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DIGITAL MODELING OF THE ACOUSTIC SIGNAL TRANSFORMATION OF AN 

ELECTRIC GUITAR AMPLIFIER USING RECURRENT NEURAL NETWORKS 

John C. H. Benjamin 

Dr. Yunxin Zhao, Thesis Supervisor 

ABSTRACT 

 Neural networks have topped performance measures across a wide variety of 

computational tasks. These performances are prevalent within the domain of human perception 

type tasks such as classification or generation of images, audio, or text. Recurrent neural 

networks are neural network architecture of choice for time-domain data such as spoken or 

written human language. Recurrent neural networks have also shown promise for tasks in the 

specialized signal domain of music. This thesis explores using recurrent neural networks to 

model the particular musical qualities generated by analog electronic musical equipment. The 

electric guitar amplifier is used by electric guitar players to shape the timbre of their musical 

instrument as they play. Most professionals consider analog amplifiers designed to provide 

acoustic distortion with vacuum tubes as having the best sound and feel for musicians. We 

attempted to model the sound transformation of a vacuum tube based electric guitar amplifier 

using a convolutional recurrent neural network architecture. For our experiment, we trained 

recurrent neural networks of various architectures using inputs of electric guitar signals and the 

subsequent signal processed through a typical vacuum-tube based amplifier and audio recording 

equipment. Training data was collected according to the recommended specifications of previous 

experiments. The amp simulation models were compared against the original amplifier with 

signal analysis and subjective listening tests. Sound recording techniques for capturing the best 
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input and output data for the current state-of-the-art were analyzed. Analysis of various model 

input configurations and hyperparameter settings also showed several major limitations in the 

ability of the model to accurately reproduce the acoustic properties of a signal chain with more 

complex distortion characteristics than those previously tested. The limitations were analyzed 

and features of a new model were proposed. Subjective listening tests with three expert musical 

listeners showed that even though listeners could identify the quality degradation of the model, 

some listeners found the signals provided by specific models to be of more interest to their 

musical tastes. These models tended to model an amplifier set to a smooth gentle tone, which the 

model made less harmonically rich. However, models trained on amplifier tones with dense 

harmonic distortion characteristics were uniformly judged as very poor quality. These models 

could not accurately reproduce the intense compression and non-linear distortion qualities and 

ended up sounding abrupt with a hissing buzz. 
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CHAPTER 1: INTRODUCTION 

1.1 Using Recurrent Neural Networks to model musical harmonics and dynamics 

 The purpose of this thesis project is to explore the possibility of getting the best possible 

sound out of digital musical software by modelling analog audio equipment with artificial 

intelligence techniques. The specific context is about creating a component of an electrical 

musical instrument that is designed to shape the tone or timbre of that instrument as it is played. 

Our goal is to model this change in timbre using a machine learning framework for signals called 

recurrent neural networks. The task of the neural network is to accurately model the waveform 

for both its dynamics and harmonics across a range of possible inputs from an electric guitar. 

1.2 Acoustic Signals and Digital Audio Processing 

 Most modern consumers have heard an electric guitar played on a popular music 

recording. The electric guitar is ubiquitous in the musical culture of mass media with a rich 

heritage of artistic and technological innovation. What you hear online or on the radio is not just 

the performance of the musician, but a chain of electronic and digital signal modification choices 

created by the production team. With today's technology, an individual alone on a personal 

computer has access to the tools necessary to create a professional sounding audio production. A 

musician may plug an electric guitar player directly into a peripheral attached to his home 

computer to record a performance. The musician may take the initial signal and modify or mix 

the performance using different amplifier, microphone, or other settings tailored to the music. 

Despite the convenience of digital modelling technologies, most audio engineers and musicians 

prefer the musical sound qualities of analog electronic components recorded in a professional 

manner. For the case of electric guitar, there are a selection of affordable digital modelling 

software plugins. For the serious electric guitar player you will more often find an expensive and 
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fragile analog amplifier and speaker cabinet setup being used. Modern machine learning 

techniques offer a promising new approach to capturing the sonic qualities of analog electronic 

equipment in a digital format. This project aims to build and test a digital implementation of a 

high-end vacuum tube based electric guitar amplifier using recurrent neural networks in order to 

see if they can come closer to the tonal quality of analog equipment within a digital recording 

environment. 

1.3 Deep Learning Research for Various Multimedia 

 Advances in speed and availability of computational power have also enhanced research 

in the artificial intelligence technique of multilayer neural networks for a variety of media 

applications. Deep learning has proven effective in a variety of generation or classification tasks 

for images, video, text, audio, and other types of data. In the domain of music, neural networks 

have proven effective in classifying genres of music, generating musical compositions similar to 

composers or genres, and synthesizing new sounds from existing timbres. 

 Deep Learning is of particular interest to musical audio because of the inherent difficulty 

in programming musical features of audio signals by hand. Machine Learning has grown as a 

discipline in Artificial Intelligence because of researcher's realizing that allowing machines to 

learn complex patterns in data is usually a better approach than trying to program them by hand. 

This is because many human perception and generation tasks inherent in our biology turn out to 

be too complicated or not well understood enough to program by hand. This realization applies 

as well to music. Like other art media, what constitutes 'good' musical qualities in a signal 

transformation or composition is not easily ascertainable or programmable. 

1.4 Accurate acoustic reproduction in digital music arrangement 
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 Most of the research in deep learning related specifically to music has to deal with 

general issues of musicology and arrangement such as generating rhythms, melodies, or 

harmonies or classifying works based on similarity. Another interesting approach for machine 

learning among artists and composers is to speed up or streamline the production component of a 

recorded piece of music such as the mixing or mastering of a recording session. The approach of 

this thesis is to replace components of audio signal chains with machine learning algorithms in 

order to expedite and democratize the production possibilities for musical performance. 

1.5 Project Motivation 

 This project aims to expand upon existing experiments testing recurrent neural networks 

in modeling electric guitar amplifiers. Unlike other experiments this project attempted to build a 

complete signal chain for working use with studio musicians and audio engineers to 'reamplify' a 

guitar track. The experiment tested a complete signal chain rather than isolated components of an 

electric guitar studio recording setup and evaluated for use with musicians.  

An amplifier is an important component of the audio signal chain for a popular electrical 

instrument. The electric guitar is a ubiquitous and popular instrument. The amplifier is a 

necessary component to an electric guitar. Electric guitar amplifiers traditionally come in two 

varieties: solid state and tube. The essential difference is whether the gain stages of the amplifier 

use transistors or vacuum tubes to amplify an incoming audio signal. Vacuum tubes are widely 

used in high-end electric guitar amplifiers because of particular musical qualities associated with 

their response to a user's manipulation of an electric guitar. Vacuum tubes are expensive and 

fragile. They are rarely used outside of professional audio or musical applications. Both solid 

state and vacuum tube based amplifiers ('Tube Amps') have been modeled using digital signal 

algorithms. These so-called modelling amplifiers may come in hardware components based on 
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digital signal processing chips or simply be pieces of software. This thesis explores whether deep 

learning recurrent neural network models are suitable for modelling amplifiers or complete 

signal chains for home studio use. 

1.6 Thesis Organization 

 This thesis is organized by discussing the background, the purpose, the hypothesis, and 

the testing of an implementation of a machine learning model. For the background, we cover 

topics of acoustic signals as well as what makes a signal musical. We then cover the conversion 

of acoustic signals to analog electrical and digital signals. Next, the specific case of an electric 

guitar and its amplification are discussed, including the musical properties of vacuum-tube based 

amplifiers. 

 After an initial background we discuss the technology of recurrent neural networks. First 

we talk about machine learning in general. Next we cover the background of multilayer neural 

networks. We then go into the design of recurrent neural networks for sequential data. Finally we 

discuss the current literature in applying recurrent neural networks to the specific case of music 

for creating timbre. 

 After a brief on the background of the problem and the solution technique we discuss the 

limitations of the model found through experimental use, as well as discussions of the possible 

usefulness of the current models for musical composition based on listener tests.  
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CHAPTER 2: DIGITAL AND ANALOG AUDIO SIGNALS 

2.1 Sound and music concepts 

 Sound is defined as an acoustic vibration travelling through a fluid medium. Our ears 

pick up sound vibrations and make sense of the sound through our learned understanding of 

human meaning. A normal human ear is capable of hearing sound vibrations around the 

frequencies of 20 to 20,000 Hertz. Humans have developed the capacity for complex artistic 

expression through the medium of sound as music. [2] 

Music is an art form organizing sounds as melodies, harmonies, and rhythms over time. 

Melodies and harmonies are made of tones that have a specific fundamental frequency. 

According to the Western musical tradition there are 12 tones within an octave. A tone with the 

same label within a different octave is related by a whole fraction. A tone of the same letter and 

incidental symbol one octave higher is twice the frequency of the scale lower. This implies that 

the tone frequencies of this system are organized according to a logarithmic scale. Melodic 

musical instruments, such as instruments which make a sound from a plucked string, are 

designed to allow a performer to create a sequence of sounds according to these tones. 

2.2 Harmonics 

 A musical note is defined in pitch according to its fundamental frequency. This frequency 

as generated by a musical instrument comprises the lowest, most powerful frequency. A natural 

sound, however, is a mixture of many vibrations at various frequencies mixed together with the 

fundamental frequency. Musical instruments are designed to supplement the fundamental 

frequency of a played note with many other supplemental frequencies that are pleasing to the 

human ear. Each musical instrument has its own signature of different frequencies created 
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simultaneously with the fundamental frequency of a particular note. This signature of 

frequencies creates what is called the timbre of an instrument. [2] 

 The content of this musical timbre may be analytically described using harmonics. 

Harmonics represents the frequencies available in a sound wave in reference to the fundamental 

frequency, as well as the amplitude of that frequency in the waveform. For example, the second 

octave harmonic is half the wavelength (one octave up) from the fundamental frequency. Any 

type of waveform that is not a pure sine wave introduces harmonics to the sound spectrum. The 

human ear is particularly attuned to odd and even harmonics in music. Even harmonics create a 

pleasant or happy sound, while odd harmonics sound uneasy and ominous. 

2.3 Audio Signals 

 In order to record a musical performance or broadcast, the pressure waveforms in the air 

must be transferred into an electrical signal in a circuit. The relative frequency and strength of 

the sound corresponds to the frequency and amplitude of the electrical signal. An electrical 

circuit has a fixed amount of current that can be carried at one time, so some form of 

amplification must be performed in order to translate back from electrical signal to sound. The 

translation of electrical signal to sound is usually done with a loudspeaker, a device that uses 

electromagnetic force to drive a cone shaped speaker to vibrate according to the signal. [4] 

 In the past, all recordings were done using acoustic instruments, human voice, or other 

authentic sound sources. These acoustic sources were translated to electrical signals by 

microphones. Microphones are specially designed to convert acoustic waveforms travelling 

across a single point into an electrical current. A quality microphone will accurately capture the 

relative dynamics and harmonics of a sound. [4] 
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Modern music recording utilizes other sound generation techniques within a recording. A 

musical sound may be created native to an analog or digital signal. Electric guitars, for example, 

generate an electric current by exciting a metal wire across a coil. Another possibility is analog 

synthesizers, which are devices used to generate analog or digital signals electronically. There 

are also many forms of digital sound synthesizers hosted by digital audio environments. 

2.4 Digital Audio and Analog Signal Conversion 

 Digitally encoded signals are necessary for computers to make sense of audio. However 

digital information is discrete whereas sound and an electronic signal is continuous. 

Representation of an audio signal in a digital domain can be done in a variety of ways. Linear 

Pulse Code Modulation (PCM) is most commonly used. In a PCM encoding, the signal 

waveform is sampled at regular intervals and represented as a value, typically between 1.0 and -

1.0, amplitude of the waveform. A PCM is linear when each digital value represents the same 

interval of time as all other values. The time resolution of a PCM can be measured in bits per 

second for the number of samples in a second. The bitwise resolution depends on what size of 

floating point representation is used for each time sample. Analog signals are converted to PCM 

using specialized converter chips. A PCM with low bit representation or frequency resolution 

sounds distorted to human ears as the square wave form of the discrete PCM values introduces 

perceptible harmonics. An encoding of 24 bit samples at 48 kilobits per second is standard 

practice for consumer audio signals. [4] 

2.5 Amplification 

 The purpose of electrical audio signals is to accurately reproduce the recorded acoustic 

sound heard in a performance through conversion to electromechanical energy. This 

electromechanical record can be played back by loudspeakers which convert an electrical signal 
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back to acoustic waves through a magnetically driven speaker cone. Transmitted electrical audio 

signals must be amplified in order to be heard. Even in a signal chain whose audio information 

has been generated and transmitted in a purely digital form, there must at some point be a 

loudspeaker amplifying the digital signal for the end listener to hear the audio.  

Electrical signal amplifiers are also essential to the audio recording process. Recording 

devices such as instrument pickups or microphones generate a weak signal. Any recording 

apparatus uses one or more amplifiers to increase the amplitude of a signal to something that is 

more useful in a signal transmission environment. However each stage of audio amplification 

introduces its own characteristic change to the signal. 

 Signals may be amplified by various electronic components. Usually one of three 

components is utilized to increase the power of an electrical signal: a transistor, a vacuum tube, 

or an opamp. Each of these technologies have their own electronics characteristic relationship 

between current and voltage. When a signal comes in whose amplification exceeds the capacity 

of the gain, the three components will begin to clip with three different characteristic patterns. 

2.6 Distortion 

When an amplified audio signal exceeds the threshold of the receptive input device, the 

waveform of the signal is dramatically altered. Any signal over the limit of the input is clipped to 

the maximum input value. The distortion of the waveform created by this clipping adds 

harmonics to the sound of the audio signal. Distortion is typically perceived as an undesired 

effect that should be removed from all parts of the signal chain. Analog electric guitar amplifiers 

however have been designed specifically to overload amplifying components so that they create 

harmonic distortion in certain musically pleasing ways. The design of electronic equipment 
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based on the characteristics of its distortion means selection of the amplifying component is 

essential.  

2.7 Dynamics 

The use of an electric guitar amplifier also introduces a natural level of compression to 

the signal output. This is especially the case for vacuum tube based designs, as the response to 

increasing gain is naturally compressed when processed through an overdriven tube. 

Compression is essentially a reduction in the dynamic range of a signal. The dynamics 

correspond to the energy or loudness of a sound. This corresponds to the amplitude of the signal. 

A musical tone of any sort, whether voice, percussion, string, or anything else naturally 

exhibits a dynamic range which is termed the envelope. A distorted envelope or a synthetic 

sound without a dynamic range sounds unnatural to the human ear. The four essential stages of 

the envelope are attack, decay, sustain, and release. Attack corresponds to the increased 

excitement of the sound as it increases in energy. Decay is the immediate release of energy after 

the attack which then goes into a long hold of sustain before finally releasing. Each stage 

corresponds to a change in the dynamics. 

Compression is a signal modification which reduces the dynamic range between these 

stages. This means that the quietest point of sound in the note is closer than the loudest point of 

sound in terms of amplitude. Compression in the electronics domain usually entails a reduction 

in the loudest parts of the sound relative to absolute quiet combined with an increase in the 

overall dynamics of all parts of the instrument. Compression was found to be useful for 

transmitting intelligible signals over telephone lines.  

A good model of a vacuum tube will account for the natural compression that occurs 

when vacuum tubes are saturated with a strong signal.  
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CHAPTER 3: ELECTRIC GUITAR AND ELECTRIC GUITAR AMPLIFIERS 

3.1 Stringed Instruments 

 Stringed instruments are a family of musical instruments which operate by exciting a taut 

string which resonates through a soundbox, creating a musical tone. Stringed instruments are 

among the most common of all musical instruments. The string can be excited by a plectrum, a 

hand, or through friction with a bow. The string creates a standing wave which defines the 

fundamental frequency and therefore the pitch of the tone being played. A musician may alter the 

pitch by placing pressure on the string against the neck of an instrument thereby shortening the 

length of the string being excited. The frequency of the string's vibration correlates to the 

fundamental frequency of the musical note to be played. A stringed instrument is designed to 

create similar tones for a string whose musical note value is being manipulated by the musician 

in order to create melody or harmony. The tone of the instrument is created by the shape of 

components of the instrument as well as the material of the string and the plucking device. [2] 

3.2 Guitars 

 Guitars are a type of stringed instrument which are intended to be used with a plectrum or 

by hand, with a wood sounding box, and frets on the neck so that a player can more easily access 

the right tone for different notes. Guitars are designed with multiple strings, usually six, in the 

low-middle to middle range of tones. They are made to play chords, or multiple notes 

constituting a simultaneous harmony by having many strings pressed against frets in various 

shapes. 

3.3 Electric Guitars 

 The electric guitar grew out of the jazz era of music where a guitar needed amplification 

to match the loudness of horns while playing together in big bands. Electric amplification was 
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seen as a way simply to make the sound of an acoustic guitar louder. As technology and musical 

tastes progressed, the electric guitar became a type of musical instrument separate from acoustic 

guitars and designed specifically to have a timbre shaped by the amplifier. 

The essential operation of an electric guitar is to have strings made of metal. When the 

string is plucked, it excites an electromagnetic pickup situated on the body of the guitar. The 

pickup is typically placed near the bridge of the instrument where the hole of the sounding board 

on an acoustic guitar would be. A pickup consists of magnetic poles over each string, around 

which is a set of tightly wound metal wire. When the metal string of the player vibrates, the 

pickup produces a weak electrical current from the magnetic field of the strings. This electrical 

signal is routed to an amplifier which amplifies the signal. The amplified signal is used to drive a 

loudspeaker to make a sound. 

The actions of the musician on the string create the fundamental frequency of a note as 

well as its dynamics. Although the body of the electric guitar will affect the timbre, the signal 

amplifier is a critical component in generating the timbre of the sound played. The range of 

fundamental frequencies of a standard electric guitar tuned to E ranges from 82Hz to 660Hz. The 

range of fundamental frequencies between 82Hz to 330Hz are most common. Some modern 

electric guitars tuned to lower frequencies may reach lower than 44Hz, though a guitar played at 

these frequencies is usually only observed for some specialized styles of playing in the Heavy 

Metal music genre. 

3.4 Amplifiers and Distortion 

 Musicians and amplifier designers discovered a problem in amplifiers which turned out to 

be a defining feature of the sound of modern electric guitars. When an amplifier was turned up 

too loud, the circuit would not be able to handle the entire flow of electricity and the signal 
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would clip. This distorted the sound of the electric guitar. As mentioned earlier, clipping distorts 

a sound by adding non-linearities to the signal which add harmonics to the outgoing sound. 

 Amplifier designers began deliberately utilizing distortion to make more interesting 

sounds. A highly distorted electric guitar sound is characterized by metallic or aggressive 

sounding harmonics that are a consequence of the signal clipping and compression. A slightly 

distorted electric guitar tone is often given descriptive names like "adding crunch", "adding bite" 

or more. Modern electric guitar amplifiers also have controls for shaping the sound itself. 

Typically there is an equalization section with allows you to increase or decrease the availability 

of certain bands of frequency for any given note. There is also usually a gain control which gives 

the player control over the amount of distortion generated by the amplifier. [3] 

 The amplifier is such an important part of the modern guitar sound that different types of 

amplifiers are designed and marketed to different kinds of players. There is also a secondary 

market for other solid-state circuits that modify the signal coming into the amplifier, giving 

guitar players a wide array of available sound effects and timbres. 

 Although different kinds of amplification schemes exist, the second half of the 20th 

century saw the vacuum tube persist as the amplification component of choice for electric guitar 

amplifiers. Musicians and sound designers have not been able to replicate the sound of vacuum 

tube based distortion using solid state electronic components. 

3.5 Digital Models 

 Digital modelling of vacuum tube based amplifiers has been a source of consumer 

interest because of the possibility of affordable quality tone. The first commercial digital 

modeling amplifiers were available to consumers in the late 1990s. Most digital modelling 

research of amplifiers is driven by commercial interests and not available to the public. 
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Generally, the models convert the signal from the electric guitar directly to digital, then use 

digital filters or waveshaping functions on the input in order to add distortion and harmonics to 

the original sound. This digital emulation of an amplifier can either be used natively in a digital 

recording environment or sent to a solid-state power amplifying unit directly to a loudspeaker. 

Reception of digital models for guitar amplifiers has been mixed. Most agree that they do 

not sound precisely like vacuum tube based amplifiers, nor do they respond to the performance 

of a musician with respect to dynamics and tone the same way. This is because of the non-linear 

distortion characteristics that are impossible to completely replicate in an analog amplifier. All 

digital models suffer as well from undesired digital distortion generated by aliasing. Aliasing is 

the inability to capture the tone completely due to the limited sampling rate of a digital model.  

 The experience of digital models and their relative lack of realism leads to an interest in 

machine learning as a solution. This fits within the pattern of other tasks which a machine 

learning approach succeeds. The amplified output of vacuum tubes introduces many non-

linearities to the system. Machine learning algorithms are proficient at understanding and 

repeating non-linear patterns.  
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CHAPTER 4: BASICS OF MACHINE LEARNING 

4.1 Definition of machine learning 

 Machine Learning is a subset of artificial intelligence which concerns itself with training 

a computer to learn a program instead of trying to manually program logic. Machine learning has 

taken on immense interest for countless breakthroughs in accomplishing tasks that are difficult to 

program on a machine yet seem intuitively simple for humans.  

A general, commonly accepted definition of Machine Learning from Mitchell is that "A 

computer program is said to learn from experience E with respect to some class of tasks T and 

performance measure P, if its performance at tasks T, improves with experience E." Machine 

learning uses statistical concepts to describe a task as well as the performance of a solution. [1] 

4.2 Machine learnings tasks 

 A task in machine learning may be described as belonging to one of a class of problems. 

One class is discriminative, which means selecting a classification for some particular piece of 

data. Another class of problems is generative, which means generating an output that might fit 

into a particular class, whether or not the class is defined. [1] 

 The task is usually defined by what we want the machine learning program to do with 

examples. Examples, that is the underlying data we learn from, are represented in a vector of 

values of the same dimension as other examples. Example data are often called features. 

 The purpose of a machine learning task is to discriminate between classes from input or 

to generate output so that the correct classification or generational attributes can improve 

statistically by learning from training input. 

4.3 Performance of the task 
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 A machine learning program is evaluated according to its performance in how we want 

the task features to be processed. For example, if we want the machine learning program to 

classify a set of points in Euclidean space between two classes, we would evaluate the 

performance according to a percentage of how many features were correctly assigned to their 

actual class.  [1] 

4.4 Supervised and unsupervised learning 

 There are two general classes of machine learning tasks, supervised and unsupervised. 

These two classes are differentiated by whether or not the example features from which a 

program learns are labeled with a class of solutions. If we only have a set of features and no 

underlying classification, then we cannot teach a program in any way that we could measure the 

performance of a task. Since machine learning is based on statistical distributions, we could 

attempt to learn underlying statistical distributions of feature sets and then measure the 

performance on a test set of features if the learned distribution fits the new test data. [1] 

A supervised machine learning task is one where an algorithm learns a function for 

mapping an input to an output based on previous examples of inputs and their corresponding 

outputs. This information is called labeled training data, as the inputs have been labeled with the 

corresponding output they represent. An unsupervised learning algorithm is one where the output 

labels to a given set of inputs are not given, so the algorithm must learn a set of classifications 

for mapping inputs to a discovered set of  outputs.  

4.5 Evaluating the model 

 In order for a machine learning algorithm to be effective it must be able to generalize its 

learned parameters to features beyond the set it learned. Generalizability is different than the 

performance of a task because it is possible to train a model in such a way that it could have a 
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low error rate but perform poorly on new features even if those features are actually random 

variables from the same underlying probability distribution as the learned features. [1] 

 This means there are actually two different kinds of error in training a machine learning 

model. The first mentioned earlier is the training error. The training error is the error of the 

machine learning model not optimizing completely on the training set. The training error must be 

reduced in a way that optimizes. [1] 

 The second type of error is generalization error. When a model is tested against data for 

which it has not trained we can generate an error rate for its performance. It is possible for a 

model with lower training error to perform much worse than a model that is not as optimized 

when testing against a new data set. This means the machine learning program has learned a 

statistical distribution that is in some way incorrect. Underfitting occurs when we have not 

properly optimized the training error of the model. Overfitting occurs when the model is 

optimized but the test error is still high. [1] 

 The goal of designing a machine learning program is to design a learning algorithm that 

can perform well on a specific task. This means we need to know as much about the underlying 

data as well as the nature and assumptions of a task to make judgments on what approach we will 

use to find optimal results. 

4.6 Linear Regression with a loss function 

 The simplest example of machine learning is to train a linear regression. In this task we 

are given a list of vectors in euclidean space. For simplicity in the example we will explain in 

two dimensions. The goal is to learn a function that best predicts for any vector (x,y) the 

coordinate y given its coordinate x. For a linear model we will want to learn the parameters a, b 

of the function y = ax + b. 
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 In order to define what we want to learn, we must define what is a good fit. This is 

accomplished through a loss function. For the linear regression case we can define our loss as 

mean squared error (MSE), a statistical measurement that squares the errors of all points from 

their predicted values of our model, and finds the average of these. The best fit we can find is 

one that minimizes the loss. We modify our a and b values until we find the minimum on our 

loss function. [1]  
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CHAPTER 5: NEURAL NETWORKS 

5.1 Purpose of feedforward neural network 

 A feedforward neural network is a particular type of machine learning model that, like 

other machine learning models, tries to approximate a function. The feedforward neural network 

approximates a function y=f(x, theta) where x is the input of the function and theta are the set of 

parameters that best approximate the function. Neural networks have been found to work very 

well for non-linear patterns in data. This accuracy in non-linear patterns has made neural 

networks particularly well suited to classification and generation tasks related to human 

perception. As musical tone is a matter of human perception, this project uses a neural network 

architecture to train machine learning models. [1] 

 The name feedforward neural network refers to two particular features of the model. 

First, the model is a combination of function compositions. Each function and its relation in the 

composition of the approximated model can be visualized as a graph. These compositions form 

layers, where a layer of functions is connected to all of the others in the next layer, up until the 

output layer provides a result. There is no feedback mechanism among the compositions, so the 

network is considered feedforward. In formal algorithmic terms the function compositions and 

their dependencies create a directed acyclic graph. Second, the relationship between these 

functions is modeled on the activation behavior of biological neuron cells. Each function 

describes a relationship to its input activations, which then creates an output to an activation 

function. An activation function is a special kind of function, usually non-linear, that gives a 

value of between 0.0 and 1.0. 

5.2 Perceptrons Activation Function 
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 A neural network is essentially a composition of functions. The functions interact with 

each other by way of an activation on functions that one function is connected to. The output of a 

particular neuron in the network is defined by its input and the function definition. If this output 

meets the criteria of activation, then the activation output is sent to all other connected inputs. 

With this structure a neural network can learn a complex relationship between the input and 

output training data. 

5.3 Graph model 

 The connections formed by the complex compositions of learned functions can be seen as 

a set of nodes connected in a graph by one-way edges. The nature of the feedforward design 

means the graph model of a neural network is a directed acyclic graph.  

5.4 Output, Input, and Hidden Layers 

 The nature of the problem which a neural network solves lends itself to organizing the so-

called neurons of the neural network into layers. The input layer represents a set of activations of 

the particular input being evaluated according to the structure of the elements of the input vector. 

For example, 2x2 pixel image in black and white may be represented by 4 input activations 

which may represent either white or black. 

The output layer of the neural network must represent the structure of the output desired 

of the solutions. For example, a network trained to categorize an input into any of four categories 

would have four outputs. Every layer in between the input and output layers where there is a 

mesh of connectivity between input nodes and the nodes of the layer represents a hidden layer. A 

complex model may have many hidden layers of varying sizes or connectivity. 

5.5 Training a Neural Network with Backpropagation 
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 A neural network can be trained by evaluating the values of an input vector to whether 

the model accurately predicts the correct output and adjusting to minimize the loss on a set of 

inputs. As mentioned earlier, the nodes represent one element of a complex composition. We can 

adjust the loss function according to a gradient on each node by propagating the calculation of 

loss backwards along the directed acyclic graph structure of the model.  
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CHAPTER 6: RECURRENT NEURAL NETWORKS 

6.1 Definition and purpose 

As mentioned earlier a typical neural network has a vector set for the input and output 

layers. This will work well for inputs arranged in finite euclidean space. For a time series or 

other signal type input and output the structure of the standard neural network will not fit. The 

solution is to provide a structure of neural network whose weights for each node are identical for 

each time step and then provide a way for the graph structure at a previous iteration to feed into 

the graph structure of the current time as an input. A recurrent neural network is a neural network 

whose graph model provides feedback. [1] 

6.2 Classes of Recurrent Neural Networks 

 There are three classes of recurrent neural networks. The three classes correspond to 

whether the input or output is a vector of a single value or is a stream of recurring values. This 

lends itself to a one-to-many, a many-to-one, or many-to-many transformation. One-to-many 

may be thought of as generation of a signal based on an input where a single vector input leads to 

the recurrent neural network structure to generate a series of time valued steps. Many-to-one may 

be regarded as signal categorization into finite categories. Many-to-many may be thought of as a 

signal transformation function where the neural network evaluates each step of a series and 

predicts the correct output of the transformation in series as well. [1] 

6.3 Forward propagation equations 

 The recurrent neural network structure may be trained on corresponding input and output 

training data the same as a regular neural network through backpropagation of errors. This is 

because all recurrences of previous times appear in the neural network graph as edges and retain 

the same directed acyclical properties of the regular layers of neural networks. 
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6.4 Long term dependencies 

 The main concern of research into recurrent neural networks is how to capture relations 

between recurrences of the neural network that are far apart in time. The farther apart in time two 

nodes are, the more difficult it is to capture the relation between the signals even if there is 

actually a very strong correlation present in the training data. 

6.5 The WaveNet Model 

 

Figure 1: Visualization of WaveNet model from VanDenOord et. al. [5] 

Recent research for acoustic signals, particularly the human voice, has found that 

capturing long term dependencies in a series representing pulse-code modulated digital audio can 

be done with a convolutional layer model. A convolutional layer only takes as input a subset of 

the previous layer. The WaveNet model uses a convolutional architecture based on each hidden 

layer representing a dilation of the output to more and more inputs over time. [5] 
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CHAPTER 7: EXPERIMENT DESIGN 

7.1 Emulating an analog amplifier and recording chain 

 For purposes of recording an electric guitar as played through an amplifier, the effect of 

an amplifier on a guitar signal can be seen as a transformation function from an input signal to a 

final signal. A traditional studio arrangement is to have the musician plug into an electric guitar 

amplifier whose speaker cabinet has a microphone in proximity. This recorded signal is then 

mixed into a final track for listeners. Modern digital technology allows the unchanged dry signal 

coming from an electric guitar line to be fed directly into a digital system. Software plugins are 

able to transform the signal in a similar manner as the entire signal chain. A modified WaveNet 

model has been shown to successfully replicate the effects of components on an electric guitar 

signal. [6] Researchers have devised a "PedalNet" model meant to adapt the WaveNet model to 

the domain of musical instruments. Pedal Net differs from WaveNet in that it does not contain a 

softmax bin of 256 outputs and instead models directly the amplitude of each input point. [6] 

PedalNet also accepts as hyperparameters the dilation size and the number of layers present in 

the convolutional WaveNet model. 

 This experiment aims to explore the findings of previous literature on "PedalNet" by 

confirming, expanding, and optimizing. We aim to confirm the findings of the previous literature 

that a convolutional recurrent neural network is effective as an electric guitar amplifier 

emulation. We aim to expand upon the previous literature by introducing more complex and rich 

harmonics into the amplifier signal chain to see if the PedalNet architecture can successfully 

capture denser harmonic distortion signatures than previously tested. We also aim to optimize by 

first, finding the best practical design of inputs and outputs to train a PedalNet for optimal results 

and second, by suggesting an alternative architecture for PedalNet that could capture denser 
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harmonics. The experiment intends to test the models on a complete studio recording setup and 

not just individual components in isolation. Finally, subjective listener tests are performed to 

evaluate the effectiveness of the digital model signals in a fully mixed audio recording with 

multiple instruments present. 

7.2 Signal chain setup 

 For this experiment a dry guitar signal was captured as an input to training data for the 

model. The same signal was then captured after it traveled through a complete amplifier chain of 

a booster pedal, a 100W vacuum tube based electric guitar amplifier, a high volume setting to 

fully saturate the power section of the amplifier, an attenuated cable connection to one 12 inch 

speaker to control volume, a microphone, a microphone preamp, and a compressor unit. This 

processed signal was used as the output training data. All inputs and outputs were recorded at 

32bit 44.1 kHz sampling rate. All models were trained with combined recordings between 233 

and 239 seconds. This is the same amount of training data recommended in the previous 

literature. [6] A reamplification unit was used to be able to record an input and then play the 

identical input to different output settings. 
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Signal Chain of Trained Models 
 

Figure 2.1 Left: rackmount of studio recording 
chain used to record training output signal and 
experiment control tracks 

 
Rackmount Component and Description 
1. Blue box, Direct Box, used to record dry 
guitar signal while playing 
2. Gray rackmount, Preamp, used to amplify 
incoming microphone signal 
3. Black rackmount, Compressor, used to 
smooth signal transients from preamp 
4. Gray large rackmount with band controls, 
EQ used to lower volume from compressor to 
avoid clipping 
5. Red box, digital interface, collects signal 
from EQ unit and digitizes to send to computer 
6. Yellow box, 'Reamp' Box, used to send pre-
recorded dry signal to amplifier chain  
 

 
 
 

Figure 2.2 Left: amplifier used to record 
training and experiment control tracks 

 
Amplifier Component and Description 
1. Orange Rockerverb 100 MkIII, 
Amplifier 
2. Purple box, load box, set to 16 ohm 
to absorb half the power of the signal from 
the amplifier 
3. Speaker cabinet, 1x12 speaker 16 
ohm load plugged into the amp output in 
parallel with the load box 
4. Amplifier microphone sent to 
rackmount preamp 
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Pre-amplifier pedal settings 
1. Chorus effect used in Jazz setup for wider sound and 
gentle modulation 
2. hard-clipping overdrive used in Blues setup with gain set to 
provide slight breakup before the amplifier 
3. ‘Tubescreamer’ type overdrive used in Rock setup to 
tighten the low and high end as well as amplify the incoming 
signal as much as possible 
 
 

 
On left: 
Figure 2.3: Stereo polychorus pedal, used before amplifier in 
Jazz track to provide width and warmth 
Figure 2.4: EHX GLOVE overdrive, used before amplifier in 
Blues track for standard hard-clipping 'blues style' overdrive to 
add grit to a clean. 
Figure 2.5: Maxon ST9 Pro+ overdrive, used before amplifier in 
Rock track to tighten the sound and to add power to push the 
amplifier preamp section into maximum distortion 
 

 
 

 
 
 
On left: Figure 2.6: 'Dirty' channel pre-amp settings used for 
Rock track. Volume (first knob) on high to saturate the amplifier 
power stage. Pre-amp gain (fifth knob) set to breakup  
 
 

 
Figure 2.7: 'Clean' channel pre-amp settings used for Blues and Jazz 
tracks. 
Volume on high to saturate power stage 
 
 
 
 

 
     Figure 2.8: Power stage settings for all tracks 
Reverberations off. Attenuator set to high to lower overall loudness while 

recording 
 

Figure 2.4 

Figure 2.3 

Figure 2.5 
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7.3 Musical categorization of collected inputs and outputs 

 Three amplifier settings and their corresponding dry guitar inputs were selected. Two 

input training data tracks were used. The first used only electric guitars that featured 'single-coil' 

pickups. Two guitars were used with single coil pickups in the bridge as well as the neck position 

with a variety of sounds. The training input file for this category was 233 seconds long. The 

second input training track used only electronically active double-coil pickups in the bridge 

position. These pickups utilized ceramic magnet cores for an aggressive attack and loud 

presence. The second input training track used guitars with a variety of lowered strings and drop 

tunings. These guitar configurations are more commonly used in so-called hard genres such as 

rock and metal. The training input file for this category was 239 seconds long. 

 The three amplifier configurations were chosen based on typical settings for a particular 

genre of music. The three genres were blues, jazz, and rock. Blues used the clean channel of the 

amplifier which did not utilize any preamplifier distortion. The blues model used a hard-clipping 

overdrive pedal connected to the input of the amplifier after the guitar for a soft distortion. This 

configuration is often used in blues as it offers some 'grit' in terms of distortion, but the grit is 

softened by the warmth of the sound provided by the vacuum tube amplification of the amplifier. 

The goal of a blues style tone is to be smooth and full but to have some harmonics added to the 

guitar so that it can stand out as a lead tone. The blues model used the single coil input data. 

 The second model was designed for jazz. This model used the single coil training input as 

well as the  
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Guitars used for Jazz and Blues models 
Figure 3.1: Guitars used to record training and testing tracks for Jazz and Blues models. Only 

'single-coil' pickup style was used. The pickups on all three guitars are different models. 

Training Play samples and Testing 

  

 
Figure 3.2: Guitars used to record training and testing tracks for Rock model. All guitars feature 

'Fishman Fluence Modern' Active pickups with ceramic cores for high output from guitar. 
 

Training Play Samples and testing 
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7.4 Training and refinement 

 The models were trained on high performance computing systems provided by the 

University. Most models took between two to four hours to train using one graphics processing 

unit. For each successive model, a track was developed using a guitar which was similar in 

specifications compared to the guitars used for the relative training data. For the jazz and blues 

models, a guitar with a single coil neck pickup was used which featured a different kind of 

electronics configuration than the training guitars. For the rock model, the testing used an 8-

string guitar which had an identical bridge pickup model as the training guitars but with different 

body construction and different string tuning. The model outputs were played back in a studio 

monitor setting for continuous refinement. Top performance required listening analysis of many 

different model and input settings. 

7.5 Development and preparation of training data 

1. Use of similar instruments 

 It was found necessary to limit the variety of input types in the input training data for best 

results. In practice this limitation makes sense as guitars designed for a certain style of play are 

typically paired with complimentary amplifier settings for the desired tone characteristics. The 

criteria of using similar instruments in the input training data was discovered as necessary after 

observance of poor performance when too many different types of guitars were used as input. 

The previous literature used a set of standardized testing that only featured two guitars. The 

inputs did not feature any type of playing techniques other than open strumming of single notes 

or chords at the same dynamic level. This led to predictable results for the outputs.  

For this experiment there were a much more varied group of guitars available as well as 

recording of different techniques such as palm mutes, pinch harmonics, string harmonics, and 
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pitch bending. The different types of guitars, and particularly the relative strength of the signal 

coming from the pick-up electronics provide very different input signals. All of these signals 

were compressed in dynamics and distorted in a similar way. This created a situation where 

many different input types led to underfitting of output as the model could not create the varying 

dynamics of the electronics as well as the amplifier at the same time. Limiting the input to 

similar guitars, particularly the output power of the pick-up electronics significantly improved 

performance. 

 

Figure 4: Input training data based on 8 different guitars and two outputs from different 

amplifier settings in the same recording signal chain. Compression of both weak and strong input 

signals to equivalent output creates a difficult pattern for the WaveNet architecture to model. 

2. Phase correction 

 It was also discovered that the convolutional recurrent neural network model benefited 

substantially in audio quality when the output training data was phase corrected to the input. 

Phase correction means manually examining the digital data of two corresponding tracks and 

adjusting the phase so that the phase of the two signals is in alignment. In practice this meant 

moving the output wave back in time relative to the input. The action of the complex 

components on the output signal meant the output came in at a fractionally different time. Even a 
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very small phase difference could mean the output was off by 400 or more samples from the 

input. 

 For the purposes of a convolutional neural network, missing important information 

corresponding to the beginning of the instrument’s sound pulse becomes a problem because the 

receptive field is shortened, and the most sensitive area of the model's pattern learning cannot be 

utilized. The receptive field is shortened because the model learns that the only relevant pattern 

for the output is what is happening not at t-1 but at a sample farther back in time. 
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Figure 5: Input and two output models before phase correction. The time gap between the input 

and output (see signal peaks for reference) led to observations from audio monitoring of a 

glitching sound during fast playing. Phase correction before training a model on the inputs and 

outputs proved very beneficial to overall sound quality. 

 

7.6 Hyperparameter settings for test models 

White arrows represent delay 
between start of input impulse and 
output impulse. Moving the output 
back in time so that it is in phase with 
input substantially improves model 
performance. 
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 Three different hyperparameter settings were used for each of the three different models. 

The three hyperparameter configurations were labeled as minimum, mid, and maximum. Only 

the minimum model was able in any model to be played musically in real time on a digital audio 

workstation. The mid and maximum models took extraordinary times to load and were 

essentially used as post-processing steps done in the studio. The minimum model used 12 

convolutional layers with a dilation of 8. The mid model used 32 convolutional layers as well as 

a dilation of 8. The maximum model used a total of 64 convolutional layers with a dilation as 

well of 8. The dilation size was discovered to have an adverse effect on model quality for mid 

and maximum as it was extended beyond 8. Increasing the dilation size on the minimum model 

made it not perform in real-time. 
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Figure 6: View of guitar tracks inside session. Each track was mixed and mastered with identical 

bass and drum tracks to allow for comparison within a finished musical audio track. 
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CHAPTER 8: TESTING AND ANALYSIS 

8.1 Signal Analysis 

Signals were analyzed by looking at spectral representations of each amplifier and model 

output to compare. The regular spectrogram shows a general view of the harmonic characteristics 

of a sound. The melodic range and peak frequency spectrographs are designed to show the most 

prevalent harmonic patterns and correlate them to specific musical intervals from the 

fundamental frequency of the note being played. The output analysis was from testing input from 

playing a guitar which was not a part of the testing data. The most obvious patterns to show up 

by the spectrogram analysis were the lack of definition in high frequency harmonics in all 

models, not capturing the 'ripple' effect of distorting vacuum tubes in high gain models,  as well 

as a less dynamic response to playing. 

 

 

 'Blues' Model: Clean Channel, hard-clipped Overdrive, single-coil pickup 
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Table 1: 
Dry 
Guitar 

 
dry_blues.wav 
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Table 2: 
Blues 
Model 
Amplifier 

 
soundtest_blues_amp.wav 
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Table 3: 
Blues 
Min 
Model, 
12 layers 

 
soundtest_blues_min_model.wav 
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Table 4: 
Blues 
Mid 
Model, 
32 layers 

 
soundtest_blues_mid_model.wav 
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Table 5: 
Blues 
Max 
Model, 
64 layers 

 
soundtest_blues_max_model.wav 

 

 

 'Jazz' Model: Clean Channel, chorus pedal, single-coil pickup 
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Table 6: 
Jazz 
Model 
Amplifier 

 
soundtest_jazz_amp.wav 
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Table 7: 
Jazz Min 
Model, 
12 layers 

 
soundtest_jazz_min_model.wav 

Table 8: 
Jazz Mid 
Model, 
32 layers 
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soundtest_jazz_mid_model.wav 

Table 9: 
Jazz Max 
Model, 
64 layers 

 
soundtest_jazz_max_model.wav 

 

 'Rock'' Model: Clean Channel, hard-clipped Overdrive, single-coil pickup 
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Table 10: 
Rock 
Model 
Amplifier 

 
soundtest_rock_amp.wav 
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Table 11: 
Rock Min 
Model, 
12 layers 

 
soundtest_rock_min_model.wav 
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Table 12: 
Rock Mid 
Model, 
32 layers 

 
soundtest_rock_mid_model.wav 

 

Long-term frequency analysis was also plotted to look at the overall characteristics of 

spectra as they appear in the guitar track outputs. Ideally a model without errors would have an 

identical long-term frequency plot as that of the control source. The models could not correctly 

learn the low-frequency characteristics of the amplifier. In practice these frequencies which are 

lower than the fundamental frequency of the lowest playable note on a typical electric guitar are 

cut out of any guitar track in a digital recording. This pattern, however, is indicative of a 

problematic long-term memory in the model of lower frequencies. Analysis of these plots shows 

that more errors happen as we go higher in harmonic frequencies for all models. Errors also 

dramatically increase in the presence of more powerful harmonics in the higher range 
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frequencies. The long-term frequency plots show that the amplifier sound typically does not 

achieve significant power levels of frequencies above 9 kHz. Also the correlation of dynamics 

are not consistent across different models hyperparameter settings.  

 

Blues Amplifier 

 

Blues Minimum Model 
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Jazz Amplifier 

 

Jazz Maximum Model 
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Rock Amplifier 

 

Rock Mid Model 

 

Figure 7: Long-term spectral analysis plots of guitar amps and a corresponding model. 

Correspondingly more errors happen at increasing harmonic frequencies or with more powerful 

harmonics at higher frequencies. The model is also unable to learn low frequency patterns. The 

model does learn a mid-range frequency harmonic pattern somewhat similar to the characteristics 

of the amplifier. 
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8.2 Audio engineering based observation 

 Signals were also analyzed based on the quality of testing output on each model through 

the use of audio monitoring. For audio monitoring, a pair of high quality speakers were placed 

within the hearing field of each ear, 5 feet away. Musicians and audio engineers are trained to 

differentiate subtle differences in timbre from the sound of audio coming from monitors. 

Hundreds of sample models were trained with different settings and hyperparameters to find a 

suitable set of models for listening tests. The process of the audio engineering based listening 

analysis led to the conclusion of poor quality from input data that was too varied, as well as the 

need to phase correct. Audio evaluation also confirmed that high levels of distortion could not be 

modeled with satisfying results for any hyperparameter training or other optimization. 

8.3 Subjective Listener Tests 

On October 15th, 2021 I presented to a group of music students at University of Missouri 

by playing music samples with guitar sounds from both the amplifiers and models. They sampled 

the mixed sessions as well as isolated guitar tracks. The music students were chosen as 

professional listeners who are familiar with listening to subtleties in a musical timbre. The 

students were offered to take an online ranking test using the WebMUSHRA ranking system. [7] 

Three students completed the online ranking, and the results are shown. Generally, the models 

for the Rock track were rated very poor. However, some models, particularly from the Jazz 

session, suited the musical preferences of some listeners as better sounding than the original 

amplifier based sound, especially within a mix. The scores representing a general ‘quality’ 

criteria were highly dependent on the particular tastes of the listener.  
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Table 13: Online Sound Quality Scoring of Experimental Output for 'Student A' 

 

Table 14: Online Sound Quality Scoring of Experimental Output for 'Student B'' 
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Table 15: Online Sound Quality Scoring of Experimental Output for 'Student C' 
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CHAPTER 9: CONCLUSIONS 

9.1 Differences from previous experiments 

 This experiment introduced changes to the previous experiments discussed in literature 

whose effects on performance suggests the WaveNet model has limited applications for 

replacing real amplifiers. The previous experiment testing PedalNet was in fact very limited in 

its scope. The previous literature experiment used input data that was very rigid in its expression 

of dynamics and playing technique. It also did not use the amount of distortion characteristic in 

modern guitar playing tones. The models in the previous literature were tested on components of 

an overall signal chain whose distortion characteristics are much simpler than a complete signal 

chain tested in this experiment. 

 

Figure 8: Loaded sound samples used in previous experiments alongside sample amplifier output 

shows general uniformity of previous experiment training data 
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Ibanez Ts9 
Tubescreamer 
Overdrive 
model 

Maxon St9Pro+ 
Tubescreamer 
Overdrive pedal 

Boss DS1 
Distortion 
pedal 

Dry signal 
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Figure 9: Seven figures show a single power chord played on a guitar. The first is the dry signal. 

The second four show the effects of solid-state effects 'pedals' designed as signal treatments 

DS1 Distortion 
Model 

Complete Signal chain 
for Rock sound 

Rock mid model 
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before the signal enters the amplifier. These effects were modeled with success in previous 

literature. The models are freely available online. [9] The last two figures show outputs of a 

complete electric guitar amplifier signal chain with full harmonic distortion and a corresponding 

model created for this experiment. No WaveNet type model was successful replicating the dense 

harmonics even at the highest hyperparameter settings of a complete signal chain. 
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9.2 Sound qualities captured by model 

1. Dynamics 

 The model learned the relationship between the dynamics of the input and the output 

training data very well. This meant that the training data had to be normalized in order to 

facilitate an equivalent relationship between the input and output dynamics. If the model was 

trained on data where the dynamics between the input and output were distinctly different in 

average amplitude, the model would follow suit in making a signal louder or quieter. 

2. Guitar playing technique 

 The model was found to have been able to replicate almost any guitar playing technique 

even without the technique specifically available in the training data. This includes pinch 

harmonics, palm muting, and pitch bends. 

3. Added warmth, roundness of amplifier gain 

 The model was successful in adding the designed and desired effects of a signal chain 

through the amplifier circuit that did not involve distortion. Vacuum tubes are known to add a 

warmth and round-ness to a dry sound and the effects were very apparent even in the minimum 

models. 

9.3 Major limitations of model 

1. Too much input variation leads to underfitting 

 As mentioned earlier, too much input variation leads to underfitting the output of the 

model. This was not reported in previous literature but discovered through the experiment. This 

is important because the design of electric guitars may vary substantially to include different 

woods, construction types, tunings, and electronics. 
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The most important element in terms of input variation is the output power of the pick-up 

coils when taking input and going to the amplifier. This is because the output power of the pick-

ups can be detected by plugging a guitar directly into a recording interface. However the 

amplifier will amplify this signal which is then recorded and compressed into a more uniform 

output. It is difficult for the model to learn the fundamental harmonics of an amplifier to the 

input when the dynamics are so varied in input. 

2. Inaccurate rendering of pronounced distortion 

 The amplifier and input settings with the highest amount of distortion were uniformly 

judged as poor quality. The distortion of the models came out sounding like static in the high 

frequencies. Transient attacks were too short. The transients in the middle frequencies of a 

distorted sound also did not retain the specific character of the amplifier model for which it is 

marketed as possessing. This difficulty in learning high amounts of distortion was not reported in 

the previous literature. However this experiment utilized a signal chain which introduced a much 

greater presence and complexity of distortion than any signal transformation previously modeled. 

In particular, the amplifier used was designed specifically for high-gain distortion. This 

experiment also increased output in the power section of the amplifier, another distortion 

inducing amplifier feature not previously discussed. Also the recording chain used a studio 

compressor unit known to introduce desirable harmonics in its compression operation. The 

recording chain of output signals used in previous literature did not use the complete studio 

recording setup. 

3. Increasing inaccuracy in correspondingly higher harmonics 

 Similar to the problematic rendering of more pronounced distortion harmonics, the long-

term spectral plots in the model outputs show that there are more errors in higher frequencies 
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than in the fundamental frequencies of the guitar signal. This may be caused by higher 

frequencies generally having less time steps with which to be predicted. 

9.4 Suggested Model 

 Based on experimental outcome, a model is suggested for future experimentation. These 

suggestions mostly involve a more complex model with a greater number of parameters for 

capturing non-linear relationships in distortion. This would most likely require more training 

data than the approximately 3-4 minutes of training data used for all of the PedalNet models. 

1. Finer sample rate to capture higher harmonics 

 The first suggestion for a future model is to train a model on an audio signal which has 

more data per unit of time. My suggestion would be to train a model at 96 kHz which is a rate 

that is available on affordable home studio digital interface equipment. The main purpose of this 

is to allow the model more ability to learn more detailed relationships between many specific 

harmonic frequencies on a model. 

 This hypothesis is counterindicated by the low energy levels of high frequencies above 

7k put out by the guitar amplifier in my model. If there is not as much high frequency energy 

anyway then the existing sampling rate may capture all relevant frequencies with adequate 

resolution. However I believe because of the poor results in the more distorted sound settings 

that a higher sampling rate for training data would allow for more accurate modeling of non-

linear relationships between the harmonics of the amplifier that carry musical value to the tone. 

2. Fully or Partially Connected Layers with no dilations values to capture 

transients and complex non-linearities 

 The second and most important suggestion for a future model specific to electric guitar 

amplification is to have three or more fully or partially connected layers with no dilations 
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between time steps looking back in the neural network model. I believe this will improve 

performance for two reasons. First, because the main part of the tone we are interested in is the 

transient signals happening rapidly at the beginning of the sound. Second, because the elements 

of a guitar string being plucked can be decomposed into four very short intervals which the 

model could learn. Both of these observations are meant to argue that a WaveNet model is not 

exactly suitable for the case of an electric guitar. WaveNet was designed with a human voice in 

mind. Human voices articulate speech phonetic units much slower than an electric guitar 

generates a musical tone. 

 The elements of a guitar tone can be divided into four parts according to physical 

modeling of instruments. The four parts are attack, decay, sustain, and release. The attack, decay, 

and release patterns of an electric guitar happen very rapidly. Sustain is a portion of the sound 

envelope that is modeled as repetitive and unchanging. So a long sustain could arguably be 

decomposed into a recurring pattern of the same tone happening over time. Since each of these 

parts of the sound envelope are essentially different elements and distinguishable, a sophisticated 

enough machine learning model could emulate each of the envelope parts without having to 

interleave between another. This means the receptive field for a successful model can be shorter 

than that provided by WaveNet. 

 Based on my hypothesis that a shorter receptive field is needed to capture the essential 

elements of a guitar timbre versus a voice, it might make sense to attempt a model involving 

fully connected layers or a regular convolutional model instead of the dilated convolutional 

model of WaveNet. An alternative to WaveNet would similarly be structured as a many-to-many 

recurrent neural network. Instead of the dilated convolutional structure of WaveNet to capture 

long-term dependencies, the alternative solution would have two or more fully connected or 
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convolutional layers looking back at previous time steps to capture long-term dependencies. 

Fully connected layers are more computationally intensive to operate, but the connectedness 

between layers could more easily capture subtle harmonics that discerning musical tastes might 

notice. Specialized hardware could also be designed to execute the model in real time. 

 Some recent work suggests fully connected layers are actually counterproductive to more 

sparse architectures for certain tasks. [8] The benefits of sparseness can be accomplished with 

regular convolutions or other type of less sparse connectivity than full connectedness between 

nodes. 

 This hypothesis takes into consideration that the models tested in this experiment failed 

to create the relationship in low frequencies below the fundamental frequency of the guitar for all 

amp settings. Multiple complete layers in a recurrent model would be able to retain more 

information on low frequencies than the dilated model. 

3. Time forward model dependencies 

 Because of the nature of electron movement in overdriven electronic components used to 

generate musical distortion, time forward dependencies in a model would help capture some of 

the characteristics of this distortion. In op-amps, transistors, and vacuum tubes the distortion 

characteristics are created when the component is overloaded with electrons to the point that the 

flow of electrons slows or in some cases starts pushing back against the current going through 

the component. My hypothesis is that this behavior could be captured with time forward model 

dependencies. For a model, this would mean that at time step t+n of the input we render some 

time step t where n is the number of steps forward we wish to have. This feature could possibly 

be combined with fully connected layers to capture nuanced musical nonlinearities that may be 

overlooked by models more concerned with mass performance or simplicity. 
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4. Introduce loudness metrics into model parameters at each time step 

Another hypothesis for increasing model quality is to condition each time step on a 

parameter or multiple parameters measuring loudness in a particular window. Loudness, K-

weighted, relative to full scale (LKFS) is a measurement which takes into consideration the 

psychoacoustic measure of perceived loudness. This measure uses what is called an equal-loudness 

contour which represents the perceived loudness of varying frequencies at equivalent decibels. 

This should allow the model to train against a specific psychoacoustic property. 
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