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BAYESIAN UNIT-LEVEL MODELING OF

NON-GAUSSIAN SURVEY DATA UNDER

INFORMATIVE SAMPLING WITH APPLICATION TO

SMALL AREA ESTIMATION 1

Paul A. Parker

Scott H. Holan, Dissertation Supervisor

ABSTRACT

Unit-level models are an alternative to the traditional area-level models used in

small area estimation, characterized by the direct modeling of survey responses rather

than aggregated direct estimates. These unit-level approaches o�er many bene�ts

over area-level modeling, such as potential for more precise estimates, construction of

estimates at multiple spatial resolutions through a single model, and elimination of the

need for benchmarking techniques, among others. Furthermore, many recent surveys

collect interesting and complex data types at the unit level, such as text and functional

data. Yet, unit-level models present two primary challenges that have limited their

widespread use. First, when surveys have been sampled in an informative manner,

1Support for this research at the Missouri Research Data Center (MURDC), through the Uni-
versity of Missouri Population, Education and Health Center Doctoral Fellowship, as well as through
the U.S. Census Bureau Dissertation Fellowship Program is gratefully acknowledged. This research
was partially supported by the U.S. National Science Foundation (NSF) under NSF grant SES-
1853096. This article is released to inform interested parties of ongoing research and to encourage
discussion. The views expressed on statistical issues are those of the authors and not those of the
NSF or U.S. Census Bureau.
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it is critical to account for the design in some fashion when utilizing a model at the

unit level. Second, unit-level datasets are inherently much larger than area-level ones,

with responses that are typically non-Gaussian, leading to computational constraints.

After providing a comprehensive review on the problem of informative sampling, this

dissertation provides four computationally e�cient methodologies for non-Gaussian

survey data under informative sampling. This methodology relies on the Bayesian

pseudo-likelihood to adjust for the survey design, as well as Bayesian hierarchical

modeling to characterize various dependence structures. First, a count data model

is developed and applied to small area estimation of housing vacancies. Second,

modeling approaches for both binary and categorical data are developed, along with a

variational Bayes procedure that may be used in extremely high-dimensional settings.

This approach is applied to the problem of small area estimation of health insurance

rates using the American Community Survey. Third, a nonlinear model is developed

to allow for complex covariates, with application to text data contained within the

American National Election Studies. Finally, a model is developed for functional

covariates and applied to physical activity monitor data from the National Health

and Nutrition Examination Survey.

xii



Chapter 1

Introduction 1

1.1 Outline of the Dissertation

This dissertation is focused on unit-level modeling of survey data under informative

sampling. Particular emphasis is given to the application of these methods to the

problem of small area estimation (SAE). SAE techniques can be generally categorized

into area-level and unit-level approaches. The majority of the literature is built

around area-level techniques, however, unit-level approaches can be advantageous for

many reasons discussed herein. Unit-level approaches are also accompanied by two

primary challenges: the need to account for sampling design, and the complexity and

scale of data at the unit level. Unit level datasets are inherently orders of magnitude

larger than data at the area level. In addition, unit-level responses are frequently

non-Gaussian (binary, categorical, count, etc.), contrasting with area level responses,

which are often Gaussian, or may be approximated as Gaussian after an appropriate

1The U.S. Census Bureau DRB approval number for this chapter is CBDRB-FY19-506.
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transformation. Furthermore, unit-level data may frequently allow for complex (i.e.

not scalar) covariates, such as text or functional data.

The issue of accounting for sampling design in unit-level modeling has been studied

to some degree. Although this is an ongoing area of research for which further work

is necessary, there is currently a multitude of available approaches to the problem. In

contrast to this, there has been very little research focused around computationally

e�cient approaches to unit-level modeling, limiting the use of these approaches in

practice. To this end, the majority of this dissertation is devoted to the development

of computationally e�cient unit-level models that account for the underlying sampling

design.

Each chapter within this dissertation is intended to be self contained. Thus, there

may be some redundancy regarding to the background information presented in each

chapter. Furthermore, the notation used herein is not necessarily consistent between

chapters. The remainder of this chapter serves as a literature review for the problem

of informative sampling and how it relates to SAE at the unit level. A simulation

study that compares a subset of the literature and an application to SAE of poverty

are included as well. We draw upon this literature for the development of methodol-

ogy in subsequent chapters. Chapter 2 contains methodology for count data at the

unit level as well as an empirical simulation study related to SAE of housing vacancy.

Chapter 3 explores the case of binary and categorical response data at the unit level

under informative sampling. Both an e�cient Gibbs sampler as well as a variational

Bayes approximation are developed. The methodology is illustrated through an em-

pirical simulation study, as well as an extremely high-dimensional SAE application to

health insurance. Chapter 4 explores the use of unit level text covariates. An e�cient
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nonlinear model is developed and illustrated through an empirical simulation study

and SAE application using data from the American National Election Studies. In

Chapter 5, methodology is developed to allow for functional covariates under infor-

mative sampling. This is illustrated through an empirical simulation study as well as

an application to mortality estimation using physical activity monitor (PAM) data

from the National Health and Nutrition Examination Survey. This chapter departs

from previous chapters in that the analysis is focused on population and/or unit level

inference rather than SAE. Finally, some concluding remarks are given in Chapter 6.

1.2 Overview

Government agencies have seen an increase in demand for data products in recent

years. One trend that has accompanied this demand is the need for granular estimates

of parameters of interest at small spatial scales or subdomains of the �nite population.

Typically, sample surveys are designed to provide reliable estimates of the parameters

of interest for large domains. However, for some subpopulations, the area-speci�c

sample size may be too small to produce estimates with adequate precision. The

term small area is used to refer to any domain of interest, such as a geographic

area or demographic cross classi�cation, for which the domain-speci�c sample size is

not large enough for reliable direct estimation. To improve precision, model-based

methods can be used to `borrow strength,' by relating the di�erent areas of interest

through use of linking models, and by introducing area-speci�c random e�ects and

covariates. The Small Area Income and Poverty Estimates (SAIPE) program, and the

Small Area Health Insurance Estimates (SAHIE) program within the U. S. Census

3



Bureau are two examples of government programs which produce county and sub-

county level estimates for di�erent demographic cross classi�cations across the entire

United States using small area estimation (SAE) methods (Luery, 2011; Bauder et al.,

2018). It can be di�cult to generate small area estimates such as these for a number of

reasons, including the fact that many geographic areas may have very limited sample

sizes, if they have been sampled at all.

Models for SAE may be speci�ed either at the area level or the unit level (see

Rao and Molina, 2015, for an overview of small area estimation methodology). Area-

level models treat the direct estimate (for example, the survey-weighted estimate of

a mean) as the response, and typically induce some type of smoothing across areas.

In this way, the areas with limited sample sizes may \borrow strength" from areas

with larger samples. While area-level models are popular, they are limited, in that

it is di�cult to make estimates and predictions at a geographic or demographic level

that is �ner than the level of the aggregated direct estimate.

In contrast, unit-level models use individual survey units as the response data,

rather than the direct estimates. Use of unit-level models can overcome some of the

limitations of area-level models, as they constitute a bottom-up approach (i.e., they

utilize the �nest scale of resolution of the data). Since model inputs are at the unit-

level (person-level, household-level, or establishment-level), predictions and estimates

can be made at the same unit-level, or aggregated up to any desired level. Unit-

level modeling also has the added bene�t of ensuring logical consistency of estimates

at di�erent geographic levels and/or cross tabulations. For example, model-based

county estimates are forced to aggregate to the corresponding state-level estimates,

eliminating the need for ad hoc benchmarking. In addition, because the full unit-

4



level dataset is used in the modeling, rather than the summary statistics used with

area-level models, there is potential for improved precision of estimated quantities.

Although unit-level models may lead to more precise estimates, that aggregate

naturally across di�erent spatial resolutions, they also introduce new challenges. Per-

haps the biggest challenge is how to account for the survey design in the model. With

area-level models, the survey design is incorporated into the model through speci�-

cation of a sampling distribution (typically taken to be Gaussian) and inclusion of

direct variance estimates. With unit-level models, accounting for the survey design is

not as straightforward. One challenge is that the sample unit response may be depen-

dent on the probability of selection, even after conditioning on the design variables.

When the response variables are correlated with the sample selection variables, the

sampling scheme is said to beinformative, and in these scenarios, in order to avoid

bias, it is critical to capture the sample design in the model by including the survey

weights or the design variables used to construct the survey weights.

The aim of this chapter is to present a comprehensive literature review of unit-

level small area modeling strategies, with an emphasis on Bayesian approaches, and

to evaluate a selection of these strategies by �tting di�erent unit-level models on both

simulated data, and on real American Community Survey (ACS) micro-data, thereby

comparing model-based predictions and uncertainty estimates. In this chapter we

focus mainly on model speci�cation and methods which incorporate informative sam-

pling designs into the small area model. Some important, related issues, that will be

outside the scope of this chapter include issues related to measurement error and ad-

justments for nonresponse. Generally, we assume that observed survey weights have

been modi�ed to take into account nonresponse. We also avoid discussion on the rel-
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ative merits of frequentist versus Bayesian methods for inference. In the simulation

studies and data examples given in Sections 1.8 and 1.9, we �t three unit-level small

area Bayesian models, with vague, proper priors on all unknown model parameters.

Inference on the �nite population parameters of interest is done using the posterior

mean as a point estimate, and the posterior variance as a measure of uncertainty.

Some related work includes Hidiroglou and You (2016), who present a simulation

study to compare area-level and unit-level models, both �t in a frequentist setting.

They �t their models under both informative and noninformative sampling, and found

that overall the unit-level models lead to better interval coverage and more precise

estimates. Gelman (2007) discusses poststrati�cation using survey data, and com-

pares the implied weights of various models including hierarchical regression. Lumley

and Scott (2017) discuss general techniques for modeling survey data with included

weights. They focus on frequentist pseudo-likelihood estimation as well as hypothesis

testing. Chapter 7 of Rao and Molina (2015) provides an overview of some commonly

used unit-level small area models. The current chapter adds to this literature by

providing a comprehensive review of unit-level small area modeling techniques, with

a focus on methods which account for informative sampling designs. We mainly use

Bayesian methods for inference, but note that many model-based methods are general

enough to be implemented in either setting, and we highlight some scenarios where

Bayesian methodology may be used.

The remainder of this chapter is organized as follows. Section 1.3 introduces

the sampling framework and notation to be used throughout the chapter. We aim

to keep the notation internally consistent. This may lead to di�erences compared

to the original authors' notation styles, but should lead to easier comparison across

6



methodologies. In Section 1.4 we cover modeling techniques that assume a noninfor-

mative survey design. The basic unit-level model is introduced, as well as extensions

of this model which incorporate the design variables and survey weights. Methods

which allow for an informative design are then discussed, beginning in Section 1.5.

Here, we discuss analytic inference of population parameters under an informative

design using pseudo-likelihood methods. Extensions of the pseudo-likelihood to hi-

erarchical, multilevel mixed models are discussed, as well as application to small

area estimation problems. In Section 1.6 we focus on models that use a sample

distribution that di�ers from the population distribution. We conclude the review

component of this chapter in Section 1.7, where we will review models that are spe-

ci�c to a Binomial likelihood, as many variables collected from survey data are bi-

nary in nature. In Section 1.8 we compare three selected models to a direct estima-

tor under a simulation study designed around American Community Survey (ACS)

data. Speci�cally, this simulation examines three Bayesian methods that span dif-

ferent general modeling approaches (pseudo-likelihood, nonparametric regression on

the weights, and di�ering sample/population likelihoods) with the goal of examining

the utility of each approach. The Stan code used to �t these models is available at

https://github.com/paparker/Unit Level Models. Similarly, Section 1.9 uses the

same models for a poverty estimates application similar to the Small Area Income

and Poverty Estimates program (SAIPE). Finally, we provide concluding remarks in

Section 1.10.
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1.3 Background and notation

Consider a �nite population U of size N , which is subset intom non-overlapping

domains,Ui = f 1; : : : ; Ni g; i = 1; : : : ; m, where
P m

i =1 N i = N . These subgroups will

typically be small areas of interest, or socio-demographic cross-classi�cations, such

as age by race by gender within the di�erent counties. We useyij to represent a

particular response characteristic associated with unitj 2 Ui , and x ij a vector of

predictors for the response variablesyij .

Let Z be a vector of design variables which characterize the sampling process. For

example,Z may contain geographic variables used for stratifying the population, or

size variables used in a probability proportional to size sampling scheme. A sample

S � U =
S

Ui is selected according to a known sampling design with inclusion

probabilities dependent on the design variables,Z . Let Si denote the sampled units

in small areai , and let � ij = P(j 2 S i j Z ). The inverse probability sampling weights

are denoted withwij = 1=� ij . We note that as analysts, we may not have access to the

functional form of P (j 2 S i j Z ), and may not even have access to the design variables

Z , so that the only information available to us about the survey design is through the

observed values of� ij or wij , for the sampled units in the population. Finally, we let

DS = ff yij ; x ij ; wij g : j 2 S i ; i = 1; : : : ; mg represent the observed data. This simply

consists of the responses, predictors, and sampling weights for all units included in the

sample. In this context,yij is random,x ij is typically considered �xed and known, and

wij can either be �xed or random depending on the speci�c modeling assumptions.

The usual inferential goal, and the main focus of this chapter, is on estimation

of the small area means, �yi =
P

j 2U i
yij =Ni , or totals, yi =

P
j 2U i

yij . In some

situations, interest could be on estimation of descriptive population parameters, such
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as regression coe�cients in a linear model, or on estimation of a distribution function.

The best predictor, �̂yi of �yi , under squared error loss, given the observed dataDS, is

�̂yi = E (�yi j DS) =
1

N i

X

j 2U i

E (yij j DS) =
1

N i

X

j 2S i

yij +
1

N i

X

j 2S c
i

E (yij j DS) : (1.1)

The �rst term on the right hand side of (1.1) is known from the observed sample.

However, computation of the conditional expectation in the second term requires

speci�cation of a model, and potentially, depending on the model speci�ed, auxiliary

information, such as knowledege of the covariatesx ij or sampling weightswij for

the nonsampled units. For the case where the predictorsx ij are categorical, the

assumption of known covariates for the nonsampled units is not necessarily restrictive,

if the totals, N i;g , for each cross-classi�cationg in each of the small areasi are known.

In this case, the last term in (1.1) reduces toN � 1
i

P
g(N i;g � ni;g )E (yij j DS), and

only predictions for each cross-classi�cation need to be made.

The predictor given in (1.1) is general, and the di�erent unit-level modeling meth-

ods discussed in this chapter are essentially di�erent methods for predicting the non-

sampled units under di�erent sets of assumptions on the �nite population and the

sampling scheme. An entire �nite population can then be generated, consisting of

the observed, sampled values, along with model-based predictions for the nonsam-

pled individuals. The small area mean can then be estimated by simply averaging

appropriately over this population. If the sampling fractionni =Ni in each small area

is small, inference using predicted values for the entire population will be nearly the

same as inference using a �nite population consisting of the observed values and pre-

dicted values for the nonsampled units. In this situation, it may be more convenient
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to use a completely model-based approach for prediction of the small area means

(Battese et al., 1988).

1.4 Unweighted analysis

1.4.1 Ignorable design

First, assume the survey design isignorable or noninformative. Ignorable designs,

such as simple random sampling with replacement, arise when the sample inclusion

variable I is independent of the response variabley. In this situation, the distribution

of the sampled responses will be identical to the distribution of nonsampled responses.

That is, if a model f (� j � ) is assumed to hold for all nonsampled units in the

population, then it will also hold for the sampled units, since thesample distribution

of y, f (y j I = 1; � ) = f (y j � ) is identical to the population distribution of y. In

this case, a model can be �t to the sampled data, and the �tted model can then be

used directly to predict the nonsampled units, without needing any adjustments due

to the survey design.

The nested error regression model or, using the terminology of Rao and Molina

(2015), the basic unit-level model, was introduced by Battese et al. (1988) for estima-

tion of small area means using data obtained from a survey with an ignorable design.

Consider the linear mixed e�ects model

yij = x ij � + vi + eij ; (1.2)

where i = 1; : : : ; m indexes the di�erent small areas of interest, andj 2 S i indexes
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the sampled units in small areai . Here, the model errors,vi , are i.i.d. N (0; � 2
v)

random variables, and the sampling errors,eij , are i.i.d. N (0; � 2
e) random variables,

independent of the model errors.

Let Vi be the covariance matrix consisting of diagonal elements� 2
v + � 2

e=ni , and o�-

diagonal elements� 2
v . Assuming (1.2) holds for the sampled units, and the variance

parameters� 2
v and � 2

e are known, the best linear unbiased predictor (BLUP) of �yi =
P

j 2U i
yij =Ni is

�̂yi =
1

N i

X

j 2S i

yij +
1

N i

X

j 2S c
i

�
x T

ij
~� + ~vi

�
; (1.3)

where

~� =

 
mX

i =1

X T
i V � 1

i X i

! � 1  
mX

i =1

X T
i V � 1

i y i

!

;

X i is the ni � p matrix with rows x T
ij , and ~vi = ( � 2

v=(ni � 2
v + � 2

e))
P

j 2S i
(yij � x T

ij
~� ). In

(1.3), as in the general expression in (1.1), the unobservedyij are replaced by model

predictions. Note that evaluation of (1.3) requires knowledge of the population mean,

�X ip =
P

j 2U i
X ij =Ni , of the covariates.

In practice, the variance components� 2
v and � 2

e are unknown and need to be

estimated. The empirical best linear unbiased predictor (EBLUP) is obtained by

substituting estimates, ^� 2
e and �̂ 2

v , (typically MLE, REML, or moment estimates)

of the variance components in the above expressions (Prasad and Rao, 1990). In

addition, this model could easily be �t using Bayesian hierarchical modeling rather

than using the EBLUP, which would incorporate the uncertainty from the variance

parameters. Molina et al. (2014) developed a Bayesian version of the nested error

regression model (1.2), using noninformative priors on the variance components.

The survey weights do not enter into either the nested error regression model (1.2)
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or the EBLUPs of the small area means (1.3). Because of this, the EBLUP is not

design-consistent, unless the sampling design is self-weighting within each small area

(Rao and Molina, 2015).

1.4.2 Including design variables in the model

Suppose now that the survey design is informative, so that the way in which indi-

viduals are selected in the sample depends in an important way on the value of the

response variableyij . It is well established that when the survey design is informa-

tive, that ignoring the survey design and performing unweighted analyses without

adjustment can result in substantial biases (Nathan and Holt, 1980; Pfe�ermann and

Sverchkov, 2007).

One method to eliminate the e�ects of an informative design is to condition on all

design variables (Gelman et al., 1995, Chap. 7). To see this, decompose the response

variables asy = ( ys; yns), where ys are the observed responses for the sampled

units in the population, and yns represents the unobserved variables corresponding

to nonsampled individuals. Let I be the matrix of sample inclusion variables, so

that I ij = 1 if yij is observed andI ij = 0 otherwise. The observed data likelihood,

conditional on covariate informationX , and model parameters� and � , is then

f (ys; I j X ; � ; � ) =
Z

f (ys; yns ; I j X ; � ; � )dyns =
Z

f (I j y ; X ; � )f (y j X ; � )dyns :

If f (I j y ; X ; � ) = f (I j X ; � ), the inclusion variablesI are independent ofy ,

conditional on X , and the survey design can be ignored. For example, if the design

variablesZ are included inX , the ignorability condition may hold, and inference can
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be based onf (ys j X ; � ).

Little (2012) advocates for a general framework using unit-level Bayesian modeling

that incorporates the design variables. For example, if cluster sampling is used, one

could incorporate a cluster level random e�ect into the model, or if a strati�ed design

is used, one might incorporate �xed e�ects for the strata. The idea is that when all

design variables are accounted for in the model, the conditional distribution of the

response given the covariates for the sampled units is independent of the inclusion

probabilities. Because the model is unit-level and Bayesian, the unsampled popula-

tion can be generated via the posterior predictive distribution. Doing so provides a

distribution for any �nite population quantity and incorporates the uncertainty in

the parameters. For example, if the population response is generated at drawk of a

Markov chain Monte Carlo algorithm, y (k) , then one has implicitly generated a draw

from the posterior distribution of the population mean for a given areai :

�y(k)
i =

P N
j =1 y(k)

j I (j 2 Ui )
P N

j =1 I (j 2 Ui )
:

If there are K total posterior draws, one could then estimate the mean and standard

error of �yi with

�̂yi =
1
K

KX

j =1

�y(k)
i

and

\SE( �̂yi ) =
q

V ar( �̂yi ):

The problem with attempting to eliminate the e�ect of the design by conditioning

on design variables is often more of a practical one, because neither the full set of

design variables, nor the functional relationship between the design and the response
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variables will be fully known. Furthermore, expanding the model by including su�-

cient design information so as to ignore the design may make the likelihood extremely

complicated or even intractable.

1.4.3 Poststrati�cation

Little (1993) gives an overview of poststrati�cation. To perform poststrati�cation, the

population is assumed to containm categories, or poststrati�cation cells, such that

within each category units are independent and identically distributed. Usually these

categories are cross-classi�cations of categorical predictor variables such as county,

race, and education level. When a regression model is �t relating the response to

the predictors, predictions can be generated for each unit within a cell, and thus for

the entire population. Importantly, any desired aggregate estimates can easily be

generated from the unit level population predictions.

Gelman and Little (1997) and Park et al. (2006) develop a framework for post-

strati�cation via hierarchical modeling. By using a hierarchical model with partial

pooling, parameter estimates can be made for poststrati�cation cells without any

sampled units, and variance is reduced for cells having few sampled units. Gelman

and Little (1997) and Park et al. (2006) provide an example for binary data that uses

the following model

yij jpij � Bernoulli (pij )

logit(pij ) = x 0
ij �

� = ( � 1; : : : ; � K )

� k
ind� Nck (0; � 2

k I ck ); k = 1; : : : ; K;

(1.4)
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where x ij is a vector of dummy variables forK categorical predictor variables with

ck classes in variablek.

Bayesian inference can be performed on this model, leading to a probability,pij =

pi ; 8j , that is constant within each celli = 1; : : : ; m. The number of positive responses

within cell i can be estimated withN i pi , and any higher level aggregate estimates

can be made by aggregating the corresponding cells. In some scenarios, the number

of units within each cell may not be known, in which case further modeling would be

necessary.

1.5 Models with survey weight adjustments

Although many of the the models in Section 1.4 can be used to handle informa-

tive sampling, they do not rely on the survey weights. In this section, we explore

techniques that rely on the weights to adjust the sample likelihood.

There have been several methods proposed in the literature which make use of the

nested error regression model (1.2), but which incorporate the survey weights, either

as regression variables, or as adjustments to the predicted values, so as to protect

against a possible informative survey design.

1.5.1 Survey weight adjustments to the basic unit-level model

Verret et al. (2015) augmented the nested error regression model (1.2), by includ-

ing functions of the inclusion probabilities, g(� ij ), as predictors. Care must be

taken in the choice of the functiong, as knowledge of the population means�Gi =
P

i 2U j
g(� ij ) =Ni need to be known to obtain the EBLUPs from (1.3). Some sugges-
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tions for the choice ofg wereg(� ij ) = � ij , which gives �Gi = 1=Ni , and g(� ij ) = ni =� ij ,

which gives �Gi = ni
P

j 2U i
wij =Ni , which may be known in practice. Verret et al.

(2015) reported strong performance of the EBLUP using the augmented nested error

regression model, in a probability proportional to size simulation study, in terms of

bias and mean squared error, for properly chosen augmenting variableg. However,

some choices ofg, such asg(� ij ) = wij , could lead to poor performance, except under

non-informative sampling. Verret et al. (2015) suggested using scatter plots of resid-

uals from the nested error regression model against di�erent choices of augmenting

variables to choose an appropriate model. An alternative to exploring a collection of

augmenting variables is to estimate the functional form ofg. Zheng and Little (2003)

investigated nonparametric estimation ofg using penalized splines, and found that

predictions of small area means using this modeling framework resulted in large gains

in mean squared error over the design-based estimates in their simulation studies.

You and Rao (2002) proposed a pseudo-EBLUP of the small area means� i =

�X T
i � + � i based on the nested error regression model (1.2), which incorporates the

survey weights. In their approach, the regression parameters� in (1.2) are estimated

by solving a system of survey-weighted estimating equations

mX

i =1

X

j 2S i

wij x ij f yij � x T
ij � � 
 iw (�yiw � �x T

iw � )g = 0; (1.5)

where 
 iw = � 2
� =(� 2

� + � 2
� � 2

i ), � 2
i =

P
j 2S i

w2
ij , �yiw =

P
j 2S i

wij yij =
P

j 2S i
wij , and

�x ij =
P

j 2S i
wij x ij =

P
j 2S i

wij . This is an example of the pseudo-likelihood approach

to incorporating survey weights, which is later discussed in more detail.

The pseudo-BLUP ~� w = ~� w(� 2
e; � 2

v) is the solution to (1.5) when the variance

components� 2
e and � 2

v are known, and the pseudo-EBLUP,�̂ w = ~� (�̂ 2
e; �̂ 2

v), is the
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solution to (1.5) using plug-in estimates ^� 2
e and �̂ 2

v of the variance components. The

pseudo-EBLUP,�̂ i of the small area mean� i is then

�̂ iw = 
̂ iw �yiw +
� �X i � 
̂ iw �x iw

� T
�̂ w :

Similar to Battese et al. (1988), You and Rao (2002) assumed an ignorable survey

design, so that the model (1.2) holds for both the sampled and nonsampled units.

However, You and Rao (2002) showed that inclusion of the survey weights in the

pseudo-EBLUP results in a design-consistent estimator. In addition, when the survey

weights are calibrated to the population total, so that
P

j 2S i
wij = N i , the pseudo-

EBLUP has a natural benchmarking property, without any additional adjustment, in

the sense that
mX

i =1

N i �̂ iw = Ŷw +
�

X � X̂ w

� T
�̂ w ;

where Ŷw =
P m

i =1

P
j 2S i

wij yij and X̂ w =
P m

i =1

P
j 2S i

wij x ij . That is, the weighted

sum of area-level pseudo-EBLUPs is equal to a GREG estimator of the population

total.

An alternative pseudo-EBLUP, which is applicable to estimation of general small

area parameters beyond the small area means, was proposed in Guadarrama et al.

(2018) (see also Jiang and Lahiri, 2006). Rather than use the genuine best pre-

dictor in (1.1), which conditions on all observed data, Guadarrama et al. (2018)

suggested a pseudo-best predictor, which conditions only on the survey-weighted

Horvitz-Thompson estimator, �yiw =
P

j 2S i
wij yij =

P
j 2S i

wij , of the small area means.

Assuming that the nested error regression model (1.2) holds for all units in the pop-

ulation, there is a simple, closed-form expression for the predictions of out-of-sample
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variables,yij , given by

E (yij j �yiw ) = x T
ij � + 
 iw

�
�yiw � �x T

iw �
�

;

using the same notation as in (1.5). This idea can easily be extended for predic-

tion of general additive parameters,H i =
P

j 2U i
h(yij )=Ni , by using the conditional

expectationE (h(yij ) j �yiw ) in place of the out-of-sample variables.

1.5.2 Pseudo-likelihood approaches

Suppose the �nite population valuesyi , are independent, identically distributed real-

izations from a known superpopulation distribution,f p(y j � ). Here, for notational

convenience, we use a single subscripti to index the �nite population. Standard

likelihood analysis for inference on� , using only the observed sampled values, could

produce asymptotically biased estimates when the sampling design is informative

(Pfe�ermann et al., 1998b). Pseudo-likelihood analysis, introduced by Binder (1983)

and Skinner (1989), incorporates the survey weights into the likelihood for design-

consistent estimation of� .

The pseudo-log-likelihood is de�ned as

X

i 2S

wi logf p(yi j � ); (1.6)

this is simply the Horvitz-Thompson estimator of the population-level log likelihood.

Inference on� can be based on the maximizer,̂� P S (designating the maximum of the

pseudo-likelihood rather than the likelihood), of (1.6), or equivalently, by solving the
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system
X

i 2S

wi
@

@�
logf p(yi j � ) = 0: (1.7)

The system (1.7) is an example of the use of survey-weighted estimating functions

for inference on a superpopulation parameter (Binder, 1983; Binder and Patak, 1994).

More generally, let� N = � N (f yi g) be a superpopulation parameter of interest, which

is a function of the �nite population values yi ; i = 1; : : : ; N , that can be obtained as

a solution to a \census" estimating equation

� (y ; � ) =
NX

i =1

� i (yi ; � ) = 0; (1.8)

where the� i are known functions of the data and the parameter, with mean zero under

the superpopulation model. The term \census" is used to describe the estimating

function (1.8), because (1.8) can only be calculated if all �nite population values are

observed, or if a census of the population is conducted.

The target parameter� N is de�ned implicitly as a solution to the census estimating

equation (1.8). A point estimate, �̂ N , of � N can be obtained by �nding a root of a

design-unbiased estimate,̂� (ys; � ), of � , such as the Horvitz-Thompson estimator

�̂ (ys; � ) =
X

i 2S

wi � i (yi ; � ) = 0: (1.9)

The use of an estimating function, rather than the score function, can be advan-

tageous, as it reduces the number of assumptions about the superpopulation that

need to be made. Full distributional speci�cation is not required, and instead only

assumptions about the moment structure are needed. The choice of the speci�c esti-
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mating function may be motivated by a conceptual superpopulation model, or a �nite

population parameter of interest. Regardless of whether a superpopulation model is

assumed, most �nite population parameters of interest can be formulated as a solution

to a census estimating equation, and well-known `model assisted' estimators of the �-

nite population parameters can be derived as solutions of survey-weighted estimating

equations. For example, the estimating function� (yi ; � ) = ( yi � � ) leads to the popu-

lation total,
P

i 2U yi , and its estimator
P

i 2S wi yi =
P

i 2S wi . If tx =
P

i 2U x i is known,

the pair of estimating functions� 1(yi ; x i ; � 1) = ( yi � x i � 1) and � 2(yi ; � 2) = ( yi � tx � 2),

give the population total ty =
P

i 2U yi and its ratio estimator tx
P

i 2S wi yi =
P

i 2S wi x i .

If the covariate vector x i contains an intercept, the pair of estimating functions

� 1(yi ; � 1; � 2) = ( � 1 � tx � 2) and � 2 = ( yi � x T
i � 2)x i leads to the �nite population

total and its GREG estimator
P

i 2U x T
i � 2, where� 2 = (

P
i 2S wi x i x T

i )� 1
P

i 2S wi yi x i .

An important aspect of small area modeling is the introduction of area speci�c

random e�ects to link the di�erent small areas and to \borrow strength," by relating

the di�erent areas through the linking model, and introducing auxiliary covariate

information, such as administrative records. The presence of random e�ects and the

multilevel structure of small area models means that neither the pseudo-likelihood

method nor the related estimating function approach can be directly applied to small

area estimation problems. However, Grilli and Pratesi (2004), Asparouhov (2006),

Rabe-Hesketh and Skrondal (2006) extended the pseudo-likelihood approach to ac-

commodate models with hierarchical structure.

Let vi
i:i:d:� ' (v) denote the area speci�c random e�ects with common density' .

The usual choice for' is the mean zero normal distribution with unknown variance

� 2. Suppose now that the �nite population yi 1; : : : ; yiN i in small areasi = 1; : : : ; m
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are i.i.d. realizations from the superpopulationf i (y j � ; vi ), and let Si be the sampled

units in area i . The census marginal log-likelihood is obtained by integrating out the

random e�ects from the likelihood:

logL(� ) =
mX

i =1

log
Z Y

j 2U i

f i (yij j � ; v)' (v)dv

=
mX

i =1

log
Z

exp

(
X

j 2U i

logf i (yij j � ; v)

)

' (v)dv:

(1.10)

Suppose the survey weights are decomposed into two components,wj j i , and wi ,

where wj j i is the weight for unit j in area i , given that area i has been sampled,

and wi is the weight associated to small areai . The pseudo-log-likelihood for the

multilevel model can be de�ned by replacing
P

j 2U i
logf i (yij j � ; vi ) in (1.10) by the

design-unbiased estimate,
P

j 2S i
wj j i logf i (yij j � ; vi ), to get

logL̂ (� ) =
mX

i =1

wi log
Z

exp

(
X

j 2S i

wj j i logf (yij j � ; v)

)

' (v)dv: (1.11)

Analytical expressions for the maximizer of (1.11) generally do not exist, so the

maximum pseudo-likelihood estimator,�̂ ps, must be found by numerical maximiza-

tion of (1.11). Grilli and Pratesi (2004) used theNLMIXEDprocedure within SAS,

using appropriately adjusted weights in thereplicate statement and a bootstrap for

mean squared error estimation. Rabe-Hesketh and Skrondal (2006) used an adaptive

quadrature routine using thegllamm program within Stata, and derived a sandwich

estimator of the standard errors, �nding good coverage in their simulation studies

with this estimate. Kim et al. (2017) proposed an EM algorithm for parameter esti-

mation. Their method involves two steps, where �rst the random e�ects are treated
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as �xed, and a pro�le likelihood maximum likelihood estimator of the random e�ects

are computed. The second step uses the EM algorithm to estimate the remaining

model parameters. Their method relies on a normal approximation to the predictive

distribution of the random e�ects, but was found to give good results with moderate

cluster sizes in numerical studies. Kim et al. (2017) also gave a method for predicting

random e�ects, using the EM algorithm and an approximating predictive distribu-

tion that was shown to be valid for su�ciently large cluster sizes, which is needed for

prediction of unobserved variables.

Rao et al. (2013) noted that both design consistency and design-model consistency

of �̂ ps as an estimator of the �nite population parameter� N , or the model parameter

� , respectively, requires that both the number of areas (or clusters),m, and the

number of elements within each cluster,ni , tend to in�nity, and that the relative bias

of the estimators can be large when theni are small. Rao et al. (2013) showed that

consistency can be achieved with onlym tending to in�nity (allowing the ni to be

small) if the joint inclusion probabilities, � jk ji , are available. Their method is to use

the marginal joint densitiesf (yij ; yik j � ), of elements in a cluster, integrating out the

random e�ects, in the pseudo-log likelihood, and to estimate� by maximizing the

design-weighted pseudo log likelihood

lwC (� ) =
X

i 2S

wi

X

j<k 2S i

wjk ji logf (yij ; yik j � ): (1.12)

It was shown in Yi et al. (2016) that the maximizer of (1.12),� wC , is consistent for

the second-level parameters� , with respect to the joint superpopulation model and

the sampling design.

There are two important considerations when using the pseudo-likelihood in mul-
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tilevel models. The �rst is that two sets of survey weights,wi and wj j i (and in the case

of the method of Rao et al. (2013), higher-order inclusion probabilities,� jk ji ) are re-

quired, which is not typically the case; access to only the joint survey weightswij is not

su�cient to use the multilevel models, unless all clustersi = 1; : : : ; m sampled with

certainty. The second consideration is that use of unadjusted, second level weightswj j i

can cause signi�cant bias in estimates of variance components. For single level models,

scaling the weights by any constant factor does not change inference, as the solution

to (1.7) is clearly invariant to any scaling of the weights. However, for multilevel

models, the maximum pseudo-likelihood estimator and the associated mean squared

prediction error may change depending on how the weightswj j i are scaled. Some sug-

gestions include using scaled weights ~wj j i such that: 1)
P n i

j =1 ~wj j i = ni (Asparouhov,

2006; Grilli and Pratesi, 2004; Pfe�ermann et al., 1998b), 2) constant scaling across

clusters, so that
P n i

j =1 ~wj j i =
P n i

j =1 wj j i (Asparouhov, 2006), 3)
P n i

j =1 ~wi j j = n�
i , where

n�
i = (

P
j wi j j )2=

P
j w2

ij is the e�ective sample size in clusteri (Pottho� et al., 1992;

Pfe�ermann et al., 1998b; Asparouhov, 2006), and 4) unscaled (Pfe�ermann et al.,

1998b; Grilli and Pratesi, 2004; Asparouhov, 2006). However, Korn and Graubard

(2003) showed that any scaling method can produce seriously biased variance es-

timates under informative sampling schemes, even with large sample sizes in each

cluster. There does not seem to be a single `best' scaling method that can be used

without consideration of the sampling scheme, or the working likelihood.

The pseudo-log-likelihoods (1.6) and (1.11) suggest pseudo-likelihoods

mY

i

Y

j 2S i

f (yij j � )wij (1.13)
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for single level models, and

mY

i =1

( Z Y

j 2S i

f (yij j x ij ; � ; vj )wj j i � (vj )dvj

) wi

(1.14)

for multilevel models (Asparouhov, 2006). The pseudo-likelihood (4.1) is sometimes

called the composite likelihood in general statistical problems, when the weightswij

(not necessarily survey weights) are known positive constants, and its use is popular

in problems where the exact likelihood is intractable or computationally prohibitive

(Varin et al., 2011).

The pseudo-likelihood (1.13) is not a genuine likelihood, as it does not incorpo-

rate the dependence structure in the sampled data nor the relationship between the

responses and the design variables beyond inclusion of the survey weights. However,

the pseudo-likelihood has been shown to be a useful tool for likelihood analysis for

�nite population inference in both the frequentist and Bayesian framework.

By treating the pseudo-likelihood as a genuine likelihood, and specifying a prior

distribution � (� ) on the model parameters� , Bayesian inference can be performed

on � . For general models, Savitsky and Toth (2016) showed for certain sampling

schemes, and for a class of population distributions, that the pseudo-posterior dis-

tribution using the survey weighted pseudo-likelihood, with survey weights scaled to

sum to the sample size, (1.13) converges inL1 to the population posterior distribution.

This result justi�es use of (1.13) in place of the likelihood in Bayesian analysis of pop-

ulation parameters, conditional on the observed sampled units, even when the sample

design is informative. Predictions of area-level random e�ects as well of predictions

of nonsampled units can then be made as well.

The authors focus on parameter inference and do not give any advice for making

24



area-level estimates. However, it is straightforward to implement a model with a

Bayesian pseudo-likelihood and then apply poststrati�cation after the fact by gen-

erating the population, and thus any desired area-level estimates using (1.1). This

type of pseudo-likelihood with poststrati�cation for SAE was demonstrated in the

frequentist setting by Zhang et al. (2014).

Ribatet et al. (2012) provides a discussion on the validity of Bayesian inference

using the composite likelihood (1.13) in place of the exact likelihood in Bayes' for-

mula. An example of this method used in the sample survey context can be found

in Dong et al. (2014), which used a weighted pseudo-likelihood with a multinomial

distribution as a model for binned response variables. They assumed an improper

Dirichlet distribution on the cell probabilities, and used the associated posterior and

posterior predictive distributions for prediction of the nonsampled population units.

In a similar spirit, (Rao and Wu, 2010) use a Bayesian pseudo-empirical likelihood

to create estimates for a population mean. They form the pseudo-empirical likelihood

function as

LP EL (p1; : : : ; pn ) =
Y

i 2S

p ~wi
i

where the weights are scaled to sum to the sample size. They accompany this with

a Dirichlet prior distribution over ( p1; : : : ; pn ), and thus conjugacy yields a Dirichlet

posterior distribution

� (p1; : : : ; pn jDS) = c( ~w1 + � 1; : : : ; ~wn + � n )
Y

i 2S

p ~wi + � i � 1
i ;

wherec represents the normalizing constant. The posterior distribution of the popu-

lation mean, � , corresponds to the posterior distribution of
P

i 2S pi yi . It is straight-
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forward to use Monte Carlo techniques to sample from this posterior. The authors

also note that the design weights can be replaced with calibration weights in order to

include auxiliary variables.

1.5.3 Regressing on the Survey Weights

Prediction of small area quantities using (1.1) requires estimation ofE(yij j Ds) for

all nonsampled units in the population. One of the main di�culties in using unit-level

model-based methods is the lack of knowledge of the covariates, sampling weights,

or population sizes associated with the nonsampled units and small areas, that are

needed to make these model-based predictions. To overcome this di�culty, Si et al.

(2015) modeled the observed poststrati�cation cellsni , conditional on n =
P m

i =1 ni ,

using the multinomial distribution

(n1; : : : ; nm ) � Multinomial
�

n;
N1=w1P m
i =1 N i =wi

; : : : ;
Nm=wmP m
i =1 N i =wi

�
(1.15)

for poststrati�cation cells i = 1; : : : ; m.

This model assumes that the unique values of the sample weights determine the

poststrati�cation cells, and that the sampling weight and response are the only values

known for sampled units. The authors state that, in general, this assumption is

untrue, because there will be cells with low probability of selection that do not show

up in the sample, but the assumption is necessary in order to proceed with the model.

This model yields a posterior distribution over the cell population sizes which can be

used for poststrati�cation with their response model, which uses a nonparametric
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Gaussian process regression on the survey weights,

yij j� (wi ); � 2 � N(� (wi ); � 2)

� (wi )j�; C (wi ; wi 0j� ) � GP(wi �; C (wi ; wi 0j� ))

� (� 2; �; � );

(1.16)

for observationj in poststrati�cation cell i . Here, C(�; �j � ) represents a valid covari-

ance function that depends on parameters� . The authors use a squared exponential

function, but other covariance functions could be used in its place. The normal dis-

tribution placed over yij could be replaced with another distribution in the case of

non-Gaussian data. Speci�cally, the authors explore the Bernoulli response case. This

model implicitly assumes that units with similar weights will tend to have similar re-

sponse values, which is likely not true in general. However, in the absence of any

other information about the sampled units, this may be the most practical assump-

tion. Because Si et al. (2015) assume that only the survey weights and response values

are known, this methodology cannot be used for small area estimation as presented.

However, the model can be extended to include other variables such as county, which

would allow for area level estimation.

Vandendijck et al. (2016) extend the work of Si et al. (2015) to be applied to small

area estimation. They assume that the poststrati�cation cells are designated by the

unique weights within each area. Rather than using the raw weights, they use the

weights scaled to sum to the sample size within each area. They then use a similar

multinomial model to Si et al. (2015) in order to perform poststrati�cation using

the posterior distribution of the poststrati�cation cell population sizes. Assuming a
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Bernoulli response, they use the model

yij j� ij � Bernoulli(� ij )

logit( � ij ) = � 0 + � (
�
wij ) + ui + vi

(1.17)

for unit j in small areai , with
�
wij designating the scaled weights. Independent area

level random e�ects are denoted byui , whereasvi denotes spatially dependent area

level random e�ects, for which the authors use an intrinsic conditional autoregressive

(ICAR) prior. They explore the use of a Gaussian process prior over the function� (�)

as well as a penalized spline approach. For their Gaussian process prior, they assume

a random walk of order one. The multinomial model

(n1i ; : : : ; nL i i ) � Multinomial

 

ni ;
N1i =w(1) i

P L i
l=1 N li =w(l ) i

; : : : ;
NL i i =w(L i )iP L i

l=1 N li =w(l ) i

!

(1.18)

is used for poststrati�cation, wherenli and N li represent the known sample size and

unknown population size respectively for poststrata celll in area i . The cells are

determined by the unique weights in areai , with the value of the weight represented

by w(l ) i . Although Vandendijck et al. (2016) implement their model with a Bernoulli

data example, this is a type of a Generalized Additive Model, and thus other response

types in the exponential family may be used as well.
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1.6 Likelihood-based inference using the sample
distribution

The pseudo-likelihood methods discussed in Section 1.5 require speci�cation of a

superpopulation model, which is a distribution which holds for all units in the �nite

population. However, validating the superpopulation model based on the observed

sampled values is generally not possible, unless the sampling design is not informative,

in which case, the distribution for the sampled units is the same as for the nonsampled

units. Under an informative sampling design, the model for the population data

does not hold for the sampling data. This can be seen by application of Bayes'

Theorem. Suppose the �nite population valuesyij are independent realizations from

a population with density f p(� j x ij ; � ), conditional on a vector of covariatesx ij , and

model parameters� . Given knowledge of this superpopulation model, as well as the

distribution of the inclusion variables, the distribution of the sampled values can be

derived. De�ne the sample density,f s, (Pfe�ermann et al., 1998a) as the density

function of yij , given that yij has been sampled, that is,

f s(yij j x ij ; � ) = f p(yij j x ij ; � ; I ij = 1) =
P(I ij = 1 j yij ; x ij ; � )f p(yij j x ij ; � )

P(I ij = 1 j x ij ; � )
:

(1.19)

From (1.19), the sample distribution di�ers from the population distribution, unless

P(I ij = 1 j yij ; x ij ) = P(I ij = 1 j x ij ), which occurs in ignorable sampling designs.

Note that the inclusion probabilities, � ij , may di�er from the probabilities P(I ij =

1 j x ij ; yij ; � ) in (1.19), because the latter are not conditional on the design variables

Z .

Equation (1.19) can be used for likelihood-based inference if the simplifying as-
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sumption that the sampled values are independent is made. While this is not true in

general, asymptotic results given in Pfe�ermann et al. (1998a) justify an assumption

of independence of the data for certain sampling schemes when the overall sample size

is large. However, direct use of (1.19) for �nite population inference requires addi-

tional model speci�cations for the sample inclusion variablesP(I ij = 1 j x ij ; yij )

as well asP(I ij = 1 j x ij ). It was shown in Pfe�ermann et al. (1998a) that

P(I ij = 1 j x ij ; yij ) = EP (� ij j x ij ; yij ), and that P(I ij = 1 j x ij ) = Ep(� ij j x ij ), so

that a superpopulation model still needs to be speci�ed for likelihood-based inference.

Ideally, one would like to specify a model for the sampled data, and to use this

model �t to the sampled data to infer the nonsampled values, without specifying

a superpopulation model. Pfe�ermann and Sverchkov (1999) derived an important

identity linking the moments of the sample and population-based moments, which

allows for likelihood inference using the observed data, without explicit speci�cation

of a population model. They showed that

P(I ij = 1 j yij ; x ij ) = Ep(� ij j yij ; x ij ) = 1 =Es(wij j yij ; x ij ):

Similarly, it was shown that

P(I ij = 1 j x ij ) = Ep(� ij j x ij ) = 1 =Es(wij j x ij ):

Combining these results with an application of Bayes' Theorem, as was done to arrive

at (1.19), gives the distribution for the nonsampled units in the �nite population

f c(yij j x ij ) � f p(yij j x ij ; I ij = 0) =
Es(wij � 1 j yij ; x ij )f s(yij j x ij )

Es(wij � 1 j x ij )
; (1.20)
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where f c represents the density function ofyij , given that yij has not been sampled.

This result allows one to specify only a distribution for the sampled responses and

a distribution for the sampled survey weights for inference on the nonsampled units,

without any hypothetical distribution for the �nite population. Importantly, this

allows for identi�cation of the �nite population generating distribution f p through

the sample-based likelihood. It also establishes the relationship between the moments

of the sample distribution and the population distribution, allowing for prediction of

nonsampled units.

In the small area estimation context, the goal is prediction of the small area means,

�yi , which requires estimation ofEp(yij j DS) in (1.1) for the nonsampled units in each

area i . Suppose there is an area-speci�c random e�ect,vi
i:i:d:� � (v), common to all

units in the population in small area i , so that the population distribution can be

written f p(yij j x ij ; vi ; � ). Pfe�ermann and Sverchkov (2007) used the result in (1.20),

to show how small area means can be predicted using the observed unit level data

under an informative survey design. Under the assumption thatEc(yij j Ds; vi ) =

Ec(yij j x ij ; vi ),

Ep(yij j Ds; I ij = 0) = Ec(yij j Ds) = Ec(Ec(yij j x ij ; vi ) j Ds):

Combining this with (1.20) allows for prediction of the small area means after spec-

i�cation of a model for the sampled responses,f s(yij j x ij ; vi ), and a model for the

sampled weights,f s(wij j yij ; x ij ; vi ).

The model for the survey weights can be speci�ed conditionally on the response

variables to account for the informativeness of the survey design. Possible models for

the sample weights considered in the literature include the linear model (Beaumont,
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2008)

wij = a0 + a1yij + a2y2
ij + x T

ij � + � ij ;

and the exponential model for the mean (Pfe�ermann et al., 1998a; Kim, 2002; Beau-

mont, 2008)

Es(wij j x ij ; yij ) = ki exp
�
ayij + x T

ij �
�

: (1.21)

Pfe�ermann and Sverchkov (2007) considered the case of continuous response vari-

ables,yij , and modeled the sampled response data using the nested error regression

model (1.2). The exponential model for the survey weights in (1.21) was used to

model the informative survey design. Under this modeling framework, they showed

that the best predictor of �Yi is approximately

Ep( �Yi j Ds) = N � 1
i

h
(N i � ni )�̂ i + ni

n
�yi +

� �X i � �x i
� T

�
o

+ ( N i � ni )b� 2
e

i
; (1.22)

where �̂ = ûi + �X T
i � . The term (N i � ni )b� 2

e in (1.22) is an additional term from

the usual best predictor in the nested error regression model (1.2), which gives a bias

correction proportional to the sampling error variance� 2
e.

Le�on-Novelo et al. (2019) take a fully Bayesian approach by specifying a population

level model for the response,f p(yij jx ij ; � ), as well as a population level model for the

inclusion probabilities, f p(� ij jyij ; x ij ; � ). Through a Bayes rule argument similar to

(1.19), they show that the implied joint distribution for the sampled units is

f s(yij ; � ij jx ij ; � ) = f p(yij ; � ij jx ij ; � ; I ij = 1)

=
� ij f p(� ij jyij ; x ij ; � )

Eyij jx ij ;� f E(� ij jyij ; x ij ; � )g
� f p(yij jx ij ; � ):

(1.23)
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This joint likelihood for the sample can then be used in a Bayesian model by placing

a prior distribution on � . Note that x ij can be split into two vectors corresponding

to f p(yij jx ij ; � ) and f p(� ij jyij ; x ij ; � ) if desired. Consequently, the covariates for the

response model and the inclusion probability model need not be the same.

Two computational concerns arise when using the likelihood as in (1.23). The

�rst issue is that in general, the structure will not lead to conjugate full condi-

tional distributions. To this e�ect, the authors recommend using the probabilis-

tic programming language Stan (Carpenter et al. (2017)), which implements HMC

for e�cient mixing. The second concern is that the integral involved in the ex-

pectation term of (1.23) needs to be solved for every sampled observation at ev-

ery iteration of the sampler. If the integral is intractable, it will need to be eval-

uated numerically, greatly increasing the necessary computation time. They show

that if the lognormal distribution is used for the population inclusion probabil-

ity model, then a closed form can be found for the expectation. Speci�cally, let

f p(� ij jyij ; x ij ; � ) = f (log � ij j� = yij � + t(x ij ; � ); � 2 = � 2
� ), where f (�j �; � 2) repre-

sents a normal distribution with mean� and variance� 2, � is a regression coe�cient,

and t(�) some function. Then

f s(yij ; � ij jx ij ; � ) =
f (log � ij j� = yij � + t(x ij ; � ); � 2 = � 2

� )
expf t(x ij ; � ) + � 2

� =2gEyij jx ij ;� f exp(yij � )g
� f p(yij jx ij ; � ): (1.24)

In other words, the moment generating function of the population response model

can be used to �nd the analytical form of the expression, as long as the moment

generating function is de�ned on the real line. This includes important cases such as

the Gaussian, Bernoulli, and Poisson distributions, which are commonly used in the

context of survey data.
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1.7 Binomial likelihood special cases

The special case of binary responses is of particular interest to survey statisticians,

as many surveys focus on the collection of data corresponding to characteristics of

sampled individuals, with a goal of estimating the population proportion or count in

a small area for a particular characteristic. In this section, some techniques for mod-

ifying a working Bernoulli or binomial likelihood using unit-level weights to account

for an informative sampling design are discussed.

Suppose the responsesyij are binary, and the goal is estimation of �nite population

proportions in each of the small areasi = 1; : : : ; m,

pi =
1

N i

X

j 2U i

yij :

The pseudo-likelihood methods discussed in Section 1.5 can be directly applied to

construct a working likelihood of independent Bernoulli distributions for the sampled

survey responses as in (1.13). Zhang et al. (2014) used these ideas to �t a survey-

weighted logistic regression model, with random e�ects included at both the county

level and the state level, using the GLIMMIX procedure within SAS, to estimate

chronic obstructive pulmonary disease by age race and sex categories within United

States counties. Another example can be found in Congdon and Lloyd (2010), who

used a Bernoulli pseudo-likelihood to estimate diabetes prevalence within U. S. states

by demographic groups. Their model formulation was similar to that used by Zhang

et al. (2014), but they included an additional random e�ect to account for spatial

correlation.

Malec et al. (1999) proposed a method which is similar in spirit to the pseudo-
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likelihood method, which uses the survey weights to modify the shape of the binomial

likelihood function. Suppose there areD demographic groups of interest and letSd

be the sampled individuals belonging to demographic groupd = 1; : : : ; D. Instead of

the usual independent binomial likelihood
Q

id pm id
id (1� pid )n id � m id , Malec et al. (1999)

proposed a sample-adjusted likelihood

Y

id

pm id
id (1 � pid )n id � m id

(pid =�w1d + (1 � pid )=�w0d)n id
; (1.25)

where

�w1d =
X

(i;j )2S d

wijd yijd =
X

(i;j )2S d

yijd

and

�w0d =
X

(i;j )2S d

wijd (1 � yijd )=
X

(i;j )2S d

(1 � yijd ):

The quantities �w1d and �w0d are used to represent sampling weights for a demographic

group d averaged over all individuals with and without a characteristic of interest,

respectively. The justi�cation of the denominator of (1.25) as an adjustment to the

likelihood to account for informative sampling is presented in Malec et al. (1999)

through use of Bayes' rule and by considering the empirical distribution of the inclu-

sion probabilities.

An alternative approach to the pseudo-likelihood method is to attempt to con-

struct a new, approximate likelihood with independent components, which matches

the information contained in the survey sample. Let

p̂i =

P
j 2S i

wij yij
P

j 2S i
wij

;
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be the direct estimate ofpi and let V̂i be the estimated variances of ^pi . Under a

simple random sampling design, the variance of the direct estimate ^pi is VSRS (p̂i ) =

pi (1� pi )=ni , which can be estimated bŷVSRS (p̂i ) = p̂i (1� p̂i )=ni . In complex sampling

designs, elements that belong to a common cluster or area may be correlated. Because

of this, the information in the sample from a complex survey is not equivalent to the

information in a simple random sample of the same size. The design e�ect for ^pi is

the ratio

di = di (p̂i ) =
V̂D (p̂i )

V̂SRS (p̂i )
=

ni V̂D (p̂i )
p̂i (1 � p̂i )

;

and is a measure of the extent to which the variability under the survey design di�ers

from the variability that would be expected under simple random sampling.

The e�ective sample size,n0
i , is de�ned as the ratio of the sample size to the design

e�ect

n0
i =

ni

di
=

pi (1 � pi )
VSRS (p̂i )

:

The e�ective sample size is an estimate of the sample size required under a non-

informative simple random sampling scheme to achieve the same precision to that

observed under the complex sampling design. Typically, the e�ective sample sizen0
i

will be less thanni for complex sample designs.

Often the design e�ect is not available, either due to lack of available information

with which to compute it, or due to computational complexity. In such cases, design

weights can be used for estimation of the e�ective sample size. A simple estimate

of the e�ective sample size, which uses only the design weights was derived by Kish

(1965), and is given by

n0
i =

(
P

j 2S i
wij )2

P
j 2S i

w2
ij

:
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Other estimates of the design e�ect which use the survey weights, sample sizes, and

population totals, and are appropriate for strati�ed sampling designs, can be found

in Kish (1992).

Chen et al. (2014) and Franco and Bell (2014) used the design e�ect and e�ective

sample size to de�ne the `e�ective number of cases,'y�
i = n0

i p̂i . The e�ective number

of cases,y�
i , were then modeled using a binomial, logit-normal hierarchical structure.

The sample model for the e�ective number of cases is then

y�
i j pi � Binomial (n0

i ; pi ); i = 1; : : : ; m;

with a linking model of

logit(pi ) = log
�

pi

1 � pi

�
= x T

i � + vi ;

where the vi are area-speci�c random e�ects. Using the e�ective number of cases

and the e�ective sample size in a binomial model is an attempt to construct a like-

lihood which is valid under a simple random sampling design, and will produce ap-

proximately equivalent inferences as when using the exact, but possibly unknown or

computationally intractable likelihood.

Di�erent distributional assumptions on the random e�ects can be made to accom-

modate aspects of the data or di�erent correlation structures particular to sampled

geographies. Noting that it might be expected that areas which are close to each

other might share similarities, Chen et al. (2014) decomposed the random e�ectsvi

into spatial and a non-spatial components, so thatvi = ui + " i , where" i
i:i:d:� N (0; � 2

" ),
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and

ui j uj ; j 2 ne(i ) � N (�ui ; � 2
u=ni ): (1.26)

Here, ne(i ) is the set of neighbors of area i and �ui is the mean of the neighboring

spatial e�ects. The spatial model in (1.26) is known as the intrinsic conditional

autoregressive (ICAR) model (Besag, 1974).

Franco and Bell (2014) introduced a time dependence structure into the random

e�ect vi for situations in which there are data from multiple time periods available, and

applied their model to estimation of poverty rates using multiple years of American

Community Survey data. In their formulation, the random e�ects have an AR(1)

correlation structure, so that the model becomes

y�
i;t j pi;t � Binomial (n0

i;t ; pi;t ); i = 1; : : : ; m; t = 1; : : : ; T

logit(pi;t ) = x T
i;t � t + � 2

t vi;t

vi;t = �v i;t � 1 + " i;t

wherej� j < 1, and the" i;t are assumed to be i.i.d.N (0; 1� � 2) random variables. The

unknown parameters� t and � 2
t are allowed to vary over time. Franco and Bell (2014)

showed that the reductions in prediction uncertainty can be meaningful when the

autoregressive parameter� is large, but that the reduction in prediction uncertainty

is more modest whenj� j < 0:4. As noted by Chen et al. (2014), the inclusion of

spatial or spatio-temporal random e�ects has the added bene�t that the dependent

random e�ects can serve as a surrogates for the variables responsible for dependency

in the data.

The above methods use the survey weights either to modify the shape of an in-
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dependent likelihood (Malec et al., 1997; Zheng and Little, 2003) to account for the

informative design, or to estimate a design e�ect in an attempt to match the infor-

mation contained in the survey sample to the information implied by an independent

likelihood by adjusting the sample size (Chen et al., 2014; Franco and Bell, 2014).

Alternatively, one could specify a working independence model for the sampled units

and incorporate the survey design by using the survey weights as predictors (Zheng

and Little, 2003), and to induce dependence through a latent process model.

1.8 Empirical simulation study

Unit-level models o�er several potential bene�ts (e.g., no need for benchmarking

and increased precision), however, accounting for the informative design is critical at

the unit-level. There are a variety of ways to approach this; however, the utility of

each approach is not apparent. We choose three methods that span di�erent general

modeling approaches (pseudo-likelihood, nonparametric regression on the weights,

and di�ering sample/population likelihoods), in order to address this question. We

choose to sample a population based on existing survey data from a complicated

design, and make estimates for poverty (similar to SAIPE).

To construct a simulation study, we require a population for which the response

is known for every individual, in order to compare any estimates to the truth. It

is also desirable to have an informative sample. We treat the 2014 ACS sample

from Minnesota as our population (around 120,000 observations and 87 counties),

and further sample 10,000 observations in order to generate our estimates from the

selected models. Ideally, we would mimic the survey design used by ACS, however
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the design is highly complex which makes replication di�cult. Instead, we subsample

the ACS sample with probability proportional to the reported sampling weights,w(o)
ij ,

using the Midzuno method (Midzuno, 1951) from thesampling package inR (Till�e

and Matei, 2016). This results in a new set of survey weightsw(n)
ij , which are inversely

proportional to the original weights given in the ACS sample. Sampling in this manner

results in a sample for which the selection probabilities are proportional to the original

sampling weights. By comparing weighted and unweighted direct estimates, we show

that sampling in this way yields an informative sample. We �t three models to the

newly sampled dataset, and create county level estimates of the proportion of the

original ACS sample below the poverty level.

Model 1

yij j�; � / Bernoulli(pij )
�
w ij

logit(pij ) = x 0
ij � + ui

ui
ind� N(0; � 2

u)

� � Np(0p; I p� p� 2
� ); � u � Cauchy+ (0; � u);

(1.27)

where the weights
�
wij are scaled to sum to the total sample size, as recommended

by Savitsky and Toth (2016). We incorporate a vague prior distribution by setting

� 2
� = 10 and � u = 5. This approach is based on the Bayesian pseudo-likelihood given

in Savitsky and Toth (2016). The model structure is similar to that of Zhang et al.

(2014), although we use the psuedo-likelihood in a Bayesian context rather than a

frequentist one. Our design matrixX includes terms for age category, race category,
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and sex. We use poststrati�cation by generating the nonsampled population at every

iteration of our MCMC, which we use to produce our estimates based on (1.1). The

poststrati�cation cells consist of the unique combinations of county, age category,

race category, and sex, for which the population sizes are known to us.

Model 2

yij j� 0; f (wij ); u; v � Bernoulli(pij )

logit(pij ) = � 0 + f (wij ) + ui + vi

f (wij )j
; � � GP(0; Cov(f (wij ); f (wi 0j 0)))

Cov(f (wij ); f (wi 0j 0)) = 
 2exp
�

�
(wij � wi 0j 0)2

2� 2

�

u j�; � � N(0; � D (I � � W )� 1)

vi j� 2
v � N(0; � 2

v); i = 1; : : : ; m

� 0 � N(0; � 2
� ); 
 � Cauchy+ (0; � 
 ); � � Cauchy+ (0; � � )

� � Cauchy+ (0; � � ); � � Unif( � 1; 1); � v � Cauchy+ (0; � v);

(1.28)

where D is a diagonal matrix containing the number of neighbors for each area

i = 1; : : : ; m and W is an area adjacency matrix. Again, we use a vague prior

distribution by setting � 2
� = 10 and � 
 = � � = � � = � v = 5. This is similar to

the work of Vandendijck et al. (2016), but using the squared exponential covariance

kernel as in Si et al. (2015), rather than a random walk prior onf (�). Additionally,

we choose to use the conditional autoregressive structure (CAR) rather than ICAR

structure on our random e�ectsu . Note that although Vandendijck et al. (2016) use

the weights scaled to sum to county sample sizes as inputs into the nonparametric
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function f (�), we attained better results by using the unscaled weights. We use the

multinomial model

(n1k ; : : : ; nL k k) � Multinomial

 

nk ;
N1k=w(1) k

P L k
l=1 N lk =w(l )k

; : : : ;
NL k k=w(L k )k

P L k
l=1 N lk =w(l )k

!

(1.29)

to model the population weight values, in order to perform poststrati�cation. In this

model,nlk represents the sample size in poststrata celll in areak, while N lk represents

the population size in the same cell. Poststrati�cation cells are determined by unique

weight values within each county, denotedw(l )k . Because all units in the same cell will

share the same weight, by determining the population size of each cell, the weights

are implicitly determined, and thus the population may be generated using the model

speci�ed in (1.28).

Model 3

yij j pij � Bernoulli(pij )

logit(pij ) = x T
ij � + ui

log(wij ) j yij � x T
ij � + yij � a + � ij

ui
i:i:d:� N

�
0; � 2

u

�

� ij
i:i:d:� N

�
0; � 2

�

�
;

(1.30)

with vague N(0; 10) priors on the regression coe�cients� ; � , and a, and vague

Cauchy+ (0; 5) priors on the variance components� u and � � . This model acts as

a Bayesian extension of Pfe�ermann and Sverchkov (2007).

All 3 models were �t via HMC using Stan (Carpenter et al., 2017). We ran each
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model using two chains, each of length 2,000, and discarding the �rst 1,000 iterations

as burn-in, thus using a total of 2,000 MCMC samples. Convergence was assessed

visually via traceplots of the sample chains, with no lack of convergence detected.

We repeated the simulation 50 times, with a sample size of 10,000 each time. That

is, we create 50 distinct subsamples from the ACS sample, and �t the three models

to each subsample. We compare the mean squared error (MSE), absolute bias, 95%

credible interval coverage rate for county level estimates, and computation time in

seconds for each model in Table 1.1. We also compare to a Horvitz-Thompson (HT)

direct estimator as well as an unweighted mean (UW) direct estimator.

Each of the three model based estimators provides a substantial reduction in

MSE compared to the direct estimator, with Model 3 being the best in this regard.

Additionally, Model 1 gives a low bias, quite comparable to the direct estimate.

Finally, we see that Model 1 requires substantially less computation time compared

to the other model-based estimators, especially when comparing to Model 2. This

suggests that if one wanted to scale the model to include more data, such as estimates

at a national level, Model 1 may be easier to work with. Computation times will vary

depending on the speci�c resources used, however the main focus here is the relative

time between models. Additionally, this simulation illustrates that it is feasible to �t

Bayesian unit-level models in practice under reasonable computation times.

In Figure 1.1 we show the average reduction in RMSE, for each county, that

was attained by the three model based estimators when compared to the HT direct

estimator, averaged over the 50 simulations. Counties that did not see a reduction are

plotted in gray. There are some important di�erences between the model results here.

Speci�cally, Model 1 achieves a reduction in nearly every county unlike the other two
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Estimator MSE Abs Bias CI Cov. Rate Time

HT Direct 0.0044 0.0063 0.77 NA
Model 1 0.0017 0.0089 0.86 107
Model 2 0.0017 0.0256 0.89 6627
Model 3 0.0009 0.0172 0.94 407

UW Direct 0.0050 0.0322 0.41 NA

Table 1.1: Simulation results: MSE, absolute bias, 95% credible interval coverage
rate, and computation time in seconds were averaged over 50 simulations in order to
compare the direct estimator to three model based estimators and and unweighted
direct estimate.

models, but Model 3 tends to achieve a greater reduction in RMSE in general when

compared to Model 1.

Figure 1.1: Model reduction in RMSE compared to the Direct estimates, averaged
over 50 simulations. Counties that did not see a reduction are not plotted (shown in
gray).
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1.9 Poverty Estimate Data Analysis

The Small Area Income and Poverty Estimates program (SAIPE) is a U.S. Census

Bureau program that produces estimates of median income and the number of people

below the poverty threshold for states, counties, and school districts, as well as for

various subgroups of the population. The SAIPE estimates are critical in order for

the Department of Education to allocate Title I funds.

The current model used to generate SAIPE poverty estimates is an area-level

Fay-Herriot model (Fay and Herriot, 1979) on the log scale. The response variable is

the log transformed HT direct estimates from the single year ACS of the number of

individuals in poverty at the county level. The model includes a number of powerful

county level covariates such as the number of claimed exemptions from federal tax

return data, the number of people participating in the Supplemental Nutrition As-

sistance Program (SNAP), and the number of Supplemental Security Income (SSI)

recipients. Luery (2011) provides a comprehensive overview of the SAIPE program,

including the methodology used to produce various area-level estimates and the co-

variates used in the model.

We use a single year of ACS data (2014 again) from Minnesota to �t the three

models described in Section 1.8. The model based estimators we present are not

meant to replace the current SAIPE methodology, but rather to illustrate how unit-

level models can be used in an informative sampling application such as this one. The

model-based predictions of the proportion of people below the poverty threshold by

county under each method are presented and compared with a direct estimator.

In Figure 1.2 we show the estimate of the proportion of people below the poverty

level by county for each of the model-based estimators as well as the HT direct esti-
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mator. Note that a small amount of noise has been added to the HT direct estimates

as a disclosure avoidance practice. All of the estimates here seem to capture the same

general spatial trend. The model based estimates resemble smoothed versions of the

direct estimates, especially in the more rural areas of the state. Small sample sizes

can lead to direct estimates with high variance, but the model based approaches can

\share information" across areas, which leads to more precise estimates. We also

compare the reduction in model based standard errors when compared to the HT

direct estimate in Figure 1.3. This illustrates the precision that is gained by using a

model-based estimator rather than a direct estimator in a SAE setting. Model 3 in

particular appears to have the lowest standard errors in more rural areas and Model 1

seems to have lower standard errors in more populated areas. For this particular ap-

plication, all three of the models we explored would be valid choices, with substantial

reductions in RMSE as shown in Section 5.4.

In this case, the population cell sizes were known, however in many applications

they may not be, in which case Model 2 would likely be the best option. In other cases

where incorporating covariate information is desired, Model 2 is not well equipped

to make estimates. This application was conducted for a single state, however if one

wanted to scale the analysis, for example making estimates for every county in the

United States, Model 1 appears to be the most computationally e�cient. An approach

similar to Model 2, albeit using a di�erent nonlinear regression approach from the

Gaussian Process regression considered here, may also be computationally e�cient.

Vandendijck et al. (2016) reported strong results using splines for this setup. Overall

we found that each of these unit-level methods can o�er precise area-level estimates,

however, the properties of the particular dataset under consideration as well as the
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goals of the user should drive which model is selected.

Modeling poverty counts at the unit level has a number of bene�ts when com-

pared to area-level models. Speci�cally, the current SAIPE model is on the log scale,

and thus cannot naturally accommodate estimates for areas with a corresponding

direct estimate of zero, whereas unit-level modeling need not be on the log scale, and

thus does not su�er from this problem. Additionally, making predictions at multiple

spatial resolutions is straightforward in the unit-level setting, as predictions can be

generated for all units in the population and then aggregated as necessary, i.e., the so-

called bottom-up approach. Under a unit-level approach, one could generate poverty

estimates at both a county level and school district level under the same model. In

addition to these structural bene�ts, Table 1.1 illustrates that unit-level models have

the capacity to provide substantial reductions in MSE and variance when compared

to direct estimators.
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