
DEEP LEARNING ARCHITECTURES

FOR 2D AND 3D SCENE PERCEPTION

A Thesis presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

RINA BAO

Dr. Kannappan Palaniappan, Thesis Supervisor

JULY 2021

The undersigned, appointed by the Dean of the Graduate School, have examined

the dissertation entitled:

DEEP LEARNING ARCHITECTURES FOR 2D AND 3D SCENE PERCEPTION

presented by Rina Bao,

a candidate for the degree of Doctor of Philosophy and hereby certify that, in their

opinion, it is worthy of acceptance.

Dr. Kannappan Palaniappan

Dr. Wenjun Zeng

Dr. Yunxin Zhao

Dr. Zhihai He

Dr. Matthew R. Maschmann

ACKNOWLEDGMENTS

First of all, I wish to express sincere and deepest gratitude to my advisors, Profes-

sor Kannappan Palaniappan and previous advisor Professor Wenjun Zeng, for their

vision and directions. Their priceless gift to me was not just skills and knowledge

but also unwavering moral support through every stage of my doctoral studies. They

have spent a substantial amount of time on my research progress. They inspired

and encouraged me endless times during my study. Their excellent insights, brilliant

inspiration, and encouragement will continue to instruct and inspire me long beyond

my years as a PhD student.

I wish to express my sincere gratitude to Professor YunXin Zhao for her crucial

suggestions, helpful reviews in my PhD directions, and her valuable time on fruitful

discussions during my study. Her instructions and perspectives have motivated and

helped me in more ways than one.

I wish to express my sincere gratitude to Professor Matthew R. Maschmann for his

insightful suggestions and instructions, helpful reviews for our collaboration project,

which broaden my mind and view.

I would like to thank Professor Zhihai He for being my committee member and

providing helpful reviews of my research and his valuable time on discussions.

I want to say many thanks to my parents for their great support, friends, and

collaborators for their encouragement.

This research was partially supported by awards from U.S. Army Research Lab-

oratory W911NF-1820285 and Army Research Office DURIP W911NF-1910181 and

included work that was approved for public release. Any opinions, findings, and con-

clusions or recommendations expressed in this publication are those of the authors

and do not necessarily reflect the views of the U. S. Government or agency thereof.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . vii

LIST OF FIGURES . x

ABSTRACT . xvii

1 Thesis Contributions and Organization 1

2 GLSNet & GLSNet++ for City-Scale Point Cloud Segmentation 5

2.1 Introduction . 6

2.1.1 Contribution and Novelty . 8

2.2 Related Work . 10

2.3 Semantic Segmentation of 3D Point Clouds 12

2.3.1 GLSNet Deep Learning Architectures 13

2.3.2 GLSNet-Parallel Streams . 14

2.3.3 GLSNet-Cascade Streams . 15

2.3.4 GLSNet++ With Graph Convolutional Demixing Block 15

2.4 Datasets and Implementations . 19

2.4.1 LiDAR Datasets for Point Cloud Semantic Segmentation . . . 19

2.4.2 Training GLSNet++ . 20

2.4.3 Testing and Evaluation . 24

2.5 Experimental Results . 26

2.5.1 Ablation Study . 26

2.5.2 Comparison with Recent Architectures 29

2.5.3 Visualization of Error Maps and Graph Demixing Block . . . 29

iii

2.5.4 Generalization Performance on COU Point Cloud Dataset . . 29

2.6 Chapter Conclusions . 30

3 PointGrad: Point Gradient Operator for 3D Point Cloud Segmen-
tation . 31

3.1 Introduction . 32

3.1.1 Motivation . 32

3.1.2 Contribution . 36

3.2 Related Work . 37

3.3 Proposed PointGrad Operator . 38

3.3.1 Directional Derivative . 39

3.3.2 Point Directional Derivatives 39

3.3.3 PointGrad Module Design . 42

3.3.4 Gradient Backpropagation in PointGrad 44

3.3.5 PointGradNet: PointGrad Network Family 44

3.3.6 Comparison with Existing Methods 46

3.4 Experiments . 49

3.4.1 Datasets and Implementations 49

3.4.2 Ablation Study . 51

3.4.3 Comparison to Existing Methods 53

3.5 Chapter Conclusions . 57

4 MDXNet for Few-Shot Learning and Zero-Shot Learning 59

4.1 Introduction . 60

4.1.1 Approach . 64

4.1.2 Contribution . 65

4.2 Related Work . 66

iv

4.2.1 Few-Shot Learning . 66

4.2.2 Zero-Shot Learning . 68

4.2.3 Domain Generalization and Domain Adaptation 69

4.3 MDXNet for Cross-Domain Few-Shot Learning and Zero-Shot Learning 70

4.3.1 Visual Primitives and VP Domain Knowledge Learning 71

4.3.2 MDXNet in Cross-Domain Few-Shot Learning 76

4.3.3 MDXNet in Zero-Shot Learning 81

4.4 Datasets . 83

4.4.1 Datasets for Visual Primitive Domains 83

4.4.2 Benchmarks for Application Domains 84

4.5 Experimental Results . 85

4.5.1 Few-Shot Learning Analysis 85

4.5.2 Zero-Shot Learning Analysis 89

4.5.3 Explainability of VPs . 89

4.5.4 Discussion . 91

4.6 Chapter Conclusions . 92

5 Domain Applications . 94

5.1 CNTNet: Carbon Nanotube Structure Recognition and Property Re-
gression . 94

5.1.1 Introduction . 94

5.1.2 Results . 98

5.1.3 Discussion . 110

5.1.4 Methods . 112

5.1.5 Evaluation Metrics . 121

5.2 DMNet for Cell Segmentation . 122

v

6 Summary and Concluding Remarks 124

BIBLIOGRAPHY . 126

VITA . 162

vi

LIST OF TABLES

Table Page

2.1 Details of graph convolutional network Demixing layer and Demixing

block architecture. 18

2.2 Class IoU for different percentage training data on 2019 IEEE DFT4

Test Set. †Results from [1]. 22

2.3 Class IoU for different percentage training data on 2019 IEEE DFT4

Test Set. †Results from [1]. 22

2.4 Semantic segmentation accuracy on 2019 IEEE DFT4 LiDAR segmen-

tation benchmark using class IoUs comparing proposed architectures

including single-stream and dual-stream methods. GLSNet++MSMR

uses GLSNet-Parallel that combines Local- and Global-backbones (see

Figure 2.2) followed by a Multiscale Multi-Receptive Demixing Block

(see Figure 2.4). 22

2.5 Class IoU of GLSNet++-MR and GLSNet++-MSMR on 2019 IEEE

DFT4 Test Set. 22

2.6 Class IoU of GLSNet++-MR and GLSNet++-MSMR on 2019 IEEE

DFT4 Test Set. 23

2.7 Ablation study for different grid resolutions and sampling point set sizes. 23

vii

2.8 Class IoU recent architecture comparison for 3D semantic segmentation

on 2019 IEEE DFT4 Test Set. ∗ indicates that the performances are

produced with the publicly available code. 23

2.9 Parameter Size and Model Size. 24

3.1 Comparison to existing graph convolution deep network architectures

with graph edge operators. 46

3.2 Benchmarks for 3D point cloud semantic segmentation 49

3.3 With/Without directional difference operation, Gradient (Direction +

Magnitude) . 51

3.4 IoU accuracy for different variations of our proposed 3D PointGrad seg-

mentation deep architecture on 2019 IEEE DFT4 (US3D) test dataset,

for five classes: Ground (G), High Vegetation (HV), Building (B), Wa-

ter (W), and Elevated Road (ER). 52

3.5 Ablation study on shape part segmentation benchmark ShapeNet [2] . 53

3.6 Class IoU accuracies for different 3D segmentation architectures on

2019 IEEE DFT4 (US3D) test dataset, for five classes: Ground (G),

High Vegetation (HV), Building (B), Water (W), and Elevated Road

(ER). ∗ results are from [3] . 54

3.7 Comparisons with related work on S3DIS Area 5. 55

3.8 Comparisons with related work on ScanNet dataset. 56

3.9 Comparison to existing methods on ShapeNet 56

viii

4.1 Evaluation on the effect of outside-domain features for 5-shot-N-way

remote sensing image scene recognition on the NW45 Dataset. We ab-

breviate the three domains of Texture, Object-Appearance, and Shape

as T, O, and S, respectively. We denote the dual-domain feature em-

beddings of Texture and Shape as MDXNet-TS, Object-Appearance

and Shape as MDXNet-OS, and Texture and Object-Appearance as

MDXNet-TO. MDXNet denotes the triple-domain embeddings of

Texture, Object-Appearance and Shape. 85

4.2 Comparison of MDXNet with state-of-the-art methods for 5-shot (sam-

ple) tasks on Omniglot with 5- and 20-way learning, where the texture

domain feature extractor of MDXNet used InceptionS. 87

4.3 Comparison of MDXNet with state-of-the-art methods for 5-shot (sam-

ple) tasks with 5-way learning on different datasets. 88

4.4 Comparison of MDXNet with other Zero-Shot Learning (ZSL) methods

using two sets of testing conditions: ZSL T1 accuracy (higher is better),

Generalized Zero-Shot Learning (GZSL) with unseen classes (u), seen

classes (s), and H (harmonic mean of u and s). All scores are in percent.

†Generates additional data for training but the other models do not.

‡Uses episode training or meta learning which mimics the testing set

up, while the other models do not. 89

5.1 Performance of DMNet on ISBI 2021 6th Cell Segmentation & Tracking

Challenge. 122

ix

LIST OF FIGURES

Figure Page

2.1 LiDAR point cloud for Columbia, Missouri (COU30) showing: (a) col-

ored height map (z-value), (b) LiDAR return intensity (0 to 255), (c)

LiDAR return number (0 to 4), (d) building footprints from Open-

StreetMap (OSM), (e) LiDAR point cloud semantic segmentation us-

ing the proposed GLSNet++, and (f) GLSNet++ segmentation result

overlaid with OSM building footprints in an orthographic projection. 7

2.2 Our dual backbone GLSNet [1] uses two feature embeddings including

a Global 3D-stream (top row) and a Local 3D-stream (bottom row)

that extract coarse-scale and fine-scale geometric information from the

input 3D point cloud. The two global and local streams are trained

in parallel with the same supervision and same loss functions. The

SoftMax classification output layer from each stream is fused together

using a MaxPooling layer for the final classification. 9

2.3 Different fusion methods of global and local streams. 9

x

2.4 Proposed GLSNet++ structure with parallel feature embedding fusion

followed by graph convolutional demixing (top). Two types of demixing

blocks: Multi-Receptive (MR) Field Graph Demixing (middle) and

Multiscale Multi-Receptive (MSMR) Field Graph Demixing (bottom)

SG is a sample grouping downsampling block (i.e., choosing furthest

points) and FI is a feature interpolation block. 13

2.5 Graph convolutional network demixing layer captures local point cloud

topology for capturing spatial context in unstructured grids. 16

2.6 Workflow of testing and evaluation on unlabeled LiDAR point clouds. 21

2.7 Visualization of GLSNet++ results for the ten validation LiDAR datasets

from two cities (Jacksonville, FL and Omaha, NE) in the IEEE DFT4

(before demixing) with the overall accuracy (OA) for the full image

shown in text at the bottom. Zoomed regions identified by white boxes

(third row), illustrate the classification label differences at higher detail. 25

2.8 Visualization of Graph Demixing-MSMR. Left: Error map before demix-

ing, mIOU: 85.80 OA: 96.90 Right: Error map after demixing, mIOU:

93.82 OA: 98.30. 27

2.9 Evaluation of building segmentation (red), high vegetation (green) and

ground (gray) for COUOrbit28 (first row) and COUOrbit30 (second

row). From left to right: Building footprints from OpenStreetMap

(OSM), GLSNet++ predicted class labels, predicted results overlaid

with OSM building footprints. COU28Orbit accuracy is 82.9% and

COU30Orbit is 90.1%. 27

3.1 Visualization of different methods on ShapeNet. 32

xi

3.2 Visualization of the PointGrad operator: (a) Original point cloud ob-

ject with two parts (blue and red) and two labeled points p0,p1. (b)

KNN approach – the 8 nearest features based on spatial distance. The

resulting features for p0 and p1 are shown. The generated features are

ordered by distance from pi. (c) PointGrad approach – searches for

NN within 8 octants in 3D (or sectors in the 2D example) for p0 and

p1. The generated features are ordered by counter-clockwise directions

from pi. (d) The 8 search regions visualized as octants. (e) Central

reference point p0 and its 8 directional neighbors within a fixed radius,

visualized using 2 × 2 × 2 grid neighbors within radius r. The 8 di-

rection vectors to NN in each octant are p1,p2, ...,p8. (f) PointGrad

computes tensor gradients along each direction uj, j = 1, ..., 8. (e) Us-

ing a multi-layer perceptron (MLP), we update the point tensor p0 to

p′0 by encoding each directional gradient tensor. 33

3.3 Illustration of PointGrad tensor operator. A sample indoor scene point

cloud from the S3DIS dataset. A 3D point cloud with point represen-

tation f(x, y, z) = {x, y, z, R,G,B}. The different tensor derivative

operators: color vector derivative for image edge structures, partial

derivative in each spatial direction for planar spatial structures. . . . 33

3.4 Design of PointGrad-1 for encoding first directional derivative with pm

being the center point. 42

3.5 Design of nth order PointGrad-n for encoding high-order gradients for

modeling differential shape. 43

3.6 PointGrad operator can be used in many different deep network fami-

lies like the three shown above. 45

3.7 PointGrad on semantic segmentation benchmarks of different scales . 50

3.8 Visualization of different methods on IEEE DFT4 dataset. 55

xii

3.9 Visualization of different methods on ShapNet. 58

4.1 (a) Human visual system of object recognition [4]. (b) MDXNet visual

primitive embedding and transfer learning network that can be applied

to many application domains which is inspired and mimics human vi-

sual system. 61

4.2 Our MDXNet discovered top visual word embeddings from each VP

domain (using ResNet18 backbones), for storage tank, roundabout and

snowberg classes from the remote sensing scene classification dataset

NWPU-RESISC45 [5]. 62

4.3 VP design routine (a) DTD 47 human interpreteble attributes which

are texture VPs visual words (b) General Object Shape (100 Classes)

which are extracted from Caltech101 dataset, we extract edges from

original image to generate the shape description dataset, as shown in

(c), the class labels are shape VPs visual words. (d) ImageNet 100

out of 1000 classes are displayed here, 1000 classes labels are object-

appearance VPs visual words. 70

4.4 The proposed MDXNet framework showing VP embedding and trans-

fer learning from outside the application domain. 74

4.5 Multiple Latent Attribute Aggregation (MLAA) module that aggre-

gates visual primitive embeddings to produce a fused domain aligned

knowledge vector, dn. 78

4.6 Zero-shot learning benchmark Animals With Attributes (AwA2) dataset

with 85 semantic attributes with labels abbreviated (i.e. Fish for eating

fish. 80

4.7 Extending MDXNet to zero-shot learning tasks. 80

4.8 Demo images from different application domains in few-shot learning 83

xiii

4.9 t-SNE visualization of VP feature embeddings for 7 of 45 classes from

NW45 using MDXNet InceptionS backbone (best viewed in color mode).

The lowercase text labels are for 35 of 47 DTD texture classes posi-

tioned at the feature embedding mean vectors. The three circles with

uppercase texts identify the NW45 application domain classes: run-

way, snowberg, storage tank. 90

4.10 Representative VP words for the runway and snowberg NW45 classes

from the t-SNE low-dimensional projection in Figure 4.9. See Fig-

ure 4.2 for the storage tank class VP words. 91

4.11 The mapping to visual primitives from dermatological criteria, ABCD

criteria [6, 7], 7-checkpoint list [8], Density and fine structures [9] Vari-

ation in human skin color [10] . 91

5.1 SEM images of carbon nanotube forests. The structural mor-

phology of a CNT forests may exhibit relatively aligned CNTs or wavy

and entangled CNTs depending on synthesis conditions. Scale bars

represent 500 nm. 96

xiv

5.2 Representative images from all 63 simulated CNT forest classes.

Each block of nine sub-types is grouped by CNT linear density, rang-

ing between D50 to D200 (seven values), representing a density of 50

and 200 CNTs per 10 µm simulation span, respectively. Each block of

9 images is arranged in an order consistent with the key provided on

the right side of the middle row of images. Here, R indicates the outer

radius in nm (three values), and G is the growth rate coefficient of vari-

ation (three values). The image blocks for D50 (red border) and D200

(green border) are expanded in the third row to show greater image

texture details. The horizontal domain is 10 µm for each simulation.

Note that each image has a replicated texture block in the horizontal

direction to demonstrate periodic boundary conditions. 100

5.3 Simulated CNT forest compression. An expanded CNT forest

compression demonstration showing the simulated CNT forest mor-

phology (a) at the beginning of compression and (b) after 20 µm com-

pression. (c) The full load-displacement curve shows the typical linear-

elastic regime at low displacement, an extended plateau, and a densifi-

cation regime. (d) A magnified view of the loading curve shown in (c)

illustrates the evaluation of forest stiffness and buckling load. 102

5.4 Nested box plots of simulated CNT forest mechanical prop-

erties as a function of class. The (a) buckling load and (b) elastic

stiffness for 63 distinct classes of CNT forests vary by orders of magni-

tude within the simulated parameter space. The shaded box represents

the upper and lower quantile, while the vertical whiskers represent 1.5

times the interquantile range. The bottom grouping, ranging from 50

to 200 represents the quantity of CNTs, the upper grouping represents

CNT outer radius of 5, 8, and 11 nm. 103

xv

5.5 Schematic of CNTNet modules. CNTNet is a modular image-

based machine learning and control framework for enabling artificial

intelligence-driven classification of CNT forest synthesis attribute groups

and predictions of CNT forest material properties. The top structure

classification module uses the VGG-19 deep learning network for clas-

sifying CNT forests into one of 63 CNT classes based on combinations

of synthesis attributes generating different CNT forest simulated SEM

image classes. The structure classification network captures morpho-

logical texture properties and was trained using transfer learning with

initialization using ImageNet weights. The bottom property regres-

sion module uses Random Forest regression trees to learn CNT forest

buckling load and stiffness by mapping the 4096-D feature image rep-

resentation descriptor using 2-D regression vector functions. 116

5.6 CNTNet classification and regression accuracy. (a) Confusion

matrix for 63 CNT classes with the ordering based on seven CNT

densities and nine sub-types. (b) t-SNE visualization of the 63 CNT

forest classes grouped by the 7 CNT population densities for better

visualization. The separation of the density groups using the VGG-

19 feature embedding sub-space indicates that the CNT forest density

is classified with high accuracy. CNTNet regression prediction for (c)

buckling load and (d) stiffness compared to the simulated ground-truth

values. Data are colored according to the CNT forest linear density. . 117

xvi

ABSTRACT

Scene understanding is a fundamental problem in computer vision tasks, that is

being more intensively explored in recent years with the development of deep learn-

ing. In this dissertation, we proposed deep learning structures to address challenges

in 2D and 3D scene perception. We developed several novel architectures for 3D point

cloud understanding at city-scale point by effectively capturing both long-range and

short-range information to handle the challenging problem of large variations in ob-

ject size for city-scale point cloud segmentation. GLSNet++ is a two-branch network

for multiscale point cloud segmentation that models this complex problem using both

global and local processing streams to capture different levels of contextual and struc-

tural 3D point cloud information. We developed PointGrad, a new graph convolution

gradient operator for capturing structural relationships, that encoded point-based di-

rectional gradients into a high-dimensional multiscale tensor space. Using the Point-

Grad operator with graph convolution on scattered irregular point sets captures the

salient structural information in the point cloud across spatial and feature scale space,

enabling efficient learning. We integrated PointGrad with several deep network ar-

chitectures for large-scale 3D point cloud semantic segmentation, including indoor

scene and object part segmentation. In many real application areas including remote

sensing and aerial imaging, the class imbalance is common and sufficient data for

rare classes is hard to acquire or has high-cost associated with expert labeling. We

developed MDXNet for few-shot and zero-shot learning, which emulates the human

visual system by leveraging multi-domain knowledge from general visual primitives

with transfer learning for more specialized learning tasks in various application do-

mains. We extended deep learning methods in various domains, including the material

domain for predicting carbon nanotube forest attributes and mechanical properties,

biomedical domain for cell segmentation.

xvii

Chapter 1

Thesis Contributions and
Organization

We have investigated deep-neural-net (DNN) based new approaches to address the

challenges for various 2D and 3D vital tasks, and carried out extensive experimental

evaluations on large datasets. Our results are highly encouraging, and they suggest

promising directions for further explorations. This dissertation presents the following

contributions to the area of computer vision:

• Global-Local Stream Processing Integration for 3D Point Cloud Clas-

sification We investigate this problem in the context of urban semantic 3D

point cloud classification or segmentation. A major difficulty in this task is the

large variations of object sizes in large-scale point cloud segmentation, which in-

cludes extremely large objects like bridges, and very small objects like buildings

and trees. To address this problem, we propose a novel deep neural net archi-

tecture, Global and Local Streams Network, referred to as GLSNet, to capture

both the global and local structures and contextual information in the 3D point

cloud data. The GLSNet employs two branches of networks to first decompose

the complex problem of segmenting mixed scale objects to simpler processing

1

sub-tasks at the global and local scales. In addition, the proposed GLSNet++

incorporates a unique graph convolutional network module for demixing or un-

mixing voxel boundary regions composed of a mixture of object classes by using

spatial context dependent feature fusion similar to conditional random fields.

• PointGrad: Point Gradient Operator for Point Cloud Segmentation

We propose a new graph convolutional operator PointGrad to encode point

directional gradients of different orders in 3D point clouds. The PointGrad has

a strong power of representing important structural or salient features of point

clouds. The proposed PointGradNet architecture embeds the PointGrad module

in a set of networks to encode multiple-order and multiple-scale point directional

gradients. We demonstrate the efficiency, effectiveness, and robustness of the

PointGrad operator using several benchmark datasets at different scales ranging

from single object part segmentation to indoor scenes and large city-scale point

clouds.

• MDXNet for Few-Shot Learning and Zero-Shot Learning We investi-

gate this problem from the standpoint of addressing a fundamental issue in AI,

i.e., how to quickly learn to recognize new objects with limited visual data. De-

spite the recent progresses in AI, it still falls short of human ability in knowledge

association in this regard. Although few-shot learning represents a direction in

AI along this line, which strives to learn to classify new classes with limited

supervision information. To address this problem, we make analogy to human

ability of pattern or knowledge association, and propose to exploit rich informa-

tion in natural images for use in novel application domains that lack informative

descriptions of image objects or scenes. We design a novel two-stage DNN archi-

tecture, MDXNet, which is verified to achieve new state of the art performance

in extensive application domain datasets.

2

• DNN-based Carbon Nanotube Structure and Property Discovering

Deep convolutional neural networks combined with a physics-based simulation

tool are employed to study the process-structure-property of carbon nanotubes.

Deep learning (DL) enables prediction of ensemble properties based on morpho-

logical images that can further be correlated to the synthesis parameters through

DL classification algorithm. We propose a novel deep neural net architecture,

Carbon Nanotube Network, referred to as CNTNet to explore the relationship

between the structure attributes and properties of carbon nanotubes.

This dissertation is organized into four chapters covering the overall research and

publications.

The chapter on, GLSNet and GLSNet++ for City-Scale Point Cloud Segmenta-

tion, covers the semantic segmentation of LiDAR point sets on external environments.

There are two publications related to this area:

Rina Bao, Kannappan Palaniappan, Yunxin Zhao, Guna Seetharaman, Wenjun

Zeng “GLSNet: Global and Local Streams Network for 3D Point Cloud Classifica-

tion”, IEEE AIPR 2019 (Oral)

Rina Bao, Kannappan Palaniappan, Yunxin Zhao, Guna Seetharaman, Wenjun

Zeng “GLSNet++: Global and Local-Stream Fusion for LiDAR Point Cloud Semantic

Segmentation Using Contextual Demixing Block “ (Revision for IEEE Transactions

on Neural Networks and Learning Systems)

The chapter on, PointGrad: Point Gradient Operator for 3D Point Cloud Seg-

mentation, develops a novel multidimensional graph convolution gradient operator

for unstructured irregularly sampled data that combines spatial location, orientation

and feature tensor information. The paper related to this research study:

Rina Bao, Kannappan Palaniappan, Yunxin Zhao, Guna Seetharaman, Wenjun

Zeng “PointGrad: Spatially Varying Tensor Gradient Operator for 3D Point Cloud

Segmentation “ (Manuscript Revision)

3

The chapter on, MDXNet for Few-Shot Learning and Zero-Shot Learning, tackles

the need for cross-domain generalization. In contrast to current deep learning ap-

proaches, which are centered around the collection, manual labeling, and training of

extremely large datasets, we explore a learning approach which is an emulation of the

human visual system using visual primitive processing streams that is able to learn

effectively from very few training samples. The paper related to this research study:

Rina Bao, Kannappan Palaniappan, Yunxin Zhao, Wenjun Zeng “MDXNet:

Multiple-Domain Explainable Latent Attribute Network for Cross-Domain Few-Shot

Learning and Zero-Shot Learning” (Manuscript Revision)

The chapter on, Domain Applications, covers the use of the deep architectures to

two domains including materials discovery, biomedical cell microscopy. There is one

publication related to this research study:

Taher Hajilounezhad∗, Rina Bao∗, Kannappan Palaniappan, Filiz Bunyak, Prasad

Calyam, Matthew R. Maschmann Predicting Carbon Nanotube Forest Attributes and

Mechanical Properties Using Simulated Images and Deep Learning (Nature Partner

Journal Computational Materials 2021, ∗these authors contributed equally to this

work)

4

Chapter 2

GLSNet & GLSNet++ for
City-Scale Point Cloud
Segmentation

Semantic point cloud segmentation assigns a class label to each unstructured 3D

point and provides valuable information for navigation, landmark recognition, and

building information modeling systems. We propose a novel deep learning architecture

for 3D point cloud segmentation that fuses global and local feature representations

about 3D scene geometry to capture multiscale structural information and handle

large variation in object sizes typical of urban scenes, but is difficult to model using

other architectures. The proposed Global and Local Streams Network (GLSNet++)

further incorporates a unique graph convolutional network for demixing or unmixing

voxel boundary regions composed of a mixture of object classes by using spatial

context dependent feature fusion similar to conditional random fields. We validate

GLSNet++ for semantic LiDAR point cloud segmentation using the five class labeled

dataset from the IEEE GRSS Data Fusion Contest Urban Semantic 3D, Track 4

(IEEE DFT4) [11, 12, 13]. GLSNet++ is shown to generalize well when tested on

an independently collected urban aerial LiDAR point cloud data set for Columbia,

5

Missouri. GLSNet++ delivers highly competitive segmentation results at city scale

that can be refined for more classes, higher resolution and larger regions.

2.1 Introduction

Volumetric city-scale point cloud segmentation is a challenging problem due to high

degree of variation in object scale, mixed classes, complex object shapes, high density

of similar objects and high computational cost for volumetric processing. A typical

point cloud has anywhere from several hundred thousand to millions of 3D points.

The object classes may be very large, such as water, which requires a segmentation

approach that can capture long range, global structural and contextual information.

While some classes may have very small objects, such as buildings and bushes or trees,

which require the segmentation approach to capture fine-scale local information in

order to delineate the salient object boundaries. A novel approach for efficiently fusing

both global and local, structural and contextual feature information for accurate

large-scale point cloud segmentation is investigated.

We believe that designing a network with modules to explicitly target global and

local information processing can help address such a challenging problem, where the

global features capture long range and large scale structural and contextual informa-

tion, and the local feature captures small scale structural and contextual information.

Motivated as such, we previously proposed a two-branch network architecture, Global

and Local Streams Network [1] (GLSNet), to decompose such a complex problem by

leveraging global and local streams for large point-cloud segmentation.

In GLSNet, the global branch processed a full set of points of each cloud for accu-

rate classification on large areas, while the local branch processed a subset of points

each time for accurate classification on small areas, and the complementary geometric

information of different scales was integrated by a max pooling operation. In the cur-

6

(a) (b)

(c)

(d) (e)

Figure 2.1: LiDAR point cloud for Columbia, Missouri (COU30) showing: (a) colored
height map (z-value), (b) LiDAR return intensity (0 to 255), (c) LiDAR return num-
ber (0 to 4), (d) building footprints from OpenStreetMap (OSM), (e) LiDAR point
cloud semantic segmentation using the proposed GLSNet++, and (f) GLSNet++
segmentation result overlaid with OSM building footprints in an orthographic pro-
jection.

rent work, we capitalize on the global-local information fusion approach of GLSNet to

extend it significantly in several directions. In network architecture, we consider not

7

only parallel network branches of global-local information streams, called GLSNet-

Parallel, but also a cascade global-to-local information flow, called GLSNet-Cascade,

where a global network module first provides coarse-scale semantic segmentation

which is followed by a local network module to refine the global branch produced

semantic segmentation. In information fusion, different from GLSNet-Parallel and

GLSNet-Cascade, we propose a novel context-dependent graph based fusion method.

Our new method takes the global and local prediction results as input, and minimizes

the fused prediction errors based on the different scales to optimize the semantic seg-

mentation performance. Considering the fact that in many real applications, the

object labels for point cloud semantic segmentation are hard to acquire, we further

propose to use building footprints from OpenStreetMap as the groundtruth for eval-

uations on such unlabeled data. In Figure 2.1, we show the point-cloud data of

the area of Colubmia, MO that were collected by our local collaborator team. Al-

though these point clouds do not have ground truth labels, the building footprints

from OpenStreetMap show very good agreements with the point-cloud segmentation

based predictions.

2.1.1 Contribution and Novelty

Our contributions are four-fold: (1) We propose an effective global-local two-branch

network GLSNet++ with a novel graph demixing block to effectively fuse global and

local information for large-scale point cloud semantic segmentation. To the best of our

knowledge, such a design has not been explored in the existing literature for city-scale

point clouds. (2) We investigate a novel graph convolutional network architectures

for fusing global and local feature embeddings and present extensive results on these

architectures. (3) We propose using building footprints from OpenStreetMap for

evaluating semantic segmentation on new point clouds when ground-truth labels are

not available. (4) We present promising experimental results on airborne LiDAR

8

point clouds that demonstrate the benefit of our approach.

The subsequent parts of this chapter are organized as the following. Section

4.2 reviews the related work in point cloud segmentation. Section 2.3 describes dif-

ferent fusion structures of global and local branches, and details the design of our

GLSNet++ with the demixing block. Section 2.4 describes the implementations de-

tails and experimental datasets and explains the procedure for evaluating semantic

segmentation on unlabeled point clouds in real application scenarios. Section 4.5

presents quantitative results in mIoU and overall accuracy as well as visualization

results of our methods on a public benchmark and our own collected LiDAR point

cloud. We conclude this work in section 4.6.

Figure 2.2: Our dual backbone GLSNet [1] uses two feature embeddings including a
Global 3D-stream (top row) and a Local 3D-stream (bottom row) that extract coarse-
scale and fine-scale geometric information from the input 3D point cloud. The two
global and local streams are trained in parallel with the same supervision and same
loss functions. The SoftMax classification output layer from each stream is fused
together using a MaxPooling layer for the final classification.

(a) GLSNet-Parallel (b) GLSNet-Cascade

Figure 2.3: Different fusion methods of global and local streams.

9

~

X, Y, Z Point Cloud

Return Intensity
Point Cloud

Return Number
Point Cloud

-JAX250 Point Cloud Input :
511m x 511m x 45m x 5

Global Feature Embedding (Global Branch)

0
·.;; -
..!!! 0 Voxelized Point Cloud

(Voxel size: Sm x Sm x lm
by averaging)

I ~II 11~•-
: 111- -111 :

---+ ~ --+ i
Grid size: 103 x 103 x 45 x 5 Lillll-1 103 x 103 x 45 x 6

3D SSCN-U
3D Submanifold Sparse Convo lutional Network

with 3D Unet structured

Local Feature Embedding (Local Branch)

Voxelization each Partition each point
point clouds - clouds to finally obtain -
(Grid Size: lm) overlapped Tiles

(16to25Tiles)

Sampling
Points

(8192from
65532)

- PointNet++ -
Tile Point Clouds

Prediciton

1: ~

Supervision for local point cloud ti les

{X, Y,Z,lntensity,Return number} Tile 1 Tile 2 Tile 21

Voxeli za t ion
Global

p Global

}
tl.O Voxe lizat ion

.!::

1~
0
0 Global Local a..
X P ctobal
IIJ

Local ~
Partition t o Tiles PL oca l

Multi- Class
Segmentation

511m x 511m x 45m

1

2.2 Related Work

Currently, deep learning is becoming more widely used for point cloud semantic seg-

mentation. We provide an overview of point cloud segmentation techniques, with a

focus on recent deep learning methods for large-scale point cloud segmentation. We

categorize the popular deep neural network methods for 3D point cloud segmentation

into those with and without 3D convolutions. (I) 3D-convolutional neural net-

works: The work of [14] proposes a 3D U-Net structured network for point cloud seg-

mentation. To reduce the computation cost of 3D convolution, [15] proposes highly

efficient convolution Submanifold Sparse Convolution (SSC), and the subsequently

improved Submanifold Sparse Convolution Network (SSCN) [16] which can process

a full 3D point cloud at one time with strong performance. Recent works explored

specialized design of convolution kernels for 3D points [17, 18, 19]. (II) Neural net-

works without 3D convolutions: PointNet [20] and its follow-up works fall in this

category. PointNet learns from unordered point clouds by point-wise encoding and

aggregation through a global max pooling, but its capacity is insufficient in captur-

ing contextual information. Thus, the followed-up work PointNet++ [21] proposes

a hierarchical architecture to capture local geometric details at different scales to

overcome the weakness of PointNet. [22] proposes a recurrent slice network to model

local dependency information. PointSift [23] proposes an orientation-encoding unit

to capture different orientation representations of points. PointHop [24] proposes

an explainable learning method for point cloud classification. PointGrid [25] pro-

poses a point quantization network to facilitate learning local geometry shapes. (III)

Graph Neural Networks Graph Neural Networks are explored in many research

problems[26, 27, 28, 29]. There are also graph network approaches to point cloud

segmentation [30, 31]. PointCNN [32] proposes a X -Conv layer to exploit certain

canonical ordering of points. Dynamic Graph CNN (DGCNN) [33] suggests an alter-

native grouping method to ball query that is used in PointNet++ [21]. Superpoint

10

Graphs (SPG) [34] adaptively partitions point clouds by contextual relationship en-

coded superpoint graphs. PartNet [35] proposes a top-down recursive decomposition

strategy for shape segmentation.

As has been pointed out by the analysis in [1], for large-scale point cloud segmen-

tation, most existing methods need to slice the point clouds to multiple subsets and

process one subset at one time, which inevitably weaken their ability in global con-

textual and structural reasoning. For 3D convolution networks, for example SSCN,

regular strategies to capture long range information such as using deeper network,

increasing kernel size will no doubt increase computation cost, and adding many

pooling layers will cause local information loss.

City-Scale Point Cloud Segmentation Recently, several methods have shown

good performance on large scale point cloud segmentation. The method of [34]

tackles the large-scale point cloud segmentation problem by adaptively partitioning

point clouds with contextual relationship encoded superpoint graphs. The works of

[17, 18, 19] focus on designing convolution kernels for points. Specifically, the method

of Pointwise Convolution Neural Network (PCNN) [17] proposes a convolution oper-

ator for each point which bins its nearest neighbors into kernel cells before convolving

with the kernel weights. KPConv [36] proposes Kernel Point Convolution to directly

operate on point clouds without any intermediate representation. Additionally, there

are specialized convolution designs such as ConvPoint [37] that employs continuous

convolutions for cloud processing. RandLA-Net [38] proposes to relying on expensive

random point sampling technique to help with large-scale 3D point cloud segmenta-

tion. SqueezeSeg [39] designs a conditional random field (CRF) which is implemented

as a recurrent layer.

Different from the above methods, we propose to use global and local feature em-

bedding streams (or branches) to process different levels of structural and contextual

information in point clouds, and in GLSNet++, we further design a novel demixing

11

block to perform global and local information decomposition and aggregation for 3D

point cloud classification.

2.3 Semantic Segmentation of 3D Point Clouds

In this section, we first describe the point cloud semantic segmentation problem, then

briefly review the global branch and local branch network architecture of GLSNet [1],

and finally, introduce our three network design schemes for global and local informa-

tion fusion.

Let S = {s1, s2, ..., si, ..., sN} be the set of points in a generalized point cloud

representation, with N points in D-dimensional feature space. For LiDAR point

clouds we use,

si = {xi, yi, zi, Ii, Ri} (2.1)

where si, is a 5-D vector with {xi, yi, zi} being the 3D spatial location of the point in

world or relative geometric coordinates, Ii, the measured LiDAR return intensity, and

Ri its LiDAR return number. The semantic segmentation task is to predict a semantic

label for each point, si. For the whole point set S, the label set, Q, is defined as the

one-hot vector for each point. The point label set for S, is Q ∈ N×RC , where C is the

total number of total semantic classes. Accordingly, the semantic segmentation task

is then, given a point set S, to predict its class label set Q. Denoting the estimate of

Q as Q̂, the prediction task, F, is defined as,

Q̂ = F(S) (2.2)

where F is the learned non-linear function that predicts semantic segmentation labels

Q̂ for the point set S.

12

2.3.1 GLSNet Deep Learning Architectures

Figure 2.4: Proposed GLSNet++ structure with parallel feature embedding fusion
followed by graph convolutional demixing (top). Two types of demixing blocks: Multi-
Receptive (MR) Field Graph Demixing (middle) and Multiscale Multi-Receptive
(MSMR) Field Graph Demixing (bottom) SG is a sample grouping downsampling
block (i.e., choosing furthest points) and FI is a feature interpolation block.

We illustrate the GLSNet deep learning architecture consisting of a global branch

and a local branch in Figure 2.2. The global branch is designed to capture long-

range structural and contextual information with several considerations. (1) Sparse

voxelized grids are taken as the input because they preserve point clouds structure,

unlike scattered and unordered point set, and a sparse voxelization that employs large

voxel grid radius and aggregation of input point clouds facilitates efficient global in-

formation capture without needing a very deep network. (II) A UNet structured

Sparse Submanifold Covolution Network (SSCN-U) is employed in global feature rep-

resentation learning for semantic segmentation due to the high efficiency of sparse

submanifold convolution operation. In short, the global branch first voxelizes the

13

GLSNet++
Vox elization

Partition
to Tiles

Receptive field : 8

Global

Local

Receptive field: {8, <=64}

Piocal

Partition
to Tiles

Graph Demixing - MSMR

..c
a.
ro s....

(.!)

16384 x D oo ~------,

[

lJ!- !J!

..c ... -§__

c_ ! -----+ ~
8192 x D ~

b.O
C ~ ·x u
E o
Q) co

0

.....,
;::!
~,
;::!
a

entire point cloud, and then performs SSCN-U on the sparse voxelized point cloud

grids. The local branch is designed to capture local contextual information and han-

dling fine-grained point cloud segmentation. The sophisticated network PointNet++

serves this purpose well and is taken for this branch. Specifically, the local branch

partitions the entire point cloud into overlapped tiles and employs PointNet++ to

operate on each tile (subset of points) to classify local areas. The two streams ex-

tract geometric information in a complementary way (see [1] for further details). The

two branches are trained separately with the supervision of point cloud segmentation

groudtruth. We define PGlobal ∈ N × RC as the output probability of the global

branch FGlobal, and Plocal ∈ N × RC as the output probability of the local branch

FLocal.

Our global-local information fusion schemes: (I) GLSNet-Parallel: as shown in

Figure 2.3 (a), the global branch and local branch work in parallel and they are

trained independently, as proposed in GLSNet [1]. (II) GLSNet-Cascade: As shown

in Figure 2.3 (b), instead of using the parallel structure of two branches, we design

a cascade structure to make the global and local network modules work in tandem,

following the coarse to fine refinement framework. (III) GLSNet++: as shown in

Figure 2.4, GLSNet++ is designed to benefit from both the parallel and cascade

structures of (I) and (II), and it has a novel graph demixing block for multi-scale (MS)

and multi-receptive field (MR) context-dependent information fusion, producing the

best results for 3D point cloud semantic segmentation.

2.3.2 GLSNet-Parallel Streams

As proposed in [1], GLSNet employs parallel global-local branches and use max pool-

ing to leverage the complementary information from these two streams to improve the

performance, as shown in Figure 2.3 (a). As a point-set to label set mapping function

F, GLSNet performs max pooling over the two prediction vectors of the global branch

14

network PG and the local branch network PL. The final prediction Pfuse is computed

as,

Fparallel(S) = max {FGlobal(S),FLocal(S)}

Pfuse = max(PGlobal,PLocal) .

(2.3)

2.3.3 GLSNet-Cascade Streams

The GLSNet-Cascade network has a global-to-local structure, where the global mod-

ule provides a coarse level semantic segmentation prediction, and the local module

refines the global prediction. The structure of GLSNet-Cascade is shown in Figure 2.3

(b), where the input to the local module in GLSNet-Cascade is [S,PGlobal], with [·]

denoting concatenation. The operation of GLSNet-Cascade is defined as,

Fcascade(S) = FLocal([S,FGlobal(S)]) . (2.4)

2.3.4 GLSNet++ With Graph Convolutional Demixing Block

The design of GLSNet++ is rooted in our observation that the segmentation errors

in GLSNet-parallel are mainly in regions where global and local branches have dif-

ferent predictions and around the object boundaries [1], which can be attributed to

the fact that GLSNet-parallel uses a simple max pooling to fuse the outputs of the

two branches. Therefore, we design a graph demixing block to help demix the pre-

dictions of the two branches in the confused areas for improving global-local fusion.

The GLSNet++ workflow is illustrated in Figure 2.4. The graph demixing block is

composed of two graph demixing layers, and they are designed to improve segmenta-

tion performance for each point by taking into account of the two-branch predictions

at the point as well as the predictions at the point’s neighborhood. A demixing layer

first performs graph aggregation over the contextural points of each point’s features,

15

global probability, and local probability, and the demixing block next utilizes multi-

ple neighborhood sizes or receptive fields by stacking up demixing layers to improve

point prediction. The operation of GLSNet++ is,

FGLSNet++(S) = FDemix([S,FGlobal(S),FLocal(S)]) (2.5)

The graph convolutional network demixing layer in Figure 2.5, takes as input

a neighborhood point set defined as S ∈ N × 1 × RDcin , where N is the number

of points, Dcin is the dimension of an input feature vector. For the first demixing

layer in the demixing block, Dcin is 17 for the IEEE DFT4 dataset, because for each

point pi, its feature representation si is composed of the self LiDAR geometry feature

{xi, yi, zi} and LiDAR Return Intensity Ii, LiDAR Return Number Ri, and the two-

branch probabilities Pi
Global and Pi

Local (when there are six classes, Pi
Global and Pi

Local

are each 6-dimensional vector). For the other demixing layers in the demixing block,

Dcin is the number of channels of the input feature at that layer.

Figure 2.5: Graph convolutional network demixing layer captures local point cloud
topology for capturing spatial context in unstructured grids.

16

P, _,,- Po Graph Demi,iog PO

~ p4 Po ------:-:---:-:-;;5::--;;p~-:-:PP==:---::--~.. EN x 1 x ocout l Aggregation of , global• Local S dem,xmg
P

3
s E N x 1 x oc;n Graph Demixing layer

H-t-.+- --t--,7 s0 Pclobal PLocal

N points in the full volume

~
0
0 QI
-E C.
0 "' ..c .c
fo~
·- er:
QI
z

SEN X 1 X DCin

Conv 9 X 1

(C in, Cautl

. . E N X 1 X 0cout Sdem,xmg

We construct a directed graph G = (V,E) to represent the feature vector of each

point, where V = {1, ..., K} and E ∈ V × V are the vertices and edges, respectively.

In the demixing layer, we construct G as the neighborhood graph of S with radius

R that includes K points, where K = R3, which is defined as SK . Note that when

multiple points are in one voxels, we choose the nearest point in the grid, and when

the grid is empty, we fill the center point in that grid. The graph includes self-loop

updates, meaning each node also points to itself. The edge features are learnable,

and defined as,

SDemixing = Θ(S,SK) = Wcout
cin

([S,SK]) (2.6)

where the nonlinear function Θ has a set of learnable parameters Wcout
cin

. In Figure 2.5,

we show how the graph demixing layer is designed to incorporate the self features,

and global and local probabilities. For each point pi at location {xi, yi, zi} along

with feature si, its neighborhood set is sKi . We use a point p0 at {x0, y0, z0} with

K = 8 as an example, which means we find its 8 neighbors in a 2× 2× 2 grid. The

set of neighbors is denoted as sKi , with K=8. The input data to the graph is the set

S ∈ N×RDcin , where S = {si}, i = 1, 2, ..., N , and the output is SDemixing ∈ N×RDcout .

The demixing layer concatenates the input point set S, and the neighborhood point

set SK , which leads to Sin ∈ N × 9 × Dcin features. A 2-D convolution layer has

the parameters Wcout
cin

, the kernel size is 9 where each kernel in Wcout
cin

is applied to

the 9-dimensional features of input Sin. This graph demixing layer design fuses the

feature information of both the center point and its neighborhood points from the

global and local feature embedding streams.

Graph Demixing Block As shown in Figure 2.4, given the input point set,

the demixing block stacks two demixing layers with a skip link. The first demixing

layer’s receptive field is 8, and after the second demixing layer, the receptive field is

increased up to 64 (8 × 8). We concatenate the first demixing layer’s output using

the skip link with the second demixing layer’s output. By doing so, each point has

17

the receptive fields of its neighborhood in two scales which we name it as Multi-

Receptive (MR) field graph demixing block (abbreviated as Graph Demixing-MR),

that helps refine the point’s semantic segmentation by using different levels of pre-

dictions of the surrounding points (we found this to be especially important for the

building class since this class always has errors on boundaries). We also design a Mul-

tiscale Multi-Receptive (MSMR) field graph demixing block (abbreviated as Graph

Demixing-MSMR) which is realized by utilizing the Sampling and Grouping (SG) and

Feature Interpolation (FI) operations in Graph Demixing-MR to achieve multiscale

operations (SG and FI are similar functions to downsampling and upsampling layers

in convolutional network, which are from PointNet++). Because GLSNet++ utilizes

different levels of contextual information of semantic label predictions from the global

and local branches to refine point semantic prediction, it performs better than either

GLSNet-parallel or GLSNet-cascade.

Table 2.1: Details of graph convolutional network Demixing layer and Demixing block
architecture.

Module Layer
Kernel

Size
of input
channels

of output
channels

of
Parameters

Total
Parameters

DL Conv 9× 1 cin cout 9× 1× cin × cout + cout
BN – – – 2× cout
DL1 9× 1 17 64 9× 1× 17× 64 + 64 + 2× 64
DL2 9× 1 64+3 64 9× 1× 67× 64 + 64 + 2× 64

Demixing-MR Conv 1× 1 128 128 1× 1× 128× 128 + 128 66,310
BN – – – 128+128

Classifier 1× 1 128 6 1× 1× 128× 6 + 6
DL1-s1 9× 1 17 64 9× 1× 17× 64 + 64 + 2× 64
DL2-s1 9× 1 64+3 64 9× 1× 67× 64 + 64 + 2× 64
DL1-s2 9× 1 17 64 9× 1× 17× 64 + 64 + 2× 64

Demixing-MSMR DL2-s2 9× 1 64+3 64 9× 1× 67× 64 + 64 + 2× 64
Conv 1× 1 256 128 1× 1× 256× 128 + 128 133,190
BN – – – 128+128

Classifier 1× 1 128 6 1× 1× 128× 6 + 6

18

2.4 Datasets and Implementations

2.4.1 LiDAR Datasets for Point Cloud Semantic Segmenta-
tion

We first train and test the proposed GLSNet using the IEEE GRSS Data Fusion

Contest Urban Semantic 3D, Track 4 LiDAR dataset with ground truth; which we

referred to as IEEE DFT4. This is a large scale airborne LiDAR point cloud classi-

fication dataset of IEEE 2019 GRSS Data Fusion Contest Track 4: 3D Point Cloud

Classification Challenge, where given a LiDAR point cloud, the objective is to predict

a semantic label for each 3D point. Since the task is to predict semantic labels for the

individual points, it is also referred to as point cloud semantic segmentation. In IEEE

Data Fusion Challenge, there are six classes: Ground (G), High Vegetation (HV),

Building (B), Water (W), Elevated Road (ER), and Unlabeled (U). The Unlabeled

category is not used in the performance evaluation as in IEEE DFT4. The infor-

mation provided for the 3D dataset consists of {X, Y, Z, Intensity,Return Number}.

There are 110 point clouds for training, 10 for validation, and another hidden 10 for

testing on the server. The point clouds are from Omaha, NE and Jacksonville, FL.

For details of this IEEE contest, please refer to [13, 11, 12].

We use an independent testing dataset consisting of LiDAR for Columbia, Mis-

souri (COU). The high resolution Columbia point clouds were collected by the Boone

County, Missouri local government in 2014 as part of their regular mapping process.

The data was collected by a third party using a Leica ALS70 Aerial LiDAR sensor

system. The nominal collection scenario called for the acquisition of nominal point

spacing of 0.7 meter on the ground. In order to use the data to evaluate our pro-

posed semantic segmentation networks, we crop two large tiles of original point cloud

data. The cropped point clouds are named COUorbit28 and COUorbit30. Each tile

covers 1, 000m× 1, 000m areas. COUorbit28 had 4,244,969 points, and COUorbit30

19

had 4,368,678 points. in Figure 2.1, we colored the COU point cloud by their height,

intensity and return number. Since the ground-truth of the COU point cloud segmen-

tation were unavailable, a common scenario in real cases, we propose a new workflow

to test and evaluate on these point clouds by using a system trained from a different

point-cloud dataset, i.e., the IEEE 2019 challenge training set, and we describe the

workflow below. Currently, the dataset is being annotated. We have released current

annotation here for the two large point clouds with OSM ground-truth. Later, we

will annotate more semantic classes, including Roads, Ground, Trees, and Water as

we continuously update the ground truth labels over time.

2.4.2 Training GLSNet++

Global and Local Branches In Global Branch training, the key is to capture long

range contextual and structural information. In order to effectively realize this, we

employed large grid size to generate sparse point cloud which aggregates grid features.

We use grid size of 5m× 5m× 1m. If there were multiple points in a voxel grid, all

the input feature vectors in each grid were averaged. The SSCN-U had 16 filters in

the first layer and a total of 7 UPlanes, and added 16 more filters for each U-Plane

which had 2 residual blocks. We trained global branch with the Adam optimizer

with an initial learning rate 0.001 for 512 epochs. In Local Branch training, the key

is to capture local tiles’ fine contextual and structural information. Thus, we first

quantized the whole volume of a point cloud with a grid size of 1m, and then split

them into overlapping tiles. The local branch employing PointNet++ was trained

with local tiles. We trained local branch using the Adam optimizer with an initial

learning rate 0.001 for 200 epochs. For additional details of data augmentation in

training the global and local branches, please refer to [1]. In [1], we only used 90%

training data, and the remaining 10% for validation due to the fact that the official

validation set was not accessible when we took part in the challenge. In this work, for

20

fair comparisons among different network structures, we retrained the local branch

with 100% training data, and used the official validation set, while the global branch

was directly from GLSNet trained model.

Graph Demixing Layer and Graph Demixing Block The demixing layer

is composed of a convolution layer (Conv) with the number of input channel size

cin, the number of output channel size cout, the kernel size 9 × 1 (parameter size

9 × 1 × cin × cout + cout) and a Batch Normalization layer (BN) (parameter size cout

for beta and parameter size cout for gamma in BN). Table 2.1, provides details of

the Demixing Layer (DL), Demixing block-MR (Demixing-MR) and Demixing block-

MSMR (Demixing-MSMR) architecture. In the Demixing-MR block, there is +3 in

DL2 # of input channels because we concatenated the {X, Y, Z} information in the

layer to also encode the geometry information. The parameter sizes of Demixing-MR

and Demixing-MSMR can be seen in Table 2.1, with around 0.067M and 0.133M,

respectively.

Figure 2.6: Workflow of testing and evaluation on unlabeled LiDAR point clouds.

GLSNet++ uses a two-stage training scheme. In the first stage, the global and

local branches were trained independently. In the second stage, only the demixing

block was trained to fuse the two branches’ prediction results. We used the prepro-

21

LiDAR
Point Clouds

Geospatial Area
Coverage

Preprocessing

Acquiring
Groundtruth

Latitude-Longitude
Information

Align the Point Clouds
Resolution with IEEE DFT4 Data

Aligned
COU Point Cloud

GLSNet++

Acquire Footprints from
0 enStreetMa

Prediction

Evaluation

Footprints of
Different Classes

Table 2.2: Class IoU for different percentage training data on 2019 IEEE DFT4 Test
Set. †Results from [1].

Streams Method G HV B W ER OA mIOU
Single- Global-branch (90%)† 97.40 91.82 85.50 94.18 69.98 96.88 87.77
Stream Local-branch (90%)† 95.65 95.47 83.64 80.99 79.03 96.21 86.95

Local-branch (100%) 96.73 95.12 86.19 93.21 76.08 96.41 89.47
Dual- GLSNet-Parallel (90%)† 97.56 93.94 87.56 95.64 77.90 97.37 90.52

Stream GLSNet-Parallel 97.73 93.83 88.02 96.44 76.47 97.47 90.50

Table 2.3: Class IoU for different percentage training data on 2019 IEEE DFT4 Test
Set. †Results from [1].

Streams Method Parameter Size G HV B W ER OA mIOU
Single- Global-branch† 7.531M 97.40 91.82 85.50 94.18 69.98 96.88 87.77

Local-branch 0.970M 96.73 95.12 86.19 93.21 76.08 96.41 89.47
Dual- GLSNet-Parallel 8.50M† 97.56 93.94 87.56 95.64 77.90 97.37 90.52

Stream GLSNet-Parallel 8.50M 97.73 93.83 88.02 96.44 76.47 97.47 90.50

Table 2.4: Semantic segmentation accuracy on 2019 IEEE DFT4 LiDAR segmenta-
tion benchmark using class IoUs comparing proposed architectures including single-
stream and dual-stream methods. GLSNet++MSMR uses GLSNet-Parallel that com-
bines Local- and Global-backbones (see Figure 2.2) followed by a Multiscale Multi-
Receptive Demixing Block (see Figure 2.4).

Streams Method Parameter Size G HV B W ER OA mIOU
Single- Global-branch 7.531M 97.40 91.82 85.50 94.18 69.98 96.88 87.77
Stream Local-branch 0.970M 96.73 95.12 86.19 93.21 76.08 96.41 89.47
Dual- GLSNet-Parallel 8.501M 97.73 93.83 88.02 96.44 76.47 97.47 90.50

Stream GLSNet-Cascade 8.501M 97.34 95.05 88.57 93.23 78.17 97.48 90.47
GLSNet++ GLSNet++-MR 8.634M 97.83 96.06 90.15 95.65 79.81 97.92 91.90

GLSNet++-MSMR 8.634M 97.86 96.20 90.37 95.84 79.84 97.97 92.02

Table 2.5: Class IoU of GLSNet++-MR and GLSNet++-MSMR on 2019 IEEE DFT4
Test Set.

Method Parameter Size G HV B W ER OA mIOU
GLSNet-Parallel+PointNet++ 0.970M 97.29 95.29 88.36 95.70 80.90 97.50 91.51

GLSNet++-MR 0.066M 97.83 96.06 90.15 95.65 79.81 97.92 91.90
GLSNet++-MSMR 0.133M 97.86 96.20 90.37 95.84 79.84 97.97 92.02

cessing codes provided by the baseline system of IEEE DFT4 [42] to process our data,

which first quantized the point clouds by the cell size of 1 meter, and then partitioned

22

Table 2.6: Class IoU of GLSNet++-MR and GLSNet++-MSMR on 2019 IEEE DFT4
Test Set.

Method Parameter Size G HV B W ER OA mIOU
GLSNet-Parallel+PointNet++ 970,218 97.29 95.29 88.36 95.70 80.90 97.50 91.51

GLSNet++-MR 66,310 97.83 96.06 90.15 95.65 79.81 97.92 91.90
GLSNet++-MSMR 133,190 97.86 96.20 90.37 95.84 79.84 97.97 92.02

Table 2.7: Ablation study for different grid resolutions and sampling point set sizes.

Method Grid Size (m) Sampling Size G HV B W ER OA mIOU
GLSNet++-MR 1 8192 97.39 95.57 88.75 96.02 79.41 97.60 91.43
GLSNet++-MR 0.1 8192 97.62 95.85 89.56 95.31 80.95 97.77 91.86
GLSNet++-MR 0.1 16384 97.83 96.06 90.15 95.65 79.81 97.92 91.90
GCN2neighbor8 0.1 8192 97.38 94.87 88.12 96.13 79.60 97.48 91.22
GCN2neighbor16 0.1 8192 97.26 94.89 87.79 95.55 76.72 97.39 90.44
GCN7neighbor8 0.1 8192 97.21 94.76 87.81 95.58 75.16 97.34 90.10

Table 2.8: Class IoU recent architecture comparison for 3D semantic segmentation
on 2019 IEEE DFT4 Test Set. ∗ indicates that the performances are produced with
the publicly available code.

Method G HV B W ER OA mIOU
SSCN-U 97.40 91.82 85.50 94.18 69.98 96.88 87.77

PointNet++∗ 95.4 95.2 83.7 88.4 76.6 96.3 87.9
PointNet++(MSG)∗ 96.8 94.9 85.8 93.1 74.8 96.9 89.1

DGCNN∗ 96.4 96.2 86.3 96.2 48.7 96.9 84.8
PointCNN∗ 96.7 95.4 88.3 88.3 83.5 97.3 90.4
PointSIFT∗ 97.4 96.1 88.4 91.5 79.3 97.5 90.6
PointConv∗ 97.6 95.5 89.1 92.1 76.3 97.6 90.1

PointSIFT [23]∗ – – – – – 97.55 91.02
UPNet (Rank-1)(EN) [40] 98.74 96.11 93.31 96.54 89.04 98.57 94.55

UPNet (Rank-1) [40] 97.87 95.79 89.98 94.94 86.48 97.94 93.01
ASNet (Rank-2) [41] 98.79 96.32 93.62 95.32 88.66 98.62 94.54

GLSNet [1] 97.56 93.94 87.56 95.64 77.90 97.37 90.52
GLSNet++ 97.86 96.20 90.37 95.84 79.84 97.97 92.02

the point clouds to tiles where each tile had around 65,536 points. For details of the

procedure, please refer to [42]. We also tried quantization with the cell size of 0.1

meter, which showed better performance in our ablation study. The demixing block

was trained with the training set of IEEE DFT4 by using the Adam optimizer for

23

200 epochs, with the learning rate 0.001, momentum 0.9, and learning rate decay 0.7.

We choose the model which has the highest overall accuracy on validation data as

the best model, and report the best model performance on the held-out test set on

the test server from IEEE DFT4. For testing on the COU point clouds, we use the

model trained on IEEE DFT4, following the workflow described below in Subsection

2.4.3.

Table 2.9: Parameter Size and Model Size.

Methods Model Size (MB) OA mIOU
SSCN 28.61 96.29 87.77

PointNet++ 28.61 96.29 87.77
PointNet++(MSG) 3.69 96.3 87.9

DGCNN 9.07 97.3 84.8
PointCNN 43.91 97.5 90.4
PointConv 82.62 97.6 90.1
PointSIFT 51.6 97.5 90.6

DPNet 32.23 97.94 93.01
GLSNet++(Ours) 32.67 97.78 92.02

2.4.3 Testing and Evaluation

Labeled Point Clouds: We use the standard measures of mean Intersection over

Union (mIoU) and overall accuracy (OA) for 3D point cloud classification as in [43].

Unlabeled Point Clouds: In real scenarios, it is often very difficult to obtain large-

scale point cloud segmentation labels since manually label city-scale point clouds

with millions of points is extremely time-consuming. Here, we describe our method

for testing and evaluating on such unlabeled point clouds, as shown in the flowchart

in Figure 2.6. Although we use the unlabeled COU point clouds as the example here,

we believe that our method can be generally applied to testing on other unlabeled

point cloud datasets as well. Before testing, we need to preprocess the COU point

clouds since the LiDAR data were collected by LiDAR teams different from that of

24

the IEEE DFT4 which is used as our training set. The preprocessing procedure aligns

the resolution of the testing point cloud (COU) to that of the training data (IEEE

DFT4). For evaluation, the OpenStreetMap’s building footprints are acquired as the

groundtruth labels for use in evaluating the building segmentation performance. Note

that there could be some misalignment between the footprints from OpenStreetMap

with our collected point clouds since these were not collected at the same time, and

some urban structures may have been changed during this time interval.

Figure 2.7: Visualization of GLSNet++ results for the ten validation LiDAR datasets
from two cities (Jacksonville, FL and Omaha, NE) in the IEEE DFT4 (before demix-
ing) with the overall accuracy (OA) for the full image shown in text at the bottom.
Zoomed regions identified by white boxes (third row), illustrate the classification label
differences at higher detail.

25

1-
(.9

C
0

:;::;
u
'o
~
c..

QJ
u
C
QJ

~
0

1-
(.9

C
0

:;::;
u
'o
~
c..

QJ
u
C
QJ

~
0

Hlch Vecetatlon

JAX028 JAX251 JAX427

0.9613 0.9681 0.9691

Ground Elevated Road Water Unlabeled

JAX474 JAX559 OMA127 OMA134 OMA342 OMA357 OMA389

0.9707 0.9388 0.9956 0.9705 0.9979 0.9699 0.9917

2.5 Experimental Results

We first performed ablation study of the three structures GLSNet-parallel, GLSNet-

cascade and GLSNet++, and then compare our proposed GLSNet++ with the IEEE

DFT4 challenge winners and four other state-of-the-art algorithms. Finally, we visu-

alize GLSNet++ predicted semantic segmentation results on COU point clouds. For

all the reported results, we abbreviate the class Ground as G, High Vegetation as HV,

Building as B, Water as W, and Elevated Road as ER.

2.5.1 Ablation Study

In Table 2.3, the results from [1] all use only 90% training data. For fair comparison,

in this current work, we retrain the local branch with 100% training data, and the

results are shown in the case of single-stream as Local-branch (100%). Comparing

with Local-branch (90%) from [1], the results is better since the training data is

increased.

Dual-stream networks outperform single-stream networks: In the case

of Dual-stream, GLSNet-parallel uses the newly trained Local-branch (100%) and

the global branch is trained from [1]. Relative to Single-Stream, the performance of

GLSNet-parallel is better, but the gain on OA over Local branch (100%) is small

due to the simple max pooling fusion on the global-local branches. The performance

of GLSNet- Cascade is comparable to GLSNet-Parallel in mIOU and OA, but for

the individual classes, there are certain differences in accuracy. In general, the dual-

stream network performs better than the single-stream networks.

GLSNet++ with demixing block is effective and efficient: 1) Effectiveness is

shown in Table 2.6, where we compare different designs of global-local fusion in

GLSNet++. The case of GLSNet-Parallel+PointNet++ represents the choice of us-

ing PointNet++ to replace our demixing block to fuse the two branches. It is observed

26

Figure 2.8: Visualization of Graph Demixing-MSMR. Left: Error map before demix-
ing, mIOU: 85.80 OA: 96.90 Right: Error map after demixing, mIOU: 93.82 OA:
98.30.

Figure 2.9: Evaluation of building segmentation (red), high vegetation (green) and
ground (gray) for COUOrbit28 (first row) and COUOrbit30 (second row). From
left to right: Building footprints from OpenStreetMap (OSM), GLSNet++ predicted
class labels, predicted results overlaid with OSM building footprints. COU28Orbit
accuracy is 82.9% and COU30Orbit is 90.1%.

that by using a simple demixing block, i.e, GLSNet++-MR, we can achieve perfor-

mance comparable to using a deep PointNet++, which indicates that our demixing

block is very effective for fusing the global-local branches. GLSNet++-MR, with

its light-weight demixing block, achieves the mIOU performance of 91.90%, which

27

is 1.4% gain on GLSNet-Parallel and GLSNet-Cascade. 2) Efficiency based on the

total parameter size of Demixing-MR being around 0.067M, which is about 7% of

the parameter size of PointNet++. The total parameter size of Demixing-MSMR

is around 0.133M which is about 14% of the parameter size of PointNet++. With

the much lighter design, our GLSNet++ with Demixing-MR and Demixing-MSMR

overperform the PointNet++ based fusion scheme by 1.5% in mIOU.

It is essential to analyze the influence of grid resolution and sampling size on

GLSNet++ accuracy. Grid resolution: Grid size is the cell size used in the voxeliza-

tion procedure for the local branch. For instance, if we use a cell size of 1 meter, then

the voxelizated cell will be quantized with 1 meter before the whole point cloud is

split into tiles as discussed in implementation of Section IV. In our ablation study, we

tried grid sizes of 1 meter and 0.1 meter, where the latter can almost keep the original

point cloud resolution of IEEE Data Fusion Challenge with its LiDAR density of 8

centimeter. Sampling size: Sampling size is the input size for the network, and tile

prediction is voted by the prediction of sampled points. For achieving better perfor-

mance, we tried two strategies: (a) using cell size of 0.1 m when quantizing the point

clouds and (b) increasing the input point size to demixing block, which means that

for each tile, we use more points to estimate the tile’s semantic segmentation results

since the results are interpolated from the preprocessed sets of points. In Table 2.7,

we see that using a cell size 0.1m achieves better results than the size of 1.0m since

the whole point cloud is better kept and the GLSNet++-MR can use finer details to

demix the error areas. We also see that doubling the sampling size to 16,384 achieves

better results because the network is provided with more points in training and also

in inference.

28

2.5.2 Comparison with Recent Architectures

We compared our predictions on IEEE DFT4 held-out test as shown in Table 5.1. Our

GLSNet++ outperforms PointNet++, SSCN-U, and PointSift, but is slighly lower

than UPNet Rank-1 and ASNet Rank-2 deep network performance. UPNet Rank-1

(EN) is an ensemble network model with additional post-processing of the labeled

point clouds. Our proposed GLSNet++ is very comparable to UPNet Rank-1 with

ensemble classifier fusion.

2.5.3 Visualization of Error Maps and Graph Demixing Block

In order to analyze the effectiveness of the demixing block visually, we first visualize

the GLSNet++ predictions in Figure 2.7. It is observed that the errors are mainly

around the object boundaries. in Figure 2.8, we provide an example to show the error

maps before and after the demixing block, respectively. It is clearly seen that the

demixing block helps largely reduce the misclassification errors.

2.5.4 Generalization Performance on COU Point Cloud Dataset

We follow the workflow of Figure 2.6 to evaluate the performance of GLSNet++.

From Figure 2.9, we observed that GLSNet++ produced very promising results on

the Columbia data, since our building predictions are seen to have largely overlapped

with the building footprints. It is worth noting that GLSNet++ was trained only

on the IEEE GRSS DFT4 training set (point clouds for Jacksonville, Florida and

Omaha, Nebraska), and the only additional information that we used in performing

semantic segmentation on the Columbia, Missouri data was a scale factor (the latitude

and longitude of point cloud tiles) to calibrate the resolution of the test point clouds

relative to the training point clouds.

29

2.6 Chapter Conclusions

City-scale classification of 3D LiDAR data using only the range measurements can be

accurately estimated using deep learning architectures. We show that the proposed

GLSNet++ architecture with dual global and local feature embedding streams, us-

ing a SSCN-UNet and PointNet++ backbones respectively, outperforms the single

stream architectures by up to 2.7 percent. Fusing the global and local feature embed-

dings using a novel lightweight graph convolutional network demixing block further

improves the boundary accuracy by about 1.5%, resulting in an overall accuracy of

92% across five common urban classes even with a high degree of class imbalance.

GLSNet++ using feature fusion is competitive with the best architecture that uses

classifier fusion using an architecture ensemble method. The feature fusion approach

enables better generalization to LiDAR data from unseen urban scenes and shows

potential for large scale modeling, simulation and navigation applications.

30

Chapter 3

PointGrad: Point Gradient
Operator for 3D Point Cloud
Segmentation

Geometric shape and structure representation is a critical requirement for point cloud

recognition and segmentation. Graph convolution networks offer a powerful approach

to encode the geometric relationships between points using edge operators in a latent

space projection. However, the commonly used K−nearest neighbor search tends to

cluster groups of nearby points, losing larger-scale geometric information, besides,

previous proposed graph convolution graph operators are not explicitly designed for

directional gradient operation. We propose a new graph convolution operator, re-

ferred to as the Point Gradient (PointGrad) operator, that encodes point directional

tensor gradients into a high-dimensional multiscale tensor space. PointGrad can

encode different orders of partial derivatives, capturing multiscale geometric shape

and curvature information. Using the PointGrad operator with graph convolutions

on scattered irregular point sets captures the salient structural information in the

point cloud across spatial and feature scale space, enabling efficient learning. By

stacking PointGrad operators, we can construct families of deep PointGrad networks

31

(a) GroundTruth (b) PointNet++ [21] (Acc87.11)

(c) DGCNN [33] (Acc88.52) (d) Ours (Acc95.60)

Figure 3.1: Visualization of different methods on ShapeNet.

(PointGradNet). We demonstrate the effectiveness, efficiency and robustness of the

PointGrad operator on several benchmark datasets.

3.1 Introduction

3.1.1 Motivation

3D point cloud semantic segmentation is a challenging task in computer vision, where

points are irregular, sparse, and noisy. For point cloud understanding, structural in-

formation is vital. For example, in large-scale city point cloud semantic segmentation

scenarios, structures of edges, facets, and planar structures are essential for differ-

entiating building and high vegetations. Currently, how to efficiently and effectively

capture structural and context information from 3D point clouds remains challenging.

In this work, we are motivated by the fact that points in various quantized direc-

32

.,,

-~·. _..,,:: .- ... ~~·
-

... 1 .
·ti~·: .

... J."I~~
:,:. . . -

. 1 .
.. I •• • ,.Ii...., ..

KNN searches 8 nearest neighbors PointGrad searches 8 quantized directional neighbors

Figure 3.2: Visualization of the PointGrad operator: (a) Original point cloud object
with two parts (blue and red) and two labeled points p0,p1. (b) KNN approach –
the 8 nearest features based on spatial distance. The resulting features for p0 and p1

are shown. The generated features are ordered by distance from pi. (c) PointGrad
approach – searches for NN within 8 octants in 3D (or sectors in the 2D example) for
p0 and p1. The generated features are ordered by counter-clockwise directions from
pi. (d) The 8 search regions visualized as octants. (e) Central reference point p0 and
its 8 directional neighbors within a fixed radius, visualized using 2×2×2 grid neighbors
within radius r. The 8 direction vectors to NN in each octant are p1,p2, ...,p8. (f)
PointGrad computes tensor gradients along each direction uj, j = 1, ..., 8. (e) Using a
multi-layer perceptron (MLP), we update the point tensor p0 to p′0 by encoding each
directional gradient tensor.

(a) Point cloud (b)
∥∥∂{R,G,B}f∥∥ (c) ‖∂xf‖ (d) ‖∂yf‖ (e) ‖∂zf‖

Figure 3.3: Illustration of PointGrad tensor operator. A sample indoor scene point
cloud from the S3DIS dataset. A 3D point cloud with point representation f(x, y, z) =
{x, y, z, R,G,B}. The different tensor derivative operators: color vector derivative
for image edge structures, partial derivative in each spatial direction for planar spatial
structures.

33

••• ~~ I ··•p~

=··· •• ~ ~
• ep1 e ••• • • ePoe • • •• e e P1 e • • • • Generat ed features Generated features

Po ■■■■■■■■ Po •••••••• Pi•••••••• P1 •••••••• (a) (b) (c)

r

y

(d) (e)

Ui~Us U U6

Po
U7

U9

U3 U4

Uj = {lj - lj ,sj - sJ
(f)

P0 = MLP({Po, ujij = 1, ... 8})

(g)

tions preserve the geometry structure of point clouds, and directional gradients can

describe the changes of points in a representation space that are highly relevant to

point cloud understanding. We design a graph gradient operator, referred to as Point-

Grad, to encode the point directional gradient of different orders in high dimensional

tensor space. Such an operator can capture the diverse scaled structural and contex-

tual information in point clouds efficiently and effectively. In Figure 3.1, we present

the motorbike part segmentation results of representative methods PointNet++ [21]

and DGCNN [33]. The DGCNN designs a dynamic graph where the vertices in the

graph are searched by the K-nearest neighbor(KNN) euclidean distance of the fea-

ture vector. Representative methods such as PointCNN [32], PointConv [44], Point-

wiseCNN [17] use K-nearest neighbor euclidean distance of spatial distance for local

graph construction, and these methods design various network modules to encode

information of the point clouds. When using KNN to search neighbors to construct

the graph of feature space, the points of KNN will fall in the same quadrant some-

times, which leads to the loss of geometry information. PointSift proposes to search

the points from directions in grids and designs an axis-aligned operator to encode the

orientation information of points.

We propose PointGradient (PointGrad), which differs from these methods in two

aspects: (1) Graph Construction: instead of using KNN search or search from di-

rections in grids, PointGrad proposes to search in quantized directions. Therefore,

searching directions in grids is one sub-case of quantized directional search. (2) Graph

Computation: instead of complex network module design, PointGrad proposes to en-

code the quantized directional gradients into feature space. The PointGrad operator

has two essential properties: (1) neighbors in search space are spread in various direc-

tions, which in our design, we propose quantized directional nearest neighbor search.

(2) encoding features in each direction efficiently and effectively, which in our design,

we propose the gradient feature of different orders to capture each direction space

34

structure and context representations effectively.

Our rationale of PointGrad is explained as the following: (1) graph construc-

tion: using quantized directional search (2) graph computation: encoding directional

gradients. From the perspective of graph construction, we compare the quantized

directions search with KNN search. In the first row of the Figure 3.2, we show that

KNN searches eight nearest neighbors and using PointGrad quantized directional

search eight directional nearest neighbors (each quantized quadrant covers 45◦). In

this way, PointGrad quantized directional search covers long-range structural and

contextual information in various directions. In the first row of Figure 3.2, the KNN

searched neighbors are clustered in the upper part, while the PointGrad directional

searched neighbors are spread in various directional spaces. Besides, with PointGrad

directional search, the generated features maps are more robust since the generated

feature maps in KNN are arranged with the nearest distance, while in the PointGrad

directional search, the feature maps are sorted in directional space order. In the

second row of Figure 3.2, we show that the PointGrad will integrate features of each

directional gradient in updating point features. We will discuss this process in section

3. From the perspective of graph computation, we illustrate the reason for designing

directional gradients. For a simple case, the partial derivatives along the directions on

RGB can easily delineate the edges of point clouds, since RGB colors change rapidly

around edges, and therefore the gradients of RGB colors have high responses on edges.

The partial derivatives along the x, y, z directions on RGB delineate the planes of

point cloud, since RGB colors are consistent on the plane. Furthermore, noise effects

such as slow variations in color, intensity, etc., can be reduced in the gradient space

to allow the representation to concentrate more on the changes itself, where direc-

tional gradients of different orders can describe these representations in an effective

way. In Figure 3.3, we show an example of a point cloud from S3DIS [43] which is a

dataset composed of a set of indoor scene point clouds, as an example. We apply our

35

PointGrad module to compute L2 − norm of partial derivatives on the input space:

x, y, z, RGB of 8 quadrant directions, and show the resulted features of the point

cloud in (b), (c), (d), (e). It is evident that after partial derivative operators, we can

easily detect x directional planes, y directional planes, and z directional planes since

the partial derivatives are approximately zeros on these planes.

3.1.2 Contribution

Most existing methods attempt to learn the structural information by different graph

convolutions. In our work, we explicitly extract directional gradients from 3D point

cloud and design algorithms and network architectures accordingly. Through our pro-

posed point directional derivative operators and network module PointGrad, we map

3D point clouds to the space of point-neighborhood directional gradients (PNDG) to

efficiently encode the structures of edges, planer patches, curvature structures and

etc, and contextural information of the spatial space and high dimensional tensor

feature space in deep networks. We further embed PointGrad within three deep net-

work structures to design structure-aware networks, and name the network family

as PointGradNet. To perform the PNDG feature encoding in hierarchical feature

space and different scales, we design several versions of PointGrad to encode gradient

flow in alternative ways, forming three representative deep network structures within

PointGradNet for 3D point clouds. We demonstrate the effectiveness, efficiency, and

robustness of our directional derivative-based network representations in 3D point

cloud semantic segmentation tasks.

In summary, we propose a network module PointGrad to encode point directional

gradient features of different orders in 3D point clouds. This directional difference

encoding has a strong power in representing crucial structural features such as edges

and planar patches for point cloud segmentation. We design a PointGrad archi-

tecture family that embeds the PointGrad module in a set of networks to encode

36

multiple-order and multiple-scale point directional differences, and we designate it as

a structure-aware point directional derivative network. We demonstrate the efficiency,

effectiveness, and robustness of our novel PointGrad module on several point cloud

semantic segmentation benchmarks. PointGrad achieves competitive performance

consistently in various scales of point cloud segmentation tasks, including city-scale

point cloud segmentation, indoor scene semantic segmentation, and object part seg-

mentation, confirming that our proposed PointGrad can effectively capture structure

information of different scales.

This chapter is organized as follows. Section 4.2 reviews the related work in

point cloud segmentation; Section 3.3 describes our PointGrad module and PointGrad

networks family in details; Section 4.5 presents quantitative results of our algorithm.

We conclude this chapter in Section 4.6.

3.2 Related Work

In this section, we briefly review the deep learning methods on 3D point cloud seg-

mentation. According to data types of point clouds, recent methods of deep learning

on point clouds can be categorized as voxelization -based [25, 45, 46, 47, 48, 49],

multi-view-based [50, 51, 52] and graph-based [20, 21, 53, 54, 55, 56, 34, 30, 31, 57].

Here we mainly discuss graph-based methods for point cloud segmentation since

our method is related to graph-based methods. PointNet [20] proposes a network

to learn on unordered point clouds by point-wise encoding and aggregation through

global max-pooling. PointNet++ [21] proposes a hierarchical neural network to cap-

ture geometric details of point set. Kernel point convolution (KPConv) [36] proposes

to directly operate on point clouds without intermediate representation. PartNet [35]

proposes a top-down recursive decomposition strategy for shape segmentation. Super-

point Graphs (SPG) [34] adaptively partitions point clouds by contextual relationship

37

encoded superpoint graphs, and it embeds every superpoint with a shared PointNet.

The semantic labels of the superpoints are predicted from the PointNet embedding

of each current superpoint and its spatially neighboring superpoints. PointCNN [32]

uses the layer of X -Conv instead of multi-layer perceptron to exploit certain canonical

ordering of points. More recently dynamic graph CNN (DGCNN) [33] suggests an

alternative grouping method to ball query that is used in PointNet++ [21]: namely,

Euclidean distance based KNN between feature vectors. PointSIFT [23] proposes

an orientation-encoding unit by providing eight crucial orientation representations

of points. Pointwise convolution neural network (PointwiseCNN) [17] proposes a

pointwise convolution operator for each point, which bins its nearest neighbors into

kernel cells before convolving with kernel weights. PCNN [58] module first queries

the neighboring points and then bins them into grids, and multiple layers processing

is performed on each grid to first get local grid features and then apply convolution.

Existing methods of graph-based methods propose different methodologies to capture

the point cloud information. In contrast to these efforts, our proposed PointGrad ex-

plicitly computes point directional gradients in an octant system with different orders

to encode point cloud structure information. In Section 3.3.6, further details will be

discussed to contrast of our PointGrad with the above discussed graph-based neural

network methods.

3.3 Proposed PointGrad Operator

Given a set of 3D points, the task of semantic segmentation is to predict the semantic

label of each point. In object part segmentation, the task is to segment different

parts of a object. In indoor scene point cloud segmentation, the task is to segment

furniture in the room. Our PointGrad is designed to be able to capture the different

structures efficiently and effectively in these point clouds.

38

In this section, we will 1) define the directional derivatives 2) introduce the point

directional derivative operations 3) describe the point directional derivative deep mod-

ules 4) present the PointGrad network family 5) discuss the detailed differences be-

tween PointGrad and other methods.

3.3.1 Directional Derivative

The directional derivative O(um)f(x0, y0, z0) is defined as the rate at which the function

f(x, y, z) changes at a point (x0, y0, z0) in the direction um. It is a vector form of the

conventional derivative, defined as,

∂umf = lim
h→0

f(x + hum)− f(x)

h

‖um‖ =
√
u2
x + u2

y + u2
z = 1

(3.1)

where um is the unit directional vector.

Another representation for modeling directional changes, simpler than derivatives,

is the finite directional difference:

∆humf = f(x + hum)− f(x) (3.2)

where the finite directional difference is hum. This is the basis for the PointGrad

tensor gradient operator used in this work, since point sets are discrete sets and we

use finite difference approximations in the rest of the chapter.

3.3.2 Point Directional Derivatives

For 3D point clouds, we define the point directional derivative operation. A point set

with N points is defined as P = {p1, ...pN} ∈ RD. For each point pi = {Lpi , spi},

Lpi = {x, y, z} is the 3D geometry coordinate of the point , and spi is the feature

39

vector of pi. For each point pi with feature vector spi , the form of spi depends on

the input space.In LiDAR point cloud, spi = {x, y, z, I, R}, where I is the LiDAR

return intensity, and R is the LiDAR return number. In RGB-D point cloud, spi =

{x, y, z, R,G,B} or spi = {R,G,B} depending on if the location {x, y, z} is used as

features; In networks, spi is the feature vector of pi in certain layer.

We compute a directed graph G = {V , E} representing local point cloud structure,

where V = {pj, j = 1, ..., n} and E ∈ V × V are vertices and edges, respectively. In

the simplest case, we construct G as the K-nearest directional neighbor graph of pm

in RD. Since our module is designed to compute the point directional gradients in

point cloud, the two properties of gradient, i.e., direction and magnitude, are both

encoded in the graph by graph construction and edge function. We first introduce

a K-nearest directional neighbor graph construction procedure which helps encoding

the gradient direction of points, and we then introduce the edge function to encode

the gradient magnitude of directional points.

The graph is constructed by the K-nearest directional points search. We define

the K nearest directional points of the center point p0 as its K neighbors in the

G×G×G grid or quantized space. In G×G×G grids, the set of these K directional

neighboring points is V of the center point p0 (K = G3). In quantized space as we

show in Figure 3.2 first row (c), each nearest directional neighbors are searched in

quantized directional space within radius r (In Figure 3.2 first row (c), the quantized

space is 45 degrees in each quadrant). As an example, in Figure 3.2, we use 2× 2× 2

grid with 8 directional derivatives within a radius r to illustrate our point directional

derivative computation. Figure 3.2 (a) represents the 8 directions for each point.

Each quadrant represents one direction. In Figure 3.2 (b), the center point is p0, and

its 8 nearest directional neighbor set is V = {p1, ...,p8}. If in one direction within

radius r, there is more than one point in that direction octant, the point with the

nearest euclidean distance to p0 is selected. If along a direction there exists no point

40

in the radius r, then p0 is duplicated as that directional neighbor, setting the gradient

to 0 in this direction to represent an empty direction.

First-order Directional Derivative and Difference The first-order directional deriva-

tives are used to describe feature tensor changes along the eight spatial directions.

The point directional derivative operator in the direction um (m = 1, 2, 3, ...8) is

approximated by using finite differences for computational efficiency as,

∂umf ≈ ∆hum = f(Lpm)− f(Lp0) = spm − sp0 (3.3)

with um being the unit direction vector from p0 to pm, Lpm − Lp0 = hum is the

directional gradient vector from p0 to its neighboring points pm, within a specified

ball of radius r = ‖um‖ =
√
u2
x + u2

y + u2
z. Note that the neighboring points in the

set are scattered and irregularly spaced within this radius r ball centered at p0.

High-order Directional Derivative and Difference For the high order point direc-

tional derivative, we still consider its 8 directions. If the nth-order (n = 2, 3, ...)

directional derivative is computed at the um direction, which is the same direction as

its (n− 1)th derivative, then we have

∆(n)
um = ∆(n−1)

um f(Lp0 + hum)−∆(n−1)
um f(Lp0)

= ∆(n−1)
um f(LPm)−∆

u
(n−1)
m

f(Lp0)

(3.4)

Otherwise, if the nth-order directional derivative is computed along other directions,

for example, vk (k = 1, 2, ...8),vk 6= λum, then we have

∆(n)
umvk

= ∆(n−1)
um f(Lp0 + tvk)−∆(n−1)

um f(Lp0)

= ∆(n−1)
um f(LpN)−∆(n−1)

um f(Lp0)

(3.5)

41

3.3.3 PointGrad Module Design

Our PointGrad modules are designed to compute point directional derivatives in the

neural network. We design several modules of PointGrad to compute different orders

of directional derivatives for encoding different structural information. We denote

the module that encodes the first-order point directional derivative as PointGrad-1,

that encodes the second-order point directional derivative as PointGrad-2, ... , and

that encodes nth-order directional derivative as PointGrad-n. In this section, we first

describe PointGrad-1, which is the basic module in the PointGrad Network family.

The PointGrad-2 and PointGrad-n are designed by recursively applying PointGrad-

1 in the network. We construct different types of networks by using the different

versions of PointGrad, which form the PointGrad family discussed below.

First-order Directional Derivative PointGrad-1

Figure 3.4: Design of PointGrad-1 for encoding first directional derivative with pm
being the center point.

We first describe the computation and implementation of first-order point direc-

tional derivative. For each layer in the network, the input point set is P and the output

feature point set is denoted as P′. For each point pm in P, with pm = {Lpm , spm},

we apply the PointGrad operator shown in Figure 3.4, then the output point is

p′m = {Lpm , s
′
pm}. We find the 8 nearest directional neighbors of pm in 2 × 2 × 2

42

8 nearest
directional
neighbors

Lp: Nxlx3
~--~r----+-,

s N X 1 X Dci1,

N X 9 X QCin

Conv 9 x 1

(Cin, Caut)

s'
N X 1 X Dcout

Figure 3.5: Design of nth order PointGrad-n for encoding high-order gradients for
modeling differential shape.

grid with the grid length r, with the set denoted as VKpm , where K = 8. Each

point in VKpm is represented as pj = {Lpj , spj}, j = {1, ..., 8} . Therefore, for

the 8 directions, the directional difference in each direction uj of the point pm is

∆uj(pm) = spj−spm , j = {1, ..., K}. Let θ represent the parameters of PointGrad−1,

and let fθ be the mapping function that maps the input feature set s to the output

feature set s′. The updated feature set by PointGrad-1 is computed as,

s′ = fθ(s) = Wcout
cin

([s, sd]) (3.6)

where sd = {∆uj} = spj − spm , j = {1, ..., 8}, and [·] denotes the operation of

concatenating the original feature s with the derivative feature sd. The output s′

is computed by convolving the concatenated feature with Wcout
cin

, which is a set of

1 × 9 convolutional kernels with the input channel size cin and output channel size

cout. Wcout
cin

is learned to aggregate information from the original features and their

derivatives. The implementation of PointGrad−1 is shown in Figure 3.4.

High-order Directional Derivative PointGrad-n

In addition to the first-order directional derivative, we also design modules to compute

high-order directional derivatives for feature representation. We can deduce that high-

order directional derivatives PointGrad-n can be implemented as in Figure 3.5, which

43

f (xo, Yo, Zo) /J.f (xo, Yo, Zo)
Po = {xo, Yo, Zo, so} Po = {xo, Yo, Zo, d5}

PointGrad1 PointGrad1

PointGrad2

/:J. 2 f (xo, Yo, Zo)
Po = {xo, Yo, Zo, d5}

/:J.3 f (xo, Yo, zo)
Po = {xo, Yo, Zo, dB}

PointGrad1

t:,.nf(xo,Yo,zo)
Po = {xo, Yo, Zo, ctrr}

• • •

recursively applies PointGrad-1 to compute the high-order point feature directional

derivatives. Another version of encoding mixture directional derivatives combines

different orders of directional derivatives to enrich the representation of PointGrad.

The usage of these modules will be demonstrated in our experiments.

3.3.4 Gradient Backpropagation in PointGrad

Here we compare the gradient computation in each layer of PointGrad with that

of a regular neural net layer operation. For a regular layer, without PointGrad, the

gradient is computed as,

∂s
′

δWcout
cin

= s (3.7)

In PointGrad, the gradient is computed as,

∂s′

∂Wcout
cin

= s +
∑

j=1,2,...K

∆uj (3.8)

Obviously, the operation of PointGrad is different from that of the regular Point-

Net layer, where beside of the input information s, our PointGrad module addi-

tionally encodes the neighboring set directional difference
∑

j=1,2,...K ∆uj into the

backward gradient flow.

3.3.5 PointGradNet: PointGrad Network Family

In the last subsection, we have designed several types of PointGrad modules to com-

pute gradient flow, where a sequence of PointGrad could encode higher-order direc-

tional derivatives for feature representations. Naturally, a deep neural network can

be employed for this through stacking PointGrad modules. Therefore, we design a

44

(a) PointGrad-Deep (b) PointGrad-U (c) PointGrad-U++

Figure 3.6: PointGrad operator can be used in many different deep network families
like the three shown above.

family of PointGrad Networks by exploring three representative gradient flows, 1)

PointGrad-Deep: a deep network structure as in Figure 3.6 (a) that implements the

PointGrad−n by using the Figure 3.5 to encode high-order point directional deriva-

tive. 2) PointGrad-U: a deep network structure as in Figure 3.6 (b) that implements

the mixture PointGrad−n by using the concatenate different orders of PointGrad to

encode the mixed order point directional derivative. 3) PointGrad-U++: a deep net-

work structure as in Figure 3.6 (c), which is a dense version of PointGrad-U by using

mixed orders of point directional gradients.

In integrating PointGrad with the three types of the networks, we borrow from

PointNet++ [21] the sampling and grouping (SG) module and the feature interpola-

tion (FI) module for downsampling and interpolation on point set, and adapt them for

PointGrad. For details of SG and FI, please reference to [21]. To facilitate describing

our network structures, we use () to represent the numbers of channels of the point

features. By inserting the SG and FI modules into different locations of the network,

the receptive fields are enlarged, and by inserting the FI module into different layers

of the network, the downsampled points are interpolated back to the original point

set size.

1) PointGrad-Deep is a deep network which implements the PointGrad−n in com-

bination with SG and FI. We stack the PointGrad to form the PointGrad−n as a deep

45

Shllpe: 256"321

PolnrCrad
US.,lS6,Sl2, S12)

"

~o.,$11ape: 81<1Z,c PfffkrionSNpe: 8 ! 92•C

~~~ 
SNpe: 8192• 121 I 



Table 3.1: Comparison to existing graph convolution deep network architectures with
graph edge operators.

Method
Neighbor

Search
Graph Edge

Function
Learnable

Parameters
Feature Space

Encoding
PointNet [20] – fΘ(pi,pj) = fΘ(pi) Θ Point feature manifold
PointNet++ [21] KNN / Ball of {x,y,z} fΘ(pi,pj) = fΘ(pj) Θ Neighbor feature mapping
MoNet [59] KNN / Ball of {x, y, z} fθm,wn(pi,pj) = θm · (pj � gwn(u(pi,pj))) θm,wn Adaptive Hadamard
PCNN [58] KNN / Ball of {x, y, z} fθm(pi,pj) = θm · (pj � g(u(pi,pj))) θm Fixed Hadamard
PointCNN [32] KNN / Ball of {x, y, z} fΘ(pi,pj) = fθc(fMθ

(pj)× [fMδ
(pj),pi]) Mθ,Mδ, θc Coordinate mapping

PointConv [44] KNN / Ball of {x, y, z} fMd,Mθ
(pi,pj) = (fMd

(Dpj) · pj)fMθ
(pj) Md, Mθ Point density mapping

DGCNN [33] KNN of feature space distance fΘ(pi,pj) Θ Adaptive feature mapping
PointSIFT [23] Cube Directional search of {x, y, z} fΘ(pi,pj) = fMθ

(pi ⊕ fθo(pj)) Mθ,θo Axis-aligned convolution
PointGrad Quantized Directional search of {x, y, z} fΘ(pi,pj) = fΘ([pi,pj − pi]) Θ Tensor directional gradient operator

graph neural network. 2) PointGrad-U is a mixture point gradient network, by using

skip links and concatenation operation to realize a mixture of directional derivatives.

PointGrad-U only concatenates the gradient features at the corresponding levels so

that different orders of derivatives at the same scale are added to the forward and

backward flows in the network. We call it PointGrad-U because it is a U-shape net-

work. 3) PointGrad-U++ is designed to encode mixture-ordered point gradient in

different scales in the network, as well as encode gradients of both shallow and deep

features. We construct the PointGrad-U++. Besides, the PointGrad-U structure has

the problem that there is a large gap of gradient crossing a link between encoder

and decoder. By inserting a PointGrad module in each link between the encoder and

decoder, the gradient gap can be reduced, and more orders of directional derivatives

are involved in backward gradient flow to encode rich information. The above design

is similar to UNet++ network structure, therefore we name it as PointGrad-U++.

These three network designs of structures are quantitatively evaluated through exper-

iments on 3D point cloud benchmarks, and the results are discussed below in Section

4.5.

3.3.6 Comparison with Existing Methods

PointGrad is related to graph convolutional neural networks. Here, we compare our

PointGrad module design with several prototype graph CNNs for point cloud learning

46



including: (a) PointNet or PointNet++ layer operation, (b) MoNet [59] and Pointwise

Convolutional Network (PCNN), PointCNN: Convolution on X -Transformed Points,

PointConv [44], (c) graph edge convolution in DGCNN [33], and (d) PointSIFT [23].

These methods are discussed from the perspectives of graph construction, edge func-

tion and learnable parameters. These major categories of approaches are summarized

in Table 3.1 and discussed in further detail next.

For a point set, a directed graph is constructed as G = (V,E), here we use the

simplest case where the neighbor set V = 1, ..., K + 1 which is composed of a center

point pi, and its K neighbor point pj. We define the updated p′i to be the output of

a graph convolution operation defined as,

p′i = fΘ(pi,pj) (3.9)

(a) PointNet & PointNet++: PointNet can be regarded as a fixed weight graph

representation for local point averaging or max-pooling operations, represented as

the local graph operation, fθ(·). PointNet++ uses max-pooling to obtain local region

information, which queries nearest neighbors based on geometric coordinates and

uses multiple layers to encode local region information excluding pi, where the edge

function is fθ(pi,pj) = fθ(pj), and the information is aggregated by max operation,

as discussed in [31].

(b) Recent graph networks such as MoNet [59], PCNN [32], PointCNN and Point-

Conv, are focused on the design of different graph convolution-type operations.

• MoNet: the graph structure of MoNet in a local ”pseudo-coordinate system”

u is defined as a M -component Gaussian mixture model. The edge function is

computed in fθm,wn(pi,pj) = θm · (pj � gwn(u(pi,pj))), where g is a Gaussian

kernel and � is the elementwise (Hadamard) product, and wn are learnable

parameters of the Gaussians (mean and co-variance), and θm are the learnable

47



filter coefficients.

• PCNN: PCNN can be regarded as a special case of MoNet with g as predefined

Gaussian functions, and the learnable parameters wn are removed, thus the edge

function of PCNN is simplified as fθm(pi,pj) = θm · (pj � g(u(pi,pj))).

• PointCNN: PointCNN proposes a pointwise convolution, and the edge function

can be written as fΘ(pi,pj) = fθc(fMθ
(pj) × [fMδ

(pj),pi]). It first lifts local

coordinates of neighbor set into high dimensional features by fMδ
, where fMθ

is

a learnable transform function of coordinates, [·] is the concatenate operation,

and fθc is the convolution operation.

• PointConv: PointConv proposes a density re-weighted convolution,

as fMθ,Md
(pi,pj) = fwd(Dpj)pjfMθ

(pj), where Dpj is a kernelized density esti-

mation function, fMd
is a multi-layer perceptron (MLP) for adapting the den-

sity scale, and fMθ(pj) is a MLP with learnable weights Mθ for re-weighting the

neighbor set density weighted point feature fMd
(Dpj)pj.

(c) DGCNN: Dynamic Graph CNN uses different graph edge functions for fΘ.

The main difference between DGCNN and the above methods is that the constructed

DGCNN graph is dynamic because its neighbor sets are selected based on distances

in feature space. Thus, as the feature space changes, so does the graph; while other

methods construct graphs using distances based on point coordinates and so the graph

structure remains fixed.

(d) PointSIFT [23] proposes to encode information of different orientations, and

the edge function is defined as fΘ(pi,pj) = fMθ
(pi ⊕ fθo(pj)), where fθo is an

orientation-encoding convolution along X, Y, Z, ⊕ is add or concatenation, and fMθ

is an MLP operation, and Mθ is the set of multi-layer perceptron parameters.

(e) PointGrad: In comparison with all of the above operations, our approach

has two major differences: (1) unlike the above local feature encoding methods, we

48



Table 3.2: Benchmarks for 3D point cloud semantic segmentation

Dataset Data Type Scenario Task # of Classes Feature
ShapeNet [2] 3D Model Object Part Segmentation 50 {X,Y, Z}
S3DIS [60] RGBD Indoor Scene Semantic Segmentation 13 {X,Y, Z, R, G, B}
IEEE DFT4 [12] Airborne LiDAR City-scale Semantic Segmentation 5 {X,Y, Z, I, R}

are rooted in point directional difference, and our PointGrad explicitly computes the

first-order directional difference feature to encode the structure information of planes,

edges, or corners; (2) a sequence of PointGrad, i.e., PointGrad−n, essentially is a

high order directional difference encoding module, and it can encode different orders

of point directional difference information through different concatenating strategies.

To the best of our knowledge, we are the first to propose a network module that can

explicitly derive the point direction difference to encode structure information of a

point set in a graph manner.

3.4 Experiments

3.4.1 Datasets and Implementations

We evaluate the proposed PointGrad network family on three tasks: 1) city LiDAR

point cloud segmentation: capture large structure blocks such as buildings, trees,

bridges, etc, 2) indoor scene segmentation: capture structures of indoor objects such

as tables, chairs, etc., 3) Object part segmentation: capture small structures such as

planes of table, legs of stools, etc. The details of these types of datasets are sum-

marized in Table 3.2, and one example from each of these datasets are also shown in

Figure 3.7. We choose these tasks from different scenarios to show that our algorithms

can capture different scales of structure information including city blocks structures,

indoor furniture structures, and object structure.

Large-scale city point cloud semantic segmentation 2019 IEEE Data Fusion Chal-

lenge Track4 Dataset is a city-scale LiDAR point cloud semantic segmentation dataset

49



Figure 3.7: PointGrad on semantic segmentation benchmarks of different scales

which covers two cities: Omaha, NE and Jacksonville, FL. The range of LiDAR point

clouds is around 500m × 500m with LiDAR accuracy 80 centimeters. Each LiDAR

point is provided 5-dimension input {X, Y, Z, Intensity, Return Number}, and la-

beled by six classes: Ground (G), High Vegetation (HV), Building (B), Water (W),

and Elevated Road (ER). There are 110 point clouds for training, 10 validation point

clouds, 10 point clouds for held-back testing on the test server.

Indoor scene segmentation is an important and challenging task in computer vi-

sion. We evaluate the proposed method on benchmark S3DIS [60]. The S3DIS dataset

contains 3D scans of 271 rooms from 6 areas, with a total of 13 categories. Each point

has RGB features. For experiments on S3DIS, we follow the training/testing split in

[61] to measure the generalization ability of existing methods under training and test-

ing setting of Area 5. The ScanNet dataset [62] contains 1,513 scenes captured by

the Matterport 3D sensor. The points are annotated in 20 categories and one back-

ground class. We follow the official training/testing split 1201/312 scans from [62] in

this work.

Shape part segmentation is a challenging task in fine-grained shape segmentation.

50

City-Scale Point Cloud 
Semantic Segmentation 

City-Scale 

PointGrad 

Indoor Point Cloud 
Semantic Segmentation 

Medium-Scale 

Object Point Cloud 
Part Segmentation 

Small-Scale 



We evaluate the proposed method on ShapeNet [2] dataset which contains 16,881

shapes with 16 categories, and totally are segmented in 50 parts. We follow the

data split in [21]. We random sample 2048 points as the input, and the one-hot

encoding label of object class is concatenated. We report the mean IoU(mIoU) over

all classes and all instances, respectively.

Our PointGrad is implemented in Tensorflow [63] framework. All the reported

results of PointGradNet was trained in a total of 200 epochs using Adam optimizer [64]

with an initial learning rate of 0.001. For experiments on IEEE DFT4, we followed

the baseline pre-processing and post-processing procedure provided by the challenge

baseline method [12], and we chose the best model on the validation set to test on the

held-out test set. For experiments on ShapeNet, S3DIS, we follow the pre-processing

procedure and evaluation of PointNet.

3.4.2 Ablation Study

Table 3.3: With/Without directional difference operation, Gradient (Direction +
Magnitude)

Method
Encode

Direction
Encode

Magnitude G HV B W ER OA mIOU
PointDiff X 96.99 95.00 86.41 89.27 79.55 97.09 89.45

PointRelation X 97.55 95.77 88.74 92.63 79.21 97.60 90.78
PointGrad X X 97.77 95.58 89.37 93.57 83.45 97.76 91.95

Encoding direction and magnitude both play important roles in semantic segmen-

tation. The gradient is composed of two components: direction and magnitude of

difference between two vectors. Our PointGrad is designed to encode these two com-

ponents. To analyze the importance of encoding both direction and magnitude, we

decouple the experiments into three variants: (1) PointDiff: instead of keeping the

direction in tensor as in PointGrad, we randomly permute the direction neighbor-

hood in each point neighbor set, and otherwise keep the difference operation the

51



Table 3.4: IoU accuracy for different variations of our proposed 3D PointGrad seg-
mentation deep architecture on 2019 IEEE DFT4 (US3D) test dataset, for five classes:
Ground (G), High Vegetation (HV), Building (B), Water (W), and Elevated Road
(ER).

Method G HV B W ER OA mIOU
PointGrad-Deep 97.60 95.07 88.49 92.40 83.35 97.56 91.38
PointGrad-U 97.99 95.50 90.12 93.66 84.81 97.90 92.41
PointGrad-U++ 97.61 96.07 89.18 94.55 88.37 97.78 93.16

same with PointGrad. With this operation, the point direction is not consistent in

each layer, which destroys the point directional property in point directional differ-

ence. (2) PointRelation: in this setting, we do not apply difference operation after

obtaining the directional neighbor set, but directly apply 1 × 9 convolution on the

neighbor set, which means that the difference property is destroyed in this setup. (3)

PointGrad: this is our design of using both direction and magnitude of directional

difference. We apply these three versions of feature encoding methods in Figure 3.6.

The PointDiff version gets the lowest performance since it loses the feature orienta-

tion information for structure understanding. Due to the loss of orientation, even

if the difference operation is applied, it could not encode higher-order difference in-

formation by stacking the layers together. Besides, it only encodes local region’s

information of neighbor set for each point in each layer without modeling the relation

of points. The PointRelation version only encodes the orientation information but

loses the difference information, and therefore it could not encode the magnitude of

gradient. In contrast to PointDiff and PointRelation, PointGrad encodes both the

direction and magnitude information of the directional differences, which yields the

best performance.

Embeding PointGrad in deep network architectures is beneficial. We establish a

family of PointGrad operators for different deep learning network architectures includ-

ing Deep (no skipped connections), UNet, UNet++ structured networks using Point-

52



Table 3.5: Ablation study on shape part segmentation benchmark ShapeNet [2]

Method OA class mAcc class mIOU instance mIOU
PointGrad-Deep 93.64 87.05 81.37 83.03
PointGrad-U 94.11 88.05 82.46 83.60
PointGrad-U++ 94.42 88.48 83.50 84.74

Grad module as discussed previously (see Figure 3.6. We verify how well the Point-

Grad operator works in different architectures across two tasks, including city-scale

point cloud semantic segmentation dataset IEEE DFT4, and object part segmentation

ShapeNet as in Table 3.4 and Table 3.5. With the skip connections, the PointGrad-

U achieves higher performance than Point-Deep, and PointGrad-U++ achieves best

performance since it benefits from multi-supervision training (PointGrad-U++ uses

three losses for supervision) and adds more orders of point directional differences in

network information aggregation.

3.4.3 Comparison to Existing Methods

Analysis on large-scale city point cloud segmentation. We first evaluate the proposed

PointGrad on IEEE DFT4(US3D). The challenge for such a task is how to effectively

encode large-scale differences of objects such as building vs. bridge, where a bridge

is usually much larger than a building at a city scale. In Table 3.6, we compare our

method with existing methods. In comparison with those graph-based methods, our

PointGrad achieves the best performance. Comparing with the Rank-1 method DP-

Net, our model surpasses their single model performance (their winning performance

in the challenge was based on ensemble models and post-processing). We conjecture

that the superior performance of our model over previous graph methods is due to the

ability of PointGrad in explicitly computing the point directional differences, which is

essential in encoding structure information. For example, the structures of buildings

53



Table 3.6: Class IoU accuracies for different 3D segmentation architectures on 2019
IEEE DFT4 (US3D) test dataset, for five classes: Ground (G), High Vegetation (HV),
Building (B), Water (W), and Elevated Road (ER). ∗ results are from [3]

Method G HV B W ER OA mIOU
SSCN-U 96.95 90.96 82.10 95.93 62.54 96.29 85.69

PointNet++∗ 95.4 95.2 83.7 88.4 76.6 96.3 87.9
PointNet++(MSG)∗ 96.8 94.9 85.8 93.1 74.8 96.9 89.1

DGCNN∗ 96.4 96.2 86.3 96.2 48.7 96.9 84.8
PointCNN∗ 96.7 95.4 88.3 88.3 83.5 97.3 90.4
PointSIFT∗ 97.4 96.1 88.4 91.5 79.3 97.5 90.6
PointConv∗ 97.6 95.5 89.1 92.1 76.3 97.6 90.1
GLSNet [1] 97.56 93.94 87.56 95.64 77.90 97.37 90.52
DPNet [40] 97.87 95.79 89.98 94.94 86.48 97.94 93.01

DPNet+grid map [40] 98.5 96.0 92.4 95.3 86.9 98.4 93.8
DPNet+grid map+model fusion [40] 98.74 96.11 93.31 96.54 89.04 98.57 94.55

PointGrad-U++ 97.61 96.07 89.18 94.55 88.37 97.78 93.16

and trees can be more discriminate when observing gradient features: buildings are

always associated with planes, and their gradient features would show many zeros,

while trees display irregular structures, and their gradient features would be more

random.

In Figure 3.8, we visualize the segmentation outcomes of the representative meth-

ods on DFT4 dataset. PointNet++ is the most commonly referenced methods in

point cloud segmentation, and SSCN shows impressive performance of segmentation

on several segmentation benchmarks. GLSNet [1] is a two-branch network for com-

bining global and local structural and contextual information for large-scale point

cloud segmentation. The error maps clearly show that our proposed PointGrad has

fewer errors than the other methods, especially in bridge class.

Analysis on Indoor Scene Semantic Segmentation In Table 3.7 and Table 3.8, we

compare our method with existing methods on indoor scene segmentation on S3DIS

and ScanNet. Our PointGrad shows competitive performance on both datasets.

Analysis on Object Part Segmentation In Table 3.2, we compare our method with

existing methods on ShapeNet, PointGrad shows its competitive performance on ob-

54



(a)
JAX215

Groundtruth (b)
PointNet++

(87.18) (c)
SSCN
(87.46) (d)

GLSNet
(88.55) (e)

Ours
(89.48)

(f)
OMA243

Groundtruth (g)
PointNet++

(91.93) (h)
SSCN
(89.97) (i)

GLSNet
(93.56) (j)

Ours
(95.19)

Figure 3.8: Visualization of different methods on IEEE DFT4 dataset.

Table 3.7: Comparisons with related work on S3DIS Area 5.

OA mIOU
PointNet [20] – 48.98
SPGraph [34] 86.38 58.04
SegCloud [61] 85.91 58.27
PCCN [65] – 58.27
PointCNN [32] 85.91 57.26
PointGrad (Ours) 86.17 56.95

55



Table 3.8: Comparisons with related work on ScanNet dataset.

Publication mIOU
OctNet [48] CVPR17 18.1
ScanNet [62] CVPR17 13.5
PointNet++ [21] NIPS17 38.28
PointSIFT [23] ArXiv18 41.5
RSNet [22] CVPR18 39.35
TCDP [66] CVPR18 40.9
PointGrad (Ours) 45.76

Table 3.9: Comparison to existing methods on ShapeNet

ShapeNet
Method class mIOU instance mIOU
ShapeNet [2] - 81.4
Kd-Net [49] 77.3 82.3
PointNet [20] 80.4 83.7
RS-Net [22] 81.4 84.9
SCN [67] 81.8 84.6
PCNN [58] 81.8 85.1
SPLATNet [68] 82.0 84.6
KCNet [55] 82.2 84.7
DGCNN [33] 82.3 85.1
RS-CNN [69] 84.0 86.2
PointNet++ [21] 81.9 85.1
SyncCNN [54] 82.0 84.7
SO-Net [70] 80.8 84.6
SpiderCNN [19] 82.4 85.3
3DmFV-Net [71] 81.0 84.3
SSCN [15] 83.3 85.98
PointCNN [32] 84.6 86.14
SGPN [72] 82.8 85.8
PointConv [44] 82.8 85.7
PointGrad (Ours) 83.5 85.1

56



ject part segmentation. We visualize the PointGrad results as well as those of Point-

Net++ and DGCNN on ShapeNet in Figure 3.9 for visually comparison.

3.5 Chapter Conclusions

We propose a PointGrad operation to capture the structure information of point sets

through encoding point directional gradient of different orders in tensor feature space.

We also construct deep PointGrad network family by stacking the PointGrad module

to empower the network feature representation. We demonstrate that such a design is

effective and robust in capturing various scales of point cloud structure information

on several typical semantic segmentation benchmarks. In the future, we plan to

transfer the PointGrad into more tasks such as point cloud reconstruction, point cloud

completion, etc., to benefit from the strong representation power of PointGrad.

57



(a) GroundTruth (b)
PointNet++
(Acc87.11) (c)

DGCNN
(Acc88.52) (d)

Ours
(Acc95.60)

(e) GroundTruth (f)
PointNet++
(Acc75.43) (g)

DGCNN
(Acc82.40) (h)

Ours
(Acc88.73)

(i) GroundTruth (j)
PointNet++
(Acc90.11) (k)

DGCNN
(Acc90.82) (l)

Ours
(Acc94.15)

(m) GroundTruth (n)
PointNet++
(Acc86.94) (o)

DGCNN
(Acc90.58) (p)

Ours
(Acc97.23)

(q) GroundTruth (r)
PointNet++
(Acc85.21) (s)

DGCNN
(Acc83.47) (t)

Ours
(Acc90.24)

Figure 3.9: Visualization of different methods on ShapNet.

58

I 

f-4'"➔• ~~ .. ,..,.,M 
;~ ;, \_ i jJ 



Chapter 4

MDXNet for Few-Shot Learning
and Zero-Shot Learning

The human visual system has an ability for effortless generalization across visual cat-

egories and specialized domains. People are able to learn new classes and variations

of existing classes from visual primitives (VPs) by using the semantic generaliza-

tion of latent attributes. This cross-domain transfer learning likely occurs through

multi-domain visual knowledge integration from widely seen, highly repetitive com-

mon everyday scenes and objects, encoded and extended for new visual tasks. This

perceptual capability is highly successful even in extremely specialized domains con-

sisting of many rare classes with few instances. In this work, we emulate the human

visual system by leveraging multi-domain knowledge about visual primitives, like tex-

ture, object-appearance, and shape, learned from natural or universal image sources,

and applying the composite knowledge to more specialized learning tasks in the ap-

plication domain, such as aerial scene recognition. We use a cross-domain “few-shot”

learning approach with just a few labeled application domain examples by leveraging

knowledge from multiple VP domains. Unlike conventional few-shot learning, our

method does not use any prior training data from the same application domain. We

59



propose the Multi-domain Explainable Latent Attribute Network (MDXNet), which

first learns embeddings for perceptual VPs only from the outside domains to capture

explainable perceptual VP latent attributes and then integrates them for application

tasks. The proposed MDXNet is easily extended to zero-shot learning. Extensive ex-

periments on different application domains demonstrate that our MDXNet provides

a unified and effective approach for cross-domain few-shot learning and zero-shot

learning tasks.

4.1 Introduction

Human visual system has an ability for effortless generalization across visual cate-

gories and specialized domains. People can learn new classes and variations of existing

classes from visual primitives (VPs) by using the semantic generalization of latent at-

tributes and transfer previously learned knowledge from one or more outside domains

to a new domain by seeing only a few instances in the new domain. This cross-domain

knowledge transfer occurs through information integration from widely seen, highly

repetitive everyday scenes, and objects of multi-domains. This perceptual capability

is highly successful even in extremely specialized domains consisting of many rare

classes with few instances. For example, people can easily transfer the knowledge

from routine recognition tasks on faces, common everyday objects, and vegetation

to more specialized tasks of construction equipment recognition, aircrafts, biological

species, or medical pathology slides, where the latter tasks often require expert visual

recognition and knowledge.

AI has achieved a wide range of successes across different domains by learning

from large-scale data. However, learning to recognize new classes with limited data

is still challenging, as AI still falls short of human ability in knowledge association.

Few-shot learning is an approach along this line that targets rapid generalization to

60



Soft Object-
Appearances 
Embeddings

Soft Shape 
Embeddings

Unlabeled
Application Domain

Soft Texture 
Embeddings Few Labeled Data

Visual Primitives 
Domain 

to Application 
Domain Learning Cl

as
sif

ie
r

Visual Primitives Domain                       Application Domain                      

Texture 
Primitive CNN

Object-
Appearance 

Primitive CNN

Shape 
Primitive CNN

Query Image 
from new class

Roundabout

VP CNNs VP Embeddings

Figure 4.1: (a) Human visual system of object recognition [4]. (b) MDXNet visual
primitive embedding and transfer learning network that can be applied to many
application domains which is inspired and mimics human visual system.

new classes with limited supervision by incorporating prior knowledge.

The above observations inspire us to consider the following possibility: can we de-

sign a deep learning system for efficient cross-domain recognition tasks that emulates

the Human Visual System (HVS)? This system transfers knowledge across different

61

Vl 
Primary Visua l 

Cortex: 
Respond to 
edges, lines 

Extrastriate Visual Cortex 
Respond to color, texutres, 

shapes, and objects 

IT 

Inferior Temporal Cortex 
Plays important role in 

object recognition 

Visual Primitives ---• Knowledge Transfer 

-
l_ 
_f 



New Class Studded: 0.82
Remote

Control: 0.21

Spiralled: 0.14 Electric Fan: 0.62

Matted: 0.66 Skunk: 0.45

Accordion: 0.57

Hard Disk: 0.06

Valley

Smeared: 0.09

Bumpy: 0.03

Crystalline: 0.12

Texture DomainSource Domain Object-Appearance Domain Shape Domain

Ipod: 0.59 Pencil Box: 0.21

Coral Reef: 0.66 Ant: 0.13

Snorkel: 0.24 Carousel: 0.12

Valley: 0.13

Storage Tank

Roundabout

Snowberg

Figure 4.2: Our MDXNet discovered top visual word embeddings from each VP do-
main (using ResNet18 backbones), for storage tank, roundabout and snowberg classes
from the remote sensing scene classification dataset NWPU-RESISC45 [5].

domains through multi-domain visual knowledge integration from widely seen, highly

repetitive common everyday scenes and objects, and encode and extend them for

new visual tasks. Figure 4.1 (a) illustrates the human visual system’s ventral stream,

which is involved with the object and visual identification and recognition. Here we

mainly show the primary visual cortex (V1), secondary visual cortex (V2), extras-

triate visual cortex (V4), and inferior temporal cortex (IT), which are the primary

cortices involved in the ventral stream. In HVS, V1 mainly processes edge and line

information of images. After V1, the information goes through V2, which mainly di-

vides information into different visual cortices V3-V5. V4 usually responds to color,

texture, shapes, and objects, while some parts of V3 respond to orientation, depth,

and motion (much remains unknown about V3). V5 usually responds to motion and

stereo disparity [4]. Based on responses from V4, the IT cortex plays a vital role in

object recognition by combining different responses from V4. The textures, edges

and shapes, appearances are basic primitives of HVS for recognizing new

objects.

Natural everyday images are rich in varieties of visual primitives, including tex-

62

~~ ~ . 
~~· - ~ 



ture, color, edge, shape, depth, etc. Although embedding features of these visual

primitives can be learned by deep networks, such representation knowledge is often

difficult to learn directly in a complex application domain, such as aerial images, and

skin diseases, by using a single deep network. In such application domains, although

visual primitive features are useful low-level descriptors, there may not be enough

instances of these primitives in training data, especially when there are many classes

(e.g. hundreds to thousands) with a wide range in the number of samples per class,

including rare classes (e.g. from tens to thousands). In computer vision tasks, visual

information has been mostly derived from natural images, but there exists visual in-

formation from other sources that may be informative but have not yet been utilized.

Besides, unlike natural images where rich knowledge has been learned and available,

in data sources such as aerial images of remote sensing, such knowledge is still un-

available or not adequately derived. For example, attributes such as color, texture,

shape are informative descriptions of image objects, but they have not been derived

for aerial scene image data.

In the current work, we propose to exploit the rich information in natural images

for use in application domains that lack informative descriptions of image objects or

scenes, mimicking human’s ability of pattern or knowledge association. Specifically,

we propose to extract embedding features of visual primitives from multiple outside-

domain data sources and learn to fuse them for a new application domain through a

few examples of the latter. Along this line, we design MDXNet, shown in Figure 4.3

(b). MDXnet is composed of two components: visual primitives learning component

and visual primitive domain to new application domain learning component. In our

system, visual primitive domain knowledge mimics HVS visual cortices of V1, V2, V4.

and the domain adaptation process mimics the IT cortex. MDXNet, therefore, focuses

on learning such visual primitives from natural images and leverage the knowledge

thus learned to benefit recognition in new tasks.

63



4.1.1 Approach

As shown in Figure 4.1 (b), we propose a novel network architecture for extracting

and integrating multiple latent attributes to tackle the few-shot learning problem

for an application domain, where the latent attributes are from different knowledge

domains that provide a rich set of visual primitives. This network design is based

on our belief that the knowledge needed for recognizing classes in a new application

domain can benefit from association with knowledge learned from multiple outside

domains. The visual primitives that we propose to emulate human visual primitives

are general in nature and they include: (i) Texture VPs for describing images with

human interpretable texture attributes. (ii) Shape VPs for describing images with

shape or edge attributes. (iii) Object-Appearance VPs for describing images with

general object-appearance attributes.

The general applicability of the three types of VPs can be appreciated from the

example in Figure 2 pertaining to aerial scene recognition. Although these three do-

mains may not seem to be closely related to aerial images, visual primitives can be

associated with aerial scene images very informatively. Figure 4.2 shows three aerial

scene images, as well as the corresponding prediction label outputs of the three out-

side domains. It is seen that the aerial image of “Storage Tank” is associated with

“Studded” and “Bumpy” in the texture domain and with “Accordion” and “Remote

Control” in the object- appearance domain. The aerial image of “Roundabout” is

associated with “Spiralled” and “Crystalline” in the texture domain and with “Elec-

tric fan” and “Hard Disk” in the object- appearance domain. Also, the aerial image

“Snowberg” is associated with “Matted” and “Smeared” in the texture domain and

with “Skunk” and “Valley” in the object-appearance domain. In the shape domain,

the outlines or shapes of “Storage Tank” is similar to “iPod” and “Pencil Box,”

“Roundabout” is similar to “Snorkel” and Carousel, and “Snowberg” is similar to

“Coral Reef” and “Ant”. It is interesting to see that for each aerial scene, the pre-

64



dicted texture primitives appropriately describe its textural spatial layout and surface

properties, the predicted object-appearance primitives properly provide its structural

appearances, and the predicted shape primitives also adequately relate to its outlines

or shapes. This example illustrates the capability of our approach in mimicking hu-

man knowledge association for new visual recognition tasks, with the prior knowledge

derived from natural images of textures, objects, and shapes.

4.1.2 Contribution

Novelty Our first novelty lies in constructing a novel visual primitive space that can

be used generally across different application domains, which is different from existing

methods that require application domain datasets for training. Our second novelty is

the design of the network architecture for MDXNet, which includes the selection of its

backbone network and the out-of-domain training and domain-adaptive integration

of the VPs. Our proposed MDXNet is the first approach to cross-domain few-shot

learning that employs visual primitives motivated by human visual system to provide

high-level descriptions of new images, where the VPs are learned from three domains

of natural images and are describable in visual words at the concept level.

Furthermore, we provide experimental evidence using extensive benchmarks from

various real world tasks. Our experimental results demonstrate that mimicking HVS

in such a clean manner through texture, shape and object-appearances domain VPs

can successfully transfer knowledge from natural images to other application domains,

and effectively alleviate large domain discrepancy in cross-domain few-shot learning.

In particular, our approach significantly outperforms state-of-the-art few shot learning

methods on the real world remote sensing challenge dataset.

In summary, our contributions are three-fold. (1) We propose emulating HVS to

leverage out-of-domain knowledge of three different types of visual primitives from

natural images for new application domains. (2) We design an effective network archi-

65



tecture for visual latent attribute aggregation (3) We deliver state-of-the-art perfor-

mance with good generalization on cross-domain few-shot and zero-shot benchmarks.

Source codes of our methods will be released upon publication of this work.

The subsequent part of this chapter is organized as the following: section 4.2

reviews the related work in few-shot learning and zero-shot learning; section 4.3 de-

scribes in details our MDXNet method in cross-domain few-shot and zero-shot learn-

ing; section 4.4 describes datasets and implementation details; section 4.5 presents

both quantitative and visualization results of our method; we conclude this work and

discuss future directions in section 4.6.

4.2 Related Work

4.2.1 Few-Shot Learning

Conventional Few-Shot Learning (FSL)

Many methods have been proposed to tackle few-shot classification problems, such

as initialization based (learning to fine-tune) [73], distance metric based (learning to

compare) [74, 75, 76, 77, 78], hallucination based (learning to augment) [79, 80], and

domain adaptation [81, 82, 83]. Some recent works combine semantic descriptions,

e.g., word embeddings [84] or sentence descriptions, as additional information to

help few-shot image recognition [85]. As discussed in the survey of FSL [86], existing

works mainly deal with image recognition dataset [87, 75, 88, 89, 90, 76] and character

recognition dataset [75, 91, 76, 92]. A new benchmark is proposed in [93] which is a

dataset of datasets constructed from different sources for evaluating the generalization

ability of few-shot classifiers on more natural and realistic tasks. Conventional few-

shot learning methods have three major weaknesses: (1) only tackle the problem in the

same target domain (i.e., training and testing classes are from the same domain); (2)

66



require lots of hand labeled data in the target domain; (3) have difficulty generalizing

to new domains when the images are from non-natural image domains, such as aerial

scenes and biomedical images.

Cross-Domain Few-Shot Learning

In cross-domain few-shot learning, base and novel classes are drawn from different

domains, and the class label sets are disjoint. [88] proposes to utilize web data to

help few-shot learning, but training and testing are still both natural and at the same

scale. [94] proposes benchmarks of cross-domain few-shot learning. Recent works on

cross-domain few-shot learning include analysis of existing meta-learning approaches

in the cross-domain setting [95], specialized methods using feature transform to en-

courage learning representations with improved ability to generalize[96], and works

studying cross-domain few-shot learning constrained to the setting of images of items

in museum galleries [97]. [98] addresses the domain shift issue in one-shot learning.

[99, 100, 96]also tackle the problem of domain adaptation where in the new domain

only few data samples are available. Common to all these prior works is their lim-

iting the cross-domain setting to the realm of natural images, which still retain a

high degree of visual similarity, and do not capture the broader spectrum of image

types encountered in practice, such as industrial, aerial, and medical images, where

cross-domain few-shot learning techniques are in high demand.

While the above efforts do not provide insight on what knowledge should be fo-

cused on for few-shot learning, we believe in the importance of learning generally

applicable knowledge of visual primitives to benefit the downstream cross-domain

tasks. Existing cross-domain methods do not carefully choose source domain tasks,

but they put more effort on domain adaptation. For example, based on mini-ImageNet

knowledge, they verify on CUB, or simply learn jointly from several source tasks.

In contrast, we believe that source tasks can introduce large domain discrepancy if

67



not carefully chosen, and extracting knowledge generally applicable across different

domains will mitigate domain discrepancy and reduce the difficulty of domain adap-

tation.

4.2.2 Zero-Shot Learning

Semantic Space

Typical semantic information used in Zero-Shot Learning (ZSL) methods includes

attribute [77, 101, 102, 103], word vector [104, 105], or text descriptor [106, 107, 108].

Some methods also explore multiple semantic descriptions, and different fusion meth-

ods of multiple semantic spaces, such as score-level fusion [109], recurrent neural

network[110] or joint space learning [111, 112]. In contrast, instead of different se-

mantic description space, our proposed approach explores multiple visual spaces with

each corresponding to a intermediate semantic space.

Projection Learning

Existing methods also differ in projection learning of visual space and semantic space:

(1) Regression from visual space to semantic space base on conventional regression

model [113, 111] or deep networks [105, 114, 107, 108] (2) Semantic space to fea-

ture space [115, 116, 110] (3) Intermediate Space learning of visual and semantic

features [117, 118, 119, 120, 108, 121, 122]. Hubness problem [123] is studied in high-

dimensional data, and is explored in zero-shot learning [124, 125, 126]. To alleviate

such problem, [110] proposes to map semantic space to visual space.

Our method differs from the existing methods in the above two respects: (1)

Semantic Space: in the existing methods, semantic attributes are provided by testing

benchmarks, and these semantic attributes are isolated among datasets because they

are specifically annotated for each dataset. For example, for CUB dataset [127],

68



the attributes are defined for birds , such as “have red mouth”, whereas for SUN

dataset [128], the attributes are defined for scenes such as “has mountain”,“water”.

In contrast, our VPs in MDXNet can be shared among different domains of datasets

since they describe generally applicable latent attributes. (2) Projection Learning:

different to existing methods, our proposed MDXNet creates an intermediate space

between visual space and semantic, which help alleviate domain discrepancy by using

multiple visual spaces of visual primitives.

4.2.3 Domain Generalization and Domain Adaptation

Domain adaptation methods [129] target for reducing the domain shift between the

source and target domains. Domain adaptation can be achieved by re-weighting

the original samples [130] or by learning a classifier in the new domain [131] or us-

ing adversarial training at the feature-level to align the source and target distribu-

tions [132, 133]. Transfer learning has been investigated intensively [134, 135, 136, 137]

on natural images to reduce domain shifts. [138, 139, 140, 141] focus on understanding

transfer learning, but these methods often need large datasets. Most domain adap-

tation methods, however, target at adapting knowledge of the same category learned

from the source to the target domain and therefore are less effective for handling novel

categories as in the few-shot classification scenarios. These domain adaptation meth-

ods require access to the unlabeled images in the target domain at the training stage,

which may not be feasible in many applications due to the difficulty of collecting

abundant examples of rare categories (e.g., rare skin diseases, rare bird species).

Domain generalization [142] methods target for generalizing from a set of seen

domains to an unseen domain without accessing instances from the unseen domain

during the training stage. Existing methods proposed for tackling the domain gen-

eralization problem include extracting domain-invariant features from various seen

domains [142, 143, 144], improving classifiers by fusing classifiers learned from seen

69



(a) Texture VPs (b) Shape VPs (c) Shape VPs
(d)

Object-
Appearance VPs

Figure 4.3: VP design routine (a) DTD 47 human interpreteble attributes which are
texture VPs visual words (b) General Object Shape (100 Classes) which are extracted
from Caltech101 dataset, we extract edges from original image to generate the shape
description dataset, as shown in (c), the class labels are shape VPs visual words. (d)
ImageNet 100 out of 1000 classes are displayed here, 1000 classes labels are object-
appearance VPs visual words.

domains [145, 146], decomposing the classifiers into domain-specific and domain-

invariant components [147, 148], learning to augment the input data with adversarial

learning [149, 150] and applying the learning-to-learn strategy to simulate the gener-

alization process in the training stage [151, 152, 153].

Different from prior work, the goal of our work is to develop a method that is

robust to domain shifts in cross-domain few-shot and zero-shot learning tasks through

learning and integrating visual primitives that emulate the human visual system. In

addition, our focus is on recognizing novel categories from unseen domains in few-shot

and zero-shot learning settings.

4.3 MDXNet for Cross-Domain Few-Shot Learn-

ing and Zero-Shot Learning

We propose Multi-Domain Explainable Latent Attributes Network (MDXNet) for

cross-domain few-shot learning and zero-shot learning tasks. The key idea behind the

design of MDXNet is in line with the human visual system, i.e., the multi-domain

knowledge of visual primitives extracted from natural images can be associated with

70



image patterns in various domains in a general way, and the multi-domain knowledge

are complementary and should be leveraged for cross-domain learning tasks. We first

introduce VPs in details, and then describe the designed structures of MDXNet for

these two tasks.

4.3.1 Visual Primitives and VP Domain Knowledge Learning

First, because what we need are conceptual level representations, the representations

should be deep features, not shallow or image operation-specific representations. Sec-

ond, on top of the conceptual representations, we also need domain adaptation for

cross-domain tasks. We propose to address these two issues by integrating domain

generalization and domain adaptation. We do this for several reasons: (1) For the tar-

get domain, the domain-specific knowledge is usually unknown, and a general feature

representation space could provide useful prior knowledge. A target domain only has

a few labeled data, making domain adaptation very hard since few-shot learning can

easily make the learning space biased. For the individual visual primitive (VP) do-

mains, we train separate feature descriptors, fθtex(·), fθobj(·), fθshape(·), parameterized

by the network weights, θtex, θobj, θshape, to learn the embedding vectors for texture,

object-appearance, and shape VPs, respectively.

Texture VPs

Our proposed texture VPs describe texture patterns of images with texture latent

attributes, and we learn the VPs by using the Describing Textures Dataset (DTD)

[154] that annotates 47 human explainable texture attributes for natural images as

shown in Figure 4.3 (a). This texture dataset provides common representations at

the human conceptual level. Texture domain features describe not only the spatial

arrangement but also the material surfaces. For example, in Figure 4.2, Storage

71



Tank is similar to object appearances of accordion and remote control, because of the

contrast of light color white and black. However, in texture domain, it is described

as studded because the surfaces of the storage tank are uneven. Roundabout is

described as spiralled, not only because the spatial arrangement of roundabout is

spiralled, but also because its surface appears to have a hole in the middle, which

resembles spiralled and crystalline. For Snowberg, it is described as skunk in object

appearance because of the white and green color, but it is also described as matted in

texture due to the material surface similarity. DTD is the most appropriate dataset

for texture primitives, which has multiple class labels per texture image and the

most classes for daily texture descriptions and concept level texture labeling. Other

texture benchmarks are too small [155, 156] or not having human interpretable texture

descriptions [157, 158], or having only single class labels.

Texture Domain We train the texture feature extractor fθtex(·) and the Classifier

Ktex(·|Wtex
b ) (parametrized by Wtex

b ∈ RDtex×ctex) to minimize the standard Binary

Cross-Entropy Classification Loss Ltex for multi-label classification by using the ex-

amples in the texture dataset xtexi ∈ Xtex
b . We denote the embedding as dtex ∈ RDtex

and the output classes as ctex. The classifier Ktex(·|Wtex
b ) consists of a linear layer

(Wtex
b )>fθtex(x

tex
i ) followed by a sigmoid activation function.

Shape VPs

Our proposed shape VPs provide shape outline descriptions learned from natural

images. Choosing an appropriate source to provide shape prototypes is important.

We choose Caltech101 dataset [159, 160] to extract shape visual primitives based on

the following considerations: it contains many images to learn sufficient daily shape

prototypes, and it facilitates learning to differentiate shape classes by shape repre-

sentations. Humans can recognize objects from their silhouette in natural images.

The silhouette or sketches are directly related to the edges and shapes of objects.

72



So training a classifier to recognize natural objects from their edge information is an

attractive way to learn shape embedding from natural objects. Figure 4.3(b) shows

the 100 silhouette images from 100 classes extracted from Caltech101, which include

clock, sofa, car, hat, person, etc. As observed, they contain most daily shape pro-

totypes such as triangle, rectangle, round, and thus they are good proxies for shape

prototypes of the natural object classes. In order to efficiently extract shape infor-

mation, edges are extracted from all images by a perceptual edge detection algorithm

[161] as shown in Figure 4.3 (c), which provides shape and edge descriptions of images

while ignoring irrelevant details. The input to shape representation learning are the

edge extracted images. It is worth noting that Specific names for the shape classes are

not critical, and only the embedding and clustering of different classes are important.

For example, in Figure 4.2, we could name iPod, snorkel and coral ref as rectangu-

lar rows, arc contours, curvy borders, which may fit the target domain descriptions

better, but they have no effect on the learned embedding other than our class labels.

Shape Domain We use the edge detection algorithm BDCNet [161] to generate

edge detected images for use as Xshape
b , which are derived from Caltech101 dataset

100 classes. The details of this dataset are described in Section 4. We train the

shape feature extractor fθshape(·) and the Classifier Kshape(·|Wshape
b ) (parametrized

by Wshape
b ∈ RDshape×cshape) by minimizing the standard Cross-Entropy Classification

Loss Lshape. The embedding features of shape domain are denoted as dshape ∈ RDshape

and the output classes as cshape. The classifier Kshape(·|Wshape
b ) consists of a linear

layer (Wshape
b )>fθshape(x

shape
i ) followed by a softmax function.

Object-appearance VPs

Our object-appearance VPs provide object-appearance latent attributes for natural

images. To learn the representation, we use the large scale dataset ImageNet [162]

that targets object category classification and detection for natural images. ImageNet

73



Ed
ge

De
te

ct
io

n

Cl
as

si
fie

r

Cl
as

si
fie

r

Cl
as

si
fie

r

FC

FC

FC ×

×

So
ft

m
ax

Co
nvFC

Co
nc

at

×

Composite
Attribute 

Embeddings

+

Latent Texture Attributes

Latent Object Appearance 
Attributes

Latent Shape Attributes

Sparse 
Residential

Roundabout

Storage 
Tank

Stadium

Wetland

Visual Primitive DomainApplication Domain Visual Primitive Domain to 
Application Domain Adaptation

Cl
as

sif
ie

r+
+

Texture 
(DTD)

Object Appearance 
(ImageNet)

Shape
(Shape)

5-Shot (Samples) 
5-Way (Classes)

Figure 4.4: The proposed MDXNet framework showing VP embedding and transfer
learning from outside the application domain.

can relate daily objects to those in many other target domains by data appearance

representation. In Figure 4.3, we display 100 demo images from 1000 classes from

ImageNet dataset.

Object Domain We directly use a feature extractor trained on ImageNet as our ob-

ject domain feature extractor fθobj(·). We take the feature vector before the classifier

as the object-appearance domain embedding, denoted as dobj ∈ RDobj .

In Figure 4.4, the classifiers that are connected through dashed lines to the feature

extractors of the texture, object-appearance, and shape domains, respectively are only

used during domain knowledge learning to generate the visual primitive embeddings.

Afterwards, the feature extractors are all fixed for extracting the conceptual level

VPs.

Justification for VPs

Here we mainly discuss the difference between VPs and semantic attributes. Early

works studied semantic attributes in few-shot and zero-shot learning tasks. [163]

proposes to perform feature selection for novel classes by using a prior learned fea-

tures from familiar classes, and the features of novel classes are determined by their

similarity to training examples. [164] also proposes to finding common features that

can be shared across classes for multi-class and multi-view object detection. Early

74

/ 
,' 

·,~ - ~ // 

7 1;// 
,' ' 7 / ,,_ -~ / 

~~· ___ .;__/ - - j------~ 



works study semantic attributes in few-shot or 1-shot classification settings. [101, 165]

are also based on traditional low-level attributes for recognizing new objects. [166]

proposes zero-shot learning problem and tackles it with traditional low-level texture

descriptions. Different to these early efforts, we model the out-of-domain data by

visual primitives (VPs) since these learned representations are based on the early

human visual system (HVS) processing pathways V1 and V2 for edge, color, shape,

texture, motion, etc. Semantic attributes have been typically based on shallow net-

works and handcrafted operators (like Canny, LBP, HoG, SIFT, SURF, MSER, etc.)

predating the recent work in deep learning [101].

The modern deep learning architectures with multiple parallel streams and net-

work cascades that are successful at reaching human-level performance are closer to

the complex multistage interconnected processing pathways in the HVS because hu-

man brains are multi-layers operations of different pathways and hence we choose to

use the term visual primitives instead of semantic attributes. VPs provide a gen-

eral visual conceptual presentation space which are generic across different tasks,

instead of task-specific attributes. Our fine scaled representation is universal and the

VP models (like local texture, local edges/ local shape, local parts-based decompo-

sition/appearance) transfer well extremely different scales. For example, objects in

aerial imagery has very different scales, local - one building with multiple windows

repeating structures, global - city blocks with many similar buildings, VPs trans-

fer appearance/parts- based repeating structures and spatial relationships knowledge

between scales.

75



4.3.2 MDXNet in Cross-Domain Few-Shot Learning

Problem Description of Few-Shot Learning

Given abundant labeled base class data Xb and a small amount of labeled new class

data Xn, the goal of few-shot classification is to train classifiers for new classes by

using the prior knowledge learned from Xb. In conventional few-shot learning, Xb

and Xn are from same domain, while in cross-domain few-shot learning, Xb and Xn

are from different domains. In our method, Xb is composed of labeled data from the

three domains of natural images, i.e., texture, object-appearance, and shape, denoted

by Xtex
b , Xobj

b and Xshape
b , and the three domains are outside the application domain.

Because we use base class data outside the application domain, we refer our method

as cross-domain few-shot learning.

The input to MDXNet is an image from the new classes xi ∈ Xn. The output is a

composite knowledge feature vector dn. The vector dn is learned with supervision by

using a few labels of the new classes and on top of the visual primitive embeddings

dtex, dobj and dshape that correspond to the three outside domains Xtex
b , Xobj

b and

Xshape
b , respectively.

MDXNet is consisted of two stages: (1) Visual Primitive Domain Knowledge

Learning: this stage is designed to learn visual primitive knowledge of the outside

domains from natural images (learning dtex, dobj and dshape). (2) Few-shot Learning:

this stage is designed to associate knowledge of natural images with that of aerial

images (learning dn). Figure 4.4 depicts the architecture of our proposed method.

It is seen from Figure 4.4 that in the stage of Domain Knowledge Learning,

MDXNet performs domain feature extraction, and in the stage of Few-Shot Learn-

ing, MDXNet performs multi-latent attribute aggregation (MA) and classification.

Based on latent attribute embeddings from multiple domains, we design a module

to integrate them to form compositional attribute embeddings. Our rationale is that

76



each domain expert captures different information: texture domain captures low-level

spatial arrangements features and surface properties, object domain adds higher-level

structural appearance features, and shape domain provides perceptual shape or edge

descriptions. These three domain features, when properly integrated, can work in

synergy to improve the accuracy of different domains datasets.

Multi-Latent Attribute Aggregation Module (MLAA)

MLAA module is designed mainly for our domain latent feature aggregation. In

Figure reffig:mlaa, it depicted the MLAA module algorithm. MLAA consists of two

components: Domain Adapted Attention (denoted as DAA), Aligned Embedding

Module(denoted as AE).

Domain Fusion

The input to MDXNet is an image from novel classes xi ∈ Xn, After going through the

multiple domain extractors , the three domain feature vectors are dtex, dobj, and dshape.

In our experiments, dtex ∈ R768, dobj ∈ R768, dshape ∈ R768. The compositional feature

vector after is denoted as dn ∈ RD, in out experiment, dn ∈ R512. Domain Adapted

Attention Module The combination of domain features should be adaptive to three

domain feature vectors of each input, thus we design the Domain Adapted Attention

module, which produces a vector for each domain embedding feature which is used

to fuse domain feature vectors. M ∈ R512×3, M = {M1,M2,M3}, each column of

M is denoted as M1,M2,M3. In Eq 4.1, Φ(·) denotes {Convolutional, BatchNorm}

operations, after we produce h ∈ R512, which is an attention vector. Since we have 3

domain, we want to obtain an attention vector for each domain, thus, we reshape h

to a 1 channel vector 1× 512× 1, and apply a convolutional layer and a batch norm

layer to it. The parameter size for convolutional layer is only 3× 1× 1× 1, thus, the

output Φ(M̃) ∈ R3×512×1. We apply softmax to constrain the sum of attention vector

77



of three domains to be 1 on channel dimension, which means each row in M is 1 . In

Eq 4.1, σs denotes softmax function.

M̃ = δf (dtex, dobj, dsrc)

δf = Wh(dtex + dobj + dsrc) + bh

M = σs(Φ(M̃)

dn = M1 · d̃obj +M2 · d̃tex +M3 · d̃src

(4.1)

𝛿𝛿𝑡𝑡

𝛿𝛿𝒐𝒐

𝛿𝛿𝒔𝒔

𝒅𝒅𝑡𝑡𝑡𝑡𝑡𝑡

𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐

𝒅𝒅𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝑡𝑡

×

×

×

+

+

𝛿𝛿𝒇𝒇 Φ 𝜎𝜎𝒄𝒄

𝒅𝒅𝒏𝒏

1 × 768

1 × 768

1 × 768

1 × 768

1
×

512

1
×

3
×

512
×

1

1
×

1
×

512
×

1

1 × 512

1 × 512

1 × 512

1
×

512

1
×

512

1
×

512

1 × 512

Domain Adaptive Attention

Domain Aligned Embedding

MLAA: Multi-Latent Attribute Aggregation

1
×

3
×

512
×

1

Figure 4.5: Multiple Latent Attribute Aggregation (MLAA) module that aggregates
visual primitive embeddings to produce a fused domain aligned knowledge vector, dn.

Domain Aligned Embedding

We design a knowledge fusion module as part of MDXNet for Multi-Latent Attribute

Aggregation (MA) based on few-shot learning (see Figure 4.4), which provides a new

architecture for fusing the interpretable VP embedding vectors learned as outside

78



domain prior knowledge. The MA module performs domain feature aggregation by

using the aggregation function Φ(·) to derive the composite attribute vector, dn, as

defined in Eq 4.2, and this computation is defined in Eq 4.3, where d̃tex, d̃obj, and

d̃shape are soft visual primitive embeddings obtained from affine transforms of dtex,

dobj and dshape, using the VP domain feature descriptors.

dn = Φ(dtex,dobj,dshape). (4.2)

dn = d̃tex + d̃obj + d̃shape (4.3)

The computation of d̃tex, d̃obj and d̃shape are defined in Eq 4.4, where the domain-

specific feature vectors dtex, dobj and dshape are projected to a shared embedding

space to form dn. In the projection, we apply one fully connected layer to each

domain feature vector, which is denoted as δt, δo and δs. After the projection, the

three new domain feature vector become d̃tex, d̃obj and d̃shape.

d̃tex = δt(dtex), δt = Wtex
h dtex + btex

d̃obj = δo(dobj), δo = Wobj
h dobj + bobj

d̃shape = δs(dshape), δs = Wshape
h dshape + bshape

(4.4)

Classifier

The classifier of MDXNet is denoted as Kn(·|Wn) (prameterized by Wn ∈ RDn×cn).

Different from the domain knowledge learning classifiers, we use the intra-class-

variation reduced classifier as in [95] for few-shot learning.

We first compute the raw classification scores for a class k by using the cosine

similarity operator sk, as defined in Eq 4.5, and then apply the softmax operator. In

79



Toughskin
Bulbous
Lean
Flippers
Hands
Hooves
Longleg
Pags
Paws
Longneck
Chewteeth
Meatteeth
Buckteeth
Strainteeth
Quadrapedal

Black
White
Blue
Brown
Gray
Orange
Rad
Yellow
Patches
Spots
Stripes
Furry
Hairless
Big
small

Mountains
Water
Newworld
Oldworld
Timid
Smart
Group
Solidary
Netspot
Domestic

Stalker
Skimmer
Cave
Fierce
Arctic
Coastal
Desert
Bush
Plains
Forest
Fields
Jungle
Tree
Ocean
Groud

Tail
Horns
Claws
Tusks
Smelly
Flies
Hopes
Swims
Tunnels
Walks
Fast
Slow
Strong
Weak
Muscle

Bipedal
Active
Inactive
Nocturnal
Hibernate
Agility
Fish
Meat
Plankton
Vegetation
Insects
Forager
Grazer
Hunter
Scavenger

Object 
Appearance

Texture

Shape

Knowledge

Object
Existence

85 Semantic Attributes of
the AwA Data Set in Short Form

Figure 4.6: Zero-shot learning benchmark Animals With Attributes (AwA2) dataset
with 85 semantic attributes with labels abbreviated (i.e. Fish for eating fish.

Texture Shape Object
Appearance

Edge
Detection

Object
Detection

Image

FC

FC

Semantic
Attributes

concatenate

FC

FC

Object
Existence VPs Texture VPs Appearance 

VPsShape VPs

Intermediate Semantic Embedding Subspace

Semantic Space Visual Space

Semantic

Figure 4.7: Extending MDXNet to zero-shot learning tasks.

the subsequent discussions, we denote this classifier as classifier++.

sk = τ · cos(dn, w∗k) = τ · d̄n
>
w̄∗k (4.5)

80

--
-

-------, .-----------,---------,------------------1 

t 



where w∗k ∈Wn , d̄n = dn/ ‖dn‖, w̄∗k = w∗k/ ‖w∗k‖ are the L2-normalized vectors, and

τ is a fixed scale factor for increasing the input range for softmax. In our experiments,

we use τ = 2.

In addition to using three outside domains for prior knowledge learning, we also

consider using any two out of the three domains for this purpose, and in the degenerate

case, we simply use one of the three outside domains to generate features for the

application task.

4.3.3 MDXNet in Zero-Shot Learning

Problem Description of Zero-Shot Learning

Zero-shot learning is analogous to few-shot learning in that few shot images are given

to define each class to recognize. However, instead of being given a support set

with few-shot images for each of the training classes, it contains a semantic class

embedding vector for each. The ZSL problem is formulated as given a labeled training

set Dtrain with Cseen classes, and unlabeled test set Dtest with Cunseen classes, and

Cseen
⋂
Cunseen = ∅. Dtrain = {(I,SCseen ,Yseen)}(i=1,2,...Nseen) with Nseen samples, the

image set is I and its class label set Yseen, with SC
seen

is its corresponding semantic

representation vector. We use one instance Dtest
i in Dtest as an example. Given an

image Ii, its label semantic representation vector is SCunseeni , the goal of ZSL is to

predict a class label ysi (ysi ∈ Cunseen).

MDXNet Creates an Intermediate Space between Semantic Space and
Visual Space

We modify the MDXNet to deal with the zero-shot learning problem, as shown in

the Figure 4.7. as a different modality of semantic vectors is used for the support

set (e.g. attribute vectors instead of images), the semantic embedding module is Fϕ,

81



the visual embedding module is Vϕ used for the image query set. Then joint learning

network gϕ is applied for predicting label is Ŷi of each query input Ii will be:

Ŷi = gϕ(Fϕ(Si), Vϕ(Ii)) (4.6)

Vϕ(Ii) =
[
fθtex(Ii), fθshape(Ii), fθobj(Ii)

]
(4.7)

As mentioned in related work, the semantic representation Si can be various (for

example, using word embeddings, semantic attributes). In our method, we project

the visual representation space to different visual primitive domains. However, does

our visual space provide enough information to mapping the visual space with the

semantic space? We believe that the common embeddings used by most recent meth-

ods (embeddings from trained on ImageNet) are not enough for attribute semantic

space representation. In Figure 4.6, we show that the 85 attributes from the ZSL

benchmark Animals with Attributes (AWA). Different colored boxes represent differ-

ent levels of information. The yellow box represents the attributes of texture. The

light blue box represents the attributes of shape. The green box represents attributes

that relate to shape. The gray box represents the information which can be observed

from the background of the object since they are closely related to the living area or

their closely related objects, and high-level attributes which are extremely hard to

derive from images and should rely on knowledge from texts. Therefore, we believe

that embedding various space of visual embedding is vital for zero-shot learning.

82



(a) NW45 (b) ChestX (c) CropDisease (d) SD198

Figure 4.8: Demo images from different application domains in few-shot learning

4.4 Datasets

We first describe the datasets we use to learn the visual primitive knowledge. We

then describe the several types of application domains where we apply our approach:

Aerial Scene Recognition, Alphabets Recognition, Skin Disease, and Plant Disease.

We also describe the three types of zero-shot learning domains: animal recognition,

bird recognition, and scene recognition.

4.4.1 Datasets for Visual Primitive Domains

Texture Domain The Describable Textures Dataset (DTD) [154] contains 5640

texture images. The images are annotated with the 47 attributes inspired from hu-

man perception. It contains both single label and multi-label annotations. Object-

Appearance Domain ImageNet [162] data set is a well-known large scale visual

learning dataset with 1000 classes for object recognition. Shape Domain We con-

struct the Shape Primitive Dataset by processing images from Caltech101. It has the

same 100 classes with 600 images per class. We generate the edge images by using

the edge detection algorithm of [161].

83



4.4.2 Benchmarks for Application Domains

Few-Shot Learning Datasets

We evaluated our approach on several benchmarks of few-shot learning from different

application domains: remote sensing image recognition NW45 [5], EuroSAT [167],

plant disease CropDisease [168] ChestX-Ray [169, 167] and Skin Disease dataset

SD198 [170]. We show 9 images from 9 classes of each dataset in Figure 4.8. NWPU-

RESISC45 (NW45) [5] is a remote sensing image scene classification dataset which

consists of 45 classes and each class includes 700 images with a size of 256× 256 pix-

els in RGB. The dataset covered more than 100 countries and regions and extracted

from Google Earth. NW45 is the aerial scene recognition dataset with the largest

number of classes currently as far as we know. Existing methods in few-shot classifi-

cation perform training and testing in the same data source. As there is no standard

splits on aerial data in {Base, Validation, Test}. We, therefore, split the NW45 as

our few-shot learning aerial scene datasets. The data split we used for {Base, Val-

idation, Test} is {25 classes,10 classes,10 classes}. We made ten splits in this way,

and denote them as NW45-split0,1,...9. In different splits, the classes in the Base,

Validation and Test sets are different. NW45-split0 is constructed by first sorting the

class names in alphabetical order and then taking the first 25, the next 10, and the

last 10 classes for the Base, Validation, and Test Sets, respectively. The other 9 splits

on NW45 are randomized splits of classes. SD198 [170] is a skin diseases dataset with

198 classes. [94] provide splits of ChestXRay, CropDisease, EuroSAT, thus we follow

their experiments setting to report results. Omniglot [171] is an alphabet recognition

dataset that consists of images from 1623 classes across 50 different alphabets. We

follow the splits of {Base, Validation, Test} from [95]. Since we do not require visual

knowledge data from the application or task domain, we apply our approach on the

Test Set without using any samples from the Base and Validation Sets of the NW45

84



Domain Method 20-way 25-way 30-way 35-way 40-way 45-way
Texture 61.03± 0.33 56.61± 0.30 53.97± 0.26 51.65± 0.22 49.42± 0.19 47.34± 0.17

Single-Domain Object-Appearance 67.44± 0.35 63.20± 0.32 60.88± 0.27 58.71± 0.23 56.62± 0.19 54.38± 0.17
Shape 48.03± 0.33 43.21± 0.28 40.54± 0.24 37.91± 0.21 35.66± 0.17 33.66± 0.15

MDXNet-TS 68.24± 0.33 64.75± 0.28 62.39± 0.26 60.21± 0.22 58.39± 0.20 56.56± 0.17
Dual-Domain MDXNet-OS 68.82± 0.33 65.49± 0.30 63.21± 0.27 61.15± 0.23 59.41± 0.20 57.83± 0.17

MDXNet-TO 71.00± 0.32 67.88± 0.29 65.45± 0.26 63.43± 0.22 61.48± 0.19 59.84± 0.17
Triple-Domain MDXNet 72.18± 0.33 68.97± 0.29 66.73± 0.26 64.67± 0.22 62.90± 0.20 61.13± 0.17

Table 4.1: Evaluation on the effect of outside-domain features for 5-shot-N-way re-
mote sensing image scene recognition on the NW45 Dataset. We abbreviate the
three domains of Texture, Object-Appearance, and Shape as T, O, and S, respec-
tively. We denote the dual-domain feature embeddings of Texture and Shape as
MDXNet-TS, Object-Appearance and Shape as MDXNet-OS, and Texture and
Object-Appearance as MDXNet-TO. MDXNet denotes the triple-domain embed-
dings of Texture, Object-Appearance and Shape.

and Omniglot data sets.

Zero-Shot Learning Datasets

Animals with Attributes (AWA) [165] consists of 30,745 images of 50 classes of an-

imals. It has a fixed split for evaluation with 40 training classes and 10 test classes.

The newly released AwA2 [172] consists of 37,322 images of 50 classes with 85 at-

tributes. Caltech-UCSD Birds-200-2011 (CUB) [127] contains 11,788 images of 200

bird species with 150 seen classes and 50 disjoint unseen classes. SUN [128] is a scene

recognition dataset with 102 attributes.

4.5 Experimental Results

4.5.1 Few-Shot Learning Analysis

All experiments are conducted under the standard setting of few-shot classification:

K-Shot (samples) N-way (classes), with the support set being K × N . We use 15

query images in each class, therefore the total number of query set is 15×N . All the

reported performance are accuracies averaged over 600 tests and with 95% confidence

85



intervals.

Ablation Study

Individual domain features are discriminative. In this study, We evaluate

the performance of the embedding features derived from the individual domains of

texture, object-appearance, and shape for aerial scene recognition. We train the clas-

sifier++ with each fixed domain feature extractor with K ×N samples. Results are

shown in the single-domain block (first three rows) in Table 4.1. We can see that

the texture domain and object-appearance domain features both have good discrim-

inative power for few-shot aerial scene recognition, and the shape domain feature,

although less as effective, still has discriminative power. Multiple-domain VP

feature combination is synergetic. In Table 4.1, we show the aerial scene classifi-

cation results when combining features of two and three domains in the dual-domain

block and the triple-domain block, respectively. It is observed that combining any two

of the three domains improved recognition performance over that of the individual

domains, confirming the effectiveness of the complementary features of each domain

pairs. It is worth noting that adding texture domain to object-appearance domain

or shape domain gave significant improvement. It is also observed that leveraging

texture, object-appearances, and shape primitives gave the best performance. The

effectiveness of multi-domain feature combination can also be observed on Omniglot

dataset in Table 4.2. The MLAA of MDXNet is effective. Different from the

commonly used direct concatenation of domain-specific feature vectors, in MDXNet,

the MA module generates a composite prior knowledge embedding vector through

an additive combination of the projected embedding features of the individual do-

mains, and the projections are adaptively estimated during K-shot learning. This

knowledge aggregation approach turned out to be more effective than direct feature

concatenation (>1.5% -3.5% in classification accuracy gain).

86



Knowledge Domain Method 5-way 20-way
MANN [173] 94.9 –

MatchingNet [75] 98.7 98.7
ProtoNet [76] 99.7 98.9

Source RelationNet [77] 99.8 99.1
MAML [73] 99.9± 0.1 98.9± 0.2

CloserLook [95] 99.38± 0.10 –
AdaCNN [174] 99.37± 0.28 98.43± 0.05

Outside Single-Domain
Texture 90.51± 0.45 76.65± 0.34

Object-Appearance 89.14± 0.52 74.27± 0.37
Shape 87.89± 0.57 71.90± 0.38

Outside Dual-Domain
MDXNet-TS(ours) 95.78± 0.27 93.21± 0.18
MDXNet-OS(ours) 95.49± 0.28 92.75± 0.18
MDXNet-TO(ours) 95.95± 0.27 92.67± 0.19

Outside Triple-Domain MDXNet(ours) 96.39± 0.25 94.13± 0.16

Table 4.2: Comparison of MDXNet with state-of-the-art methods for 5-shot (sample)
tasks on Omniglot with 5- and 20-way learning, where the texture domain feature
extractor of MDXNet used InceptionS.

Comparison with State-of-the-Art Methods

We first evaluate MDXNet using single-, dual-, and triple-domain feature embed-

dings using the NW45 aerial scene classification dataset. We compare our results

against five state-of-the-art few-shot learning methods, including MatchingNet [75],

ProtoNet [76], MAML [73], RelationNet [77], and CloserLook [95]. These deep archi-

tectures are trained on the Base set of NW45. Thanks to the nice implementation

codes from CloserLook [95], we can easily evaluate these methods on the aerial scene

recognition dataset. For fair comparisons, all our experiments on the state-of-the-art

methods use the ResNet18 backbone and the same hyperparaments as in [95]. For

implementation details of these methods, please refer to [95]. For comparison with

CloserLook [95], we use the Baseline++ method from the authors’ paper.

Single-outside-domain knowledge is competitive with knowledge from the

application domain. In Table 4.3, we observe that our single outside domain fea-

tures, such as Texture Domain and Object-appearance Domain, result in competitive

performance with state-of-the-art methods that are trained using samples from the

application task domain Base set, which are in Source Knowledge Domain block. We

87



Knowledge Domain Method NW45 [5] ChestX-Ray [169] CropDisease [168] EuroSAT [167] SD198 [170]
MatchingNet [75] 79.45± 1.91 22.40± 0.85 66.39± 0.78 64.45± 0.63 76.29± 0.62

MAML [73] 75.26± 3.11 23.48± 0.96 78.05± 0.68 71.70± 0.72 –
Source ProtoNet [76] 83.28± 1.43 24.05± 1.01 79.72± 0.67 73.29± 0.71 74.29± 0.62

RelationNet [77] 79.08± 2.47 22.96± 0.88 68.99± 0.75 61.31± 0.72 74.72± 0.86
MetaOpt [175] – 22.53± 0.91 68.41± 0.73 64.44± 0.73 –
CloserLook [95] 85.19± 1.50 25.97± 0.41 89.25± 0.51 79.08± 0.61 75.55± 0.85

Outside Multiple CFL-all[94] – 26.74± 0.42 90.82± 0.48 81.29± 0.62 –
CFL-IMS-f[94] – 25.50± 0.45 90.66± 0.48 83.56± 0.59 –

Outside Single-Domain
Texture 83.12± 1.46 25.26± 0.47 85.79± 0.61 82.00± 0.61 65.72± 0.47

Object-Appearance 87.00± 1.35 25.71± 0.46 90.45± 0.51 84.65± 0.55 71.62± 0.51
Shape 74.65± 1.52 23.43± 0.41 81.47± 0.68 70.24± 0.62 55.38± 0.50

Outside Dual-Domain
MDXNet-TS(ours) 86.34± 1.32 26.19± 0.50 90.24± 0.52 83.46± 0.51 70.84± 0.45
MDXNet-OS(ours) 86.36± 1.16 26.53± 0.55 91.28± 0.49 82.76± 0.51 72.31± 0.46
MDXNet-TO(ours) 88.27± 1.20 28.12± 0.55 93.86± 0.43 86.96± 0.51 74.94± 0.48

Outside Triple-Domain MDXNet(ours) 88.62± 1.19 27.43± 0.54 93.20± 0.45 86.31± 0.45 74.68± 0.44

Table 4.3: Comparison of MDXNet with state-of-the-art methods for 5-shot (sample)
tasks with 5-way learning on different datasets.

conjecture two reasons for this outcome: (1) Knowledge learned by state-of-the-art

methods from the application domain data is not rich enough due to insufficiently

labeled source data, and (2) Our VP embedding knowledge learned from the domains

outside the application task domain has robust generalization power. It is worth not-

ing that this encouraging outcome supports our proposed concepts of associating the

aerial scene classes with multiple VPs of other domains.

Dual-Domain MDXNet and Triple-Domain MDXNet are effective for few-

shot learning in other task domains. We evaluate the performance of MDXNet

on multiple few-shot benchmarks. As shown in Table 4.3, MDXNet shows its robust-

ness and obtains consistently higher classification accuracy than two sets of state-

of-the-art methods using the source domains and using multiple domains methods.

On Omniglot, MDXNet using dual or triple outside-domain features is able to nearly

match the state-of-the-art performance (see Table 4.2) without using any data from

the application domain, while the existing methods under comparison all use exten-

sively labeled training samples from Omniglot. Since the Omniglot dataset consists

of alphabet characters which are already edge-like binary images, we directly used

the input images for the shape domain without applying the edge detection operator.

88



AWA2 [172] CUB [127] SUN [128]
ZSL GZSL ZSL GZSL ZSL GZSL

Method T1 u s H T1 u s H T1 u s H
DAP [113] 46.1 0.0 84.7 0.0 40.0 1.7 67.9 3.3 39.9 4.2 25.1 7.2
IAP [113] 35.9 0.9 87.6 1.8 24.0 0.2 72.8 0.4 19.4 1.0 37.8 1.8

CONSE [176] 44.5 0.5 90.6 1.0 34.3 1.6 72.2 3.1 38.8 6.8 39.9 11.6
CMT [105] 37.9 8.7 89.0 15.9 34.6 4.7 60.1 8.7 39.9 8.7 28.0 13.3
SSE [177] 61.0 8.1 82.5 14.8 43.9 8.5 46.9 14.4 51.5 2.1 36.4 4.0

DEVISE [104] 59.7 17.1 74.7 27.8 52.0 23.8 53.0 32.8 56.5 16.9 27.4 20.9
SJE [111] 61.9 8.0 73.9 14.4 53.9 23.5 59.2 33.6 53.7 14.7 28.8 19.5

LATEM [178] 55.8 11.5 77.3 20.0 49.3 15.2 57.3 24.0 55.3 14.7 28.8 19.5
ESZSL [120] 58.6 5.9 77.8 11.0 53.9 12.6 63.8 21.0 54.5 11.0 27.9 15.8
ALE [179] 62.5 14.0 81.8 23.9 54.9 23.7 62.8 34.4 58.1 21.8 33.1 26.3

SYNC [117] 46.6 10.0 90.5 18.0 55.6 11.5 70.9 19.8 56.3 7.9 43.3 13.4
SAE [180] 54.1 1.1 82.2 2.2 33.3 7.8 57.9 29.2 40.3 8.8 18.0 11.8
DEM [110] 67.1 30.5 86.4 45.1 51.7 19.6 54.0 13.6 61.9 20.5 34.3 25.6

RN(CVPR18) [77] 64.2 30.0 93.4 45.3 55.6 38.1 61.1 47.0 48.89 11.32 20.93 14.69
f-CLSWGAN* [181] – – – – 54.4 47.4 47.6 47.5 – – – –

SP-AEN [182] 58.5 23.3 90.9 37.1 55.4 34.7 70.6 46.6 59.2 24.9 38.6 30.3
CVC‡ [183] 71.1 56.4 81.4 66.7 54.4 57.7 43.7 49.7 – – – –

MDXNet(T+O) 68.53 29.54 91.49 44.66 57.14 38.40 66.13 48.59 46.53 9.93 13.03 18.95
MDXNet(T+O+S) 70.68 26.32 93.51 41.88 59.64 40.60 65.58 50.16 48.54 13.33 21.32 16.41

Table 4.4: Comparison of MDXNet with other Zero-Shot Learning (ZSL) methods
using two sets of testing conditions: ZSL T1 accuracy (higher is better), Generalized
Zero-Shot Learning (GZSL) with unseen classes (u), seen classes (s), and H (harmonic
mean of u and s). All scores are in percent. †Generates additional data for training
but the other models do not. ‡Uses episode training or meta learning which mimics
the testing set up, while the other models do not.

4.5.2 Zero-Shot Learning Analysis

We apply MDXNet in zero-shot learning tasks, and the results are shown in Table 4.4.

With three domain VPS, our MDXNet achieves the state of art results in several

benchmarks, which demonstrates that creating an intermediate subspace of visual

words help zero-shot learning tasks.

4.5.3 Explainability of VPs

Visualization of VP Word Embeddings We visualize the embeddding space of

domain knowledge learned from natural images with aerial image embeddings. The

texture domain embeddings of aerial images are obtained by the texture domain fea-

ture extractor of InceptionS. In Figure 4.9, we first use PCA [184] to reduce the

dimension of texture domain embeddings to 50, and then use t-SNE [185] to visualize

89



RUNWAY
SNOWBERG

STORAGE TANK

blotchy

braided

bubbly
bumpy

cracked

crosshatched

crystalline

dotted

freckled
frilly

gauzy

grid
interlaced

lacelike

lined

marbled

matted

meshed
paisleyperforated

pitted
pleated porous

scaly

spiralled

sprinkled

stratified

striped

studded swirly

veined

waffled

woven

wrinkled

zigzagged

runway
sea_ice
ship
snowberg
sparse_residential
stadium
storage_tank

Figure 4.9: t-SNE visualization of VP feature embeddings for 7 of 45 classes from
NW45 using MDXNet InceptionS backbone (best viewed in color mode). The low-
ercase text labels are for 35 of 47 DTD texture classes positioned at the feature
embedding mean vectors. The three circles with uppercase texts identify the NW45
application domain classes: runway, snowberg, storage tank.

them in 2D space. For clear visualization, we plot the mean vectors of 35 texture

classes in DTD (lowercase word labels). We visualize the embedding vectors of 100

samples of selected 7 classes in different colors from aerial images. We can clearly

see that the texture domain embeddings of most samples of the class “Runway” from

aerial images are near the mean vector of the class “Gauzy” from DTD due to their

similar textures. We also find that the embeddings of the class “Snowberg”of aerial

scene are near the texture classes “Pitted” and “Sprinkled”, due to the visual simi-

larity of these two texture classes with the aerial scene class. The visual similarities

between the above discussed aerial scene and texture classes are illustrated by exam-

ples in Figure 4.10.

90

• • • • • • • 
)( 

)( 

)( 

)( 

)( )( 

)( 

)( 

)( 



PittedPittedGauzyGauzy SprinkledSprinkledSnowbergSnowbergRunwayRunway SnowbergRunway

Figure 4.10: Representative VP words for the runway and snowberg NW45 classes
from the t-SNE low-dimensional projection in Figure 4.9. See Figure 4.2 for the
storage tank class VP words.

ABCD criteria

Asymmetry: overall shape of the lesion (A1)
Asymmetry: contour, colors and structures (A2)

Border irregularity: ill-defined and irregular border (B)
Color variegation: colors are non-uniform (C)

Diameter of the skin disease lesion (D1)
Differential structures (D2)

Density and fine structures
Variation in human skin color

7-point checklist
(1) Changes in size
(2) Changes in shape
(3) Changes in color
(4) Diameter
(5) Inflammatior
(6) Crusting or bleeding
(7) Sensory change

VPNet

Texture
Texture Descriptions of Lesions

Shape
Shape Descriptions of Lesions

Object-Appearance
Appearance Descriptions of Lesions

Figure 4.11: The mapping to visual primitives from dermatological criteria, ABCD
criteria [6, 7], 7-checkpoint list [8], Density and fine structures [9] Variation in human
skin color [10]

MDXNet is aligned with expert knowledge diagnosis of skin disease We

analyze MDXNet explainability on skin disease diagnose problem. As shown in Fig-

ure 4.11, ABCD criteria [6, 7], 7-checkpoint list [8], Density and fine structures [9]

Variation in human skin color [10] are four methods that skin disease experts used to

diagnosis skin lesions. These rules can be mapped to our designed VP spaces.

4.5.4 Discussion

We propose VPs which benefit both domain adaptation and domain generalization

tasks. We use VPs to transfer the internal representation of repetitive structures,

symmetry, balance, spatial pattern/arrangement, spatial relationships learned in one

universal/everyday/common domain to other specialized domains. By representing

appropriate knowledge of VPs to mimic HVS and domain adaptation, we alleviate the

domain shift problem, making MDXNet effective in cross-domain few-shot learning.

91

-



Our VPs create an intermediate space between seen domains and unseen domains for

domain generalization tasks such as zero-shot learning.

Our MDXNet architecture has the following four advantages: (1) Good general-

ization and robustness: as the visual primitives cover multiple domain descriptions,

they provide general-purpose embeddings and are not overly sensitive to training

classes. (2) Low computation cost: as the visual primitives can be learned outside

of an application domain, once they are learned, the composition of the visual prim-

itives embeddings can be adapted to the application domain using only a few shot

labeled images through the application-specific learning module with a small number

of parameters, and thus is lightweight in computation. (3) Can use deep networks to

extract visual knowledge since the outside domain has rich data available for learning

different visual knowledge, in contrast to meta-learning based methods, which usually

use shallow networks based on their design intuition of mimicking few- shot scenarios.

(4) Amenable to introducing additional visual primitives. We demonstrate that each

type of visual primitive embedding that we consider here is informative and effective,

and the different types are complementary to each other.

We believe that the VPs space can be further optimized in the future since we

believe each space can provide better prototypes for the target domain. Either we

design an algorithm to compute good prototypes, or we increase prototypes in each

domain to make them more generalized. In this work, we provide one way to construct

the VPs space, and it is verified experimentally to deliver strong performances on both

cross few-shot learning and zero-shot learning tasks.

4.6 Chapter Conclusions

We propose to mimic HVS by designing multiple types of VPs to leverage visual do-

main knowledge obtained from natural images to different application domains. Our

92



proposed network architecture MDXNet for VP learning and integration is effective

on various application domains in both cross-domain few-shot learning and zero-shot

learning recognition tasks. The VP embeddings provide a lexicon of visual words and

text descriptions that correlate well with human perception and provide an explain-

able representation of sparsely labeled sample classes in new application domains. In

future work, we plan to investigate effective methods for combining a wider range

of domain knowledge from natural images and apply such knowledge to more cross-

domain applications. We are also interested in the reverse direction of knowledge

transfer, i.e., investigating whether visual knowledge gained from non-natural image

sources can help natural image tasks such as recognition and segmentation.

93



Chapter 5

Domain Applications

We extended deep learning methods in various domains, including material science

domain for predicting carbon nanotube forest attributes and mechanical properties,

and biomedical domain for cell segmentation.

5.1 CNTNet: Carbon Nanotube Structure Recog-

nition and Property Regression

5.1.1 Introduction

The timeline for materials discovery, development, and deployment is slow and re-

source intensive, requiring 10 to 20 years of research and development to bring a

product to market [186]. The process also relies on human intuition and trial and

error to traverse vast multi-variate synthesis domains. Integrating machine learn-

ing (ML) and artificial intelligence (AI) algorithms into the materials development

cycle may drastically accelerate the process, reduce the role of human judgement,

and alter the paradigm of materials research. Carbon nanotubes (CNTs) represent

an illustrative example of the materials development cycle. CNTs have been at the

94



forefront of nanotechnology since their discovery in 1991 [187], yet their adoption

into industrial applications remains sparse [188]. Their mechanical, thermal, and

electrical properties far exceed those of conventional engineering materials [188], such

that the technological potential of CNTs could be disruptive in applications ranging

from structural materials [189, 190], digital electronics [191, 192, 193], flexible sensors

[194, 195, 196], power transmission [197] and thermal devices [198, 199, 200], among

others. As an example, CNTs exhibit an elastic modulus in excess of 1 TPa [201, 202]

but are compliant enough to be tied into a knot and spun into yarns [203]. Their

thermal conductivity exceeds 5,000 W/m-K [204] which is approximately 12 times

greater than that of copper, at a mass density that is 4 times less. Single-walled

CNTs have an electron mobility that is in excess of 100,000 cm2/V s [205] and can

operate at frequencies greater than 1 GHz [206]. Scaling the physical properties of

one CNT to large populations remains a significant challenge. When populations of

CNTs are concurrently synthesized to form vertically oriented CNT forests, however,

their ensemble properties are drastically reduced. Understanding and controlling the

process-structure-property paradigm for CNT forests is a long-standing barrier to the

widespread adoption of CNTs in many applications.

CNT forests are routinely synthesized using chemical vapor deposition (CVD)

methods. The typical areal density of CNT forests ranges from an order of 109

CNTs/cm2 for multi-walled CNT (MWNT) forests [207], to greater than 1013 CNTs/cm2

[208] for single-walled CNT (SWNT) forests. The uncontrolled self-assembly of CNT

forests generates an open-cell, foam-like structural morphology seen in the scanning

electron microscope (SEM) images of Figure 5.1. The wavy, entangled morphology is

thought to degrade the ensemble properties of CNT forests, sometimes by many or-

ders of magnitude. As an example, the typical modulus of CNT forests is on the order

of 10 to 100 MPa [209, 210, 211, 212, 213], a full four to five orders of magnitude less

than the elastic modulus of individual CNTs. Similarly, the experimentally realized

95



thermal conductivity of CNT forests is on the order of 80 W/m-K [214], far less than

the 5,000 W/m-K measured for an individual CNT. While the existing performance

gap between predicted and observed properties is vast, it serves as an indicator that

CNT forests may be designed to operate within a larger technological performance

envelope if the CNT forest assembly processes could be better understood and con-

trolled. Realizing properties within this envelope will require the development of

new tools that can identify how CNT forest synthesis attributes correlate with forest

structure and ensemble physical properties.

Figure 5.1: SEM images of carbon nanotube forests. The structural morphology
of a CNT forests may exhibit relatively aligned CNTs or wavy and entangled CNTs
depending on synthesis conditions. Scale bars represent 500 nm.

To efficiently navigate within a high-dimensional synthesis space, researchers have

recently constructed a high-throughput, autonomous research robot to deterministi-

cally synthesize isolated single-walled CNTs (SWNTs). The Autonomous REsearch

Systems (ARES) uses a Raman spectrometer laser to provide heat and simultane-

ously characterize growing SWNTs in-situ [215, 216]. The ARES system utilizes

machine learning (ML) algorithms to learn from previous experimental results and

uses an artificial intelligence (AI) planner to sequence experiments to reach an ex-

96



perimental objective. In a particularly compelling demonstration, the ARES system

autonomously determined experimental parameter sets required to achieve specified

SWNT growth rates in fewer than 100 experimental iterations [216]. The ARES ap-

proach shows that integrating AI and ML, with high-throughput experimentation can

facilitate experimental parameter space navigation within a process-structure domain

that is not well understood by researchers. The interactions between large popula-

tions of concurrently-growing CNTs in forests add complexity not present during the

synthesis of isolated SWNTs, and ARES-style experimental campaigns interrogating

CNT forests have not yet been reported but offer a promising approach.

In the current study, a time-resolved finite element method (FEM) CNT forest

simulation tool [217, 218] is used as a high-throughput virtual laboratory to examine

the synthesis-structure-property design loop of CNT forests. Images of each CNT

forest morphology were obtained at the end of their simulated synthesis. A mechani-

cal compression simulation was used to obtain mechanical properties [218, 219, 220].

Deep learning neural networks, trained and tested using FEM physics-based sim-

ulated images, were developed to predict the class label for the CNT synthesized

images [221]. Subsequently, CNT forest physical and growth attributes like stiffness

and buckling load are predicted using another ML random forest regression algorithm.

A total of 63 unique CNT forest synthesis classes were established based on combi-

nations of CNT diameter, population growth rate variability, and CNT areal density.

From these classes, a combined pool of 22,106 FEM simulated synthesis and com-

pression experiments were performed generating one image per experiment to create

a pool of data for training and testing the ML models. The physics-based FEM simu-

lations provided precise ground-truth data that would otherwise be very difficult, if not

impossible, to obtain using physical experimentation techniques. The ML techniques

achieved greater than 91% classification accuracy of physical and growth attributes,

with an R2-regression fit of 0.96 and 0.94 for buckling and stiffness predictions, re-

97



spectively. The image-based R2 coefficient of determination, and root-mean-square

error (RMSE) values matched or exceeded those obtained using a classification-based

linear regression analysis in which all input physical attributes were precisely known a

priori and no image data was considered. The results demonstrate that image-based

ML algorithms using simulated SEM imagery are able to detect unique visual struc-

tural morphological characteristics of CNT forests to provide precise, individualized

predictions.

5.1.2 Results

Simulating CNT Forest Synthesis and Mechanical Compression

The typical CVD parameters available for CNT forest synthesis include catalyst com-

position, catalyst thickness, buffer layer composition, buffer layer thickness, substrate

temperature, gas temperature, catalyst conditioning, hydrocarbon gas composition,

carrier gas composition, synthesis pressure, and synthesis time, among others. Each

of these parameters can influence the resulting diameter distribution, areal density,

growth rate, and CNT catalyst lifetime. For example, increasing the porosity of an

alumina buffer layer (controlled by deposition methodology) was shown to drastically

increase the growth rate, lifetime, and density of CNTs when using an Fe catalyst

thin film [222]. Likewise, trace amounts of carbon can increase CNT number density

by reducing oxidized catalyst nanoparticles [223, 224]. Because of the cost and time

required to explore the available synthesis parameter space, researchers typically op-

erate within a small parameter range that has produced acceptable CNT growth in

the past. In fact, time and cost constraints are disincentives to thoroughly explore

the vast parameter space. For the eleven synthesis parameters mentioned above, a

full combinatorial experimental campaign consisting of just three quantized levels per

parameter, without replicates, would consist of 177,147 experiments. At a relatively

98



aggressive pace of five experiments per day, this experimental campaign would require

almost a hundred years to complete. Characterization of the resulting CNT forests

would require additional time that may exceed the time required for synthesis.

Here, a mechanical finite element simulation was used as a high-throughput vir-

tual laboratory to synthesize and mechanically compress thousands of unique CNT

forests. Deep learning algorithms classified the CNT forest physical attributes and

predicted the CNT forest mechanical properties based solely on the simulated CNT

forest imagery. Deep learning algorithms typically require very large amount of train-

ing data which is not available in our case. The deep learning algorithms bootstrap

onto the physics-based simulation to predict the complex synthesis-structure-property

relationships of CNT forests, and can be viewed as an advanced data augmentation

method to provide more training data, where data or ground-truth or both is very

sparse like in molecular, cellular and tissue imaging [225, 226, 227, 228]. Diverse CNT

forests could then be generated using combinations of seven CNT population densi-

ties, three CNT diameters, and three levels of population growth rate variability. The

CNT linear density varied from 50 to 200 CNTs per 10 µm simulation span. These

CNT densities correspond to 2.5x109 to 4x1010 CNT/cm2, consistent with reports for

multi-walled CNT forests [224]. Seven unique CNT density levels were selected to

span this large span of observed results. The levels of CNT diameter (10, 16, and 22

nm) and CNT forest growth rate coefficients of variability (3, 6, and 9%) were also

selected based on available data for multi-walled CNT forest synthesis data [229].

Each unique combination of these parameters was considered to represent a labeled

class or category and used for supervised learning. We designate this complementary

suite of digital AI/ML tools for CNT material discovery as CNTNet.

Each CNT forest simulation uses homogeneous CNT diameters selected from one

of three values and a stochastic assignment of growth rate and orientation angle.

Figure 5.2 displays a representative set of simulated CNT forest morphology images

99



Figure 5.2: Representative images from all 63 simulated CNT forest classes.
Each block of nine sub-types is grouped by CNT linear density, ranging between D50
to D200 (seven values), representing a density of 50 and 200 CNTs per 10 µm sim-
ulation span, respectively. Each block of 9 images is arranged in an order consistent
with the key provided on the right side of the middle row of images. Here, R indicates
the outer radius in nm (three values), and G is the growth rate coefficient of varia-
tion (three values). The image blocks for D50 (red border) and D200 (green border)
are expanded in the third row to show greater image texture details. The horizontal
domain is 10 µm for each simulation. Note that each image has a replicated texture
block in the horizontal direction to demonstrate periodic boundary conditions.

from each of the 63 forest classes. While synthesis is confined to a two-dimensional

plane, the resultant CNT waviness and bundling resemble physical CNT forests. In

this way, the resultant CNT forest morphology approximates a slice from larger three-

dimensional CNT forest. Each block of images is sorted based on the CNT density.

The lowest and highest CNT densities, denoted as D50 and D200 (corresponding

100

G:3 

R: 5 
G:6 

R: 5 

G:3 

R: 8 
G:6 

R:8 

G:3 

R: 11 
G:6 

R: 11 



to 50 and 200 CNTs per 10 µm span, respectively), are enlarged and shown in the

third row of the figure. Some trends may readily be identified by the naked eye,

particularly when observing the lowest and highest density examples. Increasing

CNT linear density decreased the white space in each image, while the wavelength

and amplitude of CNT waviness also decreased. An increased growth rate coefficient

of variation within a forest decreased the vertical orientation of individual CNTs

within a forest, leading to an increased CNT-CNT contact density and decreased

wavelength along the length of the forest. Importantly, all CNTs were plotted with

the same line thickness, regardless of CNT diameter. This decision was motivated

by the likely resolution limits of an SEM, which at modest magnifications would

be unable to distinguish between the small variations in CNT diameters presented

here. As a result, all diameter classifications were inferred based upon variations in

the CNT forest morphology rather than by direct diameter acquisition. Because the

bending stiffness of hollow cylinders increases with the fourth power of diameter, the

CNTs within larger-diameter CNT forests have less curvature than smaller-diameter

CNT forests.

Each of the CNT forests used for classification were mechanically compressed to

determine their buckling load and elastic stiffness. To the best of our knowledge, this

study of 22,106 CNT forests represents the most extensive evaluation of CNT forest

mechanics to date. A representative CNT forest undergoing compression, and the re-

sultant force-displacement response, is shown in Figure 5.3. During compression, the

CNT forest morphology deformed and buckled at the top and bottom-most regions of

the CNT forest throughout the initial stages of compression, before densification. Co-

ordinated CNT buckling that originated near the top surface of the CNT forest grew

in extent with increased compressive strain, while a single buckle near the bottom

of the forest persisted without obvious growth. Similar collective buckling behavior

has been observed experimentally [209, 230, 211, 231]. The forest stiffness [N/m] was

101



Figure 5.3: Simulated CNT forest compression. An expanded CNT forest
compression demonstration showing the simulated CNT forest morphology (a) at
the beginning of compression and (b) after 20 µm compression. (c) The full load-
displacement curve shows the typical linear-elastic regime at low displacement, an
extended plateau, and a densification regime. (d) A magnified view of the loading
curve shown in (c) illustrates the evaluation of forest stiffness and buckling load.

determined from the tangent loading slope evaluated at a compressive displacement

of 1.5 µm from the top surface of the forest. The initial 0.5 µm of compression after

first contact deformed only the free ends of the tallest CNTs, as shown by the small

and erratic loads at the onset of compression in Figure 5.3(c), and was not charac-

teristic of the overall forest stiffness. At 1.5 µm compression, by contrast, contact

was established with the entire span of the CNT forest. The buckling load was de-

termined by imposing a line with a slope equal to the CNT forest stiffness and an

offset of 0.4µm of compression. The buckling load was defined as the point at which

102

(a) 
45 

(b) 

40 
....-.... 40 

E 35 
1 35 
~ 

+-' 30 
30 

..c 
0) 
·- 25 Q) 

25 

:r: 20 

+-' en 
Q) 
'-
0 

LL 

O 0 5 10 O 0 5 10 

Substrate Position (µm) 

40 

z 35 
2, 
(I) 

~ 
30 

0 25 IL 
(I) 
> 20 

"iii 
<JJ 

~ 15 
a. 
E 10 
0 

(_) 
5 

0 

z 3.0 

2, 
(I) 2.5 
~ 
0 

2.0 IL 
(I) 
> 

"iii 1.5 
<JJ 

~ 
a. 1.0 
E 
0 
(_) 0.5 

0.0 

(c) 

Buckling Load 
Stiffness 

0 10 20 30 40 

Compressive Displacement (µm) 

(d) 
Buckling Load 
Stiffness 

0 2 3 4 

Compress ive Displacement (µm) 



applied load and the offset stiffness line (shown in red in Figure 5.3(c)) intersected.

The typical compression simulation was terminated after these characteristic metrics

were obtained. An extended compression experiment is shown in Figure 5.3(d) show-

ing the typical elastic, plateau, and densification regions that are characteristic of

CNT forests. Nested box plots in Figure 5.4 display the stiffness and buckling load

Figure 5.4: Nested box plots of simulated CNT forest mechanical properties
as a function of class. The (a) buckling load and (b) elastic stiffness for 63 distinct
classes of CNT forests vary by orders of magnitude within the simulated parameter
space. The shaded box represents the upper and lower quantile, while the vertical
whiskers represent 1.5 times the interquantile range. The bottom grouping, ranging
from 50 to 200 represents the quantity of CNTs, the upper grouping represents CNT
outer radius of 5, 8, and 11 nm.

representative of all CNT forests. Axes are plotted using a logarithmic scale to show

the power-law scaling that exists between forest attributes and the corresponding

mechanical response. Within each plot, the mean value is plotted as a solid dot, the

shaded box represents the upper and lower quantile of the data, while the vertical

whiskers represent 1.5 times the interquantile range. The dual x-axes are sorted by

nesting CNT linear density and CNT outer radius in ascending order. Note that the

inner CNT radius is 70% that of the outer radius in all simulations. The various

population growth rate coefficients of variation are plotted by color within the box

plots. Based on the box plots, the buckling load and stiffness are positively correlated

with all CNT attributes, with a ranked sensitivity (from smallest to greatest) of pop-

103

(a)1000 

Z 100 
::l -"O 
cu 
_3 10 

Ol 
C 

~ 1 
:J 
co 

0.1 

Growth Rate COV 
□ 3% 
D 6% 
• 9% 

tT 

*''l ,ll 
5 la l11 sia 111 5 1a111 

50 75 100 

ti 
~tT Ht+ tt!tt~ l ,~r 

+t tt? 
t~ 

5 la l11 51a11 1 5 1a111 5 la l11 

125 150 175 200 

i--

(b) 1000 
Growth Rate COV 

□ 3% 

10 0 D 6% 
■ 9% 

(/) 
(/) 
Q) 
C 

:i:: 
~ 0 

I ~~ 0 

' 11111 11111 1ttl 

.1 II I 
0.0 1 

Radius (nm) 

CNT / 10 µm 
--

s 1a111 s 1a111 s a111 
50 75 100 

1tt1 tlf111 
11"11 tH 

ti! 1t! 1!! ++! 

111 

s 1a1 111 s 1a1111 s 1a111 s 1a11 1 
125 I 150 I 115 200 



ulation growth rate variation, diameter, and linear density. The variation of stiffness

and buckling load spans greater than three orders of magnitude for the combination

of parameters varied in the current study.

To determine the scaling relationships associated with each CNT forest attribute,

and to serve as a baseline for later ML predictions, a linear regression analysis of CNT

forest buckling load and stiffness was performed relative to the input CNT forest

physical parameters. The analysis inherently presumed a foreknowledge of the CNT

forest characteristics of CNT density, CNT diameter, and population growth rate

variation and were not informed by CNT forest morphology images. We stress that

the precise knowledge of these CNT forests attributes would be difficult or impossible

to obtain with physical experiments, while simulation provided access to the exact

values. The values within each CNT attribute class were normalized by the modal

value for the regression analysis to ensure that each parameter varied by similar

magnitude. A linear regression analysis based on the log10 parameter values was then

conducted. The analysis showed that Ef ∼ ρ1.9, Ef ∼ D1.34, and Ef ∼ COV 0.13,

where Ef , ρ, D, and COV represent CNT forest stiffness, density, diameter, and

population growth rate coefficient of variation, respectively. Similarly, the CNT forest

buckling load, σy, scaled as σy ∼ ρ1.94, σy ∼ D1.01, and σy ∼ COV 0.25.

Well-established scaling relationships exist for ideal open-cell foams that relate

elastic modulus, E, yield strength, σy, and relative density, ρ. For ideal 2D open-cell

foams and honeycombs, E ∼ ρ2 and σy ∼ ρ2, while isotropic 3D foams, including

isotropic CNT foams [232], exhibit E ∼ ρ3 and σy ∼ ρ3 scaling relations. Alumina-

coated CNT forests have exhibited scaling on the order of scale as E ∼ ρ2.8 and

σy ∼ ρ2.9 [233], slightly less than that predicted by open cell foam predictions. In a

similar fashion, our scaling factors of Ef ∼ ρ1.9 and σy ∼ ρ1.9 are slightly less than

ideal value of 2 for these parameters with 2D open-cell foams, providing confidence

in the simulation output. We anticipate that scaling the existing simulation to three

104



dimensions will reflect the scaling relationships of three-dimensional open-cell foams,

as observed experimentally [233].

The predicted buckling load and stiffness resulting from the regression, plotted

relative to their ground-truth values, may be found in supplementary information

Figure S1 in our paper. Note that the linear regression model using the known values

of physical attributes (without using image properties) provides a single prediction

for each of the 63 classes. A statistical linear regression model produced an R2 value

of 0.94 for both buckling load and forest stiffness, indicating that buckling load and

CNT forest stiffness was predicted relatively well conditioned upon knowledge of the

CNT physical attributes. The linear regression model had a root-mean-squared error

(RMSE) of 0.22 and 0.20 for stiffness and buckling load, respectively, for the same

data. While this linear regression approach is straightforward when using synthetic

simulation because all CNT forest simulation parameters are prescribed, for real-

world experiments the determination of CNT diameter, density, and growth rate

variation is time consuming, cost prohibitive, and may be unrealistic to obtain with

physical experiments for even modest parametric studies. These difficulties motivate

the physics-based simulation and image-based prediction capabilities afforded by the

deep learning techniques.

CNTNet Classification and Prediction Results

Quantifying the complex and entangled CNT forest morphology after synthesis is

itself a difficult task. Because of the relatively large SEM depth of field and because

adjacent CNTs frequently bundle into ropes during synthesis, even rudimentary CNT

forest measurements (such as diameter distribution and CNT areal density) are diffi-

cult using SEM analysis alone. Typical metrics to describe CNT forest alignment in-

clude the Herman Orientation Factor (HOF) obtained by small angle X-ray scattering

(SAXS) [207, 234] or scanning electron microscopy (SEM) imagery [223], or by hand-

105



crafted image-based descriptors [212]. Of these, SAXS is perhaps the most descriptive

quantitative technique for CNT forest characterization, as it provides measurements

of CNT alignment, diameter distribution, and areal density. This technique requires a

high-intensity synchrotron photon source to penetrate the forest, and as such, it is not

readily available. The SAXS measurement also acquires population-averaged metrics

that may be difficult to correlate to individual CNT-CNT interactions. Nevertheless,

SEM-based morphology characterization is currently the most frequent methodology

for CNT forest characterization. As such, we designed a deep learning (DL) frame-

work to learn from physics-based simulated CNT forest morphology images that are

similar in scale and resolution to SEM imagery.

Deep learning architectures are a powerful approach for pattern representation

learning, and are being widely adopted in many fields including natural object image

classification [235], aerial scene classification [236], feature tracking in wide area mo-

tion imagery [237], 3D point cloud classification [238], vessel segmentation [239], and

malaria diagnosis [240]. Recent work evaluated using hand-crafted texture features

like joint adaptive median binary patterns [241, 242] combined with random forest

machine learning to identify the CNT class label for twelve classes [221]. In this work,

we take advantage of recent developments in deep learning architectures to increase

the number of CNT classes from 12 to 63, improve the classification accuracy, and

add a machine learning approach for the prediction of CNT physical attributes and

mechanical properties using simulated growth imagery. The CNTNet classifier pro-

vides a discrete class label output. We use the last feature layer, before the output

layer, in the CNTNet classifier as the independent feature vector. We use random

forest regression trees with the 4096-D deep image-based features learned by the deep

neural network (DNN) classifier in order to provide continuous real-valued estimates

of the dependent mechanical properties. By employing this scheme, mechanical prop-

erty predictions benefit from the descriptive power of learned deep features combined

106



with the accuracy and robustness of random forest to noise and over-fitting by using

an ensemble of diverse trees. As shown in Figure 5.5, the proposed CNTNet classifi-

cation and regression framework consists of a pipeline of several modules. The CNT

forest images generated using the physics-based growth simulation model are used

as input to train a VGG-19 DNN [243] to predict CNT forest attributes (Structural

Classification module) and mechanical properties (Property Regression module). The

finite element simulation generates CNT forest structural morphology images, along

with mechanical stiffness, and buckling load values. The CNTNet classifier accepts

CNT forest images as input and generates predictions of the CNT class labels along

with the feature space embedding for CNT forest attributes and the mechanical prop-

erties of stiffness and buckling load. In this way, the CNTNet capability spans the

entire synthesis-structure-property paradigm for CNT forest synthesis and virtual

screening.

Using CNTNet the overall classification accuracy for 63 classes was 91.0%, indi-

cating that all three attributes of CNT density, radius, and growth rate coefficient

of variation were correctly predicted with high accuracy on the test images. The

feature descriptor embedding from the CNTNet classification module is then used for

the CNTNet regression task to predict the CNT forest physical properties. Unlike

the classification-based traditional linear regression model in the previous section, for

the CNTNet random forest regression predictor, the image feature descriptor em-

bedding alone was used as the model input, without any knowledge of CNT forest

attributes provided to the decision trees. The CNTNet-predicted buckling load and

elastic stiffness relative to the known ground-truth values are shown in Figure 5.6(c)

and (d). Note that the solid line represents an ideal 1:1 correlation between CNTNet

prediction and the ground-truth parameters from the physics-based simulation. For

both stiffness and buckling load, the predicted mechanical properties lie close to the

ground-truth values for ranges of values that vary by greater than three orders of

107



magnitude with an R2 value of 0.96 for buckling load and 0.94 for stiffness, which

is better than the R2 values of 0.94 obtained for the classification-based traditional

regression with more information known a priori. The RMSE values produced for the

CNTNet-predicted stiffness and buckling load are 0.21 and 0.17, respectively. These

values are an improvement over the respective RMSE values of 0.22 and 0.20 using

the previously discussed statistical linear regression predictions which utilized the

numerical values of CNT density, diameter, and growth rate variation as inputs.

The superior accuracy of the CNTNet regression predictions has practical impli-

cations. As stated previously, the structural characterization of CNT forests using

methods such as SAXS is resource intensive and prohibitive for a high volume of sam-

ples. Image acquisition of CNT forests using SEM, however, is readily available to

most researchers. The CNTNet results demonstrate that property predictions using

image data may be superior to algorithms in which all CNT forest physical attributes

are known a priori. Such a result might not be surprising when considering that im-

age data contains embedded information that is unique to each CNT forest. Whereas

the classification-based regression model based upon physical attributes generates a

single-value prediction for all forests with matching attributes, image-based regression

detects subtle differences within CNT forest morphology to generate unique predic-

tions even for forests that share similar attributes. Moreover, the images themselves

may contain sufficient information to infer the population-based physical attributes

provided by methods such as SAXS, as demonstrated by the CNTNet classification

results.

Data visualization can be used to understand the CNTNet classification and re-

gression performance in a qualitative manner. The multi-class confusion matrix in

Figure 5.6(a) shows the misclassification accuracy between class Cq and Cr arranged

by CNT density, in the form of a matrix with color intensity mapping to the percent-

age of predicted values which fall within a known ground-truth class label. The axes of

108



the confusion matrix represent the predicted class label and the known ground-truth

classification. The diagonal entries in the confusion matrix represent the respective

class accuracies, while all other entries represent a misclassification. Marginal confu-

sion matrices are provided as supplementary material in our paper which show the

classification accuracy as a function of only CNT density, only CNT radius, or only

population growth rate variation. In these matrices, the classification of a given pa-

rameter level is assumed to be correct even if the other independent parameters are

not correctly predicted. The lowest prediction accuracy in each of these quantities

was 99.97% for CNT density, 88.99% for CNT radius, and 97.88% for growth rate co-

efficient of variation. The CNT density was predicted with 100% accuracy for forests

having between 50 to 150 CNTs per 10 µm span. The high degree of accuracy of the

CNTNet classification module demonstrates that DL techniques can readily identify

subtle differences in the wavy texture morphology of CNT forests arising from the

relatively small changes in CNT attributes.

The t-Distributed Stochastic Neighbor Embedding (t-SNE) [185] can be used to

visualize the class clusters projected in a low-dimenstional space suitable for qualita-

tive understanding of the class separability and inter-class mixing. This is important

for the CNT classification task due to the large number of 63 classes with subtle tex-

ture differences between some classes. t-SNE reduces the dimensionality of the 4096-D

feature descriptor embedding vectors learned by the VGG-19 DL network to generate

a 2-D plot as shown in Figure 5.6(b). A principal component analysis (PCA) [184]

was first used to reduce the feature space dimensionality of the classification embed-

dings from 4096 to 50 before projecting their values to a 2D space using t-SNE. The

63 CNT classes are grouped into seven density classes shown in different colors. The

seven CNT density classes are well-separated in the t-SNE subspace, indicating that

CNTNet has learned a feature embedding manifold that is highly discriminatory. The

t-SNE distributions sorted by diameter and growth rate variation are provided in the

109



supplementary material in our paper and show overlapping clusters that supports our

confusion matrix analysis. The misclassification rate around 9% is due to the overlap

in the 9 combinations of diameter and growth rate variation within each CNT density

cluster as shown in Figure S5 in supplementary file of our paper.

5.1.3 Discussion

It is striking that image-based mechanical property prediction, matched or exceeded

statistical predictions in which all CNT forest attributes were known with certainty.

An image-based AI/ML approach using physics-based image synthesis is particularly

powerful and applicable because the physical attributes of CNT forests are rarely,

if ever, known with certainty in physical experiments. The CNTNet classification-

regression framework demonstrates that the feature descriptor information embedding

using CNT forest structural morphology images is sufficient to characterize the rele-

vant synthesis-related CNT attributes (CNT density, CNT diameter, and CNT growth

rate variation) and ensemble properties of CNT forests with high accuracy without

any other external knowledge. We anticipate that these image-based computer vision

techniques, upon further refinement, can be translated to and augmented with exper-

imentally acquired SEM images of CNT forests to rapidly characterize their physical

attributes with similar high accuracy. We acknowledge that the current simulation

model may only capture the first order mechanisms of CNT forest self-assembly and

mechanics, but we anticipate that data from emerging experimental techniques will

continuously improve the fidelity of the simulation techniques.

An image analysis system designed to characterize SEM images of CNT forests

must accommodate SEM-specific imaging characteristics including molecular struc-

ture variability, measurement noise and grayscale intensity variations through the

depth of imaging. We are planning to develop a new module to generate photo-

realistic images of simulated CNT forests that reflect SEM appearance characteristics.

110



The simulated CNT forests themselves will also be generated using CNT diameter

distributions consistent with specific synthesis criteria. The CNTNet classifier and

CNTNet regressor will then be retrained using more realistic synthetic CNT imagery

augmented with labeled SEM images as these become available. Previous work on

deep learning-based realistic synthetic data generation systems [244, 245], general ad-

versarial networks [246, 247], and synthetic microscopy image generation approaches

[248, 249] will inform our generation of more realistic synthetic CNT forest images,

characterizing the generalization power of CNTNet and for translating the proposed

pipeline to the analysis of SEM images.

High-throughput simulation is expected to play a major role in mapping the

synthesis-structure-property relationships of CNT forests for virtual screening. The

current study did not correlate the prescribed CNT synthesis attributes of diameter,

areal density, and growth rate variation to specific process parameters such as cata-

lyst composition, catalyst thickness, temperature, and gas flow rate; however, these

correlative studies are being conducted, and limited empirical data exists within the

literature. Precise determination of CNT catalyst kinetics is expected to accelerate

in the coming years using in-situ transmission electron microscope and SEM syn-

thesis observations. As more complete experimental data is obtained, the relevant

physical relationships between process parameters and CNT synthesis attributes can

be integrated to improve the physics in the simulation framework and generate in-

creasingly accurate simulations with little additional computational resources. The

exploration of the nearly inexhaustible CNT forest parameter space will accelerate

while becoming significantly less cost prohibitive.

Future advancements of CNTNet lie in the incorporation of experimental and

numerical simulation data as separate information sources, but coordinated data

streams. SEM-based in-situ synthesis experiments are currently being conducted

that will both validate the physics and kinetics of the finite element simulation and

111



will provide a source of CNT forest SEM image inputs. The in-situ experiments will

provide an opportunity to approximate the ground truth and to precisely correlate

simulation and experiment, which will allow evaluating the generalization capability

of the CNTNet ML model. The implementation of 3D finite element code, analogous

to the 2D code presented here, is ongoing and will produce CNT forest morphology

imagery that is even more analogous to CNT forest SEM imagery. As quantification

and understanding of increasingly complex CNT forest growth kinetics are under-

stood and reported, simulation fidelity will continually increase. In the near future,

we expect that a well-validated CNT forest simulation tool could be used to au-

tonomously navigate the CNT forest synthesis parameter space to rapidly map the

available combinations of CNT forest ensemble physical properties afforded by diverse

CNT forests morphology, particularly those which have not been previously explored.

These properties could then be confirmed and refined experimentally. Similarly, ro-

bust image-based characterization of CNT forest physical attributes will be enabled

when a repository of well-characterized CNT forest SEM images becomes available.

The tools developed and reported here are foundational to these efforts and estab-

lish that image-based DL can both classify CNT forests and predict their physical

properties with high accuracy.

5.1.4 Methods

Physics-Based CNT Growth and Compression Simulation for Machine
Learning

All finite element simulations were conducted using MATLAB 2018b software running

a custom FEM code. CNT elements were treated as Euler-Bernoulli frame elements

with a computational node at each end of the element, as described elsewhere [218].

The van der Waals interactions between adjacent CNT segments were simulated as

112



linear-elastic spring elements. As neighboring CNTs contact, the van der Waals

interactions may lead to the formation of bundles or ropes of multiple CNTs that

often persist throughout the height of forests. Likewise, contacting CNTs may bend

and form a wavy morphology. Each unique morphology is shaped by the mechanical

equilibrium established between the contacting CNTs. Mechanical equilibrium was

computed at each time step for all nodes within the CNT population before initiating

a new set of elements at the base of existing CNTs at discrete time steps to simulate

CNT growth. To accommodate the new CNT elements, the nodes that had previously

resided at the bottom of the forest were displaced by a distance corresponding to the

growth rate of each CNT and at an angle consistent with the orientation angle of the

CNT. The stiffness matrix is regenerated at the beginning of each time step to account

for the new orientation of each element, the formation of new CNT-CNT contact

points, and the addition of new elements to the system. A horizontal growth span

of 10 µm was selected for all simulations, with periodic boundary conditions at the

horizontal extremes of the simulation domain to mitigate potential edge effects [217].

The population-averaged growth rate was 60 nm per time step for all simulations.

Diverse CNT forest populations were achieved by selecting among 7 CNT population

densities (50 - 200 CNTs in increments of 25), 3 CNT outer radii (5, 8, 11 nm) and

3 values of CNT population growth rate coefficient of variation (3, 6, 9%), for a

total of 63 distinct classes. The inner radius of each CNT was 70% that of the outer

radius. Because the characteristics assigned to each CNT within a forest were chosen

stochastically, each simulation produced a unique CNT forest, even within a common

class. Each synthesis simulation was terminated once all CNTs in the population

reached a height of 20 µm, and the growth image of the CNT forest morphology was

saved for deep learning analysis.

Using the same simulation framework, the mechanical compression of each forest

was simulated by vertically translating a rigid horizontal surface at 20 nm increments

113



per time step. Each CNT node in contact with the simulated moving boundary was

pinned, and the base node of each CNT was fixed, simulating a rigid substrate. Me-

chanical equilibrium was computed for each displacement step, and the compressive

load was determined by summing the vertical reaction forces of all CNTs in contact

with the moving surface. This force was equal in magnitude to the summed force

transmitted to the simulated substrate. The plastic deformation of constituent CNTs

was considered by employing the Brazier instability mechanism for thin-walled cylin-

ders in which the circular cross section of CNTs forms a flat kink [250]. For hollow

CNTs, kinking of the original circular cross section reduces the bending stiffness, and

the cylinder can support less of a bending moment. The critical kinking moment can

be expressed as,

Mkink = 0.4683
EDt2√
1− ν2

(5.1)

for a thin walled cylinder, where E is the CNT modulus, D is the CNT outer diameter,

t is the CNT wall thickness, and ν is the Poisson’s ratio (0.17 for graphite). This

critical limit was experimentally validated for CNTs using in-situ TEM deflection and

assuming a thickness of 2 walls where the maximum moment was generated [250]. The

experimentally observed kinking moment was 25% greater than this approximation,

as inner-most CNT walls acted to strengthen the deforming cross section. In our

simulation, the full wall thickness of the CNT was considered when computing the

kinking moment of an element. When an element exceeds the critical kinking moment,

its moment of inertia is reduced by a factor of 105 to approximate the limitation of

the kinked cross-section to support mechanical moments. The elastic modulus of

each kinked segment is reduced by a factor of 103. These values are estimates and

characterize the inability of a kinked CNT to support additional load or mechanical

moment.

114



CNTNet: Deep Learning and ML Regression Using a Physics-Based Vir-
tual Laboratory for Data Generation

The theoretical understanding of CNT morphology, structure and physical properties

is limited, and the experimental generation of a large collection of real SEM imagery

that is essential for training deep learning networks is unavailable due to difficult

material synthesis, high cost, and high resource requirements [197]. Therefore, we

investigated the feasibility that a deep learning architecture trained using only sim-

ulated imagery from the physics-based simulation virtual laboratory model could be

used for virtual screening [251]. Success using a virtual laboratory screening method

would provide confidence for pursuing a computational automated materials design

approach [252] using SEM imagery from physical experiments to accelerate the guided

search for optimal CNT materials with desirable properties.

We developed CNTNet a deep network that transfers the high-dimensional texture-

based feature classification embeddings to predict CNT physical properties using ma-

chine learning-based random forest regression. CNTNet is composed of two modules

as shown in Figure 5.5. The first structure classification module is the CNT image

representation embedding deep architecture, which is learned using a classification

task network. The second property regression module uses Random Forest regression

(RF regression) [253, 254, 255, 256] for CNT physical property prediction using super-

vision from the physics-based simulation system. Random forests provide a unified

framework for manifold learning [253], interpretability in the context of explainable

AI [257], better robustness to adversarial noise, and randomization in RF has been

shown to be a powerful way to learn distances between images of never-seen objects

[258]. We use the feature space embedding learned during K-way classification to

boost the prediction power of the property regression module CNTNet. Once the

deep network is trained on the visual appearance-based structure classification task,

all the deep learning parameters or weights θC are frozen, so that the embedding rep-

115



VGG-19 Network Layout

Max Pooling

Fully Connected

Convolution

Classifier

Supervision During Structure Classification Learning

Supervision During Property Regression Learning

Property Regression Module

Synthesis Attributes

CNT Density (D)

Outer Radius (R)

Growth Rate 
Std Dev (G)

Classification Embedding 
Feature Descriptors

Tree NTree 1 Tree 2

Average

Random Forest Regression

Predicted Property

Physical Property 
Measurements

Buckling Load

Stiffness

Physics-Based SEM Simulation AI and Deep Learning
4

0
9

6
-D

Growth Control

Compression Control

Physical Control
Structure Classification Module

CNTNet

Prediction 1 Prediction 2 Prediction N

Figure 5.5: Schematic of CNTNet modules. CNTNet is a modular image-based
machine learning and control framework for enabling artificial intelligence-driven clas-
sification of CNT forest synthesis attribute groups and predictions of CNT forest
material properties. The top structure classification module uses the VGG-19 deep
learning network for classifying CNT forests into one of 63 CNT classes based on
combinations of synthesis attributes generating different CNT forest simulated SEM
image classes. The structure classification network captures morphological texture
properties and was trained using transfer learning with initialization using ImageNet
weights. The bottom property regression module uses Random Forest regression trees
to learn CNT forest buckling load and stiffness by mapping the 4096-D feature image
representation descriptor using 2-D regression vector functions.

resentation learned through structure classification can be transferred to the property

prediction module.

The CNTNet framework is motivated by the observation that CNT forest proper-

ties are strongly correlated with their class grouping (x-axes) and physical attributes

of buckling load and stiffness, as depicted in Figure 5.4. Using the structure classi-

fication deep learning module, the CNTNet extracts a rich high-dimensional feature

descriptor that encodes the prior knowledge of CNT physical attributes in an em-

bedding manifold, that can then be used to learn additional physical properties in

116

~-----------------------------1 -----------------. 

r-----....1....--- I 

:=:I =====I 
L...-1 ______JI 

T 

~

:---1 
: • I 
: : : 0 
I • I 8 
I •• 1-T-+i! I I I • 
I • I I • 

I : I I o 
I . I I 
I I I 
L--J I 

I 
I ,--------------· 

I 
I 

t 

• • • ----------------------------+ .......... ' .,,,,. ·;··-:<~ 
CNT 



Figure 5.6: CNTNet classification and regression accuracy. (a) Confusion
matrix for 63 CNT classes with the ordering based on seven CNT densities and nine
sub-types. (b) t-SNE visualization of the 63 CNT forest classes grouped by the 7 CNT
population densities for better visualization. The separation of the density groups
using the VGG-19 feature embedding sub-space indicates that the CNT forest density
is classified with high accuracy. CNTNet regression prediction for (c) buckling load
and (d) stiffness compared to the simulated ground-truth values. Data are colored
according to the CNT forest linear density.

the descriptor space, and leads to the observed strong performance of CNTNet for

predicting the physical properties. The feature embedding provided by the VGG-19

network was used for both determining the CNT forest class label based on simulated

growth attributes, and as input to a random forest regression estimator to predict

the mechanical properties.

The structure classification module in CNTNet uses physics-based simulated CNT

117

(a) 

(c) 

Density confusion matrix: acc= 91.0l 
D50 

QJ 
:J D150 

~ 
D175 

0200 

<:>"c::, <:J""'" <:S.,oO <:S'"'•·c., Q....,,'?o Qv"" Q.,,,cf' 

e D200 

• 
• 
• 

Predicted label 

Buckling Load R2= 0.96 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

10-2 +-~-......-~~-..---~=..,,-~~---~-~-.-, 
10-2 10-1 101 102 103 

Ground Truth Buckling Load (µN) 

(b) 

(d) 

15 

10 

-5 

- 10 

- 15 

-15 -10 -5 10 15 

St iffness R2= 0.94 

e D200 

10-2 

10- 2 10-1 101 102 103 

Ground Truth Stiffness (N/m ) 



forest structural imagery as input to predict the CNT attributes of CNT diame-

ter, CNT population growth rate variation, and CNT density based on the 63 class

groupings. Each class represents a unique (discrete) combination of these parameters.

Given the morphology images Xi of CNT structures, Xi ∈ XCNT , where XCNT is

the training set of CNT images. In this work, we used the VGG-19 CNN to learn

the mapping function from CNT structure to CNT forest classes. We define fθC (·)

as the mapping function from the input (image) space Xi to the class label space pi,

parameterized by the classification network weights, θC , which is then followed by the

Softmax (·) non-linear operator, defined as:

pi = Softmax (fθC (Xi)), Softmax(zi,k) =
ezi,k∑K
j=1 e

zi,j
, for j = 1, ...K (5.2)

where Xi is the ith input CNT image, and pi is the associated CNTNet predicted

class label for Xi. After applying the softmax operation to, zi,k, the output of the

VGG-19 network estimates K real-valued class probabilities. Note that Softmax (·) is

a differentiable version of the maximum operator. During training we minimize the

cross-entropy loss J defined as,

J = − 1

N
ΣN
i=1 ΣK

k=1 yi,k log(pi,k) (5.3)

where yi,k is the element in yi of kth class, and yi is the true label (1 for the target

class and 0 for the other (K−1) classes), pi,k is the predicted probability of label k for

input Xi, and N is the mini-batch size during training. In our experiments, we used

VGG-19 [243] architecture as the deep learning backbone network, and Stochastic

Gradient Decent (SGD) optimization to learn the optimal parameter space θc.

The classification embedding for the ith input (image) Xi is defined as dCi ∈ RE,

118



where E is the dimensionality of the classification embedding vector,

dCi = fθC (Xi) (5.4)

where fθC (·) is the classification mapping to identify the CNT class type of the input

image defined in Eq 5.2. Next, we learn fθR(·) the unknown mapping function from

the CNT structure classification space to the CNT physical property space that is

parameterized by the RF regression variables θR. We define the predicted CNT

physical property as the output vector ŷi ∈ R2,

ŷi = fθR(dCi ) (5.5)

where one output dimension predicts CNT buckling load, and the other output pre-

dicts stiffness. The reason we learn a single RF regression to predict both properties of

buckling load and stiffness jointly is due to their physically coupled relationship that

may lie in the same manifold embedding. A figure showing the correlation between

buckling load and stiffness may be found in the supplementary file (Figure S3) in our

paper. This approach is further strengthened by the general behavior of open-cell

foams which consistently yield at an engineering strain of approximately 5% [259].

In our experiments, 60% of simulated images were used for training, 20% for

validation, and 20% for testing. For the CNT classification label assignment task,

the pyTorch deep learning framework was used to train a VGG-19 backbone [243]

for image texture-based CNT structure categorization. For the physical property

prediction task, we used the image texture embedding from the VGG-19 structural

classification results to develop a random forest regression model using the Scikit-

Learn software [260]. The size of our generated images was 907× 725 pixels. During

training, the images are resized to 256× 256 pixels initially, followed by the random

crop augmentation to extract sub-images that were 224 × 224 pixels. Later, during

119



validation and testing, we first resized images to 256×256 pixels, and then performed

center cropping of each image to be the same 224× 224 pixels.

The hyperparameters for training the VGG-19 deep learning network used a

stochastic gradient optimization approach with an initial learning rate value of 10−3,

a weight decay of 10−4 and momentum of 0.9 for updating the gradient at each it-

eration, and a mini-batch-size of 32 for gradient estimation. Common image data

augmentation methods were used to enrich the amount and variety of training data,

including random cropping to extract subimages, and random flip with 0.5 probabil-

ity. All experiments were conducted in 5-Fold cross-validation settings. We trained

the deep network for 200 epochs and used the classification accuracy on the vali-

dation data to select the best model parameters. The validated VGG-19 learned

network model was then evaluated using the testing data to avoid overfitting. The

4096-dimension feature vector embedding from the last fully connected layer in the

VGG-19 classification model was used to train the random forest regressor decision

trees.

The random forest regression module in CNTNet uses the RF approach which

builds an ensemble of regression trees with randomized feature selection to learn the

quantitative relationship between elastic stiffness and buckling load values. When

training the regressor, the outputs are regressed to their loge values. The Scikit-learn

library [260] was used to learn the RF regression. In total, 1000 decision trees of

varying depth were learned in the RF ensemble, all the 4096 features were considered

at each node split, and with pure leaf nodes as the stopping condition during tree

construction. The RF vector regressor is trained to predict two properties, buckling

load and stiffness after a logarithmic transformation to handle the five order of mag-

nitude range in property values (see Figure 5.6 and Supplementary Figure S3 in our

paper).

120



5.1.5 Evaluation Metrics

To evaluate the performance of CNT forest classification, the standard overall accu-

racy (OA) metric was used,

OA =

∑K
k=1Ck,k∑K

q=1

∑K
r=1Cq,r

(5.6)

where K is the number of classes, the K ×K confusion matrix with diagonal terms

being the correct classification probabilities and off-diagonal entries, Cq,r, are the

misclassification probabilities between the ground-truth class q predicted to belong

to class r.

To quantify the prediction of CNT forest mechanical properties, we use the coef-

ficient of determination R2 and Root Mean Square Error (RMSE) metrics. The R2

score is computed as,

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(5.7)

ȳ =
1

n

n∑
i=1

yi (5.8)

where yi is the true CNT forest property value, ŷi is the predicted CNT forest property

value, and n is number of samples. The RMSE metric between the true and predicted

property values is computed as,

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5.9)

121



5.2 DMNet for Cell Segmentation

Cell segmentation is an important task in biomedical domain. The challenges of

segmenting cells include cells are small and low resolution, and many cells are clustered

together. To tackle these challenges, we propose a dual-stream marker guided network

(DMNet). Our network won the second place on ISBI 2021 sixth Cell Tracking

Challenge (CTC, http://celltrackingchallenge.net/).

There are two networks in our algorithm, one network is designed for cell centroids

(markers) detection, and the other is designed for mask detection. We use the HRNet

[261] as the CNN model to learn the centroid localization and cell segmentation

mask. Transform distance maps are computed in training and used for penalizing the

boundary region for accurate cell segmentation. Centroids are used to locate the cells

and segment the segmentation mask to multiple cells.

Table 5.1: Performance of DMNet on ISBI 2021 6th Cell Segmentation & Tracking
Challenge.

Dataset
BF-C2DL

-HSC
BF-C2DL

-MuSC
DIC-C2DH

-HeLa
Fluo-C2DL

-MSC
Fluo-N2DH
-GOWT1

Fluo-N2DL
-HeLa

PhC-C2DH
-U373

PhC-C2DL
-PSC

OPCTB 0.828 0.849 0.854 0.591 0.939 0.953 0.947 0.821
6/10 2/10 6/19 12/26 2/35 1/33 3/24 4/26

SEG 0.699 0.742 0.802 0.522 0.931 0.923 0.923 0.708
6/10 2/10 6/19 13/26 1/35 1/33 3/24 4/26

TRA 0.957 0.957 0.907 0.661 0.946 0.983 0.972 0.933
4/10 4/10 9/19 12/26 7/35 10/33 11/24 8/26

The input images are pre-processed contrast adjustments with z-score distribution.

For the training process, marker localization is trained with centroid supervision, and

segmentation mask is supervised by silver truth of annotations. Both the marker

localization network and cell segmentation network are trained on eight 2D datasets

and five 3D datasets with an input size of 256×256 with distance penalty loss. During

training, regular data augmentation strategies including rotation, flip, and scale from

0.8 to 1.5 are applied for each sample. During inference, both centroids and segmenta-

tion masks are generated, and then the morphology operations are used to split cells

122



guided by our generated centroids. We report the DMNet performance on CTC chal-

lenge benchmarks in Table 5.1. For details of evaluation metrics, please refer to the

CTC challenge website and [262]. For detailed descriptions of our algorithm, please re-

fer to MU-BA-US (http://celltrackingchallenge.net/participants/MU-Ba-US/). Our

DMNet ranked top 3 in four datasets among the eight 2D cell segmentation datasets.

123



Chapter 6

Summary and Concluding Remarks

I have presented my work towards designing deep learning architectures for 2D and

3D challenges in scene perception.

For 3D point cloud understanding tasks, we develop several networks. We pro-

pose the novel dual-stream networks GLSNet and its extension GLSNet++ to capture

multiscale structural information and handle large variations in object sizes typical

of urban scenes. The proposed GLSNet++ incorporates a unique and effective graph

convolutional network for demixing or unmixing voxel boundary regions composed

of a mixture of object classes using spatial context-dependent feature fusion simi-

lar to conditional random fields. We propose PointGrad, a new graph convolution

gradient operator. The PointGrad encodes point-based directional gradients into a

high-dimensional multiscale tensor space to capture the salient structural information

in the point cloud across spatial and feature scale space, enabling efficient learning.

Integrating PointGrad with several deep network architectures demonstrates the the

efficiency, effectiveness, and robustness of PointGrad for large-scale 3D point cloud

segmentation, indoor scene segmentation, and object part segmentation.

For 2D recognition tasks, we propose MDXNet in emulation of the human visual

system, which learns embeddings of texture visual primitives, shape visual primitives,

124



and object-appearance visual primitives from nature image domains to capture human

explainable perceptual latent attributes and integrates them for tasks in multiple new

application domains. The proposed MDXNet is successfully extended to tasks in zero-

shot learning. We applied deep networks in multiple application domains, including

the material science domain and biomedical domain.

All the above methods demonstrate favorable results compared with other state-

of-the-art deep learning and few-shot learning methods. In the future, we plan to

extend PointGrad to various 3D tasks such 3D point cloud denoising, 3D point cloud

completion. Besides, the MDXNet can be extended to more application domains. We

also plan to extend MDXNet to tackle the long-tail problem in AI.

125



Bibliography

[1] R. Bao, K. Palaniappan, Y. Zhao, G. Seetharaman, and W. Zeng. GLSNet:

Global and local streams network for 3D point cloud classification. In IEEE

Applied Imagery Pattern Recognition Workshop, pages 1–9, 2019.

[2] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su,

Cewu Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. A scalable active

framework for region annotation in 3D shape collections. ACM Transactions

on Graphics, 35(6):1–12, 2016.

[3] Y. Lian, T. Feng, J. Zhou, M. Jia, A. Li, Z. Wu, L. Jiao, M. Brown, G. Hager,

N. Yokoya, R. Hänsch, and B. L. Saux. Large-scale semantic 3-D reconstruction:

Outcome of the 2019 IEEE GRSS data fusion contest—Part B. IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing, 14:1158–

1170, 2021.

[4] John P Frisby and James V Stone. Seeing: The computational approach to

biological vision. The MIT Press, 2010.

[5] Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene

classification: Benchmark and state of the art. Proceedings of the IEEE,

105(10):1865–1883, 2017.

126



[6] W Stolz. Abcd rule of dermatoscopy: a new practical method for early recog-

nition of malignant melanoma. Eur. J. Dermatol., 4:521–527, 1994.

[7] Naheed R Abbasi, Helen M Shaw, Darrell S Rigel, Robert J Friedman,

William H McCarthy, Iman Osman, Alfred W Kopf, and David Polsky.

Early diagnosis of cutaneous melanoma: revisiting the abcd criteria. Jama,

292(22):2771–2776, 2004.

[8] Giuseppe Argenziano, Gabriella Fabbrocini, Paolo Carli, Vincenzo De Giorgi,

Elena Sammarco, and Mario Delfino. Epiluminescence microscopy for the di-

agnosis of doubtful melanocytic skin lesions: comparison of the abcd rule of

dermatoscopy and a new 7-point checklist based on pattern analysis. Archives

of Dermatology, 134(12):1563–1570, 1998.

[9] TB Fitzpatrick, JD Bernhard, TG Cropley, et al. The structure of skin lesions

and fundamentals of diagnosis. Dermatology in General Medicine, 5:13–41,

1999.

[10] Gregory S Barsh. What controls variation in human skin color? PLoS Biol,

1(1):e27, 2003.

[11] Marc Bosch, Kevin Foster, Gordon Christie, Sean Wang, Gregory D Hager, and

Myron Brown. Semantic stereo for incidental satellite images. In IEEE Winter

Conference on Applications of Computer Vision, pages 1524–1532. IEEE, 2019.

[12] Bertrand Le Saux, Naoto Yokoya, Ronny Hansch, Myron Brown, and Greg

Hager. 2019 data fusion contest [technical committees]. IEEE Geoscience and

Remote Sensing Magazine, 7(1):103–105, 2019.

[13] 2019 IEEE GRSS Data Fusion Contest. http://www.grss-ieee.org/

community/technical-committees/data-fusion/data-fusion-contest/.

127

http://www.grss-ieee.org/community/technical-committees/data-fusion/data-fusion-contest/
http://www.grss-ieee.org/community/technical-committees/data-fusion/data-fusion-contest/


[14] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf

Ronneberger. 3D U-Net: learning dense volumetric segmentation from sparse

annotation. In International Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 424–432. Springer, 2016.

[15] Benjamin Graham and Laurens van der Maaten. Submanifold sparse convolu-

tional networks. arXiv preprint arXiv:1706.01307, 2017.

[16] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3D semantic

segmentation with submanifold sparse convolutional networks. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 9224–9232, 2018.

[17] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Pointwise convolutional

neural networks. In IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 984–993, 2018.

[18] Fabian Groh, Patrick Wieschollek, and Hendrik PA Lensch. Flex-convolution.

In Asian Conference on Computer Vision, pages 105–122. Springer, 2018.

[19] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. SpiderCNN: Deep

learning on point sets with parameterized convolutional filters. In European

Conference on Computer Vision, pages 87–102, 2018.

[20] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep

learning on point sets for 3D classification and segmentation. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 652–660, 2017.

[21] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++:

Deep hierarchical feature learning on point sets in a metric space. In Advances

in Neural Information Processing Systems, pages 5099–5108, 2017.

128



[22] Qiangui Huang, Weiyue Wang, and Ulrich Neumann. Recurrent slice networks

for 3D segmentation of point clouds. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 2626–2635, 2018.

[23] Mingyang Jiang, Yiran Wu, Tianqi Zhao, Zelin Zhao, and Cewu Lu. PointSIFT:

A SIFT-like network module for 3D point cloud semantic segmentation. arXiv

preprint arXiv:1807.00652, 2018.

[24] Min Zhang, Haoxuan You, Pranav Kadam, Shan Liu, and C-C Jay Kuo.

PointHop: An explainable machine learning method for point cloud classifi-

cation. IEEE Transactions on Multimedia, 22(7):1744–1755, 2020.

[25] Truc Le and Ye Duan. PointGrid: A deep network for 3D shape understanding.

In IEEE Conference on Computer Vision and Pattern Recognition, pages 9204–

9214, 2018.

[26] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. A comprehensive survey on graph neural networks. IEEE Trans-

actions on Neural Networks and Learning Systems, 2020.

[27] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convo-

lutional networks: a comprehensive review. Computational Social Networks,

6(1):11, 2019.

[28] Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks

for an accurate and interpretable prediction of material properties. Physical

Review Letters, 120(14):145301, 2018.

[29] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng

Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of

methods and applications. arXiv preprint arXiv:1812.08434, 2018.

129



[30] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and Jie Shan. Graph

attention convolution for point cloud semantic segmentation. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 10296–10305, 2019.

[31] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns:

Can gcns go as deep as cnns? In IEEE International Conference on Computer

Vision, pages 9267–9276, 2019.

[32] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen.

PointCNN: Convolution on x-transformed points. In Advances in Neural Infor-

mation Processing Systems, pages 820–830, 2018.

[33] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and

Justin M Solomon. Dynamic graph CNN for learning on point clouds. ACM

Transactions on Graphics, 38(5):1–12, 2019.

[34] Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic seg-

mentation with superpoint graphs. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 4558–4567, 2018.

[35] Fenggen Yu, Kun Liu, Yan Zhang, Chenyang Zhu, and Kai Xu. PartNet: A

recursive part decomposition network for fine-grained and hierarchical shape

segmentation. In IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 9491–9500, 2019.

[36] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui,

François Goulette, and Leonidas J Guibas. KPConv: Flexible and deformable

convolution for point clouds. In IEEE International Conference on Computer

Vision, pages 6411–6420, 2019.

[37] Alexandre Boulch. Generalizing discrete convolutions for unstructured point

clouds. arXiv preprint arXiv:1904.02375, 2019.

130



[38] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang,

Niki Trigoni, and Andrew Markham. Randla-net: Efficient semantic segmenta-

tion of large-scale point clouds. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 11108–11117, 2020.

[39] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. Squeezeseg: Convo-

lutional neural nets with recurrent crf for real-time road-object segmentation

from 3d lidar point cloud. In 2018 IEEE International Conference on Robotics

and Automation (ICRA), pages 1887–1893. IEEE, 2018.

[40] Yanchao Lian, Tuo Feng, and Jinliu Zhou. A dense PointNet++ architecture

for 3D point cloud semantic segmentation. In IEEE IGARSS, pages 5061–5064,

2019.

[41] Meixia Jia, Aijin Li, and Zhaoyang Wu. A global Point-SIFT attention network

for 3D point cloud semantic segmentation. In IEEE IGARSS, pages 5065–5068,

2019.

[42] 2019 IEEE GRSS Data Fusion Contest Baseline. http://https://github.

com/pubgeo/dfc2019/tree/master/track4/.

[43] Timo Hackel, N. Savinov, L. Ladicky, Jan D. Wegner, K. Schindler, and

M. Pollefeys. SEMANTIC3D.NET: A new large-scale point cloud classifica-

tion benchmark. In ISPRS Annals Photogrammetry, Remote Sensing, Spatial

Info. Sci., volume IV-1-W1, pages 91–98, 2017.

[44] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional

networks on 3D point clouds. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 9621–9630, 2019.

131

http://https://github.com/pubgeo/dfc2019/tree/master/track4/
http://https://github.com/pubgeo/dfc2019/tree/master/track4/


[45] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-

CNN: Octree-based convolutional neural networks for 3D shape analysis. ACM

Transactions on Graphics, 36(4):1–11, 2017.

[46] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou

Tang, and Jianxiong Xiao. 3D ShapeNets: A deep representation for volumetric

shapes. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 1912–1920, 2015.

[47] Daniel Maturana and Sebastian Scherer. VoxNet: A 3D convolutional neural

network for real-time object recognition. In IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pages 922–928, 2015.

[48] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. OctNet: Learning

deep 3D representations at high resolutions. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 3577–3586, 2017.

[49] Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-networks for

the recognition of 3D point cloud models. In IEEE International Conference

on Computer Vision, pages 863–872, 2017.

[50] Truc Le, Giang Bui, and Ye Duan. A multi-view recurrent neural network for

3d mesh segmentation. Computers and Graphics, 66:103–112, 2017.

[51] Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, and Siddhartha

Chaudhuri. 3d shape segmentation with projective convolutional networks. In

IEEE Conference on Computer Vision and Pattern Recognition, pages 3779–

3788, 2017.

[52] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller.

Multi-view convolutional neural networks for 3D shape recognition. In IEEE

International Conference on Computer Vision, pages 945–953, 2015.

132



[53] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre

Vandergheynst. Geometric deep learning: going beyond euclidean data. IEEE

Signal Processing Magazine, 34(4):18–42, 2017.

[54] Li Yi, Hao Su, Xingwen Guo, and Leonidas J Guibas. SyncSpecCNN: Syn-

chronized spectral cnn for 3D shape segmentation. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 2282–2290, 2017.

[55] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Mining point cloud

local structures by kernel correlation and graph pooling. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 4548–4557, 2018.

[56] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel Urtasun. 3D

graph neural networks for RGBD semantic segmentation. In IEEE International

Conference on Computer Vision, pages 5199–5208, 2017.

[57] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters

in convolutional neural networks on graphs. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 3693–3702, 2017.

[58] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point convolutional neural

networks by extension operators. arXiv preprint arXiv:1803.10091, 2018.

[59] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svo-

boda, and Michael M Bronstein. Geometric deep learning on graphs and man-

ifolds using mixture model CNNs. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 5115–5124, 2017.

[60] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin

Fischer, and Silvio Savarese. 3D semantic parsing of large-scale indoor spaces.

In IEEE Conference on Computer Vision and Pattern Recognition, pages 1534–

1543, 2016.

133



[61] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung Gwak, and Silvio

Savarese. Segcloud: Semantic segmentation of 3D point clouds. In IEEE Inter-

national Conference on Computer Vision, pages 537–547, 2017.

[62] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas

Funkhouser, and Matthias Nießner. ScanNet: Richly-annotated 3D reconstruc-

tions of indoor scenes. In IEEE Conference on Computer Vision and Pattern

Recognition, 2017.

[63] Sanjay Surendranath Girija. Tensorflow: Large-scale machine learning on het-

erogeneous distributed systems. Software available from tensorflow. org, 39(9),

2016.

[64] Diederik P Kingma and Jimmy Ba. ADAM: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[65] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Ur-

tasun. Deep parametric continuous convolutional neural networks. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 2589–2597,

2018.

[66] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou. Tangent

convolutions for dense prediction in 3D. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 3887–3896, 2018.

[67] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. Attentional shapecon-

textnet for point cloud recognition. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 4606–4615, 2018.

[68] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kaloger-

akis, Ming-Hsuan Yang, and Jan Kautz. SplatNet: Sparse lattice networks for

134



point cloud processing. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 2530–2539, 2018.

[69] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape

convolutional neural network for point cloud analysis. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 8895–8904, 2019.

[70] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph con-

volutional neural networks. In Proceedings of the AAAI Conference on Artificial

Intelligence, 2018.

[71] Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fischer. 3D point cloud

classification and segmentation using 3D modified Fisher Vector representation

for convolutional neural networks. arXiv preprint arXiv:1711.08241, 2017.

[72] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neumann. Sgpn: Sim-

ilarity group proposal network for 3d point cloud instance segmentation. In

IEEE Conference on Computer Vision and Pattern Recognition, pages 2569–

2578, 2018.

[73] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning

for fast adaptation of deep networks. In International Conference on Machine

Learning, volume 70, pages 1126–1135, 2017.

[74] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural net-

works for one-shot image recognition. In International Conference on Machine

Learning Workshop, volume 2, 2015.

[75] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al.

Matching networks for one shot learning. In Advances in Neural Information

Processing Systems, pages 3630–3638, 2016.

135



[76] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-

shot learning. In Advances in Neural Information Processing Systems, pages

4077–4087, 2017.

[77] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timo-

thy M Hospedales. Learning to compare: Relation network for few-shot learn-

ing. In IEEE Conference on Computer Vision and Pattern Recognition, pages

1199–1208, 2018.

[78] Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks.

arXiv preprint arXiv:1711.04043, 2017.

[79] Bharath Hariharan and Ross Girshick. Low-shot visual recognition by shrink-

ing and hallucinating features. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 3018–3027, 2017.

[80] Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath Hariharan. Low-

shot learning from imaginary data. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 7278–7286, 2018.

[81] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans-

actions on Knowledge and Data Engineering, 22(10):1345–1359, 2009.

[82] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by

backpropagation. In International Conference on Machine Learning, volume 37,

pages 1180–1189, 2015.

[83] Nanqing Dong and Eric P Xing. Domain adaption in one-shot learning. In

Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pages 573–588, 2018.

136



[84] Richard Socher, Milind Ganjoo, Christopher D Manning, and Andrew Ng. Zero-

shot learning through cross-modal transfer. In Advances in Neural Information

Processing Systems, pages 935–943, 2013.

[85] Eli Schwartz, Leonid Karlinsky, Rogerio Feris, Raja Giryes, and Alex M Bron-

stein. Baby steps towards few-shot learning with multiple semantics. arXiv

preprint arXiv:1906.01905, 2019.

[86] Yaqing Wang and Quanming Yao. Few-shot learning: A survey. arXiv preprint

arXiv:1904.05046, 2019.

[87] Eleni Triantafillou, Richard Zemel, and Raquel Urtasun. Few-shot learning

through an information retrieval lens. In Advances in Neural Information Pro-

cessing Systems, pages 2255–2265, 2017.

[88] Zhongwen Xu, Linchao Zhu, and Yi Yang. Few-shot object recognition from

machine-labeled web images. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 1164–1172, 2017.

[89] Yu-Xiong Wang and Martial Hebert. Learning to learn: Model regression net-

works for easy small sample learning. In European Conference on Computer

Vision, pages 616–634. Springer, 2016.

[90] Yu-Xiong Wang and Martial Hebert. Learning from small sample sets by com-

bining unsupervised meta-training with cnns. In Advances in Neural Informa-

tion Processing Systems, pages 244–252, 2016.

[91] Mark Woodward and Chelsea Finn. Active one-shot learning. arXiv preprint

arXiv:1702.06559, 2017.

137



[92] Yao-Hung Hubert Tsai, Liang-Kang Huang, and Ruslan Salakhutdinov. Learn-

ing robust visual-semantic embeddings. In IEEE International Conference on

Computer Vision, pages 3591–3600, 2017.

[93] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu,

Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and

Hugo Larochelle. Meta-dataset: A dataset of datasets for learning to learn from

few examples. arXiv preprint arXiv:1903.03096, 2019.

[94] Yunhui Guo, Noel C Codella, Leonid Karlinsky, James V Codella, John R

Smith, Kate Saenko, Tajana Rosing, and Rogerio Feris. A broader study of

cross-domain few-shot learning. In European Conference on Computer Vision,

pages 124–141. Springer, 2020.

[95] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Wang, and Jia-Bin

Huang. A closer look at few-shot classification. In International Conference

on Learning Representations, 2019.

[96] Hung-Yu Tseng, Hsin-Ying Lee, Jia-Bin Huang, and Ming-Hsuan Yang. Cross-

domain few-shot classification via learned feature-wise transformation. In In-

ternational Conference on Learning Representations, 2020.

[97] Piotr Koniusz, Yusuf Tas, Hongguang Zhang, Mehrtash Harandi, Fatih Porikli,

and Rui Zhang. Museum exhibit identification challenge for the supervised

domain adaptation and beyond. In European Conference on Computer Vision,

pages 788–804, 2018.

[98] Nanqing Dong and Eric P Xing. Domain adaption in one-shot learning. In

Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pages 573–588. Springer, 2018.

138



[99] Yunhui Guo, Noel CF Codella, Leonid Karlinsky, John R Smith, Tajana Rosing,

and Rogerio Feris. A new benchmark for evaluation of cross-domain few-shot

learning. arXiv preprint arXiv:1912.07200, 2019.

[100] Jiang Lu, Pinghua Gong, Jieping Ye, and Changshui Zhang. Learning from

very few samples: A survey. arXiv preprint arXiv:2009.02653, 2020.

[101] Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing objects

by their attributes. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 1778–1785, 2009.

[102] Vittorio Ferrari and Andrew Zisserman. Learning visual attributes. In Advances

in Neural Information Processing Systems, pages 433–440, 2008.

[103] Devi Parikh and Kristen Grauman. Relative attributes. In IEEE International

Conference on Computer Vision, pages 503–510, 2011.

[104] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean,

Marc’Aurelio Ranzato, and Tomas Mikolov. Devise: A deep visual-semantic em-

bedding model. In Advances in Neural Information Processing Systems, pages

2121–2129, 2013.

[105] Richard Socher, Milind Ganjoo, Christopher D Manning, and Andrew Ng. Zero-

shot learning through cross-modal transfer. In Advances in Neural Information

Processing Systems, pages 935–943, 2013.

[106] Li Zhang, Flood Sung, Feng Liu, Tao Xiang, Shaogang Gong, Yongxin Yang,

and Timothy M Hospedales. Actor-critic sequence training for image captioning.

arXiv preprint arXiv:1706.09601, 2017.

139



[107] Scott Reed, Zeynep Akata, Honglak Lee, and Bernt Schiele. Learning deep rep-

resentations of fine-grained visual descriptions. In IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 49–58, 2016.

[108] Jimmy Lei Ba, Kevin Swersky, Sanja Fidler, et al. Predicting deep zero-shot

convolutional neural networks using textual descriptions. In IEEE International

Conference on Computer Vision, pages 4247–4255, 2015.

[109] Zhenyong Fu, Tao Xiang, Elyor Kodirov, and Shaogang Gong. Zero-shot object

recognition by semantic manifold distance. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 2635–2644, 2015.

[110] Li Zhang, Tao Xiang, and Shaogang Gong. Learning a deep embedding model

for zero-shot learning. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 2021–2030, 2017.

[111] Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, and Bernt Schiele.

Evaluation of output embeddings for fine-grained image classification. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 2927–2936,

2015.

[112] Wen Tang, Ashkan Panahi, and Hamid Krim. Joint concept matching based

learning for zero-shot recognition. arXiv preprint arXiv:1906.05879, 2019.

[113] Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Attribute-based

classification for zero-shot visual object categorization. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 36(3):453–465, 2013.

[114] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learn-

ing. In International Conference on Learning Representations, 2017.

140



[115] Elyor Kodirov, Tao Xiang, Zhenyong Fu, and Shaogang Gong. Unsupervised

domain adaptation for zero-shot learning. In IEEE International Conference

on Computer Vision, pages 2452–2460, 2015.

[116] Seyed Mohsen Shojaee and Mahdieh Soleymani Baghshah. Semi-supervised

zero-shot learning by a clustering-based approach. arXiv preprint

arXiv:1605.09016, 2016.

[117] Soravit Changpinyo, Wei-Lun Chao, Boqing Gong, and Fei Sha. Synthesized

classifiers for zero-shot learning. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 5327–5336, 2016.

[118] Yao Lu. Unsupervised learning on neural network outputs: with application in

zero-shot learning. arXiv preprint arXiv:1506.00990, 2015.

[119] Ziming Zhang and Venkatesh Saligrama. Zero-shot learning via joint latent

similarity embedding. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 6034–6042, 2016.

[120] Bernardino Romera-Paredes and Philip Torr. An embarrassingly simple ap-

proach to zero-shot learning. In International Conference on Machine Learning,

pages 2152–2161, 2015.

[121] Yanwei Fu, Timothy M Hospedales, Tao Xiang, Zhenyong Fu, and Shaogang

Gong. Transductive multi-view embedding for zero-shot recognition and anno-

tation. In European Conference on Computer Vision, pages 584–599. Springer,

2014.

[122] Yongxin Yang and Timothy M Hospedales. A unified perspective on multi-

domain and multi-task learning. arXiv preprint arXiv:1412.7489, 2014.

141



[123] Miloš Radovanović, Alexandros Nanopoulos, and Mirjana Ivanović. Hubs in

space: Popular nearest neighbors in high-dimensional data. Journal of Machine

Learning Research, 11(Sep):2487–2531, 2010.

[124] Yutaro Shigeto, Ikumi Suzuki, Kazuo Hara, Masashi Shimbo, and Yuji Mat-

sumoto. Ridge regression, hubness, and zero-shot learning. In Joint European

Conference on Machine Learning and Knowledge Discovery in Databases, pages

135–151. Springer, 2015.

[125] Georgiana Dinu, Angeliki Lazaridou, and Marco Baroni. Improving zero-shot

learning by mitigating the hubness problem. arXiv preprint arXiv:1412.6568,

2014.

[126] Angeliki Lazaridou, Georgiana Dinu, and Marco Baroni. Hubness and pollution:

Delving into cross-space mapping for zero-shot learning. In Annual Meeting of

the Association for Computational Linguistics, pages 270–280, 2015.

[127] Catherine Wah, Steve Branson, Pietro Perona, and Serge Belongie. Multiclass

recognition and part localization with humans in the loop. In IEEE Interna-

tional Conference on Computer Vision, pages 2524–2531, 2011.

[128] Genevieve Patterson, Chen Xu, Hang Su, and James Hays. The SUN attribute

database: Beyond categories for deeper scene understanding. International

Journal of Computer Vision, 108(1-2):59–81, 2014.

[129] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans-

actions on Knowledge and Data Engineering, 22(10):1345–1359, 2009.

[130] Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and

Alex Smola. Correcting sample selection bias by unlabeled data. Advances in

Neural Information Processing Systems, 19:601–608, 2006.

142



[131] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira,

and Jennifer Wortman Vaughan. A theory of learning from different domains.

Machine Learning, 79(1-2):151–175, 2010.

[132] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial dis-

criminative domain adaptation. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 7167–7176, 2017.

[133] Han-Kai Hsu, Chun-Han Yao, Yi-Hsuan Tsai, Wei-Chih Hung, Hung-Yu Tseng,

Maneesh Singh, and Ming-Hsuan Yang. Progressive domain adaptation for

object detection. In IEEE Winter Conference on Applications of Computer

Vision, pages 749–757, 2020.

[134] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adap-

tation via transfer component analysis. IEEE Transactions on Neural Networks,

22(2):199–210, 2010.

[135] Sinno Jialin Pan, James T Kwok, Qiang Yang, et al. Transfer learning via

dimensionality reduction. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 8, pages 677–682, 2008.

[136] Jun Yang, Rong Yan, and Alexander G Hauptmann. Adapting svm classifiers

to data with shifted distributions. In IEEE International Conference on Data

Mining Workshops, pages 69–76, 2007.

[137] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra

Malik, and Silvio Savarese. Taskonomy: Disentangling task transfer learning.

In IEEE Conference on Computer Vision and Pattern Recognition, pages 3712–

3722, 2018.

[138] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and

Stefan Carlsson. Factors of transferability for a generic convnet representation.

143



IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(9):1790–

1802, 2015.

[139] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisit-

ing unreasonable effectiveness of data in deep learning era. In IEEE Interna-

tional Conference on Computer Vision, pages 843–852, 2017.

[140] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable

are features in deep neural networks? In Advances in Neural Information

Processing Systems, pages 3320–3328, 2014.

[141] Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What makes ImageNet

good for transfer learning? arXiv preprint arXiv:1608.08614, 2016.

[142] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several

related classification tasks to a new unlabeled sample. In Advances in Neural

Information Processing Systems, pages 2178–2186, 2011.

[143] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain gener-

alization with adversarial feature learning. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 5400–5409, 2018.

[144] Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain gener-

alization via invariant feature representation. In International Conference on

Machine Learning, pages 10–18, 2013.

[145] Li Niu, Wen Li, and Dong Xu. Multi-view domain generalization for visual

recognition. In IEEE International Conference on Computer Vision, pages

4193–4201, 2015.

144



[146] Li Niu, Wen Li, and Dong Xu. Visual recognition by learning from web data:

A weakly supervised domain generalization approach. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 2774–2783, 2015.

[147] Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A Efros, and Antonio

Torralba. Undoing the damage of dataset bias. In European Conference on

Computer Vision, pages 158–171. Springer, 2012.

[148] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper,

broader and artier domain generalization. In IEEE International Conference

on Computer Vision, pages 5542–5550, 2017.

[149] Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri,

Preethi Jyothi, and Sunita Sarawagi. Generalizing across domains via cross-

gradient training. In International Conference on Learning Representations,

2018.

[150] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio

Murino, and Silvio Savarese. Generalizing to unseen domains via adversar-

ial data augmentation. In Advances in Neural Information Processing Systems,

pages 5334–5344, 2018.

[151] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: To-

wards domain generalization using meta-regularization. In Advances in Neural

Information Processing Systems, pages 998–1008, 2018.

[152] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Learning to

generalize: Meta-learning for domain generalization. Proceedings of the AAAI

Conference on Artificial Intelligence, 2018.

145



[153] Yiying Li, Yongxin Yang, Wei Zhou, and Timothy M Hospedales. Feature-critic

networks for heterogeneous domain generalization. International Conference on

Machine Learning, 2019.

[154] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and An-

drea Vedaldi. Describing textures in the wild. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 3606–3613, 2014.

[155] Barbara Caputo, Eric Hayman, and P Mallikarjuna. Class-specific material cat-

egorisation. In IEEE International Conference on Computer Vision, volume 2,

pages 1597–1604, 2005.

[156] Lavanya Sharan, Ruth Rosenholtz, and Edward Adelson. Material perception:

What can you see in a brief glance? Journal of Vision, 9(8):784–784, 2009.

[157] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material recognition

in the wild with the materials in context database. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 3479–3487, 2015.

[158] Jia Xue, Hang Zhang, Kristin Dana, and Ko Nishino. Differential angular

imaging for material recognition. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 764–773, 2017.

[159] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual mod-

els from few training examples: An incremental bayesian approach tested on

101 object categories. In IEEE Conference on Computer Vision and Pattern

Recognition Worshop, pages 178–178, 2004.

[160] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object cat-

egories. IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(4):594–611, 2006.

146



[161] Jianzhong He, Shiliang Zhang, Ming Yang, Yanhu Shan, and Tiejun Huang. Bi-

directional cascade network for perceptual edge detection. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 3828–3837, 2019.

[162] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

ImageNet large scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015.

[163] Evgeniy Bart and Shimon Ullman. Cross-generalization: Learning novel classes

from a single example by feature replacement. In IEEE Conference on Computer

Vision and Pattern Recognition, volume 1, pages 672–679. IEEE, 2005.

[164] Antonio Torralba, Kevin P Murphy, and William T Freeman. Sharing visual

features for multiclass and multiview object detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 29(5):854–869, 2007.

[165] Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Attribute-based

classification for zero-shot visual object categorization. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 36(3):453–465, 2013.

[166] Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to

detect unseen object classes by between-class attribute transfer. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 951–958, 2009.

[167] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eu-

roSAT: A novel dataset and deep learning benchmark for land use and land

cover classification. IEEE Journal of Selected Topics in Applied Earth Obser-

vations and Remote Sensing, 12(7):2217–2226, 2019.

147



[168] Sharada P Mohanty, David P Hughes, and Marcel Salathé. Using deep learning

for image-based plant disease detection. Frontiers in Plant Science, 7:1419,

2016.

[169] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri,

and Ronald M Summers. Chestx-ray8: Hospital-scale chest x-ray database and

benchmarks on weakly-supervised classification and localization of common tho-

rax diseases. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 2097–2106, 2017.

[170] Xiaoxiao Sun, Jufeng Yang, Ming Sun, and Kai Wang. A benchmark for auto-

matic visual classification of clinical skin disease images. In European Confer-

ence on Computer Vision, pages 206–222. Springer, 2016.

[171] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-

level concept learning through probabilistic program induction. Science,

350(6266):1332–1338, 2015.

[172] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. Zero-

shot learning-a comprehensive evaluation of the good, the bad and the ugly.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.

[173] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Tim-

othy Lillicrap. Meta-learning with memory-augmented neural networks. In

International Conference on Machine Learning, pages 1842–1850, 2016.

[174] Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, and Adam Trischler.

Rapid adaptation with conditionally shifted neurons. arXiv preprint

arXiv:1712.09926, 2017.

148



[175] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto.

Meta-learning with differentiable convex optimization. In IEEE Transactions

on Pattern Analysis and Machine Intelligence, pages 10657–10665, 2019.

[176] Mohammad Norouzi, Tomas Mikolov, Samy Bengio, Yoram Singer, Jonathon

Shlens, Andrea Frome, Greg S Corrado, and Jeffrey Dean. Zero-shot learning

by convex combination of semantic embeddings. International Conference on

Learning Representations, 2013.

[177] Ziming Zhang and Venkatesh Saligrama. Zero-shot learning via semantic sim-

ilarity embedding. In IEEE International Conference on Computer Vision,

pages 4166–4174, 2015.

[178] Yongqin Xian, Zeynep Akata, Gaurav Sharma, Quynh Nguyen, Matthias Hein,

and Bernt Schiele. Latent embeddings for zero-shot classification. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 69–77, 2016.

[179] Zeynep Akata, Florent Perronnin, Zaid Harchaoui, and Cordelia Schmid. Label-

embedding for image classification. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 38(7):1425–1438, 2015.

[180] Elyor Kodirov, Tao Xiang, and Shaogang Gong. Semantic autoencoder for zero-

shot learning. In IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3174–3183, 2017.

[181] Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep Akata. Feature gener-

ating networks for zero-shot learning. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 5542–5551, 2018.

[182] Long Chen, Hanwang Zhang, Jun Xiao, Wei Liu, and Shih-Fu Chang. Zero-shot

visual recognition using semantics-preserving adversarial embedding networks.

149



In IEEE Conference on Computer Vision and Pattern Recognition, pages 1043–

1052, 2018.

[183] Kai Li, Martin Renqiang Min, and Yun Fu. Rethinking zero-shot learning: A

conditional visual classification perspective. In IEEE International Conference

on Computer Vision, pages 3583–3592, 2019.

[184] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.

Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[185] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.

Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.

[186] Elicia Maine and Elizabeth Garnsey. Commercializing generic technology: The

case of advanced materials ventures. Research Policy, 35(3):375–393, 2006.

[187] Sumio Iijima. Helical microtubules of graphitic carbon. Nature, 354(6348):56,

1991.

[188] Michael F. L. De Volder, Sameh H. Tawfick, Ray H. Baughman, and A. John

Hart. Carbon nanotubes: Present and future commercial applications. Science,

339(6119):535–539, 2013.

[189] Benjamin D Jensen, Jae-Woo Kim, Godfrey Sauti, Kristopher E Wise, Liang

Dong, Haydn NG Wadley, Jin Gyu Park, Richard Liang, and Emilie J Siochi.

Toward ultralight high-strength structural materials via collapsed carbon nan-

otube bonding. Carbon, 156:538–548, 2020.

[190] Brian L Wardle, Diego S Saito, Enrique J Garcia, A John Hart, Roberto Guz-

man de Villoria, and Eric A Verploegen. Fabrication and characterization of

ultrahigh-volume-fraction aligned carbon nanotube–polymer composites. Ad-

vanced Materials, 20(14):2707–2714, 2008.

150



[191] Lijun Liu, Jie Han, Lin Xu, Jianshuo Zhou, Chenyi Zhao, Sujuan Ding, Hui-

wen Shi, Mengmeng Xiao, Li Ding, Ze Ma, et al. Aligned, high-density semi-

conducting carbon nanotube arrays for high-performance electronics. Science,

368(6493):850–856, 2020.

[192] Shaghayegh Shajari, Mehdi Mahmoodi, Mahmoud Rajabian, Kunal Karan, Ut-

tandaraman Sundararaj, and Les Jozef Sudak. Highly sensitive and stretchable

carbon nanotube/fluoroelastomer nanocomposite with a double-percolated net-

work for wearable electronics. Advanced Electronic Materials, 6(2):1901067,

2020.

[193] Myounggu Park, Baratunde A Cola, Thomas Siegmund, Jun Xu, Matthew R

Maschmann, Timothy S Fisher, and Hyonny Kim. Effects of a carbon nanotube

layer on electrical contact resistance between copper substrates. Nanotechnol-

ogy, 17(9):2294–2303, apr 2006.

[194] Matthew R Maschmann, Gregory J Ehlert, Benjamin T Dickinson, David M

Phillips, Cody W Ray, Greg W Reich, and Jeffery W Baur. Bioinspired carbon

nanotube fuzzy fiber hair sensor for air-flow detection. Advanced Materials,

26(20):3230–3234, 2014.

[195] Matthew R Maschmann, Ben Dickinson, Gregory J Ehlert, and Jeffery W Baur.

Force sensitive carbon nanotube arrays for biologically inspired airflow sensing.

Smart Materials and Structures, 21(9):094024, 2012.

[196] Gregory J Ehlert, Matthew R Maschmann, and Jeffery W Baur. Electrome-

chanical behavior of aligned carbon nanotube arrays for bio-inspired fluid flow

sensors. In Active and Passive Smart Structures and Integrated Systems, volume

7977, page 79771C, 2011.

151



[197] Natnael Behabtu, Colin C Young, Dmitri E Tsentalovich, Olga Kleinerman,

Xuan Wang, Anson WK Ma, E Amram Bengio, Ron F ter Waarbeek, Jorrit J

de Jong, Ron E Hoogerwerf, et al. Strong, light, multifunctional fibers of carbon

nanotubes with ultrahigh conductivity. Science, 339:182–186, 2013.

[198] Baratunde A Cola, Jun Xu, Changrui Cheng, Xianfan Xu, Timothy S Fisher,

and Hanping Hu. Photoacoustic characterization of carbon nanotube array

thermal interfaces. Journal of Applied Physics, 101(5):054313, 2007.

[199] Baratunde A Cola, Jun Xu, and Timothy S Fisher. Contact mechanics and

thermal conductance of carbon nanotube array interfaces. International Journal

of Heat and Mass Transfer, 52(15-16):3490–3503, 2009.

[200] Baratunde A Cola, Xianfan Xu, and Timothy S Fisher. Increased real contact in

thermal interfaces: A carbon nanotube/foil material. Applied Physics Letters,

90(9):093513, 2007.

[201] Qingzhong Zhao, Marco Buongiorno Nardelli, and Jerry Bernholc. Ulti-

mate strength of carbon nanotubes: A theoretical study. Physical Review B,

65(14):144105, 2002.

[202] Rufan Zhang, Qian Wen, Weizhong Qian, Dang Sheng Su, Qiang Zhang, and

Fei Wei. Superstrong ultralong carbon nanotubes for mechanical energy storage.

Advanced Materials, 23(30):3387–3391, 2011.

[203] Mei Zhang, Ken R Atkinson, and Ray H Baughman. Multifunctional carbon

nanotube yarns by downsizing an ancient technology. Science, 306(5700):1358–

1361, 2004.

[204] Ya Feng, Taiki Inoue, Hua An, Rong Xiang, Shohei Chiashi, and Shigeo

Maruyama. Quantitative study of bundle size effect on thermal conductiv-

152



ity of single-walled carbon nanotubes. Applied Physics Letters, 112(19):191904,

2018.

[205] T Dürkop, SA Getty, Enrique Cobas, and MS Fuhrer. Extraordinary mobility

in semiconducting carbon nanotubes. Nano letters, 4(1):35–39, 2004.

[206] Donglai Zhong, Zhiyong Zhang, Li Ding, Jie Han, Mengmeng Xiao, Jia Si, Lin

Xu, Chenguang Qiu, and Lian-Mao Peng. Gigahertz integrated circuits based

on carbon nanotube films. Nature Electronics, 1(1):40–45, 2018.

[207] Mostafa Bedewy, Eric R Meshot, Michael J Reinker, and A John Hart. Pop-

ulation growth dynamics of carbon nanotubes. ACS Nano, 5(11):8974–8989,

2011.

[208] Guofang Zhong, Jamie H Warner, Martin Fouquet, Alex W Robertson, Bingan

Chen, and John Robertson. Growth of ultrahigh density single-walled carbon

nanotube forests by improved catalyst design. ACS Nano, 6(4):2893–2903, 2012.

[209] Matthew R Maschmann, Qiuhong Zhang, Feng Du, Liming Dai, and Jeffery

Baur. Length dependent foam-like mechanical response of axially indented

vertically oriented carbon nanotube arrays. Carbon, 49(2):386–397, 2011.

[210] Matthew R Maschmann, Gregory J Ehlert, Sei Jin Park, David Mollenhauer,

Benji Maruyama, A John Hart, and Jeffery W Baur. Visualizing strain evolution

and coordinated buckling within CNT arrays by in situ digital image correlation.

Advanced Functional Materials, 22(22):4686–4695, 2012.

[211] Anyuan Cao, Pamela L Dickrell, W Gregory Sawyer, Mehrdad N Ghasemi-

Nejhad, and Pulickel M Ajayan. Super-compressible foam-like carbon nanotube

films. Science, 310(5752):1307–1310, 2005.

153



[212] Siddhartha Pathak, Ee J Lim, Parisa Pour Shahid Saeed Abadi, Samuel Gra-

ham, Baratunde A Cola, and Julia R Greer. Higher recovery and better energy

dissipation at faster strain rates in carbon nanotube bundles: An in-situ study.

ACS Nano, 6(3):2189–2197, 2012.

[213] Matthew R Maschmann, Qiuhong Zhang, Robert Wheeler, Feng Du, Liming

Dai, and Jeffery Baur. In situ SEM observation of column-like and foam-like

CNT array nano-indentation. ACS Applied Materials & Interfaces, 3(3):648–

653, 2011.

[214] X Jack Hu, Antonio A Padilla, Jun Xu, Timothy S Fisher, and Kenneth E

Goodson. 3-omega measurements of vertically oriented carbon nanotubes on

silicon. Journal of Heat Transfer, 128(11):1109–1113, 2006.

[215] Rahul Rao, David Liptak, Tonya Cherukuri, Boris I Yakobson, and Benji

Maruyama. In situ evidence for chirality-dependent growth rates of individ-

ual carbon nanotubes. Nature Materials, 11(3):213–216, 2012.

[216] Pavel Nikolaev, Daylond Hooper, Frederick Webber, Rahul Rao, Kevin Decker,

Michael Krein, Jason Poleski, Rick Barto, and Benji Maruyama. Autonomy in

materials research: A case study in carbon nanotube growth. npj Computational

Materials, 2(1):1–6, 2016.

[217] Taher Hajilounezhad, Damola M Ajiboye, and Matthew R Maschmann. Eval-

uating the forces generated during carbon nanotube forest growth and self-

assembly. Materialia, 7:100371, 2019.

[218] Matthew R Maschmann. Integrated simulation of active carbon nanotube forest

growth and mechanical compression. Carbon, 86:26–37, 2015.

154



[219] Josef Brown, Taher Hajilounezhad, Nicholas T Dee, Sanha Kim, A John Hart,

and Matthew R Maschmann. Delamination mechanics of carbon nanotube

micropillars. ACS Applied Materials & Interfaces, 11(38):35221–35227, 2019.

[220] Ryan Hines, Taher Hajilounezhad, Cole Love-Baker, Gordon Koerner, and

Matthew R Maschmann. Growth and mechanics of heterogeneous, 3D carbon

nanotube forest microstructures formed by sequential selective-area synthesis.

ACS Applied Materials & Interfaces, 12(15):17893–17900, 2020.

[221] Taher Hajilounezhad, Zakariya A Oraibi, Ramakrishna Surya, Filiz Bunyak,

Matthew R Maschmann, Prasad Calyam, and Kannappan Palaniappan. Explo-

ration of carbon nanotube forest synthesis-structure relationships using physics-

based simulation and machine learning. In IEEE Applied Imagery Pattern

Recognition Workshop, pages 1–8, 2019.

[222] Placidus B. Amama, Cary L. Pint, Seung Min Kim, Laura McJilton, Kurt G.

Eyink, Eric A. Stach, Robert H. Hauge, and Benji Maruyama. Influence of

alumina type on the evolution and activity of alumina-supported Fe catalysts

in single-walled carbon nanotube carpet growth. ACS Nano, 4(2):895–904, 2010.

[223] Jennifer Carpena-Núñez, Jorge Anibal Boscoboinik, Sammy Saber, Rahul Rao,

Jian-Qiang Zhong, Matthew R Maschmann, Piran R Kidambi, Nicholas T Dee,

Dmitri N Zakharov, A John Hart, et al. Isolating the roles of hydrogen exposure

and trace carbon contamination on the formation of active catalyst populations

for carbon nanotube growth. ACS Nano, 13(8):8736–8748, 2019.

[224] Nicholas T Dee, Jinjing Li, Alvin Orbaek White, Christine Jacob, Wenbo Shi,

Piran R Kidambi, Kehang Cui, Dmitri N Zakharov, Nina Z Janković, Mostafa

Bedewy, et al. Carbon-assisted catalyst pretreatment enables straightforward

synthesis of high-density carbon nanotube forests. Carbon, 153:196–205, 2019.

155



[225] Matthieu Lagardère, Ingrid Chamma, Emmanuel Bouilhol, Macha Nikolski, and

Olivier Thoumine. FluoSim: simulator of single molecule dynamics for fluores-

cence live-cell and super-resolution imaging of membrane proteins. Scientific

Reports, 10(1):1–14, 2020.

[226] Michal Kozubek. When deep learning meets cell image synthesis. Cytome-

try. Part A: the journal of the International Society for Analytical Cytology,

97(3):222–225, 2020.

[227] David Svoboda and Vladimir Ulman. MitoGen: a framework for generating 3D

synthetic time-lapse sequences of cell populations in fluorescence microscopy.

IEEE Transactions on Medical Imaging, 36(1):310–321, 2016.

[228] Akinyinka O Omigbodun, Frederic Noo, Michael McNitt-Gray, William Hsu,

and Scott S Hsieh. The effects of physics-based data augmentation on the

generalizability of deep neural networks: Demonstration on nodule false-positive

reduction. Medical Physics, 46(10):4563–4574, 2019.

[229] Mostafa Bedewy and A John Hart. Mechanical coupling limits the density and

quality of self-organized carbon nanotube growth. Nanoscale, 5(7):2928–2937,

2013.

[230] Matthew R. Maschmann, Gregory J. Ehlert, Sameh Tawfick, A. John Hart,

and Jeffery W. Baur. Continuum analysis of carbon nanotube array buckling

enabled by anisotropic elastic measurements and modeling. Carbon, 66:377–386,

2014.

[231] Shelby B Hutchens, Lee J Hall, and Julia R Greer. In situ mechanical testing

reveals periodic buckle nucleation and propagation in carbon nanotube bundles.

Advanced Functional Materials, 20(14):2338–2346, 2010.

156



[232] Marcus A. Worsley, Sergei O. Kucheyev, Joe H. Satcher, Alex V. Hamza, and

Theodore F. Baumann. Mechanically robust and electrically conductive carbon

nanotube foams. Applied Physics Letters, 94(7):073115, 2009.

[233] Anna Brieland-Shoultz, Sameh Tawfick, Sei Jin Park, Mostafa Bedewy,

Matthew R Maschmann, Jeffery W Baur, and A John Hart. Scaling the stiffness,

strength, and toughness of ceramic-coated nanotube foams into the structural

regime. Advanced Functional Materials, 24(36):5728–5735, 2014.

[234] Mostafa Bedewy, Eric R Meshot, Haicheng Guo, Eric A Verploegen, Wei Lu,

and A John Hart. Collective mechanism for the evolution and self-termination of

vertically aligned carbon nanotube growth. The Journal of Physical Chemistry

C, 113(48):20576–20582, 2009.

[235] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-

ageNet: A large-scale hierarchical image database. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 248–255, 2009.

[236] Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene

classification: Benchmark and state of the art. Proceedings of the IEEE,

105(10):1865–1883, 2017.

[237] K. Gao, H. AliAkbarpour, G. Seetharaman, and K. Palaniappan. DCT-based

local descriptor for robust matching and feature tracking in wide area motion

imagery. IEEE Geoscience and Remote Sensing Letters, pages 1–5, 2020.

[238] R. Bao, K. Palaniappan, Y. Zhao, G. Seetharaman, and W. Zeng. GLSNet:

Global and local streams network for 3D point cloud classification. In IEEE

Applied Imagery Pattern Recognition Workshop, pages 1–9, 2019.

[239] Y. M. Kassim, O. V. Glinskii, V. V. Glinsky, V. H. Huxley, G. Guidoboni,

and K. Palaniappan. Deep U-Net regression and hand-crafted feature fusion

157



for accurate blood vessel segmentation. In IEEE International Conference on

Image Processing, pages 1445–1449, Aug 2019.

[240] Yasmin M Kassim, Kannappan Palaniappan, Feng Yang, Mahdieh Poost-

chi, Nila Palaniappan, Richard J Maude, Sameer Antani, and Stefan Jaeger.

Clustering-based dual deep learning architecture for detecting red blood cells in

malaria diagnostic smears. IEEE Journal of Biomedical and Health Informatics,

25(5):1735–1746, 2020.

[241] Adel Hafiane, Kannappan Palaniappan, and Guna Seetharaman. Joint adap-

tive median binary patterns for texture classification. Pattern Recognition,

48(8):2609–2620, 2015.

[242] Adel Hafiane, Guna Seetharaman, Kannappan Palaniappan, and Bertrand Za-

vidovique. Rotationally invariant hashing of median binary patterns for tex-

ture classification. In International Conference Image Analysis and Recognition,

pages 619–629. Springer, 2008.

[243] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[244] Rui Zheng, Lei Liu, Shulin Zhang, Chun Zheng, Filiz Bunyak, Ronald Xu, Bin

Li, and Mingzhai Sun. Detection of exudates in fundus photographs with im-

balanced learning using conditional generative adversarial network. Biomedical

Optics Express, 9(10):4863–4878, 2018.

[245] Koundinya Nouduri, Ke Gao, Joshua Fraser, Shizeng Yao, Hadi AliAkbarpour,

Filiz Bunyak, and Kannappan Palaniappan. Deep realistic novel view genera-

tion for city-scale aerial images. In IEEE International Conference on Pattern

Recognition, pages 10561–10567, 2021.

158



[246] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-

sarial networks. Communications of the ACM, 63(11):139–144, 2020.

[247] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa

Sengupta, and Anil A Bharath. Generative adversarial networks: An overview.

IEEE Signal Processing Magazine, 35(1):53–65, 2018.

[248] Stephan J Ihle, Andreas M Reichmuth, Sophie Girardin, Hana Han, Flurin

Stauffer, Anne Bonnin, Marco Stampanoni, Karthik Pattisapu, János Vörös,

and Csaba Forró. Unsupervised data to content transformation with histogram-

matching cycle-consistent generative adversarial networks. Nature Machine In-

telligence, 1(10):461–470, 2019.

[249] Patrick Trampert, Dmitri Rubinstein, Faysal Boughorbel, Christian

Schlinkmann, Maria Luschkova, Philipp Slusallek, Tim Dahmen, and Stefan

Sandfeld. Deep neural networks for analysis of microscopy images—synthetic

data generation and adaptive sampling. Crystals, 11(3):258, 2021.

[250] K Jensen, W Mickelson, A Kis, and A Zettl. Buckling and kinking force mea-

surements on individual multiwalled carbon nanotubes. Physical Review B,

76(19):195436, 2007.

[251] Kristofer G Reyes and Benji Maruyama. The machine learning revolution in

materials? MRS Bulletin, 44(7):530–537, 2019.

[252] Stefano Curtarolo, Gus LW Hart, Marco Buongiorno Nardelli, Natalio Mingo,

Stefano Sanvito, and Ohad Levy. The high-throughput highway to computa-

tional materials design. Nature Materials, 12(3):191–201, 2013.

[253] Antonio Criminisi, Jamie Shotton, and Ender Konukoglu. Decision forests:

A unified framework for classification, regression, density estimation, manifold

159



learning and semi-supervised learning. Foundations and Trends in Computer

Graphics and Vision, 7(2–3):81–227, 2012.

[254] Y. M. Kassim, V. B. S. Prasath, R. Pelapur, O. Glinskii, R. J. Maude, V. Glin-

sky, V. Huxley, and K. Palaniappan. Random forests for dura mater microvas-

culature segmentation using epifluorescence images. In IEEE Engineering in

Medicine and Biology Society Conference, pages 2901–2904, 2016.

[255] V. B. S. Prasath, Y. M. Kassim, Z. A. Oraibi, J.-B. Guiriec, A. Hafiane,

G. Seetharaman, and K. Palaniappan. HEp-2 cell classification and segmen-

tation using motif texture patterns and spatial features with random forests.

In IEEE International Conference on Pattern Recognition, pages 90–95, 2016.

[256] Zakariya A Oraibi, Hayder Yousif, Adel Hafiane, Guna Seetharaman, and Kan-

nappan Palaniappan. Learning local and deep features for efficient cell image

classification using random forests. In IEEE International Conference on Image

Processing, pages 2446–2450, 2018.

[257] Hani Hagras. Toward human-understandable, explainable AI. Computer,

51(9):28–36, 2018.

[258] Frank Moosmann, Eric Nowak, and Frederic Jurie. Randomized clustering

forests for image classification. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 30(9):1632–1646, 2008.

[259] Lorna J Gibson and Michael F Ashby. Cellular Solids: Structure and Properties.

Cambridge University Press, 1999.

[260] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Vincent

Weiss, Ron Dubourg, Alexandre Passos, and David Cournapeau. Scikit-learn:

160



Machine learning in python. Journal of Machine Learning Research, 12:2825–

2830, 2011.

[261] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution repre-

sentation learning for human pose estimation. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 5693–5703, 2019.

[262] Pavel Matula, Martin Maška, Dmitry V Sorokin, Petr Matula, Carlos Ortiz-de

Solórzano, and Michal Kozubek. Cell tracking accuracy measurement based on

comparison of acyclic oriented graphs. PloS One, 10(12):e0144959, 2015.

161



VITA

Rina Bao was born in Hohhot, Inner Mongolia, China. She graduated with a B.E.

Degree in Communication Engineering from the School of Electronic Information

Engineering in Tianjin University in 2014. She studied towards her Ph.D. Degree in

Computer Science at University of Missouri from 2014. She began working with Prof.

Wenjun Zeng on pose estimation and object tracking research using deep learning.

Afterward, she worked with Prof. Kannappan Palaniappan in CIVA Lab and closely

collaborated with Prof. Yunxin Zhao. Her current research interests include image,

video, and 3D point cloud analysis with machine learning methods.

162


	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Thesis Contributions and Organization
	GLSNet & GLSNet++ for City-Scale Point Cloud Segmentation
	Introduction
	Contribution and Novelty

	Related Work
	Semantic Segmentation of 3D Point Clouds
	GLSNet Deep Learning Architectures
	GLSNet-Parallel Streams
	GLSNet-Cascade Streams
	GLSNet++ With Graph Convolutional Demixing Block

	Datasets and Implementations
	LiDAR Datasets for Point Cloud Semantic Segmentation
	Training GLSNet++
	Testing and Evaluation

	Experimental Results
	Ablation Study
	Comparison with Recent Architectures
	Visualization of Error Maps and Graph Demixing Block
	Generalization Performance on COU Point Cloud Dataset

	Chapter Conclusions

	PointGrad: Point Gradient Operator for 3D Point Cloud Segmentation
	Introduction
	Motivation
	Contribution

	Related Work
	Proposed PointGrad Operator
	Directional Derivative
	Point Directional Derivatives
	PointGrad Module Design
	Gradient Backpropagation in PointGrad
	PointGradNet: PointGrad Network Family
	Comparison with Existing Methods 

	Experiments
	Datasets and Implementations
	Ablation Study
	Comparison to Existing Methods

	Chapter Conclusions

	MDXNet for Few-Shot Learning and Zero-Shot Learning
	Introduction
	Approach
	Contribution

	Related Work
	Few-Shot Learning
	Zero-Shot Learning
	Domain Generalization and Domain Adaptation

	MDXNet for Cross-Domain Few-Shot Learning and Zero-Shot Learning
	Visual Primitives and VP Domain Knowledge Learning
	MDXNet in Cross-Domain Few-Shot Learning
	MDXNet in Zero-Shot Learning

	Datasets
	Datasets for Visual Primitive Domains
	Benchmarks for Application Domains

	Experimental Results
	Few-Shot Learning Analysis
	Zero-Shot Learning Analysis
	Explainability of VPs
	Discussion

	Chapter Conclusions

	Domain Applications
	CNTNet: Carbon Nanotube Structure Recognition and Property Regression
	Introduction
	Results
	Discussion
	Methods
	Evaluation Metrics

	DMNet for Cell Segmentation

	Summary and Concluding Remarks
	BIBLIOGRAPHY
	VITA



