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ABSTRACT 

Nutrient uptake in corn (Zea mays L.) is influenced by many different factors which 

include properties of soil health. The push for increasing soil health has raised the 

question of how soil health and fertility measurements could be combined to improve 

nutrient management decisions. Attention to nutrient management decisions is critical for 

high-yielding corn production. While soil sampling for fertility testing is the generally 

accepted standard for making these decisions, this alone may poorly represent plant 

nutrient availability. Another tool used for managing plant nutrient health is tissue 

sampling and analysis. This tool is routinely used for some crops (e.g., especially 

specialty crops) for diagnosing plant nutrient needs and direct fertilizer decisions. End of 

season yield response to fertilizer may be improved by using both of these two diagnostic 

tools. Research conducted in 2019 and 2020 on 91 producer corn fields in Missouri 

encompassed many soil types, management practices, and landscape positions, resulting 

in 433 different experimental plots. Accuracy when predicting a corn tissue response to 

added fertilizer using established critical values were only 61%, 53%, and 55% for K, P, 

and S respectively. Adding soil health metrics to fertility results using random forest 

models improved prediction of a positive tissue response to K fertilization, but did not 

improve predictions for P or S. along with soil-test K, two soil health measurements 

emerged as important, soil respiration and beta-glucosidase. Multiple linear regression 

results when predicting yield response as a function of soil test and tissue test K produced 

mixed results. Yield response were best predicted using soil-test K, tissue-test K (p < 

0.1). Phosphorus soil-test or tissue concentration alone or in any combination did not 

explain yield response. Sulfur yield responses were best explained with just tissue S 
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concentration alone as the only significant predictor variable. This research suggests that 

current tools for diagnosing K, P, and S nutrient needs in corn and making fertilizer 

decisions need to be improved, but current soil health measurements lack ability to do so.  
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INTRODUCTION  

Recent research has suggested a need for an improvement in crop fertilizer 

recommendations (Heckman et al., 2006; Fulford and Culman, 2018). The foundational 

work on these recommendations began in the 1920’s, with most work occurring in the 

1950’s and 60’s, and not much work happening after the 1980’s (Voss, 1998). That said, 

many new ideas regarding soil health have arisen over recent decades and are now at the 

forefront of the agriculture industry. Soil health includes the physical, chemical, and 

biological properties of the soil (Karlen et al., 1997). The general idea espoused is that 

increasing soil health will increase soil nutrient availability, and therefore decrease 

overall fertilizer need.   

Current knowledge on how soil health affects nutrient management decisions is 

lacking. Farmer acceptance of soil health and adoption of soil health practices could 

increase if direct evidence were available, showing how improved soil health enhances 

nutrient uptake and therefore reduces fertilizer inputs. If links between soil health and 

improved fertilizer recommendations could be quantified to potentially improve profit, 

then farmers would be more amenable to adopting soil health practices, and adoption 

would be more automatic. Research supports claims that farmers who advance soil health 

will improve crop yields, nutrient cycling, and reduce nutrient and soil losses (Snapp et 

al., 2005; González-Chávez et al., 2010; Kuhn et al., 2016; Haney et al., 2018).  

Crop nutrient uptake as measured through tissue sampling is one way of evaluating 

crop nutrient health and potential yield production. It is a diagnostic used to evaluate the 

performance of soil and crop management practices (Mallarino, 1996). Nutrient uptake is 

influenced by many different factors throughout a plant’s life cycle. Genetics of the plant, 



 

2  

  

amount of soil-available nutrients, soil composition, and weather are all examples of such 

factors. Understanding how tissue tests along with soil fertility tests can be effectively 

used to identify situations where yield may be limited by nutrients is needed, and 

essential for improving fertilizer recommendations.  

The objective of this study is to investigate early-season corn tissue nutrient 

content as mediated by P, K and S fertility and biological soil health metrics. A second 

objective of this study is to measure corn grain yield response relative to early-season 

corn tissue nutrient content and/or soil fertility test metrics. These two objectives are 

addressed Chapters 2 and 3 of this thesis, respectively.  
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1. LITERATURE REVIEW  

INTRODUCTION  

In recent decades, farmers have been encouraged by a variety of organizations to 

adopt management practices that may improve soil health. In its simplest terms, soil 

health is “the capacity of a soil to function” (Karlen et al., 1997). A well-functioning soil 

will sustain microbial and plant life, cycle nutrients (e.g., carbon sequestration, nitrogen 

fixation), suppress disease and pests, and have high water use efficiency (Nielsen et al.,  

2015). Well-functioning soils typically are defined through “suitable” or “ideal” ranges of 

certain physical, chemical, and biological properties (Karlen et al., 1997);  these 

properties can be compiled into quantified soil health indices, such as the Soil  

Management Assessment Framework (SMAF) or the Comprehensive Assessment of Soil 

Health (CASH) framework (Andrews et al., 2004; Moebius-Clune et al., 2016). Soil and 

crop management practices that enhance soil health in general include those that reduce 

soil disturbance, maintain soil cover, and improve biodiversity (Nunes et al., 2018; 

Duncan et al., 2019). Research supports claims that farmers who advance soil health will 

improve crop yields, nutrient cycling, and reduce nutrient and soil losses (Snapp et al., 

2005; González-Chávez et al., 2010; Kuhn et al., 2016; Haney et al., 2018). For society in 

general, improved soil health is expected to improve water and air quality and conserve 

water, therefore saving renewable resources (USDA-NRCS, 2019).   

Management practices used to improve planting conditions, germination 

uniformity, and weed control [e.g., tillage, short or no crop rotations (e.g., monoculture), 

and no cover crops], are implemented at the expense of soil health (Martínez et al., 2016;  
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Kumar et al., 2017; Nunes et al., 2018). They are popular because they are considered the most 

cost-effective practices. However, research has shown that farmers can still maintain their 

yields and minimize weed pressure by adopting soil health promoting practices such as no-till, 

cover crops, or adding wheat to a rotation (Fuentes et al., 2009; Pittelkow et al., 2015). For 

example, farmers slowly adapted to no-tillage, a soil health promoting practice, due to an 

initial yield drag, but that yield loss disappeared with time because of improvement in both 

management skills and soil properties (Karlen et al., 2013; Bavougian et al., 2019). However, 

many farmers are unwilling to accept the shortterm risk of reduced yields—even if 

sustainability increases.  

Current knowledge on how soil health affects nutrient management decisions is 

lacking. Farmer acceptance of soil health and adoption of soil health practices could 

increase if direct evidence were available, showing how improved soil health enhances 

nutrient uptake and therefore reduces fertilizer inputs. If links between soil health and 

improved fertilizer recommendations could be quantified to potentially improve profit, 

then farmers would be more amenable to adopting soil health practices, and adoption 

would be more automatic. Research is needed to show producers and the general public 

that increasing soil health can be both cost effective and economically beneficial.   

Although it is assumed that improved soil health contributes to improved plant 

health, little research has been conducted to demonstrate this connection. One way plant 

nutrient health has been evaluated historically is through plant biomass or tissue nutrient 

testing. Often plant nutrient concentration or content can indicate plant nutrient health 

before visual deficiencies are expressed (Mallarino, 1996). The concentration or content 

of plant nutrients at different developmental stages have been used as indices of 
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sufficiency (Macy, 1936; Mallarino, 1996; Stammer and Mallarino, 2018). I propose 

tissue sampling could be used as a diagnostic tool to better understand soil health’s role in 

plant health and when fertilizer nutrients are needed to optimize yields. The purpose of 

this research is to explore how early-season corn tissue nutrient content is influenced by 

soil fertility and soil health metrics.   

ROLES AND UPTAKE OF NUTRIENTS IN PLANTS  

Role and Uptake of Potassium in Plants  

  Potassium is an important nutrient in plants, as it makes up anywhere from 2-10% 

of total dry plant biomass (Walker et al., 1996; Ragel et al., 2019). Potassium is critical in 

controlling ion homeostasis, protein metabolism, enzyme activity, various metabolic 

processes, and osmoregulation (Walker et al., 1996; Shin, 2014; Ragel et al., 2019). 

Potassium is absorbed from the soil solution by root epidermal and cortical cells 

(Thompson and Zwieniecki, 2005). There are many transporters present in root cells that 

allow K to get inside the roots. Examples of transporters/channels in roots include 

Arabidopsis K+ Transporter 1 (AKT1) which is voltage-gated and K selective (Lebaudy 

et al., 2007), KT/HAK/KUP carrier proteins associated with high- or low-affinity K 

absorption (Ragel et al., 2019), and high-affinity K transporters (HKT) which can act as 

Na and K symporters depending on the plant (Shin, 2014).   

Plants store K in vacuoles, where it performs osmotic functions to maintain turgor 

pressure and drive cell expansion (Ragel et al., 2019). Potassium is used to control 

stomatal opening and closing, which influences carbon dioxide flux rates (Lebaudy et al., 

2007). Potassium travels from the roots to the shoots via xylem where its driving force is 
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negative water pressure created by evaporation from the leaves and from the shoots back 

down to the roots via phloem (Thompson and Zwieniecki, 2005; Ragel et al., 2019).  

Many different complex signaling and sensing mechanisms are involved in the transport 

of K (Shin, 2014).   

Role and Uptake of Phosphorus in Plants  

  Phosphorus is an important nutrient often limiting crop growth. Phosphorus in 

organic matter and in mineral forms are generally stable, immobile in soil, and unusable 

by plants. As such, it is also resistant to leaching through the soil profile. Plants absorb 

solubilized P from the soil that primarily occurs as inorganic orthophosphate ions, but 

some soluble organic P is also available to plants (Holford, 1997). The amount of 

plantavailable P at any one time is very low, and that concentration drives the change of 

insoluble P (both inorganic and organic) to soluble P. Therefore plants drive the change 

of phases for P, but there must be microbes present in order for it to change forms 

(Richardson and Simpson, 2011).  

  Phosphorus enters the plant through root hairs, root tips, and the outermost layer 

of root cells. Uptake can be facilitated through association with mycorrhizal fungi that 

grow with the roots of many crops. The orthophosphate form of P mostly taken up by  

plants is H2PO4
-, but can also be taken up as HPO4

2-. Once P enters the plant, it is stored 

in the root or transported to the upper portions of the plant. Phosphorus is incorporated 

into nucleic acids and ATP in the plant. The conversion of ATP to ADP  

(phosphorylation) is important as the main source of energy for many reactions taking 

place in plants (IPNI (International Plant Nutrition Institute), 1999). The biggest use of P 

in plants is in photosynthesis where ATP is the energy source driving photosynthesis.  
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  Plants need their tissues to contain 0.2% P of total dry weight in order to grow to 

their full potential (McGrath et al., 2014). Phosphorus is essential in stimulating root 

development and overall plant growth. Phosphorus is also important in transporting 

nutrients throughout the plant and ensuring that all parts get the necessary amount of 

nutrients (Vance et al., 2003). Essential storage in seeds requires adequate P in the form 

of phytin, and P is required for the timing of reproductive parts of plants as well 

(McGrath et al., 2014).  

Role and Uptake of Sulfur in Plants  

  Sulfur also occurs in both organic and inorganic forms in the soil. Cycling from 

one form to another occurs via mobilization, mineralization, immobilization, oxidation, 

and reduction (Scherer, 2009). Organic S is not plant available and is immobile. The 

amount of organic S is correlated to total N and total C in the soil. Inorganic sulfur is 

mobile, and sulfate is the most important form for plant uptake. Sulfate generally 

accounts for only 5% of the total S in the soil, and is present in the top layers of soil due 

to organic matter mineralization and S containing fertilizers (Scherer, 2009). There are 

many S soil tests available, but these do not explain the amount of S that will be 

mineralized during the growing season or the amount of sulfate lost by leaching. A better 

understanding of how S levels fluctuate in soils is needed to explain availability to plants 

throughout the growing season.   

  Sulfur plays a role in many different steps of plant metabolism, making it a 

crucial element for optimum plant growth. Sulfur is the major component of two main 

amino acids, cysteine and methionine, which are building blocks for proteins in the plant 

(Droux, 2004; Davidian and Kopriva, 2010). There are many other uses for sulfur in 
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plants, such as their presence in co-factors, glutathione, and vitamins essential for plant 

development (Droux, 2004). Sulfur compounds are also involved in responses to biotic 

and abiotic stresses, such as defenses to herbivores and other pathogens (Davidian and 

Kopriva, 2010).  

SOIL HEALTH COMPONENTS  

Soil Health Background  

Soil health includes the physical, chemical, and biological properties of the soil  

(Karlen et al., 1997). One method to improve these soil properties is conservation tillage. 

This practice involves cultivating the soil less often, which leads to lower fuel 

consumption and less fertilizer loss from runoff, increasing farmers’ potential 

profitability (Kuhn et al., 2016). Improving soil health using conservation tillage leads to 

better water infiltration and increased ecosystem services, but still uses tillage minimally 

instead of going to full no-tillage (Stika, 2013; Haney et al., 2018). Conservation tillage 

increases moisture use efficiency while decreasing flooding risks (Stika, 2013). Increased 

soil health provides a diverse community of organisms that perform a number of 

processes to improve crop production (Lopes et al., 2013; Haney et al., 2018).   

Introducing no-tillage onto the farm reduces the amount of topsoil lost from 

erosion. No-tilled soils have better water infiltration and storage than conventional tilled 

soils, which leads to better nutrient uptake (Hargrove, 1985). No-tilled soils typically 

have a stratification of nutrients throughout the horizons, but this does not seem to limit 

the crop yield (Karlen et al., 2013; Veum et al., 2015; Martínez et al., 2016). Intense 

tillage of the soil changes the physical properties, such as decreasing the aggregate 

stability and increasing compaction (González-Chávez et al., 2010; Martínez et al., 2016; 
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Kinoshita et al., 2017). The organic matter content decreases due to greater erosion and 

faster decomposition of plant material by increasing oxygen concentration in the soil 

(Nunes et al., 2018). Greater carbon dioxide emissions are also seen in tilled soils 

compared to no-tilled soils (Kuhn et al., 2016). From a soil health perspective, no-tillage 

offers many benefits over conventional tillage.  

Microorganisms are crucial in cycling major plant nutrients in the soil (Haney et 

al., 2018). Yao et al. (2000) showed that land use history has a significant effect on the 

microbial community and biomass incorporated in the soil. Soil health enthusiasts put 

emphasis on microbial life in the soil due to the inherent benefits of their activity (Haney 

et al., 2018). Scientists attempt to put a value on the impact of microbes, but have yet to 

quantify their importance. The lab analysis measuring enzyme activity (i.e., 

betaglucosidase, phosphatase and sulfatase) identifies microbial levels directly affecting 

crop growth (Kremer and Li, 2003; Lopes et al., 2013; Kumar et al., 2017). These 

enzymes are involved in the mineralization of C, P, and S respectively. Therefore, 

discovering the factors that affect microbial activity can potentially contribute to better 

decision-making for farmers. Microbial levels may be altered by diversifying the crop 

rotation and adding cover crops (Nunes et al., 2018).  

Implementing cover crops has been shown to increase long-term soil health. Pest 

management, nutrient cycling, and erosion control are internal benefits to the farm. 

Outside the farm boundaries, cover crops decrease nitrate leaching and nutrient loss in 

surface runoff (Snapp et al., 2005). However, nutrients can be lost in ways other than just 

in surface runoff, such as leaching and volatilization. Decreasing overall nutrient loss 

could lead to better yield maintenance and better water quality. Cover crops can improve 
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water quality by decreasing nutrient loss as well as pesticide loss (Dabney et al., 2001; 

Roesch-Mcnally et al., 2018). Improved pest management comes in the form of weed 

management from the cover crops due to competition or phytotoxic compounds that they 

can release. This leads to a reduction of pesticide necessary to control weeds in fields 

(Dabney et al., 2001). Species, seeding rate, planting timing, and termination timing are 

all crucial to controlling weeds with cover crops (Marcillo and Miguez, 2017).  

Type of cover crop determines the benefits that are available to the producer. 

Legumes can fix N, so choosing to incorporate a legume into the cover crop mix can be 

beneficial in replenishing N (Dabney et al., 2001). Legumes have been shown to have the 

greatest increase in yield response when compared with grasses and a mixture of grasses 

and legumes (Marcillo and Miguez, 2017). Other cover crops such as cereal crops (e.g., 

rye) can scavenge more residual soil nitrate due to faster root growth, but do not lead to a 

yield increase in corn (Dabney et al., 2001; Marcillo and Miguez, 2017).   

Cover crops have also been proven to help maintain yield, even at lower soil test 

fertility (Yost et al., 2016; Conway et al., 2018). Cover crops and their impact on 

longterm soil health properties have not been quantified and require research to determine 

how yield is influenced over a longer period. Nunes et al. (2018) and Smith et al. (2008) 

showed that cover crops can help increase yield because of the increase in crop diversity. 

This study also showed that in a monoculture cropping system, cover crop introduction 

increases many soil health values, regardless of the tillage practice. It was also found that 

no-tilled soils saw a greater increase in soil health values than tilled soils when cover 

crops were introduced, so implementing no-tillage and cover crops proved most 

beneficial to the farm and decreased erosion (Nunes et al., 2018).  
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Studies conducted in Missouri have linked biological soil tests with soil organic 

matter and land management practices. Veum et al. (2014) linked microbial function, 

traditional measures of soil quality, and soil organic matter composition across a range of 

different land management practices (i.e., tillage, fertilizer type, and crop type) on various 

Missouri soils. Soil quality was measured using the SMAF scoring system, where a lower 

“score” meant the soil quality was lower. Lower scores correspond with lower active C 

and lower enzyme activity. Significant differences in certain soil quality indicators (soil 

organic C, total N, and water stable aggregates) were shown when manure was applied 

compared to inorganic fertilizers. However, most of the indicators, besides 

dehydrogenase activity, were not significant between the wheat crop and the corn crop 

(Veum et al., 2014). In a separate but similar study, Veum et al. (2015) showed soil 

quality indicators were impacted by crop diversity and no-tillage, but differences were 

soil depth dependent. When compared to tilled cropping systems, soil health in no-till 

systems improved in the 0-5 cm depth, but was poorer in the 5-15 cm depth. Tillage 

improved the incorporation of organic matter and nutrients to deeper depths, which is 

why the soil health metrics from 5-15 cm were greater in tilled soils. However, Veum et 

al. (2015) stated using conservation practices such as no-till, cover crops, and diversified 

crop rotation leads to higher soil quality overall. Hargrove (1985) also stated that even 

with the stratification of nutrients, no-tilled soils produced greater grain yields. Missouri 

has a wide variety of soils across the state, so finding out how management practices can 

alter the health of the soil is key to finding out how to maintain a healthy farm.  

Soil Health Metrics  

Many different metrics have been proposed for assessing crop and soil  
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management practices on soil health. Examples include: acid phosphatase activity, 

arylsulfatase activity, active carbon, soil respiration, soil aggregate stability, and soil total 

protein (Andrews et al., 2004; Moebius-Clune et al., 2016). From a producer’s 

standpoint, the most important aspect of soil health is whether it improves crop yield 

performance. This perspective serves as the reasoning behind producers’ exploration of 

new crop and soil practices; their livelihood is a business, and they seek ways to optimize 

return on their investment. Yield is the most direct measure of crop performance. Indirect 

measures of crop performance may also show the impact of soil health. For example, 

claims have been made that soil health improves soil nutrient availability to crops (Kuhn 

et al., 2016; Haney et al., 2018). Few field studies have been conducted to establish this.  

Current nutrient management practices typically include grid or zone soil 

sampling and laboratory tests every few years to determine fertilizer recommendations 

(Melsted, 1967; Olson et al., 1987; Anderson-Cook et al., 1999). These soil fertility tests 

are chemical tests that have changed little over recent decades (Hoeft et al., 1973; 

Magdoff et al., 1984). These tests were calibrated to field plot trials to determine critical 

values on which to base recommendations (Magdoff et al., 1984; Shapiro et al., 2019). 

They were not designed to assess soil biological processes and activity. Thus, biological 

measures of soil health and soil fertility have long been thought of as separate 

assessments, but interactions undoubtedly occur between the chemical and physical soil 

fertility tests and biological tests. For example, soil microbial biomass can be correlated 

with soil organic matter and can be an important pool of plant-available nutrients 

(Pankhurst et al., 1995). Therefore, increasing the organic matter of the soil can lead to 

increased nutrient availability (Doran and Safley, 1997). The majority of soil health 
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knowledge focuses on how various practices in cropping systems can change soil 

properties, but lack quantification for actual management recommendations 

(GonzálezChávez et al., 2010; Nunes et al., 2018; Bavougian et al., 2019; Van Es and 

Karlen, 2019). Additional research is needed to determine how crop plants respond to 

fertilization under various levels of biological soil health measures.   

Soil Health Tests  

  There are many soil health tests used in order to obtain an overall idea of the 

health of any one soil. Determining which measurements best represent soil health status 

is crucial when trying to explain crop responses to changes in these metrics. Good tests 

for soil health include ones that are sensitive to management practices and represent 

agronomically and environmentally important processes (Moebius-Clune et al., 2016). 

Active carbon, total protein, soil respiration, and four enzymes were all found to fit these 

criteria.  

Active carbon is a measurement of the portion of soil organic matter that is readily 

available as food and energy for microbes in the soil. For this test, dark purple potassium 

permanganate is reduced [Mn(VII) to Mn(II)] as it reacts with and oxidizes soil organic 

matter, causing the solution to lose color. The amount of color change is directly 

proportional to the amount of active carbon in the soil sample. This can be measured 

using a spectrophotometer and values calculated based on known concentrations (Culman 

et al., 2012; Schindelbeck et al., 2016).  

Total protein is an indicator of the fraction of the soil organic matter pool that is 

present as protein-like substances. This represents the largest pool of organically bound N 

in the soil. Soil proteins are determined using a sodium citrate extraction under a high 
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temperature and pressure (autoclave). These results are then run against a set of standards 

to test how much protein is present. During microbial turnover, the proteins are broken 

down and can provide available N to plants (Schindelbeck et al., 2016).  

Soil respiration is a direct measure of the amount of microbial activity in the soil. 

This procedure includes rewetting 20g of 2mm sieved soil stored in an airtight jar and 

kept at room temperature for four days. The carbon dioxide that is released is captured in 

a small beaker of potassium hydroxide (the CO2 ‘trap’) and used as an indicator of 

metabolic activity. To quantify the amount of CO2 released, electrical conductivity 

readings of the CO2 trap are taken before wetting the soil and again after incubation. A 

higher amount of CO2 correlates to a highly populated microbial community, and 

therefore a “healthier” soil (Schindelbeck et al., 2016).   

  Three enzyme analyses used to measure soil health are arylsulfatase, 

acidphosphatase, and beta-glucosidase. Arylsulfatase hydrolyzes sulfate esters with an 

aromatic radical, resulting in a phenol being produced by splitting the O-S bond. 

Sulfatases mineralize organic soil sulfur into a plant available form of sulfur. This test 

involves a colorimetric estimation of p-nitrophenol released by arylsulfatase activity 

when soil is incubated with a buffered sulfate substrate solution at 37 degrees C for 1 

hour. The reaction is terminated with the addition of calcium chloride and sodium 

hydroxide (Tabatabai and Bremner, 1970). According to Maynard et al. (1985), sulfatase 

activity is feedback-inhibited by sulfate in soils. The phosphatase enzyme is responsible 

for the cycling of organic P to inorganic P in the soil. This test involves the colorimetric 

estimation of the p-nitrophenol released by phosphatase activity when soil is incubated 

with buffered phosphate substrate solution for one hour at 37 degrees C (Tabatabai and 
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Bremner, 1969; Acosta-Martínez and Ali Tabatabai, 2015). Beta-glucosidase is related to 

carbon cycling in the soil (Acosta-Martínez and Ali Tabatabai, 2015).  

Soil Health Assessments  

The Soil Management Assessment Framework (SMAF) and Cornell’s  

Comprehensive Assessment of Soil Health (CASH) both use a set of soil health tests they 

find to be most influential in determining soil health (Andrews et al., 2004; Moebius- 

Clune et al., 2016).   

The SMAF evaluation uses a series of decision rules to generate a list of 

suggested soil health indicators, choosing from over 80 indicators for each user’s specific 

needs (Andrews et al., 2004). To determine which tests to run, the user answers a variety 

of questions pertaining to the goals of the land (i.e. maximize productivity, waste 

recycling, or environmental protection). Each goal leads to a different set of tests that will 

be used. The SMAF evaluation further narrows the tests used according to the climate, 

crop type, rotation, tillage, and inherent soil properties (Andrews et al., 2004). After tests 

have been chosen, each value from the test must be transformed into new scores using 

nonlinear scoring curves. A scoring algorithm changes the value into a unitless score (0 to 

1) that represents the level of function within that system (Andrews et al., 2004). The last 

step of the SMAF is to form an index in order to form an overall soil quality value for 

each soil.  

 The CASH evaluation emphasizes biological, physical, and chemical 

measurements. To start, 42 potential soil health indicators are evaluated for sensitivity to 

changes in soil management practices, consistency and reproducibility, ease and cost of 

sampling, cost of analysis, and ease of interpretation for users (Moebius-Clune et al., 
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2016). The physical tests found to fit these standards are available water capacity, surface 

hardness, subsurface hardness, and aggregate stability. The important biological tests are 

organic matter, total protein, soil respiration, and active carbon. Chemical tests include 

pH and the main plant nutrients. Each measurement is assigned a scoring value between 0 

and 100 (Moebius-Clune et al., 2016). Most physical and biological tests have higher 

scores for higher measured values, while some have higher scores with lower measured 

values (hardness, root health rating). The texture of the soil can have an impact on 

measured values, so several indicators require a separate scoring function depending on 

the soil texture (Moebius-Clune et al., 2016). Different regions also require consideration 

when determining a higher or lower scoring function determined by CASH. Each test has 

a very low, low, medium, high, and very high value that is dependent on texture and the 

region where samples are taken.  

FACTORS AFFECTING NUTRIENT UPTAKE  

  Nutrient uptake is influenced by many different factors throughout a plant’s life 

cycle. Genetics of the plant, amount of soil-available nutrients, soil composition, and 

weather are all examples of such factors. Management factors can also influence nutrient 

uptake through different forms. For example, compaction can be caused when intensive 

tillage is used, decreasing overall root growth and therefore nutrient uptake (Miransari et 

al., 2009). Using the right rate, right timing, right amount, and right source of fertilizer is 

essential to maximizing nutrient uptake in corn plants (Johnston and Bruulsema, 2014).  

A field-scale study performed by Harmel and Haney (2013) showed that reducing 

fertilizer rates resulted in minimal yield loss and higher profitability. Traditional fertilizer 

rates tend to be too high to maximize profit, and in this study, only 2 site-years out of 35 
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maximized profitability to the farmer. Due to increases in application costs and the push 

for environmental improvement, more people are becoming aware of the fertilizer rate 

being applied (Harmel and Haney, 2013). Results of another study show that farmers 

must question the amount of fertilizer applied instead of just adhering to traditional 

recommendations as it may lower profits and contribute to water quality degradation 

(Phillips et al., 2009). The way fertilizer prescriptions are currently generated only 

focuses on maximizing yield, while profits and pollution need to be priorities as well. A 

lot of fertilizer is lost in runoff, which is a common problem in Missouri due to the 

shallow claypan.  

Central Missouri contains soils that see a rapid increase in clay concentration 

throughout the soil profile, known as claypan soils. Conway et al. (2018) showed that 

depth to claypan (DTC) influences the amount of fertilizer needed to provide sufficient 

nutrients (P and K) for the plant, also called buffering. A lower DTC leads to more 

fertilizer needed to provide enough P for optimal crop growth. However, K rates may be 

decreased where DTC is lower due to the K-supplying capacity of the clay. More erosion 

occurs when the ground is bare, leading to a shallower DTC on claypan soils. Decreasing 

erosion by implementing soil health practices is a focus for many producers today. Soil 

health practices are good at reducing sediment loss and P bound to that soil. However, the 

amount of dissolved P lost in runoff or leaching varies from farm to farm (Duncan et al., 

2019). Lowering the amount of runoff is a start, but keeping P in the soil profile is key to 

improving water quality and overall field fertility. Overall, learning how to improve the 

availability of P and K with less pollution from fertilization is the goal.   
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Sulfur uptake is coordinated with the uptake and assimilation of N and C, so a N 

limitation leads to a decrease in S uptake. Sulfate is taken up with demand-driven 

regulation, meaning sulfate uptake is driven by the lack of S in the plant, which leads to 

an increase in transporters (Davidian and Kopriva, 2010). Sulfate uptake is increased by 

introducing cadmium into the system (Nocito et al., 2006). Many other compounds 

influence the uptake of S by plants (Davidian and Kopriva, 2010).  

THE ROLE OF CORN TISSUE SAMPLING FOR ASSESSING CROP HEALTH  

Crop nutrient uptake as measured through tissue sampling is one way of 

evaluating crop nutrient health and potential yield production. It is a diagnostic used to 

evaluate the performance of soil and crop management practices (Mallarino, 1996). 

Similarly, crop nutrient uptake could be used to evaluate the influence of soil health on 

crops. However, tissue sampling for many grain crops is not widely used for nutrient 

management because of uncertainty in the test results and high costs. Tissue test nutrient 

concentrations vary due to plant growth stage, plant part sampled, growing conditions, 

and the hybrid/variety planted (Walker and Peck, 1972; Jones et al., 1990; Mallarino, 

1996). To combat these obstacles, sampling the corn early in the season has been shown 

to have better results across a variety of conditions (Walker and Peck, 1972; Mallarino, 

1996; Stammer and Mallarino, 2018). Therefore, tissue testing corn at V6-V8 should 

provide better results, along with keeping the timing between samples short relative to 

each other.   

The goal of tissue testing is to assess the nutrient status of the crop. However, 

Clover and Mallarino (2013) showed that K concentrations of corn at the V5-V6 growth 

stage have a poor capacity to assess K sufficiency and predict grain yield responses. Also, 
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responses to P fertilization may be apparent in early season tissue samples, but yield may 

not be affected. In a study by Heckman et al. (2006), anywhere between 17 and 43% of 

the sites that tested below the critical soil P test level showed a yield increase to P 

fertilizer, and 25 to 50% of the sites exhibited an increase in early season crop growth. 

Often, plants undergo luxury consumption, an increase in early season tissue P and K 

concentration, but it does not lead to a yield response. Therefore, using tissue tests as the 

only source of information for P and K fertilization is not adequate for maximum utility 

of the test.  

There have been numerous studies that show “critical” concentrations for P and K 

in tissue tests in corn. Mallarino (2018) tested the value of tissue testing in predicting 

grain yield. It was shown that the stage at which the corn was sampled mattered when 

looking to predict yield, as corn sampled at the V5-V6 stage showed no yield increase 

when the P concentration was ≥ 0.48% and corn sampled at the R1 stage resulted in no 

yield increase at P concentration ≥ 0.25% (Fig. 2). There was also a difference between K 

critical levels when sampling at the different growth stages. At the V5-V6 growth stage, 

no yield increase was seen at K concentration ≥ 2.5% and corn sampled at the R1 growth 

stage showed no yield increase at K concentration ≥ 1.4%.  

THESIS OBJECTIVE  

A better understanding of how soil health indicators influence crop tissue and 

yield is needed. The main objective of this investigation is to explore how different soil 

health measurements (i.e., chemical, physical, and biological) can be used as indicators of 

crop nutrient need. For this, tissue sampling will be used to assess crop response. Chapter  
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2 will address how soil health and soil fertility metrics can be used to help predict a tissue 

response to added fertilizer. Secondarily, an assessment of yield response will be examined by 

adding tissue sampling to soil-test fertility sampling. Chapter 3 will address how these two 

tests can be used together to predict a yield response to fertilizer. Outcomes of this work will 

help farmers understand the role of soil health in nutrient management decisions.   
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TABLES AND FIGURES – CHAPTER 1  

Figure 1.1. Topological models of the main ion transporters involved in  

K+ nutrition. (A) Voltage-gated K+ channels contain six transmembrane domains (S1–S6); 

S4 is the voltage-sensor characterized by the array of positively charged amino acids (+). 

The long C-terminal tail contains several conserved domains: C-linker, a cyclic nucleotide 

binding homologous domain (CNBHD), an ankyrin domain (ANK), and a final region rich 

in hydrophobic and acidic residues (KHA). (B) HKT transporters have a channel-like 

structure that contains four identical subunits (a–d), each comprising two transmembrane 

helices (M1 and M2) connected by the P-loop involved in ion selectivity. (C) KT/HAK/KUP 

transporters have 12 putative transmembrane domains (TMs). TM1-5 and TM6-10 are  

predicted to fold in the same conformation but showing inverse symmetry (Ragel et al.,  

2019).    
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Figure 1. 2 . Corn tissue phosphorus  concentration in relation to relative grain yield. The  

point where the plateau levels off is the point where the plant is thought of to have  

sufficient phosphorus (Mallarino, 2016).   
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2. CORN TISSUE NUTRIENT RESPONSE RELATED TO  SOIL 

HEALTH AND FERTILITY  

ABSTRACT  

Soil health metrics, such as active carbon or soil respiration, may be important factors 

influencing corn (Zea mays L.) nutrient uptake. The push for increasing soil health has 

raised the question of how soil health and fertility measurements could be combined to 

improve nutrient management decisions. The objective of this research was to evaluate 

how different soil fertility and health metrics impacted early-season corn tissue nutrient 

uptake of potassium (K), sulfur (S), and phosphorus (P). Research conducted in 2019 and 

2020 on 91 producer fields in Missouri encompassed many soil types, management 

practices, and landscape positions, resulting in 433 different experimental plots.Soil 

samples for soil health and fertility tests were collected in the spring before applying P, 

K, and S fertilizer treatments. Whole plant tissue samples were collected at V6-V8 and 

analyzed for tissue nutrient content, and response ratios were calculated. Accuracy of 

established fertilizer critical values were only 61%, 53%, and 55% for K, P, and S 

respectively. Adding soil health metrics to fertility results using random forest models 

improved prediction of a positive tissue response to K fertilization (>1.05 ratio), but did 

not improve predictions for P or S. After soil-test K, two soil health measurements also 

emerged as important, soil respiration and beta-glucosidase. These results indicate that 

additional measurements may not substantively improve the established method of 

determining an early season corn tissue response to added P or S.  
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INTRODUCTION  

In recent decades, farmers have been encouraged by a variety of organizations both 

private and public to adopt management practices that may improve soil health. In its 

simplest terms, soil health is “the capacity of a soil to function” (Karlen et al., 1997). A 

well-functioning soil will sustain microbial and plant life, cycle nutrients (e.g., carbon 

sequestration, nitrogen fixation), suppress disease and pests, and have high water use 

efficiency (Nielsen et al., 2015). Well-functioning soils typically are defined through  

“suitable” or “ideal” ranges of certain physical, chemical, and biological properties 

(Karlen et al., 1997); these properties can be compiled into quantified soil health indices, 

such as the Soil Management Assessment Framework (SMAF), the Comprehensive 

Assessment of Soil Health (CASH) framework (Andrews et al., 2004; Moebius-Clune et 

al., 2016), or the new Soil Health Assessment Protocol and Evaluation (SHAPE; Nunes et 

al., 2021). Soil and crop management practices that enhance soil health in general include 

those that reduce soil disturbance, maintain soil cover, and improve biodiversity (Nunes 

et al., 2018; Duncan et al., 2019). Research supports claims that farmers who advance 

soil health will improve crop yields, nutrient cycling, and reduce nutrient and soil losses  

(Snapp et al., 2005; González-Chávez et al., 2010; Kuhn et al., 2016; Haney et al., 2018).   

Current nutrient management practices typically include grid or zone soil sampling 

and laboratory tests every few years to determine fertilizer recommendations (Melsted, 

1967; Olson et al., 1987; Anderson-Cook et al., 1999). These soil fertility tests are 

chemical tests that have changed little over recent decades (Hoeft et al., 1973; Magdoff et 

al., 1984). These tests were calibrated to field plot trials to determine critical values on 

which to base recommendations (Magdoff et al., 1984; Shapiro et al., 2019). They were 
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not designed to assess soil biological processes and activity. Thus, biological measures of 

soil health and soil fertility have long been thought of as separate assessments, but 

interactions undoubtedly occur between the chemical soil fertility tests and biological 

tests. For example, soil microbial biomass can be correlated with soil organic matter and 

can be an important pool of plant-available nutrients (Pankhurst et al., 1995). Therefore, 

increasing the organic matter of the soil can lead to increased nutrient availability (Doran 

and Safley, 1997). The majority of soil health knowledge focuses on how various 

practices in cropping systems can change soil properties, but lack quantification for actual 

management recommendations (González-Chávez et al., 2010; Nunes et al., 2018; 

Bavougian et al., 2019; Van Es and Karlen, 2019). Additional research is needed to 

determine how crop plants respond to fertilization under various levels of biological soil 

health measures.   

A field-scale study performed by Harmel and Haney (2013) showed that reducing 

fertilizer rates resulted in minimal yield loss and higher profitability under certain 

conditions. Traditional fertilizer rate recommendations tend to be too high to maximize 

profit, and in this study, only 2 site-years out of 35 maximized profitability to the farmer. 

Thus, while the traditional test may have value for indicating soil nutrient supply, the 

associated fertilizer recommendations likely were established decades ago to guard 

against yield loss across a wide range of soil conditions. The result is a system that 

recommends over-application for many soils. Due to increases in application costs and 

the push for environmental improvement, more attention is focused on fertilizer rate 

(Harmel and Haney, 2013). For example, results from Phillips et al. (2009) showed that 

farmers should question the amount of fertilizer applied instead of just adhering to 
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traditional recommendations, as it may lower profits and contribute to water quality 

degradation. The way fertilizer recommendations are currently generated only focuses on 

maximizing yield, while profits and environmental degradation need to be prioritized as 

well.   

Many different metrics have been proposed for assessing crop and soil management 

practices on soil health. Determining which measurements best represent soil health 

status, and specifically the important soil function of supplying soil nutrients to crop 

plants, is crucial for a meaningful interpretation of soil health tests. Good tests for soil 

health include ones that are sensitive to management practices and represent 

agronomically and environmentally important processes (Moebius-Clune et al., 2016). 

Examples include: acid phosphatase activity, arylsulfatase activity, active carbon, soil 

respiration, soil aggregate stability, and soil total protein (Andrews et al., 2004; 

MoebiusClune et al., 2016). From the standpoint of many producers, the most important 

aspect of soil health is whether it improves crop yield or other elements of economic 

performance.  

This perspective serves as the motivation behind producers’ exploration of new crop and 

soil practices; their livelihood is a business, and they seek ways to optimize return on 

their investment. Since fertilizer nutrients represent one of the most significant input 

investments for producers, knowing soil health-nutrient supply relationships is 

paramount. Tissue tests, along with yield response, are the most direct measure of crop 

performance to fertilizer nutrients. Indirect measures of crop performance may also 

illustrate the impact of soil health. For example, although it has been posited that 

improved soil health increases soil nutrient availability to crops (Kuhn et al., 2016;  
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Haney et al., 2018), few field studies have been conducted to establish this.  

Specific management factors can also influence nutrient uptake. Using the right rate, 

right timing, right amount, and right source of fertilizer is essential to maximizing 

nutrient uptake in corn plants (Johnston and Bruulsema, 2014), yet nutrient uptake is 

influenced by many different factors throughout a plant’s life cycle. Genetics of the plant, 

amount of non-fertilizer soil-available nutrients, soil composition, and weather are all 

examples of such factors. For example, compaction can result from intensive tillage, 

decreasing overall root growth and therefore nutrient uptake (Miransari et al., 2009).   

Macronutrients are important for crop growth, including K, P, and S. Each of these 

nutrients are unique in how they affect plant growth. Potassium is critical in controlling 

ion homeostasis, protein metabolism, enzyme activity, various metabolic processes, and 

osmoregulation (Walker et al., 1996; Shin, 2014; Ragel et al., 2019). Phosphorus is 

incorporated into nucleic acids and ATP in the plant. The conversion of ATP to ADP 

(phosphorylation) is important as the main source of energy for many reactions taking 

place in plants (IPNI (International Plant Nutrition Institute), 1999). Sulfur is the major 

component of two main amino acids, cysteine and methionine, which are building blocks 

for proteins in the plant (Droux, 2004; Davidian and Kopriva, 2010). There are many 

other uses for S in plants, such as their presence in co-factors, glutathione, and vitamins 

essential for plant development (Droux, 2004). Sulfur compounds are also involved in 

responses to biotic and abiotic stresses, such as defenses to herbivores and other 

pathogens (Davidian and Kopriva, 2010). Collectively, these nutrients are measured for 

traditional fertilizer recommendations because deficiencies will result in suboptimal 

yields. Assessment of their availability is often conducted via soil testing, but tissue 

testing could be used as well.   
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Crop nutrient uptake, as measured through tissue sampling, is one way of evaluating 

crop nutrient health and potential yield production. It is a diagnostic tool used to evaluate 

the performance of soil and crop management practices (Mallarino, 1996). Similarly, crop 

nutrient uptake could be used to evaluate the influence of soil health on crops. However, 

tissue sampling for many grain crops is not widely used for nutrient management because 

of uncertainty in the test results and high costs. With corn, tissue test nutrient 

concentrations vary due to plant growth stage, plant part sampled, growing conditions, 

and the hybrid/variety planted (Walker and Peck, 1972; Jones et al., 1990; Mallarino, 

1996). To combat these obstacles, sampling the corn early in the season has been shown 

to provide better results across a variety of conditions (Walker and Peck,  

1972; Mallarino, 1996; Stammer and Mallarino, 2018). Therefore, tissue testing corn at 

V6-V8 should provide better results, along with keeping the timing between samples 

short relative to each other.   

The goal of tissue testing is to assess the nutrient status of the crop. However, Clover 

and Mallarino (2013) showed that K concentrations of corn at the V5-V6 growth stage 

have a poor capacity to assess K sufficiency and predict grain yield responses. Also, even 

though a response to P fertilization may be apparent in early-season tissue samples, yield 

may not be affected. In a study by Heckman et al. (2006), anywhere between 17 and 43% 

of the sites that tested below the critical soil P test level showed a yield increase to P 

fertilizer, and 25 to 50% of the sites exhibited an increase in early season tissue 

concentrations. Often, plants undergo luxury consumption, an increase in early season 

tissue P and K concentration that does not lead to a yield response. Therefore, using  
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tissue tests as the only source of information for P and K fertilization decisions is not 

adequate.  

A better understanding of how soil health indicators influence crop tissue nutrient 

uptake and yield relative to fertilization is needed. As such, the main purpose of this 

investigation was to explore how different soil health measurements (i.e., chemical, 

physical, and biological) might be used as indicators of crop nutrient need. The specific 

objective of this research was to examine corn tissue response to K, P, and S fertilization 

as impacted by soil health and fertility properties. In other words, the goal was to evaluate 

the theory that as soil health improves, crop tissue response to added fertilizer will 

decline.  

MATERIALS AND METHODS  

Research Sites and Locations  

This research was conducted as a public collaboration between the University of 

Missouri and Corteva Agrisciences. This project took place primarily in Missouri with 

additional sites in Iowa and South Dakota. Data was collected during the 2019 and 2020 

growing seasons. Each year, 50-60 different fields were selected. Each field contained 3- 

5 spatially distributed location sites (hereafter referred to as “stamps”) that were selected 

to capture a range of field conditions and to examine inherent in-field variability. The 

fields represented a wide range of soil and crop management systems to capture a range 

of corn tissue responses across different soil health levels. Soil and weather information 

can be found in Table 2.1. In total, there were 446 stamps in this study spread throughout  

97 total fields (Fig. 2.1). Fields were selected in the late fall/early spring by 

communicating with farmers and local networks, including industry representatives MFA 
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and Corteva Agrisciences. Operations were conducted such that farmers avoided applying 

S, P, and K to the stamp sites to provide a locally representative environment with the 

best opportunity for response to treatments. Fields with recent grid soil sampling results 

allowed for selecting stamp sites that had both low and high soil fertility conditions. 

Stamps were placed based on differing landscape positions, soil series, and fertility 

levels, along with field access in mind. The goal of this experimental design was to 

encompass a wide range of field conditions and therefore soil health levels.   

Soil Sampling, Fertilization Treatments, and Laboratory Analyses  

Soil sampling and fertilization treatments were done for each stamp in the early 

spring of each growing season, approximately two to five weeks prior to planting. Each 

stamp site was a square with 12.2 m on each side, providing an area 148.8 m2.  

Coordinates of each stamp center were measured using Trimble GeoXT 6000 and Geo 7x 

GPS devices with approximately 6-cm accuracy. With the center identified, pre-cut ropes 

were stretched to define the stamp area. Using a hand-held compass, the stamps were 

oriented on a north-south bearing regardless of where the stamp was located in the field.   

For soil fertility and health assessments, eight to twelve 2.54-cm (id) cores, to a depth 

of 15 cm, were obtained evenly distributed within the stamp area. The cores were split 

into two depths (0-5 cm depth and 5-15 cm depth) and composited into buckets at the 

time of sampling. After gentle hand mixing, the samples were split for subsequent 

laboratory analysis into standard soil sampling boxes for traditional fertility analyses and 

re-sealable zipper storage bags for soil health analyses.   

For soil profile characterization and sub-surface fertility assessment, a Giddings 

hydraulic soil sampling machine was used to obtain one 4.5-cm (id) profile core to an 
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approximate depth of 1 m. These were laid out on a processing table and visually 

characterized by pedogenetic horizon. The surface 0-15 cm was designated as the Ap 

horizon. After designating the first horizon, the rest of the core was separated into four or 

five total horizons determined by soil color and texture. Soil samples were bagged and 

removed from the stamp area before fertilization treatments were applied.  

For fertilization treatments, the stamp area was sub-divided into four equal 6.1 by 6.1 

m quadrats (37.2 m2). One quadrant was designated as the control and received no 

fertilizer treatment. Fertilizer K, P, and S treatments were applied by hand to quadrants as 

shown in Figure 2.1. Fertilizer treatment rates were as follows: 1) control; 2) 112 kg ha-1 

of K2O applied as potash (0-0-60); 3) 112 kg ha-1 of P2O5 applied as triple super 

phosphate (0-45-0); and 4) 28 kg ha-1 of S applied as ammonium sulfate (21-0-24). So 

that all received equal N, an additional 25 kg N ha-1 as SUPER-U (46-0-0) was applied to 

quadrats 1-3 to balance the N applied with ammonium sulfate to treatment 4. 

Additionally, since both years of this study experienced above-average spring 

precipitation, an additional 67 kg N ha-1 was applied as SUPER-U to the entire stamp area 

at the time of tissue sampling, to guard against N deficiencies later in the growing season.  

Soil samples were delivered to Ward Labs in Kearney, Nebraska for traditional 

fertility analyses and soil characterization/texture. Soil health samples were stored in a 

cooler then wet sieved through a 2.54 cm screen to homogenize the sample, then air-dried 

in a tin pan. Once fully dried, the soils were sieved again (2mm sieve) for downstream 

analysis at the USDA-ARS Soil and Water Quality Lab in Columbia, MO. Fertility and 

soil health analyses are summarized in Table 2.2.  
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Plant Sampling for Tissue Nutrient Analyses  

Eight whole plants from each of the four quadrats of each stamp were harvested at the 

developmental growth stage of V6-V8 for nutrient content assessment. Prior to sampling, 

the central part of the quadrat with a uniform stand was first designated with plastic 

garden stakes for grain yield harvest at the end of the season. Plant samples for tissue 

nutrient content were then randomly collected outside of this area to avoid a “border 

effect” with removed plants. Harvested plants were placed into labeled brown paper bags 

for storage and drying. Samples were air/oven dried and ground to pass a 2-mm screen, 

then shipped to Ward Laboratories (Kearney, NE) for analysis of P, K, and S 

concentration.   

Data Management and Statistical Analyses  

Data were analyzed using R programming language (R Core Team, 2017). To 

measure relative nutrient uptake response to fertilization, tissue samples from the K, P, 

and S fertilized quadrats of each stamp were divided by the control nutrient content value. 

This ratio provided a response index for each nutrient in each stamp. Due to the lack of 

traditional replication with this experimental design, an alternative measure of field 

experimental error was developed in a companion study. Specifically, in a study of yield 

response across the same sites, a suite of methods were evaluated to estimate 

experimental error, concluding that up to an approximate 10% random error could be 

expected for the yield response (J. Svedin, personal communication, July 2021).  

However, tissue nutrient content is based on a subsample of plants selected to represent 

the overall stand (e.g., not an areal measurement such as yield). Therefore, it is expected 

that the experimental error associated with tissue nutrient content would be considerably 
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less. A response ratio of 5% or above was interpreted as a positive biological response to 

fertilization.  

The response ratios were used as the dependent variables in the statistical analyses. 

Since there were numerous possible independent factors explored in this analysis, 

machine learning techniques that allow for multivariate analysis were determined to be 

the most useful. While several different techniques were explored, random forest analysis 

paired with corresponding decision tree visualizations were employed for this study. 

Random forest analysis allowed for variable importance to be identified and shown using 

mean decrease in gini and mean distance of nodes down in the decision trees formed 

using the random forests (Han et al., 2016). Mean decrease in gini is the average of a 

variable’s total decrease in node impurity, weighted by the proportion of samples 

reaching that node in each individual decision tree in the random forest (Behnamian et al., 

2017). A higher mean decrease in gini indicated higher variable importance. The most 

important variables were then used in a decision tree in order to best predict a tissue 

response to added fertilizer. Other variables used in the random forest are listed in table 

2.1.   

RESULTS AND DISCUSSION  

This investigation included a wide range of growing conditions and soils, which led to 

diverse early-season corn tissue concentration response. Response was examined relative 

to K, P, and S fertilization, and analyzed to determine which soil and weather 

measurements were the most important for explaining when a response occurred. Since 

the response to each of these three fertilizer nutrients was unique, along with the 
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measurements that best characterized the response, findings are presented by each 

nutrient.  

Corn Tissue Potassium  

Corn Tissue Response Relative to Soil-Test Potassium  

Corn tissue K concentration of the whole plant at V6-V8 ranged from 12.7 to 75.4 g 

K kg-1 with a mean of 38.4 g K kg-1. These values are close to what other research has 

shown when measuring early-season corn tissue K concentration (Clover and Mallarino, 

2013; Stammer and Mallarino, 2018). These concentration values when divided by the K 

concentration of the non-fertilized plants create a response ratio that ranged from 0.39 to 

3.23. These ratios when shown relative to the soil-test K (ranging from 49 to 398 mg K 

kg-1; Fig. 2.2) support the study objective of evaluating a wide range of growing 

conditions.   

Figure 2.2 has four different notable features. First, the horizontal dashed line is at a 

ratio of 1.05 and represents a threshold above which a positive response to fertilizer was 

considered to have likely occurred. Second, the blue vertical band represents the range of 

critical values for soil-test K established by the University of Missouri Soil Fertility 

Testing Program. It is shown as a band because interpretation of soil-test K for fertilizer 

recommendations includes the variable of soil CEC. The higher the CEC, the higher the 

critical value. The blue band thus represents most CEC values for soils in this study 

(lowest and highest 5% values excluded). The lower and upper boundaries of this blue 

band are 132 and 160 mg K kg-1. Third, the red line is a best fit linear-plateau model of 

the dataset, with the joint occurring at 135 mg K kg-1. Collectively these features show 

response using early-vegetative tissue K uptake is reasonably aligned with critical values 
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used for soil-test values. Finally, two boxplots are shown which show the distribution of 

soil-test K observations both below and above 135 mg kg-1. The results represented in  

Figure 2.2 follow a similar trend to what others have shown (Mallarino and Sawyer, 

2018; Mallarino, 2016).  

Site-specific critical values were calculated using CEC and were compared to the soil-

test K to determine if a site should be responsive to fertilization. These were then 

examined relative to the tissue responses using the predetermined 5% threshold. 

Accuracy based on both predicted responsive and non-responsive sites for this dataset 

was 61%. This means that 39% of sites were either 1) above the established critical value 

yet were responsive, or 2) below the critical value yet un-responsive. Therefore, the 

standard soil fertility test alone may not be the best way to predict a tissue response to 

added K fertilizer. To better understand corn tissue response to added K fertilizer, other 

soil and weather information were examined as governing factors.  

Influence of Soil and Weather Information  

Using machine learning methods, all soil and weather variables (Table 2.1) were 

examined for their influence on corn tissue K response at the V6-V8 developmental 

growth stage. Variables found to be important were summarized in two different ways.  

First, the random forest mean decrease in Gini importance (Han et al., 2016) was applied. 

This method evaluates feature relevance, allowing for explicit feature elimination in high 

dimensional datasets and reduction of noise from the classification task. The Gini order 

of importance, with the most important variables on top, is presented in Figure 2.3. The 

second approach provided the distribution of the average minimal depth of each variable 

within the decision tree structure of the random forest analysis, where deeper depth 
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implies reduced importance (Epifanio, 2017). In addition, the number of times out of 500 

runs that each variable appeared by depth in the tree analysis is represented by color 

coding (Fig. 2.4). In both scenarios, the ranking of the top three most important variables 

impacting tissue response to added K were, in the following order: soil-test K, soil 

respiration, and beta-glucosidase.   

It is notable that soil-test K was the most important variable in the decision tree 

analysis (both in terms of variable order and magnitude) for understanding early-season 

plant K uptake. Although the points defining the relationship between soil-test K and the 

tissue response ratio (Fig. 2.2) exhibits some degree of scatter, of all the variables 

evaluated in this investigation, soil-test K emerged as the most important. This outcome 

thus generally supports the current approach for corn K nutrient management. However, 

soil CEC, also used in current recommendations, exhibited minimal influence on corn K 

uptake. One plausible explanation for this is that the effect of added K fertilizer on CEC 

takes months as soils go through multiple wetting and drying cycles (Rhoades, 1982). 

Thus, the fact that CEC was not helpful for explaining early-season plant K uptake is not 

surprising, since tissue samples were obtained within 10 weeks of fertilizer application.  

After soil-test K, two soil health measurements also emerged as important. 

Specifically, soil respiration and beta-glucosidase were selected as important variables for 

explaining variation in plant tissue K content. These two measurements are related as 

they both deal with carbon cycling in the soil. It is interesting to note that other 

carbonrelated soil tests were not found to be important, and none of the weather or 

inherent soil characteristics were found to be important for predicting corn tissue K 

response.   



 

45  

  

Potassium Uptake beyond the Soil Fertility Test  

The three variables of greatest importance were used to develop a decision tree model 

for early season corn tissue K content in response to added K fertilizer (Fig 2.5). As 

previously noted, soil-test K was most important and defined the first decision tree split.  

For sites with soil-test K < 119 mg K kg-1, plants increased in K content with fertilization  

85% of the time. This soil test value is somewhat lower than the general critical value for 

Missouri (as illustrated in Fig. 2.2) and suggests that some fields will not respond to 

fertilization using current soil test recommendations.   

The next tree split for sites with soil-test K ≥ 119 mg K kg-1 involved soil respiration.  

Overall microbial activity is reflected in the soil respiration measurement (MoebiusClune 

et al., 2016; Haney et al., 2018; Franzluebbers et al., 1995). Only 6% of the sites  

(n=21) had soil respiration ≥ 230 mg kg-1, but within this group of sites, the majority 

(84%) was non-responsive to fertilization. With the average soil respiration in our dataset 

of 145 mg kg-1, this result shows how high the respiration has to be in order to make this 

split in the decision tree. When soil respiration was < 230 mg kg-1, a new decision in the 

tree was defined that utilized beta-glucosidase enzyme activity. Then, when 

betaglucosidase activity was ≥ 95 mg kg-1 (n=72), the majority (63%) of sites were 

nonresponsive to fertilization. In contrast, when beta-glucosidase < 95 mg kg-1 (n=291), 

sites were generally responsive (62%). This connection between beta-glucosidase, soil 

respiration, K fertilization, and tissue response has not been described before and merits 

further research. The overall accuracy of the decision tree in predicting tissue response 

was 67%.  
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These results support the general hypothesis that microbial activity plays a 

quantitative role in K availability for corn plants, and aid in understanding response to 

added K fertilizers. This outcome validates claims that microbial soil measurements can 

potentially be used to refine nutrient management decisions (Snapp et al., 2005; 

González-Chávez et al., 2010; Kuhn et al., 2016; Haney et al., 2018). However, the added 

cost associated with biological measurements may not be justifiable except in high-value 

crops.   

Following the outcome of the decision tree analysis, sites displayed in Fig. 2.2 were 

modified to show predicted responsive and non-responsive sites (Fig. 2.6). When below 

the soil-test K value of 119 mg kg-1, the model always predicted a response, even in some 

cases when there was not a response. Above this value, the model produced mixed results 

with predicted responsive and non-responsive sites. However, a greater percentage of the 

predicted non-responsive sites were below the 1.05 response threshold (68%) than above 

this threshold. The opposite was also true, in that a greater percentage of responsive sites 

were above the 1.05 responsive threshold (70%) than below this threshold. Overall, this 

indicates that adding the biological measures was the most helpful when predicting 

responses in the range of the current soil test critical values. Normally, models based on 

standard fertility measurements will not predict a positive response when fertilizer is 

applied above a specific soil test level, but these results indicate that biological measures 

can improve the prediction of when corn will respond to fertilization.   

  

  

  



 

47  

  

Corn Tissue Phosphorus  

Corn Tissue Response Relative to Soil-Test Phosphorus  

Corn tissue P concentration of the whole plant at V6-V8 ranged from 1.6 to 9.6 g P 

kg-1 and averaged 4.5 g P kg-1. These concentration values, when divided by the P 

concentration of the non-fertilized plants, create a response ratio that ranged from 0.56 to  

1.51. These ratios shown relative to the soil-test P (ranging from 2 to 168 mg kg-1; Fig.  

2. 7), support the study objective of evaluating a wide range of growing conditions. 

Two features in this figure are worth description. First, the horizontal dashed line marks a 

ratio of 1.05 and represents the pre-determined threshold above which a positive response 

to fertilizer is expected. Second, the vertical dashed line lies at the current corn critical 

value for soil-test P determined by the University of Missouri Soil Testing Program, 

which is 22.5 mg kg-1. Of sites below this critical value, 47% were < 1.05 response, 

indicating nearly half of the sites would be considered responsive based on the soil test 

level, but were not. Unlike the soil-test K plot (Fig. 2.2), no significant linear-plateau 

model was found with this relationship. The accuracy of the established critical value in 

predicting an early-season corn tissue response to added P was only 53%. This means 

soil-test P alone was not at all helpful in understanding when there was a P uptake 

response to fertilization at the V6-V8 corn growth development stage.   

Soil and Weather Information Influencing Response  

Soil and weather information was examined using random forest analysis for an 

influence on P uptake and variable importance was evaluated as was done for K (Figs.  

2.8 and 2.9). Examining these figures, the trend in variable importance was not as strong 

as that exhibited by K uptake. In this case, beta-glucosidase and active carbon were 
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ranked most important, but there was little separation between the variables overall. This 

implies that no single variable emerged as most important for prediction of early-season 

corn tissue response to added P. The fact that soil-test P was not selected first is notable, 

since it is the variable currently used to determine fertilizer application rate.  

Phosphorus Uptake Beyond the Soil Fertility Test  

Since no variable emerged as the single most important, all variables were considered 

in the subsequent decision tree model (Fig. 2.10) to find the best possible prediction for 

corn P tissue response to added P fertilizer. The most accurate model utilized 

betaglucosidase, soil-test P, and sand content. For sites with a relatively high beta-

glucosidase value [≥ 108 mg g-1 (n=37)], 92% of these sites were non-responsive. If beta-

glucosidase was < 108 mg g-1, sand content defined the next split in the tree. If sand 

content was < 10%, sites most often responded to P fertilization, even though there were 

few sites that matched this condition (n=15). If sand content was ≥ 10%, another tree split 

was defined that invoked soil-test P. If soil-test P was < 8 mg P kg-1, the site was 

responsive 63% of the time, and if soil-test P was ≥ 8 mg P kg-1, the site was non-

responsive 61% of the time.  

The established critical value of soil-test P for corn in Missouri is 22.5 mg kg-1, over 

twice the value found to be helpful in this decision tree analysis of 8 mg P kg-1. However, 

it is important to note that Missouri’s critical soil test values were developed based on 

grain yield response at the end of the growing season, not tissue sampling response. For 

the purposes of this study, it was presumed that early-season tissue sampling 

foreshadowed full season response, as in other studies (e.g., Stammer and Mallarino,  

2018).   



 

49  

  

In contrast to the accuracy of the established critical value (53%), the overall accuracy 

of this decision tree was 61% when used to predict a tissue response to added P. Although 

this reflects a marginal improvement of 8%, multiple potential variables achieved a 

similar increase in accuracy, and the appearance and placement of variables within the 

decision trees was inconsistent (Fig. 2.9). These results indicate that additional 

measurements may not substantively improve the established method of determining an 

early season corn tissue response to added P.   

Using the decision tree shown in Fig. 2.10, sites displayed in Fig. 2.7 were modified 

to show predicted responsive and non-responsive sites (Fig. 2.11). The high accuracy of 

this decision tree can be attributed to the abundance of sites (82%) where no response to 

added P was predicted. Therefore, the model is not any better at predicting a tissue 

response to added P than the established method of a critical value of soil-test P.  

Corn Tissue Sulfur  

Corn Tissue Response Relative to Soil-Test Sulfur  

Corn tissue S concentration of the whole plant at V6-V8 ranged from 1.39 to 4.4 g S 

kg-1 and averaged 2.6 g S kg-1. These concentration values, when divided by the S 

concentration of the non-fertilized plants, create a response ratio that ranged from 0.73 to  

2.24. These ratios shown relative to the soil-test S (ranging from 2.5 to 14.8 mg kg-1; Fig.  

2.12), support the study objective by evaluating a wide range of growing conditions. Two 

components of this figure are worth description. First, the horizontal dashed line at a ratio 

of 1.05 represents a threshold above which a positive response to fertilizer occurred. 

Second, the vertical dashed line represents the S critical value for Missouri, which was 

established by the University of Missouri at 7.5 mg kg-1. Of sites below the critical value, 
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64% of them showed > 1.05 response, indicating more sites responded when below the 

critical value when compared to non-responsive sites. However, when above the critical 

value, 69% of the sites were responsive to S fertilization. No significant linear plateau 

relationship was found in the S fertilization treatment. This implies that soil-test S alone 

is not sufficient for predicting an S uptake response to fertilization at the V6-V8 corn 

growth stage. The overall accuracy when using the established critical value was only  

55%.   

Soil and Weather Information Influencing Response  

Soil and weather information was examined using random forest analysis for an 

influence on S uptake, and variable importance was ranked, as done for P and K (Figs 

2.13 and 2.14). Similar to the P analysis, no variable stood out as being more important 

than the others based on these results. All variables were extremely close in mean 

decrease Gini values and mean minimal depth in the random forest trees. Weather 

information emerged higher on the list for S when compared with P or K, likely due to 

the effect of weather on S mineralization early in the growing season. Corn responds to 

added S early because little S is mineralized by microorganisms when it is cold and wet 

in early spring, leaving it available for plants (Scherer, 2009). Thus, weather is important 

when evaluating tissue response to added S when corn is at the V6-V8 developmental 

growth stage.   

Sulfur Uptake Beyond the Soil Fertility Test  

Since no variables were identified as the most important, they were all included in the 

decision tree analysis to predict tissue response to added S fertilizer (Fig. 2.15). The most 

accurate model used soil-test S and total protein. The first node in the tree was soil-test S 
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with a threshold value of 12 mg S kg-1. Only 4% (n=14) of the sites were above this 

value, with 79% of them being non-responsive. If soil-test S was under 12 mg S kg-1, the 

next node in the tree was total protein. The total protein threshold value was 2.1 mg g-1, 

which was lower than the average total protein for the study, 3.55 mg g-1. A large 

majority of the sites in the study fit into the category of > 2.1 mg g-1 (n=291). These sites 

had a 72% response rate.   

 The established critical value of soil-test S for corn in Missouri is 7.5 mg kg-1, which 

is approximately half the value identified in the decision tree analysis of 12 mg S kg-1. 

The overall accuracy of this decision tree was 67% when used to predict a tissue response 

to added S, compared with the accuracy of the established method (55%). Although this 

reflects an improvement of 12%, multiple variables produced similar results, and the 

appearance and placement of variables within the decision trees was inconsistent (Fig. 

2.14). These results indicate that additional measurements may not improve the 

established method of determining an early season corn tissue response to added S.   

Using the outcome of the decision tree shown in Fig. 2.15, sites displayed in Fig. 2.13 

were modified to show predicted responsive and non-responsive sites (Fig. 2.16). The 

high accuracy of this decision tree can be attributed to the abundance of sites (85%) 

where a response to added S was predicted. Therefore, the model is not any better at 

predicting a tissue response to added P than the established method of a critical value of 

soil-test P. This makes the prediction of response/no response not useful when looking at 

the application of what the tree is attempting to predict. Therefore, the model is not better 

at predicting a tissue response to added S than the established method of a critical value 

of soil-test S.   
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CONCLUSION  

  This study looked at K, P, and S corn tissue nutrient concentration responses 

relative to soil fertility and health metrics. Random forests along with decision tree 

models were best when showing which soil health and fertility variables best represented 

the prediction of a tissue response. Beta-glucosidase and soil respiration were helpful 

when predicting K tissue nutrient concentration responses. These along with soil-test K 

provided a higher prediction accuracy than when soil-test K was used alone. The soil-test 

K value that was used was lower than the average value in the current Missouri 

recommendations used today. Together this suggests two things. One, the current 

recommendation for when K fertilizer should be added may be inflated. And two, 

improvements may be made to fertilizer recommendations in Missouri by including soil 

health metrics. Additional research on this finding is warranted. When it comes to P and 

S tissue concentration responses, soil health metrics did not help explain uptake 

differences. With these two nutrients, even soil test values were not very helpful. 

However, accuracies were slightly improved when using multiple variables within 

decision tree modeling. In other words, the model almost always predicted a response to 

fertilization, which actually occurred, but is not helpful or practical. Further as explained 

before, a response in tissue content is easier to detect than yield at the end of the growing 

season. Therefore, these findings are only intended to suggest what soil health metrics 

may be contributing to crop nutrient utilization, and additional studies quantifying these 

relationships are needed.  
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TABLES AND FIGURES – CHAPTER 2  

Table 2.1. Weather and MLRA’s of sites with associated acronyms, methods, and 

citations.  

Weather  Acronym  Method  Citation  

Growing Degree Days  GDD  See source  McMaster and Wilhelm 1997  

Corn Heat Units  CHU  See source  Bootsma et al. 2005  

Abundant and well-distributed rainfall  awdr  AWDR=Rain X SDI  Tremblay et al. 2012  

Precipitation from planting to 

sampling  
Rain  Total rainfall from 

planting date till 

sample date  

  

Shannon Diversity Index (daily 

rainfall evenness)  
SDI  See source  Bronikowski and Webb 1996  

MLRA        

Central Claypan Soils  113      

Iowa and Missouri Heavy Till  109      

Central Mississippi Valley Wooded 

Slopes, Northern Part  
115C      

Cherokee Praries  112      

Ozark Highland  116A      

Central Mississippi Valley Wooded 

Slopes, Western Part  
115B      
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Table 2.2. Soil fertility, soil health, and plant tissue analyses with associated acronyms, laboratories, methods, and citations.  

Analyses  Acronym  Laboratory  Method Citation  

Soil Properties            

Phosphorus  Bray1  Ward  Bray 1; Mehlich-3  Bray and Kurtz 1945; Mehlich 1984  

Potassium  K mg kg-1  Ward  Ammonium Acetate  Warncke and Brown 1998  

S-SO4-  S mg kg-1  Ward  Mono Calcium Phosphate Extraction  Hoeft et al. 1973  

Organic Matter  OM  Ward  Loss on Ignition  Ben-Dor and Banin 1989  

Cation Exchange Capacity  CEC  Ward  Sum of Base Cations  Rhoades 1982  

Soil Texture  Clay; Silt; Sand  Ward  Hydrometer Method  Gee and Bauder 1979  

Soil Organic Carbon  SOC  USDA-ARS  LECO Combustion  Nelson and Sommers 1996  

Active Carbon  AC  USDA-ARS  Permanganate oxidizable C (POXC)  Schindelbeck et al. 2016  

Total Protein  TP  USDA-ARS  ACE Protein  Hurisso et al. 2018  

Soil Respiration  Resp  USDA-ARS  4-day incubation  Schindelbeck et al. 2016  

Arylsulfatase Activity  Sulf  USDA-ARS  1-hour incubation  Klose et al. 2011  

Acid Phosphatase Activity  Phos    1-hour incubation  Acosta-Martínez et al. 2011  

β-D-Glucosidase Activity  Beta    1-hour incubation  Deng and Popova 2011  

          

Plant Tissue Properties          

Potassium Content  K  Ward    (Association of Analytical Chemists  
(AOAC), 2019)  

Phosphorus Content  P  Ward    (Association of Analytical Chemists  
(AOAC), 2019)  

Sulfur Content  S  Ward    (Association of Analytical Chemists  
(AOAC), 2019)  

USDA-ARS = Soil and Water Quality Lab (Columbia MO); Ward = Ward Laboratories (Kearney, NE)  
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Figure  2.1 . Map of locations of sites spread throughout Missouri. Each  pin represents a  

different field used in the study, with 97 total fields used.   
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Figure 2. 2 . Early - season corn tissue response calculated as a ratio of potassium (K)  

fertilized to unfertilized relative to soil - test K. The horizontal  dashed  line at a ratio o f 1.05  

represents a threshold above which a positive response to fertilizer  considered to have  

occurred. The vertical  blue  band   to 160 mg K kg (132 - 1 )   rep resents the range of critical  

va lues for soil - test K established by the University of Missouri. The re d line is a best fit  

linear plateau  model  fit to the dataset , with the joint occurring at 135   mg kg - 1 . Boxplots in  

the top right show the distribution of soil - test K observations by populations below and  

above 135   mg kg - 1 .   
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Figure 2.3. From a random fores t analysis,  the  mean decrease  in G ini  importance  was  

used to  rank   variable importance with added K, with the most important variables at  

the top of the list. In addition to soil - test K, two soil health metrics were found highly  

important and used further i n the decision tree analysis.   
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Figure 2.4. F rom a random forest analysis ,  distribution of minimal depth and its mean was  

used to determine variable importance with added K, with the most important variables at  

the top of the list. In addition to soil - test  K, two soil health metrics were found highly  

important and used further in the decision tree analysis.   
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Figure 2.5 .   Decision tree predicting corn tissue response to added K fertilizer using the  

top three variables determined by random forest analysis. Pota ssium mg kg - 1   was the  

first node with a value of 119 mg kg - 1 . The model shows if below that value, a response  

to fertilizer is expected and if above that value, then it moves on to the soil respiration  

measurement for that site. After respiration, beta - glu cosidase is used in the decision  

tree.   
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Figure 2.6 .   Early - season corn tissue response calculated as a ratio of potassium (K)  

fertilized to unfertilized relative to soil - test K. The horizontal line at a ratio of 1.05  

represents a threshold above which a pos itive response to fertil izer occurred. The vertical  

line at 119 mg kg -   1 represents the   cri tical value   for soil - test K established  in the decision  

tree .   The color of the dots corresponds to the decision tree prediction of a response or no  

response.    
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Figure   2.7 . Early - season corn tissue response calcu lated as a ratio of phosphorus (P )   

fertilized to unfe rtilized relative to soil - test P . The horizontal line at a ratio of 1.05  

represents a threshold above which a positive response to fertilizer occurred. The ve rtical  

line at 22 mg kg - 1   represents the  critical value   for soil - test P   established by the University  

of Missouri.  Boxplots in the bottom right show the distribution of soil - test P observations  

by populations below and above 22.5 mg kg - 1 .   
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Figure 2. 8.   From   a random forest analysis, mean decrease  G ini was used to determine  

variable importance   with added P fertilizer , with the most important variables at the top  

of the list.   Beta - glucosidase was most important with several variables closely ranked,  

indicating   no variables emerged as most important in predicting P tissue response.   
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Figure  2.9 .   From a random forest analysis, distribution of minimal depth and its mean  

was used to determine variable importance for predicting tissue response to added P,  

with the mo st important variables at the top of the list. All of the variables are extremely  

close in their value of minimal depth. No variables stood out as being more influential  

than the others in the random forest analysis.    
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Figure 2.10 .   Decision tree predicting   corn tissue response to added P fertilizer using the  

variables from the random forest model. Beta - glucosidase emerged first, with a value of  

108  mg g - 1   soil. If lower, then sand percentage was used with a value of 9.9%. The last  

value used in the tree was   soil test P, with a value of 8 mg kg - 1 , which is low compared to  

the established critical value for Missouri.   
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Figure 2.11 .   Early - season corn tissue response calcu lated as a ratio of phosphorus (P )   

fertilized to unfe rtilized relative to soil - test P . The h orizontal line at a ratio of 1.05  

represents a threshold above which a positive response to fertilizer occurred.  The vertical  

line at 22.5 mg kg -   1 r epresents .  The color of the dots correspond to the decision tree  

prediction of a response  ( blue)  or no n - resp onse   ( red ) .   
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Figure 2.12 . Early - season corn tissue response calcu lated as a ratio of sulfur (S )  fertilized  

to unfe rtilized relative to soil - test S . The horizontal line at a ratio of 1.05 represents a  

threshold above which a positive response to fertilizer  occurred. The ve rtical line at 7.5  

mg kg - 1   represents the  critical value   for soil - test S   established by the University of  

Missouri.    
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Figure 2. 13.   From a random forest analysis, mean decrease  G ini was used to determine  

variable importance   with added S fert ilizer , with the most important variables at the top  

of the list.   Soil - test S is near the top, along with total protein and active carbon, but there  

is not much separation between any of the variables at all.   
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Figure  2.14 .   From a random forest analysis, di stribution of minimal depth and its mean  

was used to determine variable importance for predicting tissue response to added S, with  

the most important variables at the top of the list. All of the variables are extremely close  

in their value of minimal depth . No variables stood out as being more influential than the  

others in the random forest analysis.    
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Figure 2.15 .   Decision tree predicting corn tissue response to added S fertilizer using all  

the variables in the random forest analysis. Soil - test S appeared   first in the decision tree,  

with a value of 12 mg kg - 1   being the cutoff. If higher than 12 mg kg - 1 , then there no  

response is expected. If lower, a total protein threshold of 2.1  mg g - 1   is used.   
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Figure 2.16 .   Early - season corn tissue response calcu lated a s a ratio of sulfur (S )  fertilized  

to unfe rtilized relative to soil - test S . The horizontal line at a ratio of 1.05 represents a  

threshold above which a positive response to fertil izer occurred. The vertical dashed line  

at 12 mg  kg - 1   is the value used in th e decision tree using soil - test S.  The   color of the dots  

correspond to the decision tree prediction of a response (blue) or no response (red).   
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3. CORN GRAIN YIELD RESPONSE RELATIVE TO EARLY-SEASON 

TISSUE NUTRIENT CONTENT AND SOIL FERTILITY  

ABSTRACT  

Attention to nutrient management decisions is critical for high-yielding corn (Zea 

mays L.) production. Soil sampling for fertility testing is the generally accepted standard 

for making these decisions, but alone may poorly represent plant nutrient availability. 

Tissue sampling for nutrient content has also been used to diagnose plant needs and direct 

fertilizer decisions. The objective of this research was to evaluate the relationship of 

early-season corn tissue nutrient concentration and soil fertility tests for predicting corn 

grain yield responses. Research conducted in 2019 and 2020 on 91 producer fields in 

Missouri encompassed many soil types, management practices, and landscape positions, 

resulting in 433 different experimental plots, hereafter referred to as ‘stamps.’ Soil 

samples for soil fertility tests were collected in the spring before applying fertilizer.  

Whole plant tissue samples were collected at V6-V8 and were analyzed for tissue nutrient 

content. Harvest data was collected after the corn reached black layer in order to calculate 

the final yield. Results of multiple linear regression on each nutrient resulted in different 

predictor variables being significant. Potassium yield responses were best predicted using 

soil-test K, tissue K concentration, and the quadratic tissue K concentration, with all three 

variables being significant (p < 0.1). Phosphorus soil-test or tissue concentration alone or 

in any combination did not explain yield response. Sulfur yield responses were best 

explained with just tissue S concentration alone as the only significant predictor variable. 

This research suggests that current tools for diagnosing K, P, and S corn crop needs are 

not strong.   
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INTRODUCTION  

Fertilizer recommendations have been around for decades now. The idea being 

that adding fertilizer at various soil fertility levels will increase a plant’s yield, but only up 

to a specific nutrient level. Research began on these recommendations in the 1920’s, with 

most work occurring in the 1950’s and 60’s, with not much work happening after the 

1980’s (Voss, 1998). A “critical value” approach arose from this research, which 

basically says that a plant needs a specific value of each nutrient to obtain optimum 

growth, where below that soil test level adding fertilizer will lead to a yield response and 

above that level will show no response to fertilizer (McGrath et al., 2014). Therefore, 

each essential nutrient must be at a plant specific sufficient level to maximize yield.  

Recent research has suggested a need for an improvement in the fertilizer 

recommendations for soil-test K and soil-test P. In a study by Heckman et al. (2006), 

anywhere between 17 and 43% of the sites that tested below the critical soil P test level 

showed a yield increase to P fertilizer, and 25 to 50% of the sites exhibited an increase in 

early season crop growth. Another study showed yield responses to fertilizer at only 9 of 

42 site years, along with current recommendations to build soil-test K and soil-test P 

being inaccurate in Ohio (Fulford and Culman, 2018). It is possible that statewide 

fertilizer recommendations may not be the best approach, as many different variables go 

into how plants uptake nutrients, such as certain soil properties and environmental 

conditions (Fulford and Culman, 2018). Research is needed to see how improvements can 

be made to these long-established fertilizer recommendations, and tissue samples may be 

a way to help improve them.  
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Nutrient uptake is influenced by many different factors throughout a plant’s life 

cycle. Genetics of the plant, amount of soil-available nutrients, soil composition, and 

weather are all examples of such factors. Management factors can also influence nutrient 

uptake through different forms. For example, compaction can be caused when intensive 

tillage is used, decreasing overall root growth and therefore nutrient uptake (Miransari et 

al., 2009). Using the right rate, right timing, right amount, and right source of fertilizer is 

essential to maximizing nutrient uptake in plants (Johnston and Bruulsema, 2014).  

For corn, nutrient uptake as measured through tissue sampling is one way of 

evaluating crop nutrient health and potential yield production. It is described as a 

diagnostic tool used to evaluate the performance of soil and crop management practices 

(Mallarino, 1996). Similarly, crop nutrient uptake could be used to evaluate the influence 

of soil health on crops. However, tissue sampling for many grain crops is not widely used 

for nutrient management because of uncertainty in the test results, high costs, and limited 

opportunity and ability to remediate deficiencies within the growing season. Tissue test 

nutrient concentrations vary due to plant growth stage, plant part sampled, growing 

conditions, and the hybrid/variety planted (Walker and Peck, 1972; Jones et al., 1990; 

Mallarino, 1996). To combat these obstacles, sampling the corn early in the season has 

been shown to have better results across a variety of conditions (Walker and Peck, 1972; 

Mallarino, 1996; Stammer and Mallarino, 2018). Therefore, tissue testing corn at V6-V8 

developmental growth stage should provide better results than testing it at R1 growth 

stage, along with keeping the timing between samples short relative to each other 

(Mallarino, 1996; Stammer and Mallarino, 2018).   

The goal of tissue testing is to assess the nutrient status of the crop. However,  
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Clover and Mallarino (2013) showed that K concentrations of corn at the V5-V6 growth 

stage have a poor capacity to assess K sufficiency and predict grain yield responses. Also, 

responses to P fertilization may be apparent in early season tissue samples, but affect 

yield. Often, plants undergo luxury consumption, an increase in early season tissue P and 

K concentration, but it does not lead to a yield response. Therefore, using tissue tests as 

the only source of information for P and K fertilization is not adequate for maximum 

utility of the test.  

There have been numerous studies that show “critical” concentrations for P and K 

in tissue tests in corn. Mallarino (2018) tested the value of tissue testing in predicting 

grain yield. It was shown that the stage at which the corn was sampled mattered when 

looking to predict yield, as corn sampled at the V5-V6 stage showed no yield increase 

when the P concentration was ≥ 0.48% and corn sampled at the R1 stage resulted in no 

yield increase at P concentration ≥ 0.25% (Fig. 2). There was also a difference between K 

critical levels when sampling at the different growth stages. At the V5-V6 growth stage, 

no yield increase was seen at K concentration ≥ 2.5% and corn sampled at the R1 growth 

stage showed no yield increase at K concentration ≥ 1.4%.  

One way plant nutrient health through plant tissue nutrient testing might be used is 

an indicator of the overall health of the soil. Although it is assumed that improved soil 

health contributes to improved nutrient plant health, little research has been conducted to 

demonstrate this connection. Often plant nutrient concentration or content can indicate 

plant nutrient health before visual deficiencies are expressed (Mallarino, 1996). The 

concentration or content of plant nutrients at different developmental stages have been 
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used as indices of sufficiency (Macy, 1936; Mallarino, 1996; Stammer and Mallarino, 

2018).   

Soil fertility levels and tissue concentrations have most always been thought of as 

separate independent plant nutrient diagnostic tools, but they may be able to be 

complimentary of one another in predicting yield response to fertilization. The objective 

of this research was to evaluate the relationship of both early-season corn tissue nutrient 

concentration and soil fertility tests for predicting corn grain yield responses.  

MATERIALS AND METHODS  

Research Sites and Locations  

This research was conducted as a public collaboration between the University of 

Missouri and Corteva Agrisciences. This project took place in Missouri. Data was 

collected during the 2019 and 2020 growing seasons. Each year, 50-60 different fields 

were selected. Each field contained 3-5 spatially distributed location sites (hereafter 

referred to as “stamps”) that were selected to capture a range of field conditions and to 

examine inherent in-field variability. The fields represented a wide range of soil and crop 

management systems in order to capture a range of corn tissue and yield responses across 

different soil health levels. Soil and weather information can be found in Table 3.1. In 

total, there were 446 stamps in this study spread throughout 97 total fields (Fig. 3.1). 

Fields were selected in the late fall/early spring by communicating with farmers and local 

networks, including industry representatives from MFA and Corteva Agrisciences. 

Operations were conducted such that farmers avoided applying S, P, and K to the stamp 

sites in order to provide a locally representative environment with the best opportunity for 
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response to treatments. Fields with recent grid soil sampling results allowed for selecting 

stamp sites that had both low and high soil fertility conditions. Stamps were placed based 

on differing landscape positions, soil series, and fertility levels, along with field access in 

mind. The goal of this experimental design was to encompass a wide range of field 

conditions and therefore soil health levels.   

Soil Sampling, Fertilization Treatments, and Laboratory Analyses  

Soil sampling and fertilization treatments were done for each stamp in the early spring 

of each growing season, approximately two to five weeks prior to planting. Each stamp 

site was a square with 12.2 m on each side, providing an area 148.8 m2.  

Coordinates of each stamp center were measured using Trimble GeoXT 6000 and Geo 7x 

GPS devices with approximately 6-cm accuracy. With the center identified, pre-cut ropes 

were stretched to define the stamp area. Using a hand-held compass, the stamps were 

oriented on a north-south bearing regardless of where the stamp was located in the field 

(Fig. 3.2).   

For soil fertility and health assessments, eight to twelve 2.54-cm (id) cores, to a depth 

of 15 cm, were obtained evenly distributed within the stamp area. The cores were split 

into two depths (0-5 cm depth and 5-15 cm depth) and composited into buckets at the 

time of sampling. After gentle hand mixing, the samples were combined for subsequent 

laboratory analysis into standard soil sampling boxes for traditional fertility analyses.   

For soil profile characterization and sub-surface fertility assessment, a Giddings 

hydraulic soil sampling machine was used to obtain one 4.5-cm (id) profile core to an 

approximate depth of 1 m. These were laid out on a processing table and visually 
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characterized by pedogenetic horizon. The surface 0-15 cm was designated as the Ap 

horizon. After designating the first horizon, the rest of the core was separated into 

pedogenic horizons (typically three or four) using soil color and texture cues. Soil 

samples were bagged and removed from the stamp area before fertilization treatments 

were applied.  

For fertilization treatments, the stamp area was sub-divided into four equal 6.1 by 6.1 

m quadrants (37.2 m2). One quadrant was designated as a control and received no 

fertilizer treatment. Fertilizer K, P, and S treatments were applied by hand to quadrants as 

shown in Figure 3.2. Fertilizer treatment rates were as follows: 1) control; 2) 112 kg ha-1 

of K2O applied as potash (0-0-60); 3) 112 kg ha-1 of P2O5 applied as triple super phosphate 

(0-45-0); and 4) 28 kg ha-1 of S applied as ammonium sulfate (21-0-24). So that all 

received equal N, an additional 25 kg N ha-1 as SUPER-U (46-0-0) was applied to 

quadrats 1-3 to balance the N applied with ammonium sulfate to treatment 4. 

Additionally, since both years of this study experienced above-average spring 

precipitation, an additional 67 kg N ha-1 was applied as SUPER-U to the entire stamp area 

immediately following tissue sampling, to guard against N deficiencies later in the 

growing season.  

Soil samples were delivered to Ward Labs in Kearney, Nebraska for traditional 

fertility analyses. Fertility analyses are summarized in Table 3.1.  

Plant Sampling for Tissue Nutrient Analyses  

Eight whole plants from each of the four quadrats of each stamp were collected at the 

developmental growth stage of V6-V8 for nutrient content assessment. Prior to sampling, 
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the central part of a treatment quadrant with a uniform stand was found and marked with 

plastic garden stakes for grain yield harvest at the end of the season. Outside of this 

designated yield area, random plants were identified for tissue nutrient content samples 

and collected. This sampling approach avoided a “border effect” on plants identified for 

grain yield. Harvested plants were placed into labeled brown paper bags for storage and 

drying. Samples were air/oven dried and ground to pass a 2-mm screen, then shipped to  

Ward Laboratories (Kearney, NE) for analysis of P, K, and S concentration.   

Grain Harvest  

Hand grain harvesting occurred after the corn has reached black layer, typically weeks 

before farmers began harvesting. Each treatment was examined closely before harvesting 

in order to avoid variance between the control and the other treatments due to any number 

of circumstances (e.g. animal damage, sprayer track damage, etc.). The four 12 foot rows 

were handpicked into bags and weighed with a Rapala ProGuide Digital Scale (Rapala, 

Minnetonka, MN). After the weight was recorded, an eight-ear sample was taken from 

each treatment and weighed with a digital kitchen scale (thousandths precision). These 

ears were then dried down and weighed again to determine grain moisture content, and 

then adjusted to market moisture content of 15.5% and cob weight subtracted using a 

grain to cob ratio of 0.89 to calculate a final yield.   

Data Management and Statistical Analyses  

Data were analyzed using R programming language (R Core Team, 2017). Due to the 

lack of traditional replication with this experimental design, an alternative measure of 

field experimental error was developed in a companion study. Specifically, in this study 
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of yield response across the same sites, a suite of methods were evaluated to estimate 

experimental error, concluding that approximately 10% random error could be expected 

for the yield response (J. Svedin, personal communication, July 2021). Due to response 

ratios requiring an error measurement to classify a response, yield differences were used 

as the response variable. These were calculated by subtracting the yield of the control 

from the yield of the specific treatment being discussed.  

This objective was met using multiple linear regression to test yield difference as a 

function of two diagnostic tools, soil test fertility and plant tissue nutrient concentration. 

Linear, quadratic, and all possible combinations of linear and quadratic interactions of the 

two diagnostic tools were considered in the regression model (p < 0.1). There were 302, 

299, and 286 data points used in the linear regression for K, P, and S respectively. 

Differences in observations by nutrient were due to isolated issues that varied from stamp 

to stamp (e.g., deer damage, tractor damage, localized depression areas with ponding and 

subsequent erratic stand).  

RESULTS AND DISCUSSION  

  This study included a wide range of growing conditions and soils, leading to 

diverse yields as well as tissue concentrations. Overall, yields ranged from 6.4 to 19.8 Mg 

ha-1, with an average yield of 15.1 Mg ha-1. Conditions were close to optimal for Missouri 

growing conditions over the two years of the study, which is why yields were high in 

comparison to the past five years, which averaged 10.05 Mg ha-1 across the entire state 

(Garino and Mends, 2019). Yield response, calculated as a difference between the control 

and each treatment yield, was examined using multiple linear regression relative to K, P, 
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and S soil-test fertility as well as early-season tissue nutrient concentrations. Since each 

nutrient’s response was unique, findings are presented by the nutrient.  

If both diagnostic tools accurately reflect nutrient availability, one would expect that 

they would be positively correlated. Figure 3.3 provides the correlation of these two 

diagnostic tools by the three nutrients of this investigation (control treatment only). While 

all three nutrients show positive correlation, only the K tests are somewhat strongly 

correlated. Both the P and S show only slight positive correlation, which can be due to 

different factors that will be discussed further in the results.   

Corn Yield Relative to Potassium Soil-Test and Tissue Concentration  

Corn yield difference was between -2.34 and 4.45 Mg ha-1, with an average yield 

difference of 0.33 Mg ha-1. Corn tissue K concentration ranged from 10.2 to 73.3 g K kg-1 

with a mean of 36.7 g K kg-1. These tissue concentration values are close to what other 

research has shown when measuring early-season corn tissue K concentration (Clover and 

Mallarino, 2013; Stammer and Mallarino, 2018). Soil-test K values ranged from 49 to 398 

mg kg-1, so a large variation was represented within the dataset, providing a range of 

potential yield response to fertilization.  

Multiple linear regression was ran with the idea of predicting yield difference using 

soil-test values along with tissue test values, to determine if tissue tests can aid in 

foreseeing end-of-season results. Yield differences were very scattered throughout the 

various soil-test K and corn tissue K concentrations (Fig. 3.4).   

Using three contrasting different K tissue concentrations, the model showing the 

effect of tissue K concentration and soil test K combined is further illustrated in Figure  
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3.5. Yield response as shown by yield difference was greatest when tissue K was low (15 

g K kg-1). Yield difference decreased as soil test K increased, a response approximately 

the same over all tissue K concentrations. Though the quadratic term of the plant tissue K 

was significant, the near parallel lines of the three tissue concentrations suggests the 

effect over the soil test values of this study was mostly linear in nature. These findings 

demonstrate that yield response to K fertilization was elucidated by including tissue and 

soil testing together. The blue line represents a linear model best fit line if just soil-test K 

values were used to predict a yield difference. For this line no yield difference occurs at 

about 225 K mg kg-1; depending on the CEC, but this is considerably higher than what 

would be expected given current soil test K interpretations defining a critical value for 

when to fertilize.  

Analysis results from soil samples taken before planting, sometimes months before, 

under the current soil test interpretation standards only weakly predicted fertilizer K corn 

response. Adding tissue K findings demonstrate the value of this diagnostic tool. 

However, K fertilization in-season may not be feasible, but such may still provide 

information for future seasons for the field in question or other like fields. Many factors 

go into plant K uptake. One notable factor is the portion of the root zone not sampled by 

soil sampling. Crop K uptake in some soils may have greater or less K supply because of 

sub-soil fertility, that soil not assessed with the standard 20-cm surface soil sample.  

Whereas the tissue sample uses the plant as “the sampler” and the sample depth is 

whatever depth of roots are at the time of tissue sampling. If farmers using tissue analysis 

know plants within a field do not uptake as much K as anticipated using soil testing 

methods, they may be able to adjust their interpretation and make a better fertilizer 
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management decision in the future. More research is needed to help understand how to 

make these adjustments, but this opens the question of the possibility of using tissue 

testing in a complimentary way to soil-tests.   

Corn Yield Relative to Phosphorus Soil-Test and Tissue Concentration  

Yield difference between the control and phosphorus treatment was between -2.21 and 

3.61 Mg ha-1, with an average yield difference of 0.22 Mg ha-1. Corn tissue P 

concentration ranged from 2.4 to 7.9 g P kg-1, but averaged 4.5 g P kg-1. These tissue 

concentrations were similar to those observed in previous studies where the whole plant 

was taken at V6-V8 (Mallarino, 1996; Stammer and Mallarino, 2018). Soil-test P ranged 

from 2 to 87 mg kg-1 within the study, creating a diverse set of data with a wide range of 

outcomes. Yield differences relative to soil-test P and tissue P concentration show 

considerable scatter, similar to that found with K (Fig. 3.6).  

Regression analysis on corn yield difference found no effect to soil-test P and/or plant 

tissue P for this dataset. There are many possible reasons for this to occur, with a few to 

follow. First, it may be that plant P uptake was not significant early in the growing season 

because microbes are not active in the soil due to soil temperatures and they are important 

for P cycling in the soil. The growing seasons that were observed were near ideal seasons, 

with timely precipitation in each, which may have kept microbial activity high throughout 

the rest of the season after tissue tests were taken. This would mean more P is available 

throughout the season to be taken up by the plants, which cannot be calculated by the soil 

fertility or tissue concentration tests. Another key reason is the fact that P is immobile in 

the soil. This means that early season, when root systems are relatively shallow in the soil, 
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corn plants are not able to reach all of the P that will be available throughout the growing 

season yet. As the season goes on and the roots reach deeper, more P is available to be 

absorbed into the plant. One last possible reason is that hybrids may be better now than 

they were in the past at taking up nutrients at lower concentrations. Also, this project had 

no replication to calculate an error with each tissue/yield measurement, there is only a 

yield difference taken into account in the model. This project is relying on a large 

population of differences to tell if there was an actual overall difference in yield, and 

therefore may drown out some of the possible sites with a positive response.  

Corn Yield Relative to Sulfur Soil-Test and Tissue Concentration  

Corn yield difference was between -2.47 and 4.30 Mg ha-1, with an average yield 

difference of 0.27 Mg ha-1. Corn tissue S concentration ranged from 1.25 to 4.4 g S kg-1, 

but averaged 2.4 g S kg-1. In this study, soil-test S ranged from 1.8 to 16.3 mg kg-1. Figure 

3.7 illustrates yield difference relative to these two metrics (n=286). Regression analysis 

on yield difference found soil test S alone was unhelpful, but plant tissue S did help 

explain yield difference (Table 3.3). In Missouri, the sulfate method of soil test S is the 

primary diagnostic tools used for recommendations. These results would support that this 

test is unreliable, and new methods for diagnosing corn S deficiency are needed.  

  Though subtle, as tissue S concentration increased, yield difference decreased 

(Fig. 3.8). While the relationship has poor predictive power (i.e., very low coefficient of 

determination), the relationship does help identify when S deficiency maybe occurring. 

Using the model findings, a plant tissue S test content of 1.5 mg S kg-1 would with S 

fertilization produce a 1.2 Mg ha-1 yield response. Once tissue S concentration reaches 
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~2.5 mg S kg-1, no yield response to S fertilization would be expected. This means that 

taking a tissue sample early in the growing season can help farmers understand whether 

or not they will get a yield increase at the end of the season by adding S fertilizer. If not 

practical for the current growing season, it may help for future growing seasons on the 

same field. If a field is known for having a low uptake rate during the growing season, it 

may be practical to apply more fertilizer throughout the season in order to combat it and 

attain a higher yield.  

CONCLUSION  

This study looked at K, P, and S soil fertility and early season tissue concentrations to 

try to better understand how these two diagnostic tools might be used together for 

predicting yield response to fertilization. Potassium yield responses were best predicted 

using soil-test K, tissue K concentration, and the quadratic tissue K concentration, with all 

three variables being significant (p < 0.1). This suggests that current fertilizer 

recommendations using just soil-test K may be improved upon by including tissue K 

concentration tests. Additional research on this finding is warranted. Using these two tests 

were unhelpful when evaluating crop response to P fertilization, caused by one of many 

factors (e.g. subsoil fertility, microbial activity, etc.). Though weak, the sulfur plant tissue 

test did show promise for knowing when corn would respond to S fertilization.  

This research, like many before, suggest current tools for diagnosing K, P, and S corn 

crop needs are not strong. There are many factors that influence the final yield of a plant, 

such as subsoil fertility, soil health, microbes present in the soil, and weather. Perhaps 

these factors often drown out the possibility of establishing simple relationships between 
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standard soil fertility, tissue nutrient concentrations, and yield that are only one or two 

dimensional.  
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TABLES AND FIGURES – CHAPTER 3  

Table 3.1. Soil fertility and plant tissue analyses with associated acronyms, methods, and 

citations.  

Analyses  Acronym  Method    Citation  

Soil Properties         

Phosphorus  Bray1  Bray 1; Mehlich-3  Bray and Kurtz 1945; Mehlich 1984  

Potassium  K mg kg-1  Ammonium Acetate  Warncke and Brown 1998  

S-SO4-  S mg kg-1  Mono Calcium  
Phosphate Extraction  

Hoeft et al. 1973  

Organic Matter  OM  Loss on Ignition  Ben-Dor and Banin 1989  

Cation Exchange 

Capacity  
CEC  Sum of Base Cations  Rhoades 1982  

Soil Texture  Clay; Silt;  
Sand  

Hydrometer Method  Gee and Bauder 1979  

      

  

  

  

Plant Tissue Properties    
  

 

Potassium Content  K  
  

(Association of Analytical Chemists  
(AOAC), 2019)  

Phosphorus Content  P  
  

(Association of Analytical Chemists  
(AOAC), 2019)  

Sulfur Content  S   (Association of Analytical Chemists  
(AOAC), 2019)  

USDA-ARS = Soil and Water Quality Lab (Columbia MO); Ward = Ward Laboratories (Kearney, NE)  

  

Table 3.2. Multiple linear regression results containing the variable, coefficient, p-value, 

significance, and R2 value of the entire model.   

Variable  Coefficient  p-Value  Significance  R2  

Intercept  1.9593  1.96 x 10-7  ***    

Soil-test K mg kg-1  -0.0028  0.01  **    

Tissue Test g K kg-1  -0.0604  0.005  **    

(Tissue Test g K kg-1)2  0.0006  0.04  **    

          

Overall Model    2.28 x 10-8  ***  0.11  
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Table 3.3. Multiple linear regression results containing the variable, coefficient, p-value, 

significance, and R2 value of the entire model.  

Parameter  Coefficient  p-Value  Significance  R2  

Intercept  0.8346  0.01  **    

Tissue Test g S kg-1  -0.2462  0.08  *    

          

Overall Model    0.0754  *  0.008  

  

  

Figure  3.1 . Map of locations of sites spread throughout Missouri. Each pin represents a  

different field used in  the study, with 97 total fields used.   
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Figure  3.2 .  Outline of 40’ by 40’ stamp split into four 20’ by 20’ sections  
along with the respective fertilizer applications.   
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r = 0.55   r = 0.06   

r = 0.07   

Figure 3.3. Tissue test results relative to soil test resu lts for K, P, and S. The blue line on each graph represents the best fit  

linear model along with the standard error of the model. The correlation coefficient is also shown for each nutrient.   
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Figure 3.4.   Yield  difference  results relative to soil - test K (to p) and early - season corn tissue K  

c oncentration (bottom) where the yield difference was found by subtracting treatment 2 yield  

by the control yield.   
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Figure 3.5 . Yield difference relative to soil - test K shown with individual points. The blue  

line represent s the linear regression best fit line only including soil - test K as the predictor  

variable. The red, black, and green lines represent the multiple regression model over  

soil - test K levels and with constant tissue concentrations of 15, 30, and 60 g K kg - 1 .    
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Figure 3.6. Yield difference results relative to soil - test P (top) and early - season corn  

tissue P concentration (bottom).   
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Figure 3.7. Yield difference, calculated by subtracting the S treatment yield by the  

control yield, relative to soil - test S (top)  and early - season corn tissue S  

concentration (bottom).     
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Figure 3.8. Yield difference relative to the tissue S concentration. The blue line is the best fit  

linear model line showing how tissue concentration is related to yield difference in corn,  

with standard error shown in grey (SE=1.069).   


