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A Bayesian Approach to Estimating the Long
Memory Parameter

Scott Holan∗, Tucker McElroy† and Sounak Chakraborty‡

Abstract. We develop a Bayesian procedure for analyzing stationary long-range
dependent processes. Specifically, we consider the fractional exponential model
(FEXP) to estimate the memory parameter of a stationary long-memory Gaus-
sian time series. In particular, we propose a hierarchical Bayesian model and make
it fully adaptive by imposing a prior distribution on the model order. Further,
we describe a reversible jump Markov chain Monte Carlo algorithm for variable
dimension estimation and show that, in our context, the algorithm provides a rea-
sonable method of model selection (within each repetition of the chain). Therefore,
through an application of Bayesian model averaging, we incorporate all possible
models from the FEXP class (up to a given finite order). As a result we reduce the
underestimation of uncertainty at the model-selection stage as well as achieve bet-
ter estimates of the long memory parameter. Additionally, we establish Bayesian
consistency of the memory parameter under mild conditions on the data process.
Finally, through simulation and the analysis of two data sets, we demonstrate the
effectiveness of our approach.

Keywords: Bayesian model averaging; FEXP; hierarchical Bayes; long-range de-
pendence; reversible jump Markov chain Monte Carlo; Spectral density

1 Introduction

Motivated by applications in econometrics, hydrology and other scientific disciplines,
fractionally differenced models have been the subject of extensive research over the past
two decades. The differencing parameter characterizes the long-memory behavior of a
time series and thus has far-reaching utility in areas such as telecommunications, eco-
nomics, finance, and geophysics among others. Therefore, it is of considerable interest
to provide estimators of the memory parameter that have good asymptotic properties,
while remaining practical for use in finite samples.

The long memory process that we consider is Gaussian and has spectral density

f(λ) = |1− e−iλ|−2df∗(λ), λ ∈ (−π, π). (1)

Further, we say that the stationary time series {xt} is long range dependent or long
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memory if there exists a d ∈ (0, .5) such that

lim
λ→0+

f(λ)
λ−2d

= k

for some constant k > 0. Likewise for d = 0 we say that the process is short range
dependent or short memory. We assume that the function f∗(λ) is even, continuous,
and bounded away from zero on [−π, π]. Thus d and f∗ respectively govern the long-
term and short-term behavior of the process.

Although several methods have been proposed for estimating d, two main methods
have emerged. The first method is the so-called parametric approach. One example of
the parametric approach was introduced by Fox and Taqqu (1986) where the authors
provide a fully parametric maximum likelihood procedure for the case where {xt} is
strictly Gaussian. Subsequently this method was developed in greater detail by Giraitis
and Taqqu (1999). Geweke and Porter-Hudak (1983) suggested a regression approach
to the estimation of the long memory parameter using the spectral domain, while Be-
ran (1993) introduced a procedure based on generalized linear regression. The second
method commonly used employs semiparametric estimators and has been the subject
of extensive research. Some examples are Robinson (1995a,b) and Giraitis and Surgailis
(1990), where both authors justified the use of semiparametric inferential procedures.
For a comprehensive discussion on long memory time series and fractionally differenced
models see Beran (1994), Robinson (2003), Palma (2007) and the references therein.

Although some research on long memory has taken a Bayesian viewpoint, the litera-
ture is still very heavily frequentist (see Robinson (2003) for a discussion). The majority
of the Bayesian literature consists of parametric characterizations of long-range depen-
dence based on a class of models. Perhaps the most popular approach is to consider the
class of all finite order stationary and invertible ARFIMA (Auto-Regressive Fractionally
Integrated Moving Average) processes (Hosking 1981). Some examples are the models
proposed by Ravishanker and Ray (1997), Pai and Ravishanker (1998), and recently Ko
and Vannucci (2006a).

The first nonparametric Bayesian analysis of long memory data was considered by
Petris (1997). This work is posed under the assumption that, for λ ∈ [0, π],

f(λ) ∝ λ−2d exp{g(λ)}, (2)

where g(λ) is meant to capture the short-range dependence in {xt}. Further, at the
Fourier frequencies, λj , the prior probability measure on g(·) is defined by a centered
autoregressive process of order p with parameters having a Beta prior distribution. As
noted in Liseo et al. (2001), in order for the two components λ−2d and g(λ) in (2) to be
identifiable, appropriate conditions on g(λ) need to be imposed.

In this paper we consider an explicitly defined semiparametric estimator of d based
on fitting potentially misspecified parametric models. Specifically, the models we fit are
from the FEXP class described by Beran (1993, 1994). The FEXP estimator was origi-
nally proposed by Janacek (1982) and later discussed by Robinson (1994). The spectral
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density of the FEXP model has the form of (1) with f∗(λ) given by the exponential
model of Bloomfield (1973), i.e.,

log f∗(λ) =
m∑

k=0

bk cos(kλ), (3)

where b0, . . . , bm are real constants and m is a positive integer.

In particular, we propose a hierarchical Bayesian method to estimate the long mem-
ory parameter d, by putting near diffuse priors on the model parameters b0, . . . , bm and a
restricted flat prior on d. Moreover, the model order parameter m is selected adaptively
and thus provides increased flexibility and more precise estimation of d, by helping to
effectively discriminate between short range and long range components. The approach
we suggest is similar to the Bayesian semiparametric approach of Liseo et al. (2001) to
the extent that they consider a spectral method with the short-range dependent por-
tion of the model related (but not equal) to the class of fractional exponential processes
introduced by Beran (1993) and to the work of Bloomfield (1973) in the short memory
case. However, the method we propose differs from Liseo et al. (2001) in several ways.
One distinction between the two methods is that our method is broad-band in that the
spectral model we impose for the short-range dependent process is modeled on the fre-
quency band [0, π]; in contrast, the work of Liseo et al. (2001) considers a narrow-band
estimator of the short memory process by restricting this process to the frequency band
[λ∗, π]. This representation induces a model selection problem on the choice of λ∗. The
authors suggest treating λ∗ as a hyperparameter whose value is ultimately determined
by the data. The selection procedure is facilitated via comparison of prior predictive
distributions of the observed data set. Further, the method they propose uses a peri-
odogram based Whittle likelihood approximation to the true likelihood (Palma 2007,
chap. 4), whereas we consider the exact Gaussian likelihood. Using the exact Gaussian
likelihood provides a significant distinction between our models and other models in the
FEXP class, as the Toeplitz autocovariance matrix is difficult to deal with computa-
tionally. Toward this direction, we provide explicit details of algorithms that facilitate
its use. Further, our approach explicitly accounts for the mean by including it as a
parameter to be estimated in the model. This increases the utility of our method by
providing a time domain representation of the FEXP model that avoids having to ac-
count for the true mean by way of the sample mean (Hurvich 2002). This is particularly
important when using the FEXP model for the purposes of forecasting (Hurvich 2002),
as the sample mean is slow to converge to the true mean when d ∈ (0, .5). Specifically,
if x denotes the sample mean then, for d ∈ (0, .5), var(x) ∼ Cn2d−1 (C > 0) as n →∞
(Cheung and Diebold 1994; Chen et al. 2006) and thus potentially degrades model esti-
mates. Additionally, by avoiding the use of a periodogram based approximation to the
likelihood (i.e., the Whittle likelihood) and by using the exact Gaussian likelihood in a
Bayesian framework instead, our method can accommodate missing data with relatively
little extra computational burden.

Another striking advantage of our method comes in the way of model selection
(i.e., the order m in (3)); the approach we propose avoids explicit order selection by
making the order random through a prior distribution and then estimating it through
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the model. This variable dimension approach (Sisson 2005) provides added flexibility
and reduces uncertainty at the model-selection stage by integrating over all possible
models from the FEXP class (up to a given finite order). This procedure can be seen
as a type of Bayesian model averaging (Hoeting et al. 1999). In this case our estimate
of d results in a weighted average of the estimates of d from our adaptive model, with
the weights proportional to the probability of occurrence of the different selected model
orders. Thus, we consider m a nuisance parameter. Finally, using the exact Gaussian
likelihood and allowing the dimension of the parameter space to change, as well as
explicitly accounting for the mean, requires a non-trivial extension to the proof of the
asymptotic properties.

The use of variable dimension (reversible jump Markov chain Monte Carlo - RJM-
CMC) methods in long memory models can be found in Breidt and Hsu (2002). In
particular, Breidt and Hsu (2002) consider an autoregressive regime-switching model
for the dynamic mean structure of a univariate time series. The model they propose
allows for the possibility of approximate long memory behavior and uses a RJMCMC
method for Bayesian inference on unknown model parameters. Specifically, in the set-
ting they consider, the use of RJMCMC is to allow the location and number of level
shifts to be of variable dimension.

Another example of RJMCMC in long memory is provided by Ko and Vannucci
(2006b) where the authors develop a wavelet-based procedure for the detection of mul-
tiple changes of the long memory parameter. The method they propose uses RJMCMC
to detect the location and number of change points in an ARFIMA (p, dt, q) model.
Specifically, in the approach they propose, p and q are of fixed whereas the number of
change points is of variable dimension.

In contrast the model we develop1 is a Bayesian frequency domain long memory
model where the model parameters governing the short memory dynamics (i.e., the
coefficients of the EXP(m) portion of the model) are of variable dimension and estimated
through RJMCMC. As such our FEXP modeling approach provides a type of automatic
model order selection along with accurate Bayesian model averaged estimates of the long
memory parameter. In addition we argue that our model order selection can be roughly
approximated by the BIC (Kass and Raferty 1995) and provide asymptotic properties
for the long memory parameter d.

A related approach to Holan et al. (2007) was proposed by Rousseau and Liseo
(2007). This work presents theoretical properties for Bayesian nonparametric estimation
of the spectral density of a long memory Gaussian time series. In particular the authors
prove, under specific assumptions on the prior distribution, posterior consistency on f(·)
and d under the exact Gaussian likelihood. Additionally, the authors describe the rate
of convergence of the posterior sequence, which depends on the structure of the prior
in a significant way, and consider what they call the fractionally exponential (FEXP)
family of priors.

This paper is organized as follows. In Section 2 we describe the modeling framework,

1An earlier version of this research appears as Holan et al. (2007).
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including choice of priors and discussion of implementation of the likelihood calcula-
tions. Section 3 provides the details of the Markov Chain Monte Carlo (MCMC) and
Reversible Jump Markov Chain Monte Carlo procedures used for estimation. Specifi-
cally we present algorithms for both the fixed dimension and variable dimension cases.
Section 4 develops the asymptotic properties of the a posteriori estimates of the long
memory parameter. In Section 5, our methodology is investigated through simulation as
well as applied to two real data sets, the Nile River Minima data (Beran 1994) and the
Central England Temperature data (Manley 1974; Pai and Ravishanker 1998). Finally,
Section 6 contains discussion. For convenience of exposition all proofs are left to the
appendix.

2 Hierarchical Bayesian FEXP Model

2.1 Bayesian FEXP

Suppose that, after accounting for the mean, the time series of interest follows the model

f(λ) = |1− e−iλ|−2d
exp

{
m∑

k=0

bk cos(kλ)

}
(4)

for λ ∈ [−π, π]. Here f is the spectral density of the stationary process, d is the long
memory parameter, and the coefficients bl parameterize the short memory aspects of
the process. Stationarity is maintained by considering d < 1/2; since we focus on long
memory, we also assume that d ≥ 0. Note that when d = 0, f reduces to the spectral
density of an EXP(m) process, which has short memory (Bloomfield, 1973). We start by
defining the parameter space Θm = [0, .5)×Rm+1, which explicitly depends on the order
m. We use the notation θm = (d, b0, b1, · · · , bm) for a typical element of Θm. Henceforth
we use the notation fθm to denote the spectral density given in (4) whenever we wish
to make the dependence on model parameters explicit. Conditional on m being known,
it is simple to write down the Gaussian likelihood for a sample x(n) = {x1, x2, · · · , xn}
of size n:

p(x(n)|θm, µ) = (2π)−n/2 |Σ(fθm)|−1/2 exp
{
−1

2

(
x(n) − µ1

)′
Σ−1(fθm)

(
x(n) − µ1

)}
,

(5)
where 1 denotes a vector of ones. We use the following notation for covariance matrices:
the Toeplitz covariance matrix of dimension n of a stationary process with spectral
density f is written Σ(f). Its jkth entry is the autocovariance function at lag j − k
given by

Σjk(f) =
1
2π

∫ π

−π

f(λ) eiλ(j−k) dλ.

Perhaps one of the most salient features of our approach arises in the choice of
the model order m. In a frequentist setting it is most common to choose the order of
a FEXP model through order selection criteria (see Hurvich 2001). Similarly, in the
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Bayesian context one could maintain the model selection approach and choose m using
Bayes factor (Gelman et al. 2004). However, our approach is more flexible as it takes full
advantage of the Bayesian paradigm by putting a prior on m and selecting the number
of terms to be included in the model adaptively. Since the main goal of our analysis
is estimation of d, we incorporate the choice of m into the modeling framework. This
added layer of flexibility in terms of m enhances the accuracy of the estimate of d by
reducing the underestimation of uncertainty at the model-selection stage.

2.2 Likelihood Calculations

Implementation of the Bayesian approach under the exact Gaussian likelihood poses
several challenges. First one must form the Toeplitz autocovariance matrix Σ(fθm

) in
(5). This requires calculation of the autocovariances of lag L, {cL}n−1

L=0, given only
knowledge of fθm

. Further, once the autocovariance matrix is constructed there is still
a need to calculate both |Σ(fθm)| and (x(n) − µ1)′Σ−1(fθm

)(x(n) − µ1) (conditional on
µ). These quantities present computational difficulties because here the autocovariances
decline slowly (at a power law rate) and Σ(fθm) is quite ill-conditioned (Chen et al.,
2006).

Calculation of the autocovariances proceeds via a spectral factorization method on
the short memory portion of (1) (Pourahmadi 1983; Hurvich 2002). Specifically, given
b0, . . . , bm one can write down an equivalent MA(∞) representation (under mild condi-
tions) using the formula

βj =
1
2j

j∑

k=1

kbkβj−k,

with β0 ≡ 1 and βj (j = 1, 2, 3, . . .) equal to the MA(∞) coefficients. Furthermore,
the innovation variance, σ2

ε can be expressed as σ2
ε = 2π exp(b0). Next, let c̃h denote

the theoretical autocovariance associated with a specific short memory EXP(m) model.
Here,

c̃h = σ2
ε

∞∑

j=h

βjβj−h (h ≥ 0).

Since βj decay exponentially fast, a good approximation to c̃h can be obtained using
the truncated version c̃h,N for N sufficiently large. Note that c̃h,N may be efficiently
calculated by taking advantage of the FFT (Fast Fourier Transform); see Hurvich (2002)
for a comprehensive discussion.

Similarly, let {c∗s} denote the autocovariances of an ARFIMA(0, d, 0) process with
unit innovation variance. Again, since c̃h decay exponentially fast, cL can be approx-
imated accurately (cL,Approx.) using {c∗s} and c̃h,N in a “splitting method” (Hurvich
2002; Bertelli and Caporin 2002). Additionally, as suggested by Hurvich (2002) the
sequence {cL,Approx.}n−1

L=0 can be used to simulate a zero-mean Gaussian realization
x1, . . . , xn from the FEXP process {xt} using the Davies-Harte algorithm (Davies and
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Harte 1987). The algorithm is exact, in the sense that the autocovariances of the sim-
ulated time series exactly match those used as inputs to the algorithm. This algorithm
will be used in Section 5 where our methodology is investigated through simulated data.
Finally, the Toeplitz matrix Σ(fθm

) can be constructed using {cL,Approx.}n−1
L=0.

Ultimately the likelihood will be embedded in an MCMC procedure, Gibbs sampling
with Metropolis-Hasting steps (Robert and Casella, 2004). For this purpose it is more
convenient to work with the log likelihood rather than the likelihood itself. Thus the
quantities needed to calculate log p(x(n)|θm, µ) are the quadratic form y(n)′Σ−1(fθm)y(n)

and log |Σ(fθm
)|, where y(n) = (x(n)−µ1). Conditional on µ, the first of these quantities,

the quadratic form, can be accurately calculated to any desired degree of precision
using conjugate gradient (CG) or preconditioned conjugate gradient algorithms (PCG)
(Chen et al. 2006). Similarly log |Σ(fθm

)| can be accurately approximated (numerically)
in O(1) operations (Bötcher and Silberman 1999; Chen et al. 2006). Therefore we
can calculate the exact log likelihood with a high degree of precision. For a detailed
discussion see Chen et al. (2006).

2.3 Hierarchical Priors and Posteriors

We now fix ideas by setting out some specific hierarchical priors. Let b = (b0, b1, b2, · · · )
and σ2 = (σ2

0 , σ2
1 , σ2

2 , · · · ) be infinite sequences. Then we assign hierarchical priors on
the unknown parameters as follows:

bk|m, σ2
k ∼

{
N (0, σ2

k); if k ≤ m,

∆0; if k > m,

d ∼ Uniform(0, 1/2),

σ2
k|m ∼

{
IG(α, β); if k ≤ m,

∆0; if k > m,

m ∼ Discrete Uniform{1,M},
µ ∼ N (µ0, σ

2
µ).

Alternatively, if one has prior information on the order of the model, this information
can be incorporated easily into this framework by choosing a Truncated Poisson{η, M}
prior for m, where η is the rate parameter and M represents the maximum possible
order of the model. In this context typically the rate parameter is user defined based
on prior knowledge, see Denison et al. (1998) for a related discussion. Additionally, the
support for the prior on d is chosen in order to maintain stationarity. Here, we denote
the point mass at zero via ∆0, the issue being that bk and σ2

k for k exceeding a given
m must be defined to be identically zero. As usual IG denotes the Inverse Gamma
distribution, so that σ2

k has pdf

p(σ2
k) ∝ exp

(
− β

σ2
k

)
(σ2

k)−(α+1).
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Note that the choices of α, β, M , µ0, σ2
µ and η (if appropriate) are determined by the

practitioner. The selection of priors is usually problem-specific. Ideally, one would like
to elicit these priors from past history. However, for most practical applications, such
information is unavailable. In such cases it seems reasonable, at least from robustness
considerations, to use near-diffuse priors for the hyperparameters of the hierarchical
model. Although this would provide a reasonable approach under a fairly broad range
of settings we find that FEXP model coefficients tend to be “relatively” small. For
this reason one appropriate strategy is to define the notion of near-diffuse based on the
context of the problem. Further this choice of priors can be justified by the heuristic
argument that typically in long memory settings one requires long time series in order
to be able to adequately estimate quantities of interest. Therefore under most prior
specifications there is enough data to overcome the effect due to the prior. As we will find
in the next section, we have taken “non-informative” proper priors for bk, d, σ2

k, µ and m,
in the sense that on the scale of typical FEXP coefficients the prior provides relatively
little information. Moreover, having chosen proper priors, we maintain propriety of the
posterior and ensure the objectivity of our approach. Note that in Section 4 we present
asymptotic results under relaxed specification of the hierarchical priors.

In general, hierarchical Bayesian models generate a richer class of models that auto-
matically produce shrinkage estimators of parameters. These shrinkage estimators, by
borrowing strength, usually perform better than the regular estimators. Additionally,
taking m random we have increased the precision of our estimates as well as added
flexibility to our model by allowing the model to adaptively choose its own order given
the data. This will be revealed in Section 5, when we illustrate our methodology using
both simulated data and actual data analyses. Below, we consider the joint posterior
distribution of the parameters. Noting that in the prior distributions b, σ2 and µ do
not depend on d, and the prior distribution of d does not depend on m, we have

p(µ, b, σ2, d, m|x(n)) ∝ p(x(n)|b, σ2, d, m, µ)p(b|σ2,m)p(σ2|m)p(d)p(m)p(µ)

∝ (2π)−n/2 |Σ(fθm)|−1/2 exp
{
−1

2
y(n)′Σ−1(fθm)y(n)

}

×
m∏

k=0

(σ2
k)−1/2 exp

{
− b2

k

2σ2
k

}
×

m∏

k=0

exp
{
− β

σ2
k

}
(σ2

k)−(α+1)

× 1[0,1/2)(d)× 1
M

× (2πσ2
µ)−1/2 exp

{
−1

2
(µ− µ0)2

σ2
µ

}
, (6)

where y(n) = (x(n) − µ1). Our primary objective is to find the marginal posterior
distribution of d given x(n), and use the posterior mean to obtain an estimate for d.
The exact posterior distribution p(d|x(n)) is given in (15) of Section 4, and the posterior
mean is

d̂ =
∫

ddP (d|x(n)), (7)

where dP (z| · · · ) = p(z| · · · )dz denotes a shorthand notation and z is some vector of
parameters. Asymptotic properties of this estimate are considered in Section 4. In
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practice, the marginal posterior p(d|x(n)) is intractable, as its evaluation requires high
dimensional numerical integration. Thus we adopt the popular alternative approach of
MCMC, which requires generating samples from the full conditionals of the different
parameters given the remaining parameters and the data. Some further details in this
direction are provided in Section 3 below.

3 Estimation

3.1 Full Conditionals and Fixed Dimensional MCMC

Since some of the full conditionals are not of standard form we have used a Metropolis
within Gibbs algorithm (Robert and Casella 2004). Below we list these full conditionals.
Although our general proposed model makes adaptive selection of m (the model order),
in this section we take m to be fixed and describe our implementation procedure. Sub-
sequently in Section 3.2 we describe a RJMCMC approach (Green 1995) for the case in
which m is random.

First, since the prior distribution of σ2 does not depend on d or µ, and the prior
distributions of d and µ do not depend on m, it is easy to see that the full conditional
of σ2

k is conjugate. As a result, it is straight forward to show that the full conditional
of σ2

k is IG and is given by

p(σ2
k|d,m, b0, b1, . . . , bk, . . . , bm) ∼ IG

{
(α + 1/2), (b2

k/2 + β)
}

. (8)

Although the full conditional of b = (b0, . . . , bm) is not conjugate under this model it is
equally straight forward to derive and is given by

p(b|m,σ2, d, µ, x(n)) ∝ (2π)−n/2 |Σ(fθm)|−1/2 exp
{
−1

2
y(n)′Σ−1(fθm)y(n)

}

×
m∏

k=0

(σ2
k)−1/2 exp

{
− b2

k

2σ2
k

}
. (9)

Furthermore, the full conditional of d can be expressed as

p(d|σ2,m, b, µ, x(n)) ∝ (2π)−n/2 |Σ(fθm)|−1/2 exp
{
−1

2
y(n)′Σ−1(fθm)y(n)

}

× 1[0,1/2)(d). (10)

Finally the full conditional of µ is given by

p(µ|b, σ2, d, m, x(n)) ∼ N (µ∗, σ∗2µ ), (11)

where µ∗ = c2/c1, and σ∗2µ = 1/c1 with

c1 =
{
1′Σ−1(fθm)1 + σ−2

µ

}
and c2 =

{
x(n)′Σ−1(fθm)1 + µ0σ

−2
µ

}
.
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In the case of fixed model dimension implementation, MCMC is relatively straightfor-
ward given the calculated likelihood. The general algorithm we use is a Gibbs sampler
(Gelfand and Smith, 1990), although several Metropolis-Hastings (M-H) steps will be
required. The pdfs given in (8) and (11) are standard and so can be sampled from
directly (given c1 and c2). Unfortunately, generating samples from (9) and (10) is more
complicated and requires M-H updates. The algorithm proceeds as follows:

Step 1: Set initial values for all parameter values.

Step 2: Generate samples from (8).

Step 3: Using a Random-Walk, M-H sample the bk’s one at a time from (9) holding
all bj fixed for j 6= k.

Step 4: Using an Independent M-H step sample from (10).

Step 5: Generate samples from (11).

Step 6: Repeat.

For the implementation of the M-H algorithm, one needs a candidate generating density.
Chib and Greenberg (1995) have several proposals in this regard. For specificity, let bk

denote the current state for the parameter bk; we then draw a candidate value b∗k using
a N (bk, δ2

k) proposal distribution, where the δk are user defined tuning parameters. The
algorithm accepts b∗k as a new value of bk with acceptance probability

αbk
= min

{
1,

p(b∗k|m,σ2, d, µ, x(n))
p(bk|m,σ2, d, µ, x(n))

}
,

where p(bk|m,σ2, d, µ, x(n)) is given in (9). Similarly for d∗ draw a candidate value from
a U(0, 1/2) proposal distribution and accept d∗ as a new value of d with acceptance
probability

αd = min
{

1,
p(d∗|σ2,m, b, µ, x(n))
p(d|σ2,m, b, µ, x(n))

}
,

where p(d|σ2,m, b, µ, x(n)) is given in (10).

The algorithm proposed here is not unique. In fact, one alternative would be to
sample the bk’s jointly using a multivariate proposal distribution. Often, in cases where
the parameters are correlated blocking will improve convergence. However, on occa-
sion blocking parameters in a single group becomes more detrimental than beneficial.
Specifically, as the number of component bk’s increases it becomes more likely to have
components fall in the tails of the full conditional distribution. This in turn will produce
a small value for the test ratio and hence very few proposed values will be accepted, thus
slowing convergence (Gamerman and Lopes 2006, chap. 6). Balancing these different
factors, we sample the bk’s one at a time. Further, specific choices of proposal distribu-
tions for bk and d can be modified. It should be noted that the choices presented here
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are a matter of preference as their implementation is straight forward while yielding
good acceptance probabilities.

In the case where the model dimension is fixed a priori it is natural to estimate
models using several different orders (values of m). Then, with these models in hand,
one can choose a final model through the use of Bayes factor or DIC; see Gelman et al.
(2004) for further discussion. Since we propose variable dimension modeling of d, where
the order m is taken as a model parameter, we do not pursue discussion of order selection
further in this section.

3.2 Adaptive Model Selection Procedure and RJMCMC

The variable dimension case is substantially more difficult to handle as we are potentially
changing dimensions on each MCMC iteration. In this case, m is a random parameter
to be adaptively estimated from the data. To facilitate model estimation we require the
full conditional distribution of m. Thus, for m = 1, . . . , M , the full conditional of m
can be written as

p(m|b, σ2, d, µ, x(n)) ∝ (2π)−n/2 |Σ(fθm)|−1/2 exp
{
−1

2
y(n)′Σ−1(fθm)y(n)

}

×
m∏

k=0

(σ2
k)−1/2 exp

{
− b2

k

2σ2
k

}
×

m∏

k=0

exp
{
− β

σ2
k

}
(σ2

k)−(α+1)

× 1
M

, (12)

where y(n) = (x(n) − µ1). Now, for notational convenience, let Ψ denote the collection
of parameters in our model (i.e., Ψ = Ψm = (d, b0, . . . , bm, σ2

0 , . . . , σ2
m, µ)). To sample

from p(Ψ|x(n)) we need to use the reversible jump algorithm (Green 1995). Here we
outline the steps we employ to traverse the posterior probability surface; see Denison
et al. (1998), Denison et al. (2002) and references therein for a general discussion. Under
the reversible jump setup, we allow three types of moves: BIRTH (B), DEATH (D),
and MOVE (S) where these moves are defined by

B: propose with probability pb
m to increase model dimension by 1,

D: propose with probability pd
m to decrease model dimension by 1,

S: propose with probability ps
m to move in the same model dimension.

Note that in the models we consider we require at least one term always in the model
(in addition to b0, i.e., b0 and b1). Therefore, the probabilities are given as follows:

pb
m = pd

m = ps
m = 1/3; for m = 2, . . . ,M − 1,

pb
1 = ps

1 = pd
M = ps

M = 1/2,

pb
M = pd

1 = 0.
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Note that pb
m + pd

m + ps
m = 1, for all m. Finally, let Ψ′ denote a candidate parameter

vector and Ψ(t) the value of the parameter vector at the tth iteration. The algorithm
proceeds as follows:

Step 1: Set starting values.

Step 2: Generate u1 ∼ U(0, 1)

• if u1 < pb
m then goto B move and obtain Ψ′

• otherwise if pb
m ≤ u1 ≤ pb

m + pd
m goto D move and obtain Ψ′

• otherwise goto S move and obtain Ψ′.

Step 3: Suppose we goto B move

(i.) generate bm+1 ∼ N (0, τ)
(ii.) generate entire (m + 1 dimensional) σ2 vector
(iii.) complete a MCMC iteration as in fixed dimensional case and obtain Ψ′.

Step 3′: In D move delete bm, σ2
m and obtain Ψ′ via a MCMC iteration. In the S move

no addition or deletion is needed, we simply perform a standard MCMC to obtain
new Ψ′.

Step 4: Generate u2 ∼ U(0, 1)

• if u2 < min{1, BF (Ψ′, Ψ(t))×R} then Ψ(t+1) = Ψ′

• else Ψ(t+1) = Ψ(t).

Step 5: Repeat.

The value τ in the above algorithm is a user defined tuning parameter chosen, for each
data set, in order to obtain an approximate acceptance rate of 20-30% in our B move.
In the simulations and applications pursued here (Section 5) we found the value τ = 1
provided satisfactory acceptance rates (20-30%). Here,

R =





pd
m+1/pb

m; if B move,
pb

m−1/pd
m; if D move,

1; if S move,

(13)

and

BF (Ψ′, Ψ(t)) =

∫
R2m′+4 dP (Ψ′|x(n))∫
R2m+4 dP (Ψ(t)|x(n))

, (14)

where R and BF denote the proposal ratio and Bayes factor respectively. An analytic
form for BF and a related discussion regarding its appropriateness as an order selector
in our setting can be found in Appendix B. Note that in the case where a Truncated
Poisson{η, M} prior is imposed on m, R requires slight modification.
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Remark 1. In Appendix B we argue that in our context, for large samples, the BIC
provides an approximation to the logarithm of the Bayes factor. Thus, heuristically, the
heavy penalty term associated with the BIC enables us to choose a parsimonious model.
However, it is important to note that although we show, in our context, BIC can serve
as a large-sample approximation to the logarithm of Bayes factor, our model selection
is performed at each iteration of the RJMCMC using the Bayes factor (calculated using
the marginal likelihood from the Metropolis-Hastings output, see Chib and Jeliazkov
(2001)) not the BIC approximation. Using the BIC approximation would discard prior
information, including the prior on the model dimension and thus would be difficult to
justify in a fully Bayesian procedure.

Remark 2. Although our algorithm does not appear to be explicitly sampling from
the full conditional of m, it is straight-forward to show that p(Ψ′|x(n)) is equivalent to
(12). Thus the comparison made in Step 4 is implicitly acting as an M-H step for the
parameter m (after integrating out the effects of the nuisance parameter σ2) with our
proposal distribution equal to the birth/death process.

3.3 Missing Data

One advantage of our approach is that missing data can be handled with relative ease.
In previous studies involving the FEXP model there has been a tendency to use Whittle
approximations to the exact Gaussian likelihood. Most of these approximations do not
facilitate estimation in settings where there is missing data. The reason for this is
that usually estimation is based on periodogram estimates obtained from the full data.
Using the exact Gaussian likelihood the estimation we consider is facilitated via the
autocovariance structure and not a periodogram based estimate. Therefore, we can
tackle missing data with little added effort.

The method we propose only requires initial (starting) values for the missing data
points (in addition to starting values for the algorithm). With these values in hand
we can obtain estimates for xmis based on the predictive distribution. Using obvious
notation this can be expressed as

f(xmis|xobs) =
∫

Ψ

f(xmis|xobs,Ψ)dP (Ψ|xobs).

Although we do not pursue such estimation here, this simply amounts to adding an
extra Metropolis within Gibbs step to the RJMCMC algorithm proposed in Section
3.2. That is, suppose after step t we have a sample Ψ̃(t) of the parameter vector.
Then we may obtain a sample x

(t)
mis by drawing from the full conditional distribution

f(xmis|xobs, Ψ̃(t)); see Palma (2007, chap. 11) and Gelman et al. (2004, chap. 21) for
further details.
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4 Asymptotic Properties

Here we assume the general setup of Section 2.1, so that the priors on the parameters
are allowed to be more general than the specific choices of Section 2.3. The prior on m
is some discrete distribution that is compactly supported, denoted by p(m). We also
have priors p(bk|σ2

k,m) and p(σ2
k|m) for all k ≥ 0, but with these distributions equalling

the point mass at zero if k > m. From these we define the joint priors p(b|σ2,m) and
p(σ2|m). We also have a prior p(d) on d, but this does not depend on m (this can be
relaxed in the proof). Thus, similar to (6), in general the posterior distribution of all
the parameters is

p(µ, b, σ2, d, m|x(n)) ∝ p(x(n)|µ, b, σ2, d, m)p(b|σ2,m)p(σ2|m)p(d)p(m)p(µ).

The last five quantities on the right hand side are known priors, and the first quantity is
just the likelihood function. For notational convenience – since p(b|σ2,m)× p(σ2|m) =
p(b, σ2|m) anyways – let φ = (b, σ2) denote the joint variable, with distribution p(φ|m).
Conditional on m, φ takes values in Rm+1 ×Rm+1 (though the variance parameters σ2

are always non-negative). Denote this space by Φm. Using the shorthand dP (z| · · · )
for p(z| · · · )dz (where z is some vector of parameters), the posterior distribution for d
is given by

p(d|x(n)) =

∑
m p(d)

∫
Φm×R p(x(n)|µ, φ, d,m)dP (φ|m)dP (µ)p(m)∑

m

∫
Φm×R2 p(x(n)|µ, φ, d, m)dP (φ|m)dP (µ)dP (d)p(m)

. (15)

Recall that the posterior mean d̂ is given by (7). We next present a theoretical result
for the asymptotics of d̂. The data itself is generated from a Gaussian process with
spectral density given by (4), with fixed parameters m̃, µ̃, and θ̃m̃ that are unknown to
the practitioner (here θ̃m = (d̃, b̃0, b̃1, · · · , b̃m) for any m). We next establish asymptotic
consistency of d̂ for the true parameter d̃; our method follows that of Liseo et al. (2001),
appropriately generalized to our hierarchical model.

Theorem 1. Let p(m) and p(d) denote the prior distributions for m and d respectively
where p(m) is a compactly supported discrete distribution and p(d) is a compactly sup-
ported continuous distribution on (0, .5). Additionally, define priors p(bk|σ2

k,m) and
p(σ2

k|m) for all k ≥ 0 such that for k > m these priors equal the point mass at zero.
From these priors define the joint priors p(b|σ2,m) and p(σ2|m) and let φ denote the
joint variable (b, σ2) with distribution p(φ|m). Conditional on m, p(φ|m) takes values
in Rm+1 ×Rm+1 = Φm (though the variance parameters are always non-negative), and

p(d|x(n)) ∝
∑
m

p(d)
∫

Φm×R
p(x(n)|µ, φ, d, m)dP (φ|m)dP (µ)p(m).

Assuming that the data are generated from a Gaussian process with spectral density
given by (4) with fixed unknown parameters m̃ and θ̃m̃ = d̃, b̃0, b̃1, · · · , b̃m̃, d̂ given by
(7) converges to d̃ in probability.
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Remark 3. The proof of Theorem 1 still holds when the variance of bi are not considered
i.i.d. as specified in Section 2.3. In fact, the proof is based off of p(σ2|m), and nowhere
uses the idea that the variances are i.i.d. Thus, σ2

k could be taken dependent and not
identically distributed. Further, each distribution could also depend on m explicitly, e.g.,
if they are specified as identically distributed Inverse Gamma, the α and β parameters
could depend on m. This is permissible since the distribution of m has finite support.
Finally, making these changes to the prior specification would increase the generality of
the model without substantially increasing the computational complexity.

5 Case Studies

In this section we illustrate our proposed Bayesian FEXP model for estimation of the
long memory parameter d. We first begin by demonstrating the effectiveness of our
approach by way of three simulation studies using both fixed and variable dimension
estimation. Subsequently we analyze the benchmark Nile River Minima data (Beran
1994), and the Central England Temperature data (Manley 1974; Pai and Ravishanker
1998). The prior parameters α and β from the IG prior on σ2

k (for all k) were fixed
at 2.333 and 1.333 respectively, thus providing an IG prior having mean equal to 1
and variance equal to 3. For the prior on µ the value of µ0 and σ2

µ were fixed at 0
and 105 respectively and for the prior on m we fix M = 6 to allow models with up to 7
coefficients (the simulation in Section 5.2 had M = 10). Next, for all model fitting, both
simulated and actual data, we run a single MCMC chain for 10,000 iterations discarding
the first half for burn in. Convergence of the MCMC is verified through trace plots of
the posterior. The starting values for the bk parameters, d and µ were chosen randomly
while the starting values for the σ2

k’s were set equal to 1. Specifically, the starting
values for the bk coefficients and µ were generated from a N (0, 1) distribution and
d was generated from a uniform distribution with support (0, 1/2). Furthermore the
tuning parameters, δk, in the random walk M-H step were fixed at .5 for b0 and .2 for bk

(k 6= 0). Lastly, the posterior expectation (7) is approximated by d̂ = n∗−1 ∑n∗

i=1 d(i),
where d(i) are generated from the ith MCMC sample, and n∗ denotes the number of
such samples used to estimate the parameters after the initial burn in.

5.1 Simulation Study

To illustrate the performance of our method we consider two simulation studies. The
data used for this empirical investigation are generated using the Davies-Harte algo-
rithm (Davies and Harte 1987), see Section 2.2. Although the Davies-Harte algorithm
simulates a zero-mean Gaussian process, we estimated d via (5) since in practice, for
any given realization, the mean of the simulated process may be non-zero. Furthermore,
in cases where the simulated data has mean zero our model should be able to provide a
suitable estimate (similar to the non-zero mean case). The first simulation we consider
consists of a parameter space where the dimension is held fixed. We denote the first
simulation as the “Nile-F” simulation as the parameter values chosen for this model
were obtained from log periodogram regression estimates of a FEXP(3) model fit to the
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Nile River data (to be analyzed in Section 5.3). Note that log periodogram regression
is mean invariant (Chen et al. 2006) and thus the mean does not need to be taken into
account. The exact parameter values used to generate the data for the Nile-F simu-
lation are b = (b0, b1, b2, b3) = (6.640,−.121,−.232,−.044) and d = .479. The second
simulation, denoted the “Synthetic” simulation, consists of two models, one having a
fixed dimension parameter space and the other with a variable dimension parameter
space. The parameter values chosen for this simulation are b = (b0, b1, b2) = (2,−1, 1)
and d = .35.

Further for both simulations we generated 10 different realizations of the data, with
sample size n = 500, and estimated d and b0 using our fixed dimension approach, our
variable dimension approach, log periodogram FEXP (lpFEXP) (Hurvich 2002), and
the Geweke Porter-Hudak estimator (GPH) (Geweke and Porter-Hudak 1983). For
the Synthetic simulation we also provide maximum likelihood estimates (mle). The
mles were calculated by numerically optimizing the likelihood surface using the optim
command in R (R Development Core Team 2007). For the Nile-F simulation we do not
provide mles due to convergence issues in the numerical optimization routine owing to
the fact that d is near the boundary of the parameter space for stationary processes.
Although more sophisticated likelihood estimation methods, such as the EM algorithm,
may be able to improve convergence we do not pursue them here. Note that both
lpFEXP and GPH are mean invariant and as such the mean does not need to be taken
into account in order to estimate d. For convenience of exposition we denote the fixed
dimension estimation in the Synthetic simulation as “Synthetic-F” and the variable
dimension estimates as “Synthetic-V”. Note that in these simulations we assumed
the model order was correctly specified for the lpFEXP and mle as well as our fixed
dimension method. In addition, it should be emphasized that all models were fit to the
same 10 realizations of the simulated data, including our variable dimension approach.
The results for the Synthetic and Nile simulations are reported in Table 1. In particular,
Table 1 compares the frequentist properties of our estimator to the log periodogram
regression and GPH estimates. That is we compare the mean and standard deviations
of the posterior mean, d̂

(1)
BFEXP , the lpFEXP estimate, d̂lpFEXP , GPH estimator, d̂GPH

and the mle estimator, d̂mle. For completeness we also provide the median of the
posterior medians, d̂

(2)
BFEXP and a comparison of b̂

(1)
0,BFEXP , b̂

(2)
0,BFEXP , b̂0,lpFEXP and

b̂0,mle since the innovation variance, 2π exp(b0), may be another parameter of interest.

As a result of this simulation, we find that our method out-performs both log peri-
odogram regression FEXP and GPH, Table 1. Specifically, our estimators exhibit sub-
stantially lower standard error in all cases and are in close agreement with the truth.
Moreover, the improvement experienced using our estimators can be easily quantified by
considering their respective mean squared errors (MSEs). First in the Nile-F simulation
the MSEs for d̂lpFEXP and d̂GPH are equal to .0301 and .0256 respectively while the
MSE for d̂

(1)
BFEXP equals .0035. This constitutes a reduction in MSE of 86%. Addition-

ally, the Nile-F simulation demonstrates that using lpFEXP for estimation of d can lead
to estimates in the nonstationary region. Conversely, our estimates are guaranteed to
have d ∈ [0, 1/2). Similarly in the Synthetic simulation the MSEs for both d̂lpFEXP and
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Posterior Results: Simulated Data
Synthetic-F Synthetic-V Nile-F

(mode m = 2)
dtrue .350 .350 .479
d̂
(1)
BFEXP .364 (.064) .351 (.086) .429 (.030)

d̂
(2)
BFEXP .381 .368 .431

d̂lpFEXP .395 (.151) - .501 (.172)
d̂GPH .423 (.140) - .499 (.159)
d̂mle .335 (.081) - -
b0,true 2.000 2.000 6.640
b̂
(1)
0,BFEXP 1.975 (.069) 1.973 (.073) 6.623 (.074)

b̂
(2)
0,BFEXP 1.977 1.977 6.624

b̂0,lpFEXP 1.986 (.107) - 6.616 (.101)
b̂0,mle 1.985 (.073) - -

Table 1: Results of simulation study for the Synthetic-F, Synthetic-V and Nile simu-
lations. Note that 10 simulations were used in the construction of these estimates and
that for the Bayesian estimates one MCMC chain was used with 10,000 iterations and
the first half of the iterations were discarded for burn in. Additionally, the superscripts
1 and 2 denote the mean of the posterior means and the median of the posterior me-
dians respectively. The number in parenthesis denotes the standard deviation, where
applicable.

d̂GPH are equal to .025 whereas d̂mle equals .0069. In contrast, the MSE for our fixed
dimension estimate (Synthetic-F) d̂

(1)
BFEXP equals .004. This constitutes reduction in

MSE of 84% over d̂lpFEXP and d̂GPH and a reduction in MSE of 42% over d̂mle.

On the other hand, using our variable dimension approach (Synthetic-V), the MSE
for d̂

(1)
BFEXP equals .0073. It should be emphasized that this estimate is extraordinary

in that the reduction in MSE is 70% over both d̂GPH and a correctly specified model
order estimate d̂lpFEXP . As expected, in the case of d̂mle we see that there is a slight
price to be paid for using our variable dimension approach over a correctly specified mle.
This price amounts to a reduction in MSE of 5.8% over d̂

(1)
BFEXP . This slightly higher

MSE, for d̂
(1)
BFEXP versus d̂mle, can be attributed to the additional source of uncertainty

experienced from estimating m (the model order). Of course, this comparison assumes
that we would know the correct model order for the mle a priori which we would not
in practice. Additionally, we notice from this simulation study that for the variable
dimension case our model is able to pick up the right order over 70% of the time. This
in a way provides protection against model misspecification. That is, while benefiting
from the protection of model order misspecification we still obtain tremendous gains in
MSE over several popular (correctly specified) alternative estimators. This “automatic
model order selection” is indeed a novelty of our approach.
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Alternatively, looking at each individual simulation (results available on request) for
the variable dimension case we identify that estimation is less precise for the 30% of the
cases where the model has not picked up the correct order. This, in some sense, sends
a warning that when working with real data it is important to choose the order of the
model carefully. Particularly, when we have no prior notion about the correct model
order it is dangerous to choose the order in an ad hoc fashion using log periodogram
regression. Although there has been some research undertaken for model selection in
this setting (Moulines and Soulier 2000), the order selection criteria usually rely on
asymptotic theory and thus may be unsuitable for use in many practical situations.

5.2 Model Misspecification

For the types of models we consider it is fairly typical to assume that the coefficients
bk decay to zero at an exponential rate (Hurvich and Brodsky 2001). As such, in
practice, the maximum model order M can be chosen either to contain the true model
order or be large enough that the remaining model coefficients are not significantly
different from zero. In fact, in practice, one would choose M large enough so that
the estimated model orders are always less than M . If the estimated model order
achieves the value M frequently during the MCMC iterations one would choose M
larger and re-estimate the model. Nonetheless, it is possible that the true model order is
greater than M . For example, this occurs in the case where the true model is a FAR(1)
(fractional autoregressive model of order 1). The FAR(1) model can be equivalently
expressed as a FEXP(∞) model. In this case the coefficients bk = ξk/k! for k = 1, 2, . . .,
b0 = log(σ2/2π) for σ2 equal to the innovation variance and ξ equal to the autoregressive
parameter. Therefore, estimating a FAR(1) model using our approach leads to a model
misspecification.

To illustrate the effect that this type of model misspecification has on our estimation
procedure we conducted a simulation. In particular we generated 10 realizations from
a FAR(1) model with d = .35, ξ = .5, sample size n = 500, and innovation variance
equal to one. The FAR(1) models were generated using the R contributed package
“Fracdiff”. In particular, we chose M = 10 to allow models with up to 11 coefficients,
since b10 = 2.7 × 10−10; however, note that the true model order is infinite. We ran
our MCMC for 10,000 iterations discarding the first 5000 for burn in. Convergence was
assessed through trace plots of the posterior. For comparison, we also estimated d with
a correctly specified FAR(1) model using the fracdiff command (see the R contributed
package “Fracdiff”). This command estimates d using maximum likelihood with the
likelihood approximated using the fast and accurate method of Haslett and Raftery
(1989). The mean of our estimator for d was .427 with standard deviation of .043 and
MSE=.008 (across the ten simulated data sets), whereas the FAR(1) estimator for d had
mean=.211 with standard deviation=.146 and MSE=.041. Thus our estimator exhibits
a 80.49% reduction in MSE over the FAR(1) estimator. A histogram of the model
dimensions over all 50,000 MCMC iterations is shown in Figure 1. One thing to note
is that only one model had dimension greater than or equal to 8 during the MCMC
iterations and no model ever had dimension greater than 9. Specifically, one model had



S. Holan, T. McElroy and S. Chakraborty 177

dimension 8 a total of 78 iterations and dimension 9 during 5 iterations. In this case,
even with a misspecified model our method performs well.
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Figure 1: Histogram of Number of Model Coefficients selected from all 50,000 MCMC
iterations for the misspecification simulation.

The results of this simulation should be compared with the results presented in Sec-
tion 4. In particular, it may seem conflicting that consistency results hold despite model
misspecification. However, it should be emphasized that the consistency result is for
the estimate of the long memory parameter and in our case the model order parameter
is not directly connected with d. Therefore, higher values of m simply help discrimi-
nate between short range and long range components. Thus, m and (b0, b1, · · · , bm) are
essentially nuisance parameters that have a more limited effect on the distribution of d.

5.3 Nile River Data

We now illustrate our proposed methodology with the benchmark Nile River minima
data (Beran 1994). This data set contains yearly minimal water levels of the Nile River
for the years 622 to 1281 (n = 663). A detailed description of the data can be obtained
from Beran (1994). The first model we estimate has m fixed a priori and equal to 3. This
analysis produces interesting results. In particular, when we simulate a process using
coefficients equal to the log periodogram coefficients (i.e., Nile-F simulation, Section 5.1)
we find close agreement between d̂

(1)
BFEXP and d, see Table 1. However, the parameter

estimate of d obtained in our analysis differs from that obtained using the lpFEXP.
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Posterior Results: Nile River Minima Analysis
Nile - Fixed Nile - Variable

(m = 3) (mode m = 1)
d̂
(1)
BFEXP .419 (.053) .387 (.042)

95% HPD - d̂
(1)
BFEXP (.322,.499) (.316,.475)

d̂
(2)
BFEXP .428 .383

d̂lpFEXP .479 -
d̂GPH .504 .504
b̂
(1)
0,BFEXP 6.664 (.052) 6.659 (.039)

95% HPD - b̂
(1)
0,BFEXP (6.551,6.753) (6.593,6.733)

b̂
(2)
0,BFEXP 6.665 -

b̂0,lpFEXP 6.640 -

Table 2: Results of Nile River Minima analysis. Note that for the Bayesian estimates
one MCMC chain was used with 10,000 iterations and the first half of the iterations
were discarded for burn in. Additionally, the superscripts 1 and 2 denote the mean of
the posterior means and the median of the posterior medians respectively. The number
in parenthesis denotes the standard deviation.

In fact, the estimates produced by lpFEXP are highly variable and often lie outside
the stationary region. This leads us to believe that, for this data set (with m = 3),
the estimate of d based on a FEXP model estimated via log periodogram regression is
perhaps overstated. In short, this phenomenon may be due in part to having fixed the
model order a priori. One way around this peculiarity is to let m be a model parameter
to be estimated from the data and to estimate d via our variable dimensional approach
(Section 3.2). Again, it is important to note that similar to the Nile-F simulation we do
not provide mles for this analysis due to convergence issues in the numerical optimization
routine.

In order to demonstrate the utility of our variable dimension approach we re-analyzed
the Nile River data using the reversible jump algorithm of Section 3.2. In terms of
estimating d and b0, the results obtained from this analysis are consistent with the
results from the fixed dimension case, see Table 2. Furthermore, even though we chose a
non-informative prior on m, we obtained parsimonious models from our MCMC samples
with the mode of m equal to 1 (i.e., a model with only 2 coefficients b0 and b1), see
Figure 2. This aspect of our approach is notable as it exemplifies the fact that the
data is driving the model rather than the prior distribution. Additionally, our variable
dimension approach preferred the model with 2 coefficients in over 75% of the RJMCMC
iterations after the initial burn in, see Figure 2. Lastly, the estimates we obtain (Table
2) agree with the estimates of Ko and Vannucci (2006a) (d̂ = .3793, with 95% credible
interval (.327,.427)) and with Beran (1994, Section 10.3) (d̂ = .38).
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Figure 2: Nile River analysis - 95% HPD - d and histogram of Number of Model
Coefficients selected in variable dimension analysis. Top panel is 95% HPD - d for fixed
dimensional analysis, middle plot is 95% HPD - d for variable dimensional analysis, and
lower plot is a histogram of Number of Model Coefficients selected in variable dimension
analysis.

5.4 Hadley Centre Central England Temperature

As a final illustration of our methodology we analyzed the annual mean temperatures
for Central England (Manley 1974; Pai and Ravishanker 1998). We use the first 300
observations so that estimates of d can be fairly compared to the ARFIMA estimates
of Pai and Ravishanker (1998). In total we estimated 3 models, 2 models had fixed
dimension while 1 model is of variable dimension. The fixed dimension models were
chosen to have m = 4 and m = 1. The model having m = 4 was chosen via exploratory
analysis using log periodogram regression FEXP (Hurvich 2002) while m = 1 was chosen
to equal the posterior mode of m from the variable dimension analysis. As was alluded
to previously, choosing the correct model order in the fixed dimension case can be
crucial to proper analysis. For instance, when the model order is chosen as m = 4
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Posterior Results: Hadley Temperature Analysis
Hadley - Fixed Hadley - Variable

(m = 4) (m = 1) (mode m = 1)
d̂
(1)
BFEXP .256 (.113) .345 (.070) .330 (.057)

95% HPD - d̂
(1)
BFEXP (.058,.472) (.225,.483) (.216,.435)

d̂
(2)
BFEXP .254 .344 .333

d̂lpFEXP .445 .401 -
d̂GPH .280 .280 -
d̂mle .163 (.127) .315 (.074) -
b̂
(1)
0,BFEXP -2.899 (.086) -2.895 (.085) -2.897 (.057)

95% HPD - b̂
(1)
0,BFEXP (-3.061,-2.727) (-3.034,-2.705) (-2.998,-2.781)

b̂
(2)
0,BFEXP -2.902 -2.898 -2.900

b̂0,lpFEXP -2.902 -2.903 -
b̂0,mle -2.928 (.082) -2.916 (.082) -

Table 3: Results of Hadley Temperature analysis. Note that for the Bayesian estimates
one MCMC chain was used with 10,000 iterations and the first half of the iterations
were discarded for burn in. Additionally, the superscripts 1 and 2 denote the mean of
the posterior means and the median of the posterior medians respectively. The numbers
in parenthesis denote the posterior standard deviation for the Bayesian estimates and
asymptotic standard errors for the mle.

we obtain radically different results using our method, lpFEXP, GPH and mle, see
Table 3. The question then becomes which estimate do we trust? This illustrates
the complexity and need for effective model order selection. In contrast, under our
variable dimension approach we get an estimate d̂

(1)
BFEXP = .330 with standard deviation

of .057 and 95% HPD equal to (.216, .435). The mean and standard deviations of
the marginal posterior distribution of d obtained by Pai and Ravishanker (1998) are
.24(.04) for ARFIMA(0,d,0), .34(.09) for ARFIMA(0,d,1), .28(.05) for ARFIMA(1,d,1),
and .32(.07) for ARFIMA(1,d,0). Moreover, the authors obtain similar estimates using
maximum likelihood estimation. Our estimate corroborates the estimates obtained in
Pai and Ravishanker (1998) while also eliminating the need for model selection, instilling
confidence in us that our estimate is valid. Further, under our fixed dimension analysis,
with the model order taken equal to the posterior mode of m from the variable dimension
analysis, both analyses (fixed and variable dimension) produce similar results and were
consistent with the mle (m = 1). The posterior densities and histogram of the model
order can be seen in Figure 3. Finally, the estimate we obtain for µ (using the posterior
mean) equals 9.14 with posterior standard deviation equal to .005 (variable dimension
analysis). This agrees with the estimates obtained in Pai and Ravishanker (1998) as
well as with maximum likelihood.
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Figure 3: Hadley Temperature analysis - 95% HPD - d and histogram of Number of
Model Coefficients selected in variable dimension analysis. Top panel is 95% HPD -
d for fixed dimensional analysis, middle plot is 95% HPD - d for variable dimensional
analysis, and lower plot is a histogram of Number of Model Coefficients selected in
variable dimension analysis.

6 Discussion

The general modeling approach we propose extends the current long memory literature
in several ways. First we provide a Bayesian estimate of the FEXP model based on
the exact Gaussian likelihood. Second we provide the details for algorithms that fa-
cilitate quick computation. Further, we allow the dimension of our parameter space
to take the form of a random parameter to be estimated in the model. Therefore, the
method we propose is hierarchical and integrates over all possible models, thus reducing
underestimation of uncertainty at the model-selection stage.

In our implementation we impose a non-informative prior on the model order m;
however, in the setting where it is advantageous to incorporate prior beliefs about m
into the model we can choose the Truncated Poisson prior for m. Thus, our method
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is quite flexible and can be implemented on a broad range of long range dependent
processes. Additionally, our constructed RJMCMC performs the model selection via
the estimated Bayes factor at each iteration. We argue (see Appendix B) that in our
context, for large samples, the BIC provides an approximation to the logarithm of the
Bayes factor. Thus, heuristically, the heavy penalty term associated with the BIC
enables us to chose a parsimonious model. This is reflected in both Hadley and Nile
River data where our variable dimension model selects a model with 2 coefficients (b0, b1)
more than 70% of the time in the MCMC calculations respectively.

The hierarchical structure we propose can be implemented with two different goals
in mind. First, if the goal of the analysis is strictly estimation of d, our method can
be viewed as Bayesian model averaging (Hoeting et al. 1999). In this case our estimate
of d results in a weighted average of the estimates of d from our adaptive model, with
the weights proportional to the probability of occurrence of the different selected model
orders. This approach improves the precision of our estimate in contexts where the
“true” model order is unknown a priori. Second, if the goal of the analysis is to produce
a spectral model then one can appeal to the FEXP(m̂) model, where m̂ denotes the
posterior mode of m. With this model, and the estimated mean, one can also obtain
an equivalent AR (autoregressive) representation using the formulas in Hurvich (2002).
Since the primary goal of our procedure is estimation of d, the long memory parameter,
we do not pursue detailed discussion of this model usage here. However, both of these
uses constitute novel contributions to the current state of FEXP modeling.

Another striking distinction between our FEXP models and most of the methods
currently being implemented for estimation of the long memory parameter is that by
using a Bayesian approach we gain more information about d, since we can obtain the
whole posterior distribution rather than just a point estimate and standard error. This
is something log periodogram regression and GPH (Geweke and Porter-Hudak 1983)
do not achieve. This distinction is fundamental and is often one of the advantages of
appealing to the Bayesian paradigm. One illustration of the benefits of having a poste-
rior density of d arises in Section 5.3 where we analyze the Nile River minima data. In
this setting, examining the posterior density of d (Figure 2), we notice that although
we started from a non-informative prior on d we are able to extract the embedded in-
formation about d from the likelihood. That is, by taking advantage of the Bayesian
machinery we end up with a highly informative posterior. Therefore having this poste-
rior density definitely provides an added boost to the performance of our estimate of d.
Similar results followed from the posterior density plot for the Hadley data (Figure 3).
Finally, our approach accommodates missing data with relative ease; this is something
current FEXP models do not achieve.

Additionally, using the exact Gaussian likelihood, we establish Bayesian consistency
of the memory parameter under mild conditions on the data process. This poses a
non-trivial extension to the proof presented in Liseo et al. (2001). Specifically, in the
proof we provide, we allow the dimension of the parameter space to change as well as
explicitly account for the mean.

In summary, we have developed a flexible modeling approach for Gaussian long range
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dependent processes. The algorithms we provide are computationally straight forward
and relieve the practitioner from the burden of order selection when the main focus is
estimation of the long memory parameter. Lastly, we develop asymptotic properties of
our estimator under mild conditions on the data process.
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Supplementary material

Appendix A - Asymptotics

Proof of Theorem 1. A more general result is given in Rousseau and Liseo (2007),
but we provide our own direct proof here because the latter result does not include
the case of unknown mean. Moreover, some things are simpler in our case, since the
order of the EXP model is always bounded. The Rousseau and Liseo (2007) results are
presented in a very general and abstract manner, making it difficult (also due to some
typos and a terse style) to determine whether a particular model satisfies the conditions
of their main theorem. For these reasons we adopt a direct approach, which uses the
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general strategy of Liseo et al. (2001), but replacing the Whittle likelihood with the
exact Gaussian likelihood by using some concepts from Dahlhaus (1989).

Firstly, the class of spectral densities described by (4) and our priors is seen to satisfy
all the conditions of Dahlhaus (1989) except the compactness of the parameter space,
which actually will not be needed. We therefore are able to apply Lemmas 5.3 and 5.4,
as well as results from the proof of Theorem 3.1 of that paper, among other results.
Next, note that we have

d̂− d̃ =

∑
m

∫
Φm×R2(d− d̃)p(x(n)|µ, φ, d, m)dP (φ|m)dP (d)dP (µ)p(m)∑
m

∫
Φm×R2 p(x(n)|µ, φ, d,m)dP (φ|m)dP (d)dP (µ)p(m)

.

Now the likelihood only depends on φ through d and the bk coefficients, given m, so
we can substitute θm for (d, φ, m); in particular, dP (φ|m)dP (d) can be replaced by
dP (θm). Using (5) we can write

p(x(n)|θm, µ) = exp
[
−n

2
{log 2π + Ln(θm, µ)}

]

Ln(θm, µ) =
1
n

log |Σ(fθm)|+
(
x(n) − µ1

)′
Σ−1(fθm)

(
x(n) − µ1

)
.

Now, the quadratic form in Ln can be written as

(x(n) − µ1)
′
Σ−1(fθm)(x(n) − µ1) = (x(n) − µ̃1)

′
Σ−1(fθm)(x(n) − µ̃1)

+ 2(µ̃− µ)1′Σ−1(fθm)(x(n) − µ̃1)

+ (µ̃− µ)21′Σ−1(fθm)1.

The second term is OP (n(δ+1−2d)/2) by Lemmas 5.3 and 5.4 of Dahlhaus (1989), for any
δ > 0. This will yield a negligible term when divided by n; moreover, this is uniform
over all parameters (including µ), since d < 1/2 for all d (and any m). Likewise, the
third term is O(nδ+1−2d). Hence we can exchange Ln(θm, µ̃) for Ln(θm, µ) at a cost of
OP (n(δ−1−2d)/2); denote these remainder terms by Rn(θm, µ). Hence

d̂− d̃ =

∑
m

∫
Θm×R(d− d̃) exp

[−n
2 {Ln(θm, µ̃) + Rn(θm, µ)}] dP (θm)dP (µ)p(m)∑

m

∫
Θm×R exp

[−n
2 {Ln(θm, µ̃) + Rn(θm, µ)}] dP (θm)dP (µ)p(m)

.

Now let ε > 0 and for each m ≥ 1 let εm = ε2−m, and consider the set {(θm, µ) ∈
Θm × R : ‖(θm, µ)− (θ̃m, µ̃)‖ < εm}. This is an εm-neighborhood – with respect to the
Euclidean norm ‖ ·‖ – of (θ̃m, µ̃), which is the vector consisting of the first m+3 correct
parameters (but if m > m̃, pad out with zeroes). Denote this set by Nεm(θ̃m, µ̃); we split
the numerator integral in the expression for d̂−d̃ into an integration over Nεm(θ̃m, µ̃) and
its complement. In the former term, we obtain the strict upper bound of

∑
m≥1 εm = ε,

using |d− d̃| ≤ ‖(θm, µ)− (θ̃m, µ̃)‖ ≤ εm. The latter term is bounded by
∑

m

∫
Nc

εm
(θ̃m,µ̃)

(d− d̃) exp
[−n

2 {Ln(θm, µ̃) + Rn(θm, µ)}] dP (θm)dP (µ)p(m)
∑

m

∫
Nεm/2(θ̃m,µ̃)

exp
[−n

2 (Ln(θm, µ̃) + Rn(θm, µ)}] dP (θm)dP (µ)p(m)
. (A.1)
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Here we have made the denominator smaller by restricting the region of integration.
Now on a subset Ωm of the full probability space Ω with P[Ωm] → 1, it follows from the
proof of Theorem 3.1 of Dahlhaus (1989) that

Ln(θm, µ̃) ≥ Ln(θ̃m̃, µ̃) +
1
2

inf
θm∈Nc

εm
(θ̃m)

cm(θm)

with cm(θm) ∝ min{∫ π

−π
(fθ̃m̃

/fθm
− 1)2dλ,

∫ π

−π
(fθm/fθ̃m̃

− 1)2dλ}. Note that this bound-
ing function does not depend on µ, which has already been handled through Rn(θm, µ).
Using the exponential structure of the model, it is easy to see that this function is
convex in θm even when m 6= m̃ (but if m 6= m̃, the function cannot attain its minimal
value of zero). It also follows from Theorem 3.1 of Dahlhaus (1989) that on other sets
Ω′m tending to one in probability

Ln(θm, µ̃) ≤ Ln(θ̃m̃, µ̃) +
1
4

sup
θm∈Nεm/2 (θ̃m)

cm(θm).

Now by the convexity of cm(θm) and the choice of the neighborhood radii εm and εm.2

we have

1
4

sup
θm∈Nεm/2(θ̃m)

cm(θm) <
1
2

inf
θm∈Nc

εm
(θ̃m)

cm(θm).

There are only finitely many nonzero m’s, so we can find an ε∗ such that the above
inequality holds with ε∗ in place of εm, with the inequality holding uniformly in m.
Noting that the intersection of finitely many sets with probability tending to one also has
this property, choose some δ < ( 1

2 infθm∈Nc
ε∗ (θ̃m) cm(θm) − 1

4 supθm∈Nε∗ (θ̃m) cm(θm))/2
and we obtain a bound of

E|d− d̃|
∑

m exp{−n
2

(
1
2 infθm∈Nc

ε∗ (θ̃m) cm(θm)− 1
4 supθm∈Nε∗ (θ̃m) cm(θm)− 2δ

)
}p(m)

∑
m

∫
Nεm/2(θ̃m,µ̃)

dP (θm)dP (µ)p(m)

on a set tending to one in probability. As n → ∞ this bound can be made as small as
desired, so the convergence in probability follows. 2

Appendix B - Bayes Factor and BIC

Here we provide justification, in our context, for the reversible jump algorithm as a
method of model selection within each repetition of the chain. First let Q denote
BF (Ψ′, Ψ(t)) × R where R and BF are defined similar to (13) and (14) respectively.
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First we consider the numerator of (14):

∫

R2m′+4
dP (Ψ′|x(n)) =

∫

Rm′+3
L(Ψ′|x(n))×

∏m′

i=0 Γ(α + 1/2)
∏m′

i=0

(
b
′2
i

2 + β
)α+1/2

× (2πσ2
µ)−1/2e

− 1
2

(µ′−µ0)2

σ2
µ dθm′dµ′,

=
∫

Rm′+3
enh(b′,d′,µ′)dθm′dµ′, (B.1)

where

h(b′, d′, µ′) =
1
n

[
log{L(Ψ′|x(n))}+ (m′ + 1) [log {Γ(α + 1/2)}]

− (α + 1/2)





m′∑

i=0

log

(
b
′2
i

2
+ β

)

− 1

2
log(2πσ2

µ)− 1
2

(µ′ − µ0)2

σ2
µ

]
,

and L(·|x(n)) denotes the likelihood function. Applying the Laplace approximation
Tierney and Kadane (1986); Robert (2001) in (B.1) we get

∫

Rm′+3
enh(b′,d′,µ′)dθm′dµ′ = enh(b̂′,d̂′,µ̂′)(2π)(m

′+3)/2n−(m′+3)/2|H−1(̂b′, d̂′, µ̂′)|1/2 + O(n−1)

=
L(̂b′, d̂′, µ̂′|x(n))

∏m′
i=0

(
b̂
′2
i
2

+ β

)α+1/2
(2π)(m

′+3)/2n−(m′+3)/2

× |H−1(̂b′, d̂′µ̂′)|1/2 + O(n−1), (B.2)

where b̂′, d̂′, µ̂′ are the maximum likelihood estimates of b, d, µ and H is the Hessian
matrix for the function h(·) under the model with (m′ + 1) coefficients. Similarly from
the denominator of (14), using similar logic, we get

∫

Rm+3
enh(b(t),d(t)µ(t))dθ(t)

m dµ(t) =
L(̂b(t), d̂(t)µ̂(t)|x(n))

∏m
i=0

(
b̂
(t)2
i

2 + β

)α+1/2
(2π)(m+3)/2n−(m+3)/2

× |H−1(̂b(t), d̂(t), µ̂(t))|1/2 + O(n−1), (B.3)

where b̂(t), d̂(t), µ̂(t) are the maximum likelihood estimates of b, d, µ and H is the
Hessian matrix for the function h(·) under the model with (m + 1) coefficients.

Now replacing the numerator and denominator of (14) by (B.2) and (B.3) and then
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taking the logarithm of (14) yields the following expression

log{BF (Ψ′, Ψ(t))} =
[
log

{
L(̂b′, d̂′, µ̂′|x(n))

}
− log

{
L(̂b(t), d̂(t), µ̂(t)|x(n))

}]

+
(m−m′)

2
log(n)

− (α + 1/2)





m′∑

i+1

log

(
b̂
′2
i

2
+ β

)
−

m∑

i+1

log

(
b̂
(t)2
i

2
+ β

)



+ Rn{(̂b′, d̂′, µ̂′), (̂b(t), d̂(t), µ̂(t))}. (B.4)

where Rn{(̂b′, d̂′, µ̂′), (̂b(t), d̂(t), µ̂(t))} is obtained by gathering all remainder terms. Now
assuming that the remainder term is negligible (since the models are nested - Robert
(2001, pg. 353)) and, since the coefficients of the FEXP model decay exponentially, the
third term is also negligible (for m sufficiently large). Hence we get

log{BF (Ψ′,Ψ(t))} ≈
[
log

{
L(̂b′, d̂′, µ̂′|x(n))

}
− log

{
L(̂b(t), d̂(t), µ̂(t)|x(n))

}]

+
(m−m′)

2
log(n). (B.5)

Now consider the Bayesian information criterion (BIC) (Schwarz 1978) of Ψ′ and
Ψ(t) respectively (note that according to our RJMCMC construction of the d and σ2

parameters are fixed at the iteration so we are only dealing with the b),

BIC(Ψ′) = −2 log
{

L(̂b′, d̂′, µ̂′|x(n))
}

+ (m′ + 3) log(n), (B.6)

and

BIC(Ψ(t)) = −2 log
{

L(̂b(t), d̂(t), µ̂(t)|x(n))
}

+ (m + 3) log(n), (B.7)

Combining B.5, B.6, and B.7 we get

BIC(Ψ′)− BIC(Ψ(t)) ≈ −2 log
{

BF (Ψ′, Ψ(t))
}

.

Therefore, in large samples, the BIC (or Schwarz criterion) provides a reasonably rough
approximation to the logarithm of the Bayes factor which is embedded in the RJMCMC
algorithm. Now, given a family of models, the BIC will select the true model with
probability approaching to one as n → ∞. Thus, our model selection approach based
on Bayes factor in Section 3.2 provides a reasonable method of model selection.


