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ABSTRACT

Fuzzy C-means (FCM) has been a prominent clustering algorithm for a long time. It was extended

to a type-2 framework by the linguistic fuzzy C-means (LFCM) algorithm that operates on vectors

of fuzzy numbers utilizing the extension principle, the decomposition theorem, and interval analyses.

The purpose of this thesis is to investigate the iterative type-2 fuzzy clustering algorithms. The

LFCM incorporates uncertainty through type-2 fuzzy sets, but it is prone to membership spread,

i.e., the uncertainty in a membership function can become too large or broad during the iterative

alternating optimization procedure. We devise three dampening approaches to mitigate this problem.

Vertical cut dampening, linear dampening, and reflection dampening are defined along with the

experiments conducted on a synthetic dataset named the butterfly dataset. We also illustrate the

updated memberships (fuzzy numbers) and the resulting cluster prototypes (fuzzy vectors) from visual

standpoints. Applying any of these dampening approaches will result in thinner membership functions

and helps us control the uncertainty, and in fact, aid in convergence. The linguistic possibilistic

C-means (LPCM), which is a type-2 version of the possibilistic C-means (PCM) algorithm, is also

studied, and compared to LFCM. We also address some practical guidelines for putting the type-2

fuzzy clustering algorithms into action.
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Chapter 1

INTRODUCTION

1.1 Clustering

Pattern recognition (PR) problems are interesting and challenging because they closely relate to human

daily life. For instance, people identification from imagery can be useful for security automation.

We can categorize PR problems into two main categories: supervised and unsupervised schemes.

The former means we have the knowledge about the answers of the problems, and those answers are

used as ingredients to teach algorithms how to do recognition. The latter does not make use of what

we call label or ground truth that requires a lot of human work, i.e., we specify what the answers

should be. Hence, unsupervised algorithms are utilized to discover underlying structure based on

some criteria.

Clustering is a big topic under the umbrella of unsupervised learning. It refers to techniques

that assemble groups of related data. There are several branches of clustering such as hierarchical

clustering and iterative clustering. The procedure of the latter is illustrated in Figure 2.5. The

universally recognized iterative clustering algorithm is the Hard C-means (HCM) or the so-called

K-means [1] which was devised by MacQueen in 1967. Given a dataset {X⃗j}, and a set of C cluster

centers {C⃗i}, HCM seeks to find a crisp C-partition that indicates how a dataset can be grouped

in C clusters. In the view of similarity, a pattern can only be either not similar (zero) or similar

(one) to a cluster center based on the relative (Euclidean) distances. This is defined in terms of the

characteristic function uji : X → {0, 1} where X is the finite universal set. After that, the fuzzy

C-means (FCM) algorithm [2] was formalized to raise the granularity of the characteristic function

by introducing a concept of fuzzy sets. Instead of having a membership value that can either be

zero or one, it can be a value between zero and one. Based on this, the characteristic function is

generalized to be the membership function uji : X→ [0, 1]. Therefore, a hard C-partition turns into
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a fuzzy C-partition with an obligatory constraint that is the sum of memberships of a pattern must

be equal to 1, in fact a probabilistic constraint.

There are many endeavors to further enrich the FCM by incorporating uncertainty. This is

feasible through the lens of fuzzy sets of type-2. Thus, the FCM which operates under the idea of

type-1 fuzzy sets can be extended to type-2 fuzzy C-means (T2-FCM) that, obviously, operates on

type-2 fuzzy sets. Rhee and Hwang proposed a type-2 FCM [3] that modifies the FCM (type-1)

memberships to have the associated type-2 memberships. The larger memberships have more weights

(contributions) than that of the smaller memberships. They also developed an interval type-2 FCM

(IT2-FCM) [4] that utilizes two fuzzifiers to generate a footprint of uncertainty. Rubio and Castillo

came up with the idea of integrating the FCM with the possibilistic C-means (PCM) [5] which gives

rise to another version of IT2-FCM with only one fuzzifier required. It makes use of the memberships

and the typicalities to form ranges of memberships. The concept of intuitionistic fuzzy sets were

used in [6] to achieve an intuitionistic type-2 FCM, so we get lower bounds and upper bounds of

memberships. Auephanwiriyakul and Keller devised the linguistic fuzzy C-means (LFCM) [7]. Unlike

those IT2-FCM algorithms, the LFCM provides an alternative way to model uncertainty through

fuzzy numbers and fuzzy vectors based on the extension principle, the decomposition theorem, and

interval analyses. Cluster centers are linguistic vectors and hence they are also type-2. So, the LFCM

can be viewed as a type-2 FCM, or an IT2-FCM if we take only one level cut. However, if we put the

LFCM into action, it is susceptible to a problem of membership spread, i.e., a membership function

has a long tail.

The linguistic possibilistic C-means (LPCM) [8] is another extension of the regular PCM clustering

algorithm. Concerning the membership update for LFCM, uji depends solely on the squared distance

from X⃗j to C⃗i. This allows it to handle noise points that might exist in the dataset. The other

counterparts of LPCM such as the cluster center update and stopping criterion are similar to that of

LFCM.

1.2 Contribution

In this thesis, we are interested in mainly two clustering algorithms named linguistic fuzzy C-means

(LFCM), and linguistic possibilistic C-means (LPCM). We study their characteristics, and also how to

make them work well in practice. The 15-point butterfly dataset is used to run LFCM with different

fuzzifier m values. The cluster centers at different iterations are illustrated. As we examine the

LFCM memberships, we can obviously see that the lower level cuts of the memberships become large
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very quickly, i.e., the uncertainty increases rapidly, in a few iterations. We call this the membership

spread problem. So, the uncertainty associated with the α-cuts are informative at some α values. The

dampening approaches are then developed to mitigate the membership spread problem found in the

the LFCM clustering algorithm. The first dampening approach is the vertical cut dampening. It is

the simplest method to develop and apply to the memberships. By vertically cutting the membership

function at a certain level, the uncertainty of the lower level cuts are reduced. The second method is

the linear dampening. It works by estimating two slopes, left and right, with respect to the peak of

the membership, and then create two lines. This transforms the original membership function into a

triangular membership function. We can also multiply some small values to dampen the slopes. The

third approach is the reflection dampening. It arises from the fact that we would like to preserve

the original shape of the membership. Thus, the reflection dampening takes the side with the lesser

uncertainty and reflects it around the peak to the other side. The comparison between the original

LFCM and the dampened LFCM is described.

However, LFCM does not handle noise very well. So, LPCM comes into play. The dampening

methods can also be applied to the LPCM clustering algorithm in the same manner, even they have

different membership update equations.

Based on this research, there is a conference paper, entitled “Controlling Membership Spread in

Type-2 Fuzzy Clustering”, that has been accepted for publication in the 2022 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE 2022) at the 2022 IEEE World Congress on Computational

Intelligence (IEEE WCCI 2022). Its authors are Watchanan Chantapakul, James M. Keller, and

Sansanee Auephanwiriyakul.
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Chapter 2

BACKGROUND

2.1 Fuzzy Sets

Computational intelligence (CI) is a field of study that has three main sub-fields under it, including

neural networks, fuzzy systems, and evolutionary computation. Fuzzy sets, devised by Zadeh [9], is

the core of the fuzzy systems sub-field. Let us review some relevant fuzzy set concepts in this section.

We refer the reader to [10] for details of the concepts contained herein.

A fuzzy set A is defined by the membership function

µA : X→ [0, 1] (2.1)

where X denotes the universe of discourse such as the real line R. The function µA(x) is typically

used interchangeably with A(x).

We define an α-cut of a fuzzy set A as a crisp set of all x ∈ X for which the degrees of membership

are at least α. It is mathematically defined as

αA = {x ∈ X | A(x) ≥ α}. (2.2)

1-cut of A or 1A has another name called the core of A.

Following the notion of α-cut, the strong α-cut of fuzzy set A is given by

α+A = {x ∈ X | A(x) > α}. (2.3)

So, the support of fuzzy number A is actually 0+A or the strong 0-cut of A.
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discretizing the universe of discourse X. Therefore, instead of directly computing the extended crisp

functions using the extension principle, we use the extension principle to extend arithmetic operations

on real numbers to fuzzy numbers.

To implement LFCM or LPCM, it involves arithmetic operations between two fuzzy numbers,

A#B where # ∈ {+,−, ·, /}, at a given α-cut, is determined as [10]

α [A#B] = [αA] # [αB] . (2.11)

In other words, it can be computed using interval arithmetic rather than fuzzy arithmetic because

the α-cuts are just closed intervals.

Now, combining (2.4), (2.5) and (2.11) together allows us to perform fuzzy arithmetic on two

fuzzy numbers. So, we obtain

A#B =
⋃

α∈[0,1]

α [A#B]

=
⋃

α∈[0,1]

([αA] # [αB]) .

(2.12)

The type-2 fuzzy clustering algorithms investigated in this thesis are LFCM and LPCM. Now,

we define a fuzzy vector as a p-dimensional vector of fuzzy numbers, or A⃗ = ⟨A1, A2, . . . , Ap⟩,

as illustrated in Figure 2.4. So, its elements are fuzzy numbers Ak associated with the indexes

k = 1, . . . , p. A fuzzy vector is also called a noninteractive linguistic vector. The properties of

fuzzy vectors are described in [7]. A fuzzy vector is actually a type-2 fuzzy set over the index set

K = {1, 2, . . . , p} because there is a type-1 fuzzy set Ak associated with index k. Therefore, the

LFCM (LPCM) can be considered as a type-2 version of the FCM (PCM).

8





instead of log to measure the uncertainty of each interval in bits.

Now, the U -uncertainty is ready to be used as a tool for measuring uncertainty of fuzzy numbers.

Also, we need to measure the amount of uncertainty of a p-dimensional fuzzy vector A⃗. Therefore,

we can define the U -uncertainty of A⃗ to be

U(A⃗) =
1

p

p∑
i=1

U(Ai) (2.16)

or

U(A⃗) = max
i=1,...,p

U(Ai). (2.17)

where Ai is a fuzzy number in dimension i. They make more sense than using just the sum of

U-uncertainties of fuzzy numbers. The reason is that they allow us to compare the amounts of

uncertainty of fuzzy vectors that have different number of dimensions. The former represents the

average uncertainty of fuzzy numbers in the fuzzy vector. The latter can be useful when at least one

fuzzy number of the fuzzy vector is uncertain so the fuzzy vector is also considered uncertain. In this

study, we choose (2.16) to measure the uncertainty of a fuzzy vector.

2.2 Interval Analyses

As described above, the decomposition theorem is used to build fuzzy numbers. For any fuzzy

numbers, α-cuts of them for α ∈ (0, 1] are always closed intervals, Thus, a closed interval, I, can be

defined by

I = [a, b] = {x ∈ R | a ≤ x ≤ b} (2.18)

where a denotes the lower endpoint and b represents the upper endpoint of the closed interval I.

There are some interval functions needed to execute the LFCM and the LPCM. The width of

closed interval I is denoted by

width(I) = b− a. (2.19)

The middle point of closed interval I is defined as

mid(I) =
b+ a

2
. (2.20)

The magnitude of an interval I which is the maximum absolute value in an interval is mathematically
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given by

mag(I) = max {|x| | x ∈ I}. (2.21)

So, note that | · | denotes the symbol of absolute value.

Since the LFCM involves calculating fuzzy Euclidean distances, we need to define the following

interval functions: the square root function and the square function. The square root of the closed

interval i is defined by
√
I = I1/2 =

[√
a,
√
b
]
for a ≥ 0 (2.22)

The square function for a closed interval I can be obtained by

I2 =



[
0,mag(I)2

]
if 0 ∈ X[

a2, b2
]

if a2 ≤ b2[
b2, a2

]
if a2 ≥ b2

. (2.23)

We can see that the square function defined in Equation 2.23 requires the magnitude function

given by Equation 2.21. Therefore, we can further simplify the first condition of Equation 2.23 [11].

If the input to the magnitude function is the square function, f(a) = a2 where a ∈ R, the magnitude

function then becomes

mag(f(I)) = max {(a)2, (b)2} (2.24)

as we make use of the extrema. Thus, we modify Equation 2.23 to be as follows:

I2 =



[
0,max(a2, b2)

]
if 0 ∈ X[

a2, b2
]

if a2 ≤ b2[
b2, a2

]
if a2 ≥ b2

(2.25)

Apart from that, interval arithmetic is also needed [7]. Let us define two intervals I1 = [a, b]

and I2 = [c, d]. Let r be a real number. The following are some important definitions of interval

arithmetic:

r · I1 = r · [a, b] =


[ra, rb] if r > 0

[rb, ra] if r < 0

, (2.26)

I1 + I2 = [a, b] + [c, d] = [a+ c, b+ d], (2.27)
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(LFCM), developed by Auephanwiriyakul and Keller [7], as a version of type-2 fuzzy C-means enables

us to do so. Let X = {x⃗j} denote the dataset consisting of N patterns where each is a p-dimensional

vector, x⃗k ∈ Rp, and a C-tuple of cluster centers B = ⟨c⃗i⟩ where c⃗i ∈ Rp. Let U = [uji]C×N be a

partition matrix accommodating the membership grade uji ∈ [0, 1] that the pattern x⃗j belongs to

the cluster Ai. The regular FCM involves minimizing the objective function which is

J(B,U ;X) =
C∑
i=1

N∑
j=1

(uji)
m(dji)

2 (2.31)

where (dji)
2 = d2(x⃗j , c⃗i) is the squared distance between pattern x⃗j and cluster center c⃗i, and for

some fuzzifier m > 1 that controls how fuzzy the system is through the partition matrix. This is

a minimization of weighted sum of fuzzy squared distances between the patterns and the cluster

centers. The criterion function (2.31) is subject to the constraint

C∑
i=1

uji = 1,∀j = 1, . . . , N. (2.32)

It compels each pattern to have grades of membership to all clusters, and the sum of them is unity.

Note that setting m = 1 is invalid and does not give us the HCM. However, the limit as m approaches

1 from above does converge to the HCM. The necessary condition for updating the FCM membership

uji (the degree of membership of x⃗j in the ith cluster), is

uji =
1∑C

k=1

(
(dji)

2

(djk)2

)1/(m−1) , if Zj = ∅

uji = 0 if i /∈ Zj∑uji

i∈Zj
= 1 if i ∈ Zj

 , if Zj ̸= ∅


(2.33)

where Zj = {i | 1 ≤ i ≤ C, (dji)
2 = 0}.

The cluster center update equation of C⃗i is given by

c⃗i =

∑N
j=1(uji)

mx⃗j∑N
j=1(uji)m

. (2.34)

When it comes to the LFCM, we perform the alternating optimization by modifying the necessary

conditions of the real number version in (2.33) and (2.34). It is technically done by substituting real

numbers with fuzzy numbers, and real vectors with fuzzy vectors. Consequently, uji and dji also

become fuzzy numbers, whereas x⃗j and c⃗i turn into fuzzy vectors X⃗j and C⃗i, respectively. Hence,
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X = {X⃗j} is the dataset consisting ofN fuzzy vectors. Each input pattern X⃗j = ⟨Xj1, Xj2, . . . , Xjp⟩ ∈

P(R)p is a vector of p fuzzy numbers, where P(R) denotes the fuzzy power set of R. Also, B = ⟨C⃗i⟩

is a C-tuple of cluster centers where the cluster center C⃗i = ⟨Ci1, Ci2, . . . , Cip⟩ ∈ P(R)p is a vector

of p fuzzy numbers. Now, each element in the partition matrix U = [uji]N×C is non-negative fuzzy

number instead of non-negative real number.

The LFCM algorithm is summarized in Algorithm 1 (note that this algorithm is also the algorithm

for the classical FCM.). We can see that there are five key steps: 1) cluster prototype initialization,

2) computing fuzzy Euclidean distance, 3) membership calculation, 4) cluster prototype update, and

5) termination. We will go over each of the steps, except the first one since the cluster prototypes

will be simply manually selected in this work. Refer to [8] for more information regarding the proofs

of LFCM equations.

Algorithm 1: Linguistic fuzzy C-means (LFCM)

Input: The number of clusters C, the dataset X
Output: The C-tuple of prototypes B, the C-partition matrix U

1 Initialize cluster prototypes C⃗i, i = 1, . . . , C
2 repeat
3 Compute fuzzy Euclidean distance dji,∀j, i using (2.37) and (2.39)
4 Compute membership uji,∀j, i using (2.41) and (2.43)

5 Update cluster prototype C⃗i,∀i using Algorithm 2

6 until Convergence;

2.3.1 Fuzzy Euclidean Distance

Calculating the memberships of the LFCM are based on the relative distances between patterns and

cluster centers. Hence, we need the definition of fuzzy Euclidean distance between two fuzzy vectors.

Recall that the definition of the Euclidean distance between two p-dimensional vectors, x⃗, y⃗ ∈ Rp is

given by

d(x⃗, y⃗) =

√√√√ p∑
k=1

(xk − yk)2 (2.35)

where xk is the k-th element in x⃗, and yk is the k-th element in y⃗, for all k = 1, . . . , p. In the

framework of LFCM, we need to modify (2.35) to work with fuzzy numbers and fuzzy vectors.

Thus, the extension principle is our tool here. Let us define two p-dimensional fuzzy vectors,

A⃗ = ⟨A1, . . . , Ap⟩ and B⃗ = ⟨B1, . . . , Bp⟩. (2.35) is extended to be

d(A⃗, B⃗) =

√√√√ p∑
k=1

(Ak −Bk)2. (2.36)
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As we make use of the decomposition theorem to build fuzzy number from α-cuts, the fuzzy Euclidean

distance is defined as

d(A⃗, B⃗) =


0 if A⃗ = B⃗⋃

α∈[0,1] α[d(A⃗, B⃗)] otherwise

, (2.37)

where 0 is singleton fuzzy number zero, and each level cut of d(A⃗, B⃗), is

α[d(A⃗, B⃗)] =

[
p∑

k=1

(αAk − αBk)
2

]1/2

. (2.38)

The first condition in (2.37) is needed to handle the case where A⃗ and B⃗ are identical. The

reason is that if we directly compute the the fuzzy distance using interval arithmetic, we will get

fuzzy number “about 0” as displayed in Figure 2.6, not singleton fuzzy number 0. Hence, it requires

the special condition.

(a) A1, fuzzy number “about -1”. (b) A2, fuzzy number “about 0”.

(c) d(A⃗, A⃗). (d) (d(A⃗, A⃗))2.

Figure 2.6: Fuzzy Euclidean distance d(A⃗, A⃗) when A⃗ is fuzzy vector ⟨“about -1”, “about 0”⟩.

In LFCM, the fuzzy Euclidean distance is used to calculate memberships uji that is the degree

of belonging of fuzzy vector X⃗j in the ith cluster. We can then change (2.38) to compute the fuzzy
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where (dji)
2 now is the squared fuzzy Euclidean distance between X⃗j and C⃗i, Zj = {i | 1 ≤ i ≤

C and (dji)
2 = 0}, and 0 and S are the singleton fuzzy numbers at 0 and 1/|Zj |, respectively. In

other words, Zj is a set that comprises the indices of patterns that are identical to cluster center C⃗j .

They are identical if the squared distance is equal to zero in the FCM. However, in the LFCM, we

need to check if all level cuts are identical as in the case of fuzzy distance.

We apply the decomposition theorem on (2.40) and arrive at

uji =


⋃

α∈[0,1] αuji, if Zj = ∅

0 if i /∈ Zj

S if i ∈ Zj

 , if Zj ̸= ∅
(2.41)

Therefore we can compute the membership function uji at different α-cuts and combine them

together with some special conditions. Following the equation above, at a given level cut, we use

αuji =

(
α
[
d2ji

])1/(1−m)

∑C
k=1

(
α
[
d2jk

])1/(1−m)
(2.42)

to compute α-cuts of uji. An α-cut of membership uji yields a closed interval α[uji] =
[
α [uji][l] ,

α [uji][r]

]
.

However, we can make use of the property of continuous and nonincreasing function as proven by [7].

Therefore, given α[d2ji] =
[
α
[
d2ji

]
[l]
, α

[
d2ji

]
[r]

]
, we can compute the lower and upper endpoints with

α [uji][l] =

(
α
[
d2ji

]
[r]

)h

(
α
[
d2ji

]
[r]

)h

+
∑C

k ̸=i

(
α
[
d2jk

]
[l]

)h
, (2.43a)

α [uji][r] =

(
α
[
d2ji

]
[l]

)h

(
α
[
d2ji

]
[l]

)h

+
∑C

k ̸=i

(
α
[
d2jk

]
[r]

)h
, (2.43b)

respectively, where h = 1/(1−m). We also need the four corollaries established under Theorem 4.6

in [7] to handle the boundary cases. The special conditions are as follows:

1. If α [dji][r] ̸= 0 and α [djk][l] = 0, ∃k ̸= i, then α [uji][l] = 0.

2. If α [dji][l] =
α [dji][r] = 0 and α [djk][l] ̸= 0, ∃k ̸= i, then α [uji][l] = 1.

3. If α [dji][l] ̸= 0 and α [djk][r] = 0, ∃k ̸= i, then α [uji][r] = 0.

4. If α [dji][l] = 0 and α [djk][r] ̸= 0, ∃k ̸= i, then α [uji][r] = 1.
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Each dimension of C⃗i = ⟨Ci1, . . . , Cip⟩ is computed independently. Based on the decomposition

theorem, the ith cluster center in the dth dimension, C⃗kd, is defined by

Cid =
⋃

α∈[0,1]

αCid (2.45)

where

α [Cid] =

∑N
k=1 (

α[uki])
m
(α[Xkd])∑N

k=1 (
α[uki])

m
(2.46)

and d = 1, . . . , p.

However, the KM algorithms by Karnik and Mendel [12] are used to compute interval weighted

averages in the LFCM prototype update as an alternative to (2.46). We elucidate the KM algorithms

for updating an endpoint of a cluster prototype in Algorithm 2.

Algorithm 2: Prototype update using the KM algorithm

Input: endpoint, α[X
(d)
k ], and (α[uki])

m
,∀k

Output: An endpoint value of α
[
C⃗

(d)
i

]
1 for j ← 1 to n do

2 xj =

{
X⃗

(k)
j[l] if endpoint is “lower”

X⃗
(k)
j[r] if endpoint is “upper”

3 wj = mid(uj)
4 cj = uj[l]

5 dj = uj[r]

6 end
7 xsorted, xindex = sort([x1, x2, . . . , xj , . . . , xn])

8 x̄ = (
∑N

j=1 w
m
j xj)/(

∑N
j=1 w

m
j )

9 for t← 1 to n+ 1 do
10 Find k where xk ≤ x̄ ≤ xk+1

11 left indices = xindex[1 : k]
12 right indices = xindex[k + 1 : n]
13 if endpoint is “lower” then
14 w[left indices] = d[left indices]
15 w[right indices] = c[right indices]

16 else if endpoint is “upper” then
17 w[left indices] = c[left indices]
18 w[right indices] = d[right indices]

// Termination

19 x̄t = (
∑N

j=1 w
m
j xj)/(

∑N
j=1 w

m
j )

20 if |x̄− x̄t| < ϵ then
21 break
22 end
23 x̄ = x̄t

24 end
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2.3.4 Stopping Criteria

There are many ways that people use to terminate numerical clustering algorithms. However, it

becomes more problematic with fuzzy numbers. For instance, how to determine when the cluster

centers stabilize. One can be creative about the termination of the LFCM algorithm. The standard

stopping criterion is based on the dissimilarity between the previous cluster prototypes and the

updated cluster prototypes [7]. But, here we let the LFCM run for a certain number of iterations so

that we can investigate other issues such as the membership spread problem and the uncertainty

associated with the cluster centers.

2.4 Linguistic Possibilistic C-Means

The type-1 fuzzy C-means (FCM) was extended to the type-1 possibilistic C-means (PCM) by

Krishnapuram and Keller [13] back in 1993. The idea of PCM is that the memberships uji does not

need to sum to unity, for all i as they interpret the memberships as typicalities. So, we use the terms

membership and typicality interchangeably for PCM and LFCM. Thus, they relax the probabilistic

constraint defined in (2.32), and the only condition needed is that

uji ∈ [0, 1],∀j = 1, . . . , N and ∀i = 1, . . . , C. (2.47)

The objective function of PCM we need to minimize is

J(B,U ;X) =
C∑
i=1

N∑
j=1

(uji)
m(dji)

2 +
C∑
i=1

ηi

N∑
j=1

(1− uji)
m, (2.48)

where ηi is a suitable positive real number. Now, we can see that there are two components in the

criterion function. The former is exactly the same as the FCM objective function. The latter is there

to keep the memberships as large as possible. Without the second component, PCM will likely to

yield zero memberships.

The PCM membership equation is achieved by [13]

uji =
1

1 +
(

(dji)2

ηi

)1/(m−1)
(2.49)

Notice that we now have one more C-tuple of parameters ⟨ηi⟩ involved. ηi is a suitable positive

number associated with the cluster i. Its value is actually the squared distance where the membership
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is 0.5. For instance, given η1 = 2, u1,1 = 0.5 if (d1,1)
2 = η1 = 2. Hence, ηi are used to determine

the cluster sizes. However, finding good values for the parameters ηi is another big problem. The

authors suggest that ⟨ηi⟩ can be estimated using

ηi = K

∑N
j=1(uji)

m(dji)
2∑N

j=1(uji)m
(2.50)

where K is usually set to 1.

Algorithm 3 summarizes the LPCM clustering algorithm that involves the same steps as in LFCM

but we need to estimate ηi and the membership update equations are different. In terms of the

cluster prototypes, they are updated using Algorithm 2 in the same manner as the LFCM.

Algorithm 3: Linguistic possibilistic C-means (LPCM)

Input: The number of clusters C, the dataset X
Output: The C-tuple of prototypes B, the C-partition matrix U

1 Initialize cluster prototypes C⃗i, i = 1, . . . , C
2 Initialize C-partition matrix U using the LFCM (optional)
3 Set ηi
4 repeat
5 Compute fuzzy Euclidean distance dji,∀j, i using (2.37) and (2.39)
6 Compute membership uji,∀j, i using (2.54) and (2.55)

7 Update cluster prototype C⃗i,∀i using Algorithm 2

8 until Convergence;

We can also estimate the bandwidths ηi in the form of fuzzy numbers. The extension principle

along with the decomposition theorem are used on Equation 2.50, so we arrive at

ηi =
⋃

α∈[0,1]

α[ηi] (2.51)

where

α [ηi] = K

∑N
j=1(

α[uji])
m(α[d2ji])∑N

j=1(
α[uji])m

. (2.52)

Again, we can make use of the KM algorithms to calculate this equation as it is in the form of

weighted average. But in the end, the LPCM treats ηi as real numbers so we need to apply some

defuzzification techniques on ηi if they are computed in the form of fuzzy numbers.
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2.4.1 LPCM Memberships

We can extend (2.49) using the extension principle, thus the expression used to update the LPCM

membership of X⃗j in cluster i becomes

uji =
1

1 +
(

(dji)2

ηi

)1/(m−1)
. (2.53)

Now, we do not need the distances to other clusters, except dji, to update the membership uji. So,

if there are noise points present in the dataset, they will have low memberships (typicalities) as

they should be far away from the clusters. In the framework of LPCM, we can apply the extension

principle to transform Equation 2.53 into the following:

α[uji] =
1

1 +
(

α[d2
ji]

ηi

)1/(m−1)
(2.54)

After that, the decomposition theorem is used to build up the membership uji as a fuzzy number.

So, we arrive at

uji =
⋃

α∈[0,1]

α[uji]. (2.55)

It is really important to note that the parameters ηi used in the LPCM clustering algorithm (in

(2.54)) for our applications are positive real numbers, not fuzzy numbers. So, if ηi are estimated

using (2.51) and (2.52), we need to perform defuzzification to convert fuzzy numbers back to regular

numbers.
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Chapter 3

TYPE-2 FUZZY CLUSTERING

3.1 Linguistic Fuzzy C-Means

3.1.1 LFCM Clustering

To investigate the LFCM, we will take full advantage of synthetic dataset that provides us the

predictable behavior in a controlled manner. Therefore, we choose the fifteen-point butterfly dataset

that was originally created by Ruspini [14], and index them as displayed in Table 3.1.

Table 3.1: Fifteen-point butterfly dataset.

Index x y
1 -3 -2
2 -3 0
3 -3 2
4 -2 -1
5 -2 0
6 -2 1
7 -1 0
8 0 0
9 1 0
10 2 -1
11 2 0
12 2 1
13 3 -2
14 3 0
15 3 2

The patterns 1–7 are symmetrical to the patterns 9–15. So, we expect to see two clusters, each

for one wing. The pattern X⃗8, at [0, 0], is the bridge point that is located in the middle between the

two clusters. That means the prototypical points should be around the 5th and the 11th patterns.
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the lower level cuts of the cluster centers that span several nearby patterns. After that, the cluster

centers spread out and cover the whole space at iteration 2. Without a doubt, the uncertainty is even

larger at iteration 5 when the convergence is assumed to be reached in this case. Here, a problem of

the LFCM is that its uncertainty increases rapidly, not only in the memberships, but also in the

cluster centers. Although the length of the base of a triangular fuzzy number used in this work is

only 1.0, i.e., the input fuzzy vectors are not too fuzzy, the uncertainty is out of control.

(a) Iteration 1. (b) Iteration 2.

(c) Iteration 5. (d) Iteration 10.

Figure 3.2: The resulting cluster centers (colored contours) from running the LFCM with m = 2 on
the fuzzified butterfly dataset (black contours) at different iterations.

It is also important to note that the 1-cuts (the cores) of fuzzy numbers provide intervals that are

degenerate, that is the peaks are not intervals but reduced down to real numbers. This is another

effect of fuzzifying patterns in each dimension with triangular fuzzy numbers. Therefore, they provide

the same result as the regular FCM if we take only the results from the cores. As you can see from

Figure 3.2, the triangle labels illustrates the type-1 FCM cluster centers at different iterations. The

cores of the cluster centers are shifting toward what we expect from the type-1 FCM. At iteration

5, the two cluster centers are at about (−2.15, 0.00) and (2.14, 0.00), respectively. If we cross-check

them against the cluster centers from the FCM, we will get the same results. This confirms that the
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LFCM (type-2) generalizes the FCM (type-1) when triangular fuzzy numbers are used in fuzzification.

We note that if other methods are used to represent the features as fuzzy numbers, this extension will

not be obvious. We use triangles here because they are easy to visualize and to help our intuition.

The supports of the cluster centers almost cover the whole space already at iteration 2. Although

the cores of the cluster centers stop changing after iteration 5, the lower level cuts of the cluster

centers still change. If we let it run for more iteration, the cluster centers at iteration 10 are even

more uncertain as shown in Figure 3.2d.

The problem of membership spread can be seen clearly through the plots of membership functions.

Hence, we show graphically the membership grades—which of course are fuzzy numbers—u1, u7, u8

and u10 in Figure 3.3, Figure 3.4, Figure 3.5 and Figure 3.6, respectively. At iterations 2 to 5, the

membership functions quickly spread out, that is, the uncertainty grows very fast.
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(e) Iteration 5.

Figure 3.3: The membership functions u1,1 and u1,2 from running the LFCM with m = 2 on the
butterfly dataset at different iterations. The black functions represent u1,1, whereas the red functions
represent u1,2.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 1 00 0

(a) Iteration 1.
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Figure 3.4: The membership functions u7,1 and u7,2 from running the LFCM with m = 2 on the
butterfly dataset at different iterations. The black functions represent u7,1, whereas the red functions
represent u7,2. They are both singleton fuzzy numbers at the beginning since the 7th pattern is the
initial cluster center.

31



0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 830 17

(a) Iteration 1.
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Figure 3.5: The membership functions u8,1 and u8,2 from running the LFCM with m = 2 on the
butterfly dataset at different iterations. The black functions represent u8,1, whereas the red functions
represent u8,2.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 00 0 1 0

(a) Iteration 1.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 04 0 96

(b) Iteration 2.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 05 0 95

(c) Iteration 3.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 05 0 95

(d) Iteration 4.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 05 0 95

(e) Iteration 5.

Figure 3.6: The membership functions u10,1 and u10,2 from running the LFCM with m = 2 on
the butterfly dataset at different iterations. The black functions represent u10,1, whereas the red
functions represent u10,2. They are both singleton fuzzy numbers at the beginning since the 10th

pattern is the initial cluster center.

Now consider the memberships of the pattern X⃗10 in the two clusters, u10,1 and u10,2. Figure 3.6

depicts them at different iterations of the LFCM on this dataset. Since X⃗10 is selected to be an initial

cluster center, its u10,1 and u10,2 then are singleton fuzzy numbers (as defined in (2.41)) in the first

iteration. After that, there is an obvious surge in uncertainty of the original membership functions.

Starting at iteration 2 (Figure 3.6b), the uncertainty builds up rapidly. The supports of u10,1 and

u10,2 almost fill up the interval [0, 1]. This is a phenomenon that causes the membership spread issue.

They are even more uncertain as the iterations progress. After iteration 4, the memberships u10,1

and u10,2 for α ∈ [0.0, 0.6] are uninformative as shown in Figure 3.6d. The reason is the possible

value of a grade of membership is in the range between 0 and 1, but our intervals at those α-cuts are

also [0, 1], i.e., the uncertainty is maximum.

Apart from the number of clusters C, the fuzzifier m is another hyperparameter that we need to

pick. We will investigate the effects of different m values such as m ∈ {1.25, 2, 4}.

The LFCM with m = 4

Next, we set m = 4, meaning that we increase the fuzziness through the fuzzifier m that is utilized in

computing both the memberships and the cluster centers. The clustering results at iteration 1, 2 and

5 are depicted in Figure 3.7.
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 5. (d) Iteration 10.

Figure 3.7: The resulting cluster centers (colored contours) from running the LFCM with m = 4 on
the fuzzified butterfly dataset (black contours) at different iterations.

At iteration 1, the cores of the cluster centers are at (−1.73, 0.07) and (2.18,−0.26), respectively.

The LFCM with m = 2 seems to produce more uncertain cluster centers than the LFCM with

m = 4. If we take a closer look at iteration 1, the LFCM with m = 2 has more noticeable uncertainty

in the x-axis than the LFCM with m = 4, especially for the lower level cuts. At iteration 2, the

uncertainty grows rapidly, but not as quickly as when m = 2, i.e., the lower α-cuts do not span the

whole space completely. However, this is still out of control. The peaks of the final cluster centers

are are (−2.03, 0.00) and (2.03, 0.00), respectively, at iteration 10. However, the lower level cuts of

them contain more uncertainty than that of the LFCM with m = 2. Conclusively, setting m = 4

seems to produce less uncertain cluster centers in the beginning, but they have more uncertainty

than that of m = 2 in the end.

Next, let us consider the LFCM memberships u1, u7, u8, and u10 which are plotted in Figures

3.8–3.11. The LFCM membership functions of the pattern X⃗1, u1,1 and u1,2, with m = 4 at iterations

1–5 are illustrated in Figure 3.8. Comparing them with the ones with m = 2 (Figure 3.3), we

observe that m = 4 gives us distinguishable skinnier fuzzy memberships than that of m = 2, i.e., less
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uncertainty. The memberships (at least the peaks) are more closer to 1/C, in this case, 0.5 for m = 4.

However, at iteration 5, the level cuts below 0.6 also become too fuzzy similar to the case of m = 2.
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Figure 3.8: The membership functions u1,1 and u1,2 from running the LFCM with m = 4 on the
butterfly dataset at different iterations. The black functions represent u1,1, whereas the red functions
represent u1,2.
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Figure 3.9: The membership functions u7,1 and u7,2 from running the LFCM with m = 4 on the
butterfly dataset at different iterations. The black functions represent u7,1, whereas the red functions
represent u7,2. They are both singleton fuzzy numbers at the beginning since the 7th pattern is the
initial cluster center.
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Figure 3.10: The membership functions u8,1 and u8,2 from running the LFCM with m = 4 on the
butterfly dataset at different iterations. The black functions represent u8,1, whereas the red functions
represent u8,2.
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Figure 3.11: The membership functions u10,1 and u10,2 from running the LFCM with m = 4 on
the butterfly dataset at different iterations. The black functions represent u10,1, whereas the red
functions represent u10,2. They are both singleton fuzzy numbers at the beginning since the 10th

pattern is the initial cluster center.
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The LFCM with m = 1.25

On the flip side, if the fuzzifier m is reduced down to 1.25, the cluster centers from running the LFCM

are portrayed in Figure 3.12. The cluster centers at iteration 1 show the most obvious difference of

uncertainty between the x-axis and the y-axis. The peaks of the final cluster centers stop moving at

iteration 7. However, the α-cuts where α ∈ [0.4, 1.0] of the cluster centers after iteration 7 are smaller

(they are more certain) as the iterations progress, unlike that of the LFCM with m = 2 or m = 4.

(a) Iteration 1. (b) Iteration 2.

(c) Iteration 5. (d) Iteration 10.

Figure 3.12: The resulting cluster centers (colored contours) from running the LFCM with m = 1.25
on the fuzzified butterfly dataset (black contours) at different iterations.

Figure 3.13, Figure 3.14, Figure 3.15 and Figure 3.16 illustrate the memberships u1, u7, u8 and

u10, respectively, from the LFCM with m = 1.25. The cores of the memberships u1, u7 and u10

are strongly zero or unity, in contrast to the case with m = 4. The uncertainty skyrockets starting

from iteration 2. Hence, m = 1.25 for the LFCM does not provide usefulness in terms of fuzzy

memberships as the shape of them are strange, i.e., the lower level cuts (α < 0.4) are uninformative,

except the higher level cuts that provide the expected membership values (according to the FCM).

So, this can confirm the LFCM converges to the LHCM as m approaches 1 from above (it is similar
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to the case of the FCM).
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Figure 3.13: The membership functions u1,1 and u1,2 from running the LFCM with m = 1.25 on the
butterfly dataset at different iterations. The black functions represent u1,1, whereas the red functions
represent u1,2.
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Figure 3.14: The membership functions u7,1 and u7,2 from running the LFCM with m = 1.25 on the
butterfly dataset at different iterations. The black functions represent u7,1, whereas the red functions
represent u7,2. They are both singleton fuzzy numbers at the beginning since the 7th pattern is the
initial cluster center.
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Figure 3.15: The membership functions u8,1 and u8,2 from running the LFCM with m = 1.25 on the
butterfly dataset at different iterations. The black functions represent u8,1, whereas the red functions
represent u8,2.
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Figure 3.16: The membership functions u10,1 and u10,2 from running the LFCM with m = 1.25 on
the butterfly dataset at different iterations. The black functions represent u10,1, whereas the red
functions represent u10,2. They are both singleton fuzzy numbers at the beginning since the 10th

pattern is the initial cluster center.

Figure 3.17 shows the U -uncertainty values of the first cluster prototype, U(C⃗1), from the LFCM
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with different m values. One could notice that as m is larger, the uncertainty of C⃗1 increases. Also,

if we use the uncertainty of cluster centers to be one of the criteria, the bigger m tends to have a

slower convergence.
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Figure 3.17: Plot of U -uncertainty values of the first cluster center, U(C⃗1), from the LFCM with
different m values.

3.2 Dampening Approaches

As stated earlier, we found the uncertainty problem, both in the memberships and the corresponding

cluster centers, in the type-2 FCM. Thus, it is possible to mitigate the problem by applying some

dampening approaches to the membership functions. Here, we discuss three different dampening

approaches to keep the uncertainty under control including 1) vertical cut dampening, 2) linear

dampening, and 3) reflection dampening.
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α-cuts for finding the support and the core is as described above. Therefore, these steps are defined

mathematically as:

αAreflection =


[aα, 2x

′ − aα] if x′ − x1 < x3 − x′

[2x′ − bα, bα] otherwise

(3.7)

where [aα, bα] is the closed interval from the α-cut of the original membership function. We also need

(3.6) to handle the edge cases.

3.2.4 Comparison Between Dampening Approaches

For the comparison sake, we perform the LFCM on the fuzzified butterfly dataset with the dampening

approaches using the same setting as described earlier with the fixed m = 2. We provide a comparison

between the membership functions with and without the dampening methods. Figure 3.21 displays

the membership functions u8,1 (black) and u8,2 (red) with and without dampening methods. As the

8th pattern is closer to the first cluster prototype, the membership function (fuzzy number) u8,1 is

then larger than u8,2. The peaks of them sum to 1 due to the probabilistic constraint on the sum of

memberships of the FCM algorithm. Again, this also confirms that the results are somewhat what we

expect to see from the type-2 FCM based on the results from the type-1 FCM. We can clearly observe

that the original membership functions are very wide, i.e., uncertainty is large. But after employing

any proposed dampening methods, we trade in some information for the lesser uncertainty. This is

the direct effect of the dampening approaches on the membership functions. As mentioned before,

the original membership functions tend to spread on one side. Therefore, we make use of this fact to

apply the reflection dampening to reflect the thinner side and also preserve the original shape of the

membership function. Among all three proposed dampening approaches, reflection dampening seems

to provide the best dampening method and is our preference. The cluster prototypes associated

with the linear dampening with γ = 0.5 are still quite uncertain. The vertical cut dampening with

β = 0.8—the simplest method to implement—applied to membership functions results in the least

uncertainty, nonetheless it does not retain the original shapes of the membership functions. Hence,

the reflection dampening method is the method of choice.
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Figure 3.21: Comparing membership functions u8 with different dampening approaches at iteration
1 of the LFCM. u8,1 and u8,2 are colored as black and red, respectively. From top to bottom: the
original membership functions u8,i, the vertical cut dampened u8,i with β = 0.8, the linear dampened
u8,i with γ = 1.0, the liner dampened u8,i with γ = 0.5, and the reflection dampened u8,i, where
i = 1, 2.

The LFCM with m = 2 and the vertical cut dampening (β = 0.8)

First, we set the hyperparameter of the vertical cut dampening β to be 0.8. It determines the levels

that we will dampen in a membership function. Considering the vertical cut dampening approach, we

can think of it as instead of taking the results from all level cuts, but only some level cuts that have

α > β. The reason is because the lower level cuts just duplicate the β-cut. Figure 3.22, Figure 3.23,

Figure 3.24 and Figure 3.25 shows the memberships u1, u7, u8 and u10 over iterations. We observe

that the uncertainty of the memberships is much less than that of the original ones. This helps us

see the values of the memberships in terms of fuzzy numbers easier.
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Figure 3.22: The vertical cut dampened LFCM membership functions u1,1 and u1,2 with m = 2
and β = 0.8 at different iterations. The black functions represent u1,1, whereas the red functions
represent u1,2.
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Figure 3.23: The vertical cut dampened LFCM membership functions u7,1 and u7,2 with m = 2
and β = 0.8 at different iterations. The black functions represent u7,1, whereas the red functions
represent u7,2. They are both singleton fuzzy numbers at the beginning since the 7th pattern is the
initial cluster center.
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Figure 3.24: The vertical cut dampened LFCM membership functions u8,1 and u8,2 with m = 2
and β = 0.8 at different iterations. The black functions represent u8,1, whereas the red functions
represent u8,2.
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Figure 3.25: The vertical cut dampened LFCM membership functions u10,1 and u10,2 with m = 2
and β = 0.8 at different iterations. The black functions represent u10,1, whereas the red functions
represent u10,2. They are both singleton fuzzy numbers at the beginning since the 10th pattern is the
initial cluster center.

In terms of the resulting cluster centers calculated from the vertical cut dampened memberships

with β = 0.8, they are illustrated in Figure 3.26. Applying the vertical cut dampening method also
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indirectly affects the cluster centers as a result. Obviously, the peaks at different iterations are

similar to the peaks from the memberships without dampening. As β = 0.8 is used here, the level

cuts below 0.8 are identical to the 0.8-cuts. It can be viewed as a convenient method to eliminate

the uncertainty of the lower level cuts that explodes into the space rapidly. This helps us to not get

distracted by the uncertainty that is out of control. Also, after applying the vertical cut dampening

in this case, we can clearly see that these two cluster centers are the reflection of each other.

(a) Iteration 1. (b) Iteration 2.

(c) Iteration 5. (d) Iteration 10.

Figure 3.26: The resulting cluster centers (colored contours) from running the LFCM with m = 2
on the fuzzified butterfly dataset (black contours) at different iterations. The memberships used to
compute these cluster centers are dampened with the vertical cut dampening approach with β = 0.8.

The LFCM with m = 2 and the linear dampening (γ = 0.5)

Next, let us consider the linear dampening approach that can be employed to mitigate the uncertainty

problem. Again, the same setting used in the vertical cut dampening experiment is also used here

but the dampening approach applied onto the memberships is the linear dampening with γ = 0.5.

The dampened memberships u1, u7, u8, u10 are depicted in Figure 3.27, Figure 3.28, Figure 3.29,

Figure 3.30, respectively. One nice advantage of the linear dampening is that it always gives us the

triangular memberships as shown in Figure 3.27. This comes from the fact that it operates on the
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estimated left and right slopes of any given membership function. Doing so can help reduce the

computational complexity because one could compute only a few α-cuts, for instance, α ∈ 0.0, 0.5, 1.0,

and interpolate the level cuts between them using linear equations.
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Figure 3.27: The linear dampened LFCM membership functions u1,1 and u1,2 with m = 2 and γ = 0.5
at different iterations. The black functions represent u1,1, whereas the red functions represent u1,2.
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Figure 3.28: The linear dampened LFCM membership functions u7,1 and u7,2 with m = 2 and γ = 0.5
at different iterations. The black functions represent u7,1, whereas the red functions represent u7,2.
They are both singleton fuzzy numbers at the beginning since the 7th pattern is the initial cluster
center.
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Figure 3.29: The linear dampened LFCM membership functions u8,1 and u8,2 with m = 2 and γ = 0.5
at different iterations. The black functions represent u8,1, whereas the red functions represent u8,2.
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Figure 3.30: The linear dampened LFCM membership functions u10,1 and u10,2 with m = 2 and
γ = 0.5 at different iterations. The black functions represent u10,1, whereas the red functions represent
u10,2. They are both singleton fuzzy numbers at the beginning since the 10th pattern is the initial
cluster center.
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As portrayed in Figure 3.31, the cluster centers, computed from the linear dampened memberships

with γ = 0.5, contain more uncertainty compared to the ones with vertical cut dampening, but

contain less uncertainty compared to the original ones. The good here is that the uncertainty is

suppressed to the point that the lower level cuts do not spread over the space, even at iteration 10.

(a) Iteration 1. (b) Iteration 2.

(c) Iteration 5. (d) Iteration 10.

Figure 3.31: The resulting cluster centers (colored contours) from running the LFCM with m = 2
on the fuzzified butterfly dataset (black contours) at different iterations. The memberships used to
compute these cluster centers are dampened with the linear dampening approach with γ = 0.5.

The LFCM with m = 2 and the reflection dampening

The last dampening approach—the reflection dampening—is employed here along with the same

setting. Again, we would like to make a comparison between them. This dampening method does

not require any hyperparameter to be set. The reflection dampened memberships u1, u7, u8, u10

are depicted in Figure 3.32, Figure 3.33, Figure 3.34, Figure 3.35, respectively. The essence of this

approach is to take the thinner side and reflect around the peak. It helps preserve the original shape

of the membership to some extent. The cores are still the same as the original. The singleton fuzzy

numbers passed onto the reflection dampening should not be modified as illustrated in Figure 3.33a

and Figure 3.30a.
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Figure 3.32: The reflection dampened LFCM membership functions u1,1 and u1,2 with m = 2 and
γ = 0.5 at different iterations. The black functions represent u1,1, whereas the red functions represent
u1,2.
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Figure 3.33: The reflection dampened LFCM membership functions u7,1 and u7,2 with m = 2 and
γ = 0.5 at different iterations. The black functions represent u7,1, whereas the red functions represent
u7,2. They are both singleton fuzzy numbers at the beginning since the 7th pattern is the initial
cluster center, and they are not affected by the reflection dampening.
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Figure 3.34: The reflection dampened LFCM membership functions u8,1 and u8,2 with m = 2 and
γ = 0.5 at different iterations. The black functions represent u8,1, whereas the red functions represent
u8,2.
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Figure 3.35: The reflection dampened LFCM membership functions u10,1 and u10,2 with m = 2
and γ = 0.5 at different iterations. The black functions represent u10,1, whereas the red functions
represent u10,2. They are both singleton fuzzy numbers at the beginning since the 10th pattern is the
initial cluster center, and they are not affected by the reflection dampening.

Apart from the memberships that are directly dampened using the reflection dampening, we

also observe the indirect effect on the cluster centers. Here, the cluster centers, calculated from the

47



reflection dampened memberships, have smaller uncertainty compared to the original ones. This is

the indirectly effect of applying such a dampening method to the memberships.

(a) Iteration 1. (b) Iteration 2.

(c) Iteration 5. (d) Iteration 10.

Figure 3.36: The resulting cluster centers (colored contours) from running the LFCM with m = 2
on the fuzzified butterfly dataset (black contours) at different iterations. The memberships used to
compute these cluster centers are dampened with the reflection dampening approach.

Figure 3.37 is a plot of U -uncertainties of the first cluster center over iterations when the LPCM

with m = 2 is executed with different dampening methods. U(C⃗1) obviously increases over time with

no dampening. If one of the three dampening approaches is applied on the membership functions,

the uncertainties are much less. Among the methods, the vertical cut with β = 0.8 has the strongest

effect that shrinks the uncertainties, followed by the reflection dampening. Since the U -uncertainty

is computed based on the nonspecificity of a fuzzy set, the linear dampening approach—that always

makes the resulting membership function a triangle—is likely to have higher uncertainty than the

other approaches (in this case γ = 0.5). As we know from the membership spread problem, one side

of a membership function tends to be a long tail. While the vertical cut dampening and the reflection

dampening remove the long tail side, the linear dampening does not cut the side but just dampens it

to some degree, see also Figure 3.21.
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Figure 3.37: Plot of U -uncertainty values of the first cluster center C⃗1 from the LFCM with m = 2
and different dampening methods on the fuzzified butterfly dataset.

To summarize, the vertical cut dampening is the simplest dampening to implement among the

three methods. It removes the level cuts lower than β by setting them to be equal to β [uji]. The

linear dampening estimates the slopes around the peak and dampen the slopes to some degree.

It can be employed, not only to mitigate the membership spread problem, but also reduce the

computational complexity if we apply interpolation between α-cuts. The third dampening method,

reflection dampening, is capable of preserving the original shape of the membership by reflecting the

side (from the peak) with the lesser uncertainty and reflect it around the peak. It also does not need

any parameter to set to dampen the memberships

So, we are able to maintain the uncertainty in the memberships as the membership functions can

be dampened using the dampening approaches. They result in the thinner membership functions

when compared to the original ones. In other words, the uncertainty from the characteristic of

LFCM and LPCM is effectively suppressed, not only at a single iteration, but also over iterations. In

addition, they also have indirect effects on the updated cluster centers. The uncertainty associated

with the cluster centers can be shrunk, especially for the lower level cuts.
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3.3 Linguistic Possibilistic C-Means

As we saw the memberships and cluster centers produced from the LFCM with different m values,

and also with and without dampening methods, it would be interesting to see how the LFCM works

if the dataset contains some noise. Therefore, we add an outlier to the fuzzified butterfly patterns as

the 16th pattern. We call this dataset the butterfly+outlier dataset. Figure 3.38 depicts how the

dataset looks like after the outlier at [0, 10] is added.

Figure 3.38: The top-down contour plot of the fuzzified butterfly+outlier dataset visualized in
2-dimensional space. There are 15+1 crisp points that are converted into 16 fuzzy vectors. Triangular
fuzzy number is used in each dimension. The first 15 fuzzy vectors are indexed as shown Figure 3.1.
The outlier is labeled as the 16th fuzzy vector.

The LFCM with m = 2

Figure 3.39 provides the type-2 cluster centers at different iterations resulting from the LFCM with

m = 2. We can see that, at iteration 2, the uncertainty grows very fast toward the outlier (along the

y-axis). The peaks of the final cluster centers are (−2.05, 0.44) and (2.05, 0.44) which differ from

those of the fuzzifier butterfly dataset without the outlier. The y locations are pulled up from 0.00

to 0.44 as they are influenced by the outlier, even it is further away. According to this experiment
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that involves only one outlier, it demonstrates that the LFCM is susceptible to noise.

(a) Iteration 1. (b) Iteration 2.

(c) Iteration 5. (d) Iteration 10.

Figure 3.39: The resulting cluster centers (colored contours) from running the LFCM with m = 2 on
the fuzzified butterfly+outlier dataset (black contours) at different iterations.

The LFCM memberships u1, u7, u8 and u10 of the LFCM with m = 2 on the dataset are portrayed

in Figures 3.40–3.43. Comparing them against that of the LFCM with m = 2 on the butterfly dataset

does not give us much noticeable difference.

Even more importantly, the added outlier fuzzy vector in the butterfly+outlier dataset has an

influence on the resulting cluster centers according to (2.44). Figure 3.44 shows the membership

functions u16,1 and u16,2 from iteration 1 to iteration 5. Since the relative distances from the outlier

X⃗16 to the cluster centers are equal, then the memberships are about 0.5 in the end. It is the

same thing happens with u8, but they are different “about 0.5” fuzzy sets, see Figure 3.42e versus

Figure 3.44e.
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Figure 3.40: The membership functions u1,1 and u1,2 from running the LFCM with m = 2 on the
butterfly+outlier dataset at different iterations. The black functions represent u1,1, whereas the red
functions represent u1,2.
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Figure 3.41: The membership functions u7,1 and u7,2 from running the LFCM with m = 2 on the
butterfly+outlier dataset at different iterations. The black functions represent u7,1, whereas the red
functions represent u7,2.
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Figure 3.42: The membership functions u8,1 and u8,2 from running the LFCM with m = 2 on the
butterfly+outlier dataset at different iterations. The black functions represent u8,1, whereas the red
functions represent u8,2.
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Figure 3.43: The membership functions u10,1 and u10,2 from running the LFCM with m = 2 on the
butterfly+outlier dataset at different iterations. The black functions represent u10,1, whereas the red
functions represent u10,2.
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Figure 3.44: The membership functions u16,1 and u16,2 from running the LFCM with m = 2 on the
butterfly+outlier dataset at different iterations. The black functions represent u16,1, whereas the red
functions represent u16,2.

The LPCM with m = 2 and η1 = η2 = 4

Now, here comes the LPCM. What if we run the LPCM on the butterfly+outlier dataset with the

same setting? Since the LPCM requires not only the fuzzifier m, but also the ηi to be set, we need

to set ηi for i = 1, 2. However, finding a good choice of ηi is another challenging problem one would

encounter when using PCM or LPCM. But it is more difficult for the latter, so we will not cover

this issue in this study. Since we know from the PCM algorithm that the values of ηi determine the

squared distances (dji)
2 at which the memberships cross 0.5 (see (dji)

2/ηi in (2.49)), we will use

this knowledge along with the crisp butterfly patterns. The crisp cluster centers are expected to be

at (−2, 0) and (2, 0), respectively. The patterns 1-7 must belong to the first cluster, whereas the

patterns 9-15 must belong to another cluster. The bridge point X⃗8 could be in either cluster. Hence,

we compute the squared Euclidean distance between X⃗5 and X⃗8 (between (−2, 0) and (0, 0)), which

is (−2− 0)2 + (0− 0)2 = 4. to set η1 and η2. All in all, we set η1 = η2 = 4 for the sake of simplicity

in this experiment without varying the parameters. From now on, the LPCM cluster algorithm will

run from scratch with no extra initialization (e.g., running LFCM beforehand).

Let us run the LPCM with m = 2 (the same fuzzifier value as the previous experiment) and

η1 = η2 = 4. Figure 3.45 displays the LPCM cluster centers for the butterfly+outlier dataset at

different iterations. The cores of the final cluster centers finally become ⟨(−1.28, 0.00), (1.28, 0.00)⟩

after the convergence at iteration 28. We also see that it requires more iterations, as contrasted to

the case of LFCM, to reach the convergence. The uncertainty builds up rapidly, except the 1-cuts

that are degenerate intervals. Nonetheless, all the α-cuts of the cluster centers do not shift toward

the outlier. This does affirm that the LPCM is not sensitive to noise.
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 28.

Figure 3.45: The resulting cluster centers (colored contours) from running the LPCM with m = 2
and η1 = η2 = 4 on the fuzzified butterfly+outlier dataset (black contours) at different iterations.

The LPCM with m = 1.25 and η1 = η2 = 4

As can be seen earlier, the cluster centers of the LPCM algorithm on the butterfly+outlier dataset

with m = 2 and η1 = η2 = 4 are not the best. We expect their final cluster centers, especially the

cores, to be about ⟨(−2.00, 0.00), (2.00, 0.00)⟩ which are close to that of the LFCM with m = 2.

Now let’s reduce the fuzzifier m to 1.25. Figure 3.46 portrays the cluster centers of the LPCM with

m = 1.25 and η1 = η2 = 4 at various iterations. At iteration 2, the uncertainty grows swiftly for the

lower α-cuts. The supports of the cluster centers span the patterns 1–15 at iteration 3. The cores of

the cluster centers stop changing at iteration 10, and are located at (−1.83, 0.00) and (1.83, 0.00),

respectively, as shown in Figure 3.46f. The convergence is reached at iteration 28 when all level cuts

of the cluster centers is unchanging. This is much better than the LPCM with m = 2. Again, the

α-cuts of the cluster centers do not shift toward the outlier. Hence, the LPCM is capable of handling

noise.
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

(e) Iteration 10. (f) Iteration 28.

Figure 3.46: The resulting cluster centers (colored contours) from running the LPCM with m = 1.25
and η1 = η2 = 4 on the fuzzified butterfly+outlier dataset (black contours) at different iterations.

Like the LFCM algorithm, the memberships of LPCM also have the membership spread problem.

Let’s see the memberships (typicalities) from the LPCM with m = 1.25, η1 = η2 = 4 and no

dampening method applied on the memberships. Figures 3.47–3.51 illustrate the memberships u1, u7,

u8, u10 and u16. At iteration 1, The locations of X⃗1 and X⃗7 are closer to the first cluster center C⃗1,

then u1,1 > u1,2, and u7,1 > u7,2, considering the peaks. As the iterations progress, the uncertainty

quickly builds up to the point where almost all α-cuts are uninformative for α ∈ [0, 0.8], i.e., they are
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close to the interval [0, 1]. That is the case for all fuzzy vectors except the outlier. Nevertheless, the

peaks of the memberships are still theoretically accurate. At iteration 28, the bridge point X⃗8 has

“about 0.67” memberships u8,1 and u8,2 which the cores come from 1
1+(3.35/4)(1/(1.25−1)) = 0.67. We

can see that u8,1 = u8,2 because the relative distances from the bridge point to the cluster centers

are equal (we have the perfect symmetry here).
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Figure 3.47: The membership functions u1,1 and u1,2 from running the LPCM with m = 1.25 and
η1 = η2 = 4 on the butterfly+outlier dataset at different iterations. The black functions represent
u1,1, whereas the red functions represent u1,2.
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Figure 3.48: The membership functions u7,1 and u7,2 from running the LPCM with m = 1.25 and
η1 = η2 = 4 on the butterfly+outlier dataset at different iterations. The black functions represent
u7,1, whereas the red functions represent u7,2.
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Figure 3.49: The membership functions u8,1 and u8,2 from running the LPCM with m = 1.25 and
η1 = η2 = 4 on the butterfly+outlier dataset at different iterations. The black functions represent
u8,1, whereas the red functions represent u8,2.
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Figure 3.50: The membership functions u10,1 and u10,2 from running the LPCM with m = 1.25 and
η1 = η2 = 4 on the butterfly+outlier dataset at different iterations. The black functions represent
u10,1, whereas the red functions represent u10,2.

Figure 3.51 shows that the LPCM memberships u16,1 and u16,2 of the outlier X⃗16 are fuzzy

number “about 0”, thin, and very close to singleton fuzzy number zero, at all iterations. The reason

is that the outlier X⃗16 are very far away from the two cluster centers C⃗1 and C⃗2.
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Figure 3.51: The membership functions u16,1 and u16,2 from running the LPCM with m = 1.25 and
η1 = η2 = 4 on the butterfly+outlier dataset at different iterations. The black functions represent
u16,1, whereas the red functions represent u16,2.

Also, ηi = 4 for i = 1, 2 obviously have the influence on the LPCM memberships. Figure 3.52

displays the plot of the PCM typicalities when m = 1.25 and ηi = 4. If the squared distance is about

15, the typicality approaches zero. The core of the outlier X⃗16 is (0.00, 10.00). The core of the first

cluster center at the convergence is (−1.83, 0.00). The squared Euclidean distance between the two

is (d16,1)
2 = (0.00− (−1.83))2 + (10.00− 0.00)2 = 103.35 which is very large. It is also the case for

(d16,2)
2 because the dataset is symmetric. Hence, the typicalities u16,1 and u16,2 are very small and

almost identical to singleton fuzzy number zero.
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Figure 3.52: Plot of (2.49) when ηi = 4.

Now, what if we apply some dampening approaches to the LPCM with m = 1.25 and η1 =

η2 = 4. In this experiment, we choose the reflection dampening approach to solve the membership

spread problem because it does not require any parameter and also preserve the original shapes of

memberships to some extent.

Figure 3.53 shows the plot of U -uncertainties of the LPCM with m = 1.25 and different dampening

methods. One could observe that the reflection dampening here results in the least uncertainties

U(C⃗1) over iterations. However, the vertical cut with β = 0.8 in this case results in undesirable

uncertainties. That is, after iteration 12, the memberships spread problem unexpectedly comes back,

and shortly after that, the two cluster centers span the whole space again (now they are identical to

the original ones). It also shows that the uncertainty associated with LPCM is more problematic

than the uncertainty involved in LFCM. Then, we show the clustering results of the LPCM with

m = 1.25 in combination with the reflection dampening next.
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Figure 3.53: Plot of U -uncertainty values of the first cluster center C⃗1 from the LPCM with m = 1.25
and different dampening methods.

The LPCM with m = 1.25, η1 = η2 = 4 and the reflection dampening

Figure 3.54 shows the clustering results of the LPCM with m = 1.25, η1 = η2 = 4 and the reflection

dampening employed on the memberships. The good news here is that it reaches convergence much

faster (10 iterations versus 28 iterations) considering all α-cuts of the cluster centers. Although the

LPCM with m = 1.25 without dampening on the memberships no longer shifts the 1-cuts of the

cluster centers after iteration 10, it needs 18 more iterations to actually converge if all α-cuts are

taken into account. This is why the dampening methods are important as they can not only mitigate

the membership spread problem directly, but also aid in convergence indirectly.
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

(e) Iteration 5. (f) Iteration 10.

Figure 3.54: The resulting cluster centers (colored contours) from running the LPCM with m = 1.25
and η1 = η2 = 4 on the fuzzified butterfly+outlier dataset (black contours) at different iterations.
The memberships used to compute these cluster centers are dampened with the reflection dampening
approach.

Figures 3.55–3.59 shows the membership functions uji where j ∈ {1, 7, 8, 10, 16} and i ∈ {1, 2} of

the LPCM with m = 1.25 and η1 = η2 = 4 with the reflection dampening. The cores of the original

memberships u7 and u10 (see Figure 3.48 and Figure 3.50) are either zero or unity. So, with reflection

dampening, the resulting memberships are almost singleton fuzzy numbers, but they are not true

singletons.
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Figure 3.55: The reflection dampened membership functions u1,1 and u1,2 from running the LPCM
with m = 1.25 and η1 = η2 = 4 on the butterfly+outlier dataset at different iterations. The black
functions represent u1,1, whereas the red functions represent u1,2.
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Figure 3.56: The reflection dampened membership functions u7,1 and u7,2 from running the LPCM
with m = 1.25 and η1 = η2 = 4 on the butterfly+outlier dataset at different iterations. The black
functions represent u7,1, whereas the red functions represent u7,2.
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Figure 3.57: The reflection dampened membership functions u8,1 and u8,2 from running the LPCM
with m = 1.25 and η1 = η2 = 4 on the butterfly+outlier dataset at different iterations. The black
functions represent u8,1, whereas the red functions represent u8,2.
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Figure 3.58: The reflection dampened membership functions u10,1 and u10,2 from running the LPCM
with m = 1.25 and η1 = η2 = 4 on the butterfly+outlier dataset at different iterations. The black
functions represent u10,1, whereas the red functions represent u10,2.
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Figure 3.59: The reflection dampened membership functions u16,1 and u16,2 from running the LPCM
with m = 1.25 and η1 = η2 = 4 on the butterfly+outlier dataset at different iterations. The black
functions represent u16,1, whereas the red functions represent u16,2. Note that the memberships in
both cluster approach 0 quickly.

The LPCM with m = 6, η1 = η2 = 4

Figure 3.60 shows the results from running the LPCM clustering algorithm with the fuzzifier m = 6.

Changing the fuzzifier m to 6 obviously affects the cluster prototypes. Iteration 3 is when we start to

see the two cluster centers shift toward each together. As the iterations progress, they move closer to

the bridge point, X⃗8. Finally, we get coincident clusters at iteration 18 as displayed in Figure 3.60f.

Even though, the 1-cuts of the cluster centers stop changing at iteration 18, the lower α-cuts still

change.
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

(e) Iteration 8. (f) Iteration 18.

Figure 3.60: The resulting cluster centers (colored contours) from running the LPCM with m = 6
and η1 = η2 = 4 on the fuzzified butterfly+outlier dataset (black contours) at different iterations.

Figure 3.61 depicts the memberships uji where j ∈ {1, 7, 8, 10, 16} and i ∈ {1, 2} at iteration 40.

Since the cluster centers form a coincident cluster, the LPCM memberships of each cluster in both

clusters, uj,1 and uj,2, are identical for all i = 1, 2, . . . , 16.
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Figure 3.61: The membership functions from running the LPCM with m = 6 and η1 = η2 = 4 on
the butterfly+outlier dataset at iterations 40. The black functions represent uj,1, whereas the red
functions represent uj,2 for j ∈ {1, 7, 8, 10, 16}.

The LPCM with m = 6, η1 = η2 = 4 and the reflection dampening

Again, to shrink the uncertainty associated with the LPCM with m = 6 and η1 = η2 = 4, we apply

reflection dampening on the membership functions in this experiment. Figure 3.62 shows the two

cluster centers, C⃗1 and C⃗2, at different iterations. It is worthy of attention that the uncertainty of the

coincident cluster centers shrinks after iteration 11, see Figure 3.62f, Figure 3.62g and Figure 3.62h.

The coincident cluster centers obviously have less uncertainty at iteration 18 than that of iteration 11.

Why does this happen? The answer lies in the membership functions which we will investigate next.
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

(e) Iteration 8. (f) Iteration 11.

(g) Iteration 14. (h) Iteration 18.

Figure 3.62: The resulting cluster centers (colored contours) from running the LPCM with m = 6
and η1 = η2 = 4 on the fuzzified butterfly+outlier dataset (black contours) at different iterations.
The memberships used to compute these cluster centers are dampened with the reflection dampening
approach. 65



Here, we focus on the LPCM membership functions u8,1 and u8,2. Figure 3.63 shows the

comparison between the original memberships (the first row), the reflection dampened memberships

(the second row), and the vertical cut dampened memberships (the third row), at iterations 11–14

and 18. The memberships u8,1 and u8,2 shift toward “about 1” (it is easier to look at only the 1-cuts)

as the coincident cluster centers move to (0.00, 0.00). Reflection dampening takes the thinner side

of a membership and reflects across the peak. As the memberships move toward “about 1”, the

right sides are thinner. Thus, the consequence of the reflection dampening here is shrinking the

uncertainty. This does not occur if we employ the vertical cut dampening.
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Figure 3.63: The LPCM membership functions u8,1 and u8,2 from running the LPCM with m = 6 and
η1 = η2 = 4 on the butterfly+outlier dataset at different iterations. The black functions represent u1,1,
whereas the red functions represent u1,2. The first row, (a) to (e), shows the original memberships.
The second row, (f) to (j), shows the reflection dampened memberships. The third row, (k) to (o)
shows the vertical cut dampened memberships with β = 0.8.

Figure 3.64 shows the U -uncertainties of the first cluster center from the LPCM with various

fuzzifier m values. Unlike the LFCM, shown in Figure 3.17, the uncertainty is not directly proportional

to the value of m.
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Figure 3.64: Plot of U -uncertainty values of the first cluster center, U(C⃗1), from the LPCM with
different m values.

3.4 Data Fuzziness

Next, let us increase the fuzziness of each fuzzy vector in the butterfly+outlier dataset. It is done by

increasing the width of all fuzzy numbers from 0.5 to 2.0. The butterfly+outlier is now altered to be

a new dataset named butterfly+outlier2 with the widths of triangular fuzzy numbers being 2.0, or

w = 2.0, as depicted in Figure 3.65. Earlier, each fuzzy vector does not overlap the others. Now,

using w = 2.0, the input fuzzy vectors overlap nearby fuzzy vectors, i.e., at least the half of a fuzzy

vector covers another fuzzy vector, except the outlier.
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Figure 3.65: The butterfly+outlier2 dataset fuzzified using triangular fuzzy numbers with the width
of 2.

The LFCM with m = 2

The LFCM with m = 2 is run on the butterfly+outlier2 dataset (w = 2.0). The resulting fuzzy

vectors of cluster centers at different iterations are portrayed in Figure 3.66. We can compare them

with the cluster centers from the butterfly+outlier dataset (w = 0.5) in Figure 3.39. As the fuzziness

of the input fuzzy vectors are larger, the resulting cluster centers contains more uncertainty. Since

we use triangular fuzzy numbers, the 1-cuts of the cluster centers are still exactly the same as when

we use w = 0.5. That is the final cluster centers are pulled up toward the outlier, thus their cores end

up at (−2.05, 0.44) and (2.05, 0.44), respectively, because the memberships depend on the relative

distances to all input vectors. represented by the lower α-cuts explodes quickly.
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 5. (d) Iteration 10.

Figure 3.66: The resulting cluster centers (colored contours) from running the LFCM with m = 2 on
the fuzzified butterfly+outlier2 dataset (black contours) at different iterations.

Now let us consider the memberships, u1, u7, u8, u10 and u16 shown in Figure 3.67, Figure 3.68,

Figure 3.69, Figure 3.70 and Figure 3.71, respectively. They can be compared against that of the

LFCM with m = 2 on the butterfly+outlier dataset (that contains less uncertainty). At iteration

1, the memberships, except u7 and u10 that are the initial cluster prototypes, have very large

uncertainty. The α-cuts of u8,1 and u8,2 where α ∈ [0, 0.6] are obviously uninformative. The 1-cuts

of the memberships are identical to that of the LFCM with m = 2 on the butterfly+outlier due

to the fact that we use triangular fuzzy numbers to fuzzify the datasets. As we discussed, even at

the first iteration, the uncertainty grows quickly. Hence, there is no doubt that the uncertainty at

iteration 10 is very large. For example, the α-cuts of u16,1 and u16,2 where α ∈ [0.0, 0.9] are totally

uninformative as they are [0, 1]. Only the cores and some lower level cuts are what we expect (based

on the results from the regular FCM). This is where the dampening approaches can be employed to

solve the uncertainty that are out of control.
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Figure 3.67: The membership functions u1,1 and u1,2 from running the LFCM with m = 2 on the
butterfly+outlier2 dataset at different iterations. The black functions represent u1,1, whereas the red
functions represent u1,2.
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Figure 3.68: The membership functions u7,1 and u7,2 from running the LFCM with m = 2 on the
butterfly+outlier2 dataset at different iterations. The black functions represent u7,1, whereas the red
functions represent u7,2.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 830 17

(a) Iteration 1.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 60 4

(b) Iteration 2.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 520 48

(c) Iteration 3.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 50 5

(d) Iteration 5.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 50 5

(e) Iteration 10.

Figure 3.69: The membership functions u8,1 and u8,2 from running the LFCM with m = 2 on the
butterfly+outlier2 dataset at different iterations. The black functions represent u8,1, whereas the red
functions represent u8,2.
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Figure 3.70: The membership functions u10,1 and u10,2 from running the LFCM with m = 2 on the
butterfly+outlier2 dataset at different iterations. The black functions represent u10,1, whereas the
red functions represent u10,2.
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Figure 3.71: The membership functions u16,1 and u16,2 from running the LFCM with m = 2 on the
butterfly+outlier2 dataset at different iterations. The black functions represent u16,1, whereas the
red functions represent u16,2.

The LPCM with m = 2 and η1 = η2 = 4

What about running the LPCM algorithm on the butterfly+outlier2 dataset? Here we choose

η1 = η2 = 4 and set m = 2. Figure 3.72 show the clustering results at various iterations. We can

obviously see the lower level cuts of the cluster centers shift toward the outlier starting from iteration

2. At iteration 5, they span the whole space including the outlier fuzzy vector. Since the input fuzzy

vectors are fuzzier (as the width of each fuzzy number is large), the 1-cuts of the final cluster centers

are (−1.28, 0.00) and (1.29, 0.00), respectively, at iteration 20. Actually, we expect the cores of the

final cluster centers to be somewhere around (−2.00, 0.00) and (2.00, 0.00), respectively. Hence, this

is likely that we will get a coincident cluster from running the LPCM on the butterfly+outlier2

dataset which contains high uncertainty.

Also, the lower level cuts of the cluster centers span the whole space including the outlier.

Although the LPCM clustering algorithm is capable of dealing with noise, but in this case, the input

fuzzy vectors are too uncertain to the point that some lower α-cuts are uncertain toward the noise.
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 7. (d) Iteration 20.

Figure 3.72: The resulting cluster centers (colored contours) from running the LPCM with m = 2
and η1 = η2 = 4 on the fuzzified butterfly+outlier2 dataset (black contours) at different iterations.

The LPCM with m = 4 and η1 = η2 = 4

So, to confirm that a coincident cluster can appear, we set the fuzzifier m to be equal to 4. Figure 3.73

depicts the clustering results at different iterations when LPCM is run with m = 4. The LPCM

converges at iteration 31. If we consider only the cores of the final cluster centers, we can see that we

can actually get a coincident cluster from LPCM. The butterfly+outlier2 dataset are more uncertain

than the butterfly+outlier dataset. Due to the high uncertainty in the input fuzzy vectors, the

consequence here is that the LPCM treat the patterns 1-15 as one big group. Thus, it yields the

coincident cluster.
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 7. (d) Iteration 31.

Figure 3.73: The resulting cluster centers (colored contours) from running the LPCM with m = 4
and η1 = η2 = 4 on the fuzzified butterfly+outlier2 dataset (black contours) at different iterations.

The LPCM with m = 1.25 and η1 = η2 = 4

We now reduce the fuzzifier m to 1.25 and expect not to see a coincident cluster at the end. Figure 3.74

illustrates the two cluster centers and the input fuzzy vectors at various iterations. As we expected,

m = 1.25 in this case does not produce the coincident cluster which is what we please for this dataset

that contains very high uncertainty. The cores of the final cluster centers are (−1.83, 0.00) and

(1.83, 0.00), respectively, at iteration 13. Again, although the 1-cuts produce what we would expect

from the LPCM on this dataset, the lower α-cuts of C⃗1 and C⃗2 still span the whole space due to the

high uncertainty of the input fuzzy vectors.

73



(a) Iteration 1. (b) Iteration 2.

(c) Iteration 7. (d) Iteration 13.

Figure 3.74: The resulting cluster centers (colored contours) from running the LPCM with m = 1.25
and η1 = η2 = 4 on the fuzzified butterfly+outlier2 dataset (black contours) at different iterations.

The LPCM with m = 1.25 in this case also produce very uncertain memberships for most of

the α-cuts similar to that of the LPCM with m = 2. Here only the level cuts near the 1-cuts are

informative as we expected. Since we have the dampening approaches, what would happen if we

apply one of them on this setting.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 060 0

(a) Iteration 1.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8

0 0 110 0

(b) Iteration 2.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8

0 0 160 0

(c) Iteration 3.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8

0 0 230 0

(d) Iteration 7.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8

0 0 240 0

(e) Iteration 13.

Figure 3.75: The membership functions u1,1 and u1,2 from running the LPCM with m = 1.25 and
η1 = η2 = 4 on the butterfly+outlier2 dataset at different iterations. The black functions represent
u1,1, whereas the red functions represent u1,2.
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Figure 3.76: The membership functions u7,1 and u7,2 from running the LPCM with m = 1.25 and
η1 = η2 = 4 on the butterfly+outlier2 dataset at different iterations. The black functions represent
u7,1, whereas the red functions represent u7,2.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 1 00 29

(a) Iteration 1.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 90 37

(b) Iteration 2.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 880 48

(c) Iteration 3.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 690 65

(d) Iteration 7.

0 0 0 2 0 4 0 6 0 8 1 0
Fuzzy membership

0 0
0 2
0 4
0 6
0 8
1 0 0 670 67

(e) Iteration 13.

Figure 3.77: The membership functions u8,1 and u8,2 from running the LPCM with m = 1.25 and
η1 = η2 = 4 on the butterfly+outlier2 dataset at different iterations. The black functions represent
u8,1, whereas the red functions represent u8,2.
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Figure 3.78: The membership functions u10,1 and u10,2 from running the LPCM with m = 1.25 and
η1 = η2 = 4 on the butterfly+outlier2 dataset at different iterations. The black functions represent
u10,1, whereas the red functions represent u10,2.
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Figure 3.79: The membership functions u16,1 and u16,2 from running the LPCM with m = 1.25 and
η1 = η2 = 4 on the butterfly+outlier2 dataset at different iterations. The black functions represent
u16,1, whereas the red functions represent u16,2.

The LPCM with m = 1.25, η1 = η2 = 4 and the reflection dampening

Now let us apply the reflection dampening on the LPCM memberships with m = 1.25 and η1 = η2 = 4.

Figure 3.80 is the visualization of the cluster centers (computing from the reflection dampened
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memberships) at different iterations. The resulting cluster centers now are much better as they are

less uncertain and their lower α-cuts do not span the outlier (along the y-axis).

(a) Iteration 1. (b) Iteration 2.

(c) Iteration 7. (d) Iteration 13.

Figure 3.80: The resulting cluster centers (colored contours) from running the LPCM with m = 1.25
and η1 = η2 = 4 on the fuzzified butterfly+outlier2 dataset (black contours) at different iterations.
The memberships used to compute these cluster centers are dampened with the reflection dampening
approach.

The reflection dampened membership functions of the LPCM with m = 1.25 and η1 = η2 = 4 are

shown in Figures 3.81–3.85. They contain much less uncertainty. Most of them are almost singleton

fuzzy numbers. Note that u8,1 has less uncertainty over time as it shifts toward “about 1” which is

the effect of the reflection dampening discussed earlier.
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Figure 3.81: The reflection dampened membership functions u1,1 and u1,2 from running the LPCM
with m = 1.25 and η1 = η2 = 4 on the butterfly+outlier2 dataset at different iterations. The black
functions represent u1,1, whereas the red functions represent u1,2.
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Figure 3.82: The reflection dampened membership functions u7,1 and u7,2 from running the LPCM
with m = 1.25 and η1 = η2 = 4 on the butterfly+outlier2 dataset at different iterations. The black
functions represent u7,1, whereas the red functions represent u7,2.
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Figure 3.83: The reflection dampened membership functions u8,1 and u8,2 from running the LPCM
with m = 1.25 and η1 = η2 = 4 on the butterfly+outlier2 dataset at different iterations. The black
functions represent u8,1, whereas the red functions represent u8,2.
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Figure 3.84: The reflection dampened membership functions u10,1 and u10,2 from running the LPCM
with m = 1.25 and η1 = η2 = 4 on the butterfly+outlier2 dataset at different iterations. The black
functions represent u10,1, whereas the red functions represent u10,2.
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Figure 3.85: The reflection dampened membership functions u16,1 and u16,2 from running the LPCM
with m = 1.25 and η1 = η2 = 4 on the butterfly+outlier2 dataset at different iterations. The black
functions represent u16,1, whereas the red functions represent u16,2.

To conclude, if the input fuzzy vectors contain high uncertainty from the beginning, it is difficult

to expect the usable amount of uncertainty from LFCM and LPCM. Their memberships will be

uncertain and uninformative quickly, especially for the lower level cuts. The fuzzifier m, that governs
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the fuzziness on the memberships and the cluster prototypes, is also important here. As m becomes

larger, the memberships are fuzzier. According to (2.42), as m → ∞, the LFCM memberships

approach “about 1/C”. This is also the case for LPCM, from (2.54), as m becomes larger, the LPCM

memberships move toward “about 0.5”.

Apart from choosing a good value of the fuzzifier m, we can also apply the dampening approaches

on the memberships of LFCM or LPCM. They help us shrink the uncertainty associated with the

memberships to some degree. Also, the updated cluster centers using the dampened memberships are

indirectly influenced by a dampening method. As we can see from the experiments, the dampening

approaches are able to reduce the uncertainty that the cluster centers contain toward the outlier,

even the input fuzzy vectors are very fuzzy.
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Chapter 4

CONCLUSIONS AND FUTURE RESEARCH

In this thesis, we study and investigate the LFCM and LPCM clustering algorithms. The LFCM—as

an extension to the FCM—provides us a way to model uncertainty through the principle of fuzzy

numbers and fuzzy vectors. Since finding a good dataset to employ these clustering algorithms is

challenging, we decided to work on some synthetic datasets so that we have full control over the

inputs, and also know what the expected results should be based on the results from the regular

FCM and PCM. To convert the crisp butterfly dataset into the framework of fuzzy vectors, we chose

the triangular fuzzy set to transform a real number in each dimension into a triangular fuzzy number.

Therefore, the 1-cut (degenerate interval) is always a level cut that yields the same result as FCM

and PCM. Hence, the good news here is that LFCM and LPCM generalize their ancestors, FCM and

PCM.

However, we typically face the problem of membership spread in both LFCM and LPCM. That

is, on the lower level cuts of the memberships, the uncertainty increases rapidly, and they will be no

longer useful, i.e., they are uninformative and fill up the interval [0, 1]. In this work, we developed

three dampening methods to mitigate the issue. According to the experiments on the synthetic

datasets, they can effectively stifle the exploding uncertainty as the iterations go on. The vertical

cut dampening approach is the simplest method to shrink the uncertainty. It is the same as we

only consider some higher α-cuts because the α-cuts lower than β replicate the β-cut. The second

dampening approach is linear dampening. It estimates the left and right slopes and dampen the

estimated slopes by some degree. It always produces triangular membership functions which could

be useful in terms of saving computational complexity as we can interpolate the level cuts. The last

dampening method is reflection dampening that originates from the idea of preserving the original

shape of a membership function. Membership functions tend to have one side (with respect to the

peak) skinnier than the another side according to the membership spread problem. So, we can find
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the less uncertain side and reflect across the peak. This does not only shrink the uncertainty in

memberships, but also partly maintains the original original shapes of them.

The fuzzified butterfly dataset was modified by adding a new input fuzzy vector at ⟨“about 0”,

“about 10”⟩. It is considered as an outlier. Since the LFCM algorithm computes its memberships

using the relative distances from the patterns to all cluster centers, the outlier has an influence of the

LFCM memberships. The LPCM clustering algorithm that calculates its memberships/typicalities

using the associated squared fuzzy distance, i.e., calculating uji using only (dji)
2), works better when

the dataset contains noise. We can see that LPCM performed well and produced cluster centers that

are robust to the outlier. The coincident cluster phenomenon can happen from the LPCM if the

fuzziness is high which is done by setting a larger fuzzifier m, e.g., m = 6.

We increased the uncertainty of the input fuzzy vectors through the widths of triangular fuzzy

numbers. We can see that the uncertainty in the LFCM memberships quickly grows compared to

that of the less uncertain dataset. Note that it is really important to be careful about how to fuzzify

crisp patterns. Again, LPCM can result in a coincident cluster, but now much easier, because the

input vectors are fuzzifer. So, finding a good value of m is also important as it has influence on

the clustering results. It is even more challenging for the LPCM algorithm as it requires both the

fuzzifier m and the parameters ηi. The estimation of parameters ηi is another big topic to explore.

Although, the LFCM and the LPCM clustering algorithms provide us a way to incorporate

the concept of uncertainty for iterative clustering, the problems related to uncertainty need to be

addressed, for example, the stopping criteria, other ways to prevent the uncertainty growth, and the

parameters ηi. Estimating ηi is even more difficult in the framework of the type-2 PCM that needs

more study as it is not obvious as it was for the type-1 PCM.

Furthermore, how do the LFCM and LPCM clustering algorithms perform on real datasets as

opposed to synthetic datasets? It this not trival to find some good real-world datasets that do not

require fuzzifying input patterns by blurring the crisp points like we did on the butterfly dataset.

Future work will involve employing the type-2 clustering algorithms on a real dataset that has decent

number of samples and the uncertainty is not too large.
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