian model

selection method to test the ASE hypothesis on genes and variations of SNPs within

a gene. To select a fitting model based on Bayes factors, we adopt a combination

of the empirical Bayesian method and Laplace approximation method to substan-

tially accelerate computation. To illustrate the utility of the proposed method, we

have applied it to the bovine study that motivated this chapter; findings reveal the

potential of the proposed method for application to real data analysis. We also

conduct simulation studies that mimic the real data structure. The real data applica-

tion and simulation study demonstrate the improved power, accuracy, and empirical

utility of the proposed method compared to existing approaches. The R package,

BLMRM, based on the proposed method is available to download via Github at

https://github.com/JingXieMIZZOU/BLMRM.

The model specified in (2.1) is based on three fundamental assumptions. First, the

numbers of read counts from maternal allele for different genes are independent, i.e.,

ygjk ⊥ yg′jk when g 6= g′. This assumption allows the gene-wise detection of ASE and

ASE variations across SNPs. When a group of genes share biological functions under

common regulatory control, their expression patterns may be similar or correlated.

However, the correlation of the expression profiles between genes is out of the scope of

this chapter. Other research areas such gene expression correlation analysis [74] and
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gene co-expression network [109] focus more on this issue. Second, the observations

at different SNPs are assumed to be independent, i.e., Sgj’s are independent and iden-

tically distributed, in consideration of simplicity. The distribution of SNPs within a

gene is not necessarily homogenous. Thus, it is reasonable to assume neighboring

SNPs that are close in their genomic location tend to have correlation. Negligence of

the potential spatial correlation among SNPs is the limitation of model (2.1). This

limitation will be addressed in Chapter 3 of this dissertation by a bivariate Bayesian

hidden Markov model. Third, we assume that there is no interaction between the

random SNP effect and random replicate effect, i.e., Rgk ⊥ Sgj. This assumption is

more trivial than the aforementioned two assumptions since the number of biologi-

cal replicates and the number of SNPs are usually small, and it is not biologically

meaningful to study the interaction.
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Chapter 3

Detecting Allele Specific
Expression and Alterations of
Allele Specific Expression by a
Bivariate Bayesian Hidden Markov
Model

3.1 Introduction

Allele specific expression (ASE) in diploid genomes refers to a phenomenon that the

two alleles of a gene express substantially differently. An extreme case of ASE is

monoallelic expression, where only one allele of a gene expresses whereas the other

is completely silent. In a less extreme case, both alleles of a gene are transcribed

with one allele contributing significantly more mRNAs than the other. ASE presents

in both healthy and tumor tissues [29, 103] across species. Studies that analyzed

genome-wide ASE in humans [63, 117], mouse [31], bovine [129], and drosophila [31]

have discovered hundreds to a few thousands of genes that exhibit significant ASE
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[36].

Recently, to utilize ASE as a direct approach to understand genotype and dis-

ease susceptibility has attracted an increasing attention. For example, [80] used ASE

analysis as a marker to identify candidate genes associated with alcohol use disor-

ders. [20] found that colorectal cancer risk increased as the imbalance of ASE in gene

adenomatous polyposis coli increased. To understand diseases associated with aber-

rations in ASE, a fundamental approach is to compare ASE status between a healthy

control group and a case/disease group. To that end, researchers need to estimate

genome-wide ASE status in the control group and whole genome ASE status changes

between the case and control groups.

Current statistical algorithms provide several opportunities for analytical improve-

ment for detecting ASE regions in a control group and regions of ASE alterations

between case and control groups. First, most methods search for ASE genes rather

than actual ASE regions. For example, the binomial exact test in [89], the ANOVA

method in [77], the mixture model in [66], the MBASED method [70], the QuASAR

method [35], and the ASEP method [24]. However, genes with multiple isoforms due

to alternative splicing and RNA variants result in ASE regions that contain one or

more but not all exons of a gene [75, 119]. In fact, alternative splicing is universal in

human multi-exon genes that comprise approximately 94% of genes overall [30, 119].

Therefore, a highly desirable feature of detecting ASE regions and ASE alterations

is to incorporate such biological complexity into model construction and to identify

boundaries of ASE regions precisely.

Second, existing methods universally treat observations as independent samples

across single nucleotide polymorphisms (SNPs). As mentioned, an ASE region may

contain one or more consecutive SNPs in exons that exhibit significant imbalanced

gene expression; it is thus reasonable to model correlations among adjacent SNPs.
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Existing methods use Bayesian priors to introduce correlation structures, such as the

methods in [97], [70], [35], [129], and [24]. However, these hierarchical models lead to

equal correlations among SNPs. A more reasonable strategy is to model correlations

based on genomic distance such that neighboring SNPs that are closer are modeled

with higher positive correlations compared to distant ones.

Third, existing methods tend to separately detect ASE regions in a control group

and ASE regions with alterations between control and case groups. This strategy is

time-consuming, practically inconvenient, and wasteful of resources. We will show

that ASE observations under the control condition and the amount of ASE change

between case and control conditions are likely correlated variables that become inde-

pendent in special cases. Therefore, it is advantageous to construct a bivariate model

and draw conclusions simultaneously. When only control group samples are available,

or when we are only interested in differences between case and control groups, the

bivariate model is naturally reduced to a univariate model.

To address aforementioned limitations and to properly model the complexity of

biology, we develop a new statistical approach, called the hmmASE algorithm, to

jointly detect ASE regions in control samples and ASE regions of alteration in case

samples. The hmmASE algorithm is based on a bivariate Bayesian Hidden Markov

model that accounts for spatial correlations among SNPs and jointly models data

from control and case groups. hmmASE detects regions precisely among different

gene isoforms and RNA variants and simultaneously discovers ASE regions in the

control group and ASE regions of alterations between case and control groups. We

illustrate the proposed method by a real data analysis in [13]. We compare the

proposed hmmASE method with existing approaches through simulation studies that

mimic real data sets. Simulation study suggests the hmmASE algorithm substantially

outperforms other methods in power, accuracy, and precision.
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3.2 Bivariate Bayesian hidden Markov model

Let Xijk denote the number of sequencing reads from maternal allele for the SNP s in

the jth biological replicate of the ith treatment group, where i = 1, 2, j = 1, . . . , Ji, s =

1, . . . , S. Here i = 1 denotes the control group and i = 2 denotes the case group. The

proposed model does not require equal sample size between control and case groups,

nor does it require multiple samples in either of the groups; as such J1 and J2 can both

be 1 or more, and they are not necessarily of the same value. Let Nijs denote the total

number of sequencing read counts for the SNP s in the jth biological replicate of the

ith treatment group, which is the summation of the number of read counts from the

maternal and paternal alleles. We assume that Xijk and Nijk are read counts after

bias correction. We further define Pis as the observed gene expression percentage

in the ith treatment group of the sth SNP by averaging across biological replicates,

where Pis = [
∑j=Ji

j=1 (Xijs+0.5)]/[
∑j=Ji

j=1 (Nijs+1)]. The numbers 0.5 and 1 constitute a

Haldane-Anscombe correction to avoid extreme values. To eliminate the range limit,

we model the observations in the logistic scale, and define Y1s = log (P1s/(1− P1s)),

Y2s = log (P2s/(1− P2s)), and Ds = Y2s−Y1s. Intuitively, Ds denotes the sample mean

difference of maternal expression percentage between the case and control groups for

SNP s after logistic transformation.

The objective of the proposed method is to simultaneously detect ASE in control

group and ASE alterations in case group compared with control group. Therefore,

we model on a sequence of bivariate observations Os = (Y1s, Ds)
′, where the first

dimension Y1s assesses ASE in the control group, and the second dimension Ds eval-

uates ASE changes between the case group and control group. The two dimensions

Y1s and Ds are correlated with an exception when Cov(Y1s, Y2s) = Var(Y1s), thus

a suitable joint analysis promotes inferences of both. We assume that the bivari-
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ate observations Os are controlled by hidden bivariate states Ls that are discrete

and unobservable. To explore the bivariate state space, we first consider the two

dimensions separately. At each SNP, the control samples have three possible states.

Specifically, here M represents the state where maternal allele expresses significantly

more amount of RNA than the paternal allele, P denotes the state where pater-

nal allele expresses significantly more amount of RNA than the maternal allele, and

N represents the state where maternal and paternal alleles have the same expres-

sion level. Similarly, for ASE alterations in case samples, we let state 1 denote

increased expression from the maternal allele when comparing between case and con-

trol groups, state 2 denote reduced expression from the maternal allele, and state

0 denote no change. Collectively, there are nine states in the bivariate state space

M = {(M, 1), (M, 2), (M, 0), (P, 1), (P, 2), (P, 0), (N, 1), (N, 2), (N, 0)}.

A Bayesian HMM in this application is a bivariate random process of {Os,Ls},

where Os is the observation at SNP s and Ls ∈M is the true hidden state of SNP s.

The goal is to infer the best sequence of the hidden states Ls for a chromosome based

on the information provided by observations Os. Given the hidden state at SNP

s, the probability of seeing the observation Os is P (Os|Ls), which is the emission

probability and is specified in (3.1).

P (Os|Ls = (M, 1)′, oms , σm, d
1
s, τ1, ρ1) ∼ N


 oms

d1
s

 ,

 σ2
m ρ1σmτ1

ρ1σmτ1 τ 2
1


 ,

P (Os|Ls = (M, 2)′, oms , σm, d
2
s, τ2, ρ2) ∼ N


 oms

d2
s

 ,

 σ2
m ρ2σmτ2

ρ2σmτ2 τ 2
2


 ,

P (Os|Ls = (M, 0)′, oms , σm, d
0
s, τ0, ρ3) ∼ N


 oms

d0
s

 ,

 σ2
m ρ3σmτ0

ρ3σmτ0 τ 2
0
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P (Os|Ls = (P, 1)′, ops, σp, d
1
s, τ1, ρ4) ∼ N


 ops

d1
s

 ,

 σ2
p ρ4σpτ1

ρ4σpτ1 τ 2
1


 ,

P (Os|Ls = (P, 2)′, ops, σp, d
2
s, τ2, ρ5) ∼ N


 ops

d2
s

 ,

 σ2
p ρ5σpτ2

ρ5σpτ2 τ 2
2


 ,

P (Os|Ls = (P, 0)′, ops, σp, d
0
s, τ0, ρ6) ∼ N


 ops

d0
s

 ,

 σ2
p ρ6σpτ0

ρ6σpτ0 τ 2
0


 ,

P (Os|Ls = (N, 1)′, ons , σn, d
1
s, τ1, ρ7) ∼ N


 ons

d1
s

 ,

 σ2
n ρ7σnτ1

ρ7σnτ1 τ 2
1


 ,

P (Os|Ls = (N, 2)′, ons , σn, d
2
s, τ2, ρ8) ∼ N


 ons

d2
s

 ,

 σ2
n ρ8σnτ2

ρ8σnτ2 τ 2
2


 , and

P (Os|Ls = (N, 0)′, ons , σn, d
0
s, τ0, ρ9) ∼ N


 ons

d0
s

 ,

 σ2
n ρ9σnτ0

ρ9σnτ0 τ 2
0


 , (3.1)

where oms , ops, and ons represent the mean maternal allele expression in control group

at SNP s. More specifically, they denote the mean maternal allele expression in con-

trol group at SNP s after logistic transformation for SNP s (i.e., Y1s) given hidden

states M , P , and N , respectively. Similarly, d1
s, d

2
s, and d0

s denote the mean maternal

expression percentage change after logistic transformation in case group compared

with control group for SNP s (i.e., Ds) given hidden states 1, 2, and 0, respectively.

The subscript s allows these variables to differ among SNPs. Based on biological

interpretation of each state in M, we further assume truncated multivariate normal

priors on these model parameters as follows. The truncated normal priors restrict in-

creased maternal expression percentage corresponds to a positive change and reduced

maternal expression percentage corresponds to a negative change.
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 oms

d1
s

 i.i.d.∼ N


 o+

d+

 ,

 γ2
+ α1γ+β+

α1γ+β+ β2
+


 I(o+ > 0, d+ > 0),

 oms

d2
s

 i.i.d.∼ N


 o+

d−

 ,

 γ2
+ α2γ+β−

α2γ+β− β2
−


 I(o+ > 0, d− < 0),

 oms

d0
s

 i.i.d.∼ N


 o+

0

 ,

 γ2
+ α3γ+β0

α3γ+β0 β2
0


 I(o+ > 0),

 ops

d1
s

 i.i.d.∼ N


 o−

d+

 ,

 γ2
− α4γ−β+

α4γ−β+ β2
+


 I(o− < 0, d+ > 0),

 ops

d2
s

 i.i.d.∼ N


 o−

d−

 ,

 γ2
− α5γ−β−

α5γ−β− β2
−


 I(o− < 0, d− < 0),

 ops

d0
s

 i.i.d.∼ N


 o−

0

 ,

 γ2
− α6γ−β0

α6γ−β0 β2
0


 I(o− < 0),

 ons

d1
s

 i.i.d.∼ N


 0

d+

 ,

 γ2
0 α7γ0β+

α7γ0β+ β2
+


 I(d+ > 0),

 ons

d2
s

 i.i.d.∼ N


 0

d−

 ,

 γ2
0 α8γ0β−

α8γ0β− β2
−


 I(d− < 0), and

 ons

d0
s

 i.i.d.∼ N


 0

0

 ,

 γ2
0 α9γ0β0

α9γ0β0 β2
0


 . (3.2)

Notice that parameters o+, o−, d+, d−, γ+, γ−, γ0, β+, β−, and β0 no longer have

subscripts associated with a particular SNP s because these hyperparameters are es-

timated using observations from all SNPs in a chromosome. The hierarchical model

in (3.2) ensures information is shared across SNPs and regions, which is helpful for

ASE analysis as most genes contain a few number of SNPs (e.g., 5 to 10) and a small

number of genes contain a large number of SNPs (e.g., 100). The genes (and regions)
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with fewer SNPs will benefit more from information sharing and show more improve-

ment in power. The normality assumption in model (3.1) will be validated by real

data in the Supplementary Material Appendix A.3. By integrating out parameters

oms , ops, o
n
s , d1

s, d
2
s, and d0

s, the marginal distributions of Os given hidden states follow

bivariate normal distributions as follows.

P (Os|Ls = (M, 1)′, o+, d+, σ+, τ+, ω1) ∼ N


 o+

d+

 ,

 σ2
+ ω1σ+τ+

ω1σ+τ+ τ 2
+


 ,

P (Os|Ls = (M, 2)′, o+, d−, σ+, τ−, ω2) ∼ N


 o+

d−

 ,

 σ2
+ ω2σ+τ−

ω2σ+τ− τ 2
−


 ,

P (Os|Ls = (M, 0)′, o+, σ+, τ, ω3) ∼ N


 o+

0

 ,

 σ2
+ ω3σ+τ

ω3σ+τ τ 2


 ,

P (Os|Ls = (P, 1)′, o−, d+, σ−, τ+, ω4) ∼ N


 o−

d+

 ,

 σ2
− ω4σ−τ+

ω4σ−τ+ τ 2
+


 ,

P (Os|Ls = (P, 2)′, o−, d−, σ−, τ−, ω5) ∼ N


 o−

d−

 ,

 σ2
− ω5σ−τ−

ω5σ−τ− τ 2
−


 ,

P (Os|Ls = (P, 0)′, o−, σ−, τ, ω6) ∼ N


 o−

0

 ,

 σ2
− ω6σ−τ

ω6σ−τ τ 2




P (Os|Ls = (N, 1)′, d+, σ, τ+, ω7) ∼ N


 0

d+

 ,

 σ2 ω7στ+

ω7στ+ τ 2
+


 ,

P (Os|Ls = (N, 2)′, d−, σ, τ−, ω8) ∼ N


 0

d−

 ,

 σ2 ω8στ−

ω8στ− τ 2
−


 , and

P (Os|Ls = (N, 0)′, σ, τ, ω9) ∼ N


 0

0

 ,

 σ2 ω9στ

ω9στ τ 2


 , (3.3)

where σ2
+ = σ2

m + γ2
+, σ2

− = σ2
p + γ2

−, and σ2 = σ2
n + γ2

0 ; similarly, τ 2
+ = τ 2

1 + β2
+,
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τ 2
− = τ 2

2 + β2
−, and τ 2 = τ 2

0 + β2
0 .

We restrict parameters σ2
+ = σ2

− = τ 2
+ = τ 2

−, σ2 = τ 2, and o+ = |o−| = d+ =

|d−|. We restrict o+ = |o−| = d+ = |d−| because, biologically speaking, if the mean

magnitude of imbalance in gene expression is o+ = |o−| when detecting ASE in control,

then the mean magnitude of alterations of ASE in the case group should be on average

the same to be detected as a significant change; i.e., o+ = d+ = |o−| = |d−|. Driven

by similar logic, we restrict σ2
+ = σ2

− = τ 2
+ = τ 2

− and σ2 = τ 2. These restrictions

together also effectively eliminate false positives and speed up the convergence of the

hidden Markov chain [32, 43]. Besides, we also want to restrict o+ = |o−| = d+ = |d−|

to be greater than a positive constant. Generally speaking, a 75% of gene expression

coming from one allele captures attention from researchers. Given a SNP s, when

75% of gene expression is from the maternal allele, Y1s = 1.1; when 75% of gene

expression is from the paternal allele, Y1s = −1.1. Therefore, we assume the mean

parameters o+ = d+ ≥ 1.1 and o− = d− ≤ −1.1 in the posterior distributions.

The proposed Bayesian HMM assumes the hidden states Ls behave as a Markov

process, i.e., P (Ls+1|L1, . . . ,Ls) = P (Ls+1|Ls), s = 1, . . . , S − 1. The Markov chain

is governed by the probability tkl(s) = P (Ls+1 = l|Ls = k) which is defined as the

transition probability from state k at SNP s to state l at SNP (s + 1), k, l ∈ M.

By construction, we have
∑
l∈M tkl(s) = 1 for any k ∈ M at SNP s. To incorporate

correlation between adjacent SNPs, we model the transition probability as a function

of genomic distance. Specifically, let cs be the genomic distance between SNP s and

SNP (s+ 1). tkl(s) is a 9-by-9 transition matrix from SNP s to SNP (s+ 1) defined

as

tkl(s) = P (Ls+1 = l|Ls = k) =

 pkl (1− exp(−αcs)) , l 6= k,

1− (
∑
l6=k pkl) (1− exp(−αcs)) , l = k.

(3.4)
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Here, α is a positive-valued parameter that determines the effect of genomic distance

in the transition matrix. The parameter pkl affects transition probabilities from state

k to state l where k 6= l with constraints pkl ∈ (0, 1) and
∑
l 6=k pkl < 1. When two

adjacent SNPs are extremely far away from each other, i.e., cs ≥ 40, 000 base pairs,

we let tkl(s) = 1
9
∀ (k, l).

3.3 Detecting ASE regions in a control group and

regions of ASE alteration in a case group

Given the Bayesian HMM, this section depicts the inferential procedure for param-

eter estimation and simultaneous detection of ASE regions in a control group and

ASE alteration regions in a case group. Specifically, we let θ = (θemiss,θtrans)
T be

the vector containing all parameters to be estimated including emission probability

parameters θemiss = (o+, o−, d+, d−, σ2
+, σ

2
−, σ

2, τ 2
+, τ

2
−, τ

2, ω1, . . . , ω9)T and transition

probability parameters θtrans = (pkl where k, l ∈ M), α)T . The incomplete-data

and complete-data likelihoods are denoted by L(θ | O) and L(θ | O,L), respec-

tively, where O = (O1, . . . ,OS)T , L = (L1, . . . ,LS)T . Additionally, p = pkl’s where

k, l ∈M, and πL1 = P (L1 = k) (k ∈M) is the probability distribution for the first

SNP.

It is difficult to estimate θ by maximizing the incomplete-data likelihood L(θ |

O) directly due to high dimensionality of θ; we choose to use the expectation-

maximization (EM) algorithm to iteratively estimate θ. At the m-th iteration of

the EM algorithm, the E step assumes the parameter vector θ is equal to θ(m−1), and

then evaluates the expectation of the complete-data likelihood (in (3.5)) with respect

to the conditional distribution of hidden states based on observations. In the M step,

we update θ(m−1) to θ(m) by finding the parameter vector that maximizes the expec-
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tation of the complete-data likelihood. Particularly, we update all parameters in the

following approaches; we update p and θemiss by solving partial derivatives of the goal

function; we update α by a grid search; at last we let π
(m)
L1=k = P (L1 = k | O,θ(m−1)).

The details of the EM algorithm are elaborated in Supplementary Material Appendix

A.1. The EM algorithm converges when the difference between θ(m) and θ(m−1) is

smaller than a pre-defined threshold. We use the estimates at the last iteration as

the proposed parameter estimates and denote it by θ̂.

EL|O,θ(m−1) [L(θ | O,L) | O,θ(m−1)] =
∑
k

P (L = k | O,θ(m−1))L(θ | O,L)

=
∑
k

P (L = k | O,θ(m−1))πL1

S−1∏
s=1

tLsLs+1(s | θ
(m−1)
trans )

S∏
s=1

P (Os | L,θ(m−1)
emiss ). (3.5)

To initiate the aforementioned iterations, we need to assign initial values θ(0)

for θ. We first calculate the sample standard deviations of the two dimensions of O,

respectively, from all SNPs, and assign them as initial values for variance components.

Namely, σ
(0)
+ = σ

(0)
− = σ(0) =

√∑S
s=1(Y1s − Ȳ1)2/(N − 1), and τ

(0)
+ = τ

(0)
− = τ (0) =√∑S

s=1(Ds − D̄)2/(N − 1) where Ȳ1 and D̄ are respectively the sample averages of

Y1s’s and Ds’s. Then SNPs with Y1s > σ(0), Y1s < −σ(0), and −σ(0) ≤ Y1s ≤ σ(0)

are assigned to states M , P , and N respectively; SNPs with Ds > τ (0), Ds < −τ (0),

and −τ (0) ≤ Ds ≤ τ (0) are assigned to states 1, 2, and 0 respectively. We assign

o+(0) = −|o−(0)| and equals to the average of Y1s for SNPs in state M and absolute

values of Y1s for SNPs in state P . Similarly, we assign d+(0) = −|d−(0)| and equals

to the average of Ds for SNPs in state 1 and absolute values of Ds for SNPs in

state 2. Initial values of ω1, . . . , ω9 are sample correlation coefficients based on the

aforementioned initial state assignment. We let p
(0)
kl = 0.01 where k 6= l, α(0) = 0.05,

and π
(0)
L1=k = 1/9 for k ∈M.
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Before declaring an ASE region or a region of ASE alteration, we need to infer

the best possible sequence of hidden states given estimated parameters by decod-

ing the HMM. We utilize the Viterbi algorithm [118] to find the sequence of hidden

states L that maximizes P (L,O | θ̂); that is, L̂ = arg max
L

P (L,O | θ̂). The last

step is to claim an ASE region with adjacent SNPs which have the same hidden

states in one or both dimensions. For example, the three consecutive SNPs with

Ls ∈ {(M, 0), (M, 1), (M, 2)} form an ASE region with maternal preference in the con-

trol group. Analogously, the three consecutive SNPs with Ls ∈ {(M, 1), (N, 1), (P, 1)}

constitute a region of ASE alterations that exhibits increased maternal allele expres-

sion in the case group compared with the control group. We require that each ASE

region contains no two adjacent SNPs that are further than 5,000 base pairs apart.

An ASE region with a gap longer than 5,000 base pairs is segmented into two ASE

regions.

3.4 Simulation study

We utilize the 261 genes (total 2,035 SNPs) in chromosome 9 in the liver tissue in

[13] to facilitate the simulation study. Guided by the real data analysis results, we

randomly assign 170 of 261 genes to (N, 0), and other 91 genes are randomly assigned

to the other eight hidden states in M with equal probability. We let SNPs that

belong to the same gene have the same state. However, as shown in the method and

real data analysis sections, the proposed hmmASE method applies to both regions

that are within a gene or across multiple genes.

We set up two simulation scenarios. In the first scenario, we let o+ = −o− = 1.16,

d+ = −d− = 1.16, σ2
+ = σ2

− = τ 2
+ = τ 2

− = 0.89, σ2 = τ 2 = 0.19, and fix correlation
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to 0.1; i.e., ω1 = · · · = ω9 = 0.1. These parameters are chosen as the average of

parameter estimates from the 30 chromosomes in real data analysis. Under these

parameters, we expect ASE SNPs in the control group to have on average 76.1%

percent expression from one allele. In the second scenario, we set o+ = −o− = d+ =

−d− = 1.73 and keep other parameters the same with scenario one. Under this

setting, we expect ASE SNPs in the control group to have on average 85% percent

expression from one allele.

Based on the parameter settings, we first simulate the sequence of bivariate ob-

servations O, which is used to compute P1s’s and P2s’s. In the simulation study, we

assume four biological replicates, same with real data in [13]. We utilize the real data

Nijs’s in the simulation. Then, we compute Xijs’s based on Nijs’s, P1s’s and P2s’s.

By applying the Bayesian HMM model, we categorize each SNP into nine categories.

Figure 3.1 illustrates the Bayesian HMM results on one set of simulated data under

each of the two scenarios. The left column shows fitting results of the first dimension

(Y1s’s). The right column shows fitting results of the second dimension (Ds’s). In

both of the scenarios, the proposed Bayesian HMM fits the simulated data well.

We then compare the proposed hmmASE method with the MBASED method

[70], the T2ER method [56], and the exact test which consists of a binomial test on

detecting ASEs in the control group and a Fisher exact test on the difference between

case and control groups. We choose these methods to compare as they are able to

detect ASE in control as well as detect expression status change between case and

control groups. To conduct the comparison, we simulated 20 sets of data under each of

two scenarios. We calculate true positive rate (TPR), false positive rate (FPR), true

negative rate (TNR), and false negative rate (FNR) according to formula (3.6). Here,

‘significant SNPs’ are either significant SNPs showing ASE in control or significant

SNPs showing substantial change in expression between case and control groups. An
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Figure 3.1: An illustration of fitting results for one set of simulated data under two
scenarios. The histograms are simulated data; the blue, green, and red curves repre-
sent the three normal components. Purple curve is the fitted mixture distribution.

ASE detection is considered correct if both the detection and direction of change are

correct.

TPR =
# of correctly identified significant SNPs by type

# of significant SNPs by type
,

FPR =
# of incorrectly identified significant SNPs

# of true null SNPs
,

TNR =
# of identified true null SNPs

# of true null SNPs
,

FNR =
# of incorrectly identified true null SNPs

# of significant SNPs
. (3.6)

Table 3.1 and Table 3.2 summarize average TPR, FPR, TNR, and FNR on detect-

ing ASE in the control group and ASE changes between case and control groups across
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twenty times of simulations, respectively. The numbers in parenthesis are variations

across simulations. The proposed hmmASE method shows substantially improved

TPR and TNR compared to other approaches. The hmmASE method also shows

smaller variations across repeated simulations for each of the performance statistics.

In contrast, the other three methods suffer from lack of power in detecting true signals

as well as large variations across repeated simulations.

47



Table 3.1: TPRs, FPRs, TNRs, and FNRs comparisons in the first scenario.

State hmmASE Exact MBASED T2ER

M
TPr 0.859 (0.067) 0.130 (0.038) 0.150 (0.036) 0.047 (0.026)
FPr 0.007 (0.003) 0.026 (0.005) 0.029 (0.005) 0.007 (0.002)

P
TPr 0.861 (0.069) 0.132 (0.059) 0.155 (0.058) 0.043 (0.031)
FPr 0.007 (0.003) 0.025 (0.004) 0.027 (0.003) 0.007 (0.002)

N
TNr 0.967 (0.006) 0.879 (0.020) 0.873 (0.020) 0.918 (0.022)
FNr 0.081 (0.028) 0.729 (0.045) 0.685 (0.043) 0.916 (0.029)

1
TPr 0.860 (0.096) 0.088 (0.045) 0.113 (0.046) 0.030 (0.023)
FPr 0.008 (0.002) 0.009 (0.002) 0.011 (0.002) 0.002 (0.001)

2
TPr 0.836 (0.062) 0.090 (0.036) 0.115 (0.046) 0.030 (0.023)
FPr 0.008 (0.002) 0.009 (0.002) 0.012 (0.003) 0.002 (0.001)

0
TNr 0.967 (0.005) 0.881 (0.017) 0.875 (0.014) 0.912 (0.019)
FNr 0.093 (0.045) 0.861 (0.041) 0.817 (0.042) 0.950 (0.019)

(M, 1)
TPr 0.846 (0.127) 0.049 (0.048) 0.056 (0.046) 0.000 (0.000)
FPr 0.001 (0.001) 0.003 (0.001) 0.003 (0.002) 0.000 (0.000)

(M, 2)
TPr 0.802 (0.110) 0.086 (0.057) 0.103 (0.058) 0.037 (0.046)
FPr 0.001 (0.001) 0.003 (0.001) 0.003 (0.001) 0.000 (0.000)

(M, 0)
TPr 0.909 (0.052) 0.277 (0.117) 0.316 (0.104) 0.112 (0.065)
FPr 0.010 (0.005) 0.032 (0.006) 0.036 (0.006) 0.010 (0.003)

(P, 1)
TPr 0.848 (0.126) 0.094 (0.057) 0.118 (0.060) 0.032 (0.026)
FPr 0.001 (0.001) 0.003 (0.001) 0.003 (0.001) 0.001 (0.001)

(P, 2)
TPr 0.824 (0.108) 0.051 (0.047) 0.058 (0.051) 0.000 (0.000)
FPr 0.001 (0.001) 0.003 (0.001) 0.003 (0.001) 0.000 (0.000)

(P, 0)
TPr 0.867 (0.134) 0.231 (0.111) 0.263 (0.105) 0.086 (0.060)
FPr 0.008 (0.004) 0.031 (0.005) 0.035 (0.005) 0.009 (0.003)

(N, 1)
TNr 0.861 (0.162) 0.125 (0.110) 0.166 (0.107) 0.063 (0.066)
FNr 0.008 (0.003) 0.007 (0.002) 0.011 (0.003) 0.003 (0.001)

(N, 2)
TNr 0.849 (0.131) 0.140 (0.072) 0.195 (0.087) 0.055 (0.045)
FNr 0.011 (0.004) 0.007 (0.003) 0.011 (0.003) 0.003 (0.001)

(N, 0)
TNr 0.972 (0.005) 0.935 (0.006) 0.924 (0.006) 0.981 (0.004)
FNr 0.051 (0.020) 0.723 (0.040) 0.662 (0.040) 0.906 (0.024)
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Table 3.2: TPRs, FPRs, TNRs, and FNRs comparisons in the second scenario.

State hmmASE Exact MBASED T2ER

M
TPr 0.955 (0.033) 0.192 (0.051) 0.243 (0.042) 0.061 (0.032)
FPr 0.004 (0.002) 0.027 (0.005) 0.030 (0.005) 0.008 (0.003)

P
TPr 0.949 (0.030) 0.195 (0.078) 0.243 (0.075) 0.056 (0.038)
FPr 0.003 (0.002) 0.025 (0.003) 0.028 (0.003) 0.008 (0.002)

N
TNr 0.983 (0.004) 0.881 (0.019) 0.876 (0.019) 0.918 (0.021)
FNr 0.030 (0.015) 0.627 (0.047) 0.541 (0.040) 0.907 (0.037)

1
TPr 0.952 (0.038) 0.136 (0.054) 0.187 (0.053) 0.047 (0.025)
FPr 0.003 (0.002) 0.008 (0.002) 0.012 (0.002) 0.002 (0.001)

2
TPr 0.946 (0.033) 0.159 (0.058) 0.204 (0.064) 0.053 (0.029)
FPr 0.004 (0.001) 0.009 (0.002) 0.012 (0.003) 0.002 (0.001)

0
TNr 0.983 (0.004) 0.886 (0.015) 0.881 (0.012) 0.912 (0.018)
FNr 0.028 (0.020) 0.812 (0.051) 0.733 (0.050) 0.933 (0.024)

(M, 1)
TPr 0.959 (0.035) 0.073 (0.063) 0.089 (0.061) 0.001 (0.002)
FPr 0.000 (0.001) 0.003 (0.002) 0.003 (0.001) 0.000 (0.000)

(M, 2)
TPr 0.942 (0.063) 0.172 (0.085) 0.211 (0.092) 0.057 (0.052)
FPr 0.001 (0.001) 0.003 (0.001) 0.003 (0.001) 0.000 (0.000)

(M, 0)
TPr 0.957 (0.037) 0.356 (0.118) 0.462 (0.088) 0.132 (0.069)
FPr 0.004 (0.002) 0.036 (0.007) 0.042 (0.007) 0.010 (0.003)

(P, 1)
TPr 0.930 (0.071) 0.159 (0.078) 0.216 (0.078) 0.063 (0.044)
FPr 0.000 (0.001) 0.003 (0.001) 0.003 (0.001) 0.001 (0.001)

(P, 2)
TPr 0.940 (0.051) 0.072 (0.060) 0.092 (0.066) 0.002 (0.007)
FPr 0.001 (0.001) 0.003 (0.001) 0.003 (0.001) 0.000 (0.000)

(P, 0)
TPr 0.953 (0.043) 0.329 (0.149) 0.394 (0.127) 0.095 (0.077)
FPr 0.004 (0.002) 0.035 (0.006) 0.041 (0.007) 0.009 (0.003)

(N, 1)
TNr 0.953 (0.066) 0.182 (0.122) 0.260 (0.119) 0.084 (0.070)
FNr 0.004 (0.002) 0.006 (0.002) 0.011 (0.003) 0.002 (0.001)

(N, 2)
TNr 0.935 (0.093) 0.235 (0.115) 0.317 (0.116) 0.100 (0.073)
FNr 0.004 (0.002) 0.007 (0.002) 0.012 (0.004) 0.003 (0.001)

(N, 0)
TNr 0.985 (0.005) 0.932 (0.006) 0.920 (0.008) 0.980 (0.005)
FNr 0.016 (0.008) 0.632 (0.045) 0.523 (0.032) 0.893 (0.029)
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3.5 Real data analysis

In this section, we apply the proposed hmmASE method in a Large offspring syn-

drome (LOS) study. LOS is a congenital overgrowth syndrome in ruminants, which is

phenotypically similar to Beckwith-Wiedemann syndrome (BWS) in humans. BWS

is the most common congenital overgrowth disorder with an estimated worldwide fre-

quency of 1 in 13,700 natural births [17]. Shared phenotypes between LOS and BWS

include excessive birth weight, large tongue, breathing difficulties, umbilical hernia,

hypoglycemia, and visceromegaly.

To investigate the molecular mechanism of LOS, which infers etiology of BWS,

[13] used cattle as the study animal, and generated allele-specific gene expression

data by RNA sequencing experiments. For each treatment group (control and LOS),

four biological replicates (four cattle offsprings) were collected. [13] addressed the

mapping bias problem by combining the reference genome (i.e., the B. t. taurus

reference genome UMD3.1 build) and the pseudo B. t. indicus genome to create

a custom diploid genome [13, 129]. The RNAseq reads of brain, kidney, liver, and

skeletal muscle after bias correction are publicly available at the Gene Expression

Omnibus database under accession number GSE63509. Here, we use liver tissue as an

example to illustrate the application of the proposed approach. SNPs with extremely

low read counts, i.e., the summation of total number of reads across four biological

replicates is less than 6, are filtered out from the study. The goal is to detect shared

ASE in control samples as well as shared ASE alterations in LOS group compared to

the control samples.

Note that the EM algorithm greedily maximizes the expected log likelihood at

each iteration. As such, outliers in Y1s’s drive estimates of states M and P to extreme

values. In practice, to avoid converging to boundary values in the parameter space, we
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eliminate extreme values before applying the proposed method. When more than 98%

of gene expression at a SNP comes from one (maternal or paternal) allele, Y1s ≥ 3.89

or Y1s ≤ −3.89. We remove SNPs with |Y1s| > 3.9, and apply the hmmASE method to

the remaining SNPs. We then infer the hidden states of these removed SNPs that are

of extreme values of Y1s. Specifically, for SNP s with extreme values, its hidden state

is inferred as k = arg max
k

P (Os,Ls | θ̂) = arg max
k

P (Os | L = k, θ̂)P (L = k | O, θ̂),

where P (L = k | O, θ̂)’s (k ∈ M) are estimated empirically as proportions of SNPs

identified in each of the nine states in the state space.

After the EM algorithm converges, each chromosome has a distinct set of param-

eters. For example, for chromosome 23, estimated parameters are ô+ = 1.163, ô− =

−1.163, d̂+ = 1.163, d̂− = −1.163, σ̂2
+ = σ̂2

− = δ̂2
+ = δ̂2

− = 0.971, σ̂2 = δ̂2 = 0.209,

ω̂1 = 0.045, ω̂2 = 0.766, ω̂3 = 0.027, ω̂4 = −0.017, ω̂5 = −0.108, ω̂6 = −0.092,

ω̂7 = −0.086, ω̂8 = −0.116, ω̂9 = −0.047, and α̂ = 0.02. For chromosome 21,

estimated parameters are ô+ = 1.154, ô− = −1.154, d̂+ = 1.154, d̂− = −1.154,

σ̂2
+ = σ̂2

− = δ̂2
+ = δ̂2

− = 1.379, σ̂2 = δ̂2 = 0.213, ω̂1 = −0.048, ω̂2 = −0.125,

ω̂3 = −0.049, ω̂4 = 0.063, ω̂5 = −0.067, ω̂6 = −0.144, ω̂7 = −0.107, ω̂8 = 0.154,

ω̂9 = −0.010, and α̂ = 0.03. The estimated parameter vector p’s for these two

chromosomes are shown in Supplementary Material Appendix A.2.

After using the proposed bivariant Bayesian HMM model, Table 3.3 shows ten

ASE regions with the most numbers of SNPs in the control group (first dimension of

O) with either a predicted maternal expression (M state) or paternal expression (P

state). The last column in the table shows mean proportion of gene expression from

the maternal allele. Table 3.4 summarizes the top ten regions of ASE alterations with

the most number of SNPs in the LOS group when compared to the control group.

We display three different types of declared regions in Figure 3.2, Figure 3.3, and

Figure 3.4. In each figure, the horizontal axis shows genomic positions of SNPs;
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Table 3.3: Ten detected ASE regions in control samples with the most number of
SNPs.

Region Chromosome Start End Length State SNP Proportion

1 7 22450103 22453500 3397 M 44 0.70
2 8 39924975 39929910 4935 M 36 0.74
3 14 71829133 71832560 3427 M 25 0.81
4 22 47706034 47717136 11102 P 24 0.21
5 14 47259240 47261976 2736 M 22 0.73
6 21 20303886 20308883 4997 P 22 0.09
7 8 104332849 104337031 4182 M 21 0.81
8 2 132633210 132636855 3645 M 20 0.89
9 22 58261381 58267555 6174 P 20 0.28
10 29 42075522 42083140 7618 M 20 0.73

Table 3.4: Ten detected regions of ASE alterations with the most number of SNPs.

Region Chromosome Start End Length State SNP Odds Ratio

1 23 28308097 28315879 7782 2 18 0.12
2 24 57310840 57312123 1283 2 14 0.18
3 2 136251406 136253626 2220 2 11 0.23
4 3 54218782 54221715 2933 2 11 0.42
5 15 27871839 27872522 683 1 11 2.44
6 4 98836310 98840696 4386 2 10 0.32
7 23 19883217 19883773 556 2 10 0.66
8 14 10170174 10170615 441 2 10 0.33
9 30 130300790 130307410 6620 2 9 0.38
10 18 61410496 61421828 11332 2 9 0.78

vertical axis in the top panel represents observed maternal percentage of gene ex-

pression in control samples after logistic transformation (i.e.,Y1s’s), and vertical axis

in the bottom panel displays the difference between transformed percentage of gene

expression from maternal allele in two samples (i.e., Ds’s).

Figure 3.2 visualizes the fourth region in Table 3.3. It is an example of significant

ASE in the control group, where the paternal allele contributes significantly more

mRNAs for most of the 24 SNPs. This paternal-allele expression preference is retained

in the LOS group. Figure 3.3 corresponds to the first region in Table 3.4, where the
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gene expression is balanced between two alleles in the control group, but the maternal

allele expresses significantly less in the LOS sample compared to the control group.

A third example is the fifth region in Table 3.3 that is displayed in Figure 3.4. It

exhibits both significant ASE in control and ASE alterations in LOS. In the control

group, the paternal allele expresses more mRNAs than maternal allele. However, in

the LOS group, the percentage of paternal allele expression is reduced.
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Figure 3.2: A detected ASE region on chromosome 22. The top and bottom panels
respectively show the transformed observations in control samples, and the trans-
formed difference between LOS and control samples. The shaded area represents the
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after the region.
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bottom panels respectively show the transformed observations in control sample, and
the transformed difference observed between LOS and control samples. The shaded
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before and after the region.
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We plot the inference results of the whole genome in Figure 3.5 as a bivariate

contour plot, where the horizontal axis indicates transformed maternal percentage in

the control group, and the vertical axis indicates difference of transformed maternal

percentages between the LOS and control groups. The letters in the upper right

corner of each nine small panels display the predicted hidden state. The percentage

of SNPs in the whole genome in each of the nine categories displays at the panel

bottom.

In sum, in the control sample, we find 83.46% of SNPs with about equal expres-

sion from two parental alleles, 9.29% of SNPs have significant more expression from

maternal allele, and 7.25% of SNPs have significant more expression from paternal

allele. In the LOS samples, compared with the control group, 81.28% of SNPs show

no significant change in ASE, 6.74% of SNPs exhibit increased proportion of gene

expression from the maternal allele, and 11.99% of SNPs have increased proportion

of gene expression from the paternal allele.
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3.6 Conclusions

In this chapter, we have proposed a new method, hmmASE, to detect ASE in control

and ASE expression changes in a case group for any sequencing experiment. We

test these two variables simultaneously and incorporate information from these two

dimensions. The proposed approach has substantially improved power compared to

other existing methods that render the same functionality. Specifically, we utilize

a Bayesian HMM with a bivariate Gaussian emission probability model. We further

assume truncated bivariate Gaussian priors on the means of the emission probabilities.

We exploit a transition probability model that incorporates the genomic locations of

SNPs to account for correlations between adjacent observations. The EM algorithm

was utilized to estimate model parameters. We decode the best sequence of hidden

states by the Viterbi algorithm. Consecutive SNPs with the same state naturally

form regions. In practice, we often set some restrictions, for example, we require no

two adjacent SNPs in one region are further than 5,000 base pairs apart. A real data

analysis on the LOS study shows the practical utility of the proposed approach. We

then utilize the real data set to facilitate simulation studies, which has demonstrated

a dominating power, accuracy, and precision of the proposed method compared to

other approaches.
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Chapter 4

A Mixture Model for Dispersion
Parameters that Improves
Differentially Expressed Gene
Detection

4.1 Introduction

As the most common form of transcriptome analysis, differential expression analysis

plays an important role in the characterization and understanding of the molecular

basis of phenotypic variation in biology, including diseases [101]. Differential expres-

sion analysis involves searching for a set of genes in the whole genome whose mean

expression levels are substantially different across treatment conditions, such as con-

trol versus disease. With the development of novel high-throughput DNA sequencing

methods (RNA-seq), developing statistical methods for detecting differentially ex-

pressed (DE) genes has been an extensively studied research area.

Three methods - edgeR [88, 87, 84, 69], DESeq [2, 64], and baySeq [34] have made
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significant earlier contributions to push the field forward. All these three methods

assumed that, for each gene, the observed gene expressions were a random sample

from Negative Binomial distributions for each treatment condition, respectively. To

improve estimation of the dispersion parameters in Negative Binomial distributions,

edgeR, DESeq, and baySeq further utilized a Bayesian method to borrow information

across genes in an entire genome such that the estimation of dispersion parameter

for each gene was improved. Due to the expense associated with acquiring biologi-

cal replicates and high-throughput sequencing experiments, the number of biological

replicates of each treatment group is small, such as 3 or 4 for most experiments. Thus,

estimation of variances (or dispersion parameters in Negative Binomial distributions)

that only utilizes gene-wise observations is not accurate and reliable. Meanwhile,

since a large number of genes in an entire genome are available and collected together

by the high-throughput sequencing technology, there is useful information about dis-

persion that can be shared across genes to improve dispersion estimation for each

gene. Therefore, this kind of shrinkage idea has been widely accepted to empirically

produce superior statistical inferences than the methods without sharing information

across genes.

These pioneer methods have inspired many new statistical developments to adopt

similar Bayesian approaches to devise more powerful solutions for the detection of DE

genes. For example, the Cuffdiff method [115] can detect DE genes with alternative

splicings. The voom [53] method is built on a similar empirical Bayes analysis pipeline

with additional weights for improved sample and gene-specific dispersion estimation.

The EBseq method [55] is a empirical Bayes method aims to identify differentially

expressed isoforms and it is based on Negative Binomial model and has been shown

to be robust in the identification of DE genes.

However, intriguing results published in [58, 57] have motivated the reconsider-
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ation of the shrinkage idea, where the hierarchical models proposed in [88, 87] by

borrowing information from all genes in an entire genome tend to over shrink the

dispersion parameters. As pointed out by [58, 57], “regress” parameters of all genes

toward the middle is a double-edged sword. One the one hand, it alleviates the

small sample size problem; on the other hand, it inadvertently introduces biases for

genes that have intrinsic high or intrinsic low variance. [58] examined 566 histori-

cal datasets [68] which suggested intrinsic gene-wise dispersion that was related with

gene functions. For example, housekeeping genes such as translation elongation or

ribosome-related genes often have low dispersion, whereas genes responsive to stim-

uli exhibit high dispersion. Pulling dispersion parameters of all genes towards each

other leads to overcorrection. [58, 57] proposed to group genes into categories with

informative priors based on historical data in the hope that genes in one category

share more similar size of dispersions. However, historical data may not always be

available and likely require thorough scrutiny for helpful use.

Another motivation of this chapter is from the study of the large offspring syn-

drome (LOS) gene expression data [12], where the empirical distribution of maximum

likelihood estimates (MLE) of dispersion parameters (Figure 4.1) exhibits two groups.

Specifically, one group of estimated dispersions follow a unimodal distribution, poten-

tially modeled by a normal or lognormal distribution, and the other exhibits low level

of dispersion where dispersion parameters are close to zero. This empirical distribu-

tion deviates substantially from a Gaussian prior assumed in edgeR, DESeq, baySeq,

and so on, and also significantly different from a lognormal distribution assumed in

the DSS method [126]. This observation reinforces the idea that not all genes have

similar dispersion size, which coincides with results from [68] and [58]. Thus, group-

ing genes in categories and then sharing information across genes within a category

can improve dispersion estimation compared with the prior methods where dispersion

60



Figure 4.1: Empirical distribution of logarithm of the estimated dispersion parameters
by MLE of liver tissues from the LOS study by [12].

parameters of all genes are shrunk towards the overall mean. Based on the empirical

study of the LOS data [12] and prior research results [2, 68, 58, 57], we propose a mix-

ture prior model on dispersion parameters with a lognormal probability distribution

and a point mass at zero. The latter mixture component represents genes with high

uncontrolled dispersion across biological replicates, and the former mixture compo-

nent represents genes whose dispersion parameter is small and close to zero such that

the Negative Binomial distribution is degenerated to a Poisson distribution. In fact,

previous methods with a lognormal prior (or normal prior) is a special case of the

proposed mixture prior when the percentage of zero component is zero in the mixture

model. Thus, the proposed mixture model is flexible and can be generalized to any

sequencing experiment with a prior closer to the empirical distribution than all prior

unimodal approaches.

To assess the performance of the proposed method, we conduct simulation studies

under different scenarios and compare the dispersion estimation and testing power

with other competing methods. We use the LOS gene expression studies to illustrate

the practical usage of the proposed method. The R package, mix, is developed based

on the proposed method and is available for use. A copy of R code is downloadable
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on GitHub at https://github.com/JingXieMIZZOU.

4.2 Mixture model for dispersion parameters

Let Ygjk denote the number of read counts for gene g in the kth biological replicate of

the jth treatment group, where g = 1, . . . , G, j = 1, 2, k = 1, . . . , nj. Here the main

focus is the comparison between two groups, where j = 1 represents the control group

and j = 2 represents the treatment group, and the numbers of biological replicates

in two groups can be different. A natural choice for modeling the number of read

counts may be Poisson. However, the mean-variance relationship of Poisson limits

the flexibility of the corresponding model, thus not appealing in practise when data

exhibits overdispersion. Therefore, we choose a Negative Binomial model for the

underlying probabilistic data generating mechanism:

Ygjk | µgj, φg ∼ NB (µgj, φg). (4.1)

where µgj denotes the mean expression for the gth gene in the jth group. φg denotes

the dispersion parameter of gene g. Under this parameterization, we have E(Ygjk) =

µgj and Var(Ygjk) = µgj + φgµ
2
gj.

Shrinkage estimators for φg have been shown to be useful in typical RNA-seq

experiments when the number of replicates is small [2, 34, 84]. Since there is no

conjugate prior for φg in the Negative Binomial model, the choice of prior model is

usually empirical based on the real data. For example, edgeR [88] utilized a nor-

mal prior. [126] used real datasets arguing that a lognormal prior was closer to the

observed empirical distributions than a normal prior, thus rendering an improved

shrinkage estimator. Note that reported observations in edgeR and DSS methods can
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be both case-specific. In previous empirical studies, for instance, the gene expression

data from LOS studies (Figure 4.1) strongly deviates from the unimodal assumption

in both the normal and lognormal models. In addition, using historical data, [58]

demonstrated that edgeR and DSS methods that shared information directly across

all genes likely led to overcorrection. To prevent overcorrection, we propose the mix-

ture model (4.2). The proposed prior model is closer to the empirical distribution

and is flexible to be generalized to majority of the sequencing experiments.

φg ∼ p× 1[φg=0] + (1− p)× 1[φg>0] × lognormal (m, τ 2). (4.2)

where p is the mixture proportion for zero dispersion, m and τ 2 are the hyperpa-

rameters that we need to estimate. Specifically, we model φg following a mixture

model with a point mass at zero and a lognormal distribution. The point mass at

zero represents genes which exhibit very low dispersion that is close to zero, whereas

the lognormal component represents genes with high uncontrolled dispersion across

biological replicates. Over-shrinkage is avoided since dispersion information is shared

only across genes within each mixture component. When φg = 0, the distribution of

the number of read counts Ygjk reduces to a Poisson.

4.3 Detecting differentially expressed genes

By assuming a mixture model for dispersion parameters, this section outlines the

inferential procedure for parameter estimation and the detection of DE genes. Given

models in (4.1) and (4.2), for gene g, the conditional posterior distribution of φg given
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all n = n1 + n2 observations and treatment mean µgj expressions is

P (φg|Ygjk, µgj, k = 1, . . . , n)

∝P (Ygjk | µgj, φg, k = 1, . . . , n)P (φg)

=p× 1[φg=0] ×
n∏
k=1

PPoisson(Ygjk | µgj)+

(1− p)× 1[φg>0] × Plognormal(φg | m, τ 2)
n∏
k=1

PNB(Ygjk | µgj, φg). (4.3)

Due to the intractability of (4.3), it involves computational complexity to obtain the

posterior mean of φg. Alternatively, we propose to employ the weighted average of

posterior modes, which is denoted by φ̃g, to approximate the posterior mean, and

utilize it as the Bayesian estimate of the dispersion parameter φg. As mentioned

earlier, the mixture prior on φg makes the distribution of Ygjk a mixture of Poisson

and Negative Binomial. Denote the first part of the posterior associated with the

Poisson by L1 = p×1[φg=0]×
∏n

k=1 PPoisson(Ygjk | µgj), which is the product of likelihood

of Poisson model and the mixture proportion p. Similarly, the second piece of the

posterior associated with Negative Binomial model is denoted by L2 = (1 − p) ×

1[φg>0] × Plognormal(φg | m, τ 2)
∏n

k=1 PNB(Ygjk | µgj, φg). Let φ̂m denote the mode of L2,

then the proposed Bayesian estimate of φg is defined as φ̃g = 0× L1

L1+L2
+φ̂m× L2

L1+L2
=

φ̂m × L2

L1+L2
. The Newton-Raphson method was used to seek for φ̂m that maximizes

L2.

Before applying aforementioned procedure to achieve the Bayesian estimate φ̃g,

we need to estimate the mean µgj, hyperparameters m, τ 2 and p. We estimate µgj

by the sample mean, i.e., µ̂gj = 1
nj

∑nj
k=1 Ygjk. The method of moment is utilized to

estimate the hyperparameters. Recall that dispersion parameter φg follows a mixture

model with a point mass at zero and a lognormal distribution, and the moments φg
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are

E(φng ) = (1− p)× exp (nm+
1

2
n2τ 2). (4.4)

Let φ̂g denote the MLE of dispersion parameter φg where g = 1, . . . , G. Then Z1 =

¯̂
φg = 1

G

∑
φ̂g, Z2 =

¯̂
φ2
g = 1

G

∑
φ̂2
g and Z3 =

¯̂
φ3
g = 1

G

∑
φ̂3
g represent the first, second

and third sample moment of φ̂g respectively. By utilizing the method of moments

method, we obtain the estimate of hyperparameters p, m, and τ 2 as follows:


p̂ = 1− exp {3 log (Z1)− 3 log (Z2) + log (Z3)}

m̂ = 4 log (Z2)− 5
2
log (Z1)− 3

2
log (Z3)

τ̂ 2 = log (Z1) + log (Z3)− 2 log (Z2)

(4.5)

Once the shrinkage estimation of the parameter φg is obtained, the last step is to

perform a hypothesis test to compare the mean expression between two groups, i.e.,

test H0 : µg1 = µg2 VSHa : µg1 6= µg2 for each g. There are several testing methods

available such as the Wald test by [65], Exact test by [88] and Likelihood Ratio

test by [4]. As studied in previous research, the empirical distribution of the Wald

statistics is Gaussian-like [126]. The Wald test and the corresponding false discovery

rate (FDR) estimates have been implemented in some R packages such as edgeR and

DSS, thus we choose the Wald test because of its simplicity and the convenience of

implementation. Specifically, the Wald test statistic is defined as

Tg =
µ̂g1 − µ̂g2√
σ̂2
g1 + σ̂2

g2

. (4.6)

where σ̂gj = 1
nj

(µ̂gj + φgµ̂
2
gj) with j = 1 and j = 2 represents the estimated variance

for the control and treatment group, respectively.
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4.4 Simulation study

In this section, we simulate data to mimic the structure of real data, and demon-

strate the performance of the proposed method which is refered to as “mix”. The

mix method is compared with edgeR [88], DSS [126], TSPM [4] and EBseq [55] from

three perspectives: parameter estimation, false discovery rate (FDR) control and gene

ranking. For parameter estimation, since only DSS, edgeR and mix are based on Neg-

ative Binomial model which is parameterized by mean and dispersion parameter, and

thus provide dispersion estimation, we exclude TSPM and EBseq for the comparison.

Three scenarios are considered in the simulation study to show the robustness to the

distributional assumption, where the dispersion parameters φg’s are simulated from

different mixture distributions.

In the first scenario, we simulate data from the true model. Specifically, 10,000

genes are generated with 10% of which are truly differently expressed in the treatment

group compared to the control group. The dispersion parameters φg’s are simulated

from the mixture distribution of point mass at zero and lognormal distribution with

equal weight, i.e., φg ∼ p × 1[φg=0] + (1 − p) × 1[φg>0] × lognormal (m, τ 2) with p =

0.5. Particularly, for gene g, the mean expression for control group µg1 is randomly

sampled from the sample means of control group in the large offspring syndrome

(LOS) gene expression data [12]. For each gene, an indicator γg is sampled from

discrete uniform [0,1], then the dispersion parameters are generated as φg|(γg = 0) = 0

and φg|(γg = 1) ∼ lognormal (m1, τ
2
1 ). m1 = −2.36 and τ 2

1 = 0.35 and these values

are estimated from LOS data. Randomly select 1000 genes to express differently for

two groups, and for which the mean expression for treatment group is specified as

µg2 = µg1 + kδ
√
µg1(1 + µg1φg) where δ ∼ Beta (2, 4). The constant k is to control

the magnitudes of differential expression and we set it to 4 in all the simulation
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scenarios. For the other 9,000 genes, set µg2 = µg1. With µg1, µg2 and φg, we simulate

R replicates for each groups from either Poisson or Negative Binomial distribution

depending on the value of φg.

The simulation settings for the second and third scenario are similar with the first

scenario, except for the parametric distributions for φg. For the second scenario, we

aim to explore the cases where all the genes demonstrate overdispersion by assuming

a mixture distribution of two lognormal. Thus the φg’s for genes with γg = 0 are no

longer 0 but sampled from another lognormal distribution with a very small mean,

i.e., φg|(γg = 0) ∼ lognormal (m0, τ
2
0 ), and φg|(γg = 1) ∼ lognormal (m1, τ

2
1 ). Here

we set m0 = −10, τ 2
0 = 2. As with the third scenario, we keep the structure of true

model but deviate from it by generating φg’s for genes with γg = 1 from Gamma(α, β)

instead of lognormal. The distribution of dispersion parameter is a mixture of point

mass at 0 and Gamma, i.e, φg ∼ p× 1[φg=0] + (1− p)× 1[φg>0] ×Gamma (α, β) with

α = −1.92, β = 15.22, which are estimated from LOS data. For each of the three

scenarios, we consider the situations where R = 4,R = 6, and R = 8, and for each

situation we repeate the simulation 50 times.

Figure 4.2 shows the Boxplot for comparing the mean square errors (MSE) of

the dispersion estimates across 50 simulations. To be consistent with edgeR and

DSS, the MSE’s in the plot are in φg/(1+φg) scale. The upper, middle and bottom

panel represents simulation scenario 1, scenario 2 and scenario 3, respectively. The

first, second and third column corresponds to the cases where we have 4, 6 and 8

replicates in each group, respectively. Compared with edgeR and DSS, the proposed

mix method shows improvement in the dispersion estimation in all the situations of

all the three scenarios. The improvement mostly comes from the estimation for genes

which are not overdispersed, i.e., the genes with φg = 0 in the scenario 1 and scenario

2, or genes have a mild overdispersion, i.e., the genes with φg ∼ lognormal (m0, τ
2
0 )

67



in the scenario 3. It is expected when the distribution of dispersion φg departs from

the true model on which the proposed method is based, e.g., φg is simulated from a

mixture of point mass at zero and Gamma as shown in the bottom panel, the MSE’s

shift up.
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Figure 4.2: Comprison of MSE for dispersion estimations for DSS, egdgeR and pro-
posed mix method across 50 simulations. The top, middle and bottom panel repre-
sents the first, second and third simulation scenario, respectively. The first to third
columns represents cases where R = 4,R = 6, and R = 8 respectively. The Boxplot
are on the φg/(1+φg) scale.

Figure 4.3 presents the true discovery curves which depict the accuracy of differ-

ential expression detection for the top ranked genes. Similar with Figure 4.2, each

subplot represents a distinct situation where the simulation scenario and/or the num-
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ber of biological replicates are different. Genes are ranked by FDR from low to high,

for mix, DSS, edgeR and EBseq; ranked by adjusted P value from low to high for

TSPM. The horizental axis represents the number of top-ranked genes. The vertical

axis represents the percentage of true discovery among the top-ranked genes. The

ideal true discovery curve should be the horizontal line at y = 1, which means the

method successfully rank truly significant DE genes ahead of truly non-significant

genes without an error. The red curves represent the proposed mix method and they

are slightly closer to the ideal curve and have grater areas under the curve than others

methods in all the nine subplots, which indicates an improvement in the accuracy of

of differential expression detection. Among the other competing methods, DSS has

the most similar overall performance with the proposed mixed method. Particularly,

when the number of replicates in each group is 4, the true discovery curve for DSS is

close to that of proposed mix method, and the mixed method and DSS substantially

outperform the other three methods. When the sample size becomes larger from 8 to

16, the performance of all the methods improve and the TSPM method exhibits the

most significant improvement.

The last benchmark that we employ to compare the proposed mix method with

other competing methods is the ability to control FDR at an imposed level. Figure

4.4 shows the Boxplots of true FDR across 50 simulations for various methods when

controlling FDR at 0.05 level. In a more realistic situation where the sample size is

small, the proposed mixed method control the FDR the best. Specifically, for scenario

1 and scenario 2, where the mixture components contains lognormal, the mix method

control the FDR at the nominal level, whereas the edgeR is overly conservative, EBseq

is slightly conservative, both DSS and TSPM are too liberal. For scenario 3, where

the dispersion are from a mixture of point mass at zero and Gamma, the mix method

is slightly liberal but still reasonable. Along with the increase in sample size, TSPM
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Figure 4.3: Comparison of DE detection accuracy for top 1000 ranked genes. The top,
middle and bottom panel represents the first, second and third simulation scenario,
respectively. The first to third columns represents cases where R = 4,R = 6, and
R = 8 respectively.

performed better in terms of FDR control, which coincides with the previous study

[101, 52]. It is surprising that the proposed mix method become more conservative

when sample size increases. A possible explanation is that the noise introduced by

more sample results in the overestimation of dispersion and also the variance, which

makes the mix method underestimate the significance of these genes. By considering

all these 9 situations in general, the mix and DSS method have the best overall
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performance in FDR control.
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Figure 4.4: Boxplot of the true FDR when controlling estimated FDR or adjusted p
value at 0.05 level for the comparison of FDR control. The top, middle and bottom
panel represents the first, second and third simulation scenario, respectively. The
first to third columns represents cases where R = 4,R = 6, and R = 8 respectively.

The three simulation scenarios indicate that the proposed mix method exhibits

improved dispersion estimation, better FDR control and more accuracy in ranking the

DE genes on the top of the list. Although the performance varies across simulation

scenarios, the advantages of mix method over other methods have been shown in

all these three scenarios. It suggests that the proposed mix method is robust to

misspecification of the parametric distribution of dispersion parameters if a bimodal

distribution is assumed. To study the performance of the mix method when the true

underlying distribution for dispersion is unimodal, we conduct a side study where

φg ∼ lognormal (m1, τ
2
1 ). m1 = −2.36, τ 2

1 = 0.35, and other settings are the same

with aforementioned three scenarios. Figure 4.5 shows the simulation results for the
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side study. The upper panel shows the comparison for gene ranking for different

method. It seems that when the sample size is small, the proposed mix method does

not perform as well as DSS; and when the sample size increase, the gaps between

the TPR curves of different method are diminished. The bottom panel shows the

comparison for dispersion estimation, and it is expected that when the distribution

of the dispersion is bimodal, the proposed mix method would loss its advantage.

Figure 4.5: Simulation results for the side study. The upper panel shows the com-
parison of gene ranking curve, and the bottom panel displays the MSE for dispersion
estimation. The first to third columns represents cases where R = 4,R = 6, and
R = 8 respectively.
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4.5 Real data analysis

To illustration the empirical utility, we apply the proposed mix method to the LOS

study. LOS is a fetal overgrowth condition that exhibits variable phenotypic abnor-

malities including overgrowth, enlarged tonge, and abdominal wall defects. These

characteristics mimic the human syndrome Beckwith Wiedemann (BWS), which is

the most common pediatric overgrowth syndrome. The phenotypic and epigenetic

similarities between LOS and BWS make LOS an appropriate animal model for the

study of BWS and the understanding of the etiology of these overgrowth syndromes

[14]. To study the underlying molecular mechanism behind LOS, [12] used cattle as

the study animal, and generated RNA sequencing (RNAseq) data of skeletal muscle,

liver, kidney, and brain from four control and four LOS day ∼ 105 (d104–106) B. t.

indicus × B. t. taurus F1 fetuses.

A typical way to perform a differential expression analysis is to assume that the

number of read counts for four biological replicates in each of the control and LOS

group are fluctuating around a underlying mean, and significant DE genes should ex-

hibit difference between the means in two groups. However, as LOS fetuses exhibited

dramatic difference in bodyweight [15], to eliminate the confounding effect of body

weight, it makes better sense to consider each LOS fetus individually. Therefore, in

the real data analysis, each LOS fetus is compared to the mean of the four controls

to identify differentially expressed genes, as with what has been done in [15]. That

is, the sample size for control group is four whereas the sample size for LOS group is

one. Separate analysis is conducted for each of the four tissue types.

Before applying the proposed method, we process the raw read counts as follows.

At the first step, edgeR package is used to filter out genes that have less than 4

replicates (either from control or LOS group) with cpm greater than 2. The number
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of genes kept in the study for kidney, muscle, liver and brain is 15,214, 14,258, 13,146

and 15,239, respectively. At the second step, the trimmed mean of M-values method

(TMM) proposed by [86] is employed to normalize the data. Finally, the rounded

normalized counts are exported as the input for the subsequent analysis.

Table 4.1 summarizes the number of significant DE genes detected by the proposed

mix method based on a FDR< 0.05 level in different types of tissue. The first four

columns corresponds to the DE genes in each LOS fetus and the last column represents

the number of genes which exhibit significantly different expression in at least one

LOS fetus. If a gene is significant in at least one LOS fetus, we claim it a DE gene.

For example, 1576 DE genes are detected in liver tissue, among which only 385 DE

genes are found in fetus LOS 3# whereas 725 DE genes are significant in fetus LOS

1#. Similarly, the difference in the number of detected DE genes in different LOS

fetus exists in muscle, kidney and brain tissues. In general, there is smallest number

of detected DE genes in muscle tissue, and greatest number of detected DE genes in

kidney tissue.

Table 4.1: Number of detected DE genes in different tissues

tissue LOS#1 LOS#2 LOS#3 LOS#4 at least one LOS Fetus

liver 725 418 385 670 1576
kidney 963 974 1022 737 2474
muscle 188 257 161 309 678
brain 479 732 119 95 1033

Figure 4.6 shows the Venn diagram corresponding to the last column of Table 4.1,

and it summarizes the categories of detected DE genes for each tissue, depending on if

the DE genes are significant in other tissue types. For example, only 17 detected DE

genes are significant in all the four types of tissue; 79 detected DE genes are significant

in brain, kidney and muscle; 33 detected DE genes are significant in kidney, muscle
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and brain; 56 detected DE genes are significant in kidney, liver and brain. There are

relatively larger number of DE genes which only exhibit significant difference in gene

expression between control and LOS in one specific type of tissue. Specifically, the

number of DE genes that are only significant in liver, kidney, muscle and brain is 842,

1547, 301 and 681, respectively. We also use kidney tissue as an example to apply all

the other methods that are mentioned in the simulation study. The Venn diagram

of DE genes for kidney tissue detected by different methods is shown in Figure 4.7.

Among the DE genes detected by the proposed mix method, 275 out of 2474 genes

are also claimed as DE genes by all the other methods.
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Figure 4.6: Venn diagram of detected DE genes for different tissue types
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4.6 Conclusions

In this chapter, we proposed a new method to detect the DE genes in any sequencing

experiment. The number of read counts for different treatment groups are modelled

by two Negative Binomial distribution which may have different means but share the

same dispersion parameter. We propose a mixture prior model for the dispersion

parameters with a point mass at zero and a lognormal distribution. The mixture

model allows shrinkage across genes within each of the two mixture components, thus

prevents overcorrection by shrinkage across all genes. In the simulation study, we

demonstrate that the proposed method yields a better estimation of the dispersion,

demonstrates a higher accuracy in ranking the significant genes on the top, and ex-

hibits a better general FDR control than the other competing methods, when the

distribution of dispersion is indeed bimodal. In addition, the proposed method ex-

hibits robustness to the misspecification of the bimodal distribution for the dispersion

parameters. Thus it is more flexible and can be generalized to any sequencing ex-

periment with a prior closer the empirical distribution than the other prior unimodal

appreoaches. The empirical usage of the proposed method is demonstrated in a real

data analysis on a LOS study.
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Chapter 5

Future Research

5.1 Combined analysis of multi-omics data

In this dissertation, we have proposed three new statistical methods, i.e., BLMRM,

hmmASE and mix. BLMRM targets at the joint inferences on gene level ASE and

variations of ASE across SNPs within a gene, hmmASE focuses on the simultane-

ous detection of ASE region in control group and regions of ASE alterations in case

group, and mix aims to detect DE genes. The ultimate objective of these studies is to

discover the potential connections between diseases (such as LOS), with ASE and/or

differential expression. Except for ASE and differential expression, other molecular

features measured by different platforms, e.g., methylation level, microRNA expres-

sion, copy number variation etc. all affect phenotype in a specific pathway [41].

Comprehensive understanding of diseases requires interpretation of molecular intri-

cacy and variations at multiple levels [110]. In this chapter, we use LOS as an example

disease to describe the potential directions for future research on the combined anal-

ysis of multi-omics data, under a hypothetical situation where methylation data and
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microRNA expression data is also available.

The Chapter 2 and Chapter 3 have formed a ramified framework for ASE, which

can be easily extended to the independent analysis of methylation data and microRNA

expression data. However, the information provided by the study that focuses on one-

dimensional omics data is limited. In addition, these omics, i.e., ASE, mehylation

and microRNA expression, are interactive instead of independent [39]. Therefore, it’s

important to develop an integrative statistical method to analyze multi-omics data

simultaneously. There are numerous progresses done in the field of multi-omics inte-

gration, for example, the matrix factorization methods by [130], [96], [81] etc., and the

multiple kernel learning and multi-step analysis by [102]. [39] gives a comprehensive

review on recent research.

5.2 Integrative analysis of ASE, microRNA and

methylation data

As with the integrative analysis of ASE, microRNA and methylation data on LOS

study, we propose two potential directions for future research. The first proposed

model works for the situation where the number of sample size is limited. It is es-

sentially a two-step method, and a natural extension of the bivariate HMM model

in Chapter 3. Specifically, in the first step, we conduct a differential expression

analysis on the microRNA data by the mix method proposed in Chapter 4 or DSS

[127] and edgeR [85], depending on the dispersion of the data. Let G denote the set

of genes which exhibit significant differential expression between the control group

and LOS group. G1 and Ḡ1 represent the subset of G which is regulated and

not regulated by the microRNA, respectively. In the second step, we model the

alteration of ASE and alteration of methylation simultanously by a bivariate hid-
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den Markov model. Analogous to the hmmASE method, the sequence of bivari-

ate observations Ob = (Y1b, Y2b)
′ will be controlled by 9 hidden states in M =

{(M, 1), (M, 2), (M, 0), (P, 1), (P, 2), (P, 0), (N, 1), (N, 2), (N, 0)}. The subscript b rep-

resents bin which is defined as the segments of chromosome from current SNP to next.

Each bin contains one SNP and multiple CpG, and the length of bins are not homoge-

neous. Yb1 and Yb2 are defined as Yb1 = log (P2e,b/ (1− P2e,b))− log (P1e,b/ (1− P1e,b)),

Yb2 = log (P2m,b/ (1− P2m,b)) − log (P1m,b/ (1− P1m,b)) where P1m,b, P1e,b denote the

percentage of maternal methylation and maternal expression for normal group, P2m,b,

P2e,b denote the percentage of maternal methylation and maternal expression for dis-

ease group. The transition probabilities and transition matrix are defined in a similar

way as in hmmASE.

The information of microRNA will be integrated as follows. Since microRNA

expression affects gene expression more directly than affecting methylation, we let

Ob: b∈Ḡ1
follow the bivariate normal distribution as defined in (3.1) in Chapter 3. For

Ob: b∈G1 , we let the covariance matrix remain the same with that of Ob: b∈Ḡ1
but the

first dimension of all the 9 mean vector are shifted by a random variable s ∼ N(a, σ2)

where a and σ2 are constants. Essentially, depend on if the bins belong to or overlap

with a gene that is regulated by a significantly differentially expressed microRNA, we

seperate the hidden Markov chain into two sub chains. These two sub chains share

same transition probability but have different emission probability distributions. The

inference interest now becomes (1) infer the hidden states, (2) estimate the mean

effect of microRNA.

Under the circumstance where we have the data from more individuals, e.g., hun-

dreds of samples from both control group and LOS group, we can extend the iBAG

method original proposed by [121]. This extended model will consists of two com-

ponents, i.e., the first component consider the direct effects of methylation and mi-

80



croRNA expression on ASE by regressing the measures of ASE on the methylation

measurement, microRNA expression, and their potential interaction; the second com-

ponent uses the information in the first component to predict if an individual will

have LOS. The inference interest for this method is to select the genes significantly

associated with LOS.

In summary, the two aforementioned methods, which serve different inference

purposes, are the examples of two potential directions for integrated analysis of multi-

omics data. The first method does not require biological replicates, and it reports the

regions of ASE and methylation regions, thus is more appealing in practise. However,

the information of microRNA is incorporated in the model through an indirect way

and it might be difficult to link the significant differentially expressed microRNA back

to genes. On the contrary, the second method models the multi-omics information

directly and reports more straightforward outputs but it requires a much larger sample

size.
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Appendix A

Supplementary Materials for
“Detecting Allele-Specific
Expression and Alterations of
Allele-Specific Expression by a
Bivariate Bayesian Hidden Markov
Model”

A.1 EM algorithm for parameter estimation

Let Ls and OS denote the hidden states and observations, respectively. Note Ls is

different with the Ls in the main paper since here Ls ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, which

corresponds to the nine bivariate states in the space M defined in the main paper,

respectively. Write O = (O1, . . . ,OS)T , L = (L1, . . . , LS)T , p = p′kls where k, l ∈

{1, 2, 3, 4, 5, 6, 7, 8, 9}. πL1 = P (L1 = k) (k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}) be the probabil-

ity distribution for the first SNP, L(θ|O) and L(θ|O,L) denote the incomplete-data
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and complete-data likelihood, respectively. Then we have,

L(θ|O,L) = πL1

S−1∏
s=1

P (Ls+1|Ls, θtrans)
S∏
s=1

P (Os|Ls,θemiss) (A.1)

Define the logarithm of the complete-data likelihood as l(θ|O,L) = log(L(θ|O,L)).

We utilize the EM algorithm to iteratively update the parameter θ and maximize the

expectation of complete-data log-likelihood w.r.t the conditional distribution of the

hidden status given the observations and parameters, i.e., EL|O,θ [l(θ|O,L)|O,θ].

The E-step

At the E-step, we evaluate the expectation at the current estimated parameters, e.g.,

EL|O,θm−1

[
l(θ|O,L)|O,θm−1

]
at the m-th iteration. For simplicity, the superscript

(m− 1) would be omitted in Appendix A.

EL|O,θm−1

[
l(θ|O,L)|O,θm−1

]
=
∑9

k=1
P (L = k|O,θ) l(θ|O,L)

=
∑9

k=1
P (L = k|O,θ)

{
logπL1 +

S−1∑
s=1

logP (Ls+1|Ls, θtrans) +
S∑
s=1

logP (Os|Ls,θemiss)

}

=
∑9

k=1
Pk(1) log πk (A.2)

+
S−1∑
s=1

∑9

k=1

∑9

l=1
Pkl(s) log (tkl (s|θtrans)) (A.3)

+

S∑
s=1

∑9

k=1
Pk(s) logP (Os|Ls,θemiss) (A.4)

where

Pk(s) = P (Ls = k|O,θ) =
P (Ls = k,O|θ)

P (O|θ)
(A.5)

Pkl(s) = P (Ls = k, Ls+1 = l|O,θ) =
P (LS = k, Ls+1 = l,O|θ)

P (O|θ)
(A.6)
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Note that denominators of Pk(s) and Pkl(s) are their numerators summed over all the

possible states, i.e., P (O|θ) =
∑
k

P (Ls = k,O|θ) in (A.5) and

P (O|θ) =
∑
k

∑
l

P (LS = k, Ls+1 = l,O|θ) in (A.6). To calculate P (Ls = k,O|θ) and

P (LS = k, Ls+1 = l,O|θ), the forward- backward algorithm were adopted as follow.

P (Ls = k,O|θ) = P (O1, . . . , Os, Ls = k|θ)P (Os+1, . . . , OS |Ls = k,θ)

= αk(s)βk(s) (A.7)

P (Ls = k, Ls+1 = l,O|θ) = P (O, Ls = k|θ)P (Os+1, Ls+1 = l|Ls = k,O1, . . . , Os,θ)

× P (Os+2, . . . , OS |Ls = k, Ls+1 = l, O1, . . . , Os+1,θ)

= αk(s)akl(s)P (Os+1|Ls+1 = l,θ)βl(s+ 1) (A.8)

where αk(s) and βk(s) are forward probability and backward probability defined as

αk(s) = P (O1, . . . , Os, Ls = k|θ) (A.9)

βk(s) = P (Os+1, . . . , OS|Ss = k,O1, . . . , Os,θ) (A.10)

The forward and backward probability can be computed recursively

αk(1) = πkP (O1|L1 = k,θ) (A.11)

αk(s) =
∑
l

αl(s− 1)tlk(s− 1)P (Os|Ls = k,θ) for s = 2, . . . , S (A.12)

βk(S) = 1 (A.13)

βk(s) =
∑
l

tkl(s)P (Os+1|Ls+1 = l,θ) βl(s+ 1) for s = S − 1, . . . , 1 (A.14)
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The M-step

In the M-step, we seek for the values of parameters to maximize the expectation

EL|O,θm−1 [l(θ|O,L)|O,θ], and save the updated parameters θ(m) for the next iteration.

Define G1(πk) =
∑
k

P (L = k|O,θ) log πL1 , G2(p, α) =
∑S−1

s=1

∑
k

∑
l

Pkl(s) log (tkl (s|p, α)),

G3(θemiss) =
∑S

s=1

∑
k

Pk(s) logP (Os|Ls,θemiss), then EL|O,θ [l(θ|O,L)|O,θ]
4
= G1(πk)+

G2(p, α) + G3(θemiss). By taking partial derivative of the expectation against each

parameter and equal them to 0, we can update the parameters in the order of p,

α, o+ (o−), d+ (d−), σ2
+ (σ2

−, σ2), τ 2
+ (τ 2

−, τ 2), ω1, ..., ω9, πk. When updating each

parameter, we use the most up to date values for other parameters which would be

needed in the computation of the partial derivative.

Updating transition parameters

At first, we update p by solving the equation ∂
pkl

(G2(p, α)) = 0 l 6= k, for l, k ∈

M. This yields
∑S−1

s=1 Pkk(s)
−(1−e−αcs )

1−(1−e−αcs )
∑
l 6=k pkl

+
∑S−1

s=1
Pkl(s)(1−e−αcs )
pkl(1−e−αcs )

= 0 for k, l ∈

M and l 6= k. Specifically, for each k, we have
∑S−1

s=1
Pkl(s)
pkl

=
∑S−1

s=1
Pkk(s)(1−e−αcs )

1−(1−e−αcs )
∑
l6=k pkl

for every l ∈M. Let hk =
∑S−1

s=1
Pkl(s)
pkl

, then find the hk by maximizing

S−1∑
s=1

Pkk(s)log

(
1−

(∑
l 6=k
∑S−1

s=1 Pkl(s)

hk

)
(1− e−αcs)

)
+

S−1∑
s=1

∑
l 6=k

Pkl(s)log

(∑S−1
s=1 Pkl(s)

hk
(1− e−αcs)

)

for each k. Then pmkl =
∑S−1
s=1 Pkl(s)

hk
l 6= k, l, k ∈ M. To get the complete transition

matrix, we still need to update parameter α, which can be achieved by a direct grid

search over the range [0.01, 10].
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Updating emission parameters

Let k = 1, ..., 9 correspond to the nine states in the bivariate state space

M = (M, 1), (M, 2), (M, 0), (P, 1), (P, 2), (P, 0), (N, 1), (N, 2), (N, 0). ∂G3(θemiss)
∂o+

= 0

yields

o+

{∑S
s=1 P1(s)

(1− ω2
1)σ

2
+

+

∑S
s=1 P2(s)

(1− ω2
2)σ

2
+

+

∑S
s=1 P3(s)

(1− ω2
3)σ

2
+

}
=

∑S
s=1 P1(s)Y1s

(1− ω2
1)σ

2
+

−

ω1
∑S

s=1 P1(s)Ds

(1− ω2
1)σ+τ

+

∑S
s=1 P2(s)Y1s

(1− ω2
2)σ

2
+

−
ω2
∑S

s=1 P2(s)(Ds − d+)

(1− ω2
2)σ+τ+

+∑S
s=1 P3(s)Y1s

(1− ω2
3)σ

2
+

−
ω3
∑S

s=1 P3(s)(Ds − d−)
(1− ω2

3)σ+τ−
(A.15)

Similarly, ∂G3(θemiss)
∂o−

= 0 yields

o−

{∑S
s=1 P4(s)

(1− ω2
4)σ

2
−

+

∑S
s=1 P5(s)

(1− ω2
5)σ

2
−

+

∑S
s=1 P6(s)

(1− ω2
6)σ

2
−

}
=

∑S
s=1 P4(s)Y1s

(1− ω2
1)σ

2
−
−

ω4
∑S

s=1 P4(s)Ds

(1− ω2
1)σ−τ

+

∑S
s=1 P5(s)Y1s

(1− ω2
5)σ

2
−
−
ω5
∑S

s=1 P5(s)(Ds − d+)

(1− ω2
5)σ−τ+

+∑S
s=1 P6(s)Y1s

(1− ω2
6)σ

2
−
−
ω6
∑S

s=1 P6(s)(Ds − d−)
(1− ω2

6)σ−τ−
(A.16)

Denote the roots of equation (A.15) and (A.16) by ô+ and ô− respectively, then

o+(m) = −o−(m) = 1
2
(ô+ + ô−).

∂G3(θemiss)
∂d+

= 0 and ∂G3(θemiss)
∂d−

= 0 yield

d+

{∑S
s=1 P2(s)

(1− ω2
2)τ

2
+

+

∑S
s=1 P5(s)

(1− ω2
5)τ

2
+

+

∑S
s=1 P8(s)

(1− ω2
8)τ

2
+

}
=

∑S
s=1 P2(s)Ds

(1− ω2
2)τ

2
+

−

ω2
∑S

s=1 P2(s)(Y1s − o+)

(1− ω2
2)σ+τ+

+

∑S
s=1 P5(s)Ds

(1− ω2
5)τ

2
+

−
ω5
∑S

s=1 P5(s)(Y1s − o−)
(1− ω2

5)σ−τ+

+

∑S
s=1 P8(s)Ds

(1− ω2
8)τ

2
+

−
ω8
∑S

s=1 P8(s)Y1s

(1− ω2
8)στ+

(A.17)
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and

d−

{∑S
s=1 P3(s)

(1− ω2
3)τ

2
−

+

∑S
s=1 P6(s)

(1− ω2
6)τ

2
−

+

∑S
s=1 P9(s)

(1− ω2
9)τ

2
−

}
=

∑S
s=1 P3(s)Ds

(1− ω2
3)τ

2
−
−

ω3
∑S

s=1 P3(s)(Y1s − o+)

(1− ω2
3)σ+τ−

+

∑S
s=1 P6(s)Ds

(1− ω2
6)τ

2
−
−
ω6
∑S

s=1 P6(s)(Y1s − o−)
(1− ω2

6)σ−τ−
+∑S

s=1 P9(s)Ds

(1− ω2
9)τ

2
−
−
ω9
∑S

s=1 P9(s)Y1s

(1− ω2
9)στ−

(A.18)

Let d̂+ and d̂− denote the root of equation equation (A.17) and (A.18) respectively,

then d+(m) = −d−(m) = 1
2
(d̂+ + d̂−).

∂G3(θemiss)

∂σ2
+

= 0 yields

1

σ2
+

{∑S
s=1 P1(s)(Y1s − o+)2

(1− ω2
1)

+

∑S
s=1 P2(s)(Y1s − o+)2

(1− ω2
2)

+

∑S
s=1 P3(s)(Y1s − o+)2

(1− ω2
3)

}
−

1

σ+

{
ω1
∑S

s=1 P1(s)(Y1s − o+)Ds

(1− ω2
1)τ

+
ω2
∑S

s=1 P2(s)(Y1s − o+)(Ds − d+)

(1− ω2
2)τ+

+

ω3
∑S

s=1 P3(s)(Y1s − o+)(Ds − d−)
(1− ω2

3)τ−

}
=

S∑
s=1

(P1(s) + P2(s) + P3(s)) (A.19)

Similarly, ∂G3(θemiss)

∂σ2
−

= 0 and ∂G3(θemiss)
∂σ2 = 0 yields

1

σ2
−

{∑S
s=1 P4(s)(Y1s − o−)2

(1− ω2
4)

+

∑S
s=1 P5(s)(Y1s − o−)2

(1− ω2
5)

+

∑S
s=1 P6(s)(Y1s − o−)2

(1− ω2
6)

}
−

1

σ−

{
ω4
∑S

s=1 P4(s)(Y1s − o−)Ds

(1− ω2
4)τ

+
ω5
∑S

s=1 P5(s)(Y1s − o−)(Ds − d+)

(1− ω2
5)τ+

+

ω6
∑S

s=1 P6(s)(Y1s − o−)(Ds − d−)
(1− ω2

6)τ−

}
=

S∑
s=1

(P4(s) + P5(s) + P6(s)) (A.20)

and

1

σ2

{∑S
s=1 P7(s)Y

2
1s

(1− ω2
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s=1 P8(s)Y

2
1s
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2
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−
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1

σ

{
ω7
∑S

s=1 P7(s)Y1sDs

(1− ω2
7)τ

+
ω8
∑S

s=1 P8(s)Y1s(Ds − d+)

(1− ω2
8)τ+

+
ω9
∑S

s=1 P9(s)Y1s(Ds − d−)
(1− ω2

9)τ−

}

=
S∑
s=1

(P7(s) + P8(s) + P9(s)) (A.21)

Let σ̂2
+, σ̂2

− and σ̂2 denote the root of equation (A.19), (A.20) and (A.21) respectively,

then σ
2(m)
+ = σ

2(m)
− = 1

2
(σ̂2

+ + σ̂2
−), and σ2(m) = σ̂2.

τ 2
+, τ 2

− and τ 2 can be updated in a analogous way as δ
2(m)
+ = δ

2(m)
− = 1

2
(δ̂2

++δ̂2
−), and

δ2(m) = δ̂2 where τ̂ 2
+, τ̂ 2

− and τ̂ 2 are the root of equations (A.22), (A.23) and (A.24),

which are yielded by ∂G3(θemiss)

∂τ2+
= 0, ∂G3(θemiss)

∂τ2−
= 0 and ∂G3(θemiss)

∂τ−
= 0 respectively.

1

τ2
+
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}
=

S∑
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(P2(s) + P5(s) + P8(s)) (A.22)

1
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s=1 P3(s)(Ds − o−)2

(1− ω2
3)

+

∑S
s=1 P6(s)(Ds − o−)2

(1− ω2
6)

+

∑S
s=1 P9(s)(Ds − o−)2

(1− ω2
9)

}
−

1
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1

τ

{
ω1
∑S

s=1 P1(s)(Y1s − d+)Ds

(1− ω2
1)σ+

+
ω4
∑S

s=1 P4(s)(Y1s − d−)Ds

(1− ω2
4)σ−

+
ω7
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s=1 P7(s)Y1sDs

(1− ω2
7)σ

}

=
S∑
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(P1(s) + P4(s) + P7(s)) (A.24)

To update ω1, ... ω9, we take partial derivative of G3(θemiss) against these parameters

as well. In this appendix, we will only show the procedure to update ω1, ω2, ... ω9

can be updated in a symmetric manner. ∂G3(θemiss)
∂ω1

= 0 yields

ω1(1− ω2
1)

S∑
s=1

P1(s)− 2ω1

{∑S
s=1 P1(s)(Y1s − o+)2

σ2
+

+

∑S
s=1 P1(s)D2

s

τ 2

}
+

(1 + ω2
1)

{∑S
s=1 P1(s)(Y1s − o+)Ds

σ+τ

}
= 0 (A.25)

Let a =
∑S

s=1 P1(s), =
∑S
s=1 P1(s)(Y1s−o+)2

σ2
+

+
∑S
s=1 P1(s)D2

s

τ2
and c =

∑S
s=1 P1(s)(Y1s−o+)Ds

σ+τ
.

We search the root for nonlinear equation aω3
1 − cω2

1 − (a − 2b)ω1 − c = 0 over the

range [-1,1], which is the updated ω
(m)
1 . At the last step of the Mstep, we update

πk = P (S1 = k) by π
(m)
k = P (S1 = k|O,θ(m−1)).
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A.2 Estimated transition probabilities for real data

analysis

k l 1 2 3 4 5 6 7 8 9
1 0.0022 0.0139 0.0000 0.1834 0.0000 0.3673 0.0000 0.0024
2 0.0919 0.4204 0.0000 0.0000 0.0000 0.0001 0.0022 0.0006
3 0.0035 0.0000 0.0000 0.0208 0.0000 0.5988 0.0000 0.0013
4 0.0000 0.0000 0.1993 0.2136 0.2307 0.1805 0.0000 0.0232
5 0.0147 0.0059 0.1101 0.0106 0.0000 0.4439 0.0000 0.2992
6 0.0000 0.0000 0.0000 0.1784 0.0110 0.5117 0.0000 0.0000
7 0.0003 0.0000 0.0607 0.0020 0.0737 0.0000 0.0000 0.0643
8 0.0006 0.0000 0.2941 0.0000 0.0000 0.0000 0.0148 0.0123
9 0.0000 0.0002 0.0367 0.0407 0.0812 0.0040 0.2672 0.0000

Table A.1: Estimation of pkl for chromosome 23 (rounded to 4 decimal places)

k l 1 2 3 4 5 6 7 8 9
1 0.0000 0.0570 0.0346 0.0000 0.0000 0.4137 0.1438 0.0000
2 0.0004 0.0709 0.2084 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0581 0.0279 0.0010 0.0580 0.0000 0.5397 0.0000 0.0791
4 0.0067 0.0000 0.0000 0.0003 0.4877 0.0000 0.0000 0.0887
5 0.0000 0.0000 0.0119 0.0000 0.0000 0.6472 0.0000 0.1620
6 0.0331 0.0000 0.0000 0.0598 0.1192 0.0000 0.0000 0.0518
7 0.0037 0.0000 0.0476 0.0000 0.0436 0.0000 0.0000 0.0344
8 0.2219 0.0000 0.4842 0.0000 0.0000 0.0000 0.0946 0.0000
9 0.0179 0.0000 0.0000 0.0000 0.0002 0.0000 0.7614 0.0000

Table A.2: Estimation of pkl for chromosome 21 (rounded to 4 decimal places)
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A.3 Model validation for Normal emission proba-

bility

Our model assume the marginal distribution of observations given hidden states fol-

low bivariate normal distributions. More specifically, the marginal distribution of the

observation at a specific dimension, e.g., Ds and Y1s will follow a mixture of three nor-

mal distributions. Figure A.1 displays the model fitting for an example chromosome,

i.e., chromosome 23. The left panel shows the histogram of Y1s, the observations at

first dimension, which is the logistic transformation of the proportion of gene expres-

sion from maternal allele in control sample. The right panel shows the histogram

of Ds, observations at second dimension, which is the difference between the logistic

transformed proportion of gene expression from maternal allele in control and LOS

group. The superimposed blue curves represents the fitted distribution, and the blue,

green and red curves represents the three mixture components of the estimated dis-

tribution. It is indicated in Figure A.1 that both the distribution of Y1s and Ds are

well fitted by the Gaussian mixture distribution.
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Figure A.1: Model fitting for chromosome 23. The left panel shows the histogram
of the logistic transformed proportion of maternal expression in control group. The
right panel shows the histogram of the difference between the transformed maternal
proportion in control and LOS groups. The superimposed purple curve corresponds
to the fitted mixture distribution of the data, with the blue, green and red curves
representing the three normal components.
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