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ABSTRACT 

Training a surgeon to be skilled and competent to perform a given surgical procedure, 

is an important step in providing a high quality of care and reducing the risk of 

complications. Traditional surgical training is carried out by expert surgeons who observe 

and assess the trainees directly during a given procedure. However, these traditional 

training methods are time-consuming, subjective, costly, and do not offer an overall 

surgical expertise evaluation criterion. The solution for these subjective evaluation 

methods is a sensor-based methodology able to objectively assess the surgeon’s skill level.  

The development and advances in sensor technologies enable capturing and studying 

the information obtained from complex surgery procedures. If the surgical activities that 

occur during a procedure are captured using a set of sensors, then the skill evaluation 

methodology can be defined as a motion and time series analysis problem. This work aims 

at developing machine learning approaches for automated surgical skill assessment based 
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on hand motion analysis. Specifically, this work presents several contributions to the field 

of objective surgical techniques using multi-dimensional time series, such as 1) introduce 

a  new distance measure for the surgical activities based on the alignment of two multi-

dimensional time series, 2) develop an automated classification framework to identify the 

surgeon proficiency level using wrist worn sensors, 3) develop a classification technique 

to identify elementary surgical tasks: suturing, needle passing, and knot tying , 4) introduce 

a new surgemes mean feature reduction technique which help improve the machine 

learning algorithms, 5) develop a framework for surgical gesture classification by 

employing the mean feature reduction method, 6) design an unsupervised method to 

identify the surgemes in a given procedure. 
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 Introduction 

 

1 . 1 Statement of the Problem  

The skills of surgeons receive increasing attention from healthcare organizations due to the 

possible increase of financial and legal expenses. Factors such as teaching, training, and 

practice, that vary from one surgeon to another, significantly influence the surgeons’ skill 

levels. Existing evidence shows that more surgical training and objective assessment can 

improve patient care outcomes and provide faster recovery [1]. Several factors determine the 

surgeon proficiency levels, including cognition capabilities, decision-making and dexterity 

skills. Some of these factors are learned in Medical School, whereas others depend on the 

apprentice training  [2, 3].  

"See one, do one, teach one," the traditional surgical training approach by William 

Halsted, consists in a relationship between the senior surgeon and the apprentice [4]. This 

master-trainee surgical pattern involves subjective assessment of surgery skills, which can 

produce bias and subjectivity in the surgical evaluation  [5]. Also, it requires the senior 

surgeon to directly attend the surgical procedure performed by the apprentice as an 

observer, which produces extra expenses for the health system [6]. To address this problem, 

various methodologies for automated evaluation of surgical skills have been proposed 

recently. The need for objective surgical skill assessment methods in surgical training was 

mentioned by multiple authors in the medical literature [7]. These methods are objective, 

more accurate, affordable, and provide analytic information about surgeon surgical skills 

within various surgery environments [5].  
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One methodology for surgical training and assessment, is based on virtual reality 

simulator systems or benchtop camera-based versions (http://medvisionsim.com). Such 

systems help surgeons to practice and develop skills in a safe and secure environment 

before trying them on living patients [1, 8]. These training methods that offer quantifiable 

and statistical measurements for modeling and evaluating the surgeon skills, can benefit 

medical curriculum and hospital surgeon training [1]. The challenge then becomes to 

evaluate the surgical process using the quantitative data from these advances to understand 

the surgeon movements during a given surgical task. Robotic Minimally Invasive Surgery 

(RMIS) is one solution to overcome this challenge to enhance the effectiveness at the 

operating room (OR) [9]. Da Vinci robotic surgical system is an example to offering a data-

driven that has the potential to evolve the surgeon skills [10]. Kinematic and video data 

represent valuable information sources about the surgeon's motion during a surgical task 

from da Vinci systems and enable them to analyze their performance using data-driven 

methods [1, 11]. Recently, wearable sensor devices another instance of the recoded data 

that added further information used for surgical events regarding surgeon movements and 

unknown patterns during surgery by statistical and machine learning models [12, 13].  

The automated surgical skill methods are recently gaining more attention and seeing 

decent development in surgery curricula [5]. Employing the machine learning approaches 

to data obtained from robotic surgery systems and wearable sensor devices inspired the 

researchers to develop and investigate automated models to evaluate and assess surgeon 

professional knowledge. Also, it might help improve prospective coaching apprentices [12, 

14, 15]. Current advances in machine learning and computer vision techniques help 

understand and analyze surgeon motions during a surgery task. Also, these methods 
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provide the chief surgeon a source of information to evaluate the trainee's skills and 

feedback to the trainees about their performance while doing a particular procedure [12].    

In this work, we elucidate some of the obstacles and challenges in automated surgical 

skill assessment by evolving novel approaches to address these obstructions. The escalating 

needs for objective surgery skill evaluation motivated us to develop techniques based on 

machine learning. This work aims to assess a surgeon's skill based on a multi-dimensional 

time series to tackle the problems of surgical aptitude levels, surgical tasks classification, 

and surgemes recognitions to be achieved.       

 

1 . 2 Background  

Automated approaches to assess surgeon dexterity in surgery are recently rising in medical 

education fields. It is not straightforward to build a computerized model that duplicates the 

expert surgeon evaluation for trainee surgeons. However, there are continuing works taking 

place toward an objective surgical assessment.  

We found many excellent reviews and research studies for automated surgical 

assessment and its importance across numerous surgery environments. We provide a 

survey about earlier and current key works accomplished on objective surgical methods 

and available datasets. Most of the works breakdown into one of three surgical categories: 

1) Surgical Skills, 2) Surgical Tasks, and 3) Surgemes segmentation. The following gives 

more description about each group.  
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1. 2. 1 Surgical Skill Assessment 

Traditional surgical skill assessment is based on competency checklists measure, where a 

senior faculty surgeon usually observes a surgical trainee complete a given surgical task  

[6, 16]. However, this approach is susceptible to the assessor and might be biased. 

Alternative methods suggest using surgical movement data (e.g., kinematic and video) that 

is recorded by surgical robotic or surgical simulator systems as for examples, and then 

using the statistical information (e.g., speed, time, distance, number of hand movements) 

to evaluate the surgeon overall performing [6]. But these global statistical methods [17-20] 

provide an average performance for a given measurement, and it is unable to provide 

feedback where the trainee needs to practice more [6].   

Different earlier works focused on the automated surgical assessment have seen good 

progress. These methods considered the surgeon movement using either: 1) kinematic 

information recorded by a robotic surgical system, 2) video records, or 3) wearable sensor 

data.  

Pioneer attempts to lead the way using data-driven from minimally invasive surgery 

for skill assessment by utilizing global statistics measures. Early work [19] measures the 

magnitude of force and torque in addition to the time of completion through laparoscopic 

surgery to evaluate the skill level between novice and expert surgeons. An alternative 

approach used the mean values of the number of movements and time to task completion 

to measure the talent among four groups of surgeons [21]. Another method includes time, 

distance, speed, phase, and curvature to measure the difference between novice and expert 

surgeons [18]. Although these predefined statistical features methods are easy to 

implement and produce substantial results, they are particularly time-consuming, and they 
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give the overall metrics without local feedback information about the surgical training task 

[6, 22].   

Alternatively, one early approach [23] used the Hidden Markov Models (HMM) based 

on surgeon 3D motion traces to identify the surgical expertise between two levels, expert 

and novice. Another method [24] suggested using the sparse hidden Markov (S-HMM) to 

classify the surgical skill and gestures. For expertise classification, they learn an S-HMM 

model on kinematic data, then assigning a test trial to one model (Expert, intermediate, or 

novice) with the highest likelihood.  

These approaches are structured-based and depend on the number of training samples, 

tuning parameters, and it takes massive pre-processing. This model needs 

complicated preprocessing [25] and leads to low performance with a low number of 

samples [24]. Another method was proposed by [25] to predict the surgeon skill level 

(expert and novice) based on movement features of the surgical arms using logistic 

regression (LR) and support vector machines (SVM) classifiers for a suturing surgical task. 

They extended their work to include eight global movement features (GMF) in [26]; they 

applied LR, SVM, and kNN classifiers to distinguish between the previous expertise levels 

for suturing and knot tying surgical tasks. In [27], a framework based on trajectory shape 

using DTW and k-nearest neighbor classifier proposed for surgical skill evaluation. This 

model can also provide online performance feedback through training. More recently, [28] 

proposed an approach based on symbolic aggregate approximation (SAX) and vector space 

model (VSM) to identify distinctive patterns of surgical procedure. They used the SAX to 

obtain the sequence of letters by discretizing the time series first. Then they utilize the 

VSM to find the discriminative patterns that represent a surgical motion which finally used 
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them to be classified. A variety of holistic analysis features and a weighted features 

integrated approach proposed by [13] for automated surgical skill evaluation and GRS 

score prediction. These holistic features include approximate entropy, sequential motion 

texture, discrete Fourier and discrete cosine transform. They used the nearest neighbor as 

a classifier and linear support vector regression (SVR) for prediction. The works of 

literature mentioned above used the kinematic data information obtained from RMIS for 

surgical skill assessment. However, none of these methods were applied to the wearable 

sensors data like accelerometer which might give more information about the surgeon's 

motion during a surgical practice.  

Recently, several advanced techniques applied the convolution neural network and 

deep learning methods for automated surgical skill evaluation. A parallel deep learning 

framework was proposed by [29] to identify the surgeon skill and task recognition. In their 

approach, they used a fusion technique between convolution neural networks and gated 

recurrent networks. Alternative deep convolution neural architecture based on ten layers 

proposed by [15] for surgical expertise evaluation. Another parallel deep learning approach 

was proposed in [22] by combining the LSTM recurrent network and CNN to indicate the 

skill levels. Additionally, recent studies have suggested approaches that use motion from 

videos [30, 31] and wearable sensors to evaluate surgical skills [32, 33]. These methods 

platform various features to perform Objective Structured Assessment of Technical Skills 

(OSATS) assessments. An approach proposed for surgical skill assessment is based on the 

acceleration data of both hands performing a basic surgical procedure in dentistry [34]. 

Also, an entropy-based features technique that utilizes both video and accelerometer data 

proposed for surgical skill assessment [35]. Despite these techniques which are building 
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the basis and inspire performance results in the surgical skill area, however, some limits 

and drawbacks occur for the existing methods. Some methods need predefined boundaries 

of the surgemes which have been done usually by a chief surgeon, i.e., consuming a 

considerable time. In other methods, decomposing the motion sequence requires a massive 

and complicated preprocessing in addition to a deficiency of robustness. Alternatively, the 

need to develop a new distance measure might have an advantage to a more robust and 

accurate assessment framework. 

1. 2. 2 Surgical Task Recognition 

A surgical task is described as a sequence of movements to accomplish a medical 

procedure [12]. Preliminary surgical task classification approaches focus on identifying 

high-level tasks (HLT) in the operating room (OR) environment using Hidden Markov 

Models for surgical workflow analysis [36].  A current technique [37] applied dynamic 

time warping (DTW) and kNN classifier to distinguish between three training procedures: 

suturing, needle passing, and knot tying. Another work [38] investigated the use of 

derivative DTW (DDTW) as a similarity measure with the kNN classifier for the three 

fundamental surgical tasks. A recent deep-learning approach [29] was designed to join a 

CNN and gated recurrent unite (GRU) architecture for recognizing surgeon skill levels and 

surgical tasks simultaneously. The beforehand approaches used the kinematic data for 

analysis. In contrast, [39] applied the long short term memory (LSTM) and convolution 

neural network (CNN) on video information to classify the surgical tasks and the surgical 

gestures (surgemes). Even these approaches could find underlying surgical tasks; however, 

they are limited and have some common flaws such as time-consuming, heavyweight 
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computation load and architecture, high pre-processing data, and significant human 

interaction.   

1. 2. 3 Surgemes Segmentation and Recognition 

 During a given surgical task, a surgical activity component is characterized as a 

surgical gesture or in medical language well-defined as surgemes [12]. Recently, studying 

surgemes has raised attention for many developers in the medical training area after using 

the advances of robotic surgical simulators, which are based on sensors that enable the 

capture of the surgeon motions [28]. Numerous methods for surgemes segmentation have 

been proposed, which can be divided into supervised and unsupervised methods depending 

on the technique used to identify a given surgical task's components. Additionally, the 

existing surgical activities segmentation approaches categorize their type of information 

sources into four groups: kinematic, video, wearable sensors, or a combination of video 

and one of the other data. 

1. 2. 3. A Surgemes Supervised Approaches 

The task, in this case, is to locate the surgemes to the right categories that it belongs 

to in a given surgical undertaking, where the boundaries of each surgeme are predefined. 

Several pioneered studies attempted to decompose a surgical task into a set of surgical 

activities. One early work [24] used the sparse HMM with learning the dictionaries of each 

surgeme to classify and represent a new action. A variations technique of HMMs and 

conditional random fields based on temporal methodologies for joints segmentation and 

features-based strategies (e.g., linear dynamical system (LDS) and a bag of spatial-

temporal features (BOF)) to classify surgemes are proposed by [6]. In [40], they proposed 

a method of two training stages, learning a shared dictionary among all the possible 
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surgemes jointly in conjunction with the multi-class linear support vector machine (SVM) 

for segmentation and classification of the surgical gestures. Another end-to-end model 

fusion, the conditional random field (CRF), and discriminative sparse were presented by 

[41] for surgical activities segmentation and recognition. In [37] and [27], a framework 

based on DTW along with k-nearest neighbor is used for identifying surgemes. Recently, 

an attempt by [28] applied symbolic aggregate approximation (SAX) and vector space 

model (VSM) for discovering an interpretable pattern in surgical actions.  

The mentioned approaches above used the kinematic data in their works except for 

[6], where the authors used both the kinematic information and video data. Several 

techniques proposed categorizing the surgical task into a set of subtasks or surgemes using 

video information and showing that applying these data can improve the surgical 

recognition analysis performance [42, 43]. For instance, [44] applied three techniques for 

surgemes classification: linear dynamic systems (LDS), a bag of features (BOF), and a 

fusion method for LDS and BOF using multiple kernel learning (MKL). Recent works 

apply the deep learning techniques after their widespread use in machine learning and 

computer vision applications for surgemes segmentation and classification. An LSTM 

approach was proposed by [45] to classify the kinematic information into labeled surgical 

gestures. In [46] developed a spatiotemporal CNN (ST-CNN) for fine-grained 

segmentation and recognition of surgemes. Another deep-learning approach based on the 

encoder-decoder temporal convolution network is suggested by [46, 47] to segment the 

surgical activities using video data. Recently, [48] deployed using a fusion between 

temporal convolution kernels and bidirectional LSTM for labeling the video sequences of 

the suturing task into surgical subtasks. Another branch of a deep-learning method for joint 
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surgemes segmentation and classification using deep reinforcement learning (RL) was 

proposed by [49].                   

1. 2. 3. B Surgemes Unsupervised Approaches 

Most of the techniques are supervised classification and based on predefined or pre-

segmented surgemes data in the previous categories. These surgical gestures are annotated 

manually by chief surgeons, consuming more time and being susceptible to human 

mistakes by missing parts (surgemes) or inconsistently criteria applied throughout a 

surgical task [12, 50]. Several works intended to identify surgical activities from 

unsupervised viewpoints without prior knowledge [51-53]. In [51] proposed a framework 

for segmentation and recognition surgemes from kinematic data. They first applied 

unsupervised segmentation by finding a relevant selection of dexemes (a numerical 

representation of subgestures to perform a surgemes). Secondly, learning features from 

dexemes to associate them to corresponding surgemes (composed of a set of dexemes) 

[51]. Another approach introduced by [54] is known as soft boundary unsupervised 

surgemes segmentation. The temporal sequence of surgemes segment and merge based on 

some criteria and then smooth the boundaries between parts. A recent deep-learning 

approach was proposed by [55], based on a deep convolution network using both kinematic 

and video data for surgical gestures segmentation.  

1 . 3 Key Contributions  

This work puts the spotlight on novel methods that depend on a surgery similarity measure. 

The key roles of our work present several contributions accomplished in the region of 

surgical skill assessment and surgical task analysis, which can be summarized as follows: 
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• Proposed a new distance measure, namely PDTW, for time series analysis mainly 

for surgical skill assessment classification (Chapter 2) and surgical task recognition 

(Chapter 3). The novel surgery skill distance PDTW comprises two main elements: 

Dynamic Time Warping (DTW) and Procrustes analysis (PA). The DTW method 

aligns two multi-dimensional sequences with various lengths by stretching both 

signals to become equal. The Procrustes measure, which includes reflection, 

scaling, and translation, can then be used as a distance measure between two aligned 

time series. 

• We also developed a framework to automatically classify the surgical skill 

assessment into three expertise levels: expert, intermediate, and novice. The new 

distance is applied in the proposed model to align various length time series using 

DTW, then calculate their distance using Procrustes analysis. The k-nearest 

neighbor (k-NN) is used as a classifier in the framework to indicate the surgeon 

proficiency level. Our proposed approach is employed on multi-dimensional raw 

data and applied for various data kinds, e.g., kinematic and Vicon system data 

(Chapter 2 and 4) and wearable sensors data (Chapter 4). The performance of the 

proposed framework is validated using two sets of experiments on various types of 

information. Our results demonstrate the high performance of the PDTW over the 

conventional distances in classifying the surgeon skill levels on different tasks. 

Also, we conduct another scenario using only the right and left hands' cartesian 

coordinates instead of using the complete information. The experimentation 

illustrates that it reduces time consumption. Therefore, it can be applied for surgeon 

proficiency evaluation using low-cost worn devices instead of using pricey tools.  
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• We developed a surgical task recognition framework to classify three essential 

robotic minimally invasive surgery (RMIS) tasks: suturing, needle passing, and 

knot tying. We used the multi-channels kinematic data representing the surgeon's 

motion traces during a given surgical task in this work. The main components of 

the proposed model are the PDTW distance and the Fuzzy k-NN. A key benefit in 

addition to our distance measure PDTW is utilizing the Fuzzy k-nearest neighbor 

as a classifier by assigning a membership to get a confidence classification measure. 

Two different experiments were used to evaluate the proposed technique's 

performance over experiments comprising state-of-the-art methods on a widely 

utilized surgery dataset (Chapter 3).  

• We built a classification approach to identify the surgical gestures based on raw 

kinematic data. In addition, we provide the mean feature reduction of surgical 

movements, which is efficient, reliable, and minimizes the complexity of the 

proposed approach while maintaining its functionality. Our proposed method 

utilizes k-NN and SVM algorithms to classify surgemes. Also, we employ two 

distance measures, the DTW distance with the k-NN technique and the Euclidean 

distance with the SVM algorithm. The best performance was achieved by 

combining the mean feature reduction method and the SVM algorithm. For both 

LOSO and LOUO cross-validation setups, our suggested methodology outperforms 

the existing method based on raw kinematic data. 

• We created a technique for identifying surgical gestures by clustering surgical 

activities learned directly from raw kinematic data using unsupervised approaches 

based on predefined surgemes. First, we build the prototypes by clustering the 
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surgemes of the expert surgeon from all his\her trials. Then, we map the other 

surgeons surgemes to the closest representative. Finally, we report the clustering 

accuracy using the rand index technique. Our unsupervised surgemes clustering 

approach uses four approaches based on Hierarchical and FCM algorithms. We 

validated our methods using a real dataset by analyzing raw kinematics data from 

a suturing task with varying degrees of expertise levels. Additionally, we discuss 

the benefits of using mean feature technique of the time series data prior to 

clustering in terms of computational time savings and reducing the system 

complexity. 

 

The research conducted in this dissertation has materialized in the following 

publications: 

1. Albasri, Safaa, Mihail Popescu, and James Keller. "A Novel Distance for 

Automated Surgical Skill Evaluation." In 2019 E-Health and Bioengineering 

Conference (EHB), pp. 1-6. IEEE, 2019.  

2. Albasri, Safaa, Mihail Popescu, and James Keller. "Surgery Task Classification 

Using Procrustes Analysis." In 2019 IEEE Applied Imagery Pattern Recognition 

Workshop (AIPR), pp. 1-6. IEEE, 2019. 

3. S. Albasri, M. Popescu, S. Ahmad, J. Keller "Procrustes Dynamic Time Wrapping 

Analysis for Automated Surgical Skill Evaluation", Advances in Science, 

Technology and Engineering Systems Journal, vol. 6, no. 1, pp. 912-921 (2021). 
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 A Novel Distance for Automated Surgical Skill 

Evaluation 

 

The assessment of surgical skills of surgeons with different levels of expertise has 

traditionally been performed by direct observation by a senior expert surgeon inside the 

surgical room. However, this method suffers from being subjective, costly, and lacking any 

quantitative indication of the appropriate skills level. Instead, an automatic evaluation 

would provide an objective and quantitative measure of skill levels [25]. To provide a rich 

source of quantitative motion information, robot-assisted minimally invasive surgery 

(RMIS), such as the Da Vinci surgical system (synchronized kinematic data and video), 

can be used [1]. These recorded data provide great opportunities to evaluate and train 

surgeons by creating descriptive mathematical models. Applying machine learning 

techniques to the Da Vinci data has motivated researchers to develop automated 

computational models and approaches to measure surgical proficiency, assess surgeon 

skills, and coach prospective trainees [14, 15]. Several methods have been proposed in the 

past to address this problem using either predefined surgical gestures (surgemes) or overall 

motion trajectories. For surgemes, statistical approaches such as Hidden Markov Models 

(HMM) provide an objective tool to evaluate laparoscopic surgical skills between expert 

and resident surgeons [56]. Despite the ability of this method to find the structure of RMIS 

tasks, it suffers from requiring an enormous number of training samples and parameter 

tuning, which leads to low performance [24] and need for complicated preprocessing [25]. 

An automated personalized gesture training model based on DTW was proposed [25] to 
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evaluate surgeon skills and provide online performance feedback during training. A 

texture-, frequency- and entropy-based feature set for automated surgical skill assessment 

framework was proposed in [13]. Also, in their study they proposed a weighted feature 

fusion technique for skill scoring using four holistic features on kinematic data: sequential 

motion texture (SMT), discrete Fourier transform (DFT), discrete cosine transform (DCT) 

and approximate entropy (ApEn) [13]. 

In contrast, most researchers have been focusing on motion features because of their 

simplicity in extraction and implementation. These features are named global movement 

features (GMF). It includes operation time, path length, depth perception, speed, and 

motion smoothness. They have been used to distinguish the relation between surgical tools 

movement patterns of an expert and novices during a surgery task [25]. Additionally, two 

features: turning angle, and tortuosity were added to the GMF for more accurate and robust 

in automatically evaluating surgeons [26]. 

Most of the prior works used temporal features or surgemes which lack efficiency and 

need domain-specific knowledge. More recently, deep conventional learning [15] and 

convolutional neural networks (CNN) [57] have been proposed for surgeon skills 

assessment using multivariate time series kinematic data in three independent tasks. 

Although these methods build the foundation for automated surgeon skills evaluation and 

obtained promising results, they have a few drawbacks such as complexity, complicated 

preprocessing, lack of robustness and are time consuming due to the need of parameter 

estimation. Instead, defining an adequate proficiency distance measurement may lead to a 

more robust and accurate evaluation framework.  
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In this chapter, we introduce a novel motion-based distance for surgical skill 

assessment using kinematic data for surgical training that consists of two main 

components: Dynamic Time Warping (DTW) and Procrustes analysis (PA). The DTW 

method aligns two time series with different lengths by contracting/dilating both signals 

such that their lengths become equal. The Procrustes analysis, that includes reflection, 

scaling, and translation, can then be used as a distance measure between two aligned 

sequences. Finally, a k-nearest neighbor (kNN) method is employed to classify a new 

sample surgery using the PDTW similarity to other data samples. In this paper, we use the 

surgery samples to classify surgeons in three classes: novice, intermediate and expert. 

While data obtained from RMIS systems is easiest to process, our method can handle any 

type of sensor data that can capture surgery motion. As an example, we show some results 

obtained from surgery motion captured with a 3D marker-based system (Vicon, 

www.vicon.com).  

2 . 1 Methodology  

The main components of our proposed framework are motion alignment, Procrustes 

distance, and classifier as shown in Figure 2.1.  DTW is used to align two multidimensional 

time series performed by surgeons, while similarity measure is calculated by the Procrustes 

measure. Finally, the kNN is used to classify the skill levels of the surgeon. 

 

Figure 2.1 PDTW Skill Assessment for RMIS Framework. 

 

http://www.vicon.com/
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2. 1. 1 Similarity Measure 

To obtain a good classification, a crucial element is to define a good distance measure 

between two surgery tasks. Each task is represented by a set of features extracted from the 

traces (time series) of the motion capture sensors. Euclidean distance is one possible 

method. Assume two time series 𝑋 =  (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑌 =  (𝑦1, 𝑦2, … , 𝑦𝑛)of the same 

length, their Euclidian distance is [58]: 

𝐷(𝑋, 𝑌) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

            (2 − 1) 

 

Euclidian distance is simple and widely used; however, it has some limitations and 

drawbacks. The Euclidean method suffers from being very sensitive to outliers, translation, 

and requires both signals to be of the same length. For that reason, we need a measure that 

can process signals with different lengths as the same surgery task might have different 

lengths even when performed by the same surgeon. One solution is to use a warping 

distance measure such as the Dynamic Time Warping (DTW). DTW can process signals 

with different lengths, it stretches or contracts both signals (aligns them) such that their 

length becomes equal [58].  

Let X𝑛×𝑣 = [𝑋1, 𝑋2, … , 𝑋𝑛] and Y𝑚×𝑣 = [𝑌1, 𝑌2, … , 𝑌𝑚] be two sequences having v 

features and of length n and m, respectively. To align X and Y, we form a two-dimensional 

(𝑛 × 𝑚) grid distance. Each point 𝑑𝑖𝑗 of the grid corresponds to the distance measure 

(usually Euclidean) between every possible combination of two instances 𝑥𝑖 from X and 

𝑦𝑗 from Y of the same features length (v) as follows [59]: 
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Dij(xI, yj) = √∑(xik − yjk)
2

v

k=1

     (2 − 2) 

The next step is to find the warping path through the grid, the path that attempts to 

minimize the total distance (warping cost) and give the best match between two signals 

and satisfy boundary conditions, continuity, and monotonicity constraints. It is usually 

achieved by using a dynamic program to calculate the cumulative distance 𝛾(𝑖, 𝑗), which 

is the distance of the current cell (𝑑𝑖𝑗) and the minimum of the cumulative distance of the 

adjacent cells [59]: 

Γ(I, j) = dij + min{γ(i − 1, j − 1), γ(i − 1, j), γ(I, j − 1)}         (2 − 3) 

Although DTW is widely used in many applications and is a more robust distance 

measure than Euclidean distance, it fails for complex multidimensional signals. It can also 

produce singularities by warping the X-axis where unevenness in the Y-axis is 

encountered. Features like valleys, peaks, and inflection points can cause DTW to fail to 

properly align two signals [59].  

A common method for measuring the similarity of two shapes in directional statistics 

is the Procrustes shape analysis [60, 61]. The Procrustes analysis consists of best matching 

two shapes using similarity transformations (rotation, reflection, scaling, translation) to be 

as close as possible in the least squares sense. To examine the shape variability in a dataset, 

the Procrustes analysis can also estimate the mean shape [62].  

Assume 𝑋1 and 𝑋2 be two configuration matrices of the same 𝑘 × 𝑚 dimension 

(𝑘 points in 𝑚 dimensions) that can be centered (normalized) using the following equation 

[62]: 
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(Xi)c = CXI      , i = 1,2          (2 − 4) 

Where 𝐶, is the centering matrix and calculated in Eq. 2-5:  

C = HTH = Ik −
1

k
1k1k

T        (2 − 5) 

𝐻 is the Helmert submatrix, that the 𝑗𝑡ℎ row consists of ℎ𝑗  repeated 𝑗 times followed 

by −𝑗ℎ𝑗 and then 𝑘 − 𝑗 − 1 zeros:  

(Hj, hj, … , hj, −jhj, 0,0, … ,0)   hj = −{j(j + 1)}−
1
2       (3 − 6) 

Let Z1 and Z2 be the pre-shapes unit size of X1 and X2 respectively, where the original 

configuration is invariant under the scaling and translation with the pre-shape [62]:  

Zi =
(Xi)H

‖(Xi)H‖
=

H(Xi)

‖H(Xi)‖
       ,    i = 1,2            (2 − 7) 

(Xi)H = HXI         ,    i = 1,2                                 (2 − 8) 

The full Procrustes distance between 𝑋1 and 𝑋2 is obtained by matching the pre-shape 

𝑍1 and 𝑍2 as closely as possible as shown below [62]: 

DP(X1, X2) = inf
Γ,β

 ‖Z2 − βZ1Γ‖        ,    i = 1,2            (2 − 9) 

where ‖. ‖ is the Euclidean norm, Γ is the rotation matrix (known as a special 

orthogonal matrix) with m × m dimensions and ΓΓ𝑇 = Γ𝑇Γ = 𝐼𝑚 and det(Γ) = +1. Scale 

parameter β > 0. 

To overcome the limitations of using DTW alone, we use DTW as an alignment 

approach first and then apply Procrustes as a distance measure. This work introduces a 

distance measure PDTW based on a pairwise synchronization between two signals by using 

a combination of Procrustes and DTW. DTW is used to find the best matching between 
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two sequences, while Procrustes is used to minimize the distance from the estimated 

average to each realization. 

2. 1. 2 Classification  

The simplicity, and reasonable results, have made the k-Nearest Neighbors (kNN) 

algorithm a very successful feature classifier.  The kNN uses the label of the training data 

to predict the class of new unlabeled test point x based on their similarity measure. The 

majority label of the k- closest neighborhoods assign the label of the query point [63]. In 

this paper, we found k = 3 is a reasonable value and the one we use.  

2 . 2 Experimental Results 

2. 2. 1 The JIGSAWS Dataset 

The Da Vinci robotic surgical system provides an ideal environment for surgeons to 

perform fundamental training tasks. We use the JIGSAWS [11] dataset set acquired with 

the Da Vinci surgical system to implement our model for surgical skill assessment. Eight 

right-handed surgeons with different skill levels, expert (E), intermediate (I) and novice 

(N) performed three elementary surgical tasks, suturing (SU), knot tying (KT) and needle 

passing (NP) as shown in Figure 2.2. Each task was performed five times, each one named 

a trial. Due to some corruption of the data, the actual total number of trials is 39 for SU, 36 

for KT, and 28 for NP.  

The JIGSAWS dataset includes data from two experts, two intermediate, and four 

novices of robotic surgical experience. The kinematic data of the Da Vinci robot was 

captured at 30 Hz and it consists of 76 motion variables for all four manipulators (left and 

right master tool manipulators (MTM), left and right patient side manipulators (PSM)). 
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Each manipulator has 19 variables, 3 Cartesian positions, 9 rotation matrices, 3 linear 

velocities, 3 angular velocities, and a gripper angle. The three surgical skill training tasks 

that the surgeons performed are shown in Figure 2.2 and defined as [11]: 

 

Figure 2.2 Three Da Vinci Surgical tasks [11]. 

 

Suturing (SU): the trainer proceeds the needle to the incision after picking it up first. 

The needle passes through the tissue from one side of the incision at the dot marked to the 

other side at the corresponding dot marked. Then, the surgeon extracts the needle out of 

the tissue and repeats the procedure three more times. 

Knot-Tying (KT): the trainer picks up one end of a suture tied to a flexible tube 

attached at its ends to the surface of the bench-top model and ties a single loop knot. 

Needle-Passing (NP): The trainer passes the needle after picking it up first, from right 

to left through four small metal hoops which are attached at a small height over the surface 

of the bench-top model. 

Also, the dataset contains manual annotation for each trial based on a modified global 

rating score (GRS) by an annotating surgeon. GRS describes the sum of six elements: 

respect for tissue, suture/needle handling, time and motion, the flow of operation, overall 

performance, and quality of the final product. Each element score is between 1 and 5, so 
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the total is arranged between a minimum score of 6 through a maximum score of 30, where 

the highest score is the best [11].  

2. 2. 2 MU-EECS Vicon Dataset 

Six repetitions of the same surgical procedure (tracheostomy) were performed by a 

resident surgeon at the Center for Eldercare and Rehabilitation Technology laboratory in 

the department of Electrical Engineering and Computer Science at the University of 

Missouri, Columbia, MO [64]. The lab has a 7 camera Vicon system. Ten IR reflective 

markers to simultaneously track and visualize the motion involved in the surgical 

procedures were placed on both hands, wrists, elbows and shoulders of the resident surgeon 

as shown in Figure 2.3 (a). The first 3 repetitions were performed in conformity with the 

established procedure while the last 3 were conducted in an erroneous fashion. 

 

 

 

Figure 2.3 Surgical procedure captured with Vicon IR markers. 
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2. 2. 3 Performance Evaluation 

To evaluate our skill assessment method, we used two cross validation settings for 

each task.  

2. 2. 3. A Leave-One-Trial-Out (LOTO)  

In each task, one trial is kept out for testing while the remaining trials of that surgical 

task are used for training. The procedure is repeated for each trial of each task.   

2. 2. 3. B Leave-One-Supertrial-Out (LOSO):  

In this cross validation, we created five folds similar to the number of repeated trials, 

each fold includes data from one of the five supertrials of the eight surgeons. The set of the 

ith trial from all surgeons for a given surgical task is called a supertrial i (i =1,2…5). Each 

time, one set was left out for testing and the union of the remaining supertrial sets was used 

for training [11]. Leaving out the supertrial ith might be able to capture the effect of 

tiredness or boredom on the surgeons, as repeating the task consecutively might produce 

some reduction in performance. This cross-validation procedure was performed for 

comparison purposes (see Table 2.I). 

2. 2. 3. C Leave-One-User-Out (LOUO):  

The LOUO system resulted in the creation of eight folds, and each fold contains all 

the trials of one surgeon in each task. The LOUO cross-validation is used to assess the 

robustness of the procedure when a surgeon has not been observed previously in training.  

The performance of the proposed framework is compared using the overall accuracy 

of the classification results. The ratio of the total number of correct predictions over the 

total number of predictions defined as accuracy [65].  
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Accuracy =  
TP + TN

P + N
       (2 − 10) 

True positives (TP): the number of correctly classified as belonging to the target class. 

True negatives (TN): the number of correctly classified that does not belong to the 

target class. where P: Positive predictions and N: negatives predictions.  

2. 2. 4 Classification Results for the JIGSAW data 

In this section, we report the experimental results of our proposed framework on the 

JIGSAW dataset. The three surgeon skill levels (expert, intermediate, and novice) are 

assessed on three different RMIS tasks: suturing, needle passing, and knot tying. To detect 

the expertise levels, we performed two sets of experiments. In the first set, LOSO and 

LOTO, we used all the kinematic data (76 motion variables). In the second set, LOSO-6, 

and LOTO-6, we used only two-hand Cartesian coordinates data (6 motion variables). 

In Figure 2.4 and 2.5, we show the comparison of the kNN skills level classification 

accuracy as a function of k validating techniques, respectively. It can be seen that our 

PDTW based kNN classifier (continuous lines) produces better results than the DTW based 

one for most values of k. For kNN-PDTW using LOTO cross validation shown in Figure 

2.4(a), skills detection in the SU task is better than in the other two tasks: it is 100% for all 

values of k. In the meantime, the best classification accuracy in KT is about 94.5% at k = 

3 and it drops to about 70% when k = 9. At NP surgeon skills detection, the performance 

decreases gradually from 100% at k = 1 to 75% at k = 9. However, kNN -DTW has lower 

overall accuracy and is more sensitive to varying values of k as compared to PDTW. 
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(a) (b) 

Figure 2.4 Accuracy of kNN-PDTW and DTW as function of k for LOTO validation using (a) all the 76 

features (b) movements features (X,Y,Z).. 

 

Figure 2.5(a) shows the results in all tasks using the LOSO validation technique for 

different values of k. From Figure 2.4(a) and 5(a), the average accuracy of recognizing 

surgeon expertise in all tasks at k = 3 is about 97% and 95.7% for LOTO and LOSO of all 

the kinematic information.   

  

(a) (b) 

Figure 2.5 Accuracy of kNN-PDTW and DTW as a function of k for LOSO validation using validation (a) 

all the 76 features (b) movements features (X,Y,Z). 
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The confusion matrices of our kNN-PDTW skill levels classification are summarized 

at k =3 in Figure 2.6 for the three tasks for LOSO validation, where the diagonal 

corresponds to the correct predictions. Surgeon expertise levels are 100% correctly 

classified in the suturing task, while in the knot-tying task and in the needle-passing task 

with about 94% and 93%, respectively. We can also observe from Figure 2.4 (a)/(b) and 

Figure 2.5 (a)/(b) that for two-hands Cartesian data, the accuracy using kNN-PDTW6 

achieves almost the same performance as using all the kinematic information. In general, 

we observe that the accuracy of using two-handed Cartesian data alone is somewhat similar 

to using all the kinematic data. This is not surprising if we remember that Procrustes acts 

on shapes, which is exactly what the Cartesian data is. With other distance measures, we 

expect the result to be different, that is, using all 76 variables might lead to better results 

than using 6. 
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(a) (b) 

 

(c) 

Figure 2.6 Confusion matrices results of the kNN-PDTW classification using LOSO Validation at k = 3 for 

(a) SU, (b) NP, and (c) KT. 

Figure 2.7 shows the results for the LOUO cross-validation of the PDTW-kNN 

approach using all the features in (a) and utilizing only the motion traces of the left and 

right hands for each surgeon. The best results were obtained for the suturing task, which 

had an average accuracy of approximately 60%, whereas the NP and KT tasks had low 

performance. We can explain this because the LOUO validation is more challenging where 

the surgeon has not been seen before in training. Also, some trials of the intermediate 

surgeons were misclassified as novice or expert skill levels which makes it difficult for the 
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algorithm to uncover a pattern to distinguish between proficiency levels. Furthermore, as 

the number of samples in the dataset decreases, the results and the classification method 

do not draw a solid conclusion. 

  

(a) (b) 

Figure 2.7: Accuracy of kNN-PDTW as a function of k for LOUO validation using (a) all the 76 features 

(b) movements features (X, Y, Z). 

We run another experiment of the k-NN based on PDTW distance for the LOUO 

scheme to classify between two classes of surgeon skill levels, i.e., only novice and expert 

levels. We can observe from Figure 2.8 that the average accuracy increased for the three 

tasks using all the kinematic features. The best overall accuracy achieved was at k = 3 with 

an average accuracy of about 93%, 90%, and 88% for SU, NP, and KT, respectively. The 

confusion matrices at k = 3 for kNN-PDTW are shown in Figure 2.9 for the LOUO 

validation setup. It can be noted that the expert skill level was correctly classified in NP 

and KT tasks, while only one trial from both novice and expert was misclassified 

alternatively. Table 2.I demonstrates the comparison with the state-of-the-art method based 

on two classes (N and E skill level) classification results for the SU and KT tasks, where 

we outperform their method based on SVM for LOUO cross-validation.         
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(a) (b) 

Figure 2.8: Accuracy of kNN-PDTW for two classes (E and N) as a function of k for LOUO validation 

using (a) all the 76 features (b) movements features (X, Y, Z). 

  

(a) (b) 

 
(c) 

Figure 2.9: Confusion matrices results of the kNN-PDTW classification for two classes (E, N) using LOUO 

Validation at k = 3 for (a) SU, (b) NP, and (c) KT. 



30 

 

Table 2.I: Comparison of the classification accuracy (%) with the state-of-the-art method for LOUO setup 

(best accuracy highlighted in bold) 

Algorithm 

SU Task (%) KT task (%) 

Novice Expert Overall Novice Expert Overall 

SVM  

based on S+C (spatial motion and 

curvature features) [26]  

 

74.4 81.2 79.8 75.3 80.5 77.9 

Our method  

kNN-PDTW 
94.7 90 93.1 81.3 100 88.5 

 

The boxplot of the pairwise PDTW distance between expert surgeons (E/E), expert-

intermediate surgeons (E/I), and expert-novice surgeons (E/N) computed for all three tasks 

in JIGSAWS dataset is displayed in Figure 2.10. It shows that the distance between expert 

surgeons (E/E) is the smallest for each task, followed by the distance between experts and 

intermediate (E/I) and experts to novice surgeons (E/N). However, discriminating between 

intermediate and expert surgeons is more challenging in NP compared to other tasks. This 

might be related to the difficulty level of the task: needle passing might be more 

complicated than knot tying or suturing, hence difficult to learn. It can also be seen in 

Figure 2.6, where one expert was misclassified as intermediate for the NP task. 

Table 2.II shows a comparison of our skill evaluation results to existing similar 

methods for the LOSO validation scheme.  We see that for suturing, our method matched 

the result from [57] , 100%, obtained using a convolutional neural net (CNN). However, for 

knot tying, we surpassed the same CNN [57], and we were close to the results from [22] 

based also on CNNs. In needle passing both above CNNs did better than our method. We 



31 

 

note that no method shown in table I is best for all tasks, which means that a skill evaluation 

framework might need to contain multiple methods joined by some fusion methodology. 

  

Figure 2.10 Boxplot of PDTW distance between group of E-E, E-I, and E-N surgeons for all tasks. 

 

Table 2.II JIGSAWS Dataset Classification Comparison of 

expertise levels using LOSO with state-of-the-art methods. 

Method 
Accuracy (%) 

SU NP KT 

GMF [26] 

kNN 89.7 - 82.1 

LR 89.9 - 82.3 

SVM 75.4 - 75.4 

Deep learning CNN [15] 93.4 89.8 84.9 

SAX-VSM [28] 89.7 96.3 61.1 

CNN [57] 100 100 92.1 

CNN-LSTM+SENET+Restart [22] 98.4 98.4 94.8 

kNN-PDTW (proposed) 100 92.8 94.4 
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Figure 2.11 illustrates the surgeon's global rating score (GRS) for each trial and for all 

the tasks. The GRS score describes the measure of the entire trial for surgical technical 

skills. This figure shows a more consistent pattern for the expert surgeons in comparison 

to the intermediate and the novice surgeons, where the higher score implies better skills in 

performing the task. Also, we can see from this figure that the experts have the lowest 

variance in all the tasks, which indicates their consistency. 

 

Figure 2.11 Pairwise Boxplot of Skill-level GRS for: a) Suturing, b) Needle-passing, and c) Knot-tying. 

 

Furthermore, this figure gives an intuition of the challenge of discriminating between 

surgeon skill levels in needle-passing, which causes the misclassifications. Another thing 

to be noticed is that some intermediate surgeons (residents) have higher scores than the 

expert surgeons (attending), which indicates that they might be qualified to be an attending 

physician. 
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2. 2. 5 Results on the MU-EECS data 

In addition to the JIGSAWS dataset, we used a PDTW analysis approach to compute 

the distance between six trials of a tracheostomy procedure performed by a resident 

surgeon [64].  The resulting distance matrix is shown in Figure 2.12, where “0” represents 

the closest and “1” as the farthest procedure (trial).  

We can see that the distance between the first 3 “good” trials are less than or equal to 

0.5 (e.g., the similarity between procedures 2 and 3 is about 0.3). At the same time, none 

of the “bad” trials is less than or equal to 0.7 similar to each other. The “bad” trials are 

about 0.7 from any of the “good” ones. An exception is the similarity between trial 1 and 

5 is about 0.55. 

 

Figure 2.12 Pairwise distance matrix using PDTW for the Vicon dataset. 

However, overall, we can see that the “good” trials seem to cluster together in the left-

upper corner. Furthermore, the boxplot of the pairwise PDTW distances between Good 

trials and Bad trials computed respectively is shown in Figure 2.13. It’s clearly seen from 

this figure that the mean and variance of the Good trials is smaller (𝜇𝐺−𝐺 = 0.12,  𝜎𝐺−𝐺 =

0.08), as compared to the Bad ones (𝜇𝐵−𝐵 = 0.21, 𝜎𝐵−𝐵 = 0.16).  
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Figure 2.13 Pairwise Boxplot of PDTW distance between Good and Bad trials separately for MU-EECS 

Vicon dataset. 

 

2 . 3 Conclusions  

This work introduces a distance measure based on a pairwise synchronization between 

two signals by using a combination of Procrustes and DTW. DTW finds the best matching 

between two sequences, while Procrustes is used to minimize the distance from the 

estimated average to each realization. The performance of our model achieves an average 

accuracy of 97% on the JIGSAWS dataset, which is comparable to state-of-the-art results 

based on CNNs without the heavy training required by deep models. In addition, the study 

highlights the possibility of using only the Cartesian coordinates of the left and right hands 

for computing the PDTW distance measure for surgical skill assessment.   
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 Surgery Task Classification Using Procrustes 

Analysis 

 

Surgery is one of the crucial factors in global health care because a massive number of 

surgical operations are performed throughout the world annually in all fields [66]. This has 

encouraged the rising interest in computer-assisted surgery (CAS) tools. Furthermore, 

systems with sensing devices that capture the surgeon’s motions are getting equipped in 

the operating rooms [67]. Thus, improving the safety and the efficiency of surgical patient 

care is the main goal for studying surgical activities because the common reasons for post-

surgical complications, i.e., re-operation and re-admission, are the surgical technical errors 

[11, 67].  

Robot-assisted minimally invasive surgery (RMIS), such as da Vinci surgical system 

(dVSS), is an excellent source to obtain the motion information related to training surgeons 

(for both video and kinematic data) [1]. RMIS has the potential to improve trainee skills 

and patient healing results by shortening the stay at the hospital and providing faster time 

recovery as well [68]. These recorded data motivate the researcher to develop 

computational models for better surgery procedures understanding and to analyze surgical 

tasks automatically [14].  

To recognize and identify the surgical tasks (knot-tying, needle-passing, suturing), 

multiple approaches have previously been proposed for RMIS data. These methods are 

mainly based on two types of data: kinematic or video. The work on da Vinci robotic public 

dataset JIGSAWS [11] can be categorized into three types: surgeon skill assessment, 
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surgical gestures analysis, and surgical task recognition. In this chapter, we focus on the 

third part by analyzing the huge kinematic information of the surgical activities captured 

from dVSS using its application programming interface (API) [11]. A sequence of events 

to achieve a surgical objective is defined here as a task which it is often called in the 

literature [9].  

Several existing works address this problem; two approaches utilized the dynamic time 

warping [37] and derivative dynamic time warping [38] along with k-nearest neighbor to 

recognize the three surgical tasks. A multi-output deep learning architecture proposed [29] 

to characterize the surgical operation activity by combining CNN and gated recurrent unit 

network. All these approaches are based on multiple channels of kinematic sequences. For 

task classification based on video data, a multi-model design has been proposed based on 

CNN for visual features and long short-term memory (LSTM) network as motion cues for 

classifying gestures and surgical tasks in robot-assisted surgery (RAS) [39].  Even these 

approaches could find underlying surgical tasks, however, they are limited and have some 

common flaws such as time consuming, heavy weight computation load and architecture, 

high pre-processing data, and significant human interaction.   

In this chapter, we develop and investigate a new framework to classify different 

surgical tasks. We apply our framework to an existing dataset, JIGSAWS, that contains 

three tasks (classes): knot-tying, needle-passing, and suturing. Our framework is based on 

using dynamic time warping (DTW), Procrustes analysis, and Fuzzy k-nearest neighbor.  

First, DTW finds the best matching between two multi-channels surgery sensor data by 

compressing and stretching the time series. The distance between the aligned time series is 

measured by the Procrustes distance. Finally, the fuzzy k-nearest neighbor is used to 
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classify a new kinematic surgical task data performed by subject as one the known tasks 

from our database.    

3 . 1 Methodology  

The goal of this work is to classify the RMIS tasks (knot tying, needle passing, and 

suturing in our case) using raw motion kinematics da Vinci data. The pipeline of our 

framework (see Figure 3.1) is composed of three main parts: sequences alignment, distance 

measure, and task classification.  In this section, we present details on the methods and the 

proposed tasks classification framework. For alignment, DTW is used to align two 

multidimensional sensor signals performed by surgeons, while Procrustes is used to 

calculate the similarity measure. Finally, the fuzzy kNN is used to classify the surgical 

tasks. 

 

Figure 3.1 Fuzzy k-Nearest Neighbor PDTW RMIS Task classification Pipeline. 

 

3. 1. 1 Pre-Processing Data 

Each individual channel (of the total of 76) of the raw da Vinci motion sensor data was 

normalized to a zero mean and unit variance. Then, the noisy data smoothed with a 

gaussian-weighted moving average filter [69] using a window size of 15 samples. The 

sliding window was carefully chosen to reduce the noise and to keep the important details 

of the pattern as in the following equation [32]: 

Pre-

processing 
Alignment 

Da-Vinci 

Kinematics 

data 

Similarity 
Task 

Classifier 

KT 

NP 

SU 
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𝑋̃(𝑗) =
1

𝑊
∑ 𝑋(𝑗 + 𝑟)

𝑊−1

𝑟=0

=
1

𝑊
∑

𝑥(𝑗 + 𝑟) − 𝜇

𝜎

𝑊−1

𝑟=0

              (3 − 1) 

Where W is the window size at each point j after being normalized with the mean 𝜇 and 

the variance 𝜎 of the time series 𝑋. 

3. 1. 2 Task Similarity Measure 

A good similarity measure between two sequences is one of the most important steps 

to get better classification results. Euclidean distance is one of the common and simple 

methods, but it requires both sequences to have the same length. Other drawbacks of this 

measurement are its sensitivity to outliers, noise, and shifting. For instance, if two 

sequences are similar in shapes but have a different offset, this leads to false or mismatched 

similarity measurements [70].  

Dynamic time warping (DTW) is one solution for finding the optimal matching 

between two timeseries by stretching and compressing to align them [71]. It was first used 

in speech recognition applications and introduced by [72, 73]. DTW can re-align two 

sequences by matching the coordinates inside both sequences. Figure 3.2 shows the 

alignment for two signals, where one signal from a novice surgeon and the other from an 

expert surgeon; it seems that they have the same shape but are shifted slightly. Each point 

from sequence A is globally compared by DTW to any arbitrary point of the second 

sequence B, it results in a sequence pattern that represents the best coupling between the 

two sequences A and B where Euclidean distance is unable to match [71]. The warping 

cost, which minimizes the total distance between two timeseries, provides monotonicity 

constraints, boundary conditions, and continuity. The cost can be recursively calculated by 

[59]:  
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𝐷(𝑎𝑖, 𝑏𝑗) = 𝛿(𝑎𝑖, 𝑏𝑗) + 𝑚𝑖𝑛 {

𝐷(𝑎𝑖−1, 𝑏𝑗−1)

𝐷(𝑎𝑖, 𝑏𝑗−1)

𝐷(𝑎𝑖−1, 𝑏𝑗)

}          (3 − 2) 

where 𝐴𝑀×𝑣 = [𝑎1, 𝑎2, … , 𝑎𝑀] and 𝐵𝑁×𝑣 = (𝑏1, 𝑏2, … , 𝑏𝑁) are two time series with N and 

M instances, respectively, 𝛿(𝑎𝑖, 𝑏𝑗) is the Euclidean distance that stretches the ith sample 

of A (𝑎𝑖 ∈ 𝑅𝑀) and the jth sample of B (𝑏𝑗 ∈ 𝑅𝑁) onto a common set such that the overall 

distance of the time warping path is smallest which is [73]: 

𝐷𝐷𝑇𝑊(𝐴, 𝐵) =  𝐷(𝑎𝑀, 𝑏𝑁)                             (3 − 3) 

 

Figure 3.2 Dynamic time warping alignment. 

 

In many domains, DTW has widely been used for its robustness as a distance measure. 

However, one limitation is that it can produce unreasonable results when the algorithm 

may try to explain Y-axis variability by bending the X-axis. Thus, a single point on one 

time series can change onto a wide part of another time series. Also, the algorithm may fail 

to align two signals when they differ because of features such as peaks, valleys, inflection 

points, ... etc. For example, DTW may fail to detect natural matches between two sequences 

(a)  

(b)  
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merely because a feature in one sequence is somewhat higher or lower than the equivalent 

feature in the other sequence [59].  

In directional statistics, Procrustes distance analysis is used to compare two shapes 

[60, 61]. In geometry, pre-shape refers to the geometric information that remains after 

location and scale effects have been removed. Full Procrustes distance between 𝐴 and 𝐵 is 

defined as the Euclidean distance between the full Procrustes that fit of pre-shapes 𝑍1 and 

𝑍2 as [74]:  

𝐷𝑝(𝑋, 𝑌) = inf
𝑠,𝑎,𝑏,𝜃,

‖𝑍1 − 𝑍2 𝑠 𝑒𝑗𝜃 − (𝑍2 + 𝑗𝑏)1𝑘‖           (3 − 4) 

Where s is the scale, Ө is the rotation, and (𝑎 + 𝑗𝑏) is the translation, and the centered pre-

shaped are given below. 1𝑘 is a k-dimensional vector of ones, and 𝐼𝑘 is a 𝑘𝑥𝑘 identity 

matrix [75]. Figure 3.3 shows three steps of the procrustes measure to minimize the 

distance between two different shapes by translating, rotating, and scaling to the center 

shape of the desired one   

𝑍𝑖 =
𝐶(𝑋𝑖)

‖𝐶(𝑋𝑖)‖
     𝑎𝑛𝑑    𝐶 = 𝐼𝑘 −

1

𝑘
1𝑘1𝑘

𝑇   , 𝑖 = 1,2    (3 − 5)    

The fusion of Procrustes and DTW measures overcome the limits of using DTW alone 

as mentioned before. Procrustes-DTW (or PDTW) utilizes DTW to align and find the best 

fitting between two sequences, then uses the procrustes to calculate the similarity measure. 
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Figure 3.3 Procrustes measure steps. 

 

3. 1. 3 Fuzzy k-Nearest Neighbor 

The crisp k-NN algorithm is widely used because of its simplicity and because it needs 

only one parameter k (the number of the closest training neighbors to a test point). The k-

NN assigns an unknown classification pattern to the class of the majority of its known k-

NNs according to a distance or similarity measure [63, 76]. Figure 3.4 illustrates the 

difference between using fuzzy kNN and crisp kNN for k = 7. For example, the class label 

goes to class B for crisp kNN by the majority vote, while it assigns to class A using the 

FkNN case because of the higher fuzzy memberships.   

 

Figure 3.4 kNN versus Fuzzy kNN. 

One drawback of the crisp k-NN classification is in the assignment of the query point 

where the k-NN training samples are handled as being equally important. Another problem 

of k-NN is that there is no indication of how much a pattern belongs to a given class. Fuzzy 
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k-NN (FKNN) algorithm overcomes these problems, which allocates a fuzzy membership 

to each training input neighbor instead of using a hard class membership [76]. let 

𝑥1, 𝑥2 … 𝑥𝑘 be the k nearest neighbor of the query point 𝑥𝑞. The assigned membership value 

𝑢𝑖 to 𝑥𝑞 in a class 𝑖 is computed by [63]: 

𝑢𝑖 =
∑ 𝑢𝑖𝑗  (1 𝑑𝑖𝑠𝑡(𝑥𝑞 , 𝑥𝑗) 

1
𝑚−1⁄𝐾

𝑗=1 )

∑ (1 𝑑𝑖𝑠𝑡(𝑥𝑞 , 𝑥𝑗) 
1

𝑚−1⁄𝐾
𝑗=1 )

                                              (3 − 6) 

𝑢𝑖𝑗 =    {
0.51 + 0.49 (

𝑛𝑖

𝑛
)         𝑖 = 𝑗 

0.49 (
𝑛𝑖

𝑛
)                     𝑖 ≠ 𝑗

             (3 − 7) 

Where 𝑚 > 1 is the fuzzifier,  𝑛𝑖 is the number of 𝑛 closest neighbor of 𝑥𝑗 labeled i, 

and 𝑢𝑖𝑗 be the pattern’s fuzzy membership in class i of the 𝑗𝑡ℎ actual training labeled k-

NN [63, 76]. In this work, we picked m = 2 and PDTW as the distance measure in (7) for 

reasonable results, where 𝑑𝑖𝑠𝑡 stands for the PDTW distance. The pseudo code of our 

proposed FKNN using PDTW is shown in Figure 3.5. 
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 Algorithm 1: FKNN-PDTW 

1. 

Input: k (number of closest neighbors). 

          X (query multi-dimensions time series). 

          Y (set of N multi-dimensions training data) 

2. Output:  class label for X. 

 Compute PDTW 

3.  for i = 1,2, … N Do 

4.   Align X and Yi by DTW using (2) and (3). 

5.   Find the distance by Procrustes measurement using (4). 

6.  End 

 Calculate k-NN 

7.   Sort the training set Y ascendingly based on their distance to X. 

8.   Yj (1≤ j ≤k) is the set of k nearest neighbors.  

 Find Fuzzy Classifier  

9.  for i = 1,2, … C (number of classes) Do 

10   

Assign membership ui to X in all classes using: 

𝑢𝑖 =
∑ 𝑢𝑖𝑗/{𝑃𝐷𝑇𝑊(𝑋, 𝑌𝑗)} 

1
𝑚−1𝑘

𝑗=1

∑ 1/𝑃𝐷𝑇𝑊(𝑋, 𝑌𝑗) 
1

𝑚−1𝑘
𝑗=1

 

11.  End 

12. END 

Figure 3.5 Fuzzy KNN algorithm using PDTW. 

 

3 . 2 Experimental results 

3. 2. 1 JIGSAWS Dataset 

We test our proposed model FKNN-PDTW on a public robotic surgical dataset 

presented in [11]. The JIGSAWS dataset includes kinematic and video data captured by 

application programming interface (API) using da Vinci surgical system (dVSS) at 30 Hz 

sampling frequency. Eight right-handed surgeons with different expertise performed three 

fundamental surgical tasks knot tying (KT), needle passing (NP), and suturing (SU) as 

shown in Figure 3.6 and defined below: 
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1) Knot-Tying (KT): The trainer ties a single loop knot after picking up one end of a suture 

tied to a flexible tube attached at its ends to the surface of the bench-top model. 

2) Needle-Passing (NP): The trainer picks the needle up and passes it through four small 

metal hoops, from right to lift, which are attached at a small height over the surface of 

the bench-top model. 

3) Suturing (SU): The trainer first picks up the needle and proceeds it to the incision. 

Second, the trainer passes the needle at the dot marked from one side to the 

corresponding dot marked side through the tissue. Finally, the subject extracts the needle 

out of the tissue then repeats the procedure three more times. 

The surgeons performed each task above for about five repetitions, each one known 

as a trial. KT consists of 36 trials, NP has 28 trials, and 39 trials for SU because some data 

were corrupted. In this work, we analyze our model using kinematic data that consists of 

76 sensor motion dimensional. Multi-channels kinematic data includes 19 variables for the 

four manipulators of dVSS ends (two master sides and two patient sides for each hand). 

The 19 variables for each end have 3 Cartesian positions, 9 rotation matrices, 3 linear 

velocities, 3 angular velocities, and a gripper angle [11]. 

 

 

 

 

 

 

Figure 3.6 Three Surgical tasks used in our experiments [3]. 
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3. 2. 2 Performance Evaluation 

Two validation schemes were conducted to evaluate our proposed framework for the 

three surgical tasks classification on each testing set and to make a comparison with other 

states of art methods as suggested in [11]. We also report the performance metrics 

regarding the sensitivity or recall, specificity, precision, and f1-score for each output class 

results. 

Leave one supertrial out (LOSO) and leave one user out (LOUO) settings were used 

for this dataset. In LOSO validation, five folds were created; each has the ith supertrial (i 

= 1,2…5) from all the surgeons for the three tasks. One folder was kept for testing while 

the union of the remaining supertrial sets used for training each time. This LOSO evaluated 

the robustness of the algorithm when the ith trial from all the surgeons left out, while the 

robustness of the method when a surgeon had not been seen previously in training is 

evaluated in LOUO cross-validation. Eight folds were created in the LOUO scheme, each 

one consisting of all the trials that belong to three tasks of the surgeon as shown in Figure 

3.7 [11].  

 
Figure 3.7 LOSO and LOUO validation techniques. 
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To evaluate our classification results, we compared each class output to the ground 

truth of the provided data by [11]. The evaluation metrices can be defined as follows 

[77]: 

1) The accuracy is defined as the number of tasks that correctly classified as positive 

divided by the total number of tasks: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                         (3 − 8) 

 Where TP is the number of tasks correctly classified as belonging to the target class. 

TN is the number of tasks that are correctly classified not belonging to the instances 

task. If a class is reported incorrectly to the task, it is FP, and it is FN, if it is not classified 

as an instance task [77]. 

2) Precision: the ratio of the number of tasks that are correctly classified as positive over 

the number of tasks that are labeled by the classifier positive. 

     𝑃𝑟𝑒𝑠𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                              (3 − 9) 

3) Sensitivity (Recall): The number of tasks that correctly classified as positive divided by 

the number of tasks that labeled positive in the ground truth. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                        (3 − 10) 

4) f1-score: The harmonic-mean of the precision and the recall: 

      𝑓1_𝑠𝑐𝑜𝑟𝑒 =  
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
              (3 − 11) 
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3. 2. 3 Classification Results 

The experimental results of identifying the three surgical tasks: knot-tying, needle 

passing, and suturing using our proposed classification framework on the JIGSAWS 

dataset are reported in this section. First, we used our PDTW distance to measure the 

similarity between traces that represent the surgeon motion, then we applied the Fuzzy 

kNN classifier to recognize between different RMIS surgical tasks. For results evaluation 

on the testing set, we performed two cross-validation setups: LOSO, and LOUO techniques 

which are widely used and suggested by the JIGSAWS dataset. We implemented our 

algorithm using only kinematics data of the JIGSAWS dataset which was collected from 

the surgeons as described before. 

Figure 3.8 shows the variation of the classification accuracy as a function of k (the 

number of neighbors), which in turn, it tests the robustness of our model based on Fuzzy 

kNN for each surgical task using LOSO and LOUO validating schemes. As we can see 

from this figure, we need at least three neighbors for LOSO and five for LOUO validation 

techniques to ensure model robustness. The accuracy of our proposed framework is better 

performed in the LOSO setting than the LOUO technique which the surgeon has not seen 

before.  
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Figure 3.8 Accuracy comparison as function of k for LOSO and LOUO validation technique. 

 

For LOUO cross-validation, the higher classification accuracy was achieved starting 

at k = 5. We picked this value to reduce the computational complexity and time 

consumption. Our Fuzzy kNN model provides more consistency and robustness for all 

three robotic surgical tasks. KT and SU tasks achieved better results as compared to NP 

tasks. Which indicates the challenge of recognizing NP surgical tasks compared to the other 

two tasks performed by study subjects. 

Figure 3.9 illustrates the visual intuition of the confusion matrices of Fuzzy kNN-

PDTW prediction results for three classes (KT, NP, and SU). The performance matrices of 

these surgical tasks are evaluated on the testing set for both 5-fold LOSO at k = 3 and 8-

fold LOUO at k = 5 cross-validation schemes. Suturing task is 100% correctly classified 

in LOSO, and one class misclassified for both knot-tying and needle-passing. Also, we can 

observe that KT keeps the same accuracy in both validation settings, while the accuracy 

degrades to 97.4% and 85.7% for SU and NP when switching from LOSO to LOUO 

validation.  



49 

 

  

Figure 3.9 Confusion metrices for LOSO and LOUO validation techniques using Fuzzy kNN-PDTW. 

 

To further assess, we compared our model results of the overall surgical task 

performance to the state-of-art classification methods, as shown in Table 3.I. All 

benchmarks are evaluated using the same LOSO and LOUO cross-validation sets applied 

to raw kinematics data suggested by JIGSAWS dataset. For the LOSO validation scheme, 

our proposed method overall results are close to the results of [29] which are based on deep 

task learning networks. Also, our approach provides accuracy improvement of at least 1.5% 

compared to other existing methods. We outperformed the other techniques with the 

accuracy improvements ranging from 4.5% to 10.1% for LOUO validation. 

Table 3.I Performance Comparison Using Overall Accuracy (%) for 

LOSO and LOUO Schemes. 

 

 

 

 

 

Method LOSO LOUO 

Farad, 2017 [21] 92.4 84.1 

Farad, 2017 [21] 95.5 89.7 

Wang, 2018 [22] 96.6 - 

Wang, 2018 [23] 100 - 

FKNN-PDTW 98.1 94.2 
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Table 3. II illustrates the performance measurements regarding the sensitivity, 

specificity, precision, and f1-score. These measurements give an indication that our 

algorithm can yield better results for each class for LOSO and LOUO schemes. Where the 

sensitivity metric concerns of identifying the positive tasks by a classifier. The precision 

focuses on the agreement between positive task labels by a classifier with positive labels 

given by the data. The specificity measures the effectiveness of the classifier to recognize 

the negative instances. Finally, f1-score emphases on the relationship between the positive 

task labels classified by a classifier, and positive tasks given by the data. 

Table 3.II Performance Results in Terms of Sensitivity, Specificity, 

Precision, Recall, and f1-Score for Each Class for LOSO and LOUO 

Schemes. 

 

 

 

 

 

 

Furthermore, we repeated our experiment using two-hands cartesian data (6 variables) 

instead of using all the kinematics information (76 variables) with LOSO and LOUO cross-

validating techniques. Different values of nearest neighbors (k) were tested to identify the 

best k to be used in training our multi-class classifier. We found that k = 5 is a reasonable 

value to obtain the highest overall accuracy for surgical task classification. The 

performance of Fuzzy kNN for both hands data almost achieved similar or better results 

 at k = 3 

LOSO 

Task Sensitivity Specificity Precision f1-Score 

KT 97.2 98.5 97.2 97.2 

NP 96.4 98.7 96.4 96.4 

SU 100 100 100 100 

 at k = 5 

LOUO 

Task Sensitivity Specificity Precision f1-Score 

KT 97.2 95.5 92.1 94.6 

NP 85.7 98.7 96.0 90.6 

SU 97.4 96.9 95.0 96.2 
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than using all the kinematic data, around 99%, for both validations schemes. This indicates 

the potential of using two-hands information which leads to the possibility of using low-

cost wrist wearable techniques instead of using expensive tools. 

3 . 3 Conclusions 

This study introduces a surgical multi-tasks classification framework in robotic 

assisted minimally invasive surgery based on a new similarity measure that uses the 

combination of dynamic time warping and Procrustes analysis. DTW aligns two timeseries, 

and Procrustes is used to obtain the similarity distance measure between two motion paths 

of the da Vinci kinematic data. Using a Fuzzy k-nearest neighbor as a classifier is a key 

advantage of our proposed framework in improving the performance results by assigning 

a fuzzy membership based on our PDTW distance to obtain a confidence classification 

measure. In addition, the performance of our approach surpasses published results for 

LOUO validation by at least 4.5% accuracy improvement. Also, it is comparable with state-

of-the-art methods that are based on deep architectures for LOSO validation technique. 

Furthermore, utilizing 3D cartesian motion trajectories of the right and left hands reduces 

the time consumption and emphasizes the potential toward using low-cost wrist wearable 

devices instead of using expensive tools for surgical tasks recognition and surgeon skill 

assessment.   
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 Procrustes Dynamic Time Wrapping Analysis for 

Automated Surgical Skill Evaluation 

 

Recently, the need for objective surgical skills assessment has captured the interest of 

practitioners and medical institutions due to the ever-increasing complexity and degree of 

specialization of the surgical procedure [34]. Traditionally, a senior expert surgeon 

performs direct observation, scores, assess, and gives feedback to the trainee surgeon 

(apprentice) with less practice in the hospital operating room. This traditional surgical 

proficiency evaluation approach is problematic due to its subjectivity, time consumption, 

and cost. Furthermore, it is prone to errors and sometimes insufficient as lacking details 

related to deficiencies. To address these difficulties, an automated skill assessment 

procedure is needed for an objective and detailed measure of proficiency levels [25, 35].  

As in any healthcare domain, surgery is continuously changed by technological 

advances and medical innovations that alter everyday surgical procedures. The challenge 

is to assist surgical procedure via quantifiable data analysis to a better understanding of the 

surgical operating and to obtain more knowledge about human activities during surgery for 

advance and further study [9]. A reasonable solution to these challenges is to use 

technological advances like Robotic Minimally Invasive Surgery (RMIS) that improve 

overall operating room efficiency [9]. For instance, da Vinci surgical technology provides 

data-driven that potentially helps optimize and develop training skills for surgeons [10]. 

This information includes kinematic and video data that conduct a useful resource of 

quantifiable human motion during surgical operating [1, 11]. Wearable sensing devices 



53 

 

that provide detailed motion information for surgical activities are a further example [13]. 

These recorded data give spacious resources to assess surgical proficiencies by modeling 

and analyzing descriptive mathematical approaches. The emergence of using machine 

learning methods with recent robotic surgery systems such as da Vinci and wearable 

sensing devices via data-driven enable and encourage developers to build and analyze 

automatic models for evaluating surgeon expertise and may help better coaching potential 

apprentices [12, 14, 15].  

Different earlier works focused on the automated surgical assessment seen good 

progress. The current techniques for objective surgical evaluation can be divided into three 

main research areas [12, 28]:  1) surgeon skill assessment, 2) surgical task analysis, and 3) 

surgemes recognition. These methods considered the surgeon movement using either: 1) 

kinematic information recorded by a robotic surgical system, 2) video records, and 3) 

wearable sensors data. In this chapter, we focused on the surgical skill evaluation based on 

kinematic and wearable sensors information. One of the initial works used Hidden Markov 

models (HMM) [24] to evaluate the surgical skills. This approach is structured-based and 

depends on the number of training samples, tuning parameters and it takes massive pre-

processing. This type of model needs complicated preprocessing [25] and leads to low 

performance with a low number of samples [24]. Another method was proposed by [25] to 

predict the surgeon skill level (expert and novice) based on movement features of the 

surgical arms using logistic regression (LR) and support vector machines (SVM) classifiers 

for suturing surgical tasks. They extended their work to include eight global movement 

features (GMF) in [26], They applied LR, SVM, and kNN classifier to distinguish between 

the previous expertise levels for suturing and knot tying surgical tasks. In [27], a framework 
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based on trajectory shape using DTW and k-nearest neighbor classifier proposed for 

surgical skill evaluation. This model can also provide online performance feedback 

through training. More recently, [28] proposed an approach based on symbolic aggregate 

approximation (SAX) and vector space model (VSM) to identify distinctive patterns of 

surgical procedure. They used the SAX to obtain the sequence of letters by discretizing the 

time series first. Then they utilize the VSM to find the discriminative patterns that represent 

a surgical motion which finally used them to be classified. A variety of holistic analysis 

features and a weighted features integrated approach proposed by [13] for automated 

surgical skill evaluation and GRS score prediction. These holistic features include 

approximate entropy, sequential motion texture, discrete Fourier and discrete cosine 

transform. They used the nearest neighbor as a classifier and linear support vector 

regression (SVR) for prediction. The works of literature mentioned above used the 

kinematic data information obtained from RMIS for surgical skill assessment. However, 

none of these methods were applied to the wearable sensors data like accelerometer which 

might give more information about the surgeon's motion during a surgical practice.  

Recently, several advanced techniques applied the convolution neural network and 

deep learning methods for automated surgical skill evaluation. A parallel deep learning 

framework was proposed by [29] to identify the surgeon skill and task recognition. In their 

approach, they used a fusion technique between convolution neural networks and gated 

recurrent networks. Alternative deep convolution neural architecture based on ten layers 

proposed by [15] for surgical expertise evaluation. Another parallel deep learning approach 

was proposed in [22] by combining the LSTM recurrent network and CNN to indicate the 

skill levels. Additionally, recent studies have suggested approaches that use motion from 
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videos [30, 31] and wearable sensors to evaluate surgical skills [32, 33]. These methods 

platform various features to perform Objective Structured Assessment of Technical Skills 

(OSATS) assessments. An approach proposed for surgical skill assessment is based on the 

acceleration data of both hands performing a basic surgical procedure in dentistry [34]. 

Also, an entropy-based features technique that utilizes both video and accelerometer data 

proposed for surgical skill assessment [35]. Despite these techniques which are building 

the basis and inspire performance results in the surgical skill area, however, some limits 

and drawbacks occur for the existing methods. some methods need predefined boundaries 

of the surgemes which done usually by a chief surgeon, i.e., consuming a large time. In 

other methods, decomposing the motion sequence requires a massive and complicated 

preprocessing in addition to a deficiency of robustness. Alternatively, the need to 

developing a new distance measure might have an advantage to a more robust and accurate 

assessment framework. 

In this chapter, our contribution to this work can be abridged as follows: 1) we defined 

a new surgical skill distance combined the best alignments between two multidimensional 

signals using DTW and measuring the distance between the two aligned sequences using 

Procrustes analysis 2) we proposed an automated skill classification framework based on 

using PDTW and kNN technique in the proposed framework to distinguish between the 

expertise levels focusing on overall performance 3) we investigated the proposed 

framework on a wearable sensor data for a surgical task. The purpose of this work is to 

present a technique that handles different kinds of sensor data in addition to the existing 

public JIGSWAS dataset. Some surgery motion results obtained by a Vicon camera with a 

3D marker-based system and wearable device data are examples of the data we use.  
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4 . 1 Methodology 

In this section, we illustrate the main components of our proposed framework, which 

are: motion alignment, Procrustes distance, and skills classifier, as shown in Figure 4.1. 

First, DTW is used to align two multidimensional time series performed by surgeons, while 

the Procrustes distance calculates similarity measure. Lastly, the skill levels of the surgeon 

are classified by kNN. 

 

Figure 4.1: kNN based PDTW evaluation Framework. 

4. 1. 1 Similarity Measure 

To obtain a useful classification, defining a reasonable distance is a crucial element to 

measure between two surgery tasks. Each surgery task is represented by a set of features 

obtained from the traces (time series) of the motion capture sensors. One possible method 

is the Euclidean distance.  

Euclidian distance is simple and widely used, whereas, it has some limitations and 

disadvantages. The Euclidean method is very sensitive to outlier and it is suffering from 

noise, shifting, and requires both signals to have the same length. Thus, we need a measure 

that can handle sequences with different lengths because the same surgery task might have 

different lengths even when operated by the same surgeon. A warping distance measure 

such as the Dynamic Time Warping (DTW), is one solution to do the job. The DTW can 

process time series with different lengths, it expands or contracts both signals (aligns them) 

such that their length becomes equal [58].  



57 

 

Let X𝑛×𝑣 = [𝑋1, 𝑋2, … , 𝑋𝑛] and Y𝑚×𝑣 = [𝑌1, 𝑌2, … , 𝑌𝑚] be two sequences having v 

features and of length n and m respectively. To align X and Y, we form a two-dimensional 

(𝑛 × 𝑚) grid distance. Each point 𝑑𝑖𝑗 of the grid corresponds to the distance measure 

(usually Euclidean) between every possible combination of two instances 𝑥𝑖 from X and 

𝑦𝑗 from Y of the same features length (v) as follows [59]: 

dij(xi, yj) = √∑(xik − yjk)2

v

k=1

     (4 − 1) 

The next step is to find the warping path through the grid, the path that attempts to 

minimize the total distance (warping cost) and give the best match between two signals 

and satisfy boundary conditions, continuity, and monotonicity constraints. It is usually 

achieved by using a dynamic program to calculate the cumulative distance 𝛾(𝑖, 𝑗), which 

is the distance of the current cell (𝑑𝑖𝑗) and the minimum of the cumulative distance of the 

adjacent cells [59]: 

γ(i, j) = dij + min{γ(i − 1, j − 1), γ(i − 1, j), γ(i, j − 1)}   (4 − 2) 

Despite the wide use of DTW in many applications and is a more robust distance 

measure than Euclidean distance, it fails for complex multidimensional signals. Also, when 

the unevenness occurred in the Y-axis, DTW can produce singularities by warping the X-

axis. Inflection points, valleys, and peaks features can cause DTW to fail to align two 

signals properly [59].  

The Procrustes analysis is a standard method in statistical analysis to compare the 

similarity of shape objects [60, 61]. The Procrustes distance is a shape metric that involves 

matching two shapes using similarity transformations (rotation, reflection, scaling, 
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translation) to be as close as possible in the least-squares sense [78]. The Procrustes 

analysis also can estimate the mean shape to examine the shape variability in a dataset [62].  

Assume 𝑋1 and 𝑋2 be two configuration matrices of the same 𝑘 × 𝑚 dimension 

(𝑘 points in 𝑚 dimensions) that can be centered (normalized) using the following equation 

[62]: 

(Xi)c = CXi      , i = 1,2    (4 − 3) 

𝐶 = HTH is the centering matrix and 𝐻 is the Helmert submatrix, let 𝑍1 and 𝑍2 be the 

pre-shapes unit size of 𝑋1 and 𝑋2 respectively, where the original configuration is invariant 

under the scaling and translation with the pre-shape [62]:  

Zi =
(Xi)H

‖(Xi)H‖
=

H(Xi)

‖H(Xi)‖
       ,    i = 1,2     (4 − 4) 

(Xi)H = HXi         ,    i = 1,2                           (4 − 5) 

The full Procrustes distance between 𝑋1 and 𝑋2 is achieved by fitting the pre-shape 𝑍1 

and 𝑍2 as closely as possible as the following [60]: 

DP(X1, X2) = inf
𝑠,𝑎,𝑏,𝜃,

‖𝑍1 − 𝑍2 𝑠 𝑒𝑗𝜃 − (𝑍2 + 𝑗𝑏)1𝑘‖        (4 − 6)  

where ‖. ‖ is the Euclidean norm, s is the scale, Ө is the rotation, and (𝑎 + 𝑗𝑏) is the 

translation, 1𝑘 is a k-dimensional vector of ones. 

This work presents a distance measure PDTW based on a pairwise synchronization 

between two time series by utilizing a combination of Procrustes distance and DTW to 

overcome the drawbacks of using DTW alone. First, we use DTW as an alignment 
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approach and then use Procrustes as a distance measure. DTW is used to locate the best 

matching between two signals, whereas Procrustes is used to minimize the distance. 

4. 1. 2 Classification 

The simplicity of the k-Nearest Neighbors (kNN) method and its reasonable results 

made it a handy feature classifier. It predicts the new unlabeled query point by using the 

labels of training data based on their similarity measure. kNN classifier assigns a label for 

the test point to the majority label of the k- closet neighborhoods [63]. We found k = 3 is a 

reasonable value and the one we utilize in this chapter. 

4 . 2 Experimental Evaluation 

We used three datasets to evaluate the proposed PDTW-kNN model on the public 

surgical data JIGSAWS [11], and our two data MU-EECS [64], and EM-Cric. The 

JIGSAWS is a minimally invasive surgical skill assessment working set consist of various 

fundamental surgical tasks. Each task performed by a surgical surgeon with a different 

proficiency degree; an expert surgeon who performs the da Vinci Surgical System (dVSS) 

more than 100 hours of training, a novice surgeon who practice less than 10 hours on dVSS, 

and an intermediate surgeon (practice on dVSS between 10 and 100 hours). A motion 

capture based on markers, a Vicon system is used to collect the data from a resident surgeon 

in the MU-EECS data. The surgeon presented a tracheostomy surgery performed the same 

procedure six times. The EM-Cric data includes data from four surgeons with different 

expertise levels who performed the Emergency Cricothyrotomy task. Each surgeon 

performs the task four times, where the wrist wearable sensors are used to capture both 

hand motions. More details about the three datasets in the following parts:  
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4. 2. 1 JIGSAWS Data 

We evaluate the proposed PDTW-kNN method for surgical proficiency assessment on 

a public widely used JIGSAWS dataset [11]. Moreover, we use this dataset for direct 

comparisons with other state-of-the-art approaches for surgical skill evaluation. MIS 

surgeons performed many types of elementary procedures on Da Vinci robotic systems 

because it gives confidence, precision, and real-time feedback to improve overall surgical 

treatment for the patient in the operation room [79].   

JIGSAWS dataset consists of kinematic and video data collected from surgical 

surgeons with various surgical robotic skills performing basic surgical training curricula. 

All surgeons were right-handed: two expert surgeons (E) with > 100 robotic surgical 

practice hours, four novice trainee surgeons (N) having < 10 practice hours, and four 

intermediate surgeons (I) reported between 10 and 100 surgical robotic experience practice 

hours. The dataset provides two types of data: video and kinematic records for each trial 

get done by a subject in each task. All the subjects were required to do three fundamental 

surgical tasks five times repetitively. In this work, we use only kinematic data captured as 

76-dimensional time series at 30 Hz from the da Vinci Surgical System (dVSS) using its 

Application Programming Interface (API).  The three elementary surgical tasks are 

identified as suturing (SU), knot-tying (KT), and needle-passing (NP). Figure 4.2 presented 

sample frames of the three surgical tasks achieved by a surgical surgeon and defined them 

as follows [11]: 

• Suturing: the surgeon picks the needle up, first and advances it to the bench-top model 

toward the incision. Then, the subject stitches up the needle through a dot-marked tissue 

on one aspect of the incision and extracts it out from the corresponding dot-marked on 
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the other part of the incision. Lastly, the surgeon passes it to the right-hand and repeats 

the same process till the surgeon gets four times in total.  

• Knot Tying: the surgeon makes one tie after selecting one side of a stitch that is tied to 

an elastic tube connected by its rims to the surface of the bench-top model. 

• Needle Passing: the surgeon selects the needle. Then, passes the needle from the right 

side to the left through 4 tiny metal hoops that are placed over the surface of the bench-

top model.  

 

Figure 4.2: RMIS basic surgery tasks [7]. 

This dataset consists of a surgical manual annotation for the surgical skill of each trial. 

An annotating surgeon, with extensive robotic surgical experience, watched the entire trial 

and appointed a score based on a modified global rating score (GRS). GRS is the measure 

of the surgical technical skill of the surgeon who performed the trial. GRS presents the 

total score of six elements illustrated in Table 4.I. Where each component rating scale is 

between 1 and 5 and the best with a higher total score [11]. 
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Table 4.4.I. Elements of Global Rating Score (GRS) [11]. 

Element Rating scale 

Respect for tissue Force on tissue 
Careful tissue 

handling 
Consistent handling 

Suture/needle 

handling 
Poor knot tying Majority appropriate Excellent suture 

Time and motion 
Unnecessary 

moves 

Efficient time/ 

unnecessary moves 

Economy moves/ Max 

efficiency 

Flow of operation 
Frequent 

interrupted 
Reasonable progress 

Planned operation/ efficient 

transitions 

Overall performance Very poor Competent Superior 

Quality of the final 

product 
Very poor Competent Superior 

Rating score 1 3 5 

Min. score = ∑ = 6 Max. score = ∑ = 30 

 

4. 2. 2 MU-EECS Vicon Data 

In this dataset, a Vicon system and IR reflective markers were used synchronously to 

trace and visualize the arms movement of the surgeon while carrying out a surgical 

procedure. Ten IR reflective markers were placed in different positions on both surgeon's 

arms as displayed in Figure 4.3 (a). Also, we can see seven Vicon cameras were located 

inside the lab to capture the resident surgeon's motions. The MU-EECS includes data 

presented by a resident surgeon who performed the same tracheostomy surgical procedure 

six times repeatedly. The earliest three procedures repeat in a consistently appropriate 

manner, whereas the remaining practices were performed with inaccurately way. This 

working set was collected through a project at the Center for Eldercare and Rehabilitation 

Lab in the Dept. of EECS at the University of Missouri Columbia [64].  
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4. 2. 3 EM-Cric Dataset 

Emergency Cricothyrotomy (Cric) is a procedure for potentially lifesaving a human 

being under a high-stress situation, it happens when a person fails to restore enough 

oxygenation. Cric is an incision through the skin and cricothyroid, which results in a better 

patient airway [80]. There are three main steps of the surgical Cric procedure skin incision, 

incision cricothyroid, and endotracheal tube placement membrane [81]. 

The EM-Cric dataset includes data from four surgical surgeons (subjects) who 

performed the Cric procedure with varying expertise levels to study skilled surgical human 

motion. Two residents reported as Novice (N) surgeon, one intermediate (I) surgeon, and 

one expert (E) surgeon, respectively. All surgeons are reportedly right-handed except one 

lefty hand. All surgeons perform the Cric procedure five times on a Trauma Man Surgical 

Simulator at the Medical Intelligent System Laboratory (MISL) in the Medicine School at 

the University of Missouri-Columbia. We placed the wristband sensors on both wrists of 

the surgeon's hands to capture the data, as shown in Figure 4.4. We use low cost 

synchronized data transmission MetaMotionR (MMR) sensors introduced by MbientLab. 

 

Figure 4.3: Tracheostomy surgery with Vicon Camera [64]. 
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MMR is a 9-axis IMU wearable device that provides continuous monitoring of movement 

and real-time sensor data [82]. 

 

Figure 4.4: Cric surgical operation on TraumaMan Simulator by a medical surgeon. 

The data was conducted for a total of three male right-handed, and one female left-

handed participants with different expertise levels were recruited for this study. Two MMR 

sensors were used for the Cric procedure task, one attached to each wrist of the surgeon's 

hand. The captured data consists of three-dimensional accelerations with respect to time 

for each accelerometer, and result in 6-dimensional time series for both sensors. For this 

study, we use only raw accelerometer data which range was set to ±16 g. The sampling rate 

of data collection was set to 100Hz. 

4 . 3 Performance Evaluation 

We used different cross-validating schemes to evaluate our skill assessment 

framework on both kinematic and accelerometer data to compare our results with other 

approaches.  

• Leave-One-Trial-Out (LOTO): For each surgical task, training all the trials except one i-

th trial reserved for testing (𝑖 = 1, . . , 𝑁). 𝑁 is the total number of trials in a task. 
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• Leave-One-Supertrial-Out (LOSO): Different from LOTO setup, where we created five 

folds (𝑗 = 1,2. .5). The j-th fold combines all the j-th trials from all the surgeons for a 

given surgical task. Then, we repetitively training on four sets and keeping a single set 

for testing and reporting the average classifying results. The fold j-th is known as 

supertrial j-th. In this scheme, the robustness of a technique can be assessed by keeping 

a supertrial out each time [11]. Also, repeating the task in a row can possibly impact the 

performance of the surgical apprentice in terms of boredom or tiredness, hence keeping 

the supertrial out perhaps catch that effect on the surgeons.  

To evaluate the performance of our proposed technique and to quantitatively compare 

with other methods, we used the mean accuracy of surgical classification for each output 

class on the data-driven to validate the performance. The average accuracy, defined in (10), 

is the percentage of the sum of accurately predicted (TP+TN) over the total number of 

predictions (TP+TN+FP+FN) [65]: 

ACC =  
TP + TN

TP + TN + FP + FN
   (4 − 7) 

Where TP, TN, FP, and FN represent the number of true positive (predicted correctly 

belong to the target class), true negative (correctly classified not belong to the target class), 

false positive (incorrectly predicts to the target class), and false negative (incorrectly 

predict not belong to the class level) respectively [65]. 

4 . 4 Results and Discussions 

In this part, the proposed approach and evaluation metrics described in the preceding 

sections were evaluated on kinematic and accelerometer data. Also, the results for all the 
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datasets that were explained previously were reported in the following sections, 

respectively. 

4. 4. 1 JIGSAWS Dataset 

For JIGSAWS data, we perform two sets of experiments for the LOSO validation set 

up to identify the three expertise levels (E, I, and N) on our proposed approach. For the 

first assortment, we made use of all the 76-dimensional movement features of the time 

series. Whilst, in the second set we utilized just the coordinates features (𝑥, 𝑦, 𝑧) of the two 

hands. 

Figure 4.5 (a) illustrates the comparison of classification accuracy for surgical 

expertise levels versus k (the number of neighborhoods) in each task using all kinematic 

information. For the LOSO scheme, the improvement in accuracy for almost all cases of k 

of our kNN classifier based PDTW for all surgical tasks. e.g., the mean accuracy for all 

tasks at k = 3 is 95.7%. Also, kNN-PDTW provide an advantage over the traditional 

method (DTW) with a reduction in sensitivity to changing the number of neighbors (k) in 

k-NN.    

We also perform another experiment by using only 3D location information of the two 

hands for the LOSO scheme. Some interesting intuitions results can be seen in Figure 

4.5(b). The accuracy results of the proposed kNN-PDTW6 using the Cartesian coordinates 

almost achieved the same results as using all the 76-dimensional motion data. This can be 

explained by the fact that Procrustes analysis works on the similarity of shapes and the 

motion data are traces in three dimensions space, which encourages us to use the wearable 

sensors later.  
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Figure 4.5: Accuracy of the proposed approach using PDTW and DTW as a function of k. 

 

For further comprehensive comparison, the confusion matrices result for each task is 

shown in Figure 4.6 at k=3. For the suturing task, surgeon expertise levels are 100% 

correctly classified. However, for the other tasks, the misclassifying happened when 

distinguishing between intermediate level and other levels which in turn reduced the 

average accuracy to about 94% and 93% for knot tying and needle passing tasks, 

respectively. We must put into our perspective that each surgeon performs the task in a 

different style from other surgeons, even within the same expertise level regardless of the 

hours spent on practice. Because individual surgeons like to improve their proficiencies 

following their mentor. Thus, small differences between an intermediate surgeon and an 

expert make the classifier introduce an error to recognize their skill levels and vice versa. 

The same case between intermediate and novice surgeons happened.   
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Figure 4.6: kNN-PDTW Confusion matrix of the three tasks SU, NP, KT for LOSO at k=3. 

Another interest intended of our analysis, that we calculate the pairwise PDTW 

distance inside a group of expert-expert, expert-intermediate, and expert-novice surgeons, 

separately for each task. Figure 4.7 illustrates the boxplot of each group distance in each 

task. From the results, it is clear that the smallest distance is among expert surgeons, and 

then between expert-intermediate surgeons followed by the expert-novice group for each 

task. Also, we can see that the differentiating among expert-intermediate surgeons is more 

complicated in needle-passing than other tasks. one explanation is the needle-passing might 

be more challenging to learn or more complicated than suturing or knot tying. This might 

be related to the complication level of the task as can be seen in Figure 4.6 for the needle-

passing task where an expert surgeon classified as an intermediate surgeon mistakenly.                
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Figure 4.7: PDTW-distance within E/E, E/I, and E/N surgeons in each task. 

Table 4.I shows the classification accuracy results of our proposed skill assessment for 

the JIGSAWS dataset using the kinematic data only. Also, we report the state-of-the-art 

results for comparative intent under the LOSO validation scheme for each task separately. 

The results show that the proposed kNN-PDTW properly recognizes the surgeon skill 

levels and matched the work from CNN [57] for suturing. From Figure 4.7 we can see that 

it is straightforward to differentiate between the expertise levels with the help of using 

PDTW measure. Additionally, the NN classifier learned the dynamic information which 

already comes from various motion patterns of the surgeons that might benefit this result. 

In knot-tying, our proposed kNN-PDTW approach outperforms both CNN [57] and Deep 

Learning [15] approaches in terms of accuracy. Also, our results were near the 

CNN+LSTM+SENET method [22]. Our results were improved more for suturing and knot-

tying tasks than the needle-passing task, and we did slightly better than [15] in this task. 

The small distinctions between intermediate surgeons with other surgeons in this task 

illustrated in Figure 4.7 might explain the less performance on the needle-passing task. 

Furthermore, we can notice from Table 4.I that no technique is suitable for the three tasks. 
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In other words, an integration methodology of various approaches is needed for surgical 

proficiency assessment purposes for these tasks. 

Table 4.4.II: Skill Assessment Classification Comparative of kNN-PDTW Performance using LOSO for 

JIGSAWS Data. 

 

 

 

 

 

 

 

 

As mentioned previously in section 3.1, the modified global rating score measures the 

surgical technical skill done by the annotation surgeon for the entire trial provided in the 

JIGSAWS dataset. Figure 4.8 presents the boxplot of the surgeons' GRS scores for each 

task. We can see from this figure, the consistency of the expert surgeons compared to the 

novice and intermediate surgeons in all tasks. Where the lowest variance the expert 

surgeons have ultimately implied their steadiness. Another interesting viewpoint from 

Figure 4.8, that we can see the scores challenge to differentiate among the surgeon’s 

proficiency in the needle-passing task, which produces the misclassifications. One more 

thing to be observed in Figure 4.8, some intermediate subjects score better than expert 

subjects. This means that these surgeons might be eligible to be in a higher skill level or 

position.  

Approach 

Accuracy 

SU NP KT 

Farad [26] 

kNN 89.7% - 82.1% 

LR 89.9% - 82.3% 

SVM 75.4% - 75.4% 

Wang [15] 93.4% 89.8% 84.9% 

Forestier [28] 89.7% 96.3% 61.1% 

Fawaz [57] 100% 100% 92.1% 

Anh [22] 98.4% 98.4% 94.8% 

kNN-PDTW (proposed) 100% 92.8% 94.4% 
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Figure 4.8: Boxplot of GRS scores for each task. 

4. 4. 2 MU-EECS dataset 

We experiment on the tracheostomy dataset to classify the trial level as either Good or 

Bad. In this experiment, we calculate the pairwise PDTW distance among the six trials 

operated by a resident surgeon [64]. Figure 4.9 presents the resulting distance of this 

experience for the MU-EECS dataset, where the yellow color is the farthest and the closer 

trials to each other are in darker blue.  

 

Figure 4.9: PDTW distance matrix for MU-EECS data. 

Overall, the Good trials, which are the first three trials in Figure 4.9, has a similarity 

less than or equal to 0.5. e.g., about 0.3 is the difference between trials 2 and 3. On the 

other hand, the pairwise distance between Bad procedures, the last three trials, is greater 

than 0.7 in distance to each other. Also, we can see those Good procedures are nearly 0.7 

far away from Bad trials except among trial-Good 1 and trial-Bad 5 about 0.55 difference.   
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Another insight from Figure 4.9, it is straightforward to cluster the trials into Good 

(the upper left corner) and Bad (in the lower right corner). That means the PDTW distance 

helps accurately to identify between the trials in this task where each group looks to cluster 

together. Finally, the boxplot of the PDTW measure among the Good and Bad trials 

separately is presented in Figure 4.10. In this figure and from a statistical viewpoint 

comparison, the mean and variance of the Good procedures (𝜇𝐺−𝐺 = 0.12,  𝜎𝐺−𝐺 = 0.08) 

is less than the Bad procedures (𝜇𝐵−𝐵 = 0.21, 𝜎𝐵−𝐵 = 0.16) which is consistent along 

with prior results.       

 

Figure 4.10: Boxplot of PDTW distance for MU-EECS dataset. 

4. 4. 3 EM-Cric dataset 

For the EM-Cric dataset, we performed two sets of cross-validation schemes, the 

LOTO for the trial level and the LOSO to identify the surgical proficiency levels (Expert, 

Intermediate, or Novice) of the subjects. As we mentioned previously in section 3.3, this 

dataset includes accelerometer data collected from four surgeons (expert, intermediate, and 

two novices) who performed the same task five times repetitively.  

Before evaluating the classification accuracies, we calculate the pairwise distance 

among all the collected trials. Figure 4.11 (a) and (b) illustrate pairwise distance matrices 

comparison between DTW and PDTW measures, respectively. The first five trials 
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represent the expert surgeon procedures, the second five stand for the intermediate surgeon 

trials, and the remaining ten trials are for the two novice surgeons, all performing the same 

task. Where the similar performances made by participants are indicated in strong blue 

squares in this figure. Also, the three separate square blocks in Figure11 (b) give a visual 

insight for the possibilities of clustering expertise levels where the task is performed by 

different surgeons for this data using only the accelerometer data. Also, we can notice from 

this figure that PDTW distance separates well between expertise levels better than using 

DTW distance alone. The results in Figure 4.11 (b) shows that the expert surgeon has a 

dissimilar pattern to both intermediate and novice surgeons. Moreover, novice surgeons 

themselves are quite like each other.  

 

Figure 4.11: The pairwise distance for each trial on EM-Cric using (a) DTW and (b) P-DTW. 

First, we performed experiments to compare how DTW and PDTW perform for 

classifying surgeon levels on Cric data using both LOTO and LOSO configurations. Figure 

4.12 presents comparisons of the classification accuracy results of the proposed model for 

different values of K (number of neighbors) using LOTO and LOSO cross-validations, 

respectively. Figure 4.12 (a) shows that the results of our method based on PDTW performs 

better compared to using only DTW distance. These results indicate that our approach can 

identify the surgical skill levels well at trial levels because it utilizes the Procrustes 

(b) (a) 
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analysis. Secondly, Figure 4.12 (b) presents the kNN-PDTW performance for the LOSO 

setup for the Cric dataset. The kNN based DTW approach performs slightly better for the 

accelerometer data. Whereas our approach results were improved, and the performance 

was reasonably well and still having a higher classification accuracy of 90% at k = 3.  

 

Figure 4.12: Classification accuracy as a function for k (a) LOTO and (b) LOSO cross-validation for 

Cric data. 

Figure 4.13 shows the confusion matrix of our kNN based PDTW for surgeon 

expertise at k = 3 for Cric data using LOSO configuration. We can see that the intermediate 

surgeon was classified correctly, whereas both expert and novice surgeons were 

misclassified in one trial. From Figure 4.11 (b), we can notice that there is one trial (#3) 

from the expert surgeon that seems far from other trials with Expert trials and the same for 

novice surgeons with the trial (#11) in the same figure. The average classification accuracy 

was 90%. 

(a) (b) 
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Figure 4.13 kNN-PDTW Confusion matrix for LOSO at k=3 for Cric data. 

 

Lastly, for a more thorough comparison, we perform another experiment for Cric data 

by using balanced data and evaluating using LOSO with a k-fold cross-validating scheme. 

The balanced data was obtained by having equal trials from each surgeon level. The reason 

we chose the balanced data experiment because we had two novice surgeons, one expert, 

and one intermediate surgeon. In this conduct experiment, we pick five trials randomly 

from a total of ten novice surgeon’s trials and put them together with other trials from the 

expert surgeon and the intermediate surgeon trials. Then repeat the process ten times and 

report the average classification accuracy. Figure 4.14 shows the comparison classification 

accuracy as a function of k between PDTW and DTW based kNN classifier. Furthermore, 

Figure 4.15 presents the confusion matrix of kNN-PDTW predictions of the surgical skill 

classes. We can see from both above figures that the average accuracies of using PDTW 

much better than using DTW for all values of k. Also, our approach using balanced data 

achieved average classification accuracy about 3% higher than using unbalanced data. the 

balancing data helps classified the novice surgeon's skill correctly with 100%.  
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4 . 5 Conclusions  

In this chapter, we define a new surgery skill distance measure PDTW. It incorporates 

the exploration for best alignment using DTW and the similarity measure using Procrustes 

distance among two multidimensional time series. We show that the proposed framework 

based PDTW can enhance the overall performance for surgical proficiency evaluation. We 

attain an average accuracy of 97% for the JIGSAWS dataset and the results outperform 

most state-of-the-art methods using kinematic data and are comparable to techniques based 

on deep schemes.       

 

Figure 4.14: Balanced data classification results for the Cric data. 

 

Figure 4.15: Balanced data confusion matrix for the Cric data. 
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Also, here we have examined the use of wearable motion sensor devices in proficiency 

assessment to achieve an entirely objective evaluation. Although our results are 

encouraging, there are quite a few limitations. The number of subjects is relatively small, 

not as desired. Furthermore, only one surgical task the subjects were asked to work on and 

there is no break between the trials which might impact the performing of the trials. Despite 

the limitations, our results indicate that PDTW distance can be used by classifying 

techniques to categorize the expertise levels accurately. In the future, we plan to increase 

the number of participants with a variety of expertise which might have the potential to 

give more information and robustness to our method. Also, more tasks to be utilized instead 

of only a given surgical task. Furthermore, consider using another or a combination of 

classifiers to improve the overall classification accuracy for skill assessment.  
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 Surgemes Classifications using Mean Feature 

Reduction 

 

5 . 1 Introduction 

A little more than a century ago, Dr. William Halsted established the first surgical 

resident training program in the United States. His training methodology was quite 

straightforward: "see one, do one, teach one." [44] Expert feedback is the most frequent 

method for evaluating surgeon technical performance, either during surgery or afterward 

via video review. However, an attending physician may not always be available in person, 

and post-operative video assessment can be time consuming and subjective. With 

experienced surgeons limited free time, this approach is clearly not scalable. Thus, it is 

important to create objective, automated, and time-efficient approaches for evaluating 

surgeon technical skill [83]. Recent technological advancements have altered the way some 

procedures are conducted. This has created an opportunity to review Halsted's paradigm to 

identify more effective methods of teaching surgeons [44]. These difficulties have 

prompted and motivated us to develop techniques for automatically assessing RMIS skills 

and classifying gestures. 

In this chapter, we developed a framework for surgical gesture classification based on 

raw kinematic data. We employ the k-nearest neighbor and support vector machine 

algorithm as a classifier in our proposed method. Also, we present the mean feature 

reduction technique to represent the surgical segments in more feasible way and allow us 

to utilize various distance measures.  
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5 . 2 Methodology 

In this section, we will demonstrate our developed framework for recognizing 

surgemes that operate directly on raw kinematic data using a mean-feature approach. To 

classify the predefined surgemes in each surgical task, we used two distinct distance 

measures: dynamic time warping and Euclidean distance. We also describe the 

classification methods that we utilized and will define the performance metrics that will be 

used to compare our results to those of other proposed methods. Figure 5.1 provides a 

summary of the proposed surgical gestures classification framework for robotic assisted 

minimally invasive surgery data. In summary, our approach begins with predefined 

surgical gestures. Then, determine the similarity between different surgemes. In this step, 

either using DTW to measure the pairwise distance among the multivariate time series or 

Euclidean distance (ED) with the mean feature reduction representation, we will explain it 

later in this chapter. In the first case, we used a k-NN classifier; in the second, we used a 

support vector machine (SVM). 

 

 

Figure 5.1: Flow diagram for surgemes classification. 

 

5. 2. 1 Support Vector Machine  

The support vector machine (SVM) is an effective and simple algorithm which is 

widely adopted for classification, pattern recognition and regression. The SVM was first 

developed by Vladimir Vapnik and Alexey Chervonenkis [84] in 1963. In the 1990s, SVM 

Classifier 

(SVM/kNN) 

Pre-Processing 

(Mean Feature) 

Predicted 

Surgemes  

Labeled 

Surgemes 
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was improved and suggested by Vapnik [85] and later on used by Byun and Agarwal [86, 

87] based on a statistical learning methodology. The concept of SVM method unlike the 

traditional approaches, such as neural network (NN), is to classify the dataset into two 

groups or more by using a linearly or nonlinearly hyperplane (a separable line or curve) 

and to increase the margin between separating data as illustrated in Figure 5.2. 

 

Figure 5.2: Define the hyperplanes in a dataset. H1 and H-1 are the positive and negative support vectors, 

respectively. 

The best hyperplane that has the biggest margin between two categories in one dataset, 

which represents distances between the hyperplane and the closest points in the classified 

categories in the dataset. In 1990’s, Vapnik developed SVM as a Soft Margin Classifier or 

support vector machine in case there are some misclassifications of datasets as stated in 

Figure 5.2. Furthermore, the SVM had been improved by utilizing Kernel techniques by 

maximizing the features space boundaries to employ non-linearity between classes [88]. 

Kernel functions are algorithms that quantify resemblances between observations. There 
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are several types of Kernels that are adopted to classify non-linear datasets, such as 

polynomial, radial basis and linear Kernels. 

For a 2D linear case, the following steps are below summarized to depict the procedure 

that is employed to solve a problem in the support vector machine (SVM). 

• A linear classifier has a form of: 

𝑓(𝑥) = 𝑊𝑇𝑥𝑖 + 𝑏                                      (5 − 1) 

where W is the weight vector, x is the input vector, b is the bias and  𝑖 = 1, 2, … . , 𝑁. 

H1: 𝑊𝑇𝑥 + 𝑏 = +1, H-1: 𝑊𝑇𝑥 + 𝑏 = −1, H0: 𝑊𝑇𝑥 + 𝑏 = 0 ………… (5-2) 

• d+ and d- are the smallest distances from the hyperplane to the nearest positive and 

negative points, respectively. Thus, the margin is d=d++d- for a given weight vector 

W and bias b. 

• Maximizing the distance d that leads to increasing the margin to obtain an optimal 

hyperplane. 

• The distance from a point (x0, y0) to a line: 

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 is  
𝑎𝑥0+𝑏𝑦0+𝑐

√𝑎2+𝑏2
 ……………….. (5-3) 

Consequently, the distance between H1 and H0 is: 

𝑑+ =
𝑊𝑇𝑥+𝑏

‖𝑊‖
=

1

‖𝑊‖
 and then the margin = 

2

‖𝑊‖
 ……………….. (5-4) 

1. From the previous equation, ‖𝑊‖ needs to be minimized to maximize the margin 

under the status that there are no points between H1 and H-1 lines. 

max 
2

‖𝑊‖
 is subjected to: 

𝑊𝑇𝑥 + 𝑏 
≥ 1 𝑖𝑓 𝑦𝑖 = +1

 ≤  −1 𝑖𝑓 𝑦𝑖 = −1
  𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑁. ……………….. (5-5) 
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and equivalently min ‖𝑊‖2 is subjected to: 

𝑦𝑖(𝑊𝑇𝑥𝑖 + 𝑏) ≥ 1 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑁. ……………….. (5-6) 

2. The obtained optimization problem is a quadratic function that can be solved by 

using the LaGrange multiplier method. 

5. 2. 2 K nearest Neighbor  

k-Nearest Neighbor (KNN) is considered one of the supreme machine learning 

classifiers. Its applications are multi-sided and could be used in finance, healthcare, 

political science, image processing and many other purposes. Anyhow, it has two main 

features: non-parametric and lazy learning algorithms. The formation of the model is 

decided from the dataset itself. It means no assumptions are required for data distribution. 

It is more beneficial since most datasets do not obey mathematical models. Moreover, it 

does not need to train data to generate models, for lazy algorithms, since all data are trained 

during the testing phase. In other words, this leads to the training phase being faster and 

testing phase being slower. In general, KNN needs more time to train and test the whole 

dataset which means more memory. 

Basic steps could be summarized into three points as followed: 

1- Calculate distance between a new point (an example) and the other points of the other 

classes (such as Euclidean distance, Hamming distance, Manhattan distance and 

Minkowski distance). 

2- Find and decide which are the closest neighbors. 

3- Voting for labels depending on the neighbors that are close to a new point. 

In general, KNN works perfectly with a lower number of features. This means the high 

great number of features requires more datasets. In addition, another disadvantage with 
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KNN is the number of dimensions, which is called the curse of dimensionality. This issue 

(the growth of dimensions) might cause an overfitting. 

Several solutions might be dealt with to avoid such a problem like this. Performing the 

principal component analysis before subjecting the machine learning technique or using 

another method which calls a feature selection approach. 

There is no optimal value for k-nearest neighbor approach since each dataset has a 

unique features or own requirements. Researches have demonstrated that a small value of 

neighbor gives low bias but high variance while a high value of neighbor displays a lower 

variance but higher bias [89]. 

The k-Nearest Neighbor is one of the simple algorithms that has been used in machine 

learning. the concept of KNN is by classifying new points based on other points of the 

dataset that are more like them. KNN is an algorithm which is treated as both non-

parametric and lazy learning. the feature of non-parametric means that there are no 

assumptions that would be made. In other words, the full model is composed depending on 

the given datasets in lieu of assuming its structure. For lazy learning, moreover, there is no 

popularization. In other words, training datasets are little in the training process while all 

the training datasets are employed second time in testing phase by using KNN method. 

Figure 5.3 below shows the concept or the idea how the KNN works when attempting to 

assort a new point in a dataset based on another given datasets. 

It would be figured that the process will be started to its nearest points and assort 

depending on which is closet and more like. There are several ways and methods that 

calculate the distances between the new points and the points of given datasets such as 

Euclidean, which is a mathematical method. Anyhow, after KNN calculated the distances 
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between each new point and tested datasets. The method detects the probability of 

similarity between the new points and tested datasets and then assorts them according to 

the highest score of probability. 

Despite that the KNN is simple to use and has no assumptions on the datasets, it still 

has some cons. Its accuracy mainly depends on the quality of the data. Moreover, an 

optimal k number (the value of nearest neighbor) must be determined to obtain greater 

accuracy.  

 

Figure 5.3: The concept of assorting new points depending on given datasets. 

 

5. 2. 3 Similarity Measure 

In time series classification, where data are labelled according to their similarity, the 

distance measure is critical. The Euclidean distance and dynamic time warping (DTW) are 

the most frequently used similarity measurements in this domain due to their effectiveness 

and efficiency in determining the similarity between objects. Euclidian distance is a 

straightforward, fast, and parameter-free calculation. On the other hand, it is susceptible to 

noise, a time axis shift, and requires one-to-one matching (both signals have similar time 

durations) [90]. 
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To overcome these constraints, DTW proposes a one-to-many matching between time 

axes without considering local and global shifting issues in time series data. By resolving 

this time scale problem (local shift), it is possible to match time series data that have a 

similar pattern but have a different time axis [91]. 

The DTW distance can be implemented using dynamic programming, in which the 

accumulated distance formula recursively determines the optimal warp path between two 

segments 𝑋𝑖 = [𝑥1 … , 𝑥𝑀] and 𝑌𝑖 = [𝑦1 … , 𝑦𝑁]: 

D(Xi, Yj) = δ(xi, yj) + min{D(xi−1, yj−1), D(xi, yj−1), D(xi−1, yj)}      (5 − 7) 

In which 𝛿(𝑥𝑖 , 𝑦𝑗) is the Euclidean distance between the two aligned warp path 

segments [92]. It can be used to classify among time series data using methods like SVM 

or kNN which have been validated as effective in the field of time series analysis. 

To determine how well our proposed method performs for classifying surgemes, we 

compare the predicted labels with the ground truth labels using various performance 

metrics, i.e., the average of accuracy, f-measure, and recall.  

5 . 3 Experimental Evaluation  

5. 3. 1 Surgemes Mean Feature Reduction Representation  

Instead of using the entire segment time frames for each variable, we compute the 

mean for every single of the 76 variables (features) and then normalize it to re-represent 

the surgemes or segments of each trial for each of the surgical tasks. 

Let 𝐗 = [𝒙𝒊𝒋]𝑵𝒙𝑷 be a gesture of length N and have P features. Then the averaging of 

surgical gestures will be as the following: 
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X̂ = [x̂ij]1xP =  Mean(X) =
1

N
∑ xip    , ∀ p ∈ P

N

i=1

        (5 − 8) 

The computation is made easier by mean feature reduction, which also eliminates the 

bias caused by time. More importantly, by using this approach, we can avoid using DTW 

or something similar because we can now measure the similarity between surgemes with 

the same dimension rather than using a different multidimension distance measuring 

method. 

5. 3. 2 Surgical Dataset 

The proposed approach is tested on a widely used public robotic surgery dataset, 

JIGSAWS [11]. This dataset contains kinematic and video data from eight surgeons of 

varying expertise: expert, intermediate, and novice. Each surgeon repeated the three basic 

surgical tasks (suturing, needle passing, and knot tying) five times. Raw kinematic data 

from the da Vinci robotic surgery system was used with different gestures frame lengths. 

Each of the four manipulators has 76 variables, consisting of 3 cartesian positions, 9 

rotation matrices, 3 linear velocities, 3 angular velocities, and 1 gripper angle. Figure 5.4 

shows the histogram plot of the numeric gestures grouped in each task.  

   
(a) Suturing task (b) Needle passing task (c) Knot-tying task 

Figure 5.4: The frequencies of each gesture in every surgical task. 
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For each task, the JIGSAWS provided manually annotated ground truth segments 

(surgemes). In kinematic data attributed to each trial, each predefined surgeme specifies 

the start and the end frames. Table 5.I lists 15 elements of the common vocabulary of 

potential surgemes for all three surgical tasks. Some surgemes appear to perform multiple 

tasks, but they differ in the context of the surgical gestures. Suturing, needle passing, and 

knot tying are three surgical tasks that include 10, 9, and 6 of the 15 surgemes [11].  

Table 5.I: Surgemes Vocabulary for all the surgical tasks [3]. 

Surgeme 

index 
Gesture description Suturing 

Needle 

Passing 

Knot 

Tying 

G1 Reaching for needle with right hand    

G2 Positioning needle    

G3 Pushing needle through tissue    

G4 Transferring needle from left to right    

G5 Moving to center with needle in grip    

G6 Pulling suture with left hand    

G8 Orienting needle    

G9 Using right hand to help tighten suture    

G10 Loosening more suture    

G11 Dropping suture at end and moving to end points    

G12 Reaching for needle with left hand    

G13 Making C loop around right hand    

G14 Reaching for suture with right hand    

G15 Pulling suture with both hands    

 

To compare the accuracy results with state-of-the-art methods for gestures 

classification, we employ three distinct validation schemes: k-fold, leave one supertrial out 
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(LOSO), and leave one user out (LOUO). In k-fold cross-validation, data is divided into k 

equal parts and run k times with a different holdout set each time and report the average 

accuracy of the k times results. For LOSO setup, trials i-th from all the surgeons hold out 

for testing and training on the rest four trials for each task. In the LOUO validation, we 

held entire surgemes that belong to one surgeon trials out for testing and training on the 

remainder [11].  

5 . 4 Results and Discussions  

5. 4. 1 Surgemes Classification Results by DTW 

In each task, we experimented with assessing recognition of surgical surgemes. We 

used the DTW distance in conjunction with the kNN classifier to distinguish between 

surgemes using all 76 kinematic variables of the gestures. The results of the LOSO 

validation setup are shown in Figure 5.5. The model correctly identified the SU and KT 

tasks with a percent accuracy of 87.3% and 77%, respectively, while correctly identifying 

the NP task with a percent accuracy of 67.6%. We might have noticed that some surgemes, 

i.e., 3,4, 6 of SU, NP, and 11, 12, 13 of KT tasks, have the highest accuracy. However, 

gestures 5, 8, and 10 have the minimum accuracy. We can explain it because the dataset 

has few numbers of these gestures as shown in Figure 5.5 and that needle passing is more 

difficult than other tasks. For instance, gesture 8 is not involved in suturing or needle 

passing. So, if the surgeon cannot complete the gesture, such as inserting the needle into 

the tissue, they might perform a to reorient the needle and repeat the gesture. As a result, 

the model is having difficulty accurately recognizing it [12]. 



89 

 

  
(a) (b) 

 
(c) 

Figure 5.5: Confusion matrix in LOSO validation using kNN-DTW for a) SU b) KT and c) NP tasks. 

 

5 . 5 Surgemes Results by Mean Feature Reduction 

As mentioned previously, we convert raw surgemes with various observation lengths 

into gestures with similar dimensions by applying the mean feature reduction. This section 

shows the results for gestures classification by using SVM with quadratic kernel function 

to compute the classifiers for modeling the different surgemes.  

Table 5.II shows the 10-fold cross-validation supervised metrics that split the dataset 

into ten groups and randomly select one group to be used for testing and training the other 
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nine groups of the dataset. Finally, provide an estimate of the average assessment 

performance of the ten folding. The confusion matrix for the classification results is 

depicted in Figure 5.6. Also, the percentage of the number of correctly and incorrectly 

surgemes classified for true (rows) and predicted (columns) classes is displayed in the exact 

figure as well. As expected, the results achieved high scores in k-fold because the data was 

rearranged and partitioned randomly. Consequently, all the observations are used for both 

training and validation.     

Table 5.II: 10-fold results of the average accuracy for SVM Classifier. 

Task Accuracy f-measure Specificity Sensitivity Precision 

SU 98.4 98.4 99.8 98.4 98.4 

NP 95.2 94.3 99.3 95.8 93.2 

KT 97.6 97.3 99.5 98.2 97.6 

 

 

Figure 5.6: Confusion matrix for 10-fold validation for SU task. 
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We experimented with the LOSO cross-validation to examine the robustness of the 

model when leaving the i-th trial out from all surgeons for testing and training on the 

remainder gestures. We used the ground truth annotation data for comparison purposes 

with the predicted labels by our approach. Table 5.III summarizes the average accuracy 

results of the SVM method using the mean feature reduction technique for the surgemes 

for every surgical task. From this table, we can observe that the approach can recognize the 

surgemes with an average recognition rate of 94.8%, 81.8%, and 92.5% for SU, NP, and 

KT tasks.  

Table 5.III: The average accuracy results of the SVM method using mean feature reduction. 

Task Accuracy f-measure Specificity Sensitivity Precision 

SU 94.8 94.8 99.4 94.8 94.8 

NP 81.8 81.8 97.4 81.8 81.8 

KT 92.5 92.5 98.5 92.5 92.5 

 

Figure 5.7 shows the confusion matrix comparing the classification results with the 

ground truth for each surgeme in each task. Interestingly, the overall results of the SVM 

model of the SU task achieved high accuracy and turned out to be highly discriminating 

between the gestures. However, we can notice that surgeme ten is misclassified in the SU 

task. We can explain that this gesture is achieved only four times by three novice surgeons 

in the SU task. Three of these gestures were performed in the same trial number along with 

different surgeons. In contrast, one surgeon worked this gesture in other trial numbers. 

Thus, while experimenting with the LOSO scheme, three of these motions are kept separate 

from the other for testing or training purposes, resulting in misclassification. 
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(a) NP (b) KT 

 

(c) SU 

Figure 5.7: Confusion matrix for SVM model using LOSO validation. 

 

Another experiment explores our proposed method for the surgemes when the entire 

gestures that belong to a surgeon are not seen in the training. We evaluate our approach 

based on mean feature reduction in the LOUO cross-validation scheme. We can notice 

from Table 5.IV and Figure 5.8 that the accuracy results using this validation setup 

decreased by approximately 7.7, 17, and 7 percent of accuracy when switching from LOSO 

to this scheme for SU, NP, and KT tasks.  
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Table 5.IV: Average accuracy of the SVM classification method for LOUO validation in all the surgical 

tasks. 

Task Accuracy f-measure Specificity Sensitivity Precision 

SU 87.1 87.1 98.6 87.1 87.1 

NP 64.7 64.7 95 64.7 64.7 

KT 85.2 85.2 97 85.2 85.2 

This disparity indicates that this cross-validation is very difficult to achieve high 

accuracy. Additionally, the considerable reduction in accuracy for the Needle passing task 

accuracy can be clarified due to the limited available surgemes for this specific task in the 

dataset compared to the other surgical study. Furthermore, this variation in tasks implies 

that needle passing, and suturing are performed differently depending on the surgeons.  

  

(a) NP (b) KT 

 

(c) SU 

Figure 5.8: Confusion matrix for SVM model using LOUO validation. 
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We compare the result of our approach using the mean feature reduction technique 

with the state-of-the-art methods in average accuracy for LOSO in Table 5.V and LOUO 

in table 5.VI. As we can see that our method outperforms the other methods using 

kinematic data only for LOSO and LOUO cross-validations in all the tasks. An exception 

for the needle passing task is that the linear dynamic system (LDS) based on multiple kernel 

learning proposed by [13] achieved better accuracy. The earlier methods rely on the video 

information to recognize the gestures or a combination of both kinematic and video data to 

provide higher accuracy results.  

Table 5.V: Comparison with state-of-the-art methods using LOSO Validation. 

 Kinematic Video Hybrid 

Task 
Our 

Proposed 

SHMM 

[24] 

LDS 

[44] 
BOF LDS BOF+LDS 

BOF+LDS 

(Kin) 

BOF+LDS 

(all) 

SU 94.8 79.4 87.3 90.7 87.2 91.8 93.5 94 

NP 81.8 76.4 78.8 74.1 69 77.8 85.3 86 

KT 92.5 86.8 85.1 88.4 87.3 90.8 93.8 92.8 

 

Table 5.VI: Comparison with state-of-the-art methods using LOUO Validation. 

 Kinematic Video Hybrid 

Task 
Our 

Proposed 

SHMM 

[24] 

LDS 

[44] 

BOF 

[44] 

LDS 

[44] 

BOF+LDS 

[44] 

BOF+LDS 

(Kin) [44] 

BOF+LDS 

(all) [44] 

SU 87.1 60.9 74.6 78 74.2 81.2 86.3 86.6 

NP 64.7 45.3 67.3 65.5 85.8 66.9 80.1 80.2 

KT 85.2 72 78.9 84.9 77.4 86.7 90.1 90.4 

 



95 

 

It is worth mentioning that our approach is more precise and fast in comparison to 

other existing methods. One of the key benefits is the mean feature reduction of the 

gestures, which reduces the computational time and the complexity of the technique while 

maintaining almost the same high-performance results.   

 

5 . 6 Conclusion 

We developed a framework for surgemes classification directly on raw kinematic data 

captured by RMIS. Also, we present the mean feature reduction of the surgical gestures 

that is fast, accurate, and reduce the complexity of the proposed framework. Additionally, 

the combination of the mean feature reduction and the SVM method provides the highest 

performance results. Though, the feasible reasonable outcomes of the proposed technique 

make it applicable in another domain like recognition of human activities. Although further 

studies are needed to draw a solid conclusion with more data and surgical tasks with a 

balanced number of surgemes in each task. 
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 Clustering Surgemes using Prototypes from 

Robotic Kinematic Information 

 

6 . 1 Introduction 

The innovations in surgical robotic platforms have wide opened new capabilities in 

training and education for surgeons to provide high quality surgical care in the operation 

room. The information captured by robotic minimally invasive surgery (RMIS) deliver 

program-based insights that could potentially help enhance patient outcomes and care cost 

[93]. Also, the accessibility of the driven data representing movement of the surgeons give 

the opportunities to create and build models for objective method and assessments that 

deliver feedback during a surgical task [52].  

Figure 6.1 presents an example of 3D movements of both hands of trainee and expert 

surgeon for one trial during a surgical suturing session from JIGSAWS dataset [11] where 

the surgemes are highlighted using different colors. In this figure we can noticed the 

difference in traces shape between them in which the movements of the expert are smoother 

and confidence in transition than the novice surgeon. 

Figure 6.2 illustrates an example comparison of the raw kinematic data for the right 

and left hands among the novice and expert surgeon of the same trial in previous figure for 

each dimension of the cartesian coordinates (x-y-z coordinates) individually. Also, the 

sequences of the surgical gestures for each trial are provided on Figure 6.2 for each surgeon 

separately.      
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Figure 6.1: Example of 3D Movements for (a) the left and (b) the right hand of the novice and expert 

surgeons during a suturing task. 
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Figure 6.2 Kinematic time series for (a) the left and (b) right hands of the novice and the expert 

surgeons. 

 

In the literature, most of the techniques are supervised classification based on 

predefined or pre-segmented surgeme data. These surgical gestures (surgemes) are 

annotated manually by chief surgeons, consuming more time and being susceptible to 

human mistakes by missing parts (surgemes) or inconsistently criteria applied throughout 

a surgical task [12, 50]. Several works intended to identify surgical activities from 

unsupervised viewpoints without prior knowledge of gestures [51-53]. In [51], they 

proposed a framework for segmentation and recognition surgemes from kinematic data. 

They first applied unsupervised segmentation by finding a relevant selection of dexemes 

(a numerical representation of subgestures to perform a surgemes). Secondly, they used 

learning features from dexemes to associate them to corresponding surgemes (composed 

of a set of dexemes) [51]. Another approach introduced by [54] is known as soft boundary 

unsupervised surgemes segmentation. The temporal sequence of surgemes segment and 

merge based on some criteria, and then the boundaries between parts are smoothed. A 

(a) (b) 
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recent deep-learning approach was proposed by [55], based on a deep convolution network 

using both kinematic and video data for surgical gestures segmentation.  

The main objective in this chapter is to build and assess an unsupervised model to 

identify the surgemes of the surgeon directly from raw kinematic data, which is a step 

forward toward segment the surgemes from the surgical traces data. The proposed 

algorithm is comprised of three major mechanisms: 1) representatives surgemes based on 

clustering the surgemes of one expert surgeon from every single surgical training trial 

performed by this expert, 2) mapping the other 'surgeons' surgemes to the nearest 

representative prototypes, and finally 3) measure the clustering accuracy using the rand-

index.  

The aim of this chapter is two folds are as follows: i) we propose an unsupervised 

method to identify the surgemes of the surgeons based on clustering algorithms. ii) we re-

represent the segments by utilizing the mean of the feature instead of using all the time 

frames to reduce the complexity and computational time and make the proposed approach 

more feasible.          

6 . 2 Methodology 

6. 2. 1 Surgemes Clustering Framework 

Figure 6.3 shows the overall flow diagram of our proposed approach for surgical 

gestures clustering based on raw kinematic data. First, the surgemes prototypes were 

obtained from the expert surgeon by clustering their surgemes from all trials using 

unsupervised algorithms. In the second step, we utilize the medoid method to locate the 

representative surgeme for each surgeme prototype individually. Next, we mapped every 
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gesture of the trainee surgeon per trial on the representative surgemes by measuring the 

distance with all the representative gestures and assigned it to the cluster with the smallest 

distance. Finally, we assess the performance of our unsupervised approach using the rand-

index between the ground truth and the predicted labels of the clustering approach. More 

details about each step will be discussed in the following sections. 

 

Figure 6.3: Overview of our Clustering Surgemes approach using Rand-Index for each surgeon. 

This approach starts by normalizing each surgeme using mean and variance to ensure 

that the data are scale and shift invariants which allow reasonable comparison between 

them. 

 Let 𝑋𝑖 be a time series, then the corresponding normalized signal 𝑋̂𝑖 is: 

𝑋̂𝑖 =
(𝑋𝑖 − 𝜇𝑖)

𝜎2
𝑖

                                      (6 − 1) 

Where 𝜇𝑖 and 𝜎𝑖 are the arithmetic mean and standard deviation of time series i, 

respectively. Next, to form the prototype surgemes, we employ unsupervised methods on 

one expert surgeon gestures using hierarchical and Fuzzy c-means (FCM) Algorithms. 

The hierarchical clustering method has been shown to be effective and efficient at 

separating human activities, which is well-suited for time series clustering. [94, 95]. Then, 

we employ the minimum variance algorithm (Ward) on a pairwise distance matrix which 

is obtained by computing the distance between two segments to create the prototype 
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surgemes. The distance 𝑑𝑟𝑠 between two clusters Cr and Cs is defined as the distance of 

their centroid is equivalent to the following equation: 

drs =
nrns

nr+ns
‖Xr − Xs‖

2
                      (6 − 2) 

Where 𝑋𝑟 and 𝑋𝑠 are the centroids of the two clusters, 𝑛𝑟and 𝑛𝑠 are the number of 

objects in cluster Cr and Cs, respectively [96].. Additionally, we used fuzzy c-means (FCM) 

to partition the expert surgeon's surgemes into a predefined number of clusters equal to the 

number of distinct surgemes in each surgical task. 

 The FCM partition membership needs to meet the following constraint to prevent the 

trivial solution by allocating all the cluster memberships to zero: 

∑ uij = 1       ∀ j = 1,2 … n

C

i=1

                             (6 − 3) 

The objective function of the FCM that meets the criteria can be formulated as follow:  

J(U, V) = ∑ ∑ uij
m d2(xj, vi)

C

i=1

n

j=1

                                    (6 − 4) 

The parameter m>1 is the fuzzifier that controls the rate of the membership value. The 

values of partition membership 𝑢𝑖𝑗 and prototype centers that require to minimize 𝐽  and 

the distance between data sample 𝑥𝑗  and the set of cluster centers 𝑣𝑖 can be determined by 

the following equations [63]:  

uij =
(1 d(xj, vi)⁄ )2 (m−1)⁄

∑ (1 d(xj, vk)⁄ )2 (m−1)⁄C
k=1

                (6 − 5) 
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vi =
∑ uij

mn
j=1 xj

∑ uij
mn

j=1

                (6 − 6) 

The distance measure plays an important role in time series clustering, where the data 

are grouped based on their similarity. The Euclidean distance and dynamic time warping 

(DTW) are the most frequently used similarity measurements in this domain due to their 

effectiveness and efficiency in determining the similarity between objects. Euclidian 

distance is simple, fast, and parameter-free. However, it is sensitive to noise and shift in 

the time axis. It also requires both signals to have equal time lengths (one-to-one matching)  

[90]  

On the other hand, DTW employs a one-to-many matching between time axes without 

considering local and global shifting issues in the time series data which overcome these 

restrictions.  By resolving this time scale issue (local shift), it is possible to match time 

series data that are similar in pattern but have a different time axis.[91].         

DTW distance can be implemented using dynamic programming in which the 

accumulated distance formula recursively computes the optimal warp path between two 

segments 𝑋𝑖 = [𝑥1 … , 𝑥𝑀] and 𝑌𝑖 = [𝑦1 … , 𝑦𝑁]: 

D(Xi, Yj) = δ(xi, yj) + min{D(xi−1, yj−1), D(xi, yj−1), D(xi−1, yj)}      (6 − 7)  

where 𝛿(𝑥𝑖 , 𝑦𝑗) is the Euclidean distance between the two aligned segments of the 

warp path (that give the minimum distance) [92].  

To evaluate how well our proposed approach works for clustering surgemes, we 

compare the resulting predicted labels with ground truth labels using the rand-index. The 

higher the rand-index value, the better performing.   
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6. 2. 2 Rand-Index Performance Evaluation 

It is not an easy task for unsupervised performance evaluation to assess the cluster 

results with the absence of data labels.  However, for the JIGSAWS dataset, the manually 

segmented references were provided by a senior specialist in robotic surgery.[11]. The 

most common quality measure in the domain of time series clustering is the Rand index 

[97]. We used the Rand index criteria between the predicted result labels of our proposed 

framework and the ground truth surgeme labels. The Rand index values are between 0 and 

1, where one indicates the two surgemes are identical or precisely the same. The Rand 

index criteria between the ground truth labels and the predicted labels is defined as the 

measure of the ratio of the correct decisions taken by the approach. In other viewpoints, it 

can be defined as the number of agreements between two  groups G and Y over the total 

number of pairs (agreements and disagreements), which can be calculated using the 

following equation [97, 98]: 

RI(G, Y) =
TP + TN

TP + Fp + TN + FN
                (6 − 8) 

where 𝑇𝑃, 𝐹𝑝, 𝑇𝑁 and 𝐹𝑁 are the corresponding number of true positives, false positives, true 

negatives, and false negative results, respectively.  

6. 2. 3 Calinski Harabasz Index 

The variance ratio criterion (VRC), known as the Calinski Harabasz (CH) index, is 

computed for K clusters and N data point as:  

𝑉𝑅𝐶 =
𝑡𝑟𝑎𝑐𝑒𝐵

𝑡𝑟𝑎𝑐𝑒𝑊
×

(𝑁 − 𝐾)

(𝐾 − 1)
                                       (6 − 9) 
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Where 𝑡𝑟𝑎𝑐𝑒𝐵 and 𝑡𝑟𝑎𝑐𝑒𝑊 are the overall between-cluster variance and within cluster 

variance, respectively.  

The overall between-cluster 𝑡𝑟𝑎𝑐𝑒𝐵 can be written as [99]: 

𝑡𝑟𝑎𝑐𝑒𝐵 =  ∑ 𝑛𝑖‖𝐶𝑖 − 𝐶‖2                        (6 − 10)

𝐾

𝑖=1

 

Where 𝐶𝑖is the centroid of cluster 𝑖, 𝑛𝑖 is the number of observations in cluster 𝑖 and 

C is the centroid of the entire sample data.  

The overall within-cluster variance 𝑡𝑟𝑎𝑐𝑒𝑊 is defined as: 

𝑡𝑟𝑎𝑐𝑒𝑊 =  ∑ ∑‖𝑥𝑗 − 𝐶𝑖‖
2

                        (6 − 11)

𝑛𝑖

𝑗=1

𝐾

𝑖=1

 

Clusters that are well-defined clusters will have a high variance between-clusters 

variance 𝑡𝑟𝑎𝑐𝑒𝐵 and a small variance within-cluster 𝑡𝑟𝑎𝑐𝑒𝑊. The higher the CH ratio, the 

better the data partitioning is going to be. The solution with the highest Calinski-Harabasz 

index value is the one that has the optimal number of clusters [99, 100]. 

6. 2. 4 Xie-Beni Validity Index 

The ratio of the compactness of the fuzzy c-partition to its separation is called the 

compactness and separation validity function or well-known as Xie-Beni index, which can 

be computed as [101]: 

𝑋𝐵 =
∑ ∑ 𝑢𝑖𝑗

2  ‖𝑉𝑖 − 𝑋𝑗‖
2𝑛

𝑗=1
𝐶
𝑖=1

𝑛 min
𝑖,𝑗

 ‖𝑉𝑖 − 𝑉𝑗‖
2                          (6 − 12) 
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Where 𝑛 is the number of data points. The fuzzy centroid 𝑉𝑖 (𝑖 = 1, 2 … 𝑐) and the 

fuzzy membership 𝑢𝑖𝑗 of 𝑋𝑗 belonging to cluster 𝑖 are calculated using 

𝑉𝑖 =
∑ 𝑢𝑖𝑗

𝑚 𝑋𝑗
𝑛
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

                         (6 − 13) 

𝑢𝑖𝑗  =

(
1

‖𝑋𝑗 − 𝑉𝑖‖
)

1
𝑚−1

∑ (
1

‖𝑋𝑗 − 𝑉𝑖‖
)

1
𝑚−1

𝑐
𝑖=1

                         (6 − 14) 

A lower value of XB implies a partition in which all the clusters are compact and 

separate. Thus, the smaller values of XB correspond to the optimal number of clusters [99, 

101]. 

6 . 3 Experimental Results 

6. 3. 1 Dataset 

The experiment on the proposed approach is conducted with a general, and public 

robotic surgery dataset indicated to it as JIGSAWS The proposed method is tested using a 

widely used and publicly available robotic surgery dataset dubbed JIGSAWS. [11]. This 

dataset includes both kinematic and video information from eight different expertise 

surgeon levels: expert, intermediate, and novice surgeons. Each surgeon performed three 

basic surgery tasks (suturing, needle passing, knot tying) five times (known as a trial) 

repetitively. We used only the raw kinematic data captured at 30Hz from the da Vinci 

robotic surgery system with different trial frame lengths. There are 76 dimensions or 

variables information to describe the kinematics for all four manipulators. Each 

manipulator has 19 variables that consist of 3 cartesian positions, 9 rotation matrices, 3 
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linear velocities, 3 angular velocities, and 1 gripper angle. Table 6.I describes the details 

of the variables included in the kinematic dataset [11].  

Table 6.I: JIGSAWS Kinematic variables [3]. 

 Variable indices 
Number of  

variables 
Description Manipulator name 

1 1-3 3 Tool tip position (𝑥, 𝑦, 𝑧) Left MTM 

2 4-12 9 Tool tip rotation matrix (R) Left MTM 

3 13-15 3 Tool tip linear velocity (𝑥̂, 𝑦̂, 𝑧̂) Left MTM 

4 16-18 3 Tool tip rotational velocity (𝛼̂, 𝛽̂, 𝛾) Left MTM 

5 19 1 Tool tip gripper angle velocity (𝜃) Left MTM 

6 20-38 19 All 1-5 rows in this table Right MTM 

7 39-41 3 Tool tip position (𝑥, 𝑦, 𝑧) PSM1 

8 42-50 9 Tool tip rotation matrix (R) PSM1 

9 51-53 3 Tool tip linear velocity (𝑥̂, 𝑦̂, 𝑧̂) PSM1 

10 54-56 3 Tool tip rotational velocity (𝛼̂, 𝛽̂, 𝛾) PSM1 

11 57 1 Tool tip gripper angle velocity (𝜃) PSM1 

12 58-76 19 All 7-11 rows in this table PSM2 

 

The JIGSAWS has manually annotated ground truth segments (surgemes) for each 

trial at every task. Each annotation provides the label of the surgeme, the start, and the end 

frames in the kinematic data allocated for each trial. In particular, the common vocabulary 

of potential surgemes is made up of 15 elements and is listed with their description in Table 

6.II for the three surgical tasks. Some surgemes seem to be in more than a single task; 

however, the background environment differs between tasks [11]. Even though there are a 

combined total of 15 surgemes, not necessarily all of them show up in one surgical task. 
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That is why suturing, needle passing, and knot tying include 10, 8, and 6 of the 15 

surgemes, respectively.           

Table 6.II. Surgemes Vocabulary for all the surgical tasks [11]. 

Surgeme 

index 
Gesture description Suturing 

Needle 

Passing 

Knot 

Tying 

G1 Reaching for needle with right hand    

G2 Positioning needle    

G3 Pushing needle through tissue    

G4 Transferring needle from left to right    

G5 Moving to center with needle in grip    

G6 Pulling suture with left hand    

G8 Orienting needle    

G9 Using right hand to help tighten suture    

G10 Loosening more suture    

G11 Dropping suture at end and moving to end points    

G12 Reaching for needle with left hand    

G13 Making C loop around right hand    

G14 Reaching for suture with right hand    

G15 Pulling suture with both hands    

Number of Gestures in each task 10 8 6 

 

6. 3. 2 Surgemes Representation and Visualization  

We re-represent the surgemes of each trial for every surgical task by computing the 

mean of each 76 variables separately (rather than using the whole segment time frames for 

each component, as shown in Table 6.II.  

Let 𝐗 = [𝒙𝒊𝒋]𝑵𝒙𝑷 be a surgeme of length N and has P dimension variables (features). 

Then the averaging of surgical gestures will be as the following: 
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X̂ = [𝑥̂𝑖𝑗]1𝑥𝑃 =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒(X) =
1

𝑁
∑ 𝑥𝑖𝑝    , ∀ 𝑝 ∈ 𝑃

𝑁

𝑖=1

        (6 − 9) 

Averaging each segment simplifies the computation and eliminates the bias of the 

time.  Furthermore, this approach allows us to use any similarity measure rather than only 

DTW since surgemes have identical dimensions. 

We visualize the surgemes for all the trials of the suturing task in Figure 6.4 using the 

t-Distributed Stochastic Neighbor Embedding (t-SNE)  by reducing the high-dimensional 

space of the surgemes to a low-dimensional map of two or three dimensions [102]. Figure 

6.4 illustrates a reasonable and precise separation of the surgemes, even though some 

gestures occur in multiple locations. This is because it is also dependent on the surgeon's 

skill level. 

Figure 6.5 visualizes the surgemes labeled with surgeon skill levels instead of the 

gesture labels. Figure 6.6 illustrates the average modified global rating score (GRS) 

annotated by a vast experience robotic surgeon for every single surgeon trial during a 

suturing surgical training task [11]. Although the average score of some expert surgeons 

was lower than that of some intermediate and novice surgeons, the expert surgeon's 

consistency is evident through attempts. Back to Figure 6.5, this explains why there are 

some surgemes of the same class but located in different positions in the reduced feature 

space.    
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(a) 

 

(b) 

Figure 6.4. t-SNE visualization of surgeme labels in Suturing task (a) 2-dimension, and (b) 3-dimension 

embedding. 
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(a) 

 

(b) 

Figure 6.5. t-SNE visualization of surgeme using surgeon’s skill levels as labels in Suturing task  

(a) 2-dimension, and (b) 3-dimension embedding. 
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Figure 6.6. GRS Average scores for each surgeon in Suturing task showing the expertise levels on the top 

of each bar. 

 

6. 3. 3 Hierarchical Clustering Results  

We develop our surgeme clustering approach directly onto the raw kinematic data to 

prevent excessive pre-processing. We run three experiments based on hierarchical 

clustering (with Ward linkage) on the JIGSAWS dataset. In the first two sets, we used the 

DTW as a distance measure between the surgemes, while in the third set, we employed the 

Euclidean distance. The results are reported based on the framework discussed earlier in 

Figure 6.3 by applying the unsupervised learning approach.  

In the first experiment, we cluster all the surgemes of one expert surgeon utilizing the 

Ward Hierarchical clustering to find the prototype surgical gestures for each cluster. The 

raw surgemes are represented as a time series with 76-dimensional and different time 

lengths. We have chosen the surgemes of an expert surgeon who has the highest GRS 
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scores among the expert surgeons displayed in Figure 6.6. This is because the higher scores 

of expert surgeons have resulted from the consistency and fluidity of their trajectories 

during the surgical task, leading to a better clustering outcome. Hence, we employed DTW 

as a practical and feasible pairwise distance measure between any two surgemes in this 

case.  

The rand-index is used to measure the agreement between the ground-truth and 

clustered gestures. But first, we evaluate the optimal number of clusters using the Calinski-

Harabasz clustering evaluation criterion as illustrated in Figure 6.7(a). The plot shows that 

the highest Calinski-Harabasz value occurs at eleven, suggesting that the optimal number 

of clusters is eleven in this case of Ward linkage clustering. Figure 6.7(b) shows the Rand-

Index values change with the number of clusters. We can observe that the highest value of 

the Rand-Index is achieved when we use eleven clusters in the Hierarchical algorithm that 

is fitting with the Calinski-Harabasz criterion. The rand index resulted from clustering the 

expert data intended for finding the prototypes is 92%.  

  
(a) (b) 

Figure 6.7: (a) Calinski-Harabasz clustering evaluation criterion, (b) Rand-Index plot as a function of the 

number of clusters. 
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At this point, each prototype has candidate surgemes to be a representative surgical 

gesture within the cluster. We used the medoid to locate the representative for each 

prototype by computing the DTW distance among the same cluster members and then 

locate the minimum distance relevant to the elected representative surgeme. The Medoid 

technique is used here because the surgemes have different lengths. Therefore, employing 

centers instead of the medoid to assign representatives are not allowable. Now, each cluster 

has a group of surgemes and one representative surgeme that is representing this group. 

Finally, we stream every sample point (surgeme) of each trainee surgeon per trial. We 

measure the DTW distance between each arriving new data sample and the prototypes 

representative and assign it to the nearest cluster.  

Figure 6.8(a) presents the average rand-index results of the proposed method for 

clustering the surgemes for each trainee surgeon intended for the suturing task. At the same 

time, the rand-index results per trial for each surgeon are shown in Figure 6.8(b). As 

expected, the surgeon “E” has the highest average rand-index of 96% accuracy because 

this surgeon was the prototype clustering surgeon. Also, from this figure, we observed that 

our proposed method could cluster the surgemes of the surgeon who mapped each trial to 

the representative surgemes.    
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(a) (b) 

Figure 6.8. Rand-Index Results for Ward clustering using medoid (a) Average Rand Index (b) Rand-Index 

per trial.  

We implemented another experiment by considering each expert's surgeme as a 

representative member. This can be done by using the expert's ground truth surgemes as a 

prototype which results in grouping them according to their labels rather than clustering 

them. 

First, we calculate the pairwise distance between all the surgemes of a query surgeon 

and each group of surgemes that belong to the expert separately. For example, let us have 

ten surgemes of different labels belonging to the query surgeon, and the expert surgeon has 

three clusters of different surgemes, each with a cluster size of 2, 4, and 5. Then, we 

measure the distance between the ten surgemes and the members of each cluster, which 

results in three distance matrices of the size of 2x10, 4x10, and 5x10 dimensions, 

respectively. Secondly, we average the distance matrix to each cluster which results in an 

array of 1x10. Then, we concatenate the resulted mean distance arrays in one matrix and 

map each surgemes to its closest group.  In all the steps of this experiment, we applied 

DTW as our distance measure. Also, note that the same number of clusters were used in 

both experiments.  
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Figure 6.9 illustrates the comparison utilizing the average Rand index between the first 

experimental results that use the medoid gesture as representative for each cluster and the 

second experiment that uses all cluster members as representatives for that cluster to assign 

the labels of the test samples (surgemes). We can observe that the results are very close to 

each other for most surgeons. Still, the second approach performs better than the medoid 

because it considers all the members in the cluster, and it reduces the possibility of having 

a lousy cluster representative. Besides, the second approach uses the ground truth labels to 

build the prototypes of the expert surgeon instead of clustering, which results in an average 

Rand index of around 100%, as seen in Figure 6.9, surgeon (“E”).  

  

Figure 6.9. Comparison of average Rand-Index between using medoid and mean GT in representing the 

surgemes in suturing task. 

 

We also investigate the performance of our proposed approach by employing the mean 

features of the surgeme mentioned before as an alternative to using all the time frames. A 

surgeme of length (Nx75) using this representation will be mapped to (1x75), making all 

the surgemes having the same size in the 75-dimensional space. Thus, we can employ 
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Euclidean distance as our measure instead of DTW. The distance between time series is 

calculated using Euclidean distance because the sequences are identical in length. Using 

the DTW is impractical here due to its high complexity. Figure 6.10 compares dissimilarity 

matrices among gestures by utilizing the mean feature with ED in (a) and using all the time 

observations along with DTW as a distance. This figure indicates the ability to cluster better 

with the mean feature rather than using DTW. The histogram of the expert surgemes at the 

SU task is presented in Figure 6.11. We can observe that the expert surgeon never 

performed G10, and two gestures (G8 and G9) were performed just one time during the 

entire five trials. Consequently, it appears that the optimal number of clusters is seven 

instead of nine for the expert gestures.  

  

(a) (b) 

Figure 6.10: Pairwise distance matrices comparison of the expert surgeon surgemes between (a) Mean 

feature using ED (b) different surgemes lengths using DTW distance. 
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Figure 6.11: Histogram of the expert surgeon surgemes in SU task. 

We utilize the Calinski-Harabasz clustering evaluation criterion to find the optimal 

number of clusters using the mean feature, as illustrated in Figure 6.12. The number of 

clusters here chosen to be seven will give a higher average Rand-Index of 96%. 

  

(a) (b) 

Figure 6.12: Mean Feature of the gestures (a) Calinski-Harabasz clustering evaluation criterion, (b) Rand-

Index plot as a function of the number of clusters. 

 

Figure 6.13 demonstrates the result of using the mean feature technique in 

implementing the proposed framework through average rand-index in (a) and per trial in 

(b) of  Figure 6.13. We can observe from the results in this figure that using the mean of 
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the feature is more accurate than the results of the previous experiments. Another point 

worth mentioning is that the Rand-index results of the expert and intermediate surgeons 

are distinct from those of the novice surgeons. 

This indicates the ability to distinguish their surgemes pattern, which is close to the 

model of clustering the expert surgeon. Also, the result reveals that enhanced clustering 

quality is reachable without reducing the time-series features by using the mean feature 

technique. 

  

(a) (b) 

Figure 6.13: Rand-Index results for the Ward clustering using mean features for each surgeon (a) Average 

Rand Index (b) Rand-Index per trial in suturing task. 

 

6. 3. 4 Fuzzy C-Mean (FCM) 

We conducted another experiment to investigate the use of the FCM algorithm to 

cluster the prototype surgical gestures. As we mentioned previously, FCM is a clustering 

method wherein each surgeme belongs to multiple groups by a membership grade. In this 

experiment, we applied the FCM to obtain the prototype surgemes by clustering the 

surgemes of the expert surgeon (clustering model). We develop our proposed framework 

on raw kinematic data from the JIGSAWS dataset, which was used to perform suturing 
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surgical tasks. Here, we employed the mean features representation technique of the 

surgemes before clustering due to the time computation and low complexity. Therefore, 

Euclidean distance is used as a distance measure in this case rather than the DTW. We 

compare the clustering results of the surgeon surgemes with that the manually annotated 

by a senior expert surgeon.     

We employ a popular validity index in FCM, the Xie-Beni index criteria [99], to 

measure the optimal number of clustering as shown on the left of Figure 6.14 and the Rand-

Index accuracy to the right of the exact figure. Therefore, the number of clusters chosen is 

seven that reached both the high Xie-Beni index and Rand-Index. The fuzzifier controlling 

the partitioning overlap, the small value of m approaches one means more crisp boundaries 

and less overlap. For the FCM algorithm, we run an experiment for different fuzzy 

membership m with the Xie-Beni validity index, and we set m to 1.3. For prototype 

surgemes, we observed that clustering of the expert surgemes achieved %95 of the rand-

index accuracy compared with the ground truth.  

  
(a) (b) 

Figure 6.14: FCM using Mean Feature of the gestures (a) Xie-Beni validity index, (b) Rand-Index plot as a 

function of the number of clusters. 
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Using the clustering method to build prototype surgemes and employing similarity 

measures to select representative surgeme significantly impacts the Rand index outcomes. 

Figure 6.15 shows the best results of the surgemes clustering using our proposed method 

based on the FCM algorithm. Consequently, we can see, the overall accuracy improved of 

the FCM compared to the experiments-based hierarchical ward clustering algorithm using 

DTW distance.  

  

(a) (b) 

Figure 6.15: Rand-Index results for The FCM clustering using mean features for each surgeon (a) Average 

Rand Index (b) Rand-Index per trial in suturing task. 

 

In Figure 6.16, we compared the results obtained by the proposed method using all the 

techniques mentioned in the methodology section through rand-index. We can observe that 

our approach based on using the mean feature method performs better than the other 

clustering approaches in most cases. Additionally, the clustering methods based on the 

mean feature surgemes representation with Euclidean distance outperform the clustering 

techniques that use DTW as a distance measure. It is also important to mention that the 

enhanced clustering quality is achievable even with the reduction in the time instance while 

preserving the dimension of the variable unchanged. 
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Furthermore, it is crucial to consider the effect of the gesture time to accomplish the 

surgical task, where short surgeme are challenging to discriminate, resulting in decreased 

clustering performance. Additionally, the insufficient data for some surgeons in specific 

trials makes it difficult for any model to differentiate the surgeon surgemes from the 

prototypes of the expert surgeon.   

 

Figure 6.16: Comparison of the Rand-Index between different surgemes clustering methods for each 

surgeon in suturing task. 

 

6 . 4 Conclusions and Future Work 

Surgical gestures are the key elements in a surgeon's training system, and they can 

offer a quantitative measurement and feedback to the trainee during the robotic surgical 

session. We proposed a new unsupervised approach for surgemes clustering by utilizing 

four techniques based on Hierarchical and FCM algorithms. We evaluated our method on 

a real dataset by analyzing raw kinematics data from suturing tasks performed by 

individuals with varying levels of expertise. Also, we demonstrated the benefits of re-
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representing the time series data before clustering in terms of computation time reduction 

and system complexity. 

One of the most challenging tasks in unsupervised learning is to deal with outliers. In 

our case, some surgeons perform surgemes that the expert surgeons generally do not 

operate. This might adversely affect the quality of surgeme assignment to the appropriate 

cluster, thereby influencing the clustering algorithm's outcome. 

In addition, we used a predetermined number of clusters. Therefore, future research 

should focus on using a clustering technique to deal with unknown groups derived from 

expert prototypes. This effort constitutes a step forward toward surgemes segmentation. 

One of the future work challenges will be to build a clustering method based on using one 

of the experts' surgemes for model initialization and then map the surgemes from other 

subjects.   
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 Summary and Future Research Lines 

This chapter highlights the contributions achieved and the most noticeable results obtained 

from our current methodologies and summarizes the research directions to be pursued in 

the future.  

7 . 1 Summary  

7. 1. 1 Surgical Skill Assessment 

Objective evaluation of a surgeon’s skill level is a crucial step toward automatic 

surgical training. The surgical skills of surgeons with different expertise levels have 

traditionally been evaluated by direct observation of senior expert surgeons inside the 

surgical room. However, this method suffers from being subjective, costly, and lacking any 

quantitative indication of the appropriate skills level. Instead, an automatic evaluation 

would provide an objective and quantitative measure of skill levels. If the surgical activity 

is captured using a set of sensors, then the problem becomes a task to define an evaluation 

framework for motion analysis and comparison.  

To address this challenge, we propose a new surgical distance, known as PDTW, to 

learn similarity measures based on dynamic time warping (DTW) and Procrustes analysis 

that considers the multi-dimensional measure. The DTW method aligns two timeseries 

with different lengths by contracting/dilating both signals such that their lengthwise 

becomes equal. The Procrustes analysis, which includes reflection, scaling, and translation, 

can then be used as a distance measure between two aligned sequences.  
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We also develop a framework based on a novel surgery skill distance, PDTW, for 

automated surgical assessment that uses traces representing the surgeon's motion. 

Furthermore, we employed the k-nearest neighbor as a classifier in the proposed approach 

and reported the surgical skill assessment classification results. We examined our 

approach's performance on three surgical datasets using kinematic, Vicon, and wearable 

sensor data. The obtained results have shown significant assessment improvements of 

PDTW over the traditional distance measures using raw data. Also, we observed that the 

experimental results are comparable with relatively high accuracy to the state-of-art 

methods in automatically classifying surgical skills into expert, intermediate, and novice 

on different tasks. 

7. 1. 2 Surgery Task Classification 

Surgeons do various advanced surgical procedures on robotic surgery systems. 

Recognizing surgical tasks that the surgeon performs is crucial toward automatic surgical 

training in robotic surgery training. To tackle this problem, we develop a classification 

framework using kinematic information to recognize among the three different Robot-

assisted minimally invasive surgery (RMIS) tasks: suturing, needle passing, and knot tying. 

This approach is based on using PDTW distance and Fuzzy k-nearest neighbor (FkNN). 

The FkNN classifier is applied to distinguish between different tasks by assigning a fuzzy 

class membership based on their distances. 

 Two validation schemes have been conducted: leave one supertrial out (LOSO) and 

leave one user out (LOUO). The first set is comparable with state-of-the-art methods based 

on deep architectures for the LOSO validation technique. In the second set, the results 

obtained show improvements in the classification of the three surgical tasks. The 
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performance of our approach surpasses published works for LOUO validation by at least 

4.5% accuracy improvement. Furthermore, we consider another scenario by utilizing 3D 

cartesian motion trajectories of the right and left hands. The results have shown that it 

reduces time consumption and emphasizes the potential toward using low-cost wrist 

wearable devices instead of using expensive tools for surgical task recognition and surgeon 

skill assessment.  

7. 1. 3 Surgemes Classification 

Regarding supporting trainee surgeons by giving quantifiable feedback about their 

patterns and improving their skills to be close to the expert surgeons. We developed a 

framework for surgical gesture classification directly on raw kinematic data. We utilize the 

k-NN and SVM algorithms to classify the surgemes in our proposed method. Also, we 

present the mean feature reduction of the surgical gestures that are fast, precise, and 

decrease the complexity of the proposed framework.  

In Addition, we use two distance measures, the DTW with the k-NN method and 

Euclidean distance with the SVM algorithm and performing the LOSO and LOUO cross-

validation schemes. The fusion of the mean feature reduction method along with the SVM 

technique resulted in the best performance. The results of our proposed approach 

outperform the existing method based on raw kinematic data from JIGSAWS for both 

LOSO and LOUO cross-validation setup.    
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7. 1. 4 Surgemes Clustering 

Surgeons need skill and operating knowledge to make proper and safe surgical 

procedures. However, existing training techniques limit us from conducting in-depth 

analyses of surgical motions to evaluate these skills accurately. 

We develop a method to identify the surgemes by applying unsupervised methods to 

cluster the surgical activities learned directly from raw kinematic data on the JIGSAWS 

dataset [11]. We build an unsupervised surgemes model based on predefined surgical 

gestures. The first step is to find the prototypes by clustering the surgemes of the expert 

surgeon from all the same expert trials. Then, we map the other surgeons surgemes to the 

nearest representative of the prototypes and report the clustering accuracy by employing 

the rand index technique.  

We utilize four techniques in our proposed unsupervised approach for surgemes 

clustering based on Hierarchical and FCM algorithms. Using a real dataset, we tested our 

methods by assessing raw kinematics data from a suturing task performed by participants 

with various skill levels. In addition, we highlight the advantages of representing time 

series data before clustering in terms of computation time saving and system complexity 

reduction, respectively. 
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7 . 2 Future Research Directions 

Despite the encouraging results exposed through previous chapters in surgical task 

recognition, surgeon’s skill assessment, gestures classification, and clustering, it is still a 

challenging problem, and more research is required. We think that this dissertation will 

inspire additional studies in this field, and there are several promising directions to work 

further in the future to be pursued summarized below:   

Transfer learning (TL) algorithms aim to improve the prediction performance in a 

target task via transferring knowledge from auxiliary data of a related task. The distribution 

and even the feature space of the data of the tasks can be different. It is interesting to employ 

the transfer learning based on supervised learning for skill assessment of the surgeon 

through training a model on the JIGSAWS dataset and performing on our dataset captured 

by wrist wearable sensors.  

Utilizing an unsupervised algorithm on clustering the surgemes could form a basis 

toward employing the streaming clustering on surgical gestures. One of the expert gestures 

can initialize the model and stream the remaining surgeons' data. Then map the raw data 

from other subjects, where surgemes that do not match the existing prototypes will create 

a new cluster.    

The surgical field has few datasets available, and those that do are limited. Thus, a 

more significant number of data samples with various tasks are required. We need to 

acquire and annotate new data to construct machine learning models to comprehend and 

obtain solid surgical activity and skill recognition results. 
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Final thought inspired by using wearable sensors to detect the stress level of the 

surgeon while performing unusual during a routine surgery task. This will indicate the 

expertise skill, where the expert surgeon is expected to act more comfortably than the 

novice surgeon.   
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