Never Again Must the Real

Be Produced

A Thesis

presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the requirements for the Degree

Master of Fine Arts

by

SEAN LOFTON

Professor Joe Pintz, Thesis Supervisor

MAY 2022
The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled

NEVER AGAIN MUST THE REAL
BE PRODUCED

Presented by Sean Lofton,

A candidate for the degree of Master of Fine Art,

And hereby certify that, in their opinion, it is worthy of acceptance.

______________________________
Professor Joe Pintz

______________________________
Professor Chris Daniggelis

______________________________
Professor Anne Stanton
Acknowledgements

I would like to begin by saying a general thank you to everyone at the University of Missouri who were a part of my experience while in Columbia. Every contribution, large and small, has been an important part of my education. I appreciate everyone’s time and generosity. I hope I am able to repay the kindness in the future and pass on the lessons learned.

I would also like to say a special thank you to my graduate committee. First to Joe Pintz, my committee head. I appreciate the tremendous amount of trust that you have given me as an artist and instructor. I cannot thank you enough for all the time and encouragement during our three years working together. To Chris Daniggelis, thank you for all the time spent talking through all of my ideas. You helped me find a new way of seeing my medium and helped me develop a new way of talking about it. Lastly, I would like to thank Dr. Anne Stanton for introducing me to the core ideas that led to the development of this thesis and exhibition. All of your contributions are unique but equally appreciated.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Illustrations</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>vi</td>
</tr>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2. Background</td>
<td>5</td>
</tr>
<tr>
<td>3. Process</td>
<td>11</td>
</tr>
<tr>
<td>4. Tile Block Revolution Installation (Ennis Tableau)</td>
<td>15</td>
</tr>
<tr>
<td>5. “16:16” An Architectonic Film</td>
<td>29</td>
</tr>
<tr>
<td>6. The Plans (Blueprint Blocks)</td>
<td>36</td>
</tr>
<tr>
<td>7. Mold Piles (Ennis Tile Block Mold Cancellation)</td>
<td>41</td>
</tr>
<tr>
<td>8. The Exhibition (Conceptual Throughways)</td>
<td>44</td>
</tr>
<tr>
<td>9. Conclusion</td>
<td>50</td>
</tr>
<tr>
<td>Bibliography</td>
<td>51</td>
</tr>
<tr>
<td>Illustrations</td>
<td>53</td>
</tr>
</tbody>
</table>
## LIST OF ILLUSTRATIONS

1. Ennis House (Southern Facade), 2005 ........................................ 53
2. Ennis Textile Block ........................................................................ 54
3. Ennis House Restoration, 2007 ..................................................... 55
4. Virtual Ennis Tile Block .................................................................. 55
5. 3D Print in Progress ......................................................................... 56
6. PLA Plastic Ennis Tile Blocks .......................................................... 57
7. Plaster Slip Casting Molds ................................................................. 57
8. Clay Greenware Ennis Tile Blocks .................................................... 58
9. Tile Block Revolution Installation (Ennis Tableau) .......................... 59
10. Tile Block Revolution Installation (Ennis Tableau) ........................ 59
11. Ennis House Detail Shot, 2005 ....................................................... 59
12. Ennis Tile Block Single Revolution ................................................. 61
13. “16:16” ....................................................................................... 61
14. “16:16” ....................................................................................... 62
15. “Blueprint Blocks #5-12 and #16” ................................................. 62
16. “Blueprint Block #10” ................................................................... 63
17. “Mold Pile #1” ............................................................................. 63
18. Installation View 1 .......................................................................... 64
19. Installation View 2 .......................................................................... 64
20. Installation View 3 .......................................................................... 65
21. Installation View 4 .......................................................................... 65
Abstract

From the 1930’s to the present day, a house situated in the hills of Los Angeles, California has acted as background for a tremendous number of films. The “Ennis House,” designed by Frank Lloyd Wright in the 1920’s for a Hollywood businessman, exuded all the trappings of high Modernism. But in spite of all of its sleek lines and faux futuristic aesthetics, it has slipped into obscurity. It has become a building lost in the American architectural canon. This thesis questions what the real Ennis house is and who may lay claim to it. I am not interested in the structure of the building but in how the decoration of the Ennis house can be simulated and then contextualized within the gallery setting. I use the most recognizable component, from its numerous appearances in film, to create an active tableau into which the viewer to cast themselves into.

By recreating the textile block decorations of the Ennis house, I have taken ownership of their future. This essay demonstrates the strategies used to guide the contextual awakening of the tile block as a gateway to a multiplicity of realities. By presenting the tile in conjunction with its film appearances in the gallery space, I can collapse the numerous fictive realities associated with the Ennis house into a discreet installation, or into a singular handheld tile block. By considering the installation as a collection of miniatures, I am able to give the viewer a transcendent viewpoint. From this point of view, the work is allusive and creates a stage that we can project, by association, a deliberate set of contexts. This animation of the objects initiates a variety of worlds for the viewer to explore.
In this way, the decoration of the Ennis house, a thing that has lived in the periphery of architectural history and in service to the creation of film is made central. The essence of the building has been distilled into miniature along with all the potential realities it has come to represent. In this way, I justify that my simulated ceramic Ennis house is in fact the rightful Ennis house.
Preface

The work and ideas you are about to explore through this thesis are the culmination of three years of learning, trying, failing, and succeeding. They are an outgrowth of a unique graduate experience heavily shaded by the conditions of a global pandemic and the ever-changing studio environment presented. The uncertainty and discomfort that COVID-19 brought created a significant change in my artistic practice. I was forced to pivot and reconsider many of my ideas about how I produced art; everything from how I made my work to how I was thinking about what ceramic objects were was radically altered by this time. As I have read through notes for this thesis and organized the objects that will make up my exhibition, I wonder constantly had it not been for this pandemic, would I be making this work? It is impossible to say with certainty.

I do not consider myself or my art practice a victim of this global health crisis. For this, I am fortunate and grateful. I am thankful for the timing and the innumerable minor incidents that have led to the enormous shift in my practice, pushing me to become the artist and thinker I am now. I only add this prologue for context. In the hopes that if anyone revisits this writing in the future, this small note helps to clarify what is to come.
1. Introduction

Due to the emergence of the pandemic, the university closed and we went online for remote learning. My ceramics studio was closed for two weeks, then a month, and ultimately for the semester. The wheel-thrown sculptural work that I had been making sat under plastic, drying out to the point of no return. While the work sat, so did I, watching movies to pass the time. It was while I was watching Ridley Scott’s 1982 science fiction classic, "Blade Runner" that I first noticed a decorative tile in the background of various scenes. I became fixated on this tile that appeared in the main character's home. It was so interesting and complex for something that just existed peripherally. Upon further investigation, I found that this tile design had served as a backdrop in about 80 movies and television shows, 30 of which I recognized immediately.\(^1\) This led me to think about this place’s cultural capital and how I could mine that recognizability for this project.

Without a ceramic studio, I began using my time to learn a new skill; computer-aided design (CAD). It only seemed fitting that I should try to make that interesting background tile for my first project. The title lent itself to the parametric design constraints of the CAD software, and a digital version of my own soon existed. I also researched the tile in earnest and soon found that it was not a purpose-built soundstage but a home. The Ennis

House of Los Angeles, CA, was designed by Frank Lloyd Wright in 1923. Having greater knowledge of the history of the tile and the home in which it originated, I searched out other movies and television shows that it appeared in. I became fascinated with all the different fictional realities tied to this sixteen-inch square of concrete that lived on the edges of the silver screen.

It became my goal to recreate the Ennis House for myself and, in doing so, take ownership of its future. This essay demonstrates the strategies used to guide the contextual awakening of the tile block as a gateway to a multiplicity of realities. By presenting the tile in conjunction with its film appearances in the gallery space, I can collapse the numerous fictive realities associated with the Ennis House into a discreet installation or a singular handheld tile block. By considering the installation as a collection of miniatures, I give the viewer a viewpoint that transcends the singular parts so they are able to see the greater whole. From this point of view, the work is allusive and creates a stage that we can project, by association, a deliberate set of contexts. This animation of the objects initiates a variety of worlds for the viewer to explore.

The decoration of the Ennis House, a thing that has lived on the periphery of architectural history and in service to the creation of films, is now made central. The essence of the building has been distilled into miniature and allowed to exist alongside all the potential realities it has come to represent. By doing this, I will ask the central question this work has created: which Ennis House is real? This essay will justify that my

---

simulated ceramic Ennis House is the rightful Ennis House and draw important connections. These connections will link my primary motives for this project to the variety of ideas and concepts that seem unrelated until connected by the greater framework of this Ennis House project.
2. Background

It would be impossible to progress further into this essay or thesis work without first addressing the history of its primary actor, the Charles Ennis House. The home was designed in 1923 by the American architect Frank Lloyd Wright. Charles and Mabel Ennis commissioned the building to be their primary residence in the hills of Los Angeles, California. The home would be finished in 1924 under the supervision of Frank Lloyd Wright’s son, Lloyd Wright. The Ennis House was the last of four homes built in the Mayan revival style. It was the largest of Wright’s experimental concrete “textile block” homes he developed and built while living and working in California (Figure 1).

The term textile block refers to a technical practice that Wright developed to decorate the exterior of these homes with a modular cement block. Each block would bear a unique pattern designed for the home and would theoretically build a pattern depending on how the block was placed on the exterior of the building. These blocks were cast in cement, so each was identical. The system worked by slipping these blocks onto long steel rods that held them in place while relying on gravity to keep them stationary (Figure 2). The Ennis block is a 16-inch by 16-inch block of cast concrete that is about 3.5 inches deep.\(^3\) Wright developed the system so that the blocks were easily placed and eliminated

---

the need for skilled labor.\textsuperscript{4} Initially, this system would prove to be a reliable way to create an ornate decorative exterior. Still, time would quickly reveal flaws in this building system that I will address later in this section.

Aesthetically, the Ennis House is located in the late stages of the Art Deco movement. The Ennis House and its three sibling homes were Wright's primary foray into the "Mayan Revival" style of architecture that was sweeping America. Mayan revival emerged alongside a general global fascination with ancient civilizations, a short-lived offshoot of the broader Art Deco movement. Where this revival differs from others is that it was a "quest for a thoroughly American art form. It was a turn away from Europe."\textsuperscript{5} U.S. architects were some of the leading appropriators of this movement, with Wright's Los Angeles-based homes becoming some of the most significant examples of the style. While there were a variety of architects working in this style and sampling from a variety of Pre-Columbian cultures, Wright’s visual appropriation can be pinned down with the help of his writings when he recalls how he was awed by the “Toltec, Aztec, Mayan, and Inca” which stimulated his wonder.\textsuperscript{6}

In addition to sampling Pre-Columbian Central American aesthetics to develop the custom textile block for the Ennis House, Wright also made an effort to incorporate local


materials into the blocks. The primary construction material was reinforced concrete which Wright liked for its plasticity and high compression strength. But he was also interested in using materials from the surrounding hills of Los Angeles to integrate the Ennis House into its local surroundings. He used a generous amount of local sand and granite from the hills mixed into the concrete. Unfortunately, the colors rarely matched, and these inclusions would create massive maintenance nightmares almost immediately.7

The size and unique aesthetics of the Ennis House set it apart from the surrounding architecture. The home’s design soon caught the eye of Hollywood producers and filming began less than ten years after the completion of the Ennis House. The earliest feature film, Female, was shot in 1933, and filming has continued to present with hits like Game of Thrones using the Ennis House as a virtual stage.8 The Frank Lloyd Wright Foundation credits as many as 80 different productions on the premises, but the present count is probably substantially higher. I believe that this high visibility was one of the saving graces of the Ennis House. Hollywood producers continued to use it as a setting for so many movies, TV shows, and music videos that it speaks to the house’s cultural currency. This currency has most likely justified the millions of dollars in restoration that the home has required throughout its history.

The Ennis House began falling apart before it was even completed. Charles Ennis noticed that the lowest main retaining wall began to buckle during construction and

7 Mark A. Wilson, “Pre-Columbian Monuments in Concrete,” Essay in Frank Lloyd Wright on the West Coast, (Kaysville, UT: Gibbs Smith, 2014.) 52-55.

required rapid alternations to support the massive hulk above it. Additionally, related to bulk, a fatal flaw in the textile block system was revealed during construction as well. The lowest blocks on the main building would begin to crack and crumble under the massive weight of the blocks stacked on top of them, often to the structure’s total height.\textsuperscript{9} There was also the issue presented by the earlier mentioned environmental inclusions in the cement. While building the Ennis House, they did manage to match the color of the cement to the hillside, but in doing so, they also produced a massively shortened life span for the blocks. Deterioration set in almost immediately because the local granite and sand created inherent structural issues in the cement.

Over the years, the home was bought and sold with no one generally taking up residence for an extended period. This led to the neglect of critical maintenance on the retaining walls and exterior blocks. This was all compounded in the early nineties, first in 1994 when the Northridge earthquake caused massive damage to the floundering retaining walls. Large swathes of the retaining wall and back soil fell away from the house (Figure 3). This structural failure caused a notable slumping in the dining room, leading some to fear that the main building would potentially collapse under its weight after the foundations had been undermined. These foundation issues were exacerbated in 1995 when Los Angeles received a record amount of rainfall. The deferred maintenance led to leaks throughout the house which damaged the interior decorative blocks. The rain running down the hill where the building sits caused further damage to the terraced

\textsuperscript{9} Wilson, 64.
foundation, leading to even more of the retaining wall failing. These structural flaws looked terminal and led the city to entirely close the site to the public.10

But somehow, the Ennis House persisted. After 1995, it was determined that 5 million dollars would be required to stabilize the house. Another 15 million dollars worth of restoration would have to be performed to return the home to its former glory. Initially, FEMA gave 2.5 million dollars in restoration funds, and the house was given over to a non-profit conservancy. These funds were quickly deemed inadequate, and the conservancy had to begin looking for additional funding. Ultimately, only 6 million dollars in funding could be gathered, and the Ennis House could not be repaired to the point that it could be opened back to the public, so the conservancy had to put the house back on the market and sell it to a private owner. The house was sold for 4.5 million dollars, and restoration was continued privately.11 As of 2018, restoration has been completed, and the house was sold for 18 million dollars to a limited liability corporation founded by a beauty brand.12

What is difficult to believe is that this is an incredibly abbreviated history of the Ennis House. I have limited my description to the events directly related to the upcoming thesis work presented in this essay. However, this shows the deep well of information that this building, less than 100 years old, has generated. Going further, it will be most

10 Wilson, 64.

11 Wilson, 64.

important to keep in mind the successes and failures of the house’s design, the material consideration that led to its literal formation and the techniques to create this building, and its appearances in films that have led to its cultural currency.
3. Process

Ultimately, the creation of this work revolved around finding a way of transporting a piece of architecture out of a film into reality and converting it into a physical medium as faithfully as possible—my process of doing this required various steps that I will explain in this chapter. Additionally, several aspects of this process will emerge as contributing conceptual factors that I will point out in the subsequent chapters. As you progress through this section, you may notice some analogies arising before getting to specific work.

The first and most important part of my process is “looking.” As I mentioned earlier in this essay, I spent a great deal of time not making anything due to the pandemic. This meant that I was spending a great deal of my time watching science fiction movies. I have always been very interested in the science fiction aesthetic and the predictive quality of futurism in film. Because of this, I spend my time looking at the background of movies, searching for useable imagery. In the case of this project, once I had found the decorative block in the background of Blade Runner, I knew I had found the object with which I wanted to work.

The next step involved finding a way to bring the block into a usable form. There were multiple ways to start. I could have modeled the tile block in clay or wood and made a mold of it. But I found that I had been influenced by the spirit of Blade Runner and wanted to remove myself, or the human element, as much as possible from the production of the tile. To do this, I began by producing a digital tile model.
imported stills from the scenes where the tile appears in Blade Runner into a Computer-Aided Design (CAD) software called Fusion 360. This allowed me to build the 3D model on top of the original source imagery. In retrospect, I should have used existing blueprints or photos from the exterior of the Ennis House, but at the time of rendering the tile, I still did not know that the house was a real place. Using film stills is one of the reasons that my rendering of the tile differs in minor ways from Frank Lloyd Wright's decorative tile. I was forced to account for the angle of the camera filming the scene. Which created a small amount of parallax and led to some of the differences in my iteration. Additionally, I was working from an image that was dramatically lit. This led me to believe that the amount of relief in the tile was more significant than it was. It was here that I took other liberties with my tile. I pushed it as far as eight inches off the wall where Wright’s extended only four (Figure 4).

Once the model was completed, I moved on to 3D printing it so that I would have a physical copy to make a mold from (Figure 5). The printer would produce exact copies of my model out of PLA plastic (Figure 6). This step was a bit more complicated than I had planned. I did not have a large format printer at my home studio, so there was no way for me to print a version that was to scale. Instead, I used the fact that the tile is a perfect square to guide my printing. I wanted to reference the original size by breaking the tile into 16 different blocks that, once combined, created the pattern again. Modularity was the only way for this project to move forward because of the severe limitations I was dealing with on space and resources due to studio closures. The original was scaled up to a 24-inch square tile block to break the tile up into equal parts. This allowed my version to be made of sixteen, 6-inch square
blocks. It was here that I became very excited about new patterns emerging: squares within squares; a breakdown and re-emergence of form.

Once I had the individual plastic tile blocks in hand, I had to decide how to mass-produce them. 3D printing them en masse was not an option as the plastic filament was far too expensive, and the process was far too slow to produce the blocks in the numbers I needed for this project. Here, I made a diversion in materiality, using clay casting slip instead of concrete. There are several conceptual reasons for this decision that I will discuss in the next chapter, but some pragmatic considerations are worth noting here. The most important is the ease of material production. The casting slip can be made with an exact formula, producing precisely the same material every time. This means that I could make a large amount at one time and let it sit while I worked. Using the clay slip meant that I did not have to mix my material every time I wanted to pour the molds as I would have had to do if I were using concrete. It is also allowed for hollow casts; which meant massive savings in both weight and material.

To create the final clay tile blocks, I used a plaster mold and clay casting slip (Figure 7). This is a traditional industrial method for mass-producing ceramic objects which has been in use since the 16th century in Europe. The benefit of this method is being able to rapidly-produce a clay object repeatedly until the mold degrades to a point where details are lost.

The first step is preparing my casting slip to create the clay tile block. This is a unique form of clay because it is chemically hydrated. Instead of pouring large

amounts of water into the clay to create a liquid, comparatively very little water is used. Instead, the electrical bonds of the clay particles are broken with a chemical called a deflocculant so that the individual clay particles can hydrate with far less water. The casting slip is then poured into the plaster molds and allowed to sit for 10 minutes. The plaster pulls the water out of the slip, causing it to harden into a solid clay object. Once the slip has sat for the allotted time, the excess is poured out and the thin casting on the plaster remains. After being allowed to dry for three to four hours, it is then pulled out of the mold once it is firm enough to be handled (Figure 8).

My finishing process is straightforward for these tile blocks. I consider them to be building materials, so I treat them like bricks or the cement blocks from Ennis House. They are left unglazed and unadorned in any way traditionally associated with studio ceramics. I fire them once in a kiln to 1888 degrees Fahrenheit, the normal temperature for terra cotta. This temperature allows the brick red color of the clay to emerge while not wasting time or energy firing the kiln hotter than it needs to be.
4. Tile Block Revolution Installation (Ennis Tableau)

The assembled mass of tile blocks is the central piece of my thesis exhibition (Figure 9). It is created from more than 1500 cast terra cotta pieces, carefully arranged to create a previously unrealized revolving pattern capable of limitless expansion. This conglomeration of ceramic material is a sprawling tableau; in one moment, it is a setting that is emblematic of numerous fictional realities. At the same time, it is a convergence point of all the conceptual eddies that make up the whole idea of this project. The power of this piece is found in the fact that it has something to offer anyone willing to look.

The first point that needs to be made about this installation is that it is a distillation. It is a way of encapsulating the totality of a highly recognizable building down to its essential essence. In doing this, I can use what anchors this building to reality as an artistic device. To do this, I had to ask myself several questions to get at the heart of what makes this piece of architecture recognizable. Was it the formal shape of the concrete building perched atop a hill in Los Angeles? Or is the decorative tile covering the exterior giving the place its aura? To answer these questions, I had to place the Ennis House, and the more significant Art Deco movement, in relation to the emergence of Modernism. This comparison is essential because many of the general guiding principles related to the Ennis House are adjacent to emerging ideals in Modern European architecture while being just different enough to justify my belief that it is the decorative block that defines the
building. Additionally, Modernism is the closest emerging architectural design philosophy to compare to the Ennis House.

My position is based on the embrasure of material in Ennis House, the premium placed upon that idea by modernism, and ultimately how divergent the outcomes are. In designing the Ennis House, Frank Lloyd Wright developed an aesthetic meant to exist within the architectural movement of Mayan revival that was sweeping America. There was an attempt to synthesize pre-Columbian architecture and decoration into something that could be packaged as a uniquely American design, something that could delineate North America from the emerging international style of Europe.\(^\text{14}\) To achieve the desired synthesis of Native American styles, Wright turned to reinforced concrete. In this material, he found something pliable and could be molded into various complex forms without sacrificing strength.\(^\text{15}\) The complex forms mentioned are not the structural elements of the buildings. Those forms are truly modern in their interpenetrating geometries.\(^\text{16}\) Instead, the pliability is seen in the cast concrete decorative blocks. They are highly detailed and require production on a massive scale because Wright planned to use them to hide the internal structure of his Mayan revival homes. Here, we can see that the concrete walls below the


\(^{15}\) Wilson, 49.

decoration were merely a staging area for the tile, which would be the quintessence of each of the four buildings he built in this style.

This deviates from the ideals of Modernism in a critical way. It is how the material focus is applied to the reception of the building. Where Wright used solely concrete to create a highly decorated surface, the European modernists had a different view. If we consider the ideas of one of the foundational thinkers of Modern architecture, Le Corbusier, we can see the divergence. When considering his 1923 treatise “Toward an Architecture,” we see that the materialism of the building is brought to the foreground to emphasize formalism. But the focus is singular, and decoration is eliminated in a search for pure architectural form. When placing these ideals next to one another, we can see the similarities and how close the Ennis House is to being another exemplar of Modernism. If not for one detail, this is Wright's complete commitment to decorations and architectural adornment. The form is a means of displaying the patterned decorative tile. Here, we discover the Ennis House’s aesthetic priority, the Mayan revivalist decoration. Because of this, we must agree that to distill the Ennis House to a core idea is to reduce it to its singular decorative element.

To accept that the decoration, the cement block, is the essence of the Ennis House is to take the first great leap into this thesis work. The viewer can enter the work now and consider it at various levels. The viewer can start making conceptual connections that lead to the broader questions of this thesis. Which version of the Ennis House is the real one, and to whom does it belong? We must take the next step in considering

---

this piece, the work’s orientation, for this to happen. Specifically, understanding why a tile designed to cover vertical walls became a device that does just the opposite. My tile blocks take on an axial shift and cover the floor, expanding across the horizontal plane of the gallery instead of the vertical (Figure 10).

The initial decision to place my tile blocks on the floor is a reference to the actual biography of the Ennis House. By referring to the background chapter, the viewer may remember that the house was subject to various design flaws and upheavals that led to the Ennis House shedding many of its blocks. As these blocks fell away from the house, they were left scattered across the surrounding hillsides until some of the debris was eventually collected and archived at the Frank Lloyd Wright Museum and the Los Angeles County Museum of Art. This scenario creates a twofold reason for my display decisions. The first is a matter of authenticity and, to a broader extent, reality. After restoration began, large parts of the fascia needed to be replaced with freshly cast blocks to replace those that were lost. The only information that my research could turn up on these new blocks was that they were made using the original aluminum molds. But a larger question remained, did they create the cement with the same marble and sand inclusions? Although I could never find an answer to this question, logic would dictate that they were not, especially when engineers and restoration specialists were able to point to the composition of the cement as a primary source for its early decomposition. If we follow this line of reasoning until contradictory information is found or released, then the only “real”

---

remaining Ennis blocks were those that had fallen away from the building. They benefit from being created by the original workman, under the supervision of Wright, with the original cement formula. Additionally, they are records of the totality of the events that the home has experienced.

There is also the second consideration for placing my tile blocks across the floor. Through a series of experimental display strategies, I have found that the placement on the floor encourages the most significant amount of conceptual engagement. When the clay tile blocks were used like their cement predecessors on a wall, there was a distancing between the viewer and the accumulated tile blocks. On the wall, they keep their original purpose as architectural decoration. Instead of creating a new presence of their own in a gallery space, they were swallowed up by the size of the room they decorated. This prevented the viewer from entering them as a tableau because the blocks towered over the viewer, often forcing them to look up at the total installation on the wall.

When placed on the floor, the work does the opposite. It puts the viewer in a more fantastic point of view. They are elevated above the totality of the accumulated tile blocks. This shrinks the installation and exaggerates the size of the viewer, giving them greater ownership of how they interpret this installation. There are also a variety of minor references that feed into the decision to place the tile blocks on the floor and work to enrich the tableau effect that the placement achieves.

One of the first things that the placement of tile blocks on the floor evokes is a sense of metropolis but in miniature. The high degree of relief built into the tile and

---

the tiles’ modularity creates a unique sense of organization. When viewed from above, it simulates a city, much like an architectural model allows the viewer to observe a building design in its totality. This sense of a city is produced through a variety of strategies. The first is the source of the visual information, Frank Lloyd Wright's work in the Mayan Revival style. We see an attempt to synthesize a broad-spectrum Mesoamerican aesthetics into something applicable to North American architecture.\textsuperscript{20} The resulting product from Wright is a decoration made up entirely of layers of right angles. When these designs are extruded upwards into high relief, architectural structure emerges. After this is combined with the modular design system I introduced in the process section, we see another aspect of the metropolis appear. The square modular block becomes the city block from the viewers' elevated position.

Contemporary architect and Harvard professor Rem Koolhaas highlighted this grid structure's importance in his manifesto \textit{Delirious New York}. Here he states that the grid, “despite its apparent neutrality, it implies an intellectual program… in its indifference to topography, to what exists, it claims the superiority of mental construction over reality.”\textsuperscript{21} Through the grid and its unyielding logical organization, the installation can exist within any setting. We can see the vertical and horizontal gaps passing through the organized pattern of the ceramic miniature metropolis as planned streets and avenues, absolutely unyielding in their consistency. In the case of

\textsuperscript{20} Wilson, 49-54.

In this installation, we see 32 avenues running north-south and 64 streets running east-west resulting in 2,048 “city blocks.” This gives us a miniature metropolis greater than Manhattan’s 2,028 blocks.\textsuperscript{22} It is not bound by the topography of its setting but rather by the mental constructs it creates and those cast onto it by the viewer. In this way, the "urbanistic Ego" of the miniature city is secondary to the fantastic projections of each viewer.

While still considering the installation concept as a cityscape, one more factor needs to be addressed. This is the correction of the pattern on the Los Angeles Ennis House. On the original building, the pattern that Frank Lloyd Wright created was meant to imitate a Greek key pattern (Figure 11).\textsuperscript{23} This meant that the design had no visual rotation. Instead, it ran in long repeating bands around the house. When the tile block is oriented in this fashion, it is impossible to see anything other than an assembled mass of decoration, not to mention the looming issue of applying classical Greek design principles to something ostensibly modeled on Mesoamerican temple ornamentation. I found through trial and error that the original pattern was capable of rotating around the highest point, the large square in the lower right-hand corner. This produced a fascinating result; the pattern could mirror itself in all cardinal directions, allowing four patterns to be combined into one much larger pattern. This new pattern I have taken to calling a full tile block revolution, or a revolution for short, is where the city emerges from the gathered blocks. With its tallest structure of the tile blocks,

\textsuperscript{22} Koolhaas, 18.

\textsuperscript{23} Ennis House. Frank Lloyd Wright Foundation, April 18, 2022, https://franklloydwright.org/site/ennis-house/.
tile #16, situated at the center, an organized pattern of smaller structures radiates out from it (Figure 12). All the while, an inherent organization is presented by the pattern. The assembled pattern bears a striking resemblance to the general layout and structure of many Mesoamerican temple complexes found throughout Central and South America.

To better understand how the city structure emerges from these tiles, I found that mathematician Slavik Jablan who studied the foundations of human patternmaking clarified this phenomenon very well in his article, *Modularity in Art*. Jablan identifies modularity as the fundamental component in creating “ornamental archetypes,” which are ancient patterns that have had a continued presence until today. Jablan defines modularity as the use of basic elements, or modules, for constructing a large collection of different possible structures. This is derived from the modularity principle’s broader concept, a universal principle of economy. It expresses the possibility of diverse structures from a finite set of basic elements. On the surface, the Ennis tile blocks may look like sixteen discrete and complex structures that would not fit within this framework. But in fact, they are made up of one of the most basic ornamental archetypes that exist, the repeating right angle. The Los Angeles and my own Ennis tile blocks are nothing more than a series of repeating right angles.

A clear pattern emerges when this fundamental ornamental archetype is combined with symmetrical pattern reflections. This new Ennis pattern's scalability and fundamental logic make it visually compelling and reminiscent of the urban environment. The other benefit of working with my pattern versus Wright's Greek

---

key is that it is a system of squares instead of rows. My new pattern is capable of constant, equilateral expansion, in some ways resembling a rudimentary fractal. There is a beauty in the fact that I can create squares within squares, and the pattern can continue to expand unabated in perfect symmetry until the modules run out.

Now that the referential concepts of my tile block installation have been addressed, it is essential to frame the piece within its broader conceptual framework, which helps relate it to the other elements in the exhibition. To do this, we must look at the work through the lens of simulation and that of the miniature. These ideas share commonalities concerning this installation, but each is important for its individual contribution to the development of this display in relation to the whole show. In talking about how the blocks combine to create a miniature cityscape, it is most helpful to address the notion of the miniature. Most of the academic references to this idea have come from the writing of Susan Stewart, an American poet, literary critic, and MacArthur Fellow. In describing the miniature, Stewart says that the power of the miniature object comes from its exaggeration of the interior and its relation to the space and time of the individual regarding it.25 This is a critically important idea because of the implication of the object on the individual. Because of its focus on the interior, the miniature draws the viewer in and allows them to experience the thing in its totality because of its possessive ability. But this piece is not a singular tiny object. Instead, it is a large rolling field of repeating miniatures. This grouping creates a 256 square foot installation made from over a thousand five-inch square tile blocks. There is a beauty in the idea of the miniature magnitude. The viewer can cast their gaze

25 Stewart, 44.
across something grand and enter the interiority it creates while still maintaining the power to move, disrupt, or possess any of the pieces that make the whole. According to Stewart, this is one of the most alluring aspects of the miniature. Through its scale or lack thereof, the viewer is given the “transcendent viewpoint,” as described above. It is a unique state of seeing that allows the viewer to enter the space of the miniature while maintaining an omniscient exterior view. Stewart says, this duality of point of view creates an inherent sense of theatricality around the miniature, making it a tableau for the viewer to project one’s thoughts onto. In this way, each viewer can take ownership of their time with this piece. Each viewer’s mental projection into the tableau created by the tile block installation creates a unique context and a direct line of ownership because the miniature and tableau are inert without the viewer.

This new point of view creates something called “experimental fantasticality,” a concept introduced by Russian literary critic Mikhail Bakhtin. Experimental fantasticality allows for constructing multiple contexts and interpretations of a singular object or scenario. In this way, any produced image bears tangible qualities to material reality and serves to represent a version of reality that does not exist. The object being referred to by the miniature is often made fantastic through its miniaturization, and the fantasticality breathes life into the miniature. This concept introduced by Stewart will play an even greater role as the reader reaches the next chapter, where I introduce the contextualizing video element that accompanies this piece. Still, for the time being, experimental fantasticality grants the tile block tableau

---

26 Stewart, 54.

27 Stewart, 70-74.
of miniatures an unrestricted ability to produce worlds where understanding is subservient to context. This focus on context versus understanding allows for the creation and projection of an unlimited number of fictive realities by the viewer of the tile block tableau.  

I can challenge the notion of ownership by using miniaturization of the physical Ennis tile blocks and the application of Susan Stewart’s theories on the topic. The activation of the installation is entirely dependent upon the viewer taking ownership of their reality in relation to the tile blocks as a tableau. In this way, I have created an entirely new function for a simple architectural decoration that completely removes them from their original purpose. This is the first step to reclassifying the tile blocks by creating new objects for myself and the viewer as their new owners.

The last aspect of this piece of this puzzle that I need to explain is the application of simulation as it is defined by the French postmodern philosopher Jean Baudrillard. Where the idea of the miniature was used to tackle ideas of ownership, I use simulation to question the traditional notion of reality and how it affects the meaning of this piece. Before I begin, it is essential to explain that the Ennis tile block revolution falls short of making a spectacular challenge to the notion of "real." For clarity, I will be explaining just this piece in this chapter, relatively independent of the constituent pieces that are meant to amplify these ideas. Because Baudrillard's theory presents three orders or levels, I can talk about its application to this piece in a relative vacuum. I would simply ask for patience from the reader until Chapter 9.

28 Stewart, 60.
where the pieces will be explained in relation to one another, and the installation as a whole can be considered.

What is reality? This is an incredibly loaded question that must be answered before I can explain my challenge to it with this work. If we are to turn to pure philosophy for an answer, we will have as many definitions as we do philosophers. Instead, I have chosen to use a definition put forth by mathematician Emmanuel Saradakis in his article *Information, Reality, and Modern Physics*. In this article, Saradakis proposes a straightforward definition that works as an excellent foil for this work. He says that reality if it is to be understood in its physical terms, is everything that makes up any given system or object.29

So how can the ideas of a French philosopher and group of clay tile blocks disrupt such a fundamental notion as the one described above? It does so by entering a state, Baudrillard calls the “hyperreal.” Hyperreality is a generation of models of reality without origin or reality.30 While this idea seems convoluted at first glance, it can be understood by examining an innocuous phenomenon, pumpkin spice. Simply put, there is no spice derived from pumpkins that are used to flavor coffee beginning in late September. It is just a mixture of nutmeg and allspice, with absolutely no traces of pumpkin whatsoever. But that combination of spices has come to absolutely represent a very real flavor that most people immediately associate with pumpkin. It is something completely new that has no basis in its initial referent but has become


just as real.\textsuperscript{31} Now consider my clay blocks in place of the latte. It seems as though it is simply a recreation of the architectural decoration of a building in Los Angeles. But we must refer to the previous chapters and consider the origin of my tile blocks. The point of origin of my project is not Frank Lloyd Wright, Art Deco, Los Angeles, or architecture. It is a moment in the background of the movie \textit{Blade Runner}.

My blocks were pulled out of complete fiction, with no referent beyond what I thought was a Hollywood soundstage. Because of this, the blocks are "the product of an irradiating synthesis of combinatory models in a hyperspace without atmosphere."\textsuperscript{32} The model I created to bring my tile blocks into physical existence was made in a purely digital space, immune to my hand as a maker, subject only to my vision as a designer. It came from fleeting imagery gathered from the background of a movie that is based on what can be considered real. I felt a need to see the block in person, pull it out of the film’s background, and make it real. Baudrillard believes this feeling when he says that “to dissimulate is to feign not to have what one has. To simulate is to feign to have what one hasn’t. One implies presence, and the other an absence.”\textsuperscript{33} I had no tile block, so I had to simulate it. I needed to banish that absence with a physical object to call my own. This led to the physical discrepancies between my block and that of Wrights. My simulation had to be pulled out of the periphery and made real; where details were absent, I had to guess and take ownership of the simulation when it became a new hyperreal object.


\textsuperscript{32} Baudrillard, 3.

\textsuperscript{33} Baudrillard, 5.
Due to the hyperreal origins of this project, my tile blocks have been able to shed everything auxiliary and exist in a state of totality. Baudrillard says it is "no longer a question of imitation, nor reduplication…It is rather a question of substituting signs of the real for the real itself, that is, an operational double, a metastable, programmatic, perfectly descriptive machine that provides all the signs of the real and short-circuits all its vicissitudes."34

This describes my blocks and the thinking that led to them. They are not bound by the physical realities of Wright's creation, which was not a known vector at the conception of my hyperreal tile blocks. Because their origin exists entirely outside of that framework, my tile blocks can shed the shackles of the building and live independently. My blocks are the machine that short circuit the vicissitudes of the real. Because of hyperreality, I can dispose of Wright and the building proper. I now find structure and support solely from the tile block, granting me the flexibility to defy the original design and pattern for my operational double that becomes greater because it has broken away from the building and its origin. We see the original fate of the tiles echoed in the concept. They are only really activated once they have been crushed under their own weight and fallen away from Frank Lloyd Wright’s Ennis House.

It is crucial to close this chapter on that thought. To delve further into this piece and how it continues to challenge ownership and reality would require greater context; and, thus, the inclusion of the other installation elements. To gather additional components for the machine described in Baudrillard's quote above, we will need to examine all the pieces in the exhibition.

34 Baudrillard, 4.
5. “16:16” An Architectonic Film

This exhibition is inexorably tied to film. I owe director Ridley Scott a great debt for my initial introduction to the Ennis House through his science fiction classic, *Blade Runner*. But a single movie appearance does not build a bond like the one that the Ennis House, and its highly recognizable decorative cement blocks, share with cinema and television. As I said in the background chapter, the house has made over 80 television and movie appearances since 1934. With the number of credits this high, it is not difficult to find oneself wondering whether the Ennis House is a living space or a dedicated Hollywood soundstage. Knowing all of this, I cannot use this tile block as a sculptural device without also addressing its cinematic history.

To feature the filmography properly, I felt it was necessary to create references to the original decorative block and feature its appearances in films. I started out by casting eight cement blocks that hang on the gallery’s walls in groups of four. Each block is designed with the basic dimensions of the original Ennis House tile block: 16-inches long, 16-inches wide, and 3-inches deep. When assembled as a group, this presents a 32-inch square assemblage of cement tiles, two of which exist simultaneously in the gallery during the installation (Figure 13). Another important characteristic of the cement block is that the face is blank; the recognizable pattern that decorates the Los Angeles Ennis House is absent. I was not interested in producing literal cement tile blocks, as this had been accomplished on the gallery floor by the clay Tile Block Revolution piece. Instead, I wanted to use these near literal Ennis blocks as screens to project a contextual movie of the house’s decorative
blocks’ appearances in films. In this way, I can use the power of film, to activate the otherwise inanimate blocks. With the projection of the historiographic movie appearances, I have created a new animated decoration that creates a chronology and contextualizes the Ennis House within the broader installation (Figure 14).

But with such a prolific list of credits, I was forced to find a way to organize what would amount to over 5 hours of various scenes from movies and television. I first decided to avoid playing entire movies and television episodes featuring the tile block. Instead, I would cut out scenes that did not feature the house in the background until I was left with various short snippets featuring the tile block in plain view. This decision helped remove a large amount of visual information but organizing what was left was still a massive undertaking. So, I made another choice to help eliminate additional information. For a scene to become a part of the broader contextual movie, it had to be at least 16 seconds in length. Anything that was longer than this would be broken into as many 16 second segments as possible for potential use in my short film. This length may seem arbitrary, but I decided based on two ideas. The first is the legal concept of “fair use,” and the second is the montage style of filmmaking employed by directors in the Soviet Union during the 1920’s. While these concepts seem vastly different, they complement one another very well.

Employing the concept of fair use came from the necessity of finding a way to use copyrighted material in this exhibition. Fair use fit quite nicely into the overall theme of my short film because legally using film was dependent primarily upon two provisions. The first is that the material is being used for educational purposes, and
the second is the expectation of using only small amounts of the material.\textsuperscript{35} I found the first provision very fitting as my film was meant to provide a broader context for the installation. It is a purely educational film intended to give viewers visual clues and reminders that they have seen the Ennis tile block woven throughout popular cinema many times. Additionally, the film is inherently devoid of meaning and narrative because it is meant to only prime the viewer for a staged viewing experience with the tile block installation.

Fair use was also a pivotal tool in determining the length of the clips that I wanted to use. As I stated above, the scenes needed to be as short as possible so that it does not impact the value of the movies they had been taken from. I saw this as an excellent opportunity of creating a simple numerological system to guide me. I chose the 16-second time frame because it directly references the size of a single original tile block in inches and the number of my miniature clay tile blocks required to make a complete representation. I also wanted to continue utilizing the square’s theme within this new system. As I stated in chapters 2 and 3, the square is found everywhere in this tile, so it was only fitting to bring that into the movie’s development. To do this, I decided to limit the film’s running time to 16 minutes. This means that it is made up of 60 16-second clips. Here, the film got its name, “16:16,” a ratio of seconds to minutes. The film plays on an uninterrupted loop all day, which means that in 24 hours, the film will play 90 times. With the 90 cycles, I can reference 90 degrees, or the right angle, which is the square’s foundation and the guiding design principle of the tiles themselves.

\textsuperscript{35} More Information on Copyrights,” U.S. Copyright Office, May 2021, copyright.gov/fair-use/more-info.html.
There was one other factor that I considered when I was creating the 16-second film blocks, which was what to do with the sound and dialogue in each of the scenes. As I said, "16:16" is meant to be a visual primer for the viewer within the gallery. It is playing to give context to the house and the ceramic tile block installation in the gallery. In this way, "16:16" plays a vital role by informing viewers about what they are looking at without forcing them to read an expository background statement. Since I wanted to work with the visuals of the scenes, I decided to remove the dialogue and sound from them, relying on closed captioning to give clues instead. During the editing of "16:16", a wonderfully exciting flaw emerged around the closed captioning that closely resembled the unplanned deterioration of the Los Angeles Ennis House.

The scenes projected onto the blocks initially have a rectangular aspect ratio for a cinematic screen. Whereas the display surface created by the cement blocks is a square. I had to crop the video down from a rectangle to a square for it to properly fit, eliminating some peripheral information in the process. Some of that lost information is portions of the closed captioning. This “happy accident” helps to disrupt the spoken narrative in the films and illustrates design flaws in my planning of the hyperreal Ennis installation that echoes the unplanned failure in the cement of the original Ennis House from which I have drawn so much inspiration.

The idea of chopping the scenes down to discreet 16-second blocks led to the second guiding concept in creating “16:16”: Soviet montage theory. These two ideas fit together so well because they both focus heavily on editing to create blocks of visual information. The Soviet Montage theory came into being between 1924 and
1930, which happens to coincide very closely with the building of the Ennis House. It was an organic construction that resulted from the creative efforts of various Russian directors working at the time; however, the primary developers were Sergei Eisenstein and Vsevolod Pudovkin. Both were young post-revolution Russian directors and writers whose work during this period defined the philosophy of this style and its visual construction.36 Heather Puttock, a film producer and theorist, explains that Pudovkin and Eisenstein created “Montage cinema;” a style in which specific meanings are produced through foregrounded, often startling juxtapositions of shots.37 The Russian montage style is hyper-focused on the radical deconstruction of film, literally stripping movies down to their individual frames to analyze the theatrical and dramatic qualities they produced. Once those qualities were understood, they would be able to order the shots by their compositional and graphic elements to create new dramatic and rhythmic moments within their films.38 Vsevolod Pudovkin developed a strategy of linkage that would guide Soviet movie making as well as my own for this thesis.

Pudovkin adopted an architectonic model of film production. He considered each strip of film a separate building block that, when arranged thoughtfully, could develop or expand an idea.39 This concept came from Pudovkin physically cutting up old, pre-revolution films to generate usable imagery to supplement his movies. This

37 Puttock, 9.
38 Puttock, 9-10.
39 Puttock, 10.
approach was necessary as celluloid was scarce to produce new films in the burgeoning Soviet state. This creation through destruction was a development closely related to the Cubo-Futurist movement spreading through Russia. This movement held that the bourgeois urban architecture must be destroyed, recycled, and finally rearticulated to express a new vision. This notion is axiomatic with both the Soviet montage style of filmmaking and the more significant Soviet philosophical dialectic guiding most creative pursuits of the time. The overall concept of montage film editing is a cornerstone of “16:16”. The idea of deconstructing a film to mine usable smaller blocks is what my film is all about. Much like my tile block installation mentioned in the last chapter, the “16:16” film is focused on distilling the usable facets of others' creative production to reorder them within a logical system I have defined, all to create something new.

I will now explain the idea behind the system of linkages that give the scenes in the films their order. Two separate films are happening within the gallery at the same time. Each film block is linked in chronological order so that the viewer can see the history of the block through cinema. The film blocks are not only ordered by the year of the movie production but also by where it is located in the movie’s runtime. This means that there are subdivisions within each of the films I am sampling. The films sampled for “16:16” begin in the black and white era and continue to the present day. This broad survey is important because it gives the viewers a chronological barometer of the tile block based on the technological advancements in film. Throughout the progression of "16:16", the viewer can see how everything from color and resolution

---

40 Puttock, 10-11.
to computer graphics improve over the backdrop of the Ennis tile block. But as I said, two films are happening within the installation, not just one. Both films deal with the chronology of the decorative block. They are identical films built from identical cinematic bricks, but one of them progresses through time while the other regresses. I have chosen to present “16:16” to situate the movie that spawned this project directly in the middle of both versions of “16:16”. The cinematic blocks pulled from Blade Runner begin at minute eight in both films. This is the only point where both movies overlap and sync up. This creates a moment of unity and clarity for the viewer, highlighting the importance of the film to me and this project.
6. The Plans (Blueprint Blocks)

My sixteen concrete block blueprints for the individual Ennis House blocks are objects that typify the concept of simulation (Figure 15). Additionally, these schematics broach the idea of ownership and illustrate the balancing act that has come to represent this idea in my practice. The concept of the blueprint is a seductive one. It is a formalized moment of theoretical perfection that can exist away from the pitfalls of the reality of creation. The image of the “blueprint” exists in the minds of most individuals—a sheet of paper covered with stark lines meant to direct the construction of some object. The classical blueprint is a reproduction of a technical drawing created through a contact printing process on photosensitive paper.\(^4\) The act of making a blueprint sits somewhere between photography and serigraphy, or screen printing. Exposure to light is a unifying aspect of all these processes and my own blueprint blocks. Ultimately, light must interact with the intended information for an individual to receive the information encoded on my blocks or a blueprint.

I began in the same place as my Ennis tile blocks, CAD software, to create my blueprint blocks. Instead of sending the designs through to a 3D printer, I created technical drawings from the existing three-dimensional renderings. I was then able to highlight each block's dimensions, angles, and prominent design features within the software's drafting environment. Once completed, each of the sixteen technical drawings was printed onto a sheet of transparent acetate and burned into a silkscreen so that the

image could be transferred on to a cast cement block. The image was then printed like any other off-contact screen print. The only difference is that I did not use colored ink. Instead, I pushed a transparent gloss varnish through the screen onto the surface of the concrete. This is a significant difference because it does not give the appearance of a traditional print, which is to say a highly legible ink on a surface. Instead, the varnish creates a ghost image, which cannot be seen from a distance or in the presence of direct light (Figure 16).

The blueprint blocks are excellent representations of Baudrillard’s theory of simulation for several reasons. The first and the most general reason is the nature of the blueprint itself. As I stated earlier, the blueprint is a photomechanical projection of an existing technical drawing. The blueprint represents and rearticulates the original drawing of the engineer or designer in every way, mimicking all the symptoms of the original, as Baudrillard would say.42 There is the added benefit of serialization that derives from the photomechanical origins of the blueprint. The “original” drawing has a finite lifespan and is subject to the material vulnerabilities of whatever it has been rendered on, often design vellum or another semi-transparent paper. But the blueprint, or simulation, can propagate infinitely, recreating itself from itself as many times as necessary. Because of this reproducibility, the blueprint is what is encountered by everyone involved with a project, not the original hand-rendered object that only the designer or engineer would interact with. In this way, the simulation supersedes the original. It becomes the operational original and a third-order simulation described by Baudrillard.43 But this broad

42 Baudrillard, 5.
43 Baudrillard, 83.
description does not accurately place my blueprint. Where the idea of the classical blueprint above is seen originating from a series of analog processes, my blueprint blocks deviate. The actual construction is completed before a plan is ever revealed. As I stated earlier, each tile block is built in three dimensions within the CAD design environment. A technical drawing is generated only when the block has been fully formed. In this way, my blueprints become hyperreal by existing in totality in a virtual environment before a guiding plan.

This inversion of the generative process aligns with the allegory of creating a map preceding the discovery of the physical territory that Baudrillard uses to describe fourth-order simulation. My blueprints also present the material consideration. The decision to use concrete as a printing surface versus contact paper is a gesture of simulation. The concrete is a direct line to the Ennis House itself. The plan for the rearticulation of the decoration I created is linked directly to the house by its physicality. This unique phenomenon creates a departure from traditional practice and an object that can defy the reality of the building that it is simulating. As I stated at the beginning of the chapter, the blueprint is a theoretical model of perfection, and this idea is extended to the concrete tablet of each plan. They defy the failed concrete of the Ennis House by simply continuing to exist.

When considering ownership of my blueprint blocks, I am using a theoretical framework presented by Ulrich Lehmann, a professor, and writer on design and material culture, in his essay "Object Lesson." In this essay, Lehmann codifies a meaning for the term "disegno," which is the Italian root word for design. Within disegno, Lehmann

44 Baudrillard, 1.
describes a tension that is created within designed objects. This tension results from the interaction of the artist and craftsperson. Lehmann says these “objects exist in a tension between their productive imprint and their function as a heuristic device.”45 What he is describing in that quote is the productive imprint of the artist or designer who generates the conceptual impetus of the object and understands aesthetic precepts that dictate the way the thing is perceived versus the heuristic device; this heuristic is a reference to a learned set of skills used to solve material problems. Here, Lehmann describes the craftsperson who does not concern themselves with the object's reception but rather applies the technique and material needed to bring the thing into existence.46

Lehmann talks about the balance, or disegno, that must be created in this type of relationship for an object to be made. There is a back and forth between the designer, who creates sketches and generates ideas, and the craftsperson, who must apply those possibilities to material reality. There must be a dialogue back and forth so that the designer can make revisions in order for the craftsperson can successfully produce an object. It is here that a balance has to be struck; however, this balance has always raised a question of ownership for me. Who is the theoretical owner of the object? Is it the master of the object's design or the master of its material? Ultimately Lehmann seeks balance and looks to give equal credit.

I am more interested in applying this idea to my work and using it to support my claim about the design of the Ennis simulation. When talking about my blueprint blocks, I have upset the balance of disegno by eliminating the duality of the


46 McElheny and Lehmann, 49.
designer/craftsperson. Instead of dividing the labor, I have combined them and chosen to embody both sides of disegno. I am the designer in the CAD environment that generates the new high-relief Ennis tile that will be translated onto a cement blueprint. I am also the craftsman that casts the block and prints the image upon it. Additionally, I am the worker that follows the plan and builds the objects. I am answerable only to myself and the simulation that I have created. In this way, I can claim ownership of the hyperreal Ennis design and blueprint. In addition, there are also the prints themselves, which have been printed in invisible ink. This creates plans that are nearly impossible to follow for anyone else, in this way, I have eliminated all others but myself to build these objects. Ultimately, I follow Lehmann’s concept of a balanced disegno but only through the liberal application of Baudrillard’s theory of simulation. I can embody all the roles necessary to create the blueprint and the object, giving me total ownership of the object and its design.
7. Mold Piles (Ennis Tile Block Mold Cancellation)

The final piece within my thesis show is two piles of broken plaster shards sitting across the gallery from one another atop pedestals (Figure 17). These pieces stand out from everything else in the thesis exhibition because they do not demonstrate the same order and control as the rest of the work. Instead, the two piles exist as balanced chaos and monuments to finality. This severe departure is because these piles are based on the idea of production cancellation which often occurs in printmaking. When an artist has finished printing an edition, they will deface that plate to prevent further pressings. There are various ways to do this, but it most often manifests as gouging deep Xs into the face of the plate to disrupt the printed image.47 This practice presents itself around work that exists in editions or serialized. If something is made once, there is no reason for cancellation because it leaves behind no artifacts of its creation. One of the most interesting examples of this practice is the canceled etching editions of Edgar Degas. After his death, his art dealer, Ambroise Vollard, printed 150 editions of 21 different canceled plates found in his studio. The canceled prints bare deep grooves cut into them to indicate their end.48 I have found these prints very moving and the recreation scenario very informative to my thoughts on ownership of an image or object and what happens to them after a project is finished.


The Degas prints that bear the cancellation marks were prints made against the artist's wishes after his death. This was possible because the cancellation of his etched plates was not total. The image was still legible beneath the scratches. The continued existence of these artifacts of the original pressings allowed the unsolicited prints to come into being. In my mind, the artist loses ownership of their image when their work is recreated outside of their wishes. The objects acquire new, unanticipated contexts and histories that were not intended by the artist, becoming something altogether new and unwanted. If we follow this logic to its end, that would mean that for an artist to retain control of their work, they must account for its creation and destruction. In this way, the cancellation has become an essential part of this piece because it emphasizes my ownership of my simulated Ennis tile block. I have total control over its future by canceling the molds that created them.

I used sixteen five-part plaster molds used to cast the two thousand individual blocks needed to complete the tableau installation mentioned earlier. That means that 80 unique pieces had to be combined in a specific way to create my tile block. Once my production was complete, I decided to go a step beyond the cancellation of Degas. I engaged in the total cancellation of the molds. Instead of marring the casting surface of the molds, I smashed the assembled molds into unusable pieces. The shards were mixed together, making reassembly virtually impossible. This act was an extraordinary moment of finality for me. It marked the complete end of the project. With the molds gone, the tile blocks' fate was sealed, as continued production would be impossible.

The canceled mold piles also have a secondary effect outside of guaranteeing my ownership. They create a sense of preciousness for the massed tile blocks in the tableau
piece mentioned in chapter four. When looking upon thousands of any object, the care and time needed to make them seems to fall away by nature of their immensity. Like any mass-produced object, one is left to question the value of anything that can be readily made and obtained. But when the broken remnants of their molds bracket the display of my tile blocks, the viewer is forced to reconsider that notion of plenty. The viewer can see that this resource, even in its enormity, is still finite and therefore precious. So, by presenting the pile of broken molds, I can extend my ownership over my tile block while offering it as a more precious object to the viewer.
8. The Exhibition (Conceptual Throughways)

Until this point in the thesis, each piece of work has been explained individually. In this chapter, I will explore the exhibition as a whole. I will examine the connections between them and the meanings that those connections create. To help structure the explanation of the installation, I must explain how I had planned for the pieces to interact. The Ennis tile block tableau described in chapter four is the primary focus of the installation. The other elements described in the subsequent chapters were generally meant to interact with the tableau to expand its meaning beyond what it can do as a lone sculpture.

One of the most critical interactions in the installation is when the viewer can stand in front of the tile block tableau and look back to the gallery's corners where “16:16” is playing (Figure 18). Here, the viewer engages with the true history of my simulated Ennis House because they can see it in a slew of fictional recreations. They can finally connect the moment of visual recognition from a movie they have seen and the actual tile block. Once the first moment of recognition occurs with the film and the association to the tableau is complete, the effect can compound. The longer the viewer stays and watches “16:16,” the more stories they can take in and then place upon the tableau laid before them. It is at this point that the tile blocks become activated. The viewer can now see that the basis for the tile blocks is an existing reality and that its simulation lies before them. But the viewer is presented with no original history because the Ennis family and Frank Lloyd Wright are never mentioned in the exhibition. Instead, they are only offered sixty 16 second blocks of visual information to provide them with knowledge of the house. In
this way, the fictional existence of the house becomes real and inexorably tied to the clay tile bricks that exist in the gallery space with them. This expands the potential histories and futures of the tile blocks and tableau, which liberates it from the linear narrative of the original Ennis House.

Next there is the additional consideration of the material; the screen for “16:16” directly represents the size and material of the original Ennis blocks. This is directly contrasted against the clay of the new tile blocks. This is a crucial juxtaposition because the color and size of the concrete screen of “16:16” cause them to recede into the background, much like the original Ennis blocks. But the bright terra cotta orange and massive scale of my Ennis tile blocks forces them directly to the forefront of the viewers’ attention. In this way, I can change the context of my Ennis tile blocks; they are no longer a background character but the protagonist of the story. My simulated Ennis house's context and history become modular and fungible as the individual tile blocks themselves. This history made of fiction tied to a simulated physical existence is the point where my tableau, or my Ennis House, enters the hyperreal. I have made something altogether new by creating a tile block that can fold all of these stories and ideas within itself. It is a simulation that is strengthened by fiction rather than one that is weakened by it. Here, I stake my claim on the new Ennis House and make it my own.

At the nexus of the blueprint blocks and the tile block tableau, the viewer is forced to consider the idea of ownership directly. In the most obvious and literal sense, the display of the blueprint and the tile blocks that they describe inherently points to ownership. The indication is that I fully possess all stages of the project’s existence. I have realized that blueprints can become a sort of propaganda in this way. It is a diagram showing the
perfect, idealized version of a form with the designer’s name ever-present in the right-hand corner as dictated by ASTM standards. This is where the connection would end for most designers and architects, but my exhibition allows the blueprints to exist alongside the objects they represent. I am defined as the singular creator within the exhibition, both the designer and builder.

There is also an interesting phenomenon within the gallery due to the staging of the blueprints. They are the first thing that the viewer sees when entering the gallery (Figure 19). But initially, they appear to be nothing more than cement rectangles that force the viewer in for a closer examination where, with enough persistence, the plan is revealed to them. They can follow the plans chronologically until they are confronted by the massed tile blocks, where they must decide to continue examining the blueprints to see what comes next or turn their back on them to look at the tile block tableau (Figure 20). This is a beautiful moment for me to watch because the viewer is confronted with the same issues of disegno that I am forced to deal with in my practice. They can never look at both ideas simultaneously and are forced to choose between one or the other. But, in this work, I’ve been able to break free of this issue by becoming both the designer and builder, which is demonstrated by the blueprint blocks and the tableau. I am subtly asserting my ownership of the simulated Ennis House. There is the added benefit of reconciling the problem of balancing disegno as it is described in chapter six. The issue is neutralized through my occupation of all stages of production.

The redirection of a functional material history is also created through the juxtaposition of the tableau and blueprints. We can see a version of the Ennis House project that does not end in a material failure. The viewer can look at the plan for the
simulated tile block and see the modular redesign. They can then turn and look at the built project on the floor. This piece has learned from the history of the original and simulated its frailties to make them a strength. The pieces have been “broken” into modular squares and reoriented from the vertical axis to the horizontal. They are no longer subject to the pressure and gravity of the original. This is only amplified when the viewer looks at blueprints 1-4 and 13-16 because they lead to the canceled mold heaps atop the nearby pedestals. These heaps become oppositional in meaning to “16:16” and are placed within the gallery as such. Their locations are reflections of the placement of “16:16,” and the heaps are a symbolic representation of the original Ennis House failing under its weight (Figure 21). The organized plaster block structure held together with strapping to produce visual meaning is left in ruins after the designer has finished with the project. These heaps are cairns marking the singular history of the original Ennis house. This is particularly striking when contrasted against the successful manifestation of my tile block tableau and the dynamic fictional histories that it embodies.

I have already mentioned the material shifting previously in this chapter. Still, it bears repeating because when all the facets of the installation are viewed together, we can observe intentional material inversions that contradict the original history of the Ennis House. The most apparent material shift is located within the tableau, where the move was made from concrete to terra cotta clay. While concrete is an excellent construction material, it has become clear that it has its failings as a decorative medium when misused. Instead, I have shifted to clay that can withstand the elements as well as any concrete. There is also the added benefit that my tile blocks are hollow cast which saves them from the crushing fate of their concrete precursors if they are ever presented in a vertical
orientation. This material can even subvert the aims of Wright in his quest to make his blocks look more like the surrounding hills of California. Where Wright has tried to approximate the dirt, I have made the block from it. There are also the blueprints that have moved from paper to concrete. The plans for my Ennis House are now as permanent as the original house itself.

There is no need for archival presentation of the documents because of their material shift. In this way, the totality of information surrounding my Ennis House has had its permanence advanced through these material shifts. Lastly, the molds are the cradle of creation for both the original Wright blocks and my own. The molds for the first Ennis House were made from solid aluminum and still exist today so that more blocks can be reproduced for the failing facade of Wright’s Ennis House. In another instance of material inversion, my molds were made of fragile plaster, which was destroyed at the end of the project. This material reversion is important because it reinforces my place as designer and builder. I can take comfort in the destruction of the molds because I know that the Ennis House that I have created will not be susceptible to the failures of the original.

These are the installation connections that I had made while planning this project. But I have noticed that this project is active in generating meaning. It seems that the more people look upon it, the more meaning it takes on. Viewers have given suggestions that I would have never considered in my planning. Because of this, I have noticed one of the most important characteristics of this installation: its ability to take in meaning constantly. As demonstrated above, my Ennis House has consumed the original history of the building along with every fictional account that fits within the architectonic model of
“16:16.” It has become an architectural entity that can exist with its beginning and ending simultaneously, blurring the lines of time and tense. All of this means that my Ennis House has entered a state of hyperrealism. The delineations between original and simulation are no longer clear because the simulation has consumed the history of the original and corrected its failings. It has become an installation that has staying power within the viewer’s mind now because it harnesses its recognizability. Every time someone watches a film and sees the block in the background, they are brought back to their encounter with my expansive project. The tableau is a portal for the viewer, constantly transporting them back to their elevated viewpoint above my terra cotta city. They can remember looking down into it. They will also not forget the movie clip that first triggered the realization that this was something they had seen before—creating a loop that will always bring them back to my Ennis House. It is in this way that I claim ownership. Not of the Ennis House but of the simulation. The simulation is what holds boundless meaning and the capacity to keep growing. I was the person who assembled that meaning, and therefore I am the owner.
9. Conclusion

I find it challenging to write a meaningful conclusion to this essay. I have spent so much time examining these objects and ideas that I do not know that I will ever be able to explain everything I have found in them fully. I do hope that I have successfully demonstrated that my project has been able to reach a point of hyperreality and supersede its predecessor. Equally, I hope that I have been able to convincingly prove to the reader that I am the rightful owner of the simulation that I built during my graduate studies. I want to close by acknowledging what this project has given me; it is not so much the idea of the Ennis House but instead the system or procedure that I have developed around the investigation and creation of my Ennis tile block project. I have realized that the most meaningful objects are rarely those that are of central importance.

The most meaningful content is often drawn from the periphery or background. In that seldomly acknowledged space, the most interesting points of departure can be found. It is only through the tireless excavation of the seemingly meaningless that one can generate deep meaning. It is crucial always to be looking forward and finding ways to integrate technology and industry into my practice so I can continue pushing the boundaries of my artistic practice. The miniature and multiple possess a tremendous power to interact or change their display environment. Lastly, there are almost limitless possibilities in what can be simulated through the combination of ceramic relief tile and design technology. I look forward to applying these ideas to my next project and seeing what emerges from those efforts.
Bibliography


Illustrations

Figure 1. The southern face of Frank Lloyd Wright’s Ennis House. (Photograph from: Mike Dillon, “Front Side of Ennis House,” October 16, 2005, [CC BY-SA 3.0](https://en.wikipedia.org/wiki/Ennis_House#/media/File:Ennis_House_front_view_2005.jpg).)
Figure 2. Detail of an original 16”x16” Ennis block. It features the intersecting rebar that held the feature to the building and gave the system the name “textile block.” (Photograph from: “Mabel and Charles Ennis Residence,” The Wright Library, 2001, http://www.steinerag.com/flw/Books/Ennis.htm#EnnisBlock1924.)

Figure 4. CAD design environment showing digitally rendered Ennis block. (Photograph by: Artist.)
Figure 5. 3D printer conducting a test print of initial Ennis model in PLA plastic. (Photograph by: Artist.)
Figure 6. All 16 PLA plastic models assembled before plater casting. (Photograph by: Artist.)

Figure 7. 12 of 16 plaster slip casting molds taken from 3D printed PLA plastic “positives.”
(Photograph by: Artist.)
Figure 8. A ware cart holding clay tile blocks that have just been recently pulled from their molds. (Photograph by: Artist.)
Figure 9. Tile Block Revolution Installation (Ennis Tableau) (Photograph by: Tony Irons)

Figure 10. Tile Block Revolution Installation (Ennis Tableau) (Photograph by: Tony Irons)
Figure 11. A close up of the southern face of Frank Lloyd Wright’s Ennis House showing the repeating pattern of the blocks. (Photograph from: Mike Dillon, “Front Side of Ennis House,” October 16, 2005, [CC BY-SA 3.0](https://en.wikipedia.org/wiki/Ennis_House#/media/File:Ennis_House_front_view_2005.jpg).)
Figure 12. An image showing a single revolution of my tile blocks. (Photograph by: Artist.)

Figure 13. “16:16” assembled cement block screen. (Photograph by: Tony Irons.)
Figure 14. “16:16” (Photograph by: Tony Irons.)

Figure 15. The “Blueprint Blocks #5-12 and #16” (Photograph by: Tony Irons.)
Figure 16. Detail of “Blue Print Block #10” where CAD drawing is visible. (Photograph by: Tony Irons.)

Figure 17. “Mold Pile #1” (Photograph by: Tony Irons.)
Figure 18. (Photograph by: Artist.)

Figure 19. (Photograph by: Tony Irons.)
Figure 20. (Photograph by: Tony Irons.)

Figure 21. (Photograph by: Tony Irons.)