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BAYESIAN UNIT-LEVEL MODELING OF

NON-GAUSSIAN SURVEY DATA UNDER

INFORMATIVE SAMPLING WITH APPLICATION TO

SMALL AREA ESTIMATION 1

Paul A. Parker

Scott H. Holan, Dissertation Supervisor

ABSTRACT

Unit-level models are an alternative to the traditional area-level models used in

small area estimation, characterized by the direct modeling of survey responses rather

than aggregated direct estimates. These unit-level approaches offer many benefits

over area-level modeling, such as potential for more precise estimates, construction of

estimates at multiple spatial resolutions through a single model, and elimination of the

need for benchmarking techniques, among others. Furthermore, many recent surveys

collect interesting and complex data types at the unit level, such as text and functional

data. Yet, unit-level models present two primary challenges that have limited their

widespread use. First, when surveys have been sampled in an informative manner,

1Support for this research at the Missouri Research Data Center (MURDC), through the Uni-
versity of Missouri Population, Education and Health Center Doctoral Fellowship, as well as through
the U.S. Census Bureau Dissertation Fellowship Program is gratefully acknowledged. This research
was partially supported by the U.S. National Science Foundation (NSF) under NSF grant SES-
1853096. This article is released to inform interested parties of ongoing research and to encourage
discussion. The views expressed on statistical issues are those of the authors and not those of the
NSF or U.S. Census Bureau.
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it is critical to account for the design in some fashion when utilizing a model at the

unit level. Second, unit-level datasets are inherently much larger than area-level ones,

with responses that are typically non-Gaussian, leading to computational constraints.

After providing a comprehensive review on the problem of informative sampling, this

dissertation provides four computationally efficient methodologies for non-Gaussian

survey data under informative sampling. This methodology relies on the Bayesian

pseudo-likelihood to adjust for the survey design, as well as Bayesian hierarchical

modeling to characterize various dependence structures. First, a count data model

is developed and applied to small area estimation of housing vacancies. Second,

modeling approaches for both binary and categorical data are developed, along with a

variational Bayes procedure that may be used in extremely high-dimensional settings.

This approach is applied to the problem of small area estimation of health insurance

rates using the American Community Survey. Third, a nonlinear model is developed

to allow for complex covariates, with application to text data contained within the

American National Election Studies. Finally, a model is developed for functional

covariates and applied to physical activity monitor data from the National Health

and Nutrition Examination Survey.

xii



Chapter 1

Introduction1

1.1 Outline of the Dissertation

This dissertation is focused on unit-level modeling of survey data under informative

sampling. Particular emphasis is given to the application of these methods to the

problem of small area estimation (SAE). SAE techniques can be generally categorized

into area-level and unit-level approaches. The majority of the literature is built

around area-level techniques, however, unit-level approaches can be advantageous for

many reasons discussed herein. Unit-level approaches are also accompanied by two

primary challenges: the need to account for sampling design, and the complexity and

scale of data at the unit level. Unit level datasets are inherently orders of magnitude

larger than data at the area level. In addition, unit-level responses are frequently

non-Gaussian (binary, categorical, count, etc.), contrasting with area level responses,

which are often Gaussian, or may be approximated as Gaussian after an appropriate

1The U.S. Census Bureau DRB approval number for this chapter is CBDRB-FY19-506.
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transformation. Furthermore, unit-level data may frequently allow for complex (i.e.

not scalar) covariates, such as text or functional data.

The issue of accounting for sampling design in unit-level modeling has been studied

to some degree. Although this is an ongoing area of research for which further work

is necessary, there is currently a multitude of available approaches to the problem. In

contrast to this, there has been very little research focused around computationally

efficient approaches to unit-level modeling, limiting the use of these approaches in

practice. To this end, the majority of this dissertation is devoted to the development

of computationally efficient unit-level models that account for the underlying sampling

design.

Each chapter within this dissertation is intended to be self contained. Thus, there

may be some redundancy regarding to the background information presented in each

chapter. Furthermore, the notation used herein is not necessarily consistent between

chapters. The remainder of this chapter serves as a literature review for the problem

of informative sampling and how it relates to SAE at the unit level. A simulation

study that compares a subset of the literature and an application to SAE of poverty

are included as well. We draw upon this literature for the development of methodol-

ogy in subsequent chapters. Chapter 2 contains methodology for count data at the

unit level as well as an empirical simulation study related to SAE of housing vacancy.

Chapter 3 explores the case of binary and categorical response data at the unit level

under informative sampling. Both an efficient Gibbs sampler as well as a variational

Bayes approximation are developed. The methodology is illustrated through an em-

pirical simulation study, as well as an extremely high-dimensional SAE application to

health insurance. Chapter 4 explores the use of unit level text covariates. An efficient
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nonlinear model is developed and illustrated through an empirical simulation study

and SAE application using data from the American National Election Studies. In

Chapter 5, methodology is developed to allow for functional covariates under infor-

mative sampling. This is illustrated through an empirical simulation study as well as

an application to mortality estimation using physical activity monitor (PAM) data

from the National Health and Nutrition Examination Survey. This chapter departs

from previous chapters in that the analysis is focused on population and/or unit level

inference rather than SAE. Finally, some concluding remarks are given in Chapter 6.

1.2 Overview

Government agencies have seen an increase in demand for data products in recent

years. One trend that has accompanied this demand is the need for granular estimates

of parameters of interest at small spatial scales or subdomains of the finite population.

Typically, sample surveys are designed to provide reliable estimates of the parameters

of interest for large domains. However, for some subpopulations, the area-specific

sample size may be too small to produce estimates with adequate precision. The

term small area is used to refer to any domain of interest, such as a geographic

area or demographic cross classification, for which the domain-specific sample size is

not large enough for reliable direct estimation. To improve precision, model-based

methods can be used to ‘borrow strength,’ by relating the different areas of interest

through use of linking models, and by introducing area-specific random effects and

covariates. The Small Area Income and Poverty Estimates (SAIPE) program, and the

Small Area Health Insurance Estimates (SAHIE) program within the U. S. Census

3



Bureau are two examples of government programs which produce county and sub-

county level estimates for different demographic cross classifications across the entire

United States using small area estimation (SAE) methods (Luery, 2011; Bauder et al.,

2018). It can be difficult to generate small area estimates such as these for a number of

reasons, including the fact that many geographic areas may have very limited sample

sizes, if they have been sampled at all.

Models for SAE may be specified either at the area level or the unit level (see

Rao and Molina, 2015, for an overview of small area estimation methodology). Area-

level models treat the direct estimate (for example, the survey-weighted estimate of

a mean) as the response, and typically induce some type of smoothing across areas.

In this way, the areas with limited sample sizes may “borrow strength” from areas

with larger samples. While area-level models are popular, they are limited, in that

it is difficult to make estimates and predictions at a geographic or demographic level

that is finer than the level of the aggregated direct estimate.

In contrast, unit-level models use individual survey units as the response data,

rather than the direct estimates. Use of unit-level models can overcome some of the

limitations of area-level models, as they constitute a bottom-up approach (i.e., they

utilize the finest scale of resolution of the data). Since model inputs are at the unit-

level (person-level, household-level, or establishment-level), predictions and estimates

can be made at the same unit-level, or aggregated up to any desired level. Unit-

level modeling also has the added benefit of ensuring logical consistency of estimates

at different geographic levels and/or cross tabulations. For example, model-based

county estimates are forced to aggregate to the corresponding state-level estimates,

eliminating the need for ad hoc benchmarking. In addition, because the full unit-

4



level dataset is used in the modeling, rather than the summary statistics used with

area-level models, there is potential for improved precision of estimated quantities.

Although unit-level models may lead to more precise estimates, that aggregate

naturally across different spatial resolutions, they also introduce new challenges. Per-

haps the biggest challenge is how to account for the survey design in the model. With

area-level models, the survey design is incorporated into the model through specifi-

cation of a sampling distribution (typically taken to be Gaussian) and inclusion of

direct variance estimates. With unit-level models, accounting for the survey design is

not as straightforward. One challenge is that the sample unit response may be depen-

dent on the probability of selection, even after conditioning on the design variables.

When the response variables are correlated with the sample selection variables, the

sampling scheme is said to be informative, and in these scenarios, in order to avoid

bias, it is critical to capture the sample design in the model by including the survey

weights or the design variables used to construct the survey weights.

The aim of this chapter is to present a comprehensive literature review of unit-

level small area modeling strategies, with an emphasis on Bayesian approaches, and

to evaluate a selection of these strategies by fitting different unit-level models on both

simulated data, and on real American Community Survey (ACS) micro-data, thereby

comparing model-based predictions and uncertainty estimates. In this chapter we

focus mainly on model specification and methods which incorporate informative sam-

pling designs into the small area model. Some important, related issues, that will be

outside the scope of this chapter include issues related to measurement error and ad-

justments for nonresponse. Generally, we assume that observed survey weights have

been modified to take into account nonresponse. We also avoid discussion on the rel-

5



ative merits of frequentist versus Bayesian methods for inference. In the simulation

studies and data examples given in Sections 1.8 and 1.9, we fit three unit-level small

area Bayesian models, with vague, proper priors on all unknown model parameters.

Inference on the finite population parameters of interest is done using the posterior

mean as a point estimate, and the posterior variance as a measure of uncertainty.

Some related work includes Hidiroglou and You (2016), who present a simulation

study to compare area-level and unit-level models, both fit in a frequentist setting.

They fit their models under both informative and noninformative sampling, and found

that overall the unit-level models lead to better interval coverage and more precise

estimates. Gelman (2007) discusses poststratification using survey data, and com-

pares the implied weights of various models including hierarchical regression. Lumley

and Scott (2017) discuss general techniques for modeling survey data with included

weights. They focus on frequentist pseudo-likelihood estimation as well as hypothesis

testing. Chapter 7 of Rao and Molina (2015) provides an overview of some commonly

used unit-level small area models. The current chapter adds to this literature by

providing a comprehensive review of unit-level small area modeling techniques, with

a focus on methods which account for informative sampling designs. We mainly use

Bayesian methods for inference, but note that many model-based methods are general

enough to be implemented in either setting, and we highlight some scenarios where

Bayesian methodology may be used.

The remainder of this chapter is organized as follows. Section 1.3 introduces

the sampling framework and notation to be used throughout the chapter. We aim

to keep the notation internally consistent. This may lead to differences compared

to the original authors’ notation styles, but should lead to easier comparison across

6



methodologies. In Section 1.4 we cover modeling techniques that assume a noninfor-

mative survey design. The basic unit-level model is introduced, as well as extensions

of this model which incorporate the design variables and survey weights. Methods

which allow for an informative design are then discussed, beginning in Section 1.5.

Here, we discuss analytic inference of population parameters under an informative

design using pseudo-likelihood methods. Extensions of the pseudo-likelihood to hi-

erarchical, multilevel mixed models are discussed, as well as application to small

area estimation problems. In Section 1.6 we focus on models that use a sample

distribution that differs from the population distribution. We conclude the review

component of this chapter in Section 1.7, where we will review models that are spe-

cific to a Binomial likelihood, as many variables collected from survey data are bi-

nary in nature. In Section 1.8 we compare three selected models to a direct estima-

tor under a simulation study designed around American Community Survey (ACS)

data. Specifically, this simulation examines three Bayesian methods that span dif-

ferent general modeling approaches (pseudo-likelihood, nonparametric regression on

the weights, and differing sample/population likelihoods) with the goal of examining

the utility of each approach. The Stan code used to fit these models is available at

https://github.com/paparker/Unit Level Models. Similarly, Section 1.9 uses the

same models for a poverty estimates application similar to the Small Area Income

and Poverty Estimates program (SAIPE). Finally, we provide concluding remarks in

Section 1.10.

7
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1.3 Background and notation

Consider a finite population U of size N , which is subset into m non-overlapping

domains, Ui = {1, . . . , Ni} , i = 1, . . . ,m, where
∑m

i=1Ni = N . These subgroups will

typically be small areas of interest, or socio-demographic cross-classifications, such

as age by race by gender within the different counties. We use yij to represent a

particular response characteristic associated with unit j ∈ Ui, and xij a vector of

predictors for the response variables yij.

Let Z be a vector of design variables which characterize the sampling process. For

example, Z may contain geographic variables used for stratifying the population, or

size variables used in a probability proportional to size sampling scheme. A sample

S ⊂ U =
⋃
Ui is selected according to a known sampling design with inclusion

probabilities dependent on the design variables, Z. Let Si denote the sampled units

in small area i, and let πij = P (j ∈ Si | Z). The inverse probability sampling weights

are denoted with wij = 1/πij. We note that as analysts, we may not have access to the

functional form of P (j ∈ Si | Z), and may not even have access to the design variables

Z, so that the only information available to us about the survey design is through the

observed values of πij or wij, for the sampled units in the population. Finally, we let

DS = {{yij,xij, wij} : j ∈ Si, i = 1, . . . ,m} represent the observed data. This simply

consists of the responses, predictors, and sampling weights for all units included in the

sample. In this context, yij is random, xij is typically considered fixed and known, and

wij can either be fixed or random depending on the specific modeling assumptions.

The usual inferential goal, and the main focus of this chapter, is on estimation

of the small area means, ȳi =
∑

j∈Ui yij/Ni, or totals, yi =
∑

j∈Ui yij. In some

situations, interest could be on estimation of descriptive population parameters, such
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as regression coefficients in a linear model, or on estimation of a distribution function.

The best predictor, ˆ̄yi of ȳi, under squared error loss, given the observed data DS, is

ˆ̄yi = E (ȳi | DS) =
1

Ni

∑
j∈Ui

E (yij | DS) =
1

Ni

∑
j∈Si

yij +
1

Ni

∑
j∈Sci

E (yij | DS) . (1.1)

The first term on the right hand side of (1.1) is known from the observed sample.

However, computation of the conditional expectation in the second term requires

specification of a model, and potentially, depending on the model specified, auxiliary

information, such as knowledege of the covariates xij or sampling weights wij for

the nonsampled units. For the case where the predictors xij are categorical, the

assumption of known covariates for the nonsampled units is not necessarily restrictive,

if the totals, Ni,g, for each cross-classification g in each of the small areas i are known.

In this case, the last term in (1.1) reduces to N−1i
∑

g(Ni,g − ni,g)E (yij | DS), and

only predictions for each cross-classification need to be made.

The predictor given in (1.1) is general, and the different unit-level modeling meth-

ods discussed in this chapter are essentially different methods for predicting the non-

sampled units under different sets of assumptions on the finite population and the

sampling scheme. An entire finite population can then be generated, consisting of

the observed, sampled values, along with model-based predictions for the nonsam-

pled individuals. The small area mean can then be estimated by simply averaging

appropriately over this population. If the sampling fraction ni/Ni in each small area

is small, inference using predicted values for the entire population will be nearly the

same as inference using a finite population consisting of the observed values and pre-

dicted values for the nonsampled units. In this situation, it may be more convenient
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to use a completely model-based approach for prediction of the small area means

(Battese et al., 1988).

1.4 Unweighted analysis

1.4.1 Ignorable design

First, assume the survey design is ignorable or noninformative. Ignorable designs,

such as simple random sampling with replacement, arise when the sample inclusion

variable I is independent of the response variable y. In this situation, the distribution

of the sampled responses will be identical to the distribution of nonsampled responses.

That is, if a model f(· | θ) is assumed to hold for all nonsampled units in the

population, then it will also hold for the sampled units, since the sample distribution

of y, f(y | I = 1,θ) = f(y | θ) is identical to the population distribution of y. In

this case, a model can be fit to the sampled data, and the fitted model can then be

used directly to predict the nonsampled units, without needing any adjustments due

to the survey design.

The nested error regression model or, using the terminology of Rao and Molina

(2015), the basic unit-level model, was introduced by Battese et al. (1988) for estima-

tion of small area means using data obtained from a survey with an ignorable design.

Consider the linear mixed effects model

yij = xijβ + vi + eij, (1.2)

where i = 1, . . . ,m indexes the different small areas of interest, and j ∈ Si indexes
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the sampled units in small area i. Here, the model errors, vi, are i.i.d. N (0, σ2
v)

random variables, and the sampling errors, eij, are i.i.d. N (0, σ2
e) random variables,

independent of the model errors.

Let Vi be the covariance matrix consisting of diagonal elements σ2
v+σ2

e/ni, and off-

diagonal elements σ2
v . Assuming (1.2) holds for the sampled units, and the variance

parameters σ2
v and σ2

e are known, the best linear unbiased predictor (BLUP) of ȳi =∑
j∈Ui yij/Ni is

ˆ̄yi =
1

Ni

∑
j∈Si

yij +
1

Ni

∑
j∈Sci

(
xTijβ̃ + ṽi

)
, (1.3)

where

β̃ =

(
m∑
i=1

XT
i V

−1
i Xi

)−1( m∑
i=1

XT
i V

−1
i yi

)
,

Xi is the ni×p matrix with rows xTij, and ṽi = (σ2
v/(niσ

2
v +σ2

e))
∑

j∈Si(yij−x
T
ijβ̃). In

(1.3), as in the general expression in (1.1), the unobserved yij are replaced by model

predictions. Note that evaluation of (1.3) requires knowledge of the population mean,

X̄ip =
∑

j∈UiXij/Ni, of the covariates.

In practice, the variance components σ2
v and σ2

e are unknown and need to be

estimated. The empirical best linear unbiased predictor (EBLUP) is obtained by

substituting estimates, σ̂2
e and σ̂2

v , (typically MLE, REML, or moment estimates)

of the variance components in the above expressions (Prasad and Rao, 1990). In

addition, this model could easily be fit using Bayesian hierarchical modeling rather

than using the EBLUP, which would incorporate the uncertainty from the variance

parameters. Molina et al. (2014) developed a Bayesian version of the nested error

regression model (1.2), using noninformative priors on the variance components.

The survey weights do not enter into either the nested error regression model (1.2)
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or the EBLUPs of the small area means (1.3). Because of this, the EBLUP is not

design-consistent, unless the sampling design is self-weighting within each small area

(Rao and Molina, 2015).

1.4.2 Including design variables in the model

Suppose now that the survey design is informative, so that the way in which indi-

viduals are selected in the sample depends in an important way on the value of the

response variable yij. It is well established that when the survey design is informa-

tive, that ignoring the survey design and performing unweighted analyses without

adjustment can result in substantial biases (Nathan and Holt, 1980; Pfeffermann and

Sverchkov, 2007).

One method to eliminate the effects of an informative design is to condition on all

design variables (Gelman et al., 1995, Chap. 7). To see this, decompose the response

variables as y = (ys,yns), where ys are the observed responses for the sampled

units in the population, and yns represents the unobserved variables corresponding

to nonsampled individuals. Let I be the matrix of sample inclusion variables, so

that Iij = 1 if yij is observed and Iij = 0 otherwise. The observed data likelihood,

conditional on covariate information X, and model parameters θ and φ, is then

f(ys, I |X,θ,φ) =

∫
f(ys,yns, I |X,θ,φ)dyns =

∫
f(I | y,X,φ)f(y |X,θ)dyns.

If f(I | y,X,φ) = f(I | X,φ), the inclusion variables I are independent of y,

conditional on X, and the survey design can be ignored. For example, if the design

variables Z are included in X, the ignorability condition may hold, and inference can
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be based on f(ys |X,θ).

Little (2012) advocates for a general framework using unit-level Bayesian modeling

that incorporates the design variables. For example, if cluster sampling is used, one

could incorporate a cluster level random effect into the model, or if a stratified design

is used, one might incorporate fixed effects for the strata. The idea is that when all

design variables are accounted for in the model, the conditional distribution of the

response given the covariates for the sampled units is independent of the inclusion

probabilities. Because the model is unit-level and Bayesian, the unsampled popula-

tion can be generated via the posterior predictive distribution. Doing so provides a

distribution for any finite population quantity and incorporates the uncertainty in

the parameters. For example, if the population response is generated at draw k of a

Markov chain Monte Carlo algorithm, y(k), then one has implicitly generated a draw

from the posterior distribution of the population mean for a given area i:

ȳ
(k)
i =

∑N
j=1 y

(k)
j I (j ∈ Ui)∑N

j=1 I (j ∈ Ui)
.

If there are K total posterior draws, one could then estimate the mean and standard

error of ȳi with

ˆ̄yi =
1

K

K∑
j=1

ȳ
(k)
i

and

ŜE(ˆ̄yi) =
√
V ar(ˆ̄yi).

The problem with attempting to eliminate the effect of the design by conditioning

on design variables is often more of a practical one, because neither the full set of

design variables, nor the functional relationship between the design and the response
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variables will be fully known. Furthermore, expanding the model by including suffi-

cient design information so as to ignore the design may make the likelihood extremely

complicated or even intractable.

1.4.3 Poststratification

Little (1993) gives an overview of poststratification. To perform poststratification, the

population is assumed to contain m categories, or poststratification cells, such that

within each category units are independent and identically distributed. Usually these

categories are cross-classifications of categorical predictor variables such as county,

race, and education level. When a regression model is fit relating the response to

the predictors, predictions can be generated for each unit within a cell, and thus for

the entire population. Importantly, any desired aggregate estimates can easily be

generated from the unit level population predictions.

Gelman and Little (1997) and Park et al. (2006) develop a framework for post-

stratification via hierarchical modeling. By using a hierarchical model with partial

pooling, parameter estimates can be made for poststratification cells without any

sampled units, and variance is reduced for cells having few sampled units. Gelman

and Little (1997) and Park et al. (2006) provide an example for binary data that uses

the following model

yij|pij ∼ Bernoulli(pij)

logit(pij) = x′ijβ

β = (β1, . . . ,βK)

βk
ind∼ Nck(0, σ

2
kIck), k = 1, . . . , K,

(1.4)
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where xij is a vector of dummy variables for K categorical predictor variables with

ck classes in variable k.

Bayesian inference can be performed on this model, leading to a probability, pij =

pi, ∀j, that is constant within each cell i = 1, . . . ,m. The number of positive responses

within cell i can be estimated with Nipi, and any higher level aggregate estimates

can be made by aggregating the corresponding cells. In some scenarios, the number

of units within each cell may not be known, in which case further modeling would be

necessary.

1.5 Models with survey weight adjustments

Although many of the the models in Section 1.4 can be used to handle informa-

tive sampling, they do not rely on the survey weights. In this section, we explore

techniques that rely on the weights to adjust the sample likelihood.

There have been several methods proposed in the literature which make use of the

nested error regression model (1.2), but which incorporate the survey weights, either

as regression variables, or as adjustments to the predicted values, so as to protect

against a possible informative survey design.

1.5.1 Survey weight adjustments to the basic unit-level model

Verret et al. (2015) augmented the nested error regression model (1.2), by includ-

ing functions of the inclusion probabilities, g (πij), as predictors. Care must be

taken in the choice of the function g, as knowledge of the population means Ḡi =∑
i∈Uj g (πij) /Ni need to be known to obtain the EBLUPs from (1.3). Some sugges-
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tions for the choice of g were g (πij) = πij, which gives Ḡi = 1/Ni, and g (πij) = ni/πij,

which gives Ḡi = ni
∑

j∈Ui wij/Ni, which may be known in practice. Verret et al.

(2015) reported strong performance of the EBLUP using the augmented nested error

regression model, in a probability proportional to size simulation study, in terms of

bias and mean squared error, for properly chosen augmenting variable g. However,

some choices of g, such as g (πij) = wij, could lead to poor performance, except under

non-informative sampling. Verret et al. (2015) suggested using scatter plots of resid-

uals from the nested error regression model against different choices of augmenting

variables to choose an appropriate model. An alternative to exploring a collection of

augmenting variables is to estimate the functional form of g. Zheng and Little (2003)

investigated nonparametric estimation of g using penalized splines, and found that

predictions of small area means using this modeling framework resulted in large gains

in mean squared error over the design-based estimates in their simulation studies.

You and Rao (2002) proposed a pseudo-EBLUP of the small area means θi =

X̄T
i β + νi based on the nested error regression model (1.2), which incorporates the

survey weights. In their approach, the regression parameters β in (1.2) are estimated

by solving a system of survey-weighted estimating equations

m∑
i=1

∑
j∈Si

wijxij{yij − xTijβ − γiw(ȳiw − x̄Tiwβ)} = 0, (1.5)

where γiw = σ2
ν/ (σ2

ν + σ2
ε δ

2
i ), δ

2
i =

∑
j∈Si w

2
ij, ȳiw =

∑
j∈Si wijyij/

∑
j∈Si wij, and

x̄ij =
∑

j∈Si wijxij/
∑

j∈Si wij. This is an example of the pseudo-likelihood approach

to incorporating survey weights, which is later discussed in more detail.

The pseudo-BLUP β̃w = β̃w(σ2
e , σ

2
v) is the solution to (1.5) when the variance

components σ2
e and σ2

v are known, and the pseudo-EBLUP, β̂w = β̃(σ̂2
e , σ̂

2
v), is the
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solution to (1.5) using plug-in estimates σ̂2
e and σ̂2

v of the variance components. The

pseudo-EBLUP, θ̂i of the small area mean θi is then

θ̂iw = γ̂iwȳiw +
(
X̄i − γ̂iwx̄iw

)T
β̂w.

Similar to Battese et al. (1988), You and Rao (2002) assumed an ignorable survey

design, so that the model (1.2) holds for both the sampled and nonsampled units.

However, You and Rao (2002) showed that inclusion of the survey weights in the

pseudo-EBLUP results in a design-consistent estimator. In addition, when the survey

weights are calibrated to the population total, so that
∑

j∈Si wij = Ni, the pseudo-

EBLUP has a natural benchmarking property, without any additional adjustment, in

the sense that
m∑
i=1

Niθ̂iw = Ŷw +
(
X − X̂w

)T
β̂w,

where Ŷw =
∑m

i=1

∑
j∈Si wijyij and X̂w =

∑m
i=1

∑
j∈Si wijxij. That is, the weighted

sum of area-level pseudo-EBLUPs is equal to a GREG estimator of the population

total.

An alternative pseudo-EBLUP, which is applicable to estimation of general small

area parameters beyond the small area means, was proposed in Guadarrama et al.

(2018) (see also Jiang and Lahiri, 2006). Rather than use the genuine best pre-

dictor in (1.1), which conditions on all observed data, Guadarrama et al. (2018)

suggested a pseudo-best predictor, which conditions only on the survey-weighted

Horvitz-Thompson estimator, ȳiw =
∑

j∈Si wijyij/
∑

j∈Si wij, of the small area means.

Assuming that the nested error regression model (1.2) holds for all units in the pop-

ulation, there is a simple, closed-form expression for the predictions of out-of-sample
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variables, yij, given by

E (yij | ȳiw) = xTijβ + γiw
(
ȳiw − x̄Tiwβ

)
,

using the same notation as in (1.5). This idea can easily be extended for predic-

tion of general additive parameters, Hi =
∑

j∈Ui h(yij)/Ni, by using the conditional

expectation E (h(yij) | ȳiw) in place of the out-of-sample variables.

1.5.2 Pseudo-likelihood approaches

Suppose the finite population values yi, are independent, identically distributed real-

izations from a known superpopulation distribution, fp(y | θ). Here, for notational

convenience, we use a single subscript i to index the finite population. Standard

likelihood analysis for inference on θ, using only the observed sampled values, could

produce asymptotically biased estimates when the sampling design is informative

(Pfeffermann et al., 1998b). Pseudo-likelihood analysis, introduced by Binder (1983)

and Skinner (1989), incorporates the survey weights into the likelihood for design-

consistent estimation of θ.

The pseudo-log-likelihood is defined as

∑
i∈S

wi log fp(yi | θ); (1.6)

this is simply the Horvitz-Thompson estimator of the population-level log likelihood.

Inference on θ can be based on the maximizer, θ̂PS (designating the maximum of the

pseudo-likelihood rather than the likelihood), of (1.6), or equivalently, by solving the
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system ∑
i∈S

wi
∂

∂θ
log fp(yi | θ) = 0. (1.7)

The system (1.7) is an example of the use of survey-weighted estimating functions

for inference on a superpopulation parameter (Binder, 1983; Binder and Patak, 1994).

More generally, let θN = θN ({yi}) be a superpopulation parameter of interest, which

is a function of the finite population values yi, i = 1, . . . , N , that can be obtained as

a solution to a “census” estimating equation

Φ (y;θ) =
N∑
i=1

φi(yi;θ) = 0, (1.8)

where the φi are known functions of the data and the parameter, with mean zero under

the superpopulation model. The term “census” is used to describe the estimating

function (1.8), because (1.8) can only be calculated if all finite population values are

observed, or if a census of the population is conducted.

The target parameter θN is defined implicitly as a solution to the census estimating

equation (1.8). A point estimate, θ̂N , of θN can be obtained by finding a root of a

design-unbiased estimate, Φ̂ (ys;θ), of Φ, such as the Horvitz-Thompson estimator

Φ̂ (ys,θ) =
∑
i∈S

wiφi (yi;θ) = 0. (1.9)

The use of an estimating function, rather than the score function, can be advan-

tageous, as it reduces the number of assumptions about the superpopulation that

need to be made. Full distributional specification is not required, and instead only

assumptions about the moment structure are needed. The choice of the specific esti-
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mating function may be motivated by a conceptual superpopulation model, or a finite

population parameter of interest. Regardless of whether a superpopulation model is

assumed, most finite population parameters of interest can be formulated as a solution

to a census estimating equation, and well-known ‘model assisted’ estimators of the fi-

nite population parameters can be derived as solutions of survey-weighted estimating

equations. For example, the estimating function φ(yi; θ) = (yi− θ) leads to the popu-

lation total,
∑

i∈U yi, and its estimator
∑

i∈S wiyi/
∑

i∈S wi. If tx =
∑

i∈U xi is known,

the pair of estimating functions φ1(yi;xi, θ1) = (yi−xiθ1) and φ2(yi, θ2) = (yi− txθ2),

give the population total ty =
∑

i∈U yi and its ratio estimator tx
∑

i∈S wiyi/
∑

i∈S wixi.

If the covariate vector xi contains an intercept, the pair of estimating functions

φ1(yi; θ1,θ2) = (θ1 − txθ2) and φ2 = (yi − xTi θ2)xi leads to the finite population

total and its GREG estimator
∑

i∈U x
T
i θ2, where θ2 = (

∑
i∈S wixix

T
i )−1

∑
i∈S wiyixi.

An important aspect of small area modeling is the introduction of area specific

random effects to link the different small areas and to “borrow strength,” by relating

the different areas through the linking model, and introducing auxiliary covariate

information, such as administrative records. The presence of random effects and the

multilevel structure of small area models means that neither the pseudo-likelihood

method nor the related estimating function approach can be directly applied to small

area estimation problems. However, Grilli and Pratesi (2004), Asparouhov (2006),

Rabe-Hesketh and Skrondal (2006) extended the pseudo-likelihood approach to ac-

commodate models with hierarchical structure.

Let vi
i.i.d.∼ ϕ(v) denote the area specific random effects with common density ϕ.

The usual choice for ϕ is the mean zero normal distribution with unknown variance

σ2. Suppose now that the finite population yi1, . . . , yiNi in small areas i = 1, . . . ,m
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are i.i.d. realizations from the superpopulation fi(y | θ, vi), and let Si be the sampled

units in area i. The census marginal log-likelihood is obtained by integrating out the

random effects from the likelihood:

logL(θ) =
m∑
i=1

log

∫ ∏
j∈Ui

fi(yij | θ, v)ϕ(v)dv

=
m∑
i=1

log

∫
exp

{∑
j∈Ui

log fi(yij | θ, v)

}
ϕ(v)dv.

(1.10)

Suppose the survey weights are decomposed into two components, wj|i, and wi,

where wj|i is the weight for unit j in area i, given that area i has been sampled,

and wi is the weight associated to small area i. The pseudo-log-likelihood for the

multilevel model can be defined by replacing
∑

j∈Ui log fi(yij | θ, vi) in (1.10) by the

design-unbiased estimate,
∑

j∈Si wj|i log fi(yij | θ, vi), to get

log L̂(θ) =
m∑
i=1

wi log

∫
exp

{∑
j∈Si

wj|i log f(yij | θ, v)

}
ϕ(v)dv. (1.11)

Analytical expressions for the maximizer of (1.11) generally do not exist, so the

maximum pseudo-likelihood estimator, θ̂ps, must be found by numerical maximiza-

tion of (1.11). Grilli and Pratesi (2004) used the NLMIXED procedure within SAS,

using appropriately adjusted weights in the replicate statement and a bootstrap for

mean squared error estimation. Rabe-Hesketh and Skrondal (2006) used an adaptive

quadrature routine using the gllamm program within Stata, and derived a sandwich

estimator of the standard errors, finding good coverage in their simulation studies

with this estimate. Kim et al. (2017) proposed an EM algorithm for parameter esti-

mation. Their method involves two steps, where first the random effects are treated
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as fixed, and a profile likelihood maximum likelihood estimator of the random effects

are computed. The second step uses the EM algorithm to estimate the remaining

model parameters. Their method relies on a normal approximation to the predictive

distribution of the random effects, but was found to give good results with moderate

cluster sizes in numerical studies. Kim et al. (2017) also gave a method for predicting

random effects, using the EM algorithm and an approximating predictive distribu-

tion that was shown to be valid for sufficiently large cluster sizes, which is needed for

prediction of unobserved variables.

Rao et al. (2013) noted that both design consistency and design-model consistency

of θ̂ps as an estimator of the finite population parameter θN , or the model parameter

θ, respectively, requires that both the number of areas (or clusters), m, and the

number of elements within each cluster, ni, tend to infinity, and that the relative bias

of the estimators can be large when the ni are small. Rao et al. (2013) showed that

consistency can be achieved with only m tending to infinity (allowing the ni to be

small) if the joint inclusion probabilities, πjk|i, are available. Their method is to use

the marginal joint densities f(yij, yik | θ), of elements in a cluster, integrating out the

random effects, in the pseudo-log likelihood, and to estimate θ by maximizing the

design-weighted pseudo log likelihood

lwC(θ) =
∑
i∈S

wi
∑

j<k∈Si

wjk|i log f(yij, yik | θ). (1.12)

It was shown in Yi et al. (2016) that the maximizer of (1.12), θwC , is consistent for

the second-level parameters θ, with respect to the joint superpopulation model and

the sampling design.

There are two important considerations when using the pseudo-likelihood in mul-
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tilevel models. The first is that two sets of survey weights, wi and wj|i (and in the case

of the method of Rao et al. (2013), higher-order inclusion probabilities, πjk|i) are re-

quired, which is not typically the case; access to only the joint survey weights wij is not

sufficient to use the multilevel models, unless all clusters i = 1, . . . ,m sampled with

certainty. The second consideration is that use of unadjusted, second level weights wj|i

can cause significant bias in estimates of variance components. For single level models,

scaling the weights by any constant factor does not change inference, as the solution

to (1.7) is clearly invariant to any scaling of the weights. However, for multilevel

models, the maximum pseudo-likelihood estimator and the associated mean squared

prediction error may change depending on how the weights wj|i are scaled. Some sug-

gestions include using scaled weights w̃j|i such that: 1)
∑ni

j=1 w̃j|i = ni (Asparouhov,

2006; Grilli and Pratesi, 2004; Pfeffermann et al., 1998b), 2) constant scaling across

clusters, so that
∑ni

j=1 w̃j|i =
∑ni

j=1wj|i (Asparouhov, 2006), 3)
∑ni

j=1 w̃i|j = n∗i , where

n∗i = (
∑

j wi|j)
2/
∑

j w
2
ij is the effective sample size in cluster i (Potthoff et al., 1992;

Pfeffermann et al., 1998b; Asparouhov, 2006), and 4) unscaled (Pfeffermann et al.,

1998b; Grilli and Pratesi, 2004; Asparouhov, 2006). However, Korn and Graubard

(2003) showed that any scaling method can produce seriously biased variance es-

timates under informative sampling schemes, even with large sample sizes in each

cluster. There does not seem to be a single ‘best’ scaling method that can be used

without consideration of the sampling scheme, or the working likelihood.

The pseudo-log-likelihoods (1.6) and (1.11) suggest pseudo-likelihoods

m∏
i

∏
j∈Si

f(yij | θ)wij (1.13)
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for single level models, and

m∏
i=1

{∫ ∏
j∈Si

f(yij | xij,θ, vj)wj|iφ(vj)dvj

}wi

(1.14)

for multilevel models (Asparouhov, 2006). The pseudo-likelihood (4.1) is sometimes

called the composite likelihood in general statistical problems, when the weights wij

(not necessarily survey weights) are known positive constants, and its use is popular

in problems where the exact likelihood is intractable or computationally prohibitive

(Varin et al., 2011).

The pseudo-likelihood (1.13) is not a genuine likelihood, as it does not incorpo-

rate the dependence structure in the sampled data nor the relationship between the

responses and the design variables beyond inclusion of the survey weights. However,

the pseudo-likelihood has been shown to be a useful tool for likelihood analysis for

finite population inference in both the frequentist and Bayesian framework.

By treating the pseudo-likelihood as a genuine likelihood, and specifying a prior

distribution π(θ) on the model parameters θ, Bayesian inference can be performed

on θ. For general models, Savitsky and Toth (2016) showed for certain sampling

schemes, and for a class of population distributions, that the pseudo-posterior dis-

tribution using the survey weighted pseudo-likelihood, with survey weights scaled to

sum to the sample size, (1.13) converges in L1 to the population posterior distribution.

This result justifies use of (1.13) in place of the likelihood in Bayesian analysis of pop-

ulation parameters, conditional on the observed sampled units, even when the sample

design is informative. Predictions of area-level random effects as well of predictions

of nonsampled units can then be made as well.

The authors focus on parameter inference and do not give any advice for making
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area-level estimates. However, it is straightforward to implement a model with a

Bayesian pseudo-likelihood and then apply poststratification after the fact by gen-

erating the population, and thus any desired area-level estimates using (1.1). This

type of pseudo-likelihood with poststratification for SAE was demonstrated in the

frequentist setting by Zhang et al. (2014).

Ribatet et al. (2012) provides a discussion on the validity of Bayesian inference

using the composite likelihood (1.13) in place of the exact likelihood in Bayes’ for-

mula. An example of this method used in the sample survey context can be found

in Dong et al. (2014), which used a weighted pseudo-likelihood with a multinomial

distribution as a model for binned response variables. They assumed an improper

Dirichlet distribution on the cell probabilities, and used the associated posterior and

posterior predictive distributions for prediction of the nonsampled population units.

In a similar spirit, (Rao and Wu, 2010) use a Bayesian pseudo-empirical likelihood

to create estimates for a population mean. They form the pseudo-empirical likelihood

function as

LPEL(p1, . . . , pn) =
∏
i∈S

pw̃ii

where the weights are scaled to sum to the sample size. They accompany this with

a Dirichlet prior distribution over (p1, . . . , pn), and thus conjugacy yields a Dirichlet

posterior distribution

π(p1, . . . , pn|DS) = c(w̃1 + α1, . . . , w̃n + αn)
∏
i∈S

pw̃i+αi−1i ,

where c represents the normalizing constant. The posterior distribution of the popu-

lation mean, θ, corresponds to the posterior distribution of
∑

i∈S piyi. It is straight-
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forward to use Monte Carlo techniques to sample from this posterior. The authors

also note that the design weights can be replaced with calibration weights in order to

include auxiliary variables.

1.5.3 Regressing on the Survey Weights

Prediction of small area quantities using (1.1) requires estimation of E(yij | Ds) for

all nonsampled units in the population. One of the main difficulties in using unit-level

model-based methods is the lack of knowledge of the covariates, sampling weights,

or population sizes associated with the nonsampled units and small areas, that are

needed to make these model-based predictions. To overcome this difficulty, Si et al.

(2015) modeled the observed poststratification cells ni, conditional on n =
∑m

i=1 ni,

using the multinomial distribution

(n1, . . . , nm) ∼ Multinomial

(
n;

N1/w1∑m
i=1Ni/wi

, . . . ,
Nm/wm∑m
i=1Ni/wi

)
(1.15)

for poststratification cells i = 1, . . . ,m.

This model assumes that the unique values of the sample weights determine the

poststratification cells, and that the sampling weight and response are the only values

known for sampled units. The authors state that, in general, this assumption is

untrue, because there will be cells with low probability of selection that do not show

up in the sample, but the assumption is necessary in order to proceed with the model.

This model yields a posterior distribution over the cell population sizes which can be

used for poststratification with their response model, which uses a nonparametric
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Gaussian process regression on the survey weights,

yij|µ(wi), σ
2 ∼ N(µ(wi), σ

2)

µ(wi)|β, C(wi, wi′ |θ) ∼ GP(wiβ, C(wi, wi′|θ))

π(σ2, β,θ),

(1.16)

for observation j in poststratification cell i. Here, C(·, ·|θ) represents a valid covari-

ance function that depends on parameters θ. The authors use a squared exponential

function, but other covariance functions could be used in its place. The normal dis-

tribution placed over yij could be replaced with another distribution in the case of

non-Gaussian data. Specifically, the authors explore the Bernoulli response case. This

model implicitly assumes that units with similar weights will tend to have similar re-

sponse values, which is likely not true in general. However, in the absence of any

other information about the sampled units, this may be the most practical assump-

tion. Because Si et al. (2015) assume that only the survey weights and response values

are known, this methodology cannot be used for small area estimation as presented.

However, the model can be extended to include other variables such as county, which

would allow for area level estimation.

Vandendijck et al. (2016) extend the work of Si et al. (2015) to be applied to small

area estimation. They assume that the poststratification cells are designated by the

unique weights within each area. Rather than using the raw weights, they use the

weights scaled to sum to the sample size within each area. They then use a similar

multinomial model to Si et al. (2015) in order to perform poststratification using

the posterior distribution of the poststratification cell population sizes. Assuming a
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Bernoulli response, they use the model

yij|ηij ∼ Bernoulli(ηij)

logit(ηij) = β0 + µ(
∼
wij) + ui + vi

(1.17)

for unit j in small area i, with
∼
wij designating the scaled weights. Independent area

level random effects are denoted by ui, whereas vi denotes spatially dependent area

level random effects, for which the authors use an intrinsic conditional autoregressive

(ICAR) prior. They explore the use of a Gaussian process prior over the function µ(·)

as well as a penalized spline approach. For their Gaussian process prior, they assume

a random walk of order one. The multinomial model

(n1i, . . . , nLii) ∼ Multinomial

(
ni;

N1i/w(1)i∑Li
l=1Nli/w(l)i

, . . . ,
NLii/w(Li)i∑Li
l=1Nli/w(l)i

)
(1.18)

is used for poststratification, where nli and Nli represent the known sample size and

unknown population size respectively for poststrata cell l in area i. The cells are

determined by the unique weights in area i, with the value of the weight represented

by w(l)i. Although Vandendijck et al. (2016) implement their model with a Bernoulli

data example, this is a type of a Generalized Additive Model, and thus other response

types in the exponential family may be used as well.
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1.6 Likelihood-based inference using the sample

distribution

The pseudo-likelihood methods discussed in Section 1.5 require specification of a

superpopulation model, which is a distribution which holds for all units in the finite

population. However, validating the superpopulation model based on the observed

sampled values is generally not possible, unless the sampling design is not informative,

in which case, the distribution for the sampled units is the same as for the nonsampled

units. Under an informative sampling design, the model for the population data

does not hold for the sampling data. This can be seen by application of Bayes’

Theorem. Suppose the finite population values yij are independent realizations from

a population with density fp(· | xij,θ), conditional on a vector of covariates xij, and

model parameters θ. Given knowledge of this superpopulation model, as well as the

distribution of the inclusion variables, the distribution of the sampled values can be

derived. Define the sample density, fs, (Pfeffermann et al., 1998a) as the density

function of yij, given that yij has been sampled, that is,

fs(yij | xij,θ) = fp(yij | xij,θ, Iij = 1) =
P (Iij = 1 | yij,xij,θ)fp(yij | xij,θ)

P (Iij = 1 | xij,θ)
.

(1.19)

From (1.19), the sample distribution differs from the population distribution, unless

P (Iij = 1 | yij,xij) = P (Iij = 1 | xij), which occurs in ignorable sampling designs.

Note that the inclusion probabilities, πij, may differ from the probabilities P (Iij =

1 | xij, yij,θ) in (1.19), because the latter are not conditional on the design variables

Z.

Equation (1.19) can be used for likelihood-based inference if the simplifying as-
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sumption that the sampled values are independent is made. While this is not true in

general, asymptotic results given in Pfeffermann et al. (1998a) justify an assumption

of independence of the data for certain sampling schemes when the overall sample size

is large. However, direct use of (1.19) for finite population inference requires addi-

tional model specifications for the sample inclusion variables P (Iij = 1 | xij, yij)

as well as P (Iij = 1 | xij). It was shown in Pfeffermann et al. (1998a) that

P (Iij = 1 | xij, yij) = EP (πij | xij, yij), and that P (Iij = 1 | xij) = Ep(πij | xij), so

that a superpopulation model still needs to be specified for likelihood-based inference.

Ideally, one would like to specify a model for the sampled data, and to use this

model fit to the sampled data to infer the nonsampled values, without specifying

a superpopulation model. Pfeffermann and Sverchkov (1999) derived an important

identity linking the moments of the sample and population-based moments, which

allows for likelihood inference using the observed data, without explicit specification

of a population model. They showed that

P (Iij = 1 | yij,xij) = Ep(πij | yij,xij) = 1/Es(wij | yij,xij).

Similarly, it was shown that

P (Iij = 1 | xij) = Ep(πij | xij) = 1/Es(wij | xij).

Combining these results with an application of Bayes’ Theorem, as was done to arrive

at (1.19), gives the distribution for the nonsampled units in the finite population

fc(yij | xij) ≡ fp(yij | xij, Iij = 0) =
Es(wij − 1 | yij,xij)fs(yij | xij)

Es(wij − 1 | xij)
, (1.20)
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where fc represents the density function of yij, given that yij has not been sampled.

This result allows one to specify only a distribution for the sampled responses and

a distribution for the sampled survey weights for inference on the nonsampled units,

without any hypothetical distribution for the finite population. Importantly, this

allows for identification of the finite population generating distribution fp through

the sample-based likelihood. It also establishes the relationship between the moments

of the sample distribution and the population distribution, allowing for prediction of

nonsampled units.

In the small area estimation context, the goal is prediction of the small area means,

ȳi, which requires estimation of Ep(yij | DS) in (1.1) for the nonsampled units in each

area i. Suppose there is an area-specific random effect, vi
i.i.d.∼ φ(v), common to all

units in the population in small area i, so that the population distribution can be

written fp(yij | xij, vi,θ). Pfeffermann and Sverchkov (2007) used the result in (1.20),

to show how small area means can be predicted using the observed unit level data

under an informative survey design. Under the assumption that Ec(yij | Ds, vi) =

Ec(yij | xij, vi),

Ep(yij | Ds, Iij = 0) = Ec(yij | Ds) = Ec(Ec(yij | xij, vi) | Ds).

Combining this with (1.20) allows for prediction of the small area means after spec-

ification of a model for the sampled responses, fs(yij | xij, vi), and a model for the

sampled weights, fs(wij | yij,xij, vi).

The model for the survey weights can be specified conditionally on the response

variables to account for the informativeness of the survey design. Possible models for

the sample weights considered in the literature include the linear model (Beaumont,
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2008)

wij = a0 + a1yij + a2y
2
ij + xTijα+ εij,

and the exponential model for the mean (Pfeffermann et al., 1998a; Kim, 2002; Beau-

mont, 2008)

Es(wij | xij, yij) = ki exp
(
ayij + xTijβ

)
. (1.21)

Pfeffermann and Sverchkov (2007) considered the case of continuous response vari-

ables, yij, and modeled the sampled response data using the nested error regression

model (1.2). The exponential model for the survey weights in (1.21) was used to

model the informative survey design. Under this modeling framework, they showed

that the best predictor of Ȳi is approximately

Ep(Ȳi | Ds) = N−1i

[
(Ni − ni)θ̂i + ni

{
ȳi +

(
X̄i − x̄i

)T
β
}

+ (Ni − ni)bσ2
e

]
, (1.22)

where θ̂ = ûi + X̄T
i β. The term (Ni − ni)bσ2

e in (1.22) is an additional term from

the usual best predictor in the nested error regression model (1.2), which gives a bias

correction proportional to the sampling error variance σ2
e .

León-Novelo et al. (2019) take a fully Bayesian approach by specifying a population

level model for the response, fp(yij|xij,θ), as well as a population level model for the

inclusion probabilities, fp(πij|yij,xij,θ). Through a Bayes rule argument similar to

(1.19), they show that the implied joint distribution for the sampled units is

fs(yij, πij|xij,θ) = fp(yij, πij|xij,θ, Iij = 1)

=
πijfp(πij|yij,xij,θ)

Eyij |xij ,θ{E(πij|yij,xij,θ)}
× fp(yij|xij,θ).

(1.23)
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This joint likelihood for the sample can then be used in a Bayesian model by placing

a prior distribution on θ. Note that xij can be split into two vectors corresponding

to fp(yij|xij,θ) and fp(πij|yij,xij,θ) if desired. Consequently, the covariates for the

response model and the inclusion probability model need not be the same.

Two computational concerns arise when using the likelihood as in (1.23). The

first issue is that in general, the structure will not lead to conjugate full condi-

tional distributions. To this effect, the authors recommend using the probabilis-

tic programming language Stan (Carpenter et al. (2017)), which implements HMC

for efficient mixing. The second concern is that the integral involved in the ex-

pectation term of (1.23) needs to be solved for every sampled observation at ev-

ery iteration of the sampler. If the integral is intractable, it will need to be eval-

uated numerically, greatly increasing the necessary computation time. They show

that if the lognormal distribution is used for the population inclusion probabil-

ity model, then a closed form can be found for the expectation. Specifically, let

fp(πij|yij,xij,θ) = f(log πij|µ = yijκ + t(xij,θ), σ2 = σ2
π), where f(·|µ, σ2) repre-

sents a normal distribution with mean µ and variance σ2, κ is a regression coefficient,

and t(·) some function. Then

fs(yij, πij|xij,θ) =
f(log πij|µ = yijκ+ t(xij,θ), σ2 = σ2

π)

exp{t(xij,θ) + σ2
π/2}Eyij |xij ,θ {exp(yijκ)}

×fp(yij|xij,θ). (1.24)

In other words, the moment generating function of the population response model

can be used to find the analytical form of the expression, as long as the moment

generating function is defined on the real line. This includes important cases such as

the Gaussian, Bernoulli, and Poisson distributions, which are commonly used in the

context of survey data.
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1.7 Binomial likelihood special cases

The special case of binary responses is of particular interest to survey statisticians,

as many surveys focus on the collection of data corresponding to characteristics of

sampled individuals, with a goal of estimating the population proportion or count in

a small area for a particular characteristic. In this section, some techniques for mod-

ifying a working Bernoulli or binomial likelihood using unit-level weights to account

for an informative sampling design are discussed.

Suppose the responses yij are binary, and the goal is estimation of finite population

proportions in each of the small areas i = 1, . . . ,m,

pi =
1

Ni

∑
j∈Ui

yij.

The pseudo-likelihood methods discussed in Section 1.5 can be directly applied to

construct a working likelihood of independent Bernoulli distributions for the sampled

survey responses as in (1.13). Zhang et al. (2014) used these ideas to fit a survey-

weighted logistic regression model, with random effects included at both the county

level and the state level, using the GLIMMIX procedure within SAS, to estimate

chronic obstructive pulmonary disease by age race and sex categories within United

States counties. Another example can be found in Congdon and Lloyd (2010), who

used a Bernoulli pseudo-likelihood to estimate diabetes prevalence within U. S. states

by demographic groups. Their model formulation was similar to that used by Zhang

et al. (2014), but they included an additional random effect to account for spatial

correlation.

Malec et al. (1999) proposed a method which is similar in spirit to the pseudo-
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likelihood method, which uses the survey weights to modify the shape of the binomial

likelihood function. Suppose there are D demographic groups of interest and let Sd

be the sampled individuals belonging to demographic group d = 1, . . . , D. Instead of

the usual independent binomial likelihood
∏

id p
mid
id (1−pid)nid−mid , Malec et al. (1999)

proposed a sample-adjusted likelihood

∏
id

pmidid (1− pid)nid−mid
(pid/w̄1d + (1− pid)/w̄0d)nid

, (1.25)

where

w̄1d =
∑

(i,j)∈Sd

wijdyijd/
∑

(i,j)∈Sd

yijd

and

w̄0d =
∑

(i,j)∈Sd

wijd(1− yijd)/
∑

(i,j)∈Sd

(1− yijd).

The quantities w̄1d and w̄0d are used to represent sampling weights for a demographic

group d averaged over all individuals with and without a characteristic of interest,

respectively. The justification of the denominator of (1.25) as an adjustment to the

likelihood to account for informative sampling is presented in Malec et al. (1999)

through use of Bayes’ rule and by considering the empirical distribution of the inclu-

sion probabilities.

An alternative approach to the pseudo-likelihood method is to attempt to con-

struct a new, approximate likelihood with independent components, which matches

the information contained in the survey sample. Let

p̂i =

∑
j∈Si wijyij∑
j∈Si wij

,
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be the direct estimate of pi and let V̂i be the estimated variances of p̂i. Under a

simple random sampling design, the variance of the direct estimate p̂i is VSRS(p̂i) =

pi(1−pi)/ni, which can be estimated by V̂SRS(p̂i) = p̂i(1−p̂i)/ni. In complex sampling

designs, elements that belong to a common cluster or area may be correlated. Because

of this, the information in the sample from a complex survey is not equivalent to the

information in a simple random sample of the same size. The design effect for p̂i is

the ratio

di = di(p̂i) =
V̂D(p̂i)

V̂SRS(p̂i)
=

niV̂D(p̂i)

p̂i(1− p̂i)
,

and is a measure of the extent to which the variability under the survey design differs

from the variability that would be expected under simple random sampling.

The effective sample size, n′i, is defined as the ratio of the sample size to the design

effect

n′i =
ni
di

=
pi(1− pi)
VSRS(p̂i)

.

The effective sample size is an estimate of the sample size required under a non-

informative simple random sampling scheme to achieve the same precision to that

observed under the complex sampling design. Typically, the effective sample size n′i

will be less than ni for complex sample designs.

Often the design effect is not available, either due to lack of available information

with which to compute it, or due to computational complexity. In such cases, design

weights can be used for estimation of the effective sample size. A simple estimate

of the effective sample size, which uses only the design weights was derived by Kish

(1965), and is given by

n′i =
(
∑

j∈Si wij)
2∑

j∈Si w
2
ij

.
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Other estimates of the design effect which use the survey weights, sample sizes, and

population totals, and are appropriate for stratified sampling designs, can be found

in Kish (1992).

Chen et al. (2014) and Franco and Bell (2014) used the design effect and effective

sample size to define the ‘effective number of cases,’ y∗i = n′ip̂i. The effective number

of cases, y∗i , were then modeled using a binomial, logit-normal hierarchical structure.

The sample model for the effective number of cases is then

y∗i | pi ∼ Binomial(n′i, pi), i = 1, . . . ,m,

with a linking model of

logit(pi) = log

(
pi

1− pi

)
= xTi β + vi,

where the vi are area-specific random effects. Using the effective number of cases

and the effective sample size in a binomial model is an attempt to construct a like-

lihood which is valid under a simple random sampling design, and will produce ap-

proximately equivalent inferences as when using the exact, but possibly unknown or

computationally intractable likelihood.

Different distributional assumptions on the random effects can be made to accom-

modate aspects of the data or different correlation structures particular to sampled

geographies. Noting that it might be expected that areas which are close to each

other might share similarities, Chen et al. (2014) decomposed the random effects vi

into spatial and a non-spatial components, so that vi = ui+εi, where εi
i.i.d.∼ N(0, σ2

ε),
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and

ui | uj, j ∈ ne(i) ∼ N(ūi, σ
2
u/ni). (1.26)

Here, ne(i) is the set of neighbors of area i and ūi is the mean of the neighboring

spatial effects. The spatial model in (1.26) is known as the intrinsic conditional

autoregressive (ICAR) model (Besag, 1974).

Franco and Bell (2014) introduced a time dependence structure into the random

effect vi for situations in which there are data from multiple time periods available, and

applied their model to estimation of poverty rates using multiple years of American

Community Survey data. In their formulation, the random effects have an AR(1)

correlation structure, so that the model becomes

y∗i,t | pi,t ∼ Binomial(n′i,t, pi,t), i = 1, . . . ,m, t = 1, . . . , T

logit(pi,t) = xTi,tβt + σ2
t vi,t

vi,t = φvi,t−1 + εi,t

where |φ| < 1, and the εi,t are assumed to be i.i.d. N(0, 1−φ2) random variables. The

unknown parameters βt and σ2
t are allowed to vary over time. Franco and Bell (2014)

showed that the reductions in prediction uncertainty can be meaningful when the

autoregressive parameter φ is large, but that the reduction in prediction uncertainty

is more modest when |φ| < 0.4. As noted by Chen et al. (2014), the inclusion of

spatial or spatio-temporal random effects has the added benefit that the dependent

random effects can serve as a surrogates for the variables responsible for dependency

in the data.

The above methods use the survey weights either to modify the shape of an in-
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dependent likelihood (Malec et al., 1997; Zheng and Little, 2003) to account for the

informative design, or to estimate a design effect in an attempt to match the infor-

mation contained in the survey sample to the information implied by an independent

likelihood by adjusting the sample size (Chen et al., 2014; Franco and Bell, 2014).

Alternatively, one could specify a working independence model for the sampled units

and incorporate the survey design by using the survey weights as predictors (Zheng

and Little, 2003), and to induce dependence through a latent process model.

1.8 Empirical simulation study

Unit-level models offer several potential benefits (e.g., no need for benchmarking

and increased precision), however, accounting for the informative design is critical at

the unit-level. There are a variety of ways to approach this; however, the utility of

each approach is not apparent. We choose three methods that span different general

modeling approaches (pseudo-likelihood, nonparametric regression on the weights,

and differing sample/population likelihoods), in order to address this question. We

choose to sample a population based on existing survey data from a complicated

design, and make estimates for poverty (similar to SAIPE).

To construct a simulation study, we require a population for which the response

is known for every individual, in order to compare any estimates to the truth. It

is also desirable to have an informative sample. We treat the 2014 ACS sample

from Minnesota as our population (around 120,000 observations and 87 counties),

and further sample 10,000 observations in order to generate our estimates from the

selected models. Ideally, we would mimic the survey design used by ACS, however
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the design is highly complex which makes replication difficult. Instead, we subsample

the ACS sample with probability proportional to the reported sampling weights, w
(o)
ij ,

using the Midzuno method (Midzuno, 1951) from the sampling package in R (Tillé

and Matei, 2016). This results in a new set of survey weights w
(n)
ij , which are inversely

proportional to the original weights given in the ACS sample. Sampling in this manner

results in a sample for which the selection probabilities are proportional to the original

sampling weights. By comparing weighted and unweighted direct estimates, we show

that sampling in this way yields an informative sample. We fit three models to the

newly sampled dataset, and create county level estimates of the proportion of the

original ACS sample below the poverty level.

Model 1

yij|β,µ ∝ Bernoulli(pij)
∼
wij

logit(pij) = x′ijβ + ui

ui
ind∼ N(0, σ2

u)

β ∼ Np(0p, Ip×pσ
2
β), σu ∼ Cauchy+(0, κu),

(1.27)

where the weights
∼
wij are scaled to sum to the total sample size, as recommended

by Savitsky and Toth (2016). We incorporate a vague prior distribution by setting

σ2
β = 10 and κu = 5. This approach is based on the Bayesian pseudo-likelihood given

in Savitsky and Toth (2016). The model structure is similar to that of Zhang et al.

(2014), although we use the psuedo-likelihood in a Bayesian context rather than a

frequentist one. Our design matrix X includes terms for age category, race category,
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and sex. We use poststratification by generating the nonsampled population at every

iteration of our MCMC, which we use to produce our estimates based on (1.1). The

poststratification cells consist of the unique combinations of county, age category,

race category, and sex, for which the population sizes are known to us.

Model 2

yij|β0, f(wij),u, v ∼ Bernoulli(pij)

logit(pij) = β0 + f(wij) + ui + vi

f(wij)|γ, ρ ∼ GP(0,Cov(f(wij), f(wi′j′)))

Cov(f(wij), f(wi′j′)) = γ2exp

(
−(wij − wi′j′)2

2ρ2

)
u|τ, α ∼ N(0, τD(I − αW )−1)

vi|σ2
v ∼ N(0, σ2

v), i = 1, . . . ,m

β0 ∼ N(0, σ2
β), γ ∼ Cauchy+(0, κγ), ρ ∼ Cauchy+(0, κρ)

τ ∼ Cauchy+(0, κτ ), α ∼ Unif(−1, 1), σv ∼ Cauchy+(0, κv),

(1.28)

where D is a diagonal matrix containing the number of neighbors for each area

i = 1, . . . ,m and W is an area adjacency matrix. Again, we use a vague prior

distribution by setting σ2
β = 10 and κγ = κρ = κτ = κv = 5. This is similar to

the work of Vandendijck et al. (2016), but using the squared exponential covariance

kernel as in Si et al. (2015), rather than a random walk prior on f(·). Additionally,

we choose to use the conditional autoregressive structure (CAR) rather than ICAR

structure on our random effects u. Note that although Vandendijck et al. (2016) use

the weights scaled to sum to county sample sizes as inputs into the nonparametric
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function f(·), we attained better results by using the unscaled weights. We use the

multinomial model

(n1k, . . . , nLkk) ∼ Multinomial

(
nk;

N1k/w(1)k∑Lk
l=1Nlk/w(l)k

, . . . ,
NLkk/w(Lk)k∑Lk
l=1Nlk/w(l)k

)
(1.29)

to model the population weight values, in order to perform poststratification. In this

model, nlk represents the sample size in poststrata cell l in area k, while Nlk represents

the population size in the same cell. Poststratification cells are determined by unique

weight values within each county, denoted w(l)k. Because all units in the same cell will

share the same weight, by determining the population size of each cell, the weights

are implicitly determined, and thus the population may be generated using the model

specified in (1.28).

Model 3

yij | pij ∼ Bernoulli(pij)

logit(pij) = xTijβ + ui

log(wij) | yij ∼ xTijα+ yij ∗ a+ εij

ui
i.i.d.∼ N

(
0, σ2

u

)
εij

i.i.d.∼ N
(
0, σ2

ε

)
,

(1.30)

with vague N(0, 10) priors on the regression coefficients β,α, and a, and vague

Cauchy+(0, 5) priors on the variance components σu and σε. This model acts as

a Bayesian extension of Pfeffermann and Sverchkov (2007).

All 3 models were fit via HMC using Stan (Carpenter et al., 2017). We ran each
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model using two chains, each of length 2,000, and discarding the first 1,000 iterations

as burn-in, thus using a total of 2,000 MCMC samples. Convergence was assessed

visually via traceplots of the sample chains, with no lack of convergence detected.

We repeated the simulation 50 times, with a sample size of 10,000 each time. That

is, we create 50 distinct subsamples from the ACS sample, and fit the three models

to each subsample. We compare the mean squared error (MSE), absolute bias, 95%

credible interval coverage rate for county level estimates, and computation time in

seconds for each model in Table 1.1. We also compare to a Horvitz-Thompson (HT)

direct estimator as well as an unweighted mean (UW) direct estimator.

Each of the three model based estimators provides a substantial reduction in

MSE compared to the direct estimator, with Model 3 being the best in this regard.

Additionally, Model 1 gives a low bias, quite comparable to the direct estimate.

Finally, we see that Model 1 requires substantially less computation time compared

to the other model-based estimators, especially when comparing to Model 2. This

suggests that if one wanted to scale the model to include more data, such as estimates

at a national level, Model 1 may be easier to work with. Computation times will vary

depending on the specific resources used, however the main focus here is the relative

time between models. Additionally, this simulation illustrates that it is feasible to fit

Bayesian unit-level models in practice under reasonable computation times.

In Figure 1.1 we show the average reduction in RMSE, for each county, that

was attained by the three model based estimators when compared to the HT direct

estimator, averaged over the 50 simulations. Counties that did not see a reduction are

plotted in gray. There are some important differences between the model results here.

Specifically, Model 1 achieves a reduction in nearly every county unlike the other two
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Estimator MSE Abs Bias CI Cov. Rate Time

HT Direct 0.0044 0.0063 0.77 NA
Model 1 0.0017 0.0089 0.86 107
Model 2 0.0017 0.0256 0.89 6627
Model 3 0.0009 0.0172 0.94 407

UW Direct 0.0050 0.0322 0.41 NA

Table 1.1: Simulation results: MSE, absolute bias, 95% credible interval coverage
rate, and computation time in seconds were averaged over 50 simulations in order to
compare the direct estimator to three model based estimators and and unweighted
direct estimate.

models, but Model 3 tends to achieve a greater reduction in RMSE in general when

compared to Model 1.

Figure 1.1: Model reduction in RMSE compared to the Direct estimates, averaged
over 50 simulations. Counties that did not see a reduction are not plotted (shown in
gray).
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1.9 Poverty Estimate Data Analysis

The Small Area Income and Poverty Estimates program (SAIPE) is a U.S. Census

Bureau program that produces estimates of median income and the number of people

below the poverty threshold for states, counties, and school districts, as well as for

various subgroups of the population. The SAIPE estimates are critical in order for

the Department of Education to allocate Title I funds.

The current model used to generate SAIPE poverty estimates is an area-level

Fay-Herriot model (Fay and Herriot, 1979) on the log scale. The response variable is

the log transformed HT direct estimates from the single year ACS of the number of

individuals in poverty at the county level. The model includes a number of powerful

county level covariates such as the number of claimed exemptions from federal tax

return data, the number of people participating in the Supplemental Nutrition As-

sistance Program (SNAP), and the number of Supplemental Security Income (SSI)

recipients. Luery (2011) provides a comprehensive overview of the SAIPE program,

including the methodology used to produce various area-level estimates and the co-

variates used in the model.

We use a single year of ACS data (2014 again) from Minnesota to fit the three

models described in Section 1.8. The model based estimators we present are not

meant to replace the current SAIPE methodology, but rather to illustrate how unit-

level models can be used in an informative sampling application such as this one. The

model-based predictions of the proportion of people below the poverty threshold by

county under each method are presented and compared with a direct estimator.

In Figure 1.2 we show the estimate of the proportion of people below the poverty

level by county for each of the model-based estimators as well as the HT direct esti-
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mator. Note that a small amount of noise has been added to the HT direct estimates

as a disclosure avoidance practice. All of the estimates here seem to capture the same

general spatial trend. The model based estimates resemble smoothed versions of the

direct estimates, especially in the more rural areas of the state. Small sample sizes

can lead to direct estimates with high variance, but the model based approaches can

“share information” across areas, which leads to more precise estimates. We also

compare the reduction in model based standard errors when compared to the HT

direct estimate in Figure 1.3. This illustrates the precision that is gained by using a

model-based estimator rather than a direct estimator in a SAE setting. Model 3 in

particular appears to have the lowest standard errors in more rural areas and Model 1

seems to have lower standard errors in more populated areas. For this particular ap-

plication, all three of the models we explored would be valid choices, with substantial

reductions in RMSE as shown in Section 5.4.

In this case, the population cell sizes were known, however in many applications

they may not be, in which case Model 2 would likely be the best option. In other cases

where incorporating covariate information is desired, Model 2 is not well equipped

to make estimates. This application was conducted for a single state, however if one

wanted to scale the analysis, for example making estimates for every county in the

United States, Model 1 appears to be the most computationally efficient. An approach

similar to Model 2, albeit using a different nonlinear regression approach from the

Gaussian Process regression considered here, may also be computationally efficient.

Vandendijck et al. (2016) reported strong results using splines for this setup. Overall

we found that each of these unit-level methods can offer precise area-level estimates,

however, the properties of the particular dataset under consideration as well as the
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goals of the user should drive which model is selected.

Modeling poverty counts at the unit level has a number of benefits when com-

pared to area-level models. Specifically, the current SAIPE model is on the log scale,

and thus cannot naturally accommodate estimates for areas with a corresponding

direct estimate of zero, whereas unit-level modeling need not be on the log scale, and

thus does not suffer from this problem. Additionally, making predictions at multiple

spatial resolutions is straightforward in the unit-level setting, as predictions can be

generated for all units in the population and then aggregated as necessary, i.e., the so-

called bottom-up approach. Under a unit-level approach, one could generate poverty

estimates at both a county level and school district level under the same model. In

addition to these structural benefits, Table 1.1 illustrates that unit-level models have

the capacity to provide substantial reductions in MSE and variance when compared

to direct estimators.
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Figure 1.2: Noise infused HT direct and model based point estimates of poverty rate
by county for Minnesota in 2014.
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Figure 1.3: Model based reduction in standard errors for poverty rate by county.
Counties that did not see a reduction are not plotted (shown in gray).

1.10 Discussion

Through a comprehensive methodological review we have demonstrated that unit-

level models pose many advantages relative to area-level models. These advantages in-

clude increased precision and straightforward spatial aggregation (the so-called bench-

marking problem), among others. Estimation of unit-level models requires attention

to the specific sampling design. That is, the unit response may be dependent on the

probability of selection, even after conditioning on the design variables. In this sense,

the sampling design is said to be informative and care must be taken in order to avoid

bias.

In the context of small area estimation, we have described several strategies for

unit-level modeling under informative sampling designs and illustrated their effective-

ness relative to design-based estimators (direct estimates). Specifically, our simulation
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study (Section 1.8) illustrated three model-based estimators that exhibited superior

performance relative to the direct estimator in terms of MSE, with Model 3 perform-

ing best in this regard. Among the three models compared in this simulation, Model 1

displayed the lowest computation time relative to the other model-based estimators

and, therefore, may be advantageous in higher-dimensional settings.

The models in Section 1.8 (and Section 1.9) constitute modest extensions to mod-

els currently in the literature. Specifically, Model 2 provides an extension to Van-

dendijck et al. (2016), whereas Model 3 can be seen as a Bayesian version of the

model proposed by Pfeffermann and Sverchkov (2007). With these tools at hand,

there are many opportunities for future research. For example, including adminis-

trative records into the previous model formulations constitutes one area of active

research as care needs to be taken to probabilistically account for the record linkage.

Methods for disclosure avoidance in unit-level models also provides another avenue

for future research. In short, there are substantial opportunities for improving the

models presented herein. In doing so, the aim is to provide computationally efficient

estimates with improved precision. Ultimately, this will provide additional tools for

official statistical agencies, survey methodologists, and subject-matter scientists.
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Chapter 2

Conjugate Bayesian Unit-level
Modeling of Count Data Under
Informative Sampling Designs

2.1 Introduction

Statistical estimates from survey samples have traditionally been obtained via design-

based estimators (Lohr, 2010). In many cases, these estimators tend to work well for

quantities such as population totals or means, but can fall short as sample sizes

become small. In today’s “information age,” there is a strong demand for more

granular estimates. The Small Area Income and Poverty Estimates program (SAIPE)

and the Small Area Health Insurance Estimates program (SAHIE) are two examples

that rely on American Community Survey (ACS) data, where granularity is essential

(Luery, 2011; Bauder et al., 2018). Both of these programs require annual estimates at

the county level for the entire United States. Many counties exhibit extremely small

51



sample sizes, or even a sample size of zero. In these cases, design-based estimation is

inadequate and model-based estimation becomes necessary.

Models for survey data can be either at the area level or the unit level. Area-level

models typically use design-based estimators as the response and tend to smooth the

estimates in some fashion. These models often use area-level random effects to induce

smoothing, and thus a common application is small area estimation (see, for example,

Porter et al. (2015) and the references therein). Rao and Molina (2015) provide a

recent overview of many of the current area-level models that are available. One issue

with area-level models is that estimates at a finer geographic scale may not aggregate

to estimates at coarser spatial resolutions, thereby producing inconsistencies.

Unit-level models include individual response values from the survey units as re-

sponse variables rather than the area-level design-based estimators. The basic unit-

level model was introduced by Battese et al. (1988) in order to estimate small area

means. One advantage of unit-level modeling is that the response value can be pre-

dicted for all units not contained in the sample, and thus estimates for finite popula-

tion quantities aggregate naturally. In addition, unit-level models have the potential

to yield more precise estimates than area-level models (Hidiroglou and You, 2016).

When modeling survey data at the unit level, the response is often dependent on the

sample selection probabilities. This scenario is termed informative sampling, and it is

critical to incorporate the design information into the model in order to avoid biased

estimates (Pfeffermann and Sverchkov, 2007). Various approaches exist for incorpo-

rating an informative design into a model formulation. Little (2012) suggests the use

of design variables in the model. For simple survey designs, this may work well, but

can become infeasible for complex survey designs. Si et al. (2015) and Vandendijck
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et al. (2016) both use nonparametric regression techniques on the survey weights.

These types of techniques do not require any knowledge of the survey design, though

they can be difficult to implement in the presence of covariates. Finally, the often

used pseudo-likelihood approach (Skinner, 1989; Binder, 1983) exponentially weights

each unit’s likelihood contribution by the corresponding survey weight. In this way,

the sample data model is adjusted to better match the population distribution. See

Chapter 1 for a recent review.

In addition to the issues that arise due to informative sampling, many variables

found within survey data are non-Gaussian in nature, which may induce modeling

difficulties. Two examples present in American Community Survey (ACS) data are a

binary indicator of health insurance coverage and a count of the number of bedrooms

within a household. Outside of SAE, there is a wealth of literature regarding spatial

models for non-Gaussian data. For example, Diggle et al. (1998) consider the use of

kriging for Poisson and Binomial count data using a spatial generalized linear mixed

model. In other cases, latent Markov random fields have been used to model areal

or lattice data (e.g. see Besag et al. (1991); Jin et al. (2005)). For both point and

areal data, there are computationally efficient approaches available (e.g. see Banerjee

et al. (2008) and Hughes and Haran (2013)). These typical spatial methods tend to

model the spatial correlation at the level of the data. In contrast, unit-level SAE

models are nested such that spatial dependence can be modeled between areas and

units are nested within areas. The SAE setting is often aided by the use of area-level

and/or unit-level random effects, which is commonly done using Bayesian hierarchical

modeling with a latent Gaussian process (LGP) (Cressie and Wikle, 2011; Gelfand

and Schliep, 2016). In the presence of non-Gaussian data, LGP models lead to non-
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conjugate full conditional distributions that can be difficult to sample from. Bradley

et al. (2020) provide a solution to this problem by appealing to a class of multivariate

distributions that are conjugate with members of the natural exponential family.

We introduce a modeling framework for dealing with unit-level count data under

informative sampling by using Bayesian hierarchical modeling to account for com-

plex dependence structures (e.g., in space and time), and relying on the distribution

theory provided by Bradley et al. (2020) for computationally efficient sampling of

the posterior distribution. To account for informative sampling, we use a Bayesian

pseudo-likelihood (Savitsky and Toth, 2016). In Section 2.2 we introduce and dis-

cuss our modeling approach. Section 2.3 considers a simulation study comparing our

methodology to that of two competing estimators. Finally, we provide discussion in

Section 2.4.

2.2 Methodology

2.2.1 Informative Sampling

Chapter 1 reviews current approaches to unit-level modeling under informative sam-

pling. Some of the general approaches include incorporating the design variables into

the model (Little, 2012), regression on the survey weights (Si et al., 2015; Vandendi-

jck et al., 2016), and joint modeling of the response and weights (Pfeffermann and

Sverchkov, 2007; León-Novelo et al., 2019). Another general approach is to use a

weighted pseudo-likelihood.

Let U = {1, . . . , N} be an enumeration of the units in the population of interest,
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and let S ⊂ U be the observed, sampled units, selected with probabilities πi = P (i ∈

S). Let yi be a variable of interest associated with unit i ∈ U . Our goal is inference

on the finite population mean ȳ =
∑

i∈U yi/n. Suppose a model, f(yi | θ), conditional

on a vector of unknown parameters, θ, holds for the units yi for i ∈ U . If the survey

design is informative, so that the selection probabilities, πi, are correlated with the

response variables, yi, the model for the nonsampled units will be different from

the model for the sampled units, making inference for the finite population mean

challenging. Often, the reported survey weights, wi = 1/πi, are used to account for

the survey design.

The pseudo-likelihood (PL) approach, introduced by Skinner (1989) and Binder

(1983), uses the survey weights to re-weight the likelihood contribution of sampled

units. The pseudo-likelihood is given by

∏
i∈S

f(yi | θ)wi , (2.1)

where yi is the response value for unit i in the sample S. In (2.1), the vector of model

parameters is denoted by θ and the survey weight for unit i is denoted by wi. For

frequentist estimation, the PL can be maximized via maximum likelihood techniques,

whereas Savitsky and Toth (2016) use the PL in a Bayesian setting for general models.

Modeling under a Bayesian pseudo-likelihood induces a pseudo-posterior distribution

π̂(θ|y, w̃) ∝

{∏
i∈S

f(yi|θ)w̃i

}
π(θ),

where w̃ represents the weights after being scaled to sum to the sample size. This

scaling is done in order to keep the asymptotic amount of information the same as the
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regular likelihood case, and prevent under-estimation of the standard errors, since the

weights act as frequency weights (Savitsky and Toth, 2016). It was shown by Savitsky

and Toth (2016), that the pseudo-posterior distribution converges to the population

posterior distribution, justifying the use of the pseudo-posterior distribution for in-

ference on the nonsampled units.

The PL approach is geared towards parameter estimates and not necessarily es-

timates of finite population quantities. Nevertheless, in this setting (and others),

poststratification is a general technique that can be used to create finite population

quantity estimates. The general idea is to use a model to predict the response value

for all unsampled units in the population, effectively generating a population that

can be used to extract any desired estimates. Little (1993) gives an overview of post-

stratification, whereas Gelman and Little (1997) and Park et al. (2006) develop the

idea of poststratification under Bayesian hierarchical models.

2.2.2 Modeling Non-Gaussian Data

Many of the variables collected from complex surveys are non-Gaussian. For example,

binary indicators and count data are both very common in survey data, but cannot

be modeled at the unit level under a Gaussian response framework. As such, this can

lead to computational issues when dependence structures are introduced.

Bayesian hierarchical modeling is commonly used to model complex dependence

structures such as those found in sample surveys. These models often consist of a

data stage that models the response, a process stage, and a prior distribution over

model parameters. Traditionally, a latent Gaussian process is used to model the

process stage; for example see Cressie and Wikle (2011). Gelfand and Schliep (2016)
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review the use of Gaussian process modeling in spatial statistics, and Bradley et al.

(2015) develop a general LGP framework that handles multivariate responses as well

as complex spatio-temporal dependence structures.

In a Bayesian setting, when the response variable is also Gaussian, Gibbs sampling

can be implemented to efficiently sample from the posterior distribution. Unfortu-

nately, when dealing with non-Gaussian data, a Metropolis-Hastings type step may

be necessary within the Markov chain Monte Carlo algorithm. Consequently, this

algorithm must be tuned and can lead to poor mixing, especially in high-dimensions.

Because many survey variables are inherently non-Gaussian, the Gaussian process

framework is not ideal in many survey data scenarios.

Bradley et al. (2020) incorporate new distribution theory to create a set of Bayesian

hierarchical models that maintain conjugacy for any response variable contained in the

natural exponential family. This includes Poisson, Bernoulli, Binomial, and Gamma

random variables, among others, and thus offers a very general modeling framework

that maintains computational efficiency.

In this work we consider the distribution theory for Poisson responses specifically,

in order to model count survey data. Bradley et al. (2020) further consider the

Negative Binomial case, but state that modeling can be more challenging in this

scenario. They suggest that Negative Binomial data may be alternatively modeled

as Poisson, and inclusion of random effects can help to model overdispersion.

Each natural exponential family response type is shown to be conjugate with a

class of distributions referred to as the conjugate multivariate (CM) distribution.

For a Poisson response, the CM distribution is the multivariate log-Gamma (MLG)
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distribution with probability density function (PDF)

det(V −1)

{
n∏
i=1

καii
Γ(αi)

}
exp

[
α′V −1(Y − µ)− κ′exp

{
V −1(Y − µ)

}]
, (2.2)

denoted by MLG(µ,V,α,κ). The MLG distribution is easy to simulate from using

the following steps:

1. Generate a vector g as n independent Gamma random variables with shape αi

and rate κi, for i = 1, . . . , n

2. Let g∗ = log(g)

3. Let Y = Vg∗ + µ

4. Then Y ∼ MLG(µ,V,α,κ).

Bayesian inference with Poisson data and MLG prior distribution also requires

simulation from the conditional multivariate log-Gamma distribution (cMLG). Let-

ting Y ∼ MLG(µ,V,α,κ), Bradley et al. (2018) show that Y can be partitioned into

(Y1
′,Y2

′)′, where Y1 is r-dimensional and Y2 is (n − r)-dimensional. The matrix

V−1 is also partitioned into [H B], where H is an n×r matrix and B is an n× (n−r)

matrix. Then

Y1|Y2 = d,µ∗,H ,α,κ ∼ cMLG(µ∗,H ,α,κ; Ψ)

with density

Mexp {α′HY1 − κ′exp(HY1 − µ∗)} I {(Y ′1,d′)′ ∈Mn} , (2.3)
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where µ∗ = V−1µ−Bd, and M is a normalizing constant. It is also easy to sample

from the cMLG distribution when doing Bayesian analysis by using a collapsed Gibbs

sampler (Liu, 1994). Bradley et al. (2020) show that this can be done by drawing

(H′H)−1H′Y, where Y is sampled from MLG(µ, I,α,κ).

2.2.3 Pseudo-likelihood Poisson Multivariate log-Gamma Model

In order to use the conjugate multivariate distribution theory of Bradley et al. (2020)

in a survey setting for count data under informative sampling, we replace the Poisson

likelihood with a survey weighted pseudo-likelihood. Under the unweighted setting,

the likelihood contribution to the posterior is proportional to

∏
i∈S

exp {ZiYi − biexp(Yi)} = exp {Z′Y − b′exp(Y )} ,

with Z representing a vector of response variables, and Y representing a parame-

ter vector, which will later be modeled using the MLG distribution. The parameter

bi = 1 for the Poisson case. This expression is proportional to the product of Poisson

densities with natural parameters Y, Pois(Z; Y,b). By exponentiating the Poisson

likelihood by a vector of weights, W, the pseudo-likelihood contribution to the pos-

terior is then proportional to

∏
i∈S

exp {WiZiYi −Wibiexp(Yi)} = exp {(W �Z)′Y − (W � b)′exp(Y )} ,

with � representing a Hadamard product, or element-wise multiplication. This is the

same form as Pois(Z∗; Y,b∗), where Z∗ = W � Z and b∗ = W � b, and thus the
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MLG class of distributions is conjugate with pseudo-likelihoods built upon the Poisson

distribution. This is important, as it allows us to use Gibbs sampling with conjugate

full conditional distributions in order to sample from the posterior distributions.

Furthermore, Bradley et al. (2018) show that the MLG(c, α1/2V, α1, α1) converges

in distribution to a multivariate normal distribution with mean c and covariance ma-

trix VV′ as the value of α approaches infinity. This is convenient as it allows one to

effectively use a latent Gaussian process model structure, while still maintaining the

computationally benefits of conjugacy offered by the conjugate multivariate distribu-

tion theory. Herein, for illustration purposes, we use this type of prior distribution to

approximate a latent Gaussian process. However, if desired, one could further model

the shape and scale parameters from the MLG prior distribution, which can result in

a more flexible shape to the posterior distribution.

We now consider the pseudo-likelihood Poisson multivariate log-Gamma model

(PL-PMLG),

Z|η,β, ξ ∝
L∏
`=1

∏
i∈S

Pois
(
Z

(`)
i |λ = Y

(`)
i

)∼wi
log(Y

(`)
i ) = x′i

(`)
β +ψ′iη + ξ

(`)
i , i ∈ S, ` = 1, . . . , L

η|σk ∼ MLG(0r, α
1/2σkIr, α1r, α1r)

ξ(`)|σξ
ind.∼ MLG(0n, α

1/2σξIn, α1n, α1n), ` = 1, . . . , L

β ∼ MLG(0p, α
1/2σβIp, α1p, α1p)

1

σk
∼ Log-Gamma+(ω, ρ)

1

σξ
∼ Log-Gamma+(ω, ρ), σβ, α, ω, ρ > 0,

(2.4)
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where Z
(`)
i is the `th response variable for unit i in the sample. This model uses a

pseudo-likelihood to account for informative sampling, and is built upon a Poisson

response type in order to handle count valued survey data. In this work, the vector

ψi corresponds to an incidence vector for which areal unit i resides in. As such, the

vector η acts as area level random effects, which are shared across response types

in order to induce multivariate dependence. We note that this model is written for

multivariate responses, but we focus only on a univariate example in this work. The

parameters ξ
(`)
i act as unit level random effects, and can account for fine scale variation

due to missing unit level covariates. Finally, β corresponds to fixed effects, for which

covariates may or may not be shared across response types. We place log-Gamma

priors truncated below at zero (denoted Log-Gamma+) on the parameters 1/σk and

1/σξ. This is done to maintain conjugate full conditional distributions, although other

prior distributions could be used here with minimal tuning required as these are low-

dimensional parameters deep in the model hierarchy. We set α = 1000 in order to

approximate Gaussian prior distributions. We also set σβ, ω, ρ = 1000 in order to

create vague prior distributions. However, if prior knowledge on these parameters

exists, these values could be adjusted accordingly. The full conditional distributions

used for Gibbs sampling can be found in Appendix A.1.

2.2.4 Boundary Correction

One technical issue that arises when using a conjugate multivariate hierarchical mod-

eling framework concerns data that are observed on the boundary of their support

(i.e. zero counts for Poisson data). When zero counts are observed with Poisson data,

the result is a full conditional distribution with a shape parameter of zero which is
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not well defined. Because the conjugate multivariate framework was only recently

developed, there is relatively little literature on handling these boundary issues; how-

ever Bradley et al. (2020) suggest using adjusted data, Z∗i = Zi + c, i = 1, . . . , n,

by adding a small constant. This can work in many cases, depending on the dataset

and the value of c, but is effectively sampling from an approximation to the posterior

distribution.

Rather than sample from an approximate distribution, we use importance sam-

pling to sample from the true posterior distribution, similar to the work of Kim et al.

(1998). In this case, the importance weights are proportional to the ratio of the ad-

justed pseudo-likelihood to the true pseudo-likelihood. However, with large sample

sizes, the adjusted pseudo-likelihood can diverge from the true pseudo-likelihood. To

this effect, we run a pilot chain (using 100 iterations) to find the average ratio of the

true log-pseudo-likelihood to the adjusted log-pseudo-likelihood. We then scale the

weights in the adjusted pseudo-likelihood by this average ratio. This has the effect of

centering the adjusted pseudo-likelihood around the true pseudo-likelihood. The im-

portance weights, taken at each iteration of the Gibbs sampler, are then proportional

to ∏
i∈S

Pois(Zi|·)w̃i
Pois(Zi + c|·)w̃∗i

,

where w̃∗i represents the scaled survey weight after multiplying by the average ratio

mentioned above. We found that for the constant c, a value of one or two was ideal,

as it minimized the extent of the divergence from the true pseudo-likelihood to the

approximate one.
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2.3 Empirical Simulation Study

The American Community Survey (ACS) is an ongoing survey, with approximately

3.5 million households sampled annually, that is critical for informing how federal

funds should be allocated. Although the complete microdata is not available to the

public, public use microdata samples (PUMS) are available. PUMS only contain

geographic indicators at the public use microdata area level (PUMA), which are

aggregated areas such that each contains at least a population of 100,000 people. For

this survey as well as others, vacant houses can pose a challenge when conducting the

survey. Bradley et al. (2020) use a simple random sample of ACS PUMS data within

a single PUMA to predict housing vacancies by modeling the number of people per

household as a Poisson random variable. This work illustrates the capacity of unit-

level models to predict housing vacancies, however, because they used simple random

sampling within a single PUMA, the methodology cannot be applied in an informative

sampling context for SAE.

We construct an empirical simulation study to illustrate how the PL-PMLG can

be used to create small area estimates of the number of housing vacancies. Using the

state of Alabama, we treat the entire 2017 PUMS housing dataset as our population

(or “truth”). This dataset contains roughly 22,500 observations across 34 different

PUMAs. We further subsample this data using the Midzuno probability proportional

to size method (Midzuno, 1951) within the ‘sampling’ R package (Tillé and Matei,

2016), which we use to create our estimates. We then compare these estimates to the

truth.

In addition to comparing the PL-PMLG to a direct estimator, we also wish to com-

pare to another model based estimator. In this scenario, many of the direct estimators
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are equal to zero, which makes area-level modeling prohibitively difficult. Instead,

because count data are often modeled as Gaussian on the log scale, we compare to a

unit level model taking this approach. Because the data contains zero counts, a small

constant, δ, must be added to the data before taking the log transformation, and

this transformation is undone when predictions are made. The full model hierarchy,

which we call the Gaussian Approximation model (GA), is

log(Zi + δ) ∝ N(x′iβ +ψ′iη, σ
2
ξ )
∼
wi , i ∈ S

η ∼ N(0, σ2
ηI)

β ∼ N(0, σ2
βI)

σ2
ξ ∼ IG(αξ, κξ)

σ2
η ∼ IG(αη, κη)

σ2
β, αη, αξ, κη, κξ > 0,

(2.5)

where we use the vague prior distribution σ2
β = 1000, and αη, αξ, κη, κξ = 0.1. We

again use a pseudo-likelihood approach here in order to account for informative sam-

pling. The rest of the model consists of fairly standard Bayesian mixed effects regres-

sion. We tested the value δ fixed over the values of (0.1, 1, 5), and found that δ = 5

yielded substantially lower MSE and bias for this example, which is what we present

here.

For this simulation, we take a sample size of 5,000 from the PUMS data with

probability proportional to wi (i.e., probability inversely proportional to the original

probability of selection). We show that sampling this way induces informativeness

by comparing to the unweighted version of our model. Our fixed effects consist
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of an intercept, and the number of bedrooms in the household, which we treat as a

categorical variable. We calculate the Horvitz-Thompson estimate (direct estimate) as

well as the two model-based estimates. Finally, we repeat the process 50 times in order

to compare MSE and absolute bias. For the PL-PMLG, unweighted PMLG (UW-

PMLG) and GA estimators, we used Gibbs sampling for 2,000 iterations, discarding

the first 1,000 as burn-in. Convergence was assessed visually through traceplots of

the sample chains, and no lack of convergence was detected. We also compare to a

Horvitz-Thompson direct estimator, with Hajek variance estimates using the mase

package in R (McConville et al., 2018).

A summary of the simulation results can be found in Table 2.1, where we compare

the MSE and absolute bias of the PUMA level estimates for the total number of

vacant housing units. The GA model does not provide a reduction in MSE compared

to the direct estimator; however, the unweighted and PL-PMLG models do (12% and

49% respectively). Additionally, the absolute bias for the PL-PMLG is substantially

lower than the GA and unweighted models. The significant reduction in MSE and

bias comparing the PL-PMLG and UW-PMLG models indicates that there was an

informative design, and the PL approach helps to account for this design. We also

show the point estimates from a randomly chosen single run of the simulation under

each estimator in Figure 2.1. All of the estimators seem to capture the same general

spatial trend, however the PL-PMLG estimator seems to most closely resemble the

truth. As a final comparison, we plot the standard error of the estimates averaged

across the 50 simulations on the log scale in Figure 2.2. To construct this figure,

we compute a standard error of the estimate under each approach, for each of the

50 simulated datasets. For the model-based estimates, this standard error is the
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Table 2.1: Simulation results: MSE and Absolute Bias.
Estimator MSE Abs. Bias
Direct 2250 3.5
GA 2526 33.9
PL-PMLG 1151 23.5
UW-PMLG 1983 32.7

posterior predictive standard deviation. We then average these standard errors across

the simulated datasets, in order to illustrate the expected uncertainty associated with

each reported estimate. In some cases, the standard error of the direct estimate could

not be obtained due to a point estimate of zero, in which case they have been removed

from the average. As expected, the standard errors are dramatically lower for the

model-based estimators than the direct estimator. In general the GA standard errors

are slightly lower than the PL-PMLG, however the GA exhibits much higher MSE

due to the increased bias, as evidenced by Table 2.1. Thus, the PL-PMLG appears

to be a superior estimator overall.
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Figure 2.1: Point estimates of the number of housing vacancies by PUMA based on
a single run of the simulation study.
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Figure 2.2: Standard error for the estimate of the number of housing vacancies by
PUMA averaged over the simulation runs.

2.4 Discussion

There is a strong need for unit-level models that can handle survey data. Accounting

for informative sampling design and modeling non-Gaussian data types are two of

the biggest challenges in this setting. In this work, we present a new method for

modeling count data while accounting for informative sampling. This method can be

used for SAE as well as for more general modeling purposes. Our method relies on

conjugate multivariate distribution theory, and we show that conjugacy is maintained

when using a psuedo-likelihood approach to account for the survey design. We also

extend the work of Bradley et al. (2020) to handle the issue of zero counts through

importance sampling.
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Our approach is illustrated on a simulation study built upon public-use ACS data.

This is a count data example where area-level models are not feasible and Gaussian

models are not appropriate. Furthermore, this is an example where direct estimators

are not useful due to excessively large MSE and standard errors. Our PL-PMLG

approach is able to accurately estimate population quantities based on count variables

while still maintaining computational efficiency.

There still remains further work to be done in the area of non-Gaussian survey

data. Other data types such as binary random variables are prevalent and should be

considered (Bauder et al., 2018; Luery, 2011). The conjugate multivariate framework

offered by Bradley et al. (2020) has the potential to fit these types of data, although

the boundary value issue may pose a computational challenges. Our importance

sampling approach works well in the Poisson case, but a more general solution may

be attainable. Finally, non-Gaussian data should be explored in regards to other

solutions to the informative sampling problem. The pseudo-likelihood approach may

be one of the most popular approaches to informative sampling, but other methods

exist and may yield additional gains in terms of precision.
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Chapter 3

Computationally Efficient Bayesian
Unit-Level Models for
Non-Gaussian Data Under
Informative Sampling1

3.1 Introduction

An important dichotomy in the realm of small area estimation is that of area-level

versus unit-level modeling approaches. In general, area-level models use the design-

based direct estimate as a response within a statistical model. These models tend

to smooth the noisy direct estimates in some fashion and estimate the true latent

population value. In contrast to this, unit-level models treat the individual survey

respondents as observations in the statistical model. Predictions can then be made for

the entire population and aggregated as necessary to produce the desired estimates.

1The U.S. Census Bureau DRB approval number for this paper is CBDRB-FY20-355.
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As the need for more granular estimates becomes essential, area-level models may

perform poorly due to underlying direct estimates with extremely small or nonexis-

tent sample sizes. Unit-level approaches offer an attractive alternative by modeling

the individual survey responses directly rather than smoothing the direct estima-

tors. Although unit-level methodologies offer many advantages over their area-level

counterparts, they also face their own set of challenges.

The primary difficulty with modeling survey data at the unit level is the consider-

ation of informative sampling. Many surveys are sampled in an informative manner,

whereby there is dependence between the probability of selection and the response of

interest. When this relationship is not accounted for, increased bias may be present in

the corresponding estimates (Pfeffermann and Sverchkov, 2007). The basic unit-level

model, introduced by Battese et al. (1988), assumes that the sample model holds for

the entire population, and thus does not account for informative sampling. Chapter 1

reviews the current methods for addressing the problem of informative sampling. Of

primary interest is the pseudo-likelihood (PL) method (Skinner, 1989; Binder, 1983),

which exponentially weights each unit’s likelihood contribution according to the cor-

responding survey weight. Savitsky and Toth (2016) extend the PL approach to

Bayesian settings and provide theoretical justification. Other methods to account

for the survey design include modeling the design variables (Little, 2012), nonlinear

regression on the survey weights (Si et al., 2015; Vandendijck et al., 2016), as well as

specifying a sample model and weight model to find the implied population model

(Pfeffermann and Sverchkov, 2007).

Although the problem of informative sampling has been studied in depth, there

are other concerns with unit-level modeling that have received considerably less at-
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tention. In general, one major difference between area and unit-level approaches is

dimensionality. Modeling survey data at the unit level can result in sample sizes

that are magnitudes larger than those considered at the area level. Unit-level models

are fit to individual survey responses, which can number in the millions for large-

scale surveys. In contrast, area-level models are typically fit to aggregated survey

statistics, such as survey-weighted means, which may number in the thousands. For

example, the American Community Survey (ACS) samples 3.5 million households

annually, which may reasonably fall under the realm of “big data.” With these ex-

tremely large sample sizes comes computational concerns that must be addressed in

order to make unit-level modeling viable. To further exacerbate the problem, many

survey variables are non-Gaussian, which can lead to non-conjugate full conditional

distributions when modeling dependence relationships using traditional Bayesian hi-

erarchical models. Sampling from these posterior distributions can require Metropolis

steps that are not efficient and can be cumbersome to tune.

Bradley et al. (2020) introduce a class of conjugate prior distributions that may be

used to model dependence for non-Gaussian data in the natural exponential family.

This covers important cases such as Binomial, Multinomial, and Poisson data. Chap-

ter 2 extends this approach to model count data at the unit level under informative

sampling, through the use of a PL. Unfortunately, sampling from the full conditional

distributions can be difficult under these approaches when observations fall on the

boundary of the data (i.e. zero for Poisson data, zero or one for Bernoulli data, etc.).

Chapter 2 works around this by using an importance sampling scheme that works

well when there are not an excessive number of boundary values (zeroes for Poisson

data). However, many surveys contain a multitude of Binomial or Bernoulli random
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variables, which results in an abundance of boundary counts.

There are a number of data augmentation approaches that have been developed

to yield conjugate full-conditional distributions for Bernoulli data. Albert and Chib

(1993) use latent Gaussian variables in conjunction with a probit link function to

model Bernoulli data. More recently, Polson et al. (2013) use latent Pólya-Gamma

random variables to model Binomial data with a logit link function. This approach

may also be used to model Negative Binomial as well as Multinomial data.

In this chapter, we develop methodology to model Binomial and Multinomial data

at the unit level in a computationally efficient manner, while accounting for informa-

tive sampling. This is done through the use of Bayesian hierarchical modeling, in order

to capture various sources of dependence. As previously alluded to, the weights are

essential to account for the sampling design and without them we could end up with

significantly biased estimates of the target tabulations. Conversely, depending on the

problem, using the pseudo-likelihood can still result in a computationally intensive

estimation problem. For this reason, we develop a Variational Bayes approach based

on using fixed weights from the survey provided by the Official Statistical Agency.

As such, we consider both a Gibbs sampling approach with fully conjugate full con-

ditional distributions, as well as a Variational Bayes approach to model fitting.

As a motivating example, we consider the problem of estimation of the proportion

of people with health insurance at the county level for different income to poverty ra-

tio (IPR) categories. Currently, the Small Area Health Insurance Estimates (SAHIE)

program within the U.S. Census Bureau produces estimates of health insurance rates

using an area-level small area model fit to direct survey estimates using ACS data

(Bauder et al., 2018). The model-based estimates produced by SAHIE are the only
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source of single year health insurance coverage estimates at the county level. While

the estimates are generally more precise than the corresponding direct estimates, there

are serious modeling challenges with developing area level models for health insurance

coverage. First, there are boundary issues, in that many of the direct estimates at

the county level are exactly equal to either 0 or 1, making use of continuous models

impossible. Second, there are policy requirements to benchmark lower-level county

estimates to state-level estimates, so that users have confidence in the quality of the

data. Third, there are multiple within-county estimates that need to be produced,

such as health insurance coverage by income level, and accounting for within-county

dependencies in an area-level model can be difficult. Finally, the computational re-

quirements of fitting the model used by SAHIE are enormous, due to the complexity

of the model and the number of estimates that are produced, despite the fact that an

area-level model is used.

The model proposed in this chapter eliminates many of these problems. The

boundary issues are resolved by using non-Gaussian likelihoods at the unit level.

There is no need to benchmark estimates, as the PL produces predictions at the unit

level, which can then be aggregated up to any desired geographic level. Spatial and

multivariate dependencies are handled through careful specification of the process

model. Finally, computational efficiency is achieved through a Variational Bayes ap-

proximation. This work builds upon Zhang et al. (2014), who use a pseudo-likelihood

for binary data in a frequentist context. In particular, we extend to the multinomial

setting, which allows for categorical response data, as well as to the Bayesian pseudo-

likelihood, which allows for straightforward uncertainty quantification. This chapter

provides several contributions to the existing literature. Importantly, our unit-level
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model provides a multi-scale approach, bringing in spatial dependence at the area

level, while modeling unit-level responses. Also, through the use of our multinomial

specification, we are able to seamlessly combine multiple responses into one coherent

modeling framework. In terms of computation, we develop a Gibbs sampling approach

to model fitting, through the use of Pólya-Gamma data augmentation, building upon

Polson et al. (2013). Finally, we extend the Variational Bayes approach of Durante

et al. (2019), which is intended for logistic regression, to be used in the case of our

pseudo-likelihood mixed model.

The remainder of this chapter is organized as follows. Section 3.2 introduces some

necessary background material and then presents our proposed models as well as

the methodology used to fit the models. We conduct an empirical simulation study

in Section 3.3. We also provide a data analysis in Section 3.4 where we estimate

the health insurance rate for each county and five different income categories for

the entire continental U.S. Finally, we provide concluding remarks and discussion in

Section 3.5. Although the data used herein is confidential microdata, we provide code

and an example using ACS public-use microdata at https://github.com/paparker/

Unit Level Non-Gaussian.

3.2 Methodology

Let U = {1, . . . , N} be an enumeration of a finite population of interest. Suppose

the finite population, U , can be represented as the union of m non-overlapping

sub-populations, or small areas, Uj = {1, . . . , Nj}, where
∑m

j=1Nj = N , and j ∈

{1, . . . ,m} indexes the small areas. Associated to each unit i ∈ Uj is a characteristic
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of interest, Zij, and a vector, xij, of auxiliary information.

A sample, S ⊂ U , is selected from the finite population according to a known

sampling design. Let πi = P (i ∈ S) be the sample inclusion probability for unit i in

the finite population, and let wi = 1/πi be the survey weight. A typical inferential

goal is estimation of the finite population means

Z̄j =
1

Nj

Nj∑
i=1

Zij (3.1)

from the observed survey responses. The Horvitz-Thompson estimator (Horvitz and

Thompson, 1952)

ˆ̄Zj =
1

Nj

∑
i∈Sj

wijZij, (3.2)

where Sj = S ∩ Uj, is a design-unbiased and design-consistent estimator of the finite

population mean, Z̄j. We refer to any estimate which only used the observed survey

data, such as (3.2), as a direct estimate.

Let n be the total number of sampled units, and let nj be the number of sampled

units in Sj. In many surveys, the overall sample size, n, and many of the area-

specific sample sizes, nj, are large. For these areas, the large-sample properties of

the Horvitz-Thompson estimator guarantee that (3.2) will be a precise estimator of

the finite population mean (3.1). However, it is also often the case that for many

of the small areas of interest, that nj will be too small for (3.2) to be reliable. In

such situations, precision can be increased by using models for the survey data which

incorporate auxiliary information to “borrow strength” by relating the different small

areas and increasing the effective sample sizes.

Models for small area estimation (SAE) often include area-level random effects
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in order to link the small areas and incorporate spatial dependence. These random

effects are typically modeled using a latent Gaussian process (LGP), and Bayesian

hierarchical modeling is a common technique used to fit these models. This may

be computationally efficient when considering a Gaussian response, as it leads to

conjugate full conditional distributions, however when the data model (likelihood) is

non-Gaussian, sampling from the posterior distribution can become difficult as it may

require the use of Metropolis type steps. These sampling mechanisms require tuning

that can become unwieldy especially in high dimensional situations.

Polson et al. (2013) use a data augmentation scheme to allow for conjugate sam-

pling under logistic likelihoods. Importantly, this includes both Bernoulli and Multi-

nomial responses, which is useful as binary and categorical data are two often observed

types of non-Gaussian survey data. This class also includes the Negative-Binomial

distribution, which may be used to model count data.

Specifically, Polson et al. (2013) define a random variable X to have a Pólya-

Gamma distribution with parameters b > 0 and c ∈ R, denoted PG(b, c), if X is

equal in distribution to

1

2π2

∞∑
k=1

gk
(k − 1/2)2 + c2/(4π2)

,

where gk
ind∼ Gamma(b, 1). Furthermore, they show that

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−ωψ
2/2p(ω)dω, (3.3)

where κ = a − b/2 and p(ω) is a PG(b, 0) density. They also show that (ω|ψ) ∼

PG(b, ψ). Thus, with a Binomial likelihood, using this data augmentation scheme and
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Gaussian prior distributions, one can sample from Gaussian full conditional distribu-

tions for the parameters, and Pólya-Gamma distributions for the latent augmentation

variables. The BayesLogit package in R provides efficient sampling of Pólya-Gamma

random variables (Windle et al., 2013)

3.2.1 Pseudo-Likelihoods

One of the main difficulties when implementing unit-level models for survey data is

accounting for an informative sampling design. For example, certain demographic

subgroups may be sampled with higher probability, but there may also be a rela-

tionship between these subgroups and the response variable of interest. Under this

scenario, the sample is not representative of the population, and thus the sample

likelihood should be adjusted to account for this. Chapter 1 gives a review of modern

methods for unit-level modeling under informative sampling. One general approach

is to use a pseudo-likelihood, introduced by Skinner (1989) and Binder (1983), by

weighting each unit’s likelihood contribution using the reported survey weight wi,

∏
i∈S

f(Zi | θ)wi , (3.4)

where S indicates the sample and Zi represents the response value for unit i.

The PL can be maximized using maximum-likelihood techniques, however Savit-

sky and Toth (2016) show that a PL may also be used in a Bayesian setting, thus

generating a pseudo-posterior distribution

π̂(θ|Z, w̃) ∝

{∏
i∈S

f(Zi|θ)w̃i

}
π(θ).
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They emphasize the importance of scaling the weights to sum to the sample size,

w̃i = n wi∑n
j=1 wj

, in order to prevent contraction of the PL and achieve appropriate

variance estimates.

Using a unit-level model such as this, it is simple to generate predictions for any

unobserved units, thereby effectively generating the population. It is then straight-

forward to aggregate units in order to estimate any finite population quantities, such

as for SAE purposes. Under a Bayesian framework, this can be done for each sam-

ple from the posterior distribution, thus yielding a posterior distribution over any

desired estimates. In the special case where all covariates are categorical in nature,

this approach can be seen as a type of poststratification (see Gelman and Little

(1997) and Park et al. (2006) for examples of poststratifaction outside of a pseudo-

likelihood framework). For special cases where the postratification variables include

all survey design variables, poststratifaction alone may be used to account for the

sample. However, this is typically not the case for complex survey designs, thus the

pseudo-likelihood may be used in conjunction with poststratification. Zhang et al.

(2014) provide an example of a pseudo-likelihood and poststratification combina-

tion for small area estimates in a frequentist framework, whereas Chapter 2 takes a

Bayesian pseudo-likelihood and poststratification approach.

Now, an unweighted binomial likelihood has the form

∏
i∈S

(eψi)Zi

(1 + eψi)ni
.
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By using a pseudo-likelihood instead, the form becomes

∏
i∈S

(
(eψi)Zi

(1 + eψi)ni

)w̃i
=
∏
i∈S

(eψi)Z
∗
i

(1 + eψi)n
∗
i
, (3.5)

where Z∗i = Zi × w̃i and n∗i = ni × w̃i. The PL given by (3.5) is of the same form

as that given in (3.3), thus we are able to sample from conjugate full conditional

distributions using a binomial type PL with Gaussian prior distributions, and PG

data augmentation variables.

3.2.2 Binomial Response Model

Using the Pólya-Gamma data augmentation scheme, we develop a computationally

efficient pseudo-likelihood mixed model for binomial survey data (PL-MB) under

informative sampling,

Z|β, η ∝
∏
i∈S

Bin (Zi|ni, pi)
∼
wi

logit(pi) = x′iβ + φ′iη

η|σ2
η ∼ Nr(0r, σ

2
ηIr)

β ∼ Nq(0q, σ
2
βIq)

σ2
η ∼ IG(a, b)

σβ, a, b > 0,

(3.6)

where Zi represents the response for unit i ∈ S. We model the data using a Binomial

pseudo-likelihood, with ni representing the number of trials, and pi representing the

probability of a positive response (e.g. a unit having health insurance) for unit i. In
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many survey data scenarios, including those explored here, the data is binary, thus

ni = 1,∀i. The vector x′i represents a q-dimensional set of covariates and β is the

q-dimensional vector of fixed effects. In this work, the vector φ′i represents either

an r-dimensional vector of spatial basis functions, or an incidence vector, indicating

which area unit i resides in. In this way, the r-dimensional vector η act as area-level

random effects. Note that the Binomial pseudo-likelihood can be rewritten using

(3.3). Although we do not present the model this way for the sake of readability,

we take advantage of this fact when we construct the Gibbs sampling scheme, which

introduces a step to sample the latent Pólya-Gamma random variables. The full

conditional distributions for Gibbs sampling, which rely on the Pólya-Gamma data

augmentation, can be found in Appendix A.2. As an alternative to Gibbs sampling,

for manageable sample sizes Hamiltonian Monte Carlo could be used, for example via

Stan (Stan Development Team, 2021).

3.2.3 Variational Bayes Approximation

In many high-dimensional settings, it can become a computational burden to sample

from the posterior distribution via MCMC, even through the use of Gibbs sampling

with fully conjugate full conditional distributions. For example, using the Pólya-

Gamma data augmentation scheme, a latent random variable must be drawn for

every sample observation at every iteration of the MCMC. As sample sizes become

very large, this may become infeasible, even after allowing for parallel computing tech-

niques. One popular solution to this computational problem is the variational Bayes

approach (Jordan et al., 1999; Wainwright et al., 2008), for which an approximation

to the posterior distribution is used rather than the true posterior distribution. A

81



class of distributions, D, is chosen for q∗(θ), the approximation to the true posterior,

p(θ|x). Optimization techniques may then be used to minimize the Kullback-Leibler

(KL) divergence between the approximate and true posterior distributions,

q∗(θ) = arg minq(θ)∈DKL (q(θ)||p(θ|x)) . (3.7)

Beal and Ghahramani (2003) focus on a specific case known as the variational

Bayes EM algorithm. The approximating distribution can be factored into a product

of global parameters and local latent variables, q(θ) = q(β)
∏n

i=1 q(ξi). With this

factorization, an iterative approach can be used to minimize the KL divergence, where

q(β)(t) ∝ exp
{
Eq(t−1)(ξ))log[p(β|Z, ξ)]

}
q(ξi)

(t) ∝ exp
{
Eq(t−1)(β))log[p(ξi|Z, ξ−i,β)]

}
, i = 1, . . . , n.

(3.8)

In models that use fully conjugate full conditional distributions, as well as likelihoods

from the exponential family, these factorized approximate distributions are of the

same class as their corresponding full conditional distribution. Importantly, this

includes the case of logistic regression via Pólya-Gamma data augmentation, for which

Durante et al. (2019) explore a variational Bayes EM algorithm approach.

Algorithm 1 provides an extension of the one explored by Durante et al. (2019),

which is intended for unweighted logistic regression, and thus not directly applicable

to our pseudo-likelihood mixed model. The main extension of this algorithm is the

inclusion of the pseudo-likelihood rather than the original Binomial likelihood. This

algorithm may be used in place of MCMC in order to fit the PL-MB model in high

dimensional settings. Independent samples from the variational approximation to
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the posterior of ζ = (β′,η′) may be drawn by sampling from a N(µ̃, Σ̃) distribution,

which may then be used to produce any desired Monte Carlo estimates. We give more

details about prediction using poststratification with the variational distribution in

Appendix B.1.

Algorithm 1: VB EM algorithm for PL-MB model

Initialize σ̃2
η and ξ̃i, i = 1, . . . , n ;

Let D = [X,Φ] and ζ = (β′,η′) ;

for t = 1 until convergence do

Ω̃ = Diag
(
w1

2ξ̃1
tanh(ξ̃1/2), . . . , wn

2ξ̃n
tanh(ξ̃n/2)

)
;

Σ̃ =
(

blockdiag( 1
σ2
β
Ip,

a+r/2
σ̃2
η
Ir) +D′Ω̃D

)−1
;

Σ̃η = Σ̃[(p+ 1) : (p+ r), (p+ 1) : (p+ r)];

µ̃ = (µ̃′β, µ̃
′
η)
′ = Σ̃D′ (w � (Z − 1/2));

σ̃2
η = b+ 1

2

(
µ̃′ηµ̃η + tr(Σ̃η)

)
;

for i = 1 to n do

ξ̃i =
(
D′iΣ̃Di + (D′iµ̃)2

)1/2
;

end

end

3.2.4 Multinomial Response Model

In addition to Binomial data, Multinomial or categorical data is often observed in

survey data. In a similar fashion as the PL-MB model, we can write the Pseudo-
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likelihood mixed effect Multinomial model (PL-MM) with K categories as

Z|β, η ∝
∏
i∈S

Multinomial (Zi|ni,pi)
∼
wi

pik =
exp(ψik)∑K
k=1 exp(ψik)

ψik = x′iβk + φ′iηk

ηk|σ2
ηk ∼ Nr(0r, σ

2
ηkIr), k = 1, . . . , K − 1

βk ∼ Np(0p, σ
2
βIp), k = 1, . . . , K − 1

σ2
ηk ∼ IG(a, b), k = 1, . . . , K − 1

σβ, a, b > 0,

(3.9)

where βK and ηK are constrained to be equal to zero for identifiability. The K-

dimensional vector Zi represents the number of successful outcomes in each of the K

categories for survey unit i, and the K-dimensional vector pi represents the proba-

bility of each category for unit i.

Although Algorithm 1 is intended for Binomial data, a stick-breaking represen-

tation of the Multinomial distribution can be used to expand the applicability of

this VB approach. Specifically, Linderman et al. (2015) show that the Multinomial

distribution may be written as a product of independent Binomial distributions,

Multinomial(Z|n,p) =
K−1∏
k=1

Bin(Zk|nk, p̃k), (3.10)

where

nk = n−
∑
j<k

Zj, p̃k =
pk

1−
∑

j<k pj
, k = 2, . . . , K. (3.11)
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Under this view of Multinomial data, we can rewrite the PL-MM model as

Z|β, η ∝
∏
i∈S

K−1∏
k=1

Bin (Zik|nik, p̃ik)
∼
wi

logit(p̃ik) = x′iβk + φ′iηk

ηk|σ2
ηk ∼ Nr(0r, σ

2
ηkIr), k = 1, . . . , K − 1

βk ∼ Np(0p, σ
2
βIp), k = 1, . . . , K − 1

σ2
ηk ∼ IG(a, b), k = 1, . . . , K − 1

σβ, a, b > 0,

(3.12)

where nik = ni −
∑

j<k Zij and p̃ik = pik
1−

∑
j<k pij

, k = 2, . . . , K. Thus, the PL-MM

model may be fit as a series of K − 1 independent Binomial models using either

MCMC or the VB approach outlined in Algorithm 1. Note that after fitting the

model, the stick breaking probabilities p̃i can be transformed back to the original

probabilities pi for inference.

3.3 Empirical Simulation Study

In order to mimic a real survey data setting, our simulations revolve around resam-

pling of an existing survey dataset rather than generating a synthetic population

from a parametric distribution. Specifically, we treat the existing survey sample as

our population and then take a further sample with probability proportional to si,

a size variable that is constructed in an informative manner. This informative sam-

pling scheme can be validated by comparing the weighted design-based estimator to

an unweighted design-based estimator. Under an informative design, the unweighted
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estimator will result in greater bias.

3.3.1 Multinomial Response Simulation

An important SAE application is the Small Area Health Insurance Estimation (SAHIE)

program (Bauder et al., 2018). The goal of SAHIE is to estimate the proportion of

individuals with health insurance by county for a number of income to poverty ratio

(IPR) categories. IPR is defined as family income, divided by the appropriate federal

poverty level. The IPR categories under consideration are 0-138%, 138-200%, 200-

250%, 250-400%, and 400+%. The thresholds for the first three IPR categories are

motivated, in part, by needs of the Centers for Disease Control and Prevention, which

provides breast and cervical cancer screenings for low income and uninsured women.

The IPR categories are also relevant to the Affordable Care Act, which increased ac-

cess to health insurance. In participating states, Medicaid programs expanded health

insurance access to individuals and families with IPR less than 138%, and provided

tax credits for those with IPR between 138% and 400%.

The true number of people within each IPR category is unknown and must be

estimated. Thus, to create estimates of the proportion with health insurance by

IPR category, health insurance and IPR category must be modeled simultaneously.

Within each IPR category, an individual may be categorized as either having or not

having health insurance. In this manner, we view individuals as falling into one of 10

distinct categories, (C1,0, . . . , C5,0, C1,1, . . . , C5,1), where Cj,k indicates an individual in

IPR category j = 1, . . . , 5 and health insurance indicator k = 0, 1. The multivariate

structure of the data, with many IPR categories, and the need to estimate both the

number in each IPR category along with the proportion with health insurance, makes
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unit-level modeling appealing for this dataset. In addition, there are areas for which

there is no sample, areas for which there are direct estimates on the boundary of the

parameter space that are exactly equal to zero or one, and direct estimates for which

the sampling variance estimates are not well defined, which makes area-level modeling

challenging. Since there is no established theory for applying area-level methodology

to this type of survey data, we restrict our simulation study to unit-level methods.

To construct health insurance estimates by county and IPR category, we fit the PL-

MM with ten categories using ni = 1 for all i. We let xi consist of poststratification

variables including race category, sex, and age category. We also let φi be a vector

indicating which county unit i resides in. Thus, the model uses a county level random

effect. We use a vague prior distribution over β and σ2
η by setting σ2

β = 1000 and

a = b = 0.5. A sensitivity analysis confirmed that these prior choices had very

little effect on the model outcome, but for other data scenarios, this choice should be

considered carefully. The model is fit using both the MCMC and VB fitting strategies,

with both drawing a posterior sample size of 1000, after discarding 1000 draws as

burnin for MCMC. For MCMC, convergence was assessed visually through the use

of traceplots of the sample chains along with the Geweke convergence diagnostic

(Geweke, 1991), for which no lack of convergence was detected. After fitting the

model on the sample data, predictions are made for all units in the population. The

synthesized population is then aggregated to the desired level of the estimates (i.e.,

county by IPR category). This is done for each posterior draw, giving a posterior

predictive distribution for the desired estimates.

To assess the SAE capability of our PL-MM model through simulation, we treat

the 2014 1-year American Community Survey (ACS) sample in Minnesota as our
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population. This data contains roughly 120,000 respondents across Minnesota’s 87

counties. We then take a further probability proportional to size sample without

replacement, using the Poisson method (Brewer et al., 1984) with an expected sample

size of 10,000. We use the size variable si = exp {w∗i + 2I(Hi = 0)}, where w∗i is the

original survey weight for unit i after scaling to have mean zero and standard deviation

of one, and Hi indicates whether or not unit i had health insurance. Estimates are

constructed using the PL-MM with both MCMC and VB fits. We also construct

a Horvitz-Thompson direct estimate as well as an unweighted direct estimate. We

repeat the sampling and estimation process 50 times in order to compare MSE and

bias across estimators.

A summary of the simulation results in given in Table 3.1, including average mean

squared error (MSE) and squared bias for the competing estimators, as well as com-

putation time and 95% credible interval (CI) coverage rates for the two model based

estimators. The higher bias of the UW estimator relative to the direct estimator

indicates that the sampling scheme was indeed informative. The two model based

approaches yield significant reductions to MSE when compared to the direct estima-

tor. Surprisingly, the predictions using the VB approach had even lower MSE than

the predictions using MCMC. The reason for the reduced MSE is not entirely clear

and is a subject for future research. The downside to the VB approach is that the

approximate posterior results in uncertainty estimates that are not optimal. This is

reflected in the lower 95% CI coverage rate for the VB approach compared to the

MCMC approach. This is to be expected, as the VB approach only approximates the

true posterior distribution. However, the differences are relatively minor, and can be

justified through the massive decrease in computation time.
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Estimator MSE Bias2 Time (s) Coverage Rate

Model MCMC 7.1× 10−3 3.7× 10−3 7314 94%
Model VB 2.3 × 10−3 1.7 × 10−3 140 87%

Direct 9.9× 10−2 3.8× 10−2 - -
UW Direct 1.6× 10−1 1.1× 10−1 - -

Table 3.1: Simulation results: MSE and squared bias of the four estimators averaged
across counties. Average computation time in seconds and 95% credible interval
coverage rate are also given for the model based estimates.

We also show the MSE by county and IPR category for each estimator in Figure

3.1. The largest reductions in MSE through model-based estimation tend to occur

for the more rural and sparsely populated regions of the state. These counties tend to

have smaller sample sizes resulting in more erratic direct estimates. The model-based

estimates borrow strength from sampled units in all counties, resulting in more stable

(i.e. lower MSE) estimates.
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Figure 3.1: Emprical mean squared error by county across the simulation based es-
timates for the state of Minnesota. Columns represent the different IPR categories
and rows represent the different estimators.

3.4 Data Analysis

The simulation in Section 3.3 illustrates how the PL-MM model may be used to

generate SAHIE type estimates for a single state. However, the SAHIE program

is tasked with creating estimates for the entirety of the U.S. rather than a single

state. The bottleneck in the MCMC approach to the PL-MM model is the generation

of Pólya-Gamma random variables for every sample observation at every MCMC
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iteration. Although this approach is feasible at a state level, it becomes unwieldy at

the national level, where the ACS samples 3.5 million households annually. For this

reason, we rely on the VB approach to the PL-MM model in order to create estimates

of health insurance by county and IPR category for the entire continental U.S.

Again, we use the PL-MM model with 10 categories and ni = 1 for all i. We also

use the same prior distribution and poststratification variables that were considered

in Section 3.3. There are over 3,000 counties in the US, compared to only 87 in Min-

nesota, thus, we require a form of dimension reduction for φi rather than using county

indicators. To do this, we let φi be equal to a set of spatial basis functions evaluated

for unit i. Specifically, for illustration, we use the first 307 (10%) eigenvectors of the

county adjacency matrix as our spatial basis functions. This choice was motivated in

part by the suggestion of Hughes and Haran (2013) to use 10% of the available eigen-

vectors, as well as by the need for substantial dimension reduction with respect to

the random effects. In this problem, due to modeling at the unit-level, some form of

dimension reduction is needed to avoid having memory issues that would result from

an approximately 4.5 million × 3000 dimensional matrix. A limited visual sensitivity

analysis was used in the selection of basis functions here, however, before a model

such as this is implemented in a production setting, it may be worthwhile to conduct

a more comprehensive sensitivity analysis. Choosing the number of basis functions is

problem specific and constitutes an ongoing area of research; e.g., see Bradley et al.

(2016) and the references therein.

We fit the PL-MM model using the VB approach, with a sample size of roughly

4.5 million. We then take 1000 independent draws from the variational posterior

distribution in order to construct the posterior predictive distribution of our estimates.
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Treating the posterior predictive mean as our point estimates, we plot the model-

based estimates alongside the direct estimates in Figure 3.2. In order to satisfy the

disclosure avoidance requirements of the U. S. Census Bureau, a small amount of

noise was added to the direct estimates shown in the maps in Figure 3.2. However,

this is the only instance of any additional noise being added to data or estimates.

All models were fit to the raw ACS data, and all other results are presented without

any additional noise. Note that there is an unpopulated county in Wyoming. This

county is shown as white due to the fact that there are no units to aggregate during

the poststratification procedure (see Appendix B.1 for details on poststratification).

Visually, the direct estimates are quite noisy, due to the very small sample sizes in

many counties. The model based estimates are able to provide a degree of smoothing

through the use of borrowed information in the hierarchical model structure. This

results in model based estimates that have the same general spatial pattern as the

direct estimates without as much noise. We also plot the health insurance estimates

by county without regard to IPR category in Figure 3.3. Similar patterns can be

noticed here.
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Figure 3.2: Direct and model based estimates of the proportion of the population
with health insurance by county and IPR category for the continental United States.
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Figure 3.3: Direct and model based estimates of the proportion of the population
with health insurance by county for the continental United States.

We plot the ratio of the model based standard errors to the direct estimate stan-

dard errors by county and IPR category in Figure 3.4. For the vast majority of es-

timates, the model based approach provides quite substantial reductions in standard

error, with the largest advantage occurring in the more sparsely populated Southern
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and Western regions of the country.

Figure 3.4: Ratio of model based standard errors to direct estimate standard errors
by county and IPR category for the continental United States. Counties with no
available direct estimate are shown in gray.
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This example demonstrates how the PL-MB and PL-MM models may be used to

model complex dependence structures with non-Gaussian data in a computationally

efficient manner. The VB approach specifically was able to generate estimates for

over 15,000 county and IPR category combinations, utilizing a sample size of over

4 million, in roughly 17 hours. These estimates are much less noisy than direct

estimates, with substantially lower standard errors. Furthermore, the simulation

results of Section 3.3 indicate that these model based estimates should have much

lower MSE. In addition to advantages over the direct estimate, this approach has

many advantages over area-level modeling approaches, such as the one currently in

use for SAHIE. For example, unit-level models allow for easy aggregation to multiple

domains. A single PL-MM model may be used to give county and state level estimates,

whereas area-level modeling strategies require two separate models and often rely on

ad-hoc benchmarking techniques. Another advantage is that unit-level models do not

require a direct estimate for a given area in order to construct an estimate, in contrast

to area-level models.

3.5 Discussion

This chapter establishes a framework for modeling Binomial and Multinomial unit-

level survey data, specifically under an informative sample. We envision this method-

ology being used to create area-level estimates of population proportions, with health

insurance (SAHIE) as our motivating example. The current methodology used to

generate SAHIE estimates is conducted at the area level which can cause a number

of problems that are alleviated through the use of unit-level modeling. Our unit-
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level approach is able to generate multiple levels of estimates through a single model

without the need for benchmarking techniques. We demonstrate this by producing

health insurance estimates by county as well as by IPR category within each county

for the entire continental U.S. Our approach is also able to produce very precise es-

timates compared to traditional direct estimators, as demonstrated by our empirical

simulation study. Finally, these estimates can be produced in a very computationally

efficient manner either through the use of either Gibbs sampling with fully conju-

gate full-conditional distributions or through a VB approximation to the posterior

distribution.

Although this chapter provides a methodological step forward for small area esti-

mates of health insurance, further work would be necessary to create estimates that

might replace the current SAHIE program. For example, the current SAHIE method-

ology considers a number of important covariates that were not considered here, due

to disclosure limitations, including data from the Supplemental Nutrition Assistance

Program as well as Medicaid. Furthermore, the method considered here is a type

of generalized linear model, but there is potential for improvement through the use

nonlinear modeling techniques (e.g. see Chapter 4).
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Chapter 4

Computationally Efficient Deep
Bayesian Unit-Level Modeling of
Survey Data under Informative
Sampling for Small Area
Estimation

4.1 Introduction

There has recently been a strong interest in collecting novel types of data along

with sample surveys. These data types can range from functional data such as the

physical activity monitor data contained within the National Health and Nutrition

Examination Survey (NHANES; Schuna et al., 2013), free response text data such

as those within the American National Election Studies (ANES) surveys (DeBell,

2013), and even complex data from web-based surveys such as mouse movements
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(Horwitz et al., 2020). These information rich data sources could prove to be useful

as covariates, however the rapid and increased interest in these data types within a

survey context has resulted in lagging development of corresponding methodology.

These complex covariates are generally collected at the unit level, and thus, ne-

cessitate the need for unit-level modeling strategies. One of the challenges associated

with unit-level modeling is accounting for the sampling design under informative sam-

pling mechanisms. A variety of strategies exist for this problem, including the use of

pseudo-likelihood modeling (Skinner, 1989; Binder, 1983). In many applications, such

as small area estimation, predictions can be made for every unit in the population

and then aggregated as necessary to construct any desired estimates. An exceedingly

common solution is that of regression and poststratification, whereby the popula-

tion is segmented via a set of categorical covariates, and units that are associated

with identical covariates are assumed to be independent and identically distributed

(Park et al., 2004). In particular, Park et al. (2004) state that they envision this

methodology being used for public opinion estimates at the state level. The cate-

gorical covariates required for poststratification are generally known for the entire

population. This is in contrast to the complex covariates that we consider, which are

generally only known for the sampled units.

Another major concern for unit-level models, particularly in a Bayesian setting, is

that of computational efficiency. Dependent data models typically rely on Gaussian

prior distributions for model parameters (Bradley et al., 2015); however, most survey

variables tend to be non-Gaussian, leading to non-conjugate conditional distributions

that can be difficult to sample from. This problem is addressed by Chapter 2 and

Chapter 3 for count data and Binomial data, although they do not consider the further
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problem of modeling complex data types in a computationally efficient manner.

Herein, we develop a computationally efficient method to model these complex

covariates while accounting for informative sampling. Although other applications

of this model are possible, we illustrate this method through the problem of small

area estimation. We utilize a neural network structure to handle nonlinear modeling

of the complex covariate data, while employing a Bayesian pseudo-likelihood model

structure in order to measure uncertainty around our estimates while accounting for

informative sampling. The remainder of this chapter is outlined as follows. In Section

4.2 we introduce the necessary methodological background as well as our model.

Section 4.3 considers an empirical simulation study relying on the use of ANES data.

We follow with a full data analysis using the same ANES data in Section 4.4. Finally,

we provide discussion and concluding remarks in Section 4.5.

4.2 Methodology

The method that we develop tackles three problems simultaneously. The first issue

is that nonlinear modeling is required for the use of complex covariates, without be-

coming computationally prohibitive. For example, neural network structures typically

involve an extremely high-dimensional parameter space. A full Bayesian treatment

of these types of models can often require too many computational resources to be

fit in a reasonable amount of time. The second problem is that we must account

for informative sampling in our model to avoid producing any unnecessary statistical

bias. Finally, we require a model that can handle Binomial data types while still ac-

counting for all of the underlying dependencies associated with the data. We explore
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each of these three problems, and then present our methodology.

4.2.1 Extreme Learning Machines

The extreme learning machine (ELM) is a type of single layer feed-forward neural

network (FNN), introduced by Huang et al. (2006). The key difference between the

ELM and traditional FNNs is that the ELM uses random weights (i.e., parameters)

drawn from some distribution for the hidden layer nodes. As with other FNNs, the

ELM can be used for both regression and classification problems, as well as other types

of problems (e.g., unsupervised learning), while allowing for much more flexibility in

the mean function than linear or generalized linear models.

The basic ELM considers a nonlinear transformation of the covariate data (fea-

tures),

f(xi) =
N∑
j=1

gj(a
′
jxi + bj)βj, i = 1, . . . , n

where xi represents the p-dimensional covariate information for unit i in the sample

with size n. The value N represents the number of nodes, where each node considers

a unique nonlinear transformation of the data. Each node first applies a linear trans-

formation, with parameters aj = [aj1, . . . , ajp]
′ and bj. This linear transformation is

followed by a nonlinear transformation, denoted by the function gj(·), often called an

activation function. This is specified a priori, and may be any piecewise continuous

function (Huang et al., 2015), but in practice usually consists of a sigmoid function.

The output, f(xi) is then calculated as a weighted sum of each individual node out-

put, where the weights are denoted by the N dimensional vector β. Intuitively, this

is similar to basis function approaches, in the sense that both techniques may use
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nonlinear transformations of the input data to construct a flexible nonlinear function

for the mean. However, one key difference is that in the case of the ELM, these

nonlinear transformations do not need to be selected as they are randomly generated.

The key to ELMs is that for each node, j = 1, . . . , N , the values of aj and bj are

randomly drawn. Thus, the only set of parameters that need to be learned or esti-

mated is β. Common distributional choices for these randomly selected parameters

are Normal(0,1) and Uniform(-1,1). Although these hidden layer parameters are only

randomly drawn a single time, typically many nodes are used to allow for flexible

representation of the function f(xi).

More generally, the ELM can be written

µi = go(Bgi)

gi = g(Axi)

where the p×1 dimensional vector xi now contains an intercept and the l-dimensional

vector of means, µi, can now incorporate multivariate responses. Also, A is an

N×(p+1) dimensional matrix of hidden layer weights, and B is an l×N dimensional

vector of output weights. The hidden layer activation function is denoted g(·) and

the output layer activation function is denoted go(·), which will be the inverse of the

canonical link function in the case of a GLM.

The above view of the ELM is similar to the generalized linear model and high-

lights an important strength of ELM. Because the hidden layer parameters are ran-

domly chosen and not estimated, we may view the hidden layer transformations as

fixed once these parameters have been generated. This is similar to regression with

basis expansions as is often seen when using generalized additive models (GAMs). A
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key difference with ELM compared to GAMs however, is that the entire vector xi

is used within each hidden node, which allows for interaction effects. Viewing the

random transformations as fixed allows us to extend the entire class of generalized

linear models to incorporate nonlinear behavior. Furthermore, pseudo-likelihood ap-

proaches may be used in conjunction with the ELM in order to account for informative

sampling.

The ELM can be considered a type of reservoir computing (an approach where

weights are randomly generated). Random projection is another type of reservoir

computing, often used for dimension reduction (Bingham and Mannila, 2001). Un-

der random projection, the original n × p data matrix X is “projected” onto a L-

dimensional subspace, X∗ = XR, where R is a randomly generated p × L matrix.

This is not technically a projection, as the matrix R is not orthogonal, but due to

the random nature of the matrix, it tends to be “approximately” orthogonal. Note

that the randomly generated projection matrix could be orthogonalized, but this is

not always done in practice due to the computational cost.

Random projection could be used in the context of regression, similar to Principal

Components Regression. In this light, it may be seen as a special case of the ELM,

where gj(·) is equal to the identity function for all j. In other words, random projec-

tion uses randomly generated parameters for the hidden node linear transformation

component, but does not introduce a nonlinear component.

Another common type of reservoir computing is known as the Echo State Net-

work or ESN (Prokhorov, 2005). This is a type of recurrent neural network, where

the hidden weights are randomly generated. Recently, the ESN has been used in

likelihood-based frameworks for spatio-temporal forecasting (McDermott and Wikle,
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2017). The ESN may also be used within a Bayesian model structure in order to give

uncertainty quantification (McDermott and Wikle, 2019).

Bayesian methods have been considered in the ELM community as well, beginning

with Soria-Olivas et al. (2011). They consider ridge regression fit with an Empirical

Bayes procedure. This achieves both regularization as well as uncertainty quantifica-

tion for the output layer weights and data model variance. They also show that this

method tends to give better out of sample predictions compared to the traditional

ELM. Chen et al. (2016) use a variational Bayes approach to fit a Bayesian ELM.

By doing so, it is possible to reduce the computational burden of the Bayesian ELM

substantially.

4.2.2 Pseudo-likelihood based SAE

When fitting models with unit-level survey data, it may be the case that there ex-

ists a dependence relationship between the unit probabilities of selection, and the

response values. This is termed informative sampling, and if this relationship is not

accounted for, any estimates may be biased (Pfeffermann and Sverchkov, 2007). A

thorough review of the modern approaches to handling informative sampling is given

in Chapter 1. One popular approach to this problem is the use of a pseudo-likelihood

(PL), introduced by Skinner (1989) and Binder (1983). The general idea is to use

the reported survey weights to exponentially re-weight the likelihood contribution of

each survey unit. Thus, the PL is written as

∏
i∈S

f(yi | θ)wi , (4.1)
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where yi is the response value and wi is the survey weight for unit i in the sample S.

The PL can be maximized in order to make frequentist inference, however Savitsky

and Toth (2016) show that in a Bayesian setting, the pseudo-posterior distribution,

π̂(θ|y, w̃) ∝

{∏
i∈S

f(yi|θ)w̃i

}
π(θ),

converges to the population posterior distribution, justifying the use of a Bayesian PL

for inference on nonsampled units. In this case, w̃i represents the survey weights after

scaling to sum to the sample size in order to give proper uncertainty quantification.

4.2.3 Logistic Models

Many survey data variables tend to be non-Gaussian at the unit level. For example,

the American Community Survey contains a binary indicator of health insurance

status as well as many categorical variables such as primary language spoken. In

regression frameworks with non-Gaussian responses and Normal prior distributions

on any regression parameters, non-conjugate full conditional distributions arise. This

may lead to the need for Metropolis steps within the MCMC routine that can be

prohibitively difficult to tune.

For the case of logistic models (Binomial, Negative Binomial and Multinomial

responses), Polson et al. (2013) introduce a data augmentation scheme that gives rise

to conjugate full-conditional distributions. This strategy relies on the use of Pólya-

Gamma (PG) random variables. Specifically, they rewrite the Binomial likelihood

as,

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−ωψ
2/2p(ω)dω, (4.2)
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where κ = a − b/2 and p(ω) is a PG(b, 0) density. They also show that p(ω|ψ) ∼

PG(b, ψ). For the linear predictor ψ = x′β, if we use a Gaussian prior on β, the full

conditional distribution for β will also be Gaussian. Furthermore, Chapter 3 shows

that under a PL setup, conjugacy is still retained. It develops both a Gibbs sampling

algorithm as well as a variational Bayes algorithm for PL-based mixed effects models

with Binomial data. In addition to this, it uses the stick-breaking representation of the

Multinomial distribution in order to extend the algorithms to categorical responses.

More specifically, Linderman et al. (2015) show that the Multinomial distribution

may be written as a product of independent Binomial distributions,

Multinomial(Z|n,p) =
K−1∏
k=1

Bin(Zk|nk, p̃k), (4.3)

where

nk = n−
∑
j<k

xj, p̃k =
pk

1−
∑

j<k pj
, k = 2, . . . , K. (4.4)

Under this view of Multinomial data, K − 1 Binomial data models may be fit inde-

pendently while still accounting for the dependence between categories through the

stick-breaking counts and probabilities.

4.2.4 Proposed Model

We now introduce a Bayesian unit-level deep model for informative sampling (BUDIS).

Here, we focus on the case of Binomial and Multinomial data, but note that this ap-
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proach would be applicable to Gaussian data as well. The Binomial model is written,

Z|β, η ∝
∏
i∈S

{
Bin (Zi|ni, pi)

∼
wi
}

logit(pi) = x′iβ + g′iη

g′i =
1

1 + e−Aψi

η|σ2
η ∼ Nh(0h, σ

2
ηIh)

β ∼ Np(0p, σ
2
βIp)

σ2
η ∼ IG(a, b)

a, b, σ2
β > 0,

(4.5)

where Zi is the Binomial response for unit i in the sample with size ni and probability

pi. Typically surveys contain Bernoulli data, so for our purposes, ni = 1 for all i.

We are using a pseudo-likelihood approach at this data stage of the model in order

to account for informative sampling. Within the pseudo-likelihood, we use the scaled

survey weights, w̃i, such that the weight sum to the sample size. The length p vector

xi contains any covariates that do not require nonlinear modeling. The length h

vector gi contains the ELM hidden layer values for unit i. Finally, the length r vector

ψi contains the complex covariates that are used within the ELM framework. Note

that the h× r matrix A is sampled and considered fixed before model fitting, so that

gi is determined a priori. This allows for the use of generlized linear model fitting

procedures rather than custom techniques. Specifically, we use the variational Bayes

procedure from Chapter 3 for all model fitting. We note that for this approach to

truly be considered deep learning, the ELM component of the model would require

multiple hidden layers (see Chamara et al. (2013)). In our case, we did not find any
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benefit from the inclusion of multiple layers, however, for other applications, it is

straighforward to extend the ELM to multiple hidden layers.

For our purposes, we let xi consist of any poststratification variables as well as

spatial basis functions. These values will typically be known for the full popula-

tion. The complex covariates contained within ψi are not usually known for the full

population, and thus must be imputed in order to generate the population posterior

predictive distribution necessary for small area estimation. Our approach revolves

around the idea of assigning the observed covariate vectors to all the unobserved

population units. Under a simple random sample, a reasonable assumption may be

that the observed complex covariates are uniformly distributed throughout the pop-

ulation. However, under an informative sample, the observed covariate vectors are

sampled with unequal probability, which should be accounted for when distributing

the observed vectors to the population.

For our imputation model, we create imputation cells, similar to poststratifica-

tion cells, with J total cells. A population unit within imputation cell j, j = 1, . . . , J

may only be assigned a vector from the set of observed vectors (ψj1, . . . ,ψjnj), where

nj is the sample size within cell j. Rather than sampling from this set with equal

probability, we sample with probability proportional to the reported sampling prob-

ability, or inversely proportional to the reported sample weight, to account for the

original survey sampling scheme. Thus, for population unit i in cell j, the vector of

complex covariates is sampled from (ψj1, . . . ,ψjnj) with probability proportional to

(1/wj1, . . . , 1/wjnj). This imputation can be done a single time, however we opt to

create a separate imputed dataset for each sample from our model based posterior

distribution in order to account for the imputation uncertainty within our posterior
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predictive distribution. For this work, we let the J = 48 corresponding to the states

where area level estimates are made, however other choices of imputation cells could

be explored. One limitation to this approach is that all imputation cells must have

at least one sample unit in order to distribute the sample values within the cell to

the population.

4.3 Empirical Simulation Study

To test our methodology, we consider data from the 2012 American National Elec-

tion Studies (ANES) survey. Specifically, we use the Time Series Study data which

measures various responses both pre and post election. We only consider the post

election data, which contains a number of free response questions. Our goal is to use

the free responses from the question “What are the most important problems facing

this country?” in order to improve small area estimates of public opinion.

Figure 4.1 shows a word cloud of the most frequently occurring words within the

ANES data. In many cases, the words will have little meaning on their own, but

instead have meaning when paired with other words. For example, the word security

on its own does not provide much insight, but when paired with either economic or

national, it may indicate the primary concern of the respondent. This suggests the

need for a model that can take into account many possible interactions between words

rather than considering words individually.
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Figure 4.1: A word cloud of the top words contained within the ANES data. The
size of each word represents the frequency of appearance.

One public opinion question involved in the survey considers whether respondents

approve or dissaprove of the way president Barack Obama was handling the job

of president at the time. For this simulation, we estimate the proportion of the

population within each state that approve. In other words, we consider a binary

response. We treat the original ANES sample as our population and take a subsample
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with probability to proportional size sampling using the Poisson method (Brewer

et al., 1984) with an expected sample size of 1,000. For our size variable, we use

the original survey weight plus 0.7 if the true response is “approve” in order to

explicitly generate an informative sample. We fit the BUDIS model using ψi =

(I(wi1), . . . , I(wi1000)) as the input into the ELM, where I(wij) indicates whether or

not the jth most frequently occurring word appeared in the free response of unit i.

For the linear component, xi, we use indicators of Hispanic ethnicity and gender as

poststratification variables, as well as a set of spatial basis functions. We use the

first 25 eigenvectors of the state adjacency matrix as our basis functions, although

other basis functions could be substituted here. We generate our hidden weights in

the matrix A from the standard Normal distribution, and then randomly set 10%

equal to zero and we use a vague prior distribution by setting a = b = 0.5 and

σ2
β = 1000. We have found that in general the model is not overly sensitive to the

choice of distribution for the random weights (i.e. the generating distribution for the

matrix A), however, depending on the application, it may be desirable to select the

distribution through cross-validation. Lastly, we set the number of hidden nodes h =

240. This number was chosen such that further increases resulted in little discernible

difference in prediction. We also compare to a model that does not use the text data or

the ELM component, which we denote Pseudo-likelihood logistic regression (PLLR),

as well as both weighted and unweighted direct estimators. The two model based

approaches both use post-stratification by sampling from the posterior distribution

of the parameters, and then generating estimates for the response value of all units

in the population. We repeat the sampling and model fitting procedure 50 times.

Table 4.1 shows the MSE and squared bias of each of the estimators through the
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Table 4.1: Simulation results: MSE and squared bias of the four estimators
Estimator MSE Bias2

BUDIS 1.99 × 10−2 6.43× 10−3

PLLR 2.21× 10−2 8.09× 10−3

Direct 4.49× 10−2 4.72 × 10−3

UW Direct 4.21× 10−2 1.33× 10−2

simulation. The choice of MSE as our metric in this simulation was based on the goal

of SAE. In other cases, interest may lie in inference or individual prediction, in which

case a metric that evaluates individual predictions rather than aggregations may be

preferable. The first thing to note is that the much higher bias of the unweighted

(UW) direct estimator when compared to the direct estimator indicates that the

sampling was indeed informative. The two model based approaches were able to

handle the informative sampling mechanism through the use of the pseudo-likelihood

and improve the MSE dramatically compared to the direct estimates. The BUDIS

model was able to further improve upon the PLLR model by reducing MSE about 10%

and reducing squared bias around 21%. It is clear in this case that the inclusion of

nonlinear modeling of the text covariates results in better estimates. There are other

potential text-based models that could be worth comparing to. For example, one

could envision a naive model where the vector ψi is plugged directly into the model

without the use of the ELM. This would result in an extremely large parameter space

relative to the sample size considered here, thus variable selection would be of utmost

importance. In contrast, for this example, the ELM provides implicit dimension

reduction.
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4.4 ANES Data Analysis

In order to illustrate this methodology on a real application, we use the entire 2012

ANES dataset to create estimates under the BUDIS model. The total sample size

for this dataset was 5,878, with state sample sizes ranging from 4 (Wyoming) to 742

(California). Similar to the simulation study considered in Section 4.3, we estimate

the proportion of voting age residents within each state that approved of Barack

Obama’s job as president at the time the survey was taken. The covariates and

hyperparameters were also the same as those considered in the simulation study.

We compare the estimates under the BUDIS model to the direct estimates in

Figure 4.2. Note that many of the direct estimates fall towards the extremes due to

limited sample sizes in some states. In contrast to this, the model based estimates fall

in a narrower range due the effect of “borrowing information” across states. For the

most part the spatial pattern under the BUDIS model is as expected. The more tradi-

tionally conservative states in the South and towards the Dakotas tend to have lower

estimates of approval than the coastal parts of the country. The Northwest portion of

the country has a couple unexpected estimates, namely Wyoming and Washington.

The higher than expected estimate for Wyoming is likely due to the limited sample

size pulling the estimate upward towards the national average, although an effort to

find more suitable spatial basis functions could also aid improvement in this area.
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Figure 4.2: Comparison of BUDIS model and direct estimates on 2012 ANES data.
Note that separate scales are used in order to emphasize the spatial pattern under
each approach.

This example emphasizes how the BUDIS model can be used to construct bet-

ter estimates of public opinion through the use of complex data types such as free

response text. The ANES dataset has a sufficient sample size to construct direct

estimates at the national level, but many of the state sample sizes are extremely

small, leading to very poor estimates. In this specific case, many of the state level

direct estimates fall far away from from the national average. In contrast, the BUDIS

model is able to smooth many of these extreme estimates by relying on a model that
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accounts for spatial dependence between survey respondents as well as the complex

free response covariate information. Despite the small state sample sizes, this model

is able to yield much more reasonable estimates, such as the general trend of lower

approval in the South and higher approval on the East coast. These types of estimates

could serve useful for targeting of campaign funds. For instance, in the key states

of Florida and Michigan, the model based estimates indicate that Michigan may be

more competitive. Furthermore, this example only considers estimates for a single

public opinion question, but the ANES survey contains many more public opinion

questions that may be of interest to others.

4.5 Discussion

In order to use complex unit level survey data as a covariate for small area estima-

tion, we develop a couple important innovations to the PL unit-level model. The

first innovation is the use of deep learning to model nonlinear functions of the com-

plex covariates. This is achieved through the use of random weight methodologies,

specifically the ELM. By taking this approach we are able to side-step the need for

gradient descent techniques that are typically used in deep learning. In addition, this

approach is highly computationally efficient, as it is linear in the parameters that are

estimated. Further efficiency is gained through the use of a variational Bayes model

fitting procedure.

The second innovation is the use of an imputation model that assigns sample

covariates to population units while adjusting for the sampling design. Although this

approach is relatively straightforward, modeling the population covariates explicitly
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could be very burdensome for high-dimensional data and this approach provides a

path forward. The use of more advanced approaches to this imputation problem is

subject to future work.

In addition to the novel modeling approaches explored here, this work highlights

the need to collect more complex data types within surveys. Typical surveys include

relatively simple data types such as binary and categorical measurements. However

this work shows that more complex data types such as text or functional data may be

used to improve the precision of survey based estimates. Currently, federal agencies

spend significant resources converting open responses into simple categorical variables.

Through the use of our proposed model, or extensions thereof, agencies may be able

to rely less on these resources while simultaneously extracting more information from

the raw data. The ANES data considered in our examples was chosen in part because

of its public availability, in order to limit the need for disclosure issues. However, our

approach could be immediately (or with minor modifications) applicable to other

complex survey datasets, such as NHANES physical activity monitor data, or web-

based respondent tracking.
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Chapter 5

A Bayesian Functional Data Model
for Surveys Collected under
Informative Sampling with
Application to Mortality
Estimation using NHANES

5.1 Introduction

The use of functional data as either a response or covariate has seen wide usage

in recent years. Applications that utilize functional data include longitudinal data

analysis (Yao et al., 2005), ecology (Yang et al., 2013), small area estimation (Porter

et al., 2014), as well as many others. However, typical models for functional data

typically assume a sample that is representative of the population, and thus are not

directly applicable to many survey datasets, especially under informative sampling.
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For example, the National Health and Nutrition Examination Survey (NHANES)

contains functional data in the form of activity monitor curves, yet the survey design

is complex leading to a sample that is not representative of the population.

There is a breadth of literature around functional data analysis (FDA). A seminal

work in FDA is that of Ramsay and Silverman (2005), while Hsing and Eubank (2015)

and Kokoszka and Reimherr (2017) provide more recent treatments of the topic. For

further information on the general field of FDA, see the reviews by Morris (2015) and

Wang et al. (2016) along with the references therein. The literature on functional

data analysis for survey data is quite sparse. Savitsky and Toth (2016) consider the

case of functional responses under informative sampling. They treat the response

as a Gaussian process to handle functional dependence while simultaneously using a

weighted Bayesian pseudo-likelihood to account for informative sampling. One draw-

back of this approach is that computation under the Gaussian process formulation

can become prohibitively difficult in high-dimensional settings.

More recently, Leroux et al. (2019) explore scalar on function regression to predict

5-year mortality rate based on NHANES physical activity covariates. Their approach

employs existing software packages that use the survey weights to construct appro-

priate point estimates but are unable to give correct estimates of uncertainty based

on the sample design. The authors state that a resampling procedure may be used to

give appropriate standard errors, but the approach is beyond the scope of their work.

Ultimately, their use of scalar on function regression was more exploratory and not

intended to fully account for the survey design.

In this work, we develop a Bayesian model for scalar on function regression of

survey data under informative sampling. Through the use of a Bayesian pseudo-
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likelihood (Savitsky and Toth, 2016), we are able to give appropriate measures of

uncertainty. In addition, we use data augmentation to ensure that the model can

be fit in an efficient manner via Gibbs sampling. We also provide an extension to

Multinomial response data, which allows for certain multivariate problems to fit into

our framework. Similar to Leroux et al. (2019), we are primarily motivated by the

topic of mortality estimation with NHANES physical activity covariates, though we

note that this methodology is generally applicable to any type of functional survey

data. The remainder of this work is outlined as follows. In Section 5.2 we describe

our methodology along with necessary background material. Section 5.3 outlines the

motivating NHANES dataset. In Section 5.4 we conduct a synthetic data simulation

as well as an empirical simulation study that utilizes the public-use NHANES activity

monitor data. We also present a data analysis of the public-use NHANES data in

Section 5.5. Finally, we provide concluding remarks and discussion in Section 5.6.

5.2 Methodology

5.2.1 Informative Sampling

In many survey data settings, there is dependence between a unit’s probability of

selection and the response of interest. This is termed informative sampling and is

known to introduce bias into the model when ignored. Thus, in survey data settings,

it is important to account for the survey design in some manner in order to eliminate

or reduce this bias. In other words, complex sample designs can lead to samples that

are unrepresenative of the population and, thus, the sample model should be adjusted
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in some way to account for this.

Chapter 1 gives an overview of various methods to account for informative sam-

pling. Of primary interest is the pseudo-likelihood (PL) method introduced by Skin-

ner (1989) and Binder (1983). This approach adjusts the likelihood function by ex-

ponentially weighting each unit’s likelihood contribution by the corresponding survey

weight (i.e. the inverse of the selection probability),

∏
i∈S

f(yi | θ)wi , (5.1)

where S indicates the sample, yi represents the response value for unit i with survey

weight wi. In a frequentist setting, this PL can be maximized to give a point estimate

for θ, however more complex procedures are necessary to give appropriate estimates

of uncertainty.

Savitsky and Toth (2016) show that a PL may also be used in a Bayesian frame-

work. In particular, they show that under informative sampling, the use of a PL

along with a prior specification leads to a pseduo-posterior distribution,

π̂(θ|y, w̃) ∝

{∏
i∈S

f(yi|θ)w̃i

}
π(θ),

that converges to the population posterior distribution. In this scenario, it is impor-

tant to scale the weights to sum to the sample size in order to attain the appropriate

estimates of uncertainty. These scaled weights are represented by w̃i. This formulation

applies generally to Bayesian models and is the approach we use herein to account

for informative sampling.
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5.2.2 Non-Gaussian Data

Modeling non-Gaussian data types in a Bayesian setting can be computationally

burdensome, especially while accounting for informative sampling. Chapter 3 utilizes

a data augmentation approach to construct a flexible mixed model for Binomial and

Multinomial data under informative sampling. The model for Binomial data is given

by,

Z|β, η ∝
∏
i∈S

Bin (Zi|ni, pi)
∼
wi

logit(pi) = x′iβ + φ′iη

η|σ2
η ∼ Nr(0r, σ

2
ηIr)

β ∼ Nq(0q, σ
2
βIq)

σ2
η ∼ IG(a, b)

σβ, a, b > 0,

(5.2)

where Zi represents the response value for unit i in the sample. In this case, xi is a

vector of fixed effects covariates and φi represents a set of spatial basis functions.

In order to fit this model in a computationally efficient manner, Pólya-Gamma

data augmentation is used. Specifically, letting PG(·, ·) represent a Pólya-Gamma

distribution, Polson et al. (2013) show that

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−ωψ
2/2p(ω)dω,

where κ = a − b/2 and p(ω) is a PG(b, 0) density. They further show that (ω|ψ) ∼
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PG(b, ψ). The PL in (5.2) can be written,

∏
i∈S

(
(eψi)Zi

(1 + eψi)ni

)w̃i
=
∏
i∈S

(eψi)Z
∗
i

(1 + eψi)n
∗
i
,

where ψi = logit(pi), Z
∗
i = Zi× w̃i, and n∗i = ni× w̃i. This allows for data augmenta-

tion of a latent Pólya-Gamma random variable that leads to conjugate Normal priors

on the regression parameters.

The Binomial model in (5.2) can also be extended to Multinomial or Categori-

cal data. Following Linderman et al. (2015), the Multinomial distribution with C

categories can be rewritten as

Multinomial(Z|n,p) =
C−1∏
c=1

Bin(Zc|nc, p̃c),

where

nc = n−
∑
j<c

Zj, p̃c =
pc

1−
∑

j<c pj
, c = 2, . . . , C.

In this light, a series of C− 1 Binomial models may be fit to estimate the parameters

for a Multinomial data model.

The modeling framework of Chapter 3 is useful for fitting Binomial data under

informative sampling, such as the NHANES mortality data of interest; however, the

approach must be extended in order to consider functional covariates.

5.2.3 Functional Covariates

Consider the case where we have J functional covariates and κij(t), t ∈ T denotes the

jth functional covariate (j = 1, . . . , J) for unit i at time t. In our case, the domain is
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time, though other domains may be appropriate depending on the type of functional

data. Then, (5.2) can be extended for functional covariates by letting

logit(pi) = x′iβ +
J∑
j=1

∫
T
ηj(t)κij(t)dt,

where ηj(t) is a functional regression parameter associated with functional covariate

j. In what follows, we will assume J = 1 (and drop the subscript j), as is the case in

our example, but we note that the approach is still applicable for J > 1.

In order to reduce the dimension of the problem, we can use a basis expansion

representation. In particular, let {φk(t) : k = 1, 2, . . .} be a complete orthonormal

basis of the domain T . Then, we can represent the functional covariate as

κi(t) =
∞∑
k=1

ξi(k)φk(t)

and

η(t) =
∞∑
k=1

b(k)φk(t),

where ξi(k) and b(k) are the expansion coefficients for κi(·) and η(·) respectively.

Now, appealing to orthonormality,

logit(pi) = x′iβ +

∫
T
η(t)κi(t)dt = x′iβ +

∞∑
k=1

b(k)ξi(k). (5.3)

Note that any orthonormal basis may be used here, though we explore the use of func-

tional principal components selected through the fast covariance estimation (FAST)

approach (Xiao et al., 2016). This is easily implemented via the use of the refund

package in R (Goldsmith et al., 2019).
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In practice, the summation in (5.3) is truncated to K. For our purposes, we trun-

cate the summation (i.e., choose K) such that the retained components explain 95%

of the variation in the functional data. The choice of the number of principal compo-

nents to include is not trivial, with many different guidelines available. Our general

strategy it to select a number that is “large enough” and to shrink any coefficients

corresponding to noise, rather than to eliminate the noise components before inclu-

sion in the model. This results in a finite, though potentially large, number of basis

functions. Furthermore, any given basis function may not necessarily be related to

the response. Thus, we require some form of variable selection and shrinkage estima-

tor. By doing so, the variable selection prior is able to determine which components

of the variation in functional data are correlated with the response. This is similar

to the approach taken by Holan et al. (2010).

5.2.4 Horseshoe Prior

In order to provide shrinkage to our functional regression coefficients, we utilize the

Horseshoe prior introduced by Carvalho et al. (2010). Although many other methods

of Bayesian variable selection exist, this has the advantage of being fully specified,

without requiring hyperparameter selection, as well as providing minimial shrinkage to

strong signals while still providing a high degree of shrinkage for noise. To implement
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the Horseshoe prior for (5.3), we use the following hierarchy,

b(k)|λk, τ
ind∼ N(0, λ2kτ

2), k = 1, . . . , K

λk
ind∼ C+(0, 1)

τ ∼ C+(0, 1),

where C+(·, ·) represents the Cauchy density truncated below at zero. This prior is

considered a global-local shrinkage approach. This can be seen by recognizing that

τ applies to all regression parameters and determines the overall level of shrinkage,

whereas λk is local and applies to a specific coefficient. In this way, coefficients

corresponding to noise can attain a higher degree of shrinkage than those with strong

signals.

The half-Cauchy priors used in the Horseshoe are not conjugate. However, Makalic

and Schmidt (2015) use a data augmentation approach to allow for Gibbs sampling

within the Horshoe prior framework. In particular,they use a scale mixture represen-

tation of the half-Cauchy such that when x ∼ C+(0, A), then x2|a ∼ IG(1/2, 1/a) and

a ∼ IG(1/2, 1/A2), where IG(a, b) represents the Inverse Gamma distribution with

shape parameter a and scale parameter b. This leads to an alternate formulation of

the Horseshoe prior hierarchy,

b(k)|λk, τ
ind∼ N(0, λ2kτ

2), k = 1, . . . , K

λ2k|νk
ind∼ IG(1/2, 1/νk)

τ 2|ντ ∼ IG(1/2, 1/ντ )

ν1, . . . , νK , ντ
ind∼ IG(1/2, 1),
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that allows for straightforward Gibbs sampling.

5.2.5 Functional Data Model under Informative Sampling

We now present our model for non-Gaussian data under informative sampling with

functional covariates, which makes use of the modeling elements discussed so far:

Z|β, η ∝
∏
i∈S

Bin (Zi|ni, pi)
∼
wi

logit(pi) = x′iβ +
K∑
k=1

b(k)ξi(k)

β ∼ Nq(0q, σ
2
βIq)

b(k)|λk, τ
ind∼ N(0, λ2kτ

2), k = 1, . . . , K

λ2k|νk
ind∼ IG(1/2, 1/νk)

τ 2|ντ ∼ IG(1/2, 1/ντ )

ν1, . . . , νK , ντ
ind∼ IG(1/2, 1)

σ2
β > 0.

(5.4)

In this model, xi represents a q-dimensional vector of scalar covariates and ξi(k)

represents the kth basis expansion coefficient for observation i.

This model makes use of a Bayesian pseudo-likelihood to account for informative

sampling, allowing for population level inference. We also make use of Pólya-Gamma

data augmentation for efficient Gibbs sampling. If desired, prior information on the

scalar covariates may be incorporated through the selection of σ2
β, though we use a

relatively diffuse prior by letting σ2
β = 10. The full conditional distributions are given

in Appendix A.3.
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It is straightforward to implement the model in the Multinomial data setting

through the use of a stick-breaking representation, as discussed in Section 5.2.2. It

would also be straightforward to use a Gaussian pseudo-likelihood in place of the

Binomial one given here, as conjugacy would be retained.

5.3 NHANES Data Description

The NHANES is a survey conducted by the National Center for Health Statistics that

utilizes a complex survey design to collect health and nutrition data in the United

States. Of primary interest to us is the physical activity monitor (PAM) data collected

during the 2003-2004 and 2005-2006 samples. Along with this, we are interested in

mortality as a response value.

NHANES provides microdata to the public, however, a substantial amount of data

processing is required to utilize the data for inference. Leroux et al. (2019) provide

very helpful exposition on processing the data as well as the rnhanesdata package in

R for doing so. All analyses in this work were conducted using data that was prepared

and processed in the same manner as Leroux et al. (2019).

In particular, we use the NHANES samples from 2003-2004 and 2005-2006, as

these contain the PAM data of interest. For each minute during a seven consecutive

day period, the data contains an activity intensity value for each subject. Not all

subjects were in compliance, resulting in variation in wear-time between subjects.

Thus, all subjects that had less than 3 days of 10 hours or greater wear-time were

dropped. In addition, subjects outside of the age range 50-85, or who were missing

mortality or age data were also dropped. The resulting sample size was 3,208. In
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addition to PAM data as a functional covariate, we use age as a scalar covariate.

The PAM activity measurements were transformed using f(x) = log(1 + x). The

subjects in the sample had a varying numbers of days with activity data. To account

for this, we use the PAM data averaged across days within subjects, resulting in a

single 24 hour curve for each subject.

The NHANES sample contains the required survey weights. Following Leroux

et al. (2019), these are reweighted to account for missing data. More in depth

reweighting schemes may be desired in practice. However, discussion on reweighting

procedures for missing data is beyond the scope of this work. Thus, for illustration,

we do not consider this problem further.

5.4 Simulation Studies

This section includes two different simulation studies. The first is a synthetic data

simulation, where we develop a synthetic population based on pre-specified and known

functional coefficients. We divide the population into clusters which are used to

take a two-stage sample under an informative design. The primary goal of the first

simulation is to evaluate the quality of our uncertainty estimates around the functional

coefficient.

Our second simulation is an empirical simulation study where we treat the existing

NHANES sample as a population and take a further informative subsample. Simu-

lating in this manner allows us to retain many of the characteristics of the NHANES

data, while having a known truth to compare out of sample predictions to. Note that

in this case, unlike the synthetic data simulation, the true functional coefficient is
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unknown.

5.4.1 Synthetic Data Simulation

In order to assess the ability of our model to perform inference on a population level

functional coefficient, we create a synthetic population constructed under a known

functional coefficient. In this case, we consider both a very smooth function (function

A) as well as a more variable function (function B). These are shown as dashed lines

in Figure 5.1.

We create a population of 100,000 individuals, and assign each individual into

one of 100 different clusters. The cluster probabilities are generated from a Dirichlet

distribution with all concentration parameters set to one. This results in a population

with uneven cluster memberships. To generate the individual functional covariates we

consider weighted combinations of the functional covariates observed in the NHANES

sample. For each individual, we generate a set of weights by drawing from a Dirichlet

distribution with concentration parameters set to 1/3208 (or one over the number of

observations in the NHANES data). This results in synthetic curves that place a large

amount of weight on a few curves, and little weight on the remaining curves. This

process results in curves that look quite similar to the ones observed in the NHANES

data, without any two curves being identical. In addition to the functional covari-

ate, we generate one categorical covariate with four categories and corresponding

coefficients drawn from a standard normal distribution. Finally, using the synthetic

covariates and regression coefficients, we generate a linear predictor for each individ-

ual. We apply the inverse logit transformation to the linear predictors in order to

generate a mortality probability for each individual, and then generate responses by
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drawing Bernoulli random variables conditional on the probabilities.

After generating a synthetic population, we are able to take an informative sample

that can be used for estimation. In this case, we take a two stage sample. In the first

stage, we sample ten of the available clusters. Clusters are sampled with probability

proportional to the number of individuals within the cluster. Thus, clusters with

more membership are more likely to be included in the sample. Cluster inclusion

probabilities may be denoted as pc. In the second stage, for each cluster chosen in stage

one, we use Poisson sampling (Brewer et al., 1984) to retain an expected sample size of

10% of the cluster size. The probability of selection of unit i in cluster c, conditional on

cluster c being in the first stage sample, is denoted as pi|c. We set this probability to be

proportional to exp {2× I(Zi = 1) + 2× I(Xi,cat = 1) + 0.5× I(Xi,cat = 2)} , where

I(Zi = 1) is an indicator function indicating that the response for individual i is 1.

Similarly, I(Xi,cat = k) indicates that the categorical covariate for unit i is equal to k.

The use of only categorical variables in the second stage makes this stage similar to

a stratified random sample. Inclusion of the response in this second stage forces an

informative design. In practice, informativeness is often an unintended consequence

of a given sample design, rather than a feature. Finally, after sampling both stages,

the marginal inclusion probabilities can be denoted as pi = pi|c × pc.

Using this two stage sample design, we take 50 samples each from the synthetic

populations under functional coefficients A and B. For each sample, we fit a Bayesian

pseudo-likelihood model using functional principal components basis functions (BPL-

FPCA) as well as cyclic B-spline basis functions of order 30 (BPL-CBS) similar to

Leroux et al. (2019). We also compare directly to the model fit by Leroux et al.

(2019), which uses cyclic B-spline basis functions of order 30.
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For each sample, we are able to compare the functional coefficient estimates, along

with their corresponding uncertainty, to the truth. Table 5.1 provides a summary of

these results. We present the mean absolute error (MAE), the absolute bias, and

the 95% credible/confidence interval coverage rates. Each metric is averaged across

time (the domain of the functional coefficient) as well as across the sampled datasets.

In general, the BPL-FPCA model seems to result in slightly worse point estimates

in terms of MAE. Although the model used by Leroux et al. (2019) results in low

MAE, particularly when the true function is smooth, it severely underestimates the

uncertainty in both the smooth and unsmooth settings. In comparison, both Bayesian

pseudo-likelihood models result in coverage rates that are much closer to optimal. In

general for this simulation, the BPL-CBS model seems to strike a strong balance

between selecting good point estimates for the functional coefficient and quantifying

the uncertainty appropriately.

Function Model MAE Abs. Bias Coverage

A
BPL-FPCA 1.7× 10−3 5.2× 10−4 96.8%
BPL-CBS 7.9× 10−4 2.4 × 10−4 94.3%

Leroux 5.7 × 10−4 2.5× 10−4 60.7%

B
BPL-FPCA 9.7× 10−4 1.7× 10−3 99.2%
BPL-CBS 6.1 × 10−4 1.7 × 10−3 90.6%

Leroux 6.2× 10−4 1.8× 10−3 44.4%

Table 5.1: Synthetic data simulation results comparing mean absolute error (MAE),
absolute bias, and 95% credible/confidence interval coverage rate. All results are
averaged pointwise along the functional coefficient and across all simulated datasets.

We also compare the true functional coefficients to the average coefficients across

the sampled datasets for each model in Figure 5.1. For true function A, the models

that use cyclic B-splines follow the truth quite well. The BPL-FPCA model, while

able to capture the general trend, has additional “noise” that increases the MAE.
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In setting B, the cyclic B-spline models are able to capture the general trend, but

unable to follow some of the peaks and valleys in the true function. In contrast, the

BPL-FPCA model is better able to capture some of these high and low points (though

not perfectly).

Figure 5.1: Comparison of true functional coefficient to estimated functional coef-
ficient (averaged across simulated datasets). The true curves are shown as dashed
lines.

The simulation results do not give indication that there is a clear favorite in
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terms of which set of basis functions to use. Rather, it most likely depends on the

properties of the data at hand as well as the goals of the analysis. Our methodology

is not beholden to any given set of basis functions. It is straightforward to swap the

FPCA and cyclic B-spline bases for others and we encourage practitioners to explore

the effects of these decisions.

5.4.2 Empirical Simulation

The goal of this empirical simulation is twofold. First, we want to confirm that the

model is able to adjust for an informative sampling mechanism in order to allow

for population level inference. Second, we want to assess whether or not the use of

functional covariates, as given in the model, leads to improved estimates for units in

the population.

To design such a simulation, we begin by treating the existing NHANES sample

data as our population. This provides a baseline truth for which we can compare

to. Next, we subsample from the NHANES data in an informative manner. Do-

ing so, we are able to fit the model using the subsampled data and then compare

to the population truth (i.e. the original sample data). To take this subsample,

we use probability proportional to size sampling via the Poisson method (Brewer

et al., 1984) with an expected sample size of 500. We construct the size variable as

si = exp {w∗i + 2 ∗ I(Zi = 1)} where w∗i is the NHANES reported survey weight after

scaling to have mean zero and variance 1, and I(Zi = 1) is an indicator that the ith

respondent died within 5 years of the survey. Through this subsampling procedure,

we obtain a new set of weights that are the inverse probabilities of selection.

The response data of interest is the binary indicator of 5-year mortality. We
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use age along with an intercept term as a scalar covariate and the PAM data as a

functional covariate. After subsampling, we fit both the BPL-CBS and BPL-FPCA

models as well as the model used by Leroux et al. (2019). We also fit a basic version

of the Bayesian pseudo-likelihood model that uses only the scalar covariate and dis-

regards the functional data (BPL-S). In addition we implement unweighted versions

of the BPL-FPCA and BPL-S models (UW-FPCA and UW-S respectively).

After fitting each of these models, we are able to make mortality predictions for

the entire population. This results in a 5-year probability of mortality for each person

in the population that we can compare to their actual mortality result. Because these

outcomes are binary, we use binary cross-entropy (BCE) as a loss function to compare

rather than mean-squared error. This is calculated as,

BCE = − 1

N

N∑
i=1

Zilog(p̂i) + (1− Zi)log(1− p̂i),

where p̂i is the posterior mean probability of mortality for unit i = 1, . . . , N in the

population with size N. Note that a lower value of BCE indicates a better model fit.

We repeat this subsampling and model fitting procedure 50 times, resulting in a

distribution of BCE loss values under each model. We compare these distributions

in Figure 5.2. It is immediately clear that the two unweighted models perform much

worse than the weighted models. These unweighted models do not account for the

informative sample design and thus introduce a large amount of bias when making

inference on the population. The weighted models are able to account for the sample

design, and thus result in much lower values of BCE. Additionally, the distributions

of BCE under the BPL-CBS and BPL-FPCA models are shifted to the left of BPL-

S, indicating that the functional covariate does aid in prediction of mortality for
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members of the population. Interestingly, the Leroux model is only slightly better

than the BPL-S model, perhaps due to oversmoothing of the functional coefficient.

These results indicate that for population level inference based on the full sample data,

we should use a model that utilizes the functional covariates while also accounting

for the survey design through a Bayesian pseudo-likelihood.

Figure 5.2: Simulation based distribution of BCE values under each model. The lower
subplot focuses on the four weighted models which have substantially lower BCE.
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5.5 NHANES Data Analysis

5.5.1 5-Year Mortality Estimate

Using our Bayesian pseudo-likelihood based model for functional covariates with cyclic

B-splines (BPL-CBS), we now analyze the NHANES PAM data and its relationship

with mortality. We use the same dataset considered in the simulation study and

outlined in Section 5.3, with a sample size of 3,208. We treat the 5-year mortality

indicator as our binary response, and use age, gender, body mass index (BMI), race,

education level, as well as self reported presence of a mobility problem, diabetes,

coronary heart disease (CHD), congestive heart failure (CHF), cancer, and stroke as

our scalar covariates in addition to the PAM data as a functional covariate. Note

that these are the same covariates considered by Leroux et al. (2019).

We fit the model via Gibbs sampling with 5,000 iterations and discard the first

1,000 iterations as burn-in. Convergence was assessed via traceplots of the sample

chains, where no lack of convergence was detected.

After fitting the model, we are able to make population level inference. We plot

the posterior mean of the functional regression coefficient, η(t), along with a pointwise

95% credible interval in Figure 5.3. For the most part η(t) is estimated to be negative,

as expected, indicating that increased levels of activity are associated with lower

expected mortality rate. The primary time period where the credible interval does not

contain zero is around 12 p.m. The model used by Leroux et al. (2019) underestimates

the uncertainty, and correspondingly results in a much larger significant window than

the one obtained here.
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Figure 5.3: Estimate of the PAM functional regression coefficient for 5-year mortality
along with pointwise 95% credible interval.

In addition to examination of the functional regression coefficient, we can also

glean insight by examining how variation in activity level of individuals changes mor-

tality estimates. In Figure 5.4, we plot activity curves for 3 individuals contained in

the NHANES sample along with the accompanying posterior distribution of 5-year

mortality rate. Individual A has a very low level of activity, resulting in a high ex-
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pected mortality rate. However, there is also a great deal of uncertainty around this

rate. Individuals B and C both have increasing level of overall activity, especially

in the early morning and late afternoon, resulting in decreasing expected mortality

rate. As the activity level increases, the uncertainty around the mortality rate tends

to decrease.

Figure 5.4: Activity curves for 3 individuals contained in the NHANES sample along
with posterior distribution of 5-year mortality rate.
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5.5.2 Joint Mortality Estimate

In addition to univariate estimation of 5-year mortality, our model allows for joint

estimation at multiple time scales through the Multinomial data model. In this case

we wish to make joint mortality estimates for years 1-5. To do so, we begin by

assigning survey respondents into distinct categories: those who died within one year

of the survey, those who died after 1 year but before 2 years, those who died after 2

years but before 3 years, those who died after 3 years but before 4 years, those who

died after 4 years but before 5 years, and finally those that did not die before 5 years.

Assigning groups in this way results in a Multinomial or Categorical data distribution

with 6 categories. Thus, we are able to use the stick breaking representation of the

Multinomial distribution in order to fit C− 1 = 5 independent Binomial data models

that allow us to make joint estimates of mortality at various time points.

We use the same individuals from our 5-year mortality example to examine the

effects of activity level on multi-year mortality. Figure 5.5 plots the activity curves for

these individuals alongside their posterior mean mortality rates for year 1-5. We also

provide 95% credible intervals. Once again, we see that both expected mortality rate

and uncertainty increase as activity level generally decreases. Because these estimates

are joint, we can also see that decreased activity is associated with steeper marginal

increases in mortality for the near future than for years further away from the survey.
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Figure 5.5: Activity curves for 3 individuals along with accompanying posterior mean
mortality rate for years 1-5 and 95% credible intervals.

5.6 Discussion

In this work, we develop a Bayesian non-Gaussian data model for functional covari-

ates under informative sampling. We rely on a pseudo-likelihood approach to account
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for survey design which works in combination with Pólya-Gamma data augmentation

to allow for conjugate full conditional distributions of the regression parameters. This

method is designed for Binomial or Multinomial data models, though it is straight-

forward to replace this with a Gaussian data model. Our approach uses an basis

expansion representation of the functional covariates alongside the Horseshoe prior

to provide regularization. As with the data model, we use a data augmentation ap-

proach for the Horseshoe prior, meaning that all full-conditional distributions in the

model are conjugate. This allows for straightforward and efficient Gibbs sampling,

which can be highly important in high-dimensional settings such as the one explored

here.

We conduct both a synthetic data simulation, as well as an empirical simulation

study using NHANES data, that show that our approach is able to reduce the bias

attributable to informative sampling while also making use of the functional data to

improve estimates for members of the population. Importantly, our method is able to

give accurate uncertainty quantification as well as provide joint mortality estimates,

improving over existing methodology. We also provide a full analysis of the NHANES

data that allows us to make inference and prediction on the population. We conduct

both a univariate analysis concerning 5-year mortality rate as well as a multivariate

analysis concerning years 1-5 mortality rate.

Our methodology extends the literature on functional regression to the survey

data setting. The approach is flexible in that users have a choice of data model and

basis expansion and also allows for joint estimation of scalar regression coefficients.

Currently, there is a limited amount of functional data collected under complex sur-

veys, as analysis options are limited. It is our hope that with the availability of this
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methodology, collection of functional data via surveys will become more widespread.

Although not explored in this work, similar approaches may be undertaken for

function on scalar or function on function regression under complex survey designs.

Another potential avenue of future research would involve the use of nonlinear model-

ing techniques that utilize these same functional covariates. Finally, although we were

able to jointly estimate mortality at multiple time points, it would be interesting to

explore models that can estimate continuous survival curves based on the NHANES

activity data.
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Chapter 6

Conclusion

The availability of unit-level approaches to SAE lags that of area-level alternatives.

A primary reason for this is the computational constraints that accompany unit-level

modeling while considering informative sample designs. This dissertation aims to

lessen the gap.

First, a comprehensive review of available mechanisms to account for informative

sampling has been provided in Chapter 1. Accounting for sample design is a critical

step in the development of any unit-level model in order to reduce or eliminate po-

tential bias. This review gives particular emphasis to the problem of SAE, whereby

a subset of methods are compared in an empirical simulation study and application

to poverty estimation. These results demonstrate that different approaches to the

problem of informative sampling may each yield estimates with reduced MSE com-

pared to direct estimators. However, there are other trade-offs to consider such as

computation time, ease of including covariates, and quality of uncertainty estimates.

Chapter 2 has introduced a computationally efficient method to model count data
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at the unit level. A Bayesian pseudo-likelihood is used to adjust for informative

sample designs, and prior distributions are developed based on recent multivariate log-

Gamma distribution theory, in order to allow for efficient computation. In addition,

an importance sampling step is developed to mitigate issues that arise with zero

counts. This methodology is demonstrated through an empirical simulation study for

estimation of housing vacancies.

Binary and categorical data are perhaps the most common data types in unit-level

survey data. Thus, Chapter 3 has provided methodology for these types of responses,

again relying on the Bayesian pseudo-likelihood. An efficient Gibbs sampling scheme

is developed for moderately sized data sets, as well as a variational Bayes approxi-

mation for extremely large data sets. Along with an empirical simulation study, this

chapter illustrates the methodology to the important problem of county level esti-

mation of health insurance rates by IPR category for the entire contiguous United

States.

One strength of unit-level modeling is that it can tap into the rich domain of unit-

level covariates. Often, complex data structures, such as text and functional data, are

collected at the unit level. These data types may lead to higher quality population

estimates, or may be useful for inference. Chapter 4 provides an extension of the

methodology contained in Chapter 3, that can be useful when complex covariates

are used. The extension relies on a type of feedforward neural network known as

the extreme learning machine, which allows for nonlinearity and interaction effects.

Importantly, this modeling approach fits naturally into the Bayesian pseudo-likelihood

framework discussed previously. This methodology is illustrated via text data from

the American National Election Studies.
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Lastly, Chapter 5 provides methodology for functional covariate data under infor-

mative sampling. Using the Bayesian pseudo-likelihood, a basis function expansion

is linked with a Bayesian variable selection approach to reduce the dimensionality of

the problem and add regularization. The model is illustrated via a simulation and

application to mortality estimation using physical activity monitor data from the Na-

tional Health and Nutrition Examination Survey. Importantly, this work builds on

previous work by allowing for the joint estimation of mortality at multiple scales.

The methodology developed in this dissertation relies on the Bayesian pseudo-

likelihood to account for the informative sampling design. This is certainly not the

only means to doing so, but was chosen for computational reasons. Computation is

one of the limiting factors in unit-level modeling, and thus every effort was made

to ease this burden. However, there may be cases where a pseudo-likelihood is not

appropriate (e.g. a joint model for multiple survey data sets, where parameters are

shared between surveys). For this reason, unit-level modeling with other mechanisms

to account for sample design is still an important avenue of research.

There are also other avenues of research that may be valuable in expanding the

utility of unit-level modeling. This work has exploited spatial modeling (i.e. people

in nearby counties may exhibit similar responses), but temporal correlation was not

considered, as the relevant applications were generally representing the population

at a single point in time. Some survey designs will take repeated measurements on

respondents over time, and others may generate new samples at various time points.

In these cases, it may be possible to construct temporal or spatio-temporal SAE

models at the unit-level that could improve the precision of estimates.

One theme of this dissertation has been that of binary and categorical data. These
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data types are both frequently occurring in survey data, yet in some cases these data

are observed with some error (i.e. misclassified). Although measurement error over

continuous survey variables is an active area of research, there is little research devoted

to the binary or categorical setting. This is another area where further research could

expand the utility of unit-level modeling.

In summary, unit-level modeling of survey data under informative sampling is an

important area of research. These models are important to the development of small

area estimates, but may also be used for inference. This dissertation has provided

several computationally efficient methods for common types of survey data as well as

for some non-standard data types. These methods and their potential extensions can

help to bridge the gap between the advantages of unit-level modeling in theory and

their implementation in practice.
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Appendix A

Full Conditional Distributions

A.1 Full Conditional Distributions for Chapter 2

A.1.1 Random Effects
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A.1.3 Variance Parameters
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A.2 Full Conditional Distributions for Chapter 3

Let Ω = diag(ω1, . . . , ωn), and κ = (w̃1 ∗ (y1 − n1/2), . . . , w̃n ∗ (yn − nn/2))′. Note

that κ/ω represents element-wise division.
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A.3 Full Conditional Distributions for Chapter 5

Let Ω = diag(ω1, . . . , ωn), Λ = diag(λ21, . . . , λ
2
K), and

κ = (w̃1 ∗ (y1 − n1/2), . . . , w̃n ∗ (yn − nn/2))′. Note that κ/ω represents element-wise
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Appendix B

Poststratification

B.1 Poststratification with a Variational Distribu-

tion for Chapter 3

To construct our estimates, we require response predictions for every unit in the

population. We will assume for the sake of exposition that the responses are binary,

but these same techniques can be applied to categorical responses as well.

Because our model utilizes only categorical rather than continuous covariates,

computation can be simplified through the use of poststratification cells. Specifically,

let j = 1, . . . , J index the J unique poststratification cells (e.g. the unique combi-

nations of categorical covariates and county indicators). Each cell is also associated

with a population size, Nj. Within each cell, population units are exchangeable, and

predicted responses can be generated from the same distribution. To estimate pj, the

probability of a successful outcome in cell j, we require estimates of β and η as well
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as the vector of cell covariates, xj and the vector of spatial basis functions for the

cell, φj.

To begin, we work with our variational distribution for ζ = (β′,η′). We can

sample from this distribution by sampling from a N(µ̃, Σ̃) distribution, where µ̃ and

Σ̃ are estimated from the variational Bayes procedure outlined in Algorithm 1. We

take R total posterior samples, yielding β(r) and η(r) for r = 1, . . . , R. Then, for each

posterior sample r and each cell j, we generate the population (i.e. the number of

positive responses) within the cell,s
(r)
j , by sampling from Bin(Nj, p

(r)
j ), where p

(r)
j =

logit−1(x′jβ
(r) +φ′jη

(r)). Having effectively generated a synthetic population, we can

aggregate the units within a given domain to generate a population estimate. For

example, for a given iteration r, we can create an estimate of the population proportion

in county c as

p(r)c =

∑
j∈c s

(r)
j∑

j∈cNj

.

Then, for our point estimate of the population proportion in county c, we use the

posterior mean,

p̂c =
1

R

R∑
r=1

p(r)c .
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models using Pólya–Gamma latent variables.” Journal of the American Statistical

Association, 108, 504, 1339–1349.

Porter, A. T., Holan, S. H., Wikle, C. K., and Cressie, N. (2014). “Spatial Fay–Herriot

models for small area estimation with functional covariates.” Spatial Statistics , 10,

27–42.

Porter, A. T., Wikle, C. K., and Holan, S. H. (2015). “Small area estimation via

multivariate Fay–Herriot models with latent spatial dependence.” Australian &

New Zealand Journal of Statistics , 57, 1, 15–29.

Potthoff, R. F., Woodbury, M. A., and Manton, K. G. (1992). ““Equivalent sample

size” and “equivalent degrees of freedom” refinements for inference using survey

weights under superpopulation models.” Journal of the American Statistical Asso-

ciation, 87, 418, 383–396.

Prasad, N. and Rao, J. (1990). “The estimation of mean squared error of small-area

estimators.” Journal of the American Statistical Association, 85, 163 – 171.

Prokhorov, D. (2005). “Echo state networks: appeal and challenges.” In Proceedings.

2005 IEEE International Joint Conference on Neural Networks, 2005., vol. 3, 1463–

1466. IEEE.

Rabe-Hesketh, S. and Skrondal, A. (2006). “Multilevel modelling of complex survey

data.” Journal of the Royal Statistical Society: Series A (Statistics in Society),

169, 4, 805–827.

Ramsay, J. and Silverman, B. W. (2005). Functional data analysis . Springer.

166



Rao, J., Verret, F., and Hidiroglou, M. A. (2013). “A weighted composite likelihood

approach to inference for two-level models from survey data.” Survey Methodology ,

39, 2, 263–282.

Rao, J. and Wu, C. (2010). “Bayesian pseudo-empirical-likelihood intervals for com-

plex surveys.” Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 72, 4, 533–544.

Rao, J. N. K. and Molina, I. (2015). Small Area Estimation. Hoboken, New Jersey:

Wiley.

Ribatet, M., Cooley, D., and Davison, A. C. (2012). “Bayesian inference from com-

posite likelihoods, with an application to spatial extremes.” Statistica Sinica, 22,

813–845.

Savitsky, T. D. and Toth, D. (2016). “Bayesian estimation under informative sam-

pling.” Electronic Journal of Statistics , 10, 1, 1677–1708.

Schuna, J. M., Johnson, W. D., and Tudor-Locke, C. (2013). “Adult self-reported and

objectively monitored physical activity and sedentary behavior: NHANES 2005–

2006.” International Journal of Behavioral Nutrition and Physical Activity , 10, 1,

126.

Si, Y., Pillai, N. S., Gelman, A., et al. (2015). “Bayesian nonparametric weighted

sampling inference.” Bayesian Analysis , 10, 3, 605–625.

Skinner, C. J. (1989). “Domain means, regression and multivariate analysis.” In

Analysis of Complex Surveys , eds. C. J. Skinner, D. Holt, and T. M. F. Smith,

chap. 2, 80 – 84. Chichester: Wiley.

167



Soria-Olivas, E., Gomez-Sanchis, J., Martin, J. D., Vila-Frances, J., Martinez, M.,

Magdalena, J. R., and Serrano, A. J. (2011). “BELM: Bayesian extreme learning

machine.” IEEE Transactions on Neural Networks , 22, 3, 505–509.

Stan Development Team (2021). “Stan modeling language users guide and reference

manual, version 2.26.” https://mc-stan.org.
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