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Abstract 

Plant residue on the soil surface increases the sustainability food and fiber production in 

agricultural systems. Automated assessments of residue cover based on imagery has the 

potential to reduce labor and human bias associated with in-field measurements. Our 

objective was to evaluate the capacity of a transfer learning strategy to improve estimates 

of residue cover derived from high-resolution RGB images. The imagery for the project 

was collected from 88 locations in 40 row crop fields in five Missouri counties between 

mid-April and early July in 2018 and 2019. At each field location, 50 contiguous 0.3 m x 

0.2 m region of interest (ROI) images (ground sampling distance of 0.014 cm pixel-1) 

were extracted from imagery resulting in a dataset of 4,400 ROI images; 3,000 used for 

cross validation and training (data collected in 2018) and 1,400 used for testing (data 

collected in 2019). The percent residue for each ROI image (ground truth) was 

determined by a bullseye grid method (n = 100). Features were extracted from ROI 

images using the VGGNet16 model, a convolutional neural network model. To reduce 

feature numbers, we averaged the features based on each kernel resulting 1,472 feature 

dataset per ROI. After the extraction, we compared three feature selection strategies: 

recursive feature elimination support vector machine classification (RFE-SVM), 

sequential forward feature selection classification (SFFS-SVM) and forward regression 

feature selection (FRFS). Best locations outcomes were obtained with RFE-SVM (r2 = 

0.93, MAE = 4.9, with three outliers) and FRFS (r2 = 0.94, MAE = 5.2, with two 

outliers). The three models had no apparent pattern of correlation among selected features 

and limited overlap in outliers suggesting unique characteristics among the three selected 

feature sets. These results were superior to previous research based the same data set 
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using 70 manually extracted known features. This suggested that transfer learning 

through features extracted from VGGNet16 pre-trained on ImageNet was a successful 

strategy for estimating residue cover. This research also confirmed the utility of high-

resolution RGB imagery to quantify residue cover in agricultural systems. 
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Introduction  

Retention of plant residue on the soil surface provides significant eco-service benefits 

including reduced evaporation, protection of soil from water and wind erosion, and 

improved soil structure and infiltration through increases in soil organic matter (Bronick 

& Lal, 2005; Cherubin et al., 2018; Ranaivoson et al., 2017; Searle & Bitnere, 2017; 

Singh & Rengel, 2007). The importance of residue in agricultural systems is represented 

by its role as a key input in soil erosion models such as the Watershed Erosion Prediction 

Project (WEPP), Revised Universal Soil Loss Equation (RUSLE) and RUSLE2 (Dabney, 

Yoder, Vieira, & Bingner, 2011; Flanagan, Gilley, & Franti, 2007; Weltz et al., 2020). 

The Food Security Act of 1985 (Glaser, 1985) established a requirement to maintain 

“sustainable erosion rates on cropland, hay land and pasture” defined as “highly erodible 

land” (HEL) with the objective of protecting the Nation’s long-term capability to produce 

food and fiber. Residue assessments are part of the documentation of farmer HEL 

compliance; when farmers fail to comply with requirements from the Food Security Act 

of 1985 they may lose access to assistance payments, conservation program benefits, and 

other Federal subsidies.   

The Natural Resource Conservation Service (NRCS) is the primary agency 

documenting farmer HEL compliance.  They assess the percentage of plant residue cover 

as a critical compliance variable in Conservation and Compliance assessments (USDA-

NRCS, 2011) To determine percent residue cover, trained technical staff visit fields and 

make three to five determinations of residue cover in representative areas using the line-

transect method. (USDA-NRCS, 2011) The line-transact method requires NRCS 

personnel to read 100 points evenly distributed along a 15.2- or 30.4-m tape laid at a 45-
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degree angle to the direction of farming (USDA-NRCS, 2011). The NRCS manual 

emphasizes that readers should view transect points from directly above and only count 

residue with a surface coverage diameter greater than or equal to 2.4 mm and that touches 

the pin-head sized transect points on the tape. In practice, the line-transect method 

requires careful attention to correctly read the tape and is prone to reader bias to 

overestimate residue (Laamrani, Joosse, & Feisthauer, 2017; Laflen, Amemiya, & Hintz, 

1981; Lory et al., 2021; Richards, Walter, & Muck, 1984). Alternatives to the line-

transect method that also require human judgement include visual estimate, point 

intercept, meter stick, spiked wheel, photograph comparison, and photographic-grid 

methods(Dickey, Shelton, Meyer, & Fairbanks, 1989; Laamrani et al., 2017; Laflen et al., 

1981; Morrison Jnr, Huang, Lightle, & Daughtry, 1993). 

One advantage of automated systems is that they can limit human judgement and 

bias.  Most automated systems deploy optical sensors on aircraft, satellite platforms, or 

unmanned aerial vehicles (UAV’s) to collect RGB, multispectral, and/or hyperspectral 

imagery to estimate residue cover (Zheng, Campbell, Serbin, & Galbraith, 2014). Most 

research has focused on the development of indices based on the dissimilarity of the 

reflection and absorption of multiple wavelengths from the images to detect residue (Chi 

& Crawford, 2014; Gausman et al., 1975; Hively et al., 2019; Pacheco & McNairn, 2010; 

Quemada, Hively, Daughtry, Lamb, & Shermeyer, 2018; Quemada & Daughtry, 2016; 

Zheng et al., 2014). Alternatively, traditional machine learning methods have been used 

to build a prediction model from RGB images based on known color, shape and texture 

features extracted from the image (Kavoosi et al., 2020; Najafi, Feizizadeh, & Navid, 

2021; Upadhyay, Lory, DeSouza, Lagaunne, & Spinka, 2022). The recent interest in 
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RGB imagery is likely because of the easy access to low cost RGB images from tools like 

UAV’s and smart phones. 

Automated systems using RGB images have applied a diverse set of strategies using 

limited data sets with mixed results. Baeur and Strauss (2014) used Object Based Image 

Analysis (OBIA) that applied segmentation and a rule-based approach to estimate residue 

cover.  Using a dataset of 61 images that included four different soil colors, and soil 

cover ranging from 0 – 50%, they obtained an r2 of 0.75 compared to a ground truth 

based on a photographic grid method. Laamrani, Lara, Berg, Branson & Joosse (2018) 

tested the mobile phone application Crop Residue Estimator (FieldTraks Solution, 

Ottawa, CA) that used a pixel-by-pixel classification of residue versus soil based on color 

thresholding to estimate percent residue cover in an image. A test of the system using 54 

images obtained from 18 fields had an r2 of 0.86 when compared to a ground truth based 

on a photographic grid method. Riegler-Nurscher, J. Prankl, Baeur, Strauss & H. Prankl   

(2018) used 200 training images to develop a pixel-by-pixel classifier using entangled 

random forest, a modification of random forest. The resulting model had an r2 of 0.84 for 

a 99-image testing data set. The ground truth for both training and testing was obtained 

using a photographic grid method. Kavoosi et al. (2020) used vegetation indices derived 

from RGB images to estimate residue and obtained an r2 = 0.84 on images obtained 5- to 

10-m above the ground compared with ground truth generated from the line transect 

method.  In contrast to others working with RGB imagery, Upadhyay et al. (2022) 

divided the data into three classes and used support vector machine (SVM) to classify 

images based on the selected features. The model was trained on 3,000 region of interest 

(ROI) images and tested on 1,400 ROI images. Classification accuracy for testing ROI 
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images was 0.81. Upadhyay et al. (2022) also performed location-wise estimation by 

combining 50 images from the same location using a Bayesian model and obtained an r2 

= 0.90 for 28 ((1,400 ROI/50=28) testing locations. 

Early research using low resolution (80-m ground sampling distance (GSD)) imagery 

from the Landstat-1 multi spectral scanner was unable to estimate residue cover on 

agricultural soils (Gausman et al., 1975). Daughtry et al. (2006) used a Cellulose 

Absorption Index (CAI) applied to imagery from the EO-1 Hyperion satellite (GSD=30 

m) and obtained residue prediction of r2 = 0.85 for May data and of r2 = 0.77 for June 

data compared with ground truth acquired from line transect method. They also converted 

the data into three classes (residue cover < 15%, 15% < residue cover < 30%, and residue 

cover > 30%) and obtained an accuracy score of 66% - 68%; accuracy increased to 80% -

82% when class 1 and 2 were combined. Zheng, Campbell, & de Beurs (2012) used a 

minimum Normalized Difference Tillage Index (minNDTI) and acquired r2 = 0.89 when 

compared to ground truth from the line transect method. Kavoosi et al. (2020) used multi-

spectral imagery from Landsat-8 (30-m GSD) and concluded a Dead Fuel Index (DFI) 

had the highest performance score (r2 = 0.96) compared with ground truth generated with 

the line transect method.  

In summary, RGB strategies tested to date, typically relied on limited data sets with 

sub-meter resolution and reported r2 values between 0.75 - 0.90. Hyperspectral and 

multispectral methods have used much lower resolution imagery (> 30 m) strategies and 

have typically been tested in both lab and field conditions with more extensive datasets 

and achieved r2 between 0.77 - 0.96. While both approaches have shown promise, an 

RGB-based system has the benefit that practitioners can obtain relatively low-cost high 
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resolution images during field visits using a hand-held camera, smart phone, or UAV 

(Laamrani et al., 2018; Upadhyay et al., 2022). Research to date has documented the 

potential for high-resolution RGB images to provide accurate estimates of residue cover.  

Machine learning is a subfield of artificial intelligence focused on building algorithms 

that allow the computer to learn (Segaran, 2007). Machine learning has typically focused 

on solving problems through the collection of data (ground truth) and then deriving a 

statistical algorithm based on the data that solves the problem. (Burkov, 2019). 

Traditionally machine learning, especially supervised machine learning, requires labeling 

the ground truth and the construction of features or patterns that are extracted from the 

data to support building the model. These features are then filtered and selected using 

feature selection methods and the optimum model is built using the selected features with 

the machine learning method. An example of a common machine learning strategy using 

regression is linear regression; and some common methods used for classification include 

SVM, multi-layer perceptron, and random forest (Kotsiantis, Zaharakis, & Pintelas, 

2006). There is a fundamental difference between machine learning using regression 

versus classification. Regression requires the ground truth and the prediction value to be a 

continuous variable while classification requires the ground truth and the prediction value 

to be categorical variable.  

The benefits of traditional machine learning approaches are that the resulting 

automated system can reduce human bias and labor. However, challenges of traditional 

machine learning strategies include the need for a large amount of data, the need to 

identify and develop manual features for extraction, and labelling the ground truth, 

especially for supervised machine learning algorithms.  
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However, it is also possible to use machine learning methods without manual feature 

extraction. An example of a model that has that capability is a Neural Network or Deep 

Learning (Shaheen, Verma, & Asafuddoula, 2016). In simple terms, a neural network is a 

model that mimics the human brain. A desirable feature of neural networks is that they 

can self-construct their own features (Pouyanfar et al., 2019). There are different neural 

network architectures available including Convolutional Neural Network (CNN), 

Generative Adversarial Network, and Recurrent Neural Network (Pouyanfar et al., 2019; 

Simonyan & Zisserman, 2015). The selection of a particular architecture is usually based 

on the type of data being processed and the desired output. For image prediction, CNN is 

the most common among architecture. A Convolutional Neural Network is a network that 

does parameter sharing using convolution as the operator. Parameter sharing results in a 

lower number of parameters than a fully connected network. Some examples of CNNs 

are VGGNet, AlexNet and ResNet (Alzubaidi et al., 2021). 

It is common in the field of neural networks to use a method called transfer learning. 

Transfer learning uses knowledge from a previously trained model to solve a new 

problem faster or better (Kaya et al., 2019; Weiss, Khoshgoftaar, & Wang, 2016; Zhuang 

et al., 2021). One common way to do transfer learning with neural network is to use a 

pre-trained model as feature extractor (Kaya et al., 2019; Zhuang et al., 2021). A pre-

trained model has been previously trained on a different dataset. With transfer learning, 

the information that is acquired by training the initial model is then leveraged to solve 

another problem. This is why the method is called transfer learning. Benefits of transfer 

learning include reducing the amount of data needed to train the new model and 

eliminating the need for manual feature extraction. Concerns with transfer learning 
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include that features tend to be hard to be interpret, especially when neural networks 

(usually considered as black box) are used for transfer learning (Q. shi Zhang & Zhu, 

2018; Y. Zhang, Tino, Leonardis, & Tang, 2021). 

In this project we used features derived from the pre-trained VGGNet16 model 

(Simonyan & Zisserman, 2015) and then evaluated models derived from those features 

using two classification strategies and one regression strategy.  The objective was to 

evaluate the capacity of a transfer learning strategy to improve estimates of residue cover 

derived from high-resolution RGB images.  Additionally, we hypothesized that 

regression methods may be better adapted to capturing the continuous nature of residue 

cover compared to a standard classification method used in a previous project.  Results 

were also compared to previous reported results using a classification strategy to derive a 

model from 70 known features using the same image data set (Upadhyay et al., 2022). 

We also tested the uniqueness and superiority of the initial features selected from the 

CNN by comparing results derived from a sequential iteration strategy.  
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Materials and Methods 

DATA ACQUISITION 

From late April through early July in 2018 and 2019 the project team obtained residue 

imagery of corn (Zea mays L.) and soybean (Glycine max [L.] Merr.) from fields in five 

central Missouri counties (Table 1). Before we obtained data, NRCS personnel identified 

and obtained permission for the project team to access the farmer fields. Our objective was 

to visit fields after planting but prior to corn or soybean reaching growth stage V3. 

Additonal location details are reported in Table 1.  

In each field, the team placed up to five 15.2-m tapes at 45 degrees to the crop 

planted row direction with the goal of capturing the range of variation in residue cover 

within a field. For the purposes of this research, each tape was considered a location. 

Imagery was obtained at an elevation of one meter above the surface of the soil using a 

tripod-mounted Canon EOS Rebel T6i Digital SLR camera (Canon USA, Melville, NY) 

with a 24 mm lens and 24.2 MP resolution, producing a 6,000- x 4,000-pixel image. The 

images had a calculated ground sampling distance (GSD) of 0.014 cm pixel-1. We 

obtained 50 or 51 images from each tape by centering the camera over the 0 point on the 

tape horizontal to the soil surface, taking an image, and then repeating the process every 

30 cm along the length of the tape. We acquired imagery from 60 field locations in 2018 

and 28 locations in 2019. Dominant residue (Table 1; Fig. 1) in 2018 was corn (28 

locations), soybean (23 locations), or winter small grains (9 locations); and in 2019 was 

corn (4 locations), soybean (19 locations), or winter small grains (5 locations). 

Using Adobe Photoshop (Adobe inc., San Jose, CA) 50 sequential 0.305 m X 0.20 m 

images (approximately 2,400 x 1,600 pixels) were cropped from the part of the image  
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Table 1.  Approximate location, sampling date, crop, and residue details for 2018 and 2019 study sites. 

Exact locations were not provided to protect farmer privacy. 

ID County 
Approximate Site 

Location 

Sampling 

Date 

Locations 

at Site 

Location 

Number 

Crop 

(Stage)1 

Dominant 

Residue1 
Other Issues 

Location 

Residue 

Ground Truth 

(%) 

2018-01 Audrain 39.260, -92.272 8-May-18 3 39, 40, 41 C (V2) SB - 14, 9, 5 

2018-02 Audrain 39.257, -92.267 20-May-18 3 42, 43, 44 NE C, TL - 48, 57, 54 

2018-03 Audrain 39.264, -92.270 8-May-18 4 45, 46, 47, 48 C (V2) SB - 10, 9, 21, 1 

2018-04 Audrain 39.269, -92.265 8-May-18 3 49, 50, 51 NE C, SB - 41, 44, 49 

2018-06 Audrain 39.267, -92.266 10-May-18 4 52, 53, 54, 55 NE C OE (4) 57, 58, 54, 27 

2018-07 Audrain 39.270, -92.212 14-May-18 3 56, 57, 58 C (V2) SB S (1,2), UE (3) 13, 13, 5 

2018-09 Audrain 39.257, -92.150 29-May-18 3 59, 60, 61 SB (V2.5) C S (1,2,3) 23, 23, 23 

2018-11 Callaway 39.029, -92.078 30-May-18 3 62, 63, 64 SB (V1) WSG, C WL (1,2) 97, 91, 89 

2018-15 Boone 39.215, -92.204 23-May-18 3 65, 66, 67 SB (V1) C S (1) 57, 66, 51 

2018-16 Boone 39.212, -92.203 30-May-18 3 68, 69, 70 SB (V1) C S (1,2,3) 57, 60, 57 

2018-20 Cooper 38.778, -92.657 17-May-18 3 71, 72, 73 C (V3) SB - 21, 27, 26 

2018-21 Cooper 38.782, -92.654 17-May-18 3 74, 75, 76 C (V3) WSG - 25, 27, 24 

2018-22 Cooper 38.817, -92.623 18-May-18 3 77, 78, 79 SB (VE) C, W, SB WL (1) 85, 88, 94 

2018-25 Cooper 38.815, -92.623 18-May-18 3 80, 81, 82 NE C, W S (1,2), WL (1) 92, 85, 89 

2018-26 Callaway 39.032, -92.079 4-Jun-18 3 83, 84, 85 NE WSG - 94, 91, 96 

2018-27 Cooper 38.822, -92.620 18-May-18 3 86, 87, 88 C (V3.5) SB, W - 18, 20, 15 

2018-40 Boone 38.901, -92.214 14-Jun-18 3 29, 31, 32 NE SB, W S (2,3) 3, 4, 2 

2018-41 Boone 38.901, -92.210 14-Jun-18 2 34, 35 NE C, W S (2) 44, 41 

2018-42 Boone 38.900, -92.206 14-Jun-18 4 33, 36, 37, 38 NE SB, W S (4), WL (3,4) 19, 12, 7, 15 

2018-43 Boone 38.901, -92.210 14-Jun-18 1 30 SB (VE) C, W - 25 

2019-01 Howard 39.037, -92.694 14-May-19 2 1, 2 C (V1.5) SB, C - 9, 24 

2019-02 Howard 39.039, -92.694 14-May-19 1 3 C (V1.5) SB, C S 15 

2019-03 Cooper 38.914, -92.736 15-May-19 1 4 C (V3) SB - 7 

2019-05 Howard 38.864, -92.843 17-May-19 1 5 C (V2) SB S 9 

2019-06 Cooper 38.864, -92.843 20-May-19 1 6 C (V2) SB S, WL 19 

2019-07 Cooper 38.864, -92.843 20-May-19 1 7 C (V2) SB, C - 11 

2019-08 Howard 39.020, -92.573 29-May-19 2 8, 9 SB (VC) SB S (1), WL (1,2) 68, 60 

2019-09 Cooper 38.774, -92.940 30-May-19 1 10 SB (VE) C, W S, WL 7 

2019-10 Cooper 38.791, -92.931 30-May-19 1 11 SB (VE) C, W S 6 

2019-11 Audrain 39.283, -91.880 31-May-19 1 12 C (V2) SB WL 6 

2019-12 Callaway 38.969, -92.103 3-Jun-19 2 13, 14 C (V2) SB, W, C S (1), WL (1) 73, 71 

2019-13 Callaway 39.040, -91.838 3-Jun-19 1 15 NE SB - 3 

2019-14 Audrain 39.299, -91.970 4-Jun-19 2 16, 17 NE SB, C S (1,2) 13, 42 

2019-15 Audrain 39.241, -91.752 5-Jun-19 1 18 NE SB, W S 4 

2019-16 Audrain 39.223, -91.830 5-Jun-19 2 19, 20 NE WSG S (1,2) 27, 40 

2019-17 Audrain 39.334, -91.740 11-Jun-19 1 21 SB (VE) SB, W S 41 

2019-18 Audrain 39.332, -91.756 11-Jun-19 2 22, 23 SB (VE) SB, W S (1,2) 51, 77 

2019-19 Cooper 38.915, -92.739 18-Jun-19 3 24, 25, 26 SB (V1) WSG, C WL (2) 66, 80, 82 

2019-20 Audrain 39.178, -91.742 18-Jun-19 1 27 NE C, W - 56 

2019-21 Audrain 32.299, -91.972 28-Jun-19 1 28 SB (V1) C, W S 51 

1 Crops and residue types: C=corn; SB=soybean; TL=tree leaves; WSG=winter small grain; W=weeds. Note 

for residue, the first entry is residue from the previous year’s crop. Growth Stages: NE=not emerged; 

VE=vegetative stage emerged; V#= vegetative stage. Other issues: WL=weeds live; S=significant shadow; 

OE/UE=over/under exposure in 0.014 GSD images; (numbers in parenthesis are location numbers affected). 

 

contiguous to, but not including the tape, starting at the 0 point on the tape.  The cropped 

image was obtained from the side of the tape with an oblique angle to the sun to eliminate 
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tape shadow and the cropped portion was from the image where the target area was most 

central to the image to minimize paralax effect. The resulting data set had 4,400 images 

(88 location x 50 images). 

 

Figure 1. Distribution of dominant residue type based on three categories: SB=Soybean, C=Corn, 

WSG=Winter Small Grain. Data collected in 2018 (left) and 2019 (right). Report number of region-

of-interest (ROI) images (top) and locations (bottom). 

 

A bullseye grid method with n = 100 grid points (Lory et al., 2021) was used to obtain 

image-wise estimates of residue cover used for ground truth for the 4,400 cropped 

images. Residue estimates were based on two readers assessing  unique 50-point grids 

and averaging their results.  In this project, we estimated residue cover only, ignoring live 

plant contributions (either grain crop or weeds) to ground cover.  The field-location 

residue estimate was then calculated as the mean of the 50 cropped images along the tape.  

Fig. 1 summarizes the distribution of ROI images and location images for the 2018 and 

2019 data sets. More details on location residue cover and the accuracy and precision of 

image-wise residue estimates are available in Lory et al. (2021).  
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POST DATA COLLECTION 

Post data collection project workflow is summarized in Figure 2.  

 

Figure 2.  Post data collection project flowchart. Result was three strategies for model building and 

testing, two based on support vector machine classification (Recursive Feature Elimination support 

vector machine (RFE-SVM) and Sequential Forward Feature Selection support vector machine 

(SFFS-SVM)) and one based on forward regression feature selection (FRFS).  

 



 

12 
 

Feature Extraction (Step 1) 

In step 1, features were extracted from images using a transfer learning methodology. 

Features were extracted from the 4,400 images using pre-trained CNN, VGGNet16 

(Zimonyan and Zisserman, 2015). The model required input images be sized to 224 x 224 

pixels. We resized the original images (~2400 x ~1600 pixels) to 2,240 x 1,568 pixels to 

facilitate analysis of the image as 70 (7 x 10) 224- x 224-pixel sub images. To resize the 

images, a nearest neighbor interpolation method (Keras ver 2.3.1; Chollet, 2015)was used 

in which pixel points of the new grid size are based on the value of their nearest neighbor. 

The resulting image was divided into 70 components of 224 x 224 sub-images in 

preparation for processing with VGGNet16 (Fig. 3). 

Figure 3. Flow chart showing how the five max pooling layers were extracted into 1,472 features.  

Features were initially extracted from 70 sub-images using the five max pooling layers of VGGNet16 

which were then averaged across the 70 sub-images resulting in 1,472 features (64 + 128 + 256 + 512+ 

512 = 1,472). 

 

The VGGNet16 contains 13 convolution layers, five max pooling layers and three 

fully connected layers (Simonyan & Zisserman, 2015).We used the five max-pooling 

layers for this project because max pooling is spatially invariant (Nagi et al., 2011). In 

VGGNet16, the first pooling layer has a dimension of 112 x 112 cells with 64 kernels.  

After extraction, the first pooling layer of the 70 sub-images was recombined producing a 

matrix with a dimension of 1,120 x 784 with 64 kernels (Fig. 3). For each kernel, we 

calculated the average value of the 878,080 cells in the 1,120 x 784 matrix. 
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Consequently, the first max pooling layer of an image was represented by 64 values, 

where each value was the average of the 878,080 cells derived from the 70 sub-images.  

This was repeated for the other four max pooling layers with kernel numbers of 128, 256, 

512, and 512, respectively. Each of the 4,440 images was then represented by a 1 x 1,472 

feature matrix (64 + 128 + 256 + 512 + 512=1,472; see Fig. 3). 

The data set was then divided into the training data set (2018 data of 3,000 images) 

and the testing data set (2019 data, 1,400 images). In preparation for feature selection 

analysis, using the 2018 training data, the minimum and maximum value were 

determined for each of the 1,472 features and all feature values were scaled to a range of 

0 to 1 based on the min-max range. The same min-max range was then used to scale the 

2019 data set. All subsequent analysis used scaled data. Additionally, for the 

classification pathway, image-wise ground truth data was divided into three classes: 

images with residue < 33.3% defined as class 1; images with residue between 33.3% and 

66.6%, inclusive, defined as class 2; and images with residue > 66.6% defined as class 3.  

The number of training images was 1,549, 626, and 825 and the number of testing images 

was 772, 302, and 362 for classes 1, 2 and 3, respectively. All processes were 

implemented using Jupyter Notebooks (ver. 6.2.0; Kluyver et al., 2016). 

 

Feature Selection (Step 2) 

There were two pathways in the workflow from this step: the classification-based 

workflow and the regression-based workflow.  

Feature selection for the classification pathway was done two ways. In the first 

classification approach, recursive feature elimination and the SVM classifier (linear 
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kernel) was used to sequentially order from 1 to 1472 (RFE-SVM; Isabelle, Jason, 

Stephen, & Vladimir, 2002) .  In the second classification approach, sequential forward 

feature selection and the SVM classifier was used to put the first 40 selected features in 

rank order from 1 to 40 (SFFS-SVM; Ferri, Pudil, Hatef, & Kittler, 1994). In both 

classification pathways, ten-fold cross validation was then used to determine the cross-

validation score for the addition of each ranked feature, starting from the first ranked 

feature and evaluating up to the 40th ranked feature. In this step the SVM classifier was 

used with the radial basis function kernel, the penalty parameter C selected as ‘1’and the 

kernel parameter γ selected as ‘auto’. The optimum feature set was determined from the 

10-fold cross-validation scores using an accuracy threshold of 0.005; when the increase 

in the accuracy score dropped to less than 0.005 for an added feature, no additional 

features were added to the optimum features set. Classification operations using the SVM 

model used the ‘SVC’ package in the “sklearn” library (Pedregosa et al., 2011) and were 

implemented using the Jupyter Notebook (ver. 6.2.0, (Kluyver et al., 2016).  

In the regression pathway, a natural log transformation was applied to the ground 

truth data; 

LogGT= ln((GT+0.5)/(100.5-GT))  Eq. 1 

where GT is the ground truth value. Forward regression feature selection (FRFS) was 

used on the training data using the LogGT value as the ground truth and the 1,472 scaled 

features as the potential explanatory variables. Similar to the classification pathway, ten-

fold cross validation was used and an accuracy score was calculated based on the average 

of the ten r2 values generated in the 10-fold cross validation; the r2 value was based on 

the difference between the predicted value and LogGT.  We evaluated the first 40 
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selected features. Similar to the classification method, when the increase in the accuracy 

score for adding a feature dropped below 0.005, no additional features were added to the 

optimum feature set. All regression analysis was programmed using python in Jupyter 

Notebooks (ver. 6.2.0; Kluyver et al., 2016).  

This process resulted in three optimum feature sets, two from the classification 

pathway (RFE-SVM and SFFS-SVM) and one from the regression pathway (FRFS). 

 

Final model and image-wise testing (Step 3) 

The optimum feature sets for the two classification approaches and the regression 

approach from Step 2 were then used to develop the final model. To train the model,  the 

3,000 training images were used with respective model building strategies.  The model 

was then tested on the 1,400 testing images (2019 dataset) to obtain the image-wise 

classification score (RFE-SVM and SFFS-SVM models) or the image-wise estimate of 

residue (FRFS model). Imagewise classification accuracy (classification methods) or 

linear regression fit statistics to the ground truth data (regression method) were reported. 

 

Location-wise assessment (Step 4) 

For the classification approach, a Bayesian multinomial Gaussian model, based on the 

Bummer model, was developed to estimate location residue (Upadhyay et al., 2022; 

Vasko, Toivonen, & Korhola, 2000). The model was developed using the 2018 training 

data set and estimated location-wise residue values based on probability distributions 

image-wise classification scores, as determined by the final classification models 

developed in step 3. The scaling factor (alpha) was set to one, the optimum factors (betas) 

were assumed to be normally distributed, the tolerance factors (gammas) were assumed 



 

16 
 

to have a gamma distribution, and non-informative priors were used, consistent with 

Vasko et al. (2000).  This Bayesian model was then used to obtain location-wise residue 

estimates for the 2019 testing dataset with the image-wise classification estimates from 

step 3 as the input. The model was developed using proc MCMC (SAS ver. 9.4, SAS 

Institute Inc., Cary NC). For the regression approach, location-wise residue estimates 

were the mean of the 50 image-wise estimates of each tape predicted from the final 

regression model.  Location-wise model performance for all three methods were then 

evaluated using regression fit statistics to the ground truth data. 

 

MODEL ITERATION  

For all three methods, we repeated the analysis (steps 1 to 4) three times to analyze the 

uniqueness and the superiority of the selected feature sets. In the first iteration, all 1,472 

features were used.  In the second iteration, the optimum selected features from the first 

iteration were removed from the data set and the process was repeated on the remaining 

features.  In the third iteration, the optimum features selected in the second iteration were 

also removed from the data set and the process was repeated.  

 

Result and Discussion 

FEATURE SELECTION AND ROI RESIDUE ESTIMATES 

The first objective was to compare the models derived from three feature selection 

strategies selecting from the 1,472 features generated using the pre-trained VGGNet16 

CNN.  Fig 4 summarizes mean accuracy scores from the two classification strategies 

(RFE-SVM and SFFS-SVM), and the mean r2 for the regression strategy (FRFS), all 
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based on 10-fold cross validation.  Seven features were selected using RFE-SVM, 10 

using SFFS-SVM, and seven using FRFS (Fig. 4; Table 2) based on the selection 

criterion (>0.005 unit improvement in accuracy/model fit). Features selected by 

classification did not overlap with features selected by regression. There were two 

common features selected using RFE-SVM compared to SFFS-SVM (Table 2).   

 

Figure 4. Ten-fold cross validation scores for classification pathways (RFE-SVM and SFFS-SVM) 

and regression pathway (FRFS) calculated for first 20 selected features. The reported metric is the 

mean Accuracy (classification) and mean r2 (regression) of the ten folds of the cross-validation. 

 

To direcly compare the performance of the three models, we determined the 

classification accuracy of the regression model based on the three-classes used for 

classification strategies (Table 2). This required converting the regression results into the 

three-classes to calculate the three-class accuracy score. Although validation and 

classification scores were higher for the two classification models, the regression model 

had the highest testing score and the least change between training and testing score. The 

higher testing score suggested that the regression model was the superior model for the 
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ROI images.  The significant drop in testing score from the training score in the 

classification methods suggests some over-fitting of those models.  The RFE-SVM model 

had a higher testing score than the SFFS-SVM model suggesting it was the superior 

classification strategy (Table 2). 

Figure 5. Ground truth percent residue versus predicted percent residue of region of interest images 

based on forward regression feature selection for training and testing datasets. Data has been 

converted back to 0-100% basis.   

 

To better understand the performance of regression analysis, we then compared both 

the training and the testing ROI datasets with the ground truth (Fig. 5). The resulting 

model fit documented a lack of sensitivity to differences in residue when residue was < 

15% or > 85%. When comparing ROI model fit between the 2018 training data and 2019 

testing data, there was more variability and some evidence that the model overestimated 

residue when residue was between 15 to 45 % (Fig.5).  



 

 

1
9
 

Table 2.  Selected information on model results and performance for two classification-based model selection methods and one regression-based model 

selection method using the region of interest (ROI) image dataset.   

Feature Selection  Classification Scores 

Method1 Strategy Number  Selected Feature ID numbers2 Validation Training Testing 

RFE-SVM Classification 7 785(4), 457(4), 764(4), 713(4), 705(4), 868(4), 198(3) 0.92 0.92 0.85 

SFFS-SVM Classification 10 
646(4), 764(4), 482(4), 814(4), 735(4), 386(3), 

1357(5), 636(4), 1060(5), 868(4) 
0.92 0.92 0.81 

FRFS Regression 7 481(4), 462(4), 263(3), 784(4), 18(1), 1254(5), 669(4) 0.883 0.883 0.873 
1 SFFS-SVM=sequential forward feature selection support vector machine; RFE-SVM=recursive feature elimination support vector machine; FRFS=forward 

regression feature selection. 2 Number in parentheses is the max pooling layer number. 3Model performance scores for FRFS calculated by converting region of 

interest residue estimates into the appropriate three-class level used for the classification methods and comparing with the ground truth class. 

 

 

 

 

Figure 6.  Correlation among features selected by three feature selection methods: recursive feature elimination using support vector machine (RFE-

SVM), sequential forward feature selection using SVM (SFFS-SVM) and forward regression feature selection (FRFS). The first selected feature is at the 

left of the x-axis and top of the y-axis. 
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We then investigated correlations among the three feature sets (Fig. 6). High 

correlation among all features selected by the three models would imply that the models 

used similar strategies to quantify residue.  Instead, we observed few clear patterns in 

correlation among the three features sets (Fig. 6). The most apparent similarity was that 

both forward selection methods selected highly correlated first features (r=0.89). In 

forward selection, the first selected feature will always  be highly correlated with ground 

truth. Beyond that, there was no apparent correlation  pattern to any of the other selected 

features.  We concluded that there is little commonality among the features selected by 

the three models.     

Almost all the features selected by classification methods were from the max-pooling 

layer four (Table 2).  The four not from max-pooling layer four were from max pooling 

layer three (two features) or five (two features).  For the regression approach, four of the 

seven features were from max-pooling layer four with the other three features from layers 

one, three and five.  Generally, features from higher numbered layers are more complex 

(Zeiler & Fergus, 2014). 

In summary, we concluded that the feature selection strategies selected features that 

were not highly correlated among the models.   Most of the selected features had similar 

complexity coming from maxpooling layer 4. Based on the ROI image-wise analysis, the 

regression result was best followed by RFE-SVM.  

 

LOCATION-WISE RESIDUE ESTIMATES 

Location-wise results are reported in Fig. 7 and Table 3. Like the ROI results, the 

SFFS-SVM model performed the worst of the three methods at the location level, with 
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Table 3.  Selected information on location-wise estimates of residue using two classification methods and one regression method.  Location-wise 

estimates were based on 50 region of interest images.   

Feature Selection Outliers (>10% absolute error) 

Training Location 

Model Fit 

Testing Location 

Model Fit 

Method1 Strategy Training Locations Testing Locations r2 (2) MAE2 r2 (2) MAE2 

RFE-SVM Classification 86, 76 22, 5, 12 0.97 3.8 0.93 4.9 

SFFS-SVM Classification 87, 79 76, 35  22, 13, 23, 5 0.97 3.7 0.91 5.9 

FRFS Regression 51, 35 14, 6  0.98 3.1 0.94 5.2 

1 SFFS-SVM=sequential forward feature selection support vector machine; RFE-SVM=recursive feature elimination support vector machine; FRFS=forward 

regression feature selection.  2 r2 and MAE (mean absolute error) calculated based on the deviation of predicted values from the 1:1 line for predicted versus 

ground truth. 
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Figure 7. Delta of predicted minus ground truth versus ground truth of location-wise data for three feature selection strategy: recursive feature 

elimination using support vector machine (RFE-SVM), sequential forward feature selection using SVM (SFFS-SVM) and forward regression feature 

selection (FRFS). 
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the lowest r2, highest MAE, and the most outliers in the testing dataset.  It is hard to 

decide which is superior between the RFE-SVM and FRFS models. Based on testing r2, 

FRFS was better, while based on testing MAE RFE-SVM was better (Table 3). The RFE-

SVM model had three outliers, one > 20, whereas the FRFS model had two outliers, both 

< 20 (Fig. 7). The best-fit slope comparing predicted location values and the ground truth 

had a slope greater than one (slope = 1.07; slope > 1.00 P = 0.1) which implied the FRFS 

model was over-estimating residue.  This also had the effect of increasing both r2 and 

MAE score which were calculated based on the difference from the 1:1 line (Table 3). 

Without this apparent bias, the regression fit statistics would have been superior. 

There was commonality of two outliers among the two classification pathways 

(locations 22 and 5) but there was no commonality among the classification and 

regression pathway outliers (Table 3). Reviewing the content of images from the outlier 

locations, all outliers in both classification and regression models had images that 

included shadow and/or weeds. However, when we compared the five locations with the 

highest overestimate of residue with the five locations with the lowest -under-estimation 

of residue, shadow appeared with similar frequency in both sets of images for both RFE-

SVM and FRFS models. As an example, RFE-SVM had three out of five shadow related 

locations that highly overestimated the residue and five out of five shadow related 

locations that highly underestimated residue and three out five shadow related locations 

that had low-bias for residue estimation. This implies that shadow was not uniquely 

associated with over- or under-estimates of residue. Similar observations were seen for 

weeds. Hence, we were not able to attribute shadow or weeds as the cause of outliers, nor 
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have we identified any other predictor of outliers for both RFE-SVM and FRFS location 

results.  

The presence of a systematic over-estimation of residue cover in the regression model 

suggested a failure of the regression model developed using 2018 data to accurately 

predict the 2019 testing data.   When we compared model fit of predominant soybean 

residue locations in the training set (n = 23 of 60 locations) versus model fit in the testing 

data set (n = 19 of 28 locations) the slope of the training data was 0.97 compared to the 

slope of the testing data which was 1.08 (data not shown). This difference in slope was 

not observed with the RFE-SVM soybean data.  The testing data set had a higher 

representation of soybean locations than the training dataset (68% vs. 38%; Fig. 1) and 

the range of residue cover was more extensive in the testing data set (training set 3 to 

27%, testing 4 to 72%; Fig. 1).  When we developed a final FRFS model using all images 

and the seven selected features, the best-fit slope comparing predicted location values and 

the ground truth improved (slope = 1.04; slope > 1.00 P = 0.20; MAE = 4.3) and 

differences between soybean training and testing fit were reduced. These results suggest a 

possible explanation of the over-estimation of residue in the 2019 data is that the FRFS 

model over predicted soybean residue cover in 2019 which was mostly addressed by 

adjusting model parameters using 2018 and 2019 data combined.  

To summarize, both RFE-SVM and FRFS performed similarly. Shadow and weeds 

were associated with outlier locations, but the problem is not systematic, with 

classification and regression models identifying different outliers, emphasizing the 

differences among the models.  
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PERFORMANCE OF ITERATIVE FEATURE SELECTION 

Removing selected features and repeating feature selection had little impact on model 

performance when using RFE-SVM (Tables 4 and 5).  Image-wise and location-wise 

testing indicators suggested better performance for the models from iterations two and 

three with iteration three reporting the best results. The optimum number of features 

used, based on the 0.005 threshold, varied by iteration (Table 4). Surprisingly, the second 

iteration feature set performed better than the first iteration with a lesser number of 

features. The larger number of features used in the third iteration likely explains some of 

its comparative success to the previous iterations. The superior performance of iteration 2 

and iteration 3 confirms that there are multiple feature sets generated from VGGNet16 

features that perform similarly or superiorly using RFE-SVM. 

There was no clear pattern of correlation among the features selected in the three 

iterations (Fig. 8). The highest correlation (0.89) was between fifth feature of first 

iteration and eighth feature of third iteration. Generally, the pattern of high correlation (r 

> 0.8) seemed random. This implies that the models from each iteration were not using 

redundant features.  

In summary, there was little evidence of reduced performance with iteration and little 

evidence of correlation among features selected by each iteration.  This suggests there 

were multiple sets of unique features derived from the VGGNet16 capable of estimating 

residue when using the RFE-SVM feature selection strategy.  

Similar to RFE-SVM, SFFS-SVM testing scores for ROI image-wise results did not 

decrease with iteration (Table 4). With SFFS-SVM, the number of selected features 

decreased with each iteration. Consistent with a forward selection strategy, the first 
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Table 4.  Selected information from three iterations of model results and performance for two classification-based model selection methods and one 

regression-based model selection method using the region of interest (ROI) image dataset.   

     Model Performance Scores 

Method1 Iteration Data set2 

Number 

selected 

features Selected Feature ID numbers3 Validation Training Testing 

RFE-SVM 1 1472 7 785(4), 457(4), 764(4), 713(4), 705(4), 868(4), 198(3) 0.92 0.92 0.85 

RFE-SVM 2 1465 4 320(3), 759(4), 735(4), 1036(5)  0.90 0.90 0.87 

RFE-SVM 3 1461 12 
1139(5), 1256(5), 545(4), 462(4), 353(3), 509(4), 739(4), 

482(4), 483(4), 546(4), 933(4), 867(4) 
0.92 0.92 0.87 

        

SFFS-SVM 1 1472 10 
646(4), 764(4), 482(4), 814(4), 735(4), 386(3), 1357(5), 

636(4), 1060(5), 868(4) 
0.92 0.92 0.81 

SFFS-SVM 2 1462 5 980(5), 759(4), 793(4), 1036(5), 1206(5) 0.91 0.91 0.81 

SFFS-SVM 3 1457 4 320(3), 462(4), 112(2), 492(4) 0.90 0.91 0.82 

        

FRFS 1 1472 7 481(4), 462(4), 263(3), 784, 18(1), 1254(5), 669(4) 0.884 0.884 0.874 

FRFS 2 1465 7 980(5), 948(4), 759(4), 1088(5), 170(2), 735(4), 808(4) 0.884 0.884 0.844 

FRFS 3 1458 6 646(4), 482(4), 713(4), 683(4), 686(4), 1165(5)  0.884 0.884 0.834 
1 SFFS-SVM=sequential forward feature selection support vector machine; RFE-SVM=recursive feature elimination support vector machine; FRFS=forward 

regression feature selection. 2 Data set is the number of features used for that analysis (equals the previous iteration minus features selected in the previous 

iteration).  3 Number in parenthesis is the max pooling layer associated with the feature. 4 Model performance scores for FRFS calculated by converting region of 

interest residue estimates into the appropriate three-class level and comparing with the ground truth class. 
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Table 5.  Selected information three iterations of location-wise estimates of residue using two classification methods and one regression method.  

Location-wise estimates were based on 50 region of interest images.   

Feature Selection 

Details 

Outliers (>10% absolute error) 

Training 

Location Model 

Fit 

Testing Location 

Model Fit 
Iteration 

Feature 

Number 

Method1 Strategy   Training Locations Testing Locations r2 (2) MAE2 r2 (2) MAE2 

RFE-SVM Classification 1 7 86, 76 22, 5, 12 0.97 3.8 0.93 4.9 

  2 4 79, 55, 35, 87, 86, 76 19, 2, 5, 14 0.97 4.3 0.96 4.1 

  3 12 76, 79, 86, 87 22, 23 0.97 3.9 0.95 4.1 

          

SFFS-

SVM 
Classification 

1 10 87, 79, 76, 35  22, 13, 23, 5 
0.97 3.7 0.91 5.9 

  2 5 79, 76, 55, 87, 86, 59 21, 20, 19, 28, 6, 5 0.96 4.2 0.90 6.4 

  3 4 87, 35, 86, 59 5, 22, 21, 17, 8, 14, 3, 6 0.97 4.0 0.88 6.7 

          

FRFS Regression 1 7 51, 35 14, 6  0.98 3.1 0.94 5.2 

  2 7 51, 59, 70, 55 8, 1, 14, 6, 19 0.97 3.6 0.93 5.8 

  3 6 49, 51, 76, 72, 35 8, 2, 9, 22, 24, 17, 26, 14, 1, 25 0.97 3.6 0.87 7.6 
1 SFFS-SVM=sequential forward feature selection support vector machine; RFE-SVM=recursive feature elimination support vector machine; FRFS=forward 

regression feature selection.  2 r2 and MAE (mean absolute error) calculated based on the deviation of predicted values from the 1:1 line for predicted versus 

ground truth
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selected feature was highly correlated among the three iterations (Fig. 9). Subsequent 

selected features suggested a random pattern of features with typically low correlation. 

Similar to the results with RFE-SVM, this suggested multiple sets of unique features 

derived from the VGNNet16 capable of estimating residue. In contrast to RFE-SVM, 

location-wise testing performance decreased with each iteration (Table 5). The 

performance of SFFS-SVM also was worse than RFE-SVM for all iterations (Table 5).  

In contrast to the two classification strategies, the testing performance of FRFS 

decreased with each iteration for both ROI image scores and location-wise model fit 

statistics (Tables 4 and 5). There was less variation in the number of selected features 

(seven features for iterations 1 and 2, six features for iteration 3). Consequently, the 

reduced performance with iteration is clearly due to lower performing features being 

selected in the second and third iteration. Similar to the behavior with the other forward 

selection method, SFFS-SVM, the first selected feature in each iteration were highly 

correlated (Fig. 10).  And consistent with the both classification selection methods, there 

was little evidence of a correlation among the subsequent selected features.  

There was little consistency in testing data set outliers among selection strategies and 

between iterations (Table 5). There was a small subset of locations that appeared as an 

outlier in at least one iteration of all three selection methods.  This set included locations 

14, 19, and 22.  In general, a similar pattern emerged as was previously discussed with 

the first iteration comparison. Shadow and/or weed was present in locations that 

overestimated, underestimated, or had no bias. In the iterative models, shadow and weeds 

were not uniquely associated with outlier locations. The lack of consistency in outliers 
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among iterations also supports the conclusion that the iterative models are finding unique 

combinations of feature characteristics to obtain an estimate of residue. 

A concern with transfer learning strategies derived from an extensive feature set such 

as VGGNet16 is that there are many redundant features (Mingbao Lin et al., 2021; Zuo, 

Chen, Shi, & Sun, 2020)  making it difficult to find a superior unique feature set (Jovic, 

Brkic, & Bogunovic, 2015; Yu & Liu, 2004). Based on the lack of correlation among 

features selected in the iteration analysis, it does not appear that redundant features were 

a common element of the iterative models (Figs. 8, 9, and 10). Beyond the correlations 

among first features selected by forward selection methods (SFFS-SVM and FRFS) 

feature correlation seemed random. The low correlation might be a product of the 

averaging step in feature extraction (Fig.3).  

Another criticism of transfer learning strategies derived from an extensive feature set 

such as VGGNet16 is that the large number of features increases the chance of deriving 

an over-fitted model based on random chance (Ying, 2019). We took three steps that 

limited this concern. The reduction of features using averaging (Fig. 3) decreased the 

number of features by about three orders of magnitude. We also focused on creating a 

large data set, larger than any other study using RGB images, to estimate residue for 

training.  The number of ROI images used for training the model was nearly double the 

number of features extracted from the CNN.  Finally, we used a completely independent 

testing data set taken from different locations and in a different year representing 

different environmental conditions. The decrease in fit between training and testing for 

the ROI images using the FRFS strategy decreased 4.2% (Fig. 5) and location testing 

scores were similarly close for both RFE-SVM and FRFS (Table 2). This supports 
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Figure 8. Correlation among model iteration selected feature used for RFE-SVM strategy. The first selected feature is at the left of the x-axis and top of 

the y-axis. 

 

  

Figure 9. Correlation among model iteration selected feature used for SFFS-SVM strategy. The first selected feature is at the left of the x-axis and top of 

the y-axis.  

  



  

 
 

3
1
 

 

Figure 10. Correlation among model iteration selected feature used for FRFS strategy. The first selected feature is at the left of the x-axis and top of the 

y-axis.  
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that over-fitting was not a significant problem using the selection criteria we used in this 

project.  

The averaging step in feature extraction is equivalent to global average pooling (GAP, 

Fig. 3) commonly used in CNN’s (Li & Wang, 2020; Min Lin, Chen, & Yan, 2014). The 

concern with this step is it may reduce sensitivity of the resulting feature due to the 

averaging process.  The success of the resulting models using RFE-SVM and FRFS 

implies that a lack of features sensitive to residue cover was not an issue. Future work 

could test other methods to pool data to reduce the number of features.  

In summary, we concluded that the strategy employed to combine traditional machine 

learning with transfer learning features from VGGNet16 using a GAP strategy was 

successful for modeling residue cover with little evidence of overfitting.  

 

PERFORMANCE OF REGRESSION VERSUS CLASSIFICATION STRATEGIES  

We hypothesized that regression may have advantages over the classification method 

we tested because it was better adapted to the ground truth as a continuous variable. 

However, looking at the performance of classification based on RFE-SVM versus the 

results of regression using FRFS, there was no clear evidence that one performed better 

than the other (Tables 4 and 5). Testing results with RFE-SVM improved with each 

iteration for both ROI and location-wise analyses. In the first iteration, FRFS performed 

better but degraded with each iteration. One reason for this may be that regression always 

selects the remaining feature most correlated with the ground truth for the first selected 

feature. This apparently was limiting opportunities to identify successful alternative 

feature sets in iterations two and three. In contrast, RFE-SVM, as a backwards feature 
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selection method, resulted in three feature sets that were not well correlated with each 

other (Fig. 8) but performed similarly in testing (Table 5).  

An alternative explanation is that the FRFS approach was better able to define a 

superior model.  Evidence for this was that the location-wise testing score would have 

been superior were it not for a bias to over-estimate soybean residue in the testing dataset.  

This feature set was successful enough to identify this difference in 2018 training versus 

2019 testing data.  Additionally, the fact that RFE-SVM selected multiple models with 

similar testing results could be a sign of weakness in the approach.  We are concerned 

that the three-class strategy that was employed was not the optimum classification 

strategy.  One possible interpretation of our results is that a better implementation of 

classification with RFE-SVM could improve results. Future work should evaluate if 

changes in the classification strategy such as increasing the number of classes and/or 

adjusting the classification methodology to account for the known relationships among 

the classes could improve the outcome with RFE-SVM. 

We also should note that for our implementation of RFE-SVM, at the location scale, 

the Bayesian model that integrated data from 50 images also could have accounted for 

some inherent biases from the classification system. The regression approach did not 

benefit from this second level of model fitting. Finally, we note there was nothing 

significant that can be interpreted from the role of outliers in regression versus 

classification methods.  
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COMPARISON WITH OTHER APPROACHES 

Upadhyay et al., (2022) used the same data set of images to develop, train and test a 

three-class model selecting from a set of 70 features that included local binary pattern 

features (LBP), global texture features, shape features, and color features. For the image-

wise analysis, they obtained a three-class testing accuracy score of 0.81 which was less 

than what was obtained with the transfer learning feature sets for RFE-SVM and FRFS 

(Table 2). Location-wise results were also worse than all three models developed with 

transfer learning features (r2 = 0.89, MAE = 6.5, with seven outliers; compare to Table 

3). Finally, using the 70 features used by Upadhyay et al. (2022), we used the FRFS 

methodology to select features and develop a new model. The resulting three-class 

classification score was 0.83, which was superior to their RFE-SVM result. Location-

wise model fit of the FRFS model was marginally worse (r2 = 0.88, MAE = 5.9, with 3 

outliers) primarily due to a single outlier (location 23, delta = 33). The ability of the 

transfer learning feature set to out-perform the manually selected feature set in all cases 

implied the 70 features used by Upadhyay et al. (2022) lacked needed information and 

there is potential to identify existing and/or develop new features that could improve 

residue estimation.   

A neural network is considered a black box and the specific nature of the features is 

difficult to understand. We investigated correlations between known selected features 

from Upadhyay et al. (2022) and transfer learning selected features by RFE-SVM, SFFS-

SVM and FRFS (Fig. 11). The first selected feature of both SFFS-SVM (481) and FRFS 

(646) were highly correlated (r > 0.8) with LBP texture bins 14, 19, 20 and 21 with bin 

21 the highest correlation. These bins are associated with edge (14) and light corner
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Table 6.  Selected information on region-of-interest and location-wise estimates of residue based on Upadhyay et al. (2021) features. 

Feature Selection Classification Scores Number of Features Outliers (>10% absolute error) Testing Location Model Fit 

Method1 Strategy Testing Testing Locations r2 (2) MAE2 

RFE-SVM  Classification  0.81 13 19, 13, 5, 20, 21, 14, 8 0.89 6.5 

FRFS Regression 0.833 8 23, 22, 21 0.88 5.9 

1 RFE-SVM=recursive feature elimination support vector machine results reported by Upadhyay et al. (2021) and FRFS=forward regression feature selection.   
2 r2 and MAE (mean absolute error) calculated based on the deviation of predicted values from the 1:1 line for predicted versus ground truth. 3 Model 

performance scores for FRFS calculated by converting region of interest residue estimates into the appropriate three-class level and comparing with the ground 

truth class. 
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Figure. 11 Correlations between features selected by three methods (RFE-SVM, SFFS-SVM and FRFS) from a transfer-learning derived feature set (y-

axis) versus features selected by Upadhyay et al., (2022) using RFE-SVM. The first selected feature is at the left of the x-axis. Black outlines separate the 

RFE-SVM, SFFS-SVM and FRFS from top to bottom. The first feature selected by each method is at the top of each of the three sections of the y-axis.  
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feature in a dark area (bins 19. 20, and 21). The highest observed correlation was FRFS 

feature 18 with the standard deviation of A, from the LAB color space (r = 0.96; Fig. 11). 

There were five features from Upadhyay et al. (2022) that did not correlate well with any 

of the selected transfer learning features.  These included two features based on standard 

deviation of a color space feature (STD of B in LAB and STD of S in HSV) and three 

LBP features associated with dark or mostly dark areas. For FRFS, two selected features 

had low correlation with all Upadhyay et al. (2022) features. For RFE-SVM, there was no 

correlation > 0.75 indicating little commonality in the feature sets. These results further 

support the conclusion that each model had unique characteristics limiting the ability to 

derive insight about transfer learning features. There is some evidence that edges and 

light corners are a component of some transfer learning features, but not dark areas.  

The results of this research compare favorably with previous published research 

estimating of residue cover using high-resolution RGB images which reported 

performance r2 between 0.75 and 0.90 (Bauer & Strauss, 2014; Kavoosi et al., 2020; 

Laamrani et al., 2018; Riegler-Nurscher et al., 2018; Upadhyay et al., 2022).  The data set 

used in this research was more extensive than most previously reported work based on 

4,400 ROI images from 88 locations spanning two years.  

We recommend more exploration of transfer learning strategies and transfer learning 

features based on the superiority of the result in this paper. The correlation of some 

transfer learning features with LBP texture features suggest that further exploration of 

LBP features may lead to improvements in residue prediction. Further analysis is also 

needed on the opportunity to generalize results for other GSD.    
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Conclusions  

A transfer learning strategy using features extracted from VGGNet16 pre-trained on 

ImageNet provided superior results for residue cover prediction compared to previous 

research, including research using the same data set evaluating 70 manually extracted 

known features (Upadhyay et al., 2022). We obtained similar success using a regression 

strategy (FRFS) and a classification strategy (RFE-SVM), but a forward selection 

classification strategy (SFFS-SVM) was less successful. This outcome among models 

was true using both the transfer learning feature set and the 70-known features set from 

the previous research. Future work should consider improvements to the regression 

approach such as evaluating a backwards selection process; and improvements to the 

classification approach such as more classes when using RFE-SVM. 

There was little commonality among models derived from each strategy.  There was 

no consistent pattern of feature correlation among models and outliers among the models 

did not follow a consistent pattern. An iterative analysis of feature selection also 

documented that each feature set was unique among the three iterations. This suggested 

redundancy was not an issue with the transfer learning feature set. The success of the 

transfer learning method suggests that the GAP strategy to reduce the number of features 

extracted from the CNN was also successful at reducing redundancy associated with the 

CNN feature set. 

Implementation of a model derived from transfer learning is more difficult than 

implementing a model derived from known manually extracted features.  However, the 

success of the transfer learning model documented that there is an opportunity to improve 
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upon the features developed to date by more conventional methods. There is a clear 

opportunity to find better known features to help with a residue problem. 

The success of this research suggested there are opportunities to improve outcomes 

from the transfer learning approach.  There may be an opportunity to learn more by 

comparing how residue cover model perform using other CNNs with the same extraction 

strategies and comparing how a residue cover model performs with extraction of existing 

VGGNet16 model using different pre-trained dataset. Another potential opportunity is to 

investigate alternative ways to the GAP approach to reduce features such as global max 

pooling and univariate feature selection.  

This research confirms the utility of high-resolution RGB imagery to quantify residue 

cover. Expanding access to low-cost high-resolution RGB images through technologies 

such as smart phones and UAVs suggests this will be an important strategy to document 

compliance with residue requirements in agricultural systems. 
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