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0. Abstract 

Although it is challenging to collect information on reproductive traits, fertility traits are 

believed to play a significant role in the growth of the beef industry and bring revenue to the 

producers. It has been challenging to make genetic improvement of fertility traits because of scarce 

records and their low heritability. The joint analyses of economic and indicator traits provided 

much information for the analysis of other production traits, resulting in favorable improvement. 

The same method can be applied to reproductive traits to increase prediction accuracy. 

Furthermore, the ubiquity of high-throughput genotypes and the development of advanced 

computational methods give hope that there is a possibility of determining the genetic influence 

on fertility traits. The advancement in phenotypic collection technology eases the keeping of 

records on both economic and indicator fertility traits. Also, it allows the development of new 

traits to be analyzed while reducing the cost of data availability.  

Heifer Pregnancy (HP) - the ability for a heifer to conceive by the end of the breeding season; 

Days Open (DO) - days of breeding season a heifer remained open; and Days to Conception (DC) 

– the number of days it took for a heifer to get pregnant, are easy to measure fertility traits with 

enough information to make beef reproductive genetic improvement in the industry. The objective 

of the current study is to identify DNA markers tagging genes influencing HP, DC, and DC among 

18,039 Red Angus heifers, find the genetic relationship among those traits, and creating the 

genomic predictions of days to conception and days open. 

The results show a small heritability of 0.119 to 0.131, 0.10 to 0.102, and 0.0749 to 0.112 for HP, 

DO, and DC, respectively. The DC model resulted in higher accuracy than other models. There 

was a high correlation between HP and DO (r = - 0.61 and 0.85 from the linear model and the 
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liability scale model, respectively). The de-regressed estimated breeding value (EBV) genome-

wide association (GWAS) yielded 58 and 2 significant SNPs at suggestive significant level (p-

value < 1.0e-05) for HP and DC, respectively. This study found GRID2 and ZMIZ1 genes to be 

associated with heifer pregnancy, and it has been speculated that the central nervous system related 

genes ontology and the hormones it controls might suggest the physiology behind some of the 

reproductive differences.  

The present study confirms the low heritability status of fertility traits and shows the 

possibilities of genetic enhancement based on the obtained accuracies. The identified genes and 

gene terms will serve as starting points for future studies that might focus on different phenotypes 

while reducing the cost of phenotyping and improving the accuracy of fertility traits genomic 

predictions. 
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Chapter 1 Literature Review 

1.1. The contrast between production and fertility traits 

Since the introduction of Bos taurus in the US around the 16th century [1, 2], livestock 

producers were already applying artificial selection focusing on visual features. The involvement 

of academic researchers and government agencies in the 20th century revolutionized the industry 

as they put much effort into increasing productivity [3–5]. The early work focused on the growth 

traits like weaning weight and yearling weight, then on carcass traits like carcass marbling score 

[6–9]. The records on growth traits are abundant because they are quite easy to measure, and their 

quantitative nature facilitates the analysis, hence enabling genetic progress. The more the beef 

industry grew, the researchers were able to juxtapose the indicator traits in association with some 

economic traits. It has been possible to improve some of the hard-to-measure traits because 

additional information would come from indicator traits [10]. Examples of indicator traits include 

birth weight, which is associated with weaning weight, yearling weight, and calving ease; 

ultrasound measures give the status for carcass marbling score.  

The application of statistical analysis and genetics allowed to estimate some of the 

parameters that breeders based on for selection decisions of production traits; as a result, there was 

great progress in beef growth and carcass traits (Figure 1a, b). When a high-density SNP array was 

introduced [11], the industry changed forever as some traits like weaning weight, yearling weight, 

carcass weight, and back fat could be studied at the genomic level [12, 13], hence the increased 

accuracy of prediction [14]. It did not take very long to realize that the reproductive traits were left 

behind while analyzing production and carcass characteristics. Primarily in the dairy industry, they 

identified that increased production impaired fertility [15, 16]. Wiltbank, 1970 called for research 

in beef cattle reproduction and identified the loss of calf crop production and the increased calving 
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season as the primary concerns; thus, he posed some questions that the scientific community would 

answer to solve the problem [17]. The Wiltbank and other scientists’ call allowed the transition to 

add the fertility traits among the economic traits that should be studied.  

While many factors were identified to affect fertility traits, people in different domains 

tried to have input. They developed some techniques, including artificial insemination, embryo 

transfer, improved management practices, and selection on fertility; consequently, the currently 

observed improvement (Figure 1c), yet the problem remains not fully solved. There is still a need 

for further studies to understand the genes governing reproduction in beef heifers.  

 
 

 (a) 
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 (b) 

 

 
(c) 

Figure 1 Genetic trends in growth (a), carcass (b), and reproduction (c) traits in Red Angus cattle 
[18].   
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From the 1980s to 2004, the growth and carcass traits increased while the fertility traits 

except stayability decreased. The improvement in fertility traits after 2004 might indicate 

researchers’ effort after they started to include those traits in selection decisions, although that 

selection is in Red Angus and a very few breeds, as it has been indicated by Rowan et al. 

2021 [19]. 

1.2. Importance of fertility traits 

Although reproductive traits are notorious for being lowlily heritable [17, 20], which restricts 

quick genetic progress, they are pivotal in sustaining the animal industry. It might be very hard to 

ignore the importance of fertility in the beef industry, especially for those in a cow-calf operation. 

In fact, the whole industry is based on calf production; therefore, it is crucial to ensure that a heifer 

is and remains pregnant until it calves a healthy calf. Some of the fertility traits that have been 

identified to be essential to the industry are heifer pregnancy, stayability, and calving ease [21–

23]. On the other side, to have successful fertility, puberty onset should happen; thus, puberty-

related traits are considered fertility indicators. Not only that a heifer that reaches puberty early in 

the breeding season weans a heavier calf, but in their study, Roberts et al. found that there was an 

11 to 13 % less calving rate in the first 21 days among the heifers that failed to reach puberty 

during the breeding season than their contemporaries [24]. Therefore, interest is made for every 

pound increased on a weaned calf whose dam reached puberty early in the breeding season. In 

addition, while there is a cost related to raising and maintaining a heifer, culling comes with a loss 

to the producers. Fertility problems are among the top reasons for culling in the livestock industry  

[25]. In the dairy industry, the increased insemination rate, linked to long days open and pregnancy 

rate, reduced the profit by $205 per year per cow in 2004 [26]. Also, in 2008, it was shown that in 

Florida, $75 was lost per failed pregnancy during the breeding season [27], and that loss might 
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even be higher if adjusted for inflation. Despite the increase in technology, reproductive failure 

and loss of embryo issues are still around, and an estimated loss of $2.8 billion in the US beef 

industry per year might happen if nothing is done [28]. Given the identified failures and what could 

be gained if a heifer gets pregnant early in the breeding season, it is essential to study the fertility 

traits further to increase the number of calves born alive and reduce the cost related to reproductive 

failure. 

1.3. Previously studied reproductive traits at the genetic level. 

Burns et al. reviewed factors that affect reproductive performance in beef cattle, and they 

classified them into four main categories: management, environmental, physiological, and genetics 

[29]. Nowadays, technology and scientific research growth helped improve management, 

environmental, and physiological conditions. At the same time, genetic improvement remains a 

challenge, and little is known about the genetics underlying reproductive traits. Most fertility traits 

are hard to measure, and due to their binary nature, it is also challenging to make accurate 

predictions because of their low heritability.  

After realizing a decrease in fertility, scientists put effort into improving these traits; hence, there 

are some noticeable improvements. Some of the studied traits in the beef industry include heifer 

pregnancy, stability, calving ease, age at puberty, first pregnancy rate, and to less extent, days open 

[20, 21, 23].  As suggested, the economic traits might be analyzed jointly with indicator traits 

(Table 1) to provide enough information, but a very few studies performed those joint analyses. 
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Table 1 Economic fertility traits and their respective indicator traits 

Economic Traits Indicator Trait 

Calving ease Birth weight 

Gestation length 

Stayability Days to calving 

Days open  

Day to conception 

Calving records 

Heifer pregnancy Age at puberty 

Follicular diameter 

Antral follicle count 

Postpartum interval 

Scrotal circumference 

Reproductive tract score 

Due to the complexity of fertility traits, it is challenging to perform across breed predictions 

[5, 14]; consequently, because of its various breeds, the beef industry runs behind dairy. On the 

other hand, there are some accomplished within breed research on HP, stayability, calving ease, 

days open, and scrotal circumference [30–37]. In those studies, the reported heritability was 0.085 

to 0.27; 0.059 to 0.57; 0.19; 0.091 to 0.192; and 0.41 to 0.71 for HP, stayability, calving ease, days 

open, and scrotal circumference, respectively. Speidel et al. found some quantitative traits loci 
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(QTL) that are presumed to be associated with heifer pregnancy and stayability [38]. Some 

additional fertility traits that have been studied include antral follicular count (AFC) and 

reproductive tract score (RTS), with a sample size of 293 heifers [39]. Even though all those studies 

were able to find some loci and candidate genes associated with reproduction, the researchers 

concluded that validation studies were needed as they were not sure about the results. In addition 

to uncertain results, those studies used a small sample size which might not be reliable when 

studying complex heritable traits, and the genomic information was from low density markers, 

while high densities with much genomic information are currently available. 

Even though their higher heritability can explain the success made in production and 

carcass than some reproductive traits, the quantitative nature, and the joint analyses included 

indicator traits added advantages to that success. For instance, the birth weight would be regarded 

as an indicator trait for weaning and yearling weight, and ultrasound measures for intramuscular 

fat, marbling score, and ribeye area; thus, they were usually analyzed together, which provides 

enough information for statistical analysis, hence improved accuracy [10, 13, 40, 41]. 

Despite the small improvement in HP and Stayability in Red Angus since 2012, there is still 

room for progress given the advancement in statistical and genomic tools that increase prediction 

accuracy [42]. The ubiquity of sequencing technology coupled with the development of 

advanced computational tools in the 21st century gives hope that there is a possibility of 

determining the genetic influence of fertility traits. The present studies should perform analyses 

that blend both pedigree and genomic information to increase fertility traits' accuracy while 

scrutinizing economic and indicator traits to maximize available information. Cushman et al. 

provide a list of some fertility traits and their corresponding indicators as some of them are 

presented in table 1 [43], but most of those traits are expensive to collect and require much work.   
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While the overall goal in the beef industry is to maximize profit while reducing production costs, 

the increase in phenotyping technology would help select the most relevant and introduce new 

traits for the analysis, which does not cost much and with less intensive work. 
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Chapter 2 Genomics of Heifer pregnancy, days open, and days to conception in Red Angus 

heifers 

2.1. Introduction 

Despite the previously reported data scarcity and low heritability status of reproductive traits 

that hinder the genetic progress in beef cattle [44–46], these traits are believed to have a pivotal 

role in the development of the beef industry. Mercadante et al. predicted a loss of $21 billion of 

revenue due to the failure to produce a live calf at weaning and the cost of breeding [28]. Morrey 

and Biased predicted that the beef industry would lose over $210 million due to late breeding 

heifers [47] as it is phenotypically related to cows continued reproductive success (i.e., stayability). 

Given that loss, much effort is required to improve reproductive traits. Previous studies have found 

reproductive problems associated with management, environment, physiology, and genetics [20, 

29, 48, 49]. Some of those have been addressed; consequently, there has been improvement in 

reproductive traits among beef cattle. Yet, the genetic part of the reproductive traits is not fully 

understood. In the past, researchers made conclusions about fertility traits on heritability estimates 

only without any consideration of genetic effect and response to selection which led them to 

conclude that genetic improvement was almost impossible for reproductive traits [17, 50].  

With the advancement in computational and genomic technology, many studies were 

performed to predict some genetic parameters but very few incorporated genomic data with a small 

sample size. Cammack et al. reviewed most of the studies performed using only pedigree 

information [20], and most of those studies resulted in low heritability as expected for fertility 

traits [21, 23, 31, 37]. The reduced cost of genome sequencing and SNP array development [11] 

helped scientists collect genotypic information and analyze some of the reproductive traits at the 

genomic level. A couple of studies have used genomic information to estimate Bos taurus beef 
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reproductive traits heritability and find the associated single nucleotide polymorphism (SNP) and 

candidate genes [38, 51–54]. Nevertheless, the sample size and the number of SNPs in those 

studies were small. Reproductive traits are polygenic and require a significant sample size and 

high-density markers [52] to find the true SNPs in association and the genes that have an impact 

on the traits. Evans et al. 1999 found that the accuracy of heifer pregnancy would increase when 

analyzed with scrotal circumference [21], and Toghiani found that multi-trait genomic evaluation 

would elaborate on the accuracy of selection of fertility traits when both quantitative and discrete 

variables are analyzed jointly [52].  

Not only a large dataset is needed to make accurate predictions on reproductive traits, but also 

high-quality phenotypes that are aligned with genotype are required [48]. Imputation allows 

inferring from low to high marker density with a large reference population of genotyped animals, 

which increases the ability to detect variants associated with the phenotype [55, 56]. This study 

aims to use high-density markers to find genes influencing fertility traits. Heifer Pregnancy (HP) 

– the ability for a heifer to conceive by the end of the breeding season and remain pregnant, Days 

Open (DO) – days of a breeding season a heifer remained open; and Days to Conception (DC) – 

numbers of days it took for a heifer to get pregnant, are promising, easy to measure fertility traits. 

We hypothesize these traits have sufficient information to improve the genetic prediction of 

reproduction in beef cattle, especially when analyzed jointly.  

Eler et al. mentioned that it is irrelevant to use estimates from indicator traits while direct 

reproductive measures are available [57]. But in some circumstances, estimates from fertility traits 

are not available because they demand intensive labor with a high cost of data collection; as a 

result, the indicator traits might be used for indirect prediction of fertility traits. The first objective 

of the current study is to estimate the variance components of HP, DO, and DC using three software 
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suites by fitting a linear and threshold model for a binary trait (HP). The second objective is to 

estimate the accuracy of genomic prediction for each trait and identify DNA markers associated 

with the observed phenotypes and the genetic relationship among the traits. It has been presumed 

that genes in common influence both heifer pregnancy and days intervals(DO and DC). 

2.2. Materials and Methods 

2.2.1. Phenotypes and data quality control 

The Red Angus Association of America provided phenotypes, genotypes, and pedigree 

records. Information was provided for 4,097 genotyped heifers with heifer pregnancy records, as 

well as 13,942 that were in the same contemporary groups as the genotyped heifers. The full 

phenotype dataset had 18,485 individuals born between 1988 to 2018. There were records on heifer 

pregnancy, start and end dates of the breeding season, contemporary group, calf birthdate, and sex. 

Animals in a contemporary group share information on the farm, calving season, and birth year. 

Heifer Pregnancy (HP) was recorded as 1 for pregnant and 0 for non-pregnant. In contrast, Days 

Open (DO) and Days to Conception (DC) were calculated as continuous variables. Both DO and 

DC were calculated based on the mean gestation length of 283 days, as has reported in [58]. Thus, 

DC was expressed as the difference in calf birth date, conception length, and the start of the 

breeding season; 𝑫𝑪 = 𝑪𝒂𝒍𝒇	𝒃𝒊𝒓𝒕𝒉	𝒅𝒂𝒕𝒆 − 𝒄𝒐𝒏𝒄𝒆𝒑𝒕𝒊𝒐𝒏	𝒍𝒆𝒏𝒈𝒕𝒉 −

𝒔𝒕𝒂𝒓𝒕	𝒐𝒇	𝒕𝒉𝒆	𝒃𝒓𝒆𝒆𝒅𝒊𝒏𝒈	𝒔𝒆𝒂𝒔𝒐𝒏. The same applies for DO, but heifers who did not become 

pregnant by the end of the breeding season were assigned the season length as their Days Open 

value. The season length was calculated as the difference between the end and the start of the 

breeding season. Appendix 2.6.1. shows distribution of quantitative variables before quality 

control. 
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While it is possible to have some noise during data collection, it was necessary to perform 

quality control on the phenotype data. The phenotype quality control was done by removing all 

individuals who were 300 days old or younger at the start of the breeding season. Heifers whose 

DO records were more than 365 or less than -30 days were removed from the dataset. Again, 

heifers with more than 250 or less than -21 days on DC and DO were considered missing (only 

DO and DC) based on the data distribution (Figure 2). Heifers are typically bred at 15 months of 

age[59–62] ; thus, 300 days of age was set as cutoff (Figure 3 (c) in Appendix 2.6.2.). While some 

of the tools used during this study consider -9 as missing, DC and DO with -9 days were assigned 

-9.1 days to avoid that problem. 

  
Figure 2 Distribution of days open and days to conception after data filtering. Most heifers were 
pregnant by 100 days, while very few heifers went beyond that (DC histogram).  

Days open include heifers who reached the end of the breeding season without becoming 

pregnant, and most of those heifers are between 40 days and 150 days (DO histogram), indicating 

that most of the herds followed 90 days breeding season length. 

After data quality control, 18,039 individuals remained for the analysis. Below is a 

summary table for heifers with variable’s number of records, minimum, maximum, mean, and 

standard deviation (Table 2). 
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Table 2 Summary statistics for Heifer Pregnancy, Days to Conception, Days Open, Heifer's Age 
(in days), and Season Length (in days). n stands for sample size, and SD is a standard deviation. 

Trait n minimum maximum mean SD 

Heifer Pregnancy 18,039 0 1 0.8 0.39 

Days to Conception 14,231 -21 249 18 33 

Days Open 17,938 -21 249 31 42 

Age 17,949 301 546 422 30 

Season Length 17,763 0 244 86 37 

 

2.2.2. Genotypes 

The genotype information on the individuals used in this study came from the Red Angus 

Association of America. The ARS-UCD1.2 bovine reference genome was used to identify the SNP 

positions [63]. Heifers were genotyped using a variety of arrays used for genomic-enhanced EPDs. 

The genotypes passed through the University of Missouri multibreed imputation pipeline described 

by Rowan et al. [56]. Rowan et al. performed quality control on autosomal variants only using 

PLINK software [64] and removed individuals and variants with less than 90% call rate [56]. 

Among the Red Angus, 811,679 SNPs were included in the imputed data. Apart from the initial 

quality control done during imputation, SNPs with MAF < 0.01 were removed from this study. 
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2.2.3. Variance components estimation, and genome-wide association with Genome-wide 

Complex Trait Analysis (GCTA) 

The GCTA software (v1.93.3beta2) was used to estimate the variance components of HP 

(binary), DO, and DC. Both univariate and bivariate linear mixed model analyses were performed 

for variance estimation. Only genotyped heifers (n = 4,097) were analyzed with GCTA [65]. 

Among those heifers, the number of analyzed individuals varied from trait to trait as the missing 

phenotypes were filtered out. Each model fitted the contemporary group and Genomic 

Relationship Matrix (GRM) to have a random effect. Contemporary group was fit as random due 

to the small number of animals within many contemporary groups [66]. In these models, heifer’s 

age and breeding season length were fit as fixed effects (Equation.1). The genomic relationship 

matrix (GRM) was calculated using autosomal SNPs, with the method of Yang et al [65]. The 

variance components were calculated by genome-based restricted maximum likelihood using the 

average information [65]. The mathematical representation of the univariate model to estimate 

variance and heritability is in equation.1. In addition, the estimated breeding values were 

calculated using the same equation. The heifer pregnancy heritability was adjusted on the liability 

scale considering the prevalence of 81.3% (The value obtained as the pregnancy rate among 18,039 

heifers). Equation 2 represents the bivariate model for genetic correlation between HP and DO. 

𝒀 = 𝑯𝒉 + 𝑺𝒔 + 𝑪𝒑 + 𝒁𝒖 + 𝒆  (Equation.1) 

Where Y is a vector of the phenotype of interest (can take the values of HP, DO, or DC) 

h is the vector of heifer’s age fixed effect 

s is the vector of season length fixed effect 

p is the random effect of the contemporary group with 𝑝~𝑁(0, 	𝐼𝜎!") 
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u is the random additive genetic effect with 𝑢~𝑁(0, 	𝐴𝜎#") 

e is the random residual effect with 𝑒~𝑁(0, 	𝐼𝜎$") 

H, S, C, and Z are the incidence matrices relating traits observation in Y to the vectors h, 

s, p, and u, respectively. 

A and I being genetic relationship and identity matrices, respectively, among the 

individuals. 

Only HP and DO were used for the bivariate model since there was no record of DC for 

non-pregnant heifers, leading to convergence problems. Also, DO and DC are highly correlated; 

thus, there was no need to fit them together. Equation.2 shows the mathematical representation of 

the bivariate model. 

K𝒀𝟏𝒀𝟐
L = K𝑯𝟏 𝟎

𝟎 𝑯𝟐
L K𝒉𝟏𝒉𝟐

L + K𝑺𝟏 𝟎
𝟎 𝑺𝟐

L N
𝒔𝟏
𝒔𝟐O + K

𝑪𝟏 𝟎
𝟎 𝑪𝟐

L N
𝒑𝟏
𝒑𝟐O + K

𝒁𝟏 𝟎
𝟎 𝒁𝟐

L N
𝒖𝟏
𝒖𝟐O + N

𝒆𝟏
𝒆𝟐O  

(Equation.2) 

All letters are as described in the first equation. In contrast, numbers 1 and 2 in the second 

equation represent heifer pregnancy and days open, respectively. 

The random genetic effects N
𝒖𝟏
𝒖𝟐O ~𝑵(𝟎, 𝑨⨂𝑽)	 in which V = K 𝜎'

" 𝜎𝟏𝜎𝟐
𝜎𝟏𝜎𝟐 𝜎""

L 

V being the genetic variance-covariance matrix, 𝝈𝟏𝟐 is the genetic variance for HP, 𝝈𝟐𝟐 is the genetic 

variance for DO, and 𝝈𝟏𝝈𝟐 is the genetic covariance of HP and DO. 

Also, the random contemporary group effect N
𝒑𝟏
𝒑𝟐O ~𝑵(𝟎, 𝑰⨂𝑷)	 in which P = K 𝑝'

" 𝑝𝟏𝑝𝟐
𝑝𝟏𝑝𝟐 𝑝""

L 
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P is the contemporary group variance-covariance matrix; 𝒑𝟏𝟐 is the contemporary group variance 

for HP; 𝒑𝟐𝟐 is the contemporary group variance for DO, and 𝒑𝟏𝒑𝟐 is the contemporary group 

covariance of HP and DO. 

Finally, the random residuals effect N
𝒆𝟏
𝒆𝟐O ~𝑵(𝟎, 𝑰⨂𝑬)	 in which E = K 𝑒'

" 𝑒𝟏𝑒𝟐
𝑒𝟏𝑒𝟐 𝑒""

L 

E is the residual variance-covariance matrix, 𝒆𝟏𝟐 is the residual variance for HP, 𝒆𝟐𝟐 is the residual 

variance for DO, and 𝒆𝟏𝒆𝟐 is the residual covariance of HP and DO. 

The estimation of phenotypic variance explained by all SNPs, the so-called heritability, 

was calculated as  𝒉𝟐 =	 𝝈𝟐

𝝈𝟐)	𝒆𝟐
 

𝒉𝟐 is the heritability, 𝝈𝟐 genetic variance for a given trait, and 𝒆𝟐 residual variance. 

The genetic correlation (𝝈𝒈	) was obtained as 𝝈𝒈	 =	
𝝈𝟏𝝈𝟐

-𝝈𝟏	
𝟐 𝝈𝟏

𝟐
 

The ‘-mlma’ option within GCTA was used to perform univariate GWAS for Heifer Pregnancy, 

Days Open, and Days to Conception, using the same univariate model described for genomic 

REML analysis, except each SNP is independently fit as a fixed effect.  

2.2.4. Analysis with Genome-wide Efficient Mixed-Model Association (GEMMA) using pre-

corrected phenotypes 

GEMMA was also used for genome-wide association analysis, due to the ability of 

GEMMA to use linear mixed models to control the population structure and relatedness [67] 

coupled with increased statistical power from multi-trait models [68]. However, there had been 

previously difficulty getting GEMMA to run with large numbers of fixed effects. Consequently, 

the analyses in GEMMA were performed using pre-corrected phenotypes from GCTA. The 
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adjusted phenotypes were the sum of individual estimated breeding values and corresponding 

residual. Because the phenotypes were pre-corrected, the model fit in GEMMA contained the 

phenotypes and genomic relationship matrix, and its mathematical representation is as follows: 

𝒀 = 𝝁 + 𝒁𝒖 + 𝒆	(𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏. 𝟑)  

𝒉𝟐 =	 𝝈𝟐

𝝈𝟐)	𝒆𝟐
	𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏	. 𝟒  

And the multivariate equation is as, 

K𝒀𝟏𝒀𝟐
L = K𝒁𝟏 𝟎

𝟎 𝒁𝟐
L N
𝒖𝟏
𝒖𝟐O + N

𝒆𝟏
𝒆𝟐O  (Equation 5)  

Where 𝝁 is the mean, and other letters and distribution are as described in previous equations. 

2.2.5. Variance Components and Genomic predictions with Gibbs sampling 

Due to the binary nature of heifer pregnancy, the ideal way of estimating variance and 

heritability would be to consider the liability scale [69]. The THRGIBBS1F90 [70, 71] is one of 

the BLUP90 programs [72] that can handle both continuous and binary variables; thus, it has been 

used to generate Gibbs samples, and in turn, those samples were used by the POSTGIBBS1F90 

program to estimate the posterior variances and breeding values. The threshold model 

(THRGIBBS1F90) was run for 1,000,000 MCMC samples and samples were saved at every 200 

iterations for HP and 50 for DO and DC. The initial burn-in was 100,000 samples. Because the 

BLUPF90 suite of programs accepts both genotyped and non-genotyped individuals, all heifers 

with phenotype information were used for variance component estimation and genomic 

predictions. For every analysis, the sample and pedigree sizes (3 generations) changed as the 

individuals with missing phenotypes were not included in the study. The HP univariate and 

multivariate models had the same sample size of 18,039 heifers, and the pedigree contained 47,050 
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individuals. The univariate DO model had 17,938 heifers and 46,919 individuals within the 

pedigree. On the other hand, the DC model among others, had the smallest sample and pedigree 

size of 14,231 and 40,473 individuals.  

The number of individuals within the contemporary group has increased due to the 

expanded sample size. Hence, the contemporary group was fit as a fixed effect (rather than random 

as in the GCTA models). Quality control and relationship matrices were performed using the 

PREGSF90 program[73]. Analyses used the inverse of the H matrix (H-1), which was built as a 

blended matrix of genomic (G) and pedigree relationship matrices as described in Aguilar et al. 

[74–76]. In addition, the genomic relationship matrix was produced following the method 

described by VanRaden [77]. 

𝑯.𝟏 =	𝑨.𝟏 + K𝟎 𝟎
𝟎 𝑮.𝟏 − 𝑨𝟐𝟐.𝟏

L	(Equation. 6) 

The equations described in the GCTA analysis were used to estimate the variance component 

and breeding values, except that in the models solved using THRGIBBS1F90, the contemporary 

group had a fixed effect. Consequently, there was no distribution of contemporary group random 

effect. The model accuracy and individuals’ reliability were calculated using Linear Regression 

methods [78, 79] to test model bias. Selection decisions are typically made regarding the youngest 

generation, and to avoid the data leakage problem, the individuals within the contemporary groups 

were kept together when forming validation subsets. As a result, the youngest 15% of individuals 

were grouped into three validation sets. The first 5% youngest had a missing phenotype for the 

first validation. The second youngest 5% group had a missing record for the second validation and 

the same for the third group. The model's accuracy was calculated by comparing the estimated 
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breeding values of each partial set with the estimated breeding values from the complete set of 

individuals, as described by Bermann et al.[79]. 

2.2.6. De-regressed breeding values for Genome-Wide Association (GWAS) 

SNP1101 program suite [80] has been used to perform de-regressed genome-wide association 

studies (GWASs). 

The estimated breeding values divided by their reliabilities from the Gibbs sampling models 

were used as new phenotypes to perform GWAS, weighted by '
/$012310145

− 1  	[80]. The 

individual's reliability was calculated using 1 −	 678
('):$)<%&

 . 𝑃𝐸𝑉 is the prediction error variance, 𝐹1 

is the individual’s breeding value coefficient, and 𝜎2" is the additive variance. The genomic 

relationship matrix was built by VanRaden's method [77]. 

2.2.7. Nearest Gene within 10Kb 

After performing GWAS, the BovineMine v1.6 search tool [81] was used to find genes 

within 10kb of genome-wide significant SNPs for each trait separately, to ensure a strong linkage 

disequilibrium between the casual gene and associated variant [82]. 

2.3. Results 

2.3.1. Variance Component, heritability, and Breeding values estimation  

2.3.1.1. Univariate GCTA and GEMMA models 

The heifer pregnancy rate among the individuals analyzed only in GCTA and GEMMA 

was 87.1%, while among all individuals was 81.3%. GCTA and GEMMA used linear mixed 

models during variance estimation, and both analyses were different in that pre-corrected 
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phenotypes were used in GEMMA throughout this study. Table 3 reports the genetic variance and 

heritability from univariate GCTA and GEMMA. 

As expected, the reported heritability from GEMMA is higher than that of GCTA. That is 

because the property of continuous variables has more information than binary variables. Even 

though there is a small increase in heritability from GCTA to GEMMA, the difference is not 

significant. The increase in heritability might be associated with fewer noises introduced in 

GEMMA than GCTA during pre-correcting phenotypes.  

Table 3 Estimates of genetic variance 𝜎=", residual variance 𝜎$", and heritability ℎ"	from univariate 
GCTA and GEMMA. 

Trait GCTA GEMMA 

Variance 𝜎=" 𝜎$" ℎ" 𝜎=" 𝜎$" ℎ" 

HP 0.0129 ± 

0.0024 

 0.092 ± 

0.0031 

0.123 0.0132 0.0872 0.131  

DC 100.641 ± 

23.138 

836.79 ± 

29.740 

0.107  105.212 831.17 0.112 

DO 135.586 ± 

29.615 

1382.27 ± 

39.700 

0.100  134.589 1190.45 0.102 

Among all three traits, Heifer Pregnancy (HP) is showing a high heritability compared to 

Days Open (DO) and Days to Conception (DC). 

The HP heritability obtained from the linear model might not be reliable because of the 

binary nature of HP, which violates the assumptions of normal distribution for the linear models. 

For that reason, the obtained heritability was adjusted on the liability scale. As a result, the adjusted 
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HP heritability in GCTA was 0.33. GEMMA's liability scale was not needed because the used 

variables were continuous. 

2.3.1.2.Bivariate GCTA and GEMMA 

The bivariate model fit heifer pregnancy and days open. HP and DO model resulted in a 

correlation of -0.61 ± 0.095 and -0.63 ± 0.020 for GCTA and GEMMA, respectively. The variance 

estimates and heritabilities were not different from the univariate model. The bivariate model of 

DC and HP could not converge, probably because only pregnant heifers had values for days to 

conception. Not only was there a convergence problem, but it would not even be easy for results 

interpretation of the model that includes DC due to the missing records on non-pregnant heifers. 

2.3.2. Gibbs Sampling Models variance components and genomic predictions  

2.3.2.1. Univariate and bivariate outcomes 

The threshold univariate model used 18,039 heifers with records on pregnancy; some of those 

did not have DC or DO records; thus, the sample size for the later traits was smaller than HP. The 

fixed effects from the Gibbs sampling model were smaller than the effect from linear models, as 

can be seen in table 4. However, there was not much difference between heritability estimated 

from previous linear models (GCTA & GEMMA) and the estimates from the thresholds model. 

Days to conception only showed a drastic change (0.107 to 0.0749). Table 5 shows the univariate 

outcomes from posterior distributions while figure 4 shows the convergence of all univariate 

models and the corresponding genetic variance and heritability. The reported values are the means 

from posteriors. The HP and DO bivariate model yielded a correlation of 0.86, considering that 

the HP solutions were on the liability scale. Even though a direct relationship between HP and DC 

was not estimated, Figure 3 shows a positive correlation between estimated breeding values of DO 
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and DC, thus, an indirect relation between HP and DC.  Furthermore, the heritabilities from 

bivariate were the same as univariate models. 

Table 4. Heifer’s age and season length estimated effect from linear and Gibbs sampling models 
on Heifer Pregnancy, Days to Conception, and Days Open. 

Traits Heifer Pregnancy Days to Conception Days Open 

Models Linear Gibbs Linear Gibbs Linear Gibbs 

Heifer’s Age 
0.0003 ± 

0.0002 

-0.004 ± 

0.00024 

-0.178 ± 

0.0189 

-0.0164 ± 

0.005 

-0.176 ± 

0.0217 

-0.0204 ± 

0.00438 

Season 

Length 

0.0076 ± 

0.0018 

-0.00166 ± 

0.000565 

0.0643 ± 

0.0168 

-0.0798 ± 

0.0120 

0.110 ± 

0.0195 

0.141 ± 

0.0136 

 

 
Figure 3 Correlation between estimated days open (DO) and days to conception (DC) breeding 
values (EBVs)  
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Table 5 The number of samples, mean, standard deviation, high posterior density (HPD), 
autocorrelation, and heritability (h2) estimates from the posterior distribution of the univariate 
threshold model. 
 

Trait samples Posterior Mean HPD Autocorrelation h2 

Genetic Residual Genetic Residual Genetic Residual 

HP 4500 0.117 ± 

0.048 

0.861 ± 

0.0160 

0.032; 

0.21 

0.833; 

0.893 

0.232 

 

0.013 0.119 

DC 18000 76.7 ± 

18.84 

947.0 ± 

22.46 

41.7; 

113.8 

903.6; 

991.6 

0.258 0.125 0.0749 

DO 18000 170.61  

± 31.57 

1495.0 ± 

33.83 

112.40; 

233.6 

1432; 

1563.0 

0.129 0.07 0.102 
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 (a) HP 
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 (b) DC 
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 (c) DO 
 
Figure 4 Trace and histogram plots for (a) Heifer pregnancy, (b) days to conception, (c) days 
open that show the convergence in threshold models using Gibb’s sampling. The red line and 
their corresponding value show the mean posterior variance and heritability for trace plots and 
histograms. 

2.3.2.2. Accuracy of the model 

Three sets of the youngest heifers were selected as the validation sets to calculate the model 

accuracy. The accuracy formula was derived by Legarra et al. [78]. 𝐴𝑐𝑐 = 	g
	>?@(7A8',	7A8()

('.:)𝝈𝒂𝟐
  where 

Acc is the accuracy, 𝑐𝑜𝑣 is the covariance between the estimated full (𝐸𝐵𝑉C) and partial (	𝐸𝐵𝑉!) 
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model breeding values, 𝐹 is the mean inbreeding value of the individuals in the validation set, and 

𝝈𝒂𝟐 is the additive genetic variance from the full model. Among all the three traits, the model that 

fit days to conception resulted in higher accuracy of 0.38 ± 0.02, while days open and heifer 

pregnancy accuracies were 0.33 ± 0.03 and 0.25 ± 0.05, respectively. Figure 5 shows the 

correlation among EBVs in full and partial models for HP, DC, and DO in all three validation sets 

used to calculate the accuracy. Overall, there was an underestimation of the estimated breeding 

values for partial set given that the slopes are less than 1. 

   

(a) HP 
 

   
(b) DC 

 

 
(c) DO 

Figure 5 The relationship between full and partial breeding values in the validation set of (a) heifer 
pregnancy, (b) days to conception, and (c) days open. 
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The rel_part is the reliability in the partial validation set with the corresponding number (1, 2, and 
3). The R is the Pearson correlation coefficient, S is the slope which is expected to be 1 is case 
there is no dispersion, and the blue line indicates regression. 
 

2.3.3. Genome-wide association (GWAS) for SNP effect 

2.3.3.1. Univariate GCTA and GEMMA 

There was a lack of power in the GCTA univariate GWAS for all three traits as none of the 

SNPs reached the standard genome-wide significance level (5.0e-08) for common variants. On the 

other side, 62 SNPs found on chromosomes 2, 3, 4, 17, 18, 23, 25, and 26 reached the suggestive 

genome significance threshold level (p-value = 1.0e-05) in both GCTA and GEMMA univariate 

models. Among those, 47 SNPs were significant at the False Discovery Rate (FDR) less than 0.05, 

distributed on chromosomes 2, 3, and 23. Also, 12 SNPs on chromosomes 1, 2, 6, 13, and 24 for 

DC and 10 SNPs on chromosomes 8, 10, 12, and 22 for DO, reached suggestive significance levels 

(Manhattan and QQ plots in Appendix 2.6.3.). There was a weaker SNP association with DC and 

DO than HP. Neither DC nor DO had a significant SNP at the FDR < 0.05. Overall, there was an 

increase in power from GCTA to GEMMA (Figure 6). Apart from the SNPs that reached the 

suggestive significance level in GCTA, GEMMA showed additional 5 SNPs to reach the 

suggestive level, and 2 SNPs on chromosome 23 were significant at the genome-wide cutoff level 

(p-value < 5e-08), and 60 SNPs were significant at the 0.05 FDR.  
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 (a) 

  
 (b) 
   
Figure 6 Manhattan plot and QQ plot for (a) GCTA and (b) GEMMA univariate GWAS in HP. 
The red line in Manhattan plot shows a cutoff level at p-value of 1e-05.  

There was an increase in power from GCTA to GEMMA, and the deviation from red line 

in QQ plot show an association between SNPs and the traits of interest (HP). 

2.3.3.2. Bivariate GEMMA 

As described by [83], assessing the SNP association using a bivariate model is advantageous 

when two or multiple traits are believed to be correlated or affected by the same genes. During the 

bivariate GWAS analysis in GEMMA, both HP and DO were analyzed, given that those traits are 

genetically correlated. Among 662,044 SNPs, 59 reached the significance level (p-value = 1.0e-

05) and 38 SNPs were significant at the FDR less than 0.05. In addition to the chromosomes from 
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the univariate models, there was a significant SNP on one more chromosome (BTA1) from the 

bivariate (Figure 7). 

  
Figure 7 Manhattan plot and QQ plot for GEMMA bivariate GWAS in HP and DO. The red line 
shows the genome-wide significant level (p-value = 5e-08) while the blue line shows the 
suggestive significant level (p-value = 1e-05). 

 

2.3.3.3.De-regressed Estimated Breeding Value (EBV) GWAS 

Before performing the de-regressed EBV GWAS, the reliability was calculated from the Gibbs 

sampling models (Table 6). The same problem of having no statistical power for significant SNPs 

was observed for de-regressed EBVs. Only two SNPs reached the genome-wide significance level 

(p-value = 5e-08) for HP, while there were no significant SNPs in association with DC and DO 

(Figure 8).  At the suggestive significant level, 58 SNPs and 2 SNPs were found to be associated 

with HP and DC, respectively. The Manhattan plots below show the significant SNPs for each trait 

and the corresponding chromosome loci.  
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Table 6 Reliabilities for heifer pregnancy (HP), days to conception, and days open on genotypes 
heifer (4097 individuals). SD is the standard deviation. 

Trait minimum mean maximum SD 

HP 0 0.1931 0.422 0.072 

DC 0 0.223 0.493 0.072 

DO 0.0792 0.419 0.667 0.075 

 

   
(a) HP 

   
(b) DC 
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(c) DO 

Figure 8 Manhattan QQ plots for (a) Heifer Pregnancy, (b) Days to Conception, and (c) Days Open 
based on de-regressed breeding values in the SNP1101 program.  

The red line in the Manhattan plots shows the Genome-wide significant threshold level 

adjusted (p-value = 5e-08), and the blue line shows a suggestive significant level (p-value = 1e-

05). The HP quantile-quantile (QQ) plot shows that there is an association (deviation from the red 

line) between a few SNPs and the traits while the plots for DC and DO reveal the lack of power  

2.3.4. Nearest genes within 10kb and Gene set enrichment analysis. 

Using Bovinemine v.16 with ARS-UCD1.2 genome assembly, there were six unique genes for 

HP and DO linear bivariate and 4 and 2 unique genes for HP and DC, respectively, from de-

regressed EBV GWAS. There were no genes for DO as none of the SNPs reached at least the 

suggestive genome-wide significant level.  g:Profiler [84] assisted in gene set enrichment analysis. 

At the Benjamin-Hochberg cutoff level of 0.05, the bivariate GEMMA resulted in 8 gene set terms. 

On the other hand, HP and DC de-regressed EBV GWAS analysis yielded 75 and 5 gene terms at 

the same cutoff level, respectively. GRID2 and ZMIZ1 were the most predominant genes in many 

terms, and they had been identified in other studies to affect fertility in different species (discussed 

later).  
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2.4. Discussion 

In this study, the heifer pregnancy rate was 87.1%, which falls in the range of 75-95%, as 

reported in previous studies [23, 85]. Thus, we proceeded with the analysis of heifer pregnancy, 

knowing the pregnancy rate was in the normal range. Maintaining a high pregnancy rate is critical 

because problems associated with this trait are the leading cause of culling in the beef industry 

[86]. Although fertility traits are pivotal in the beef and dairy industry [20, 87–89], they are 

notorious for their low heritability, making it hard to make genetic progress [86, 90].  

The fixed effects were small, and the negative sign shows that the increase in heifer’s age will 

result in reduced days open and days to conception; however, the increase in season length will 

increase both days open and days to conception. The effect of both heifer’s age and season length 

was relatively smaller than that of the previous two traits (DO & DC), and they were close to zero. 

The reduced effect from the linear model to Gibbs sampling suggests that the effect of both heifer’s 

age and season length on the analyzed traits might be negligible when considering a very large 

sample size. 

The current study confirms the low heritability nature of fertility traits. Even though the 

scaled heritability from the linear model was high (0.33), the threshold model (designed to handle 

binary data) did not confirm that heritability. Hence, the current study assumes algorithm problems 

during the adjustment and does not consider 0.33 heritability. The linear and threshold models 

resulted in HP heritability between 0.119 to 0.131 (Tables 3 and 5). This heritability is comparable 

to the 0.12 ± 0.01 HP heritability reported by Boldt et .al [23] in Red Angus. Various HP 

heritability estimates have been obtained across the breeds for the past years. For instance, Toelle 

and Robison reported the heifer pregnancy rate heritability of 0.06 among the Hereford breed [91]. 

Within the same breed, Evans et al. found the heritability of 0.138 ± 0.08 [21]. Also, in Angus 
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heifers, the pregnancy heritability was estimated to be between 0.13 and 0.27 [85, 92], and in 

Brangus, 0.07 [51]. Overall, many breeds show a low estimate of heritability. In their study, 

Martínez-Velázquez et al. combined nine breeds in one analysis, resulting in the heritability of 

0.14 ± 0.03 [93]. Although the Bos taurus breeds show a low heifer pregnancy heritability, the 

inverse seems true for Bos indicus breeds. For example, the Nellore breeds showed a high HP 

heritability estimated to be between 0.37 to 0.57 [94–96]. It is not surprising that the heritability 

among Bos taurus and Bos indicus is different because these subspecies have distinct physiological 

differences that might explain such disparity.  

Apart from heifer pregnancy, this study also considered two more fertility traits, days to 

conception and days open, which are novel in the beef industry. The linear models' genomic 

heritability estimates (without pedigree information) were 0.112 and 0.102 for DC and DO, 

respectively. In contrast, the combination of pedigree and genomic information models resulted in 

0.0749 and 0.102 for DC and DO, respectively. The cause of the decline in DC heritability is not 

understood yet. However, it might be because of the increase in the ratio of pregnant heifers over 

non-pregnant, implying the bias in the previous model with a small sample size. Not many works 

have been done about DO and DC in the beef industry. In the study done in Spain, the reported 

heritability of DO in beef cattle ranged from 0.09 to 0.197 [36]. That range is not far from the 

obtained heritabilities in the current study, though the definition of days open (days from one 

calving to the next conception) does not quietly match the present study. In the dairy industry, the 

exact definition of DO - days from calving to next conception - has been used, and a couple of 

studies reported the heritability between 0.02 to 0.06 [44, 97–102]. The interval from first to 

successful AI in the study of black Japanese cows by Setiaji and Oikawa is close to DC in this 

study, and the obtained heritability was 0.028 [99]. The reported heritabilities in the current study 
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seem to be higher than those reported about the dairy industry. That might be predicated on the 

worsening of reproductive traits of the dairy cows that happened while focusing on improving the 

production traits (milk yield) [16]. 

The genetic correlation between DO and HP from the linear model was -0.61. The 

threshold model resulted in a 0.85 correlation, and the positive direction was because the solutions 

for HP were on the liability scale. The linear bivariate model for HP and DC failed to converge. 

While the threshold model could ignore missing values of DC and fit the bivariate model with only 

pregnant heifers, the results from that model would be biased due to the lack of not analyzing data 

on non-pregnant heifers. Consequently, the scaled model was not used to predict the correlation 

between HP and DC to avoid that bias. To the author's knowledge, there has not been any known 

study that evaluated the genetic correlation between DO and HP among beef cattle. However, some 

studies assessed the correlation with other fertility traits. The correlation between pregnancy rate 

and days open in Japanese black cows was -0.92 [99]. The correlation differences with the current 

study may be caused by how traits are defined and the unlikeness of the breeds. A negative 

correlation between DO and HP suggests that some common genes affect both traits differently. 

Consequently, it is possible to improve one trait while meticulously selecting the other. That is, 

while selecting on lower days open, there is a high probability of increasing the heifer pregnancy. 

In this study, the model accuracies were 0.38, 0.33, and 0.25 for DC, DO, and HP, 

respectively. Despite its high heritability compared to the other two traits, the HP model resulted 

in lower accuracy than DC and DO models. That was expected as the quantitative variables contain 

more information than binary variables [103]. Therefore, selecting days to conception or days open 

might lead to more rapid genetic improvement than selection on heifer pregnancy. 
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Most previous studies on beef fertility used traditional genetic approaches (prediction 

based on pedigree) for variance and heritability estimation, and almost none considered the model 

validation. It was easy to overlook the fertility traits during selection decisions based on the results 

that showed they are lowly heritable. The current study agrees with the low heritability status of 

HP, DO, and DC, but the achieved accuracies are the best indicators that genomic selection can 

elaborate on these traits. There is a hope that with sophisticated genomic tools and statistical 

methods, animal producers should start to invest in improving fertility traits, expecting that there 

will be some improvement while applying genomic selection. 

The bivariate linear mixed model of HP and DO gave 6 unique genes classified into 8 gene 

ontology terms (Table 7). Those genes are DLGAP1 FBXO21, LOC112445875, SCN3A, 

SLC37A1, and SLC38A1. According to the GWAS catalog [104], most of those genes (DLGAP1, 

FBXO21, SCN3A, and SLC38A11) are related to body mass index traits in humans; but it is not 

clear about the role they play in HP and DO or any other fertility traits in general.   

Table 7 Gene terms at Benjamin-Hochberg correction p-value < 0.05 in association with HP and 
DO.  
 

Source Term name Intersections P-value 

GO:BP Hexose phosphate transport SLC37A1 0.0224 

GO:BP Glucose-6-phosphate transport SLC37A1 0.0224 

GO:BP Phosphate ion transmembrane transport SLC37A1 0.0358 

GO:BP Phosphate ion transport SLC37A1 0.0391 

GO:BP Inorganic ion transmembrane transport SCN3A, SLC37A1 0.0391 
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GO:BP Regulation of postsynaptic neurotransmitter 

receptor activity DLGAP1 0.0391 

KEGG Glutamatergic synapse DLGAP1 0.0394 

KEGG Taste transduction SCN3A 0.0394 

From de-regressed breeding values GWAS, there were 4 and 2 unique genes with 75 and 

5 gene set terms (Appendix 2.6.4. table 4 and 5) for HP and DC, respectively, at the Benjamin-

Hochberg p-value ≤ 0.05. Both genes identified from DC are indicated in the human GWAS 

catalog to be associated with body mass index [104]. If that is the case in this study, the body 

condition score effect on the fertility traits should be assessed in future research. Overall, most of 

the gene set terms for HP are related to the central nervous system, and it has been speculated that 

they may play a role in the secretion of some reproductive hormones.  Moreover, GRID2 and 

ZMIZ1 genes have been identified in the previous studies to have an influence on reproductive 

traits among different species. For instance, Vohra et al. found GRID2 among the genes associated 

with the postpartum interval in Indian buffalo [105]. In addition, in human clinical studies, the 

intragenic deletion in GRID2 has been associated with a neurological disorder with developmental 

delay as one of the major symptoms [106]. Although it can be argued that the deletion in GRID2 

resulted in a bigger effect that might not be seen when considering a small allele change (the case 

of SNPs), the fact that the function of this gene is not fully understood can be the reason to study 

in depth of its effect on fertility as it might be affecting the pubertal behavior. 

Another group of researchers from China identified ZMIZ1 as one of the genes that were 

strongly associated with the interval from calving to first insemination among Chinese Holstein 

[107]. Not only was ZMIZ1 found to enrich the transcription activity of androgen receptors [108], 
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but May-Panloup et al. found that its less expression level was linked with a diminished ovarian 

reserve which is an indicator of subfertility [109]. Therefore, it would be important to conduct a 

validation study for this gene while assessing its effect on pregnancy.  

Contrary to the expectation, a drastic reduction in power for the SNP effect was observed; 

thus, very few genes were associated with the analyzed traits while using de-regressed EBV for 

GWAS. One possible reason for that might be the small reliability of the estimated EBVs, and it 

implies that an enormous sample size with phenotypic and genotypic information is needed to 

conduct analyses on fertility that will result in high reliability, hence, the gain of power. 

2.5. Conclusion 

 The availability of sophisticated computational methods and the improvement in DNA 

sequencing increase prediction accuracy in hard-to-measure reproductive traits. The current study 

estimated the genetic parameters for heifer pregnancy, days to conception, and days open which 

are the fertility traits that are easy to measure and contain enough information for genomic studies. 

Both linear and threshold models result in almost the same heritability for binary traits, indicating 

the robustness of the developed linear model tools that successfully handle binary data. Like the 

previous studies, the heritability of fertility was relatively low. Even though the multivariate 

between HP and DC did not converge, the high correlation between DO and HP shows that indirect 

selection for one of these traits can be used to improve the overall reproductive performance in 

Red Angus. 

Furthermore, despite the variation in DC heritability, this variable yielded higher accuracy 

than the rest. Given its quantitative nature, future studies should assess the feasibility of using DC 

in multi-trait models that fit binary and continuous variables. Some genes were associated with 

HP, DC, and DO, but no known biological processes relate those genes to fertility. Further studies 



 39 

are needed to confirm the influence of the obtained genes and their corresponding gene terms on 

heifer reproduction. While the current study considered only one breed, future studies should try 

multibreed analysis with a large sample size to confirm the effect of obtained genes (GRID2 & 

ZMIZ1) on beef heifer fertility and the feasibility of DC and DO, which are considered novel traits 

in the industry.  
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2.7. Appendix 

2.7.1. Figures before the quality control 

 

 
 (a) (b) 

 

  
 (c) (d) 

Figure 1. The histogram of (a) days to conception, (b) days open, (c) age, and season length 
before quality control.  

For days interval (DC & DO), individuals less -50 and above 200 days seem to be outliers. 

For age, many individuals are within 300 and 500 days old, while season length with many 

individuals ranges 0 to 200 days. 



 47 

 

  

Figure 2. Scatter plots relating (a) days open and (b) days to conception with heifer’s age after 
quality control. Note that colors indicate birthdate. 

2.7.2. Figures after data quality control 

The quality control was done based on the literature, and the distribution of raw data. 

• First, changed the -9 days interval (DO&DC) to -9.1  

• At the same time, removed heifers with more than 365 and less than -30 days and 

less than 200 days of age (Based on the distribution and assuming errors in data 

collection) 

• Afterward, more than 250 and less than -21 DO and DC to missing 

• Finally, less than 300 and more than 550 days of age, as well as more than 360 days 

of season length as missing. 
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(a) (b) 
 

  
 (c) (d) 

Figure 3. Distribution of (a) days to conception, (b) days open, (c) heifer’s age, and (d) season 
length after quality control 
 

 

(a) (b) 
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Figure 4. Scatter plots relating (a) days open and (b) days to conception with heifer’s age after 
quality control. 

2.7.3. Days to conception and days open for GCTA and GEMMA Manhattan and QQ plots 

  
(a) 

 

  
(b) 

 
 

  
(c) 
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(d) 

  
Figure 5. Manhattan and QQ plots for days to conception from GCTA (a) and GEMMA, and 
Manhattan and QQ plots for Days Open (DO) from GCTA (c) and GEMMA(d).  
 

There was a weak association between a few SNPs and the both traits (DC - Days to 

conception and DO - Days Open). Also, there was an increase in power from GCTA to GEMMA, 

probably because of less noise introduced in GEMMA and most of the variation was due to 

genetics as estimated breeding values were used to generate pseudo-phenotypes. 

2.7.4. Figures that show traits relationship among estimated breeding values, as well as the 

breeding values from linear models and Gibbs sampling.  

 

   
 (a) (b)  (c) 
 

 Figure 6. scatter plots that show the relationship between traits based on the estimated breeding 
values (a) heifer pregnancy and days to conception, (b) heifer pregnancy and days open, and (c) 
days open and days to conception.  

The red lines show the regression line while R is the correlation between breeding values. 
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Figure 7. EBVs relationship from Gibbs sampling (THR) and linear model (GCTA) for days 
open (a) and days to conception (b). The red lines show the regression line while R is the 
correlation between breeding values. 
 

2.7.5. Gene-Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) term 

enrichment from genes associated from linear and Gibbs sampling models 

Table 1. Heifer pregnancy GO and KEGG terms from linear models (GCTA & GEMMA) 

HP GO and KEGG terms from linear models 
Source Term name Intersection P-value 
GO:BP regulation of metanephros size PAX2 0.03 
KEGG Mucin type O-glycan biosynthesis GALNT13 0.026 
KEGG Other types of O-glycan biosynthesis GALNT13 0.026 
KEGG Taste transduction SCN3A 0.031 

 

Table 2. Days to conception GO and KEGG terms from linear models (GCTA & GEMMA) 

DC GO and KEGG terms from linear models 
source Term name Intersection P-

value 
GO:BP Negative regulation of peptidase 

activity 
SERPINB12, SERPINB13 0.0183 

GO:BP Negative regulation of endopeptidase 
activity 

SERPINB12, SERPINB13 0.0183 

GO:BP Hexose phosphate transport SLC37A1 0.0183 
GO:BP Glucose-6-phosphate transport SLC37A1 0.0183 
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GO:BP negative regulation of keratinocyte 
apoptotic process 

SERPINB13 0.0183 

GO:BP Regulation of keratinocyte apoptotic 
process 

SERPINB13 0.0183 

GO:BP Keratinocyte apoptotic process SERPINB13 0.0183 
GO:BP negative regulation of proteolysis SERPINB12, SERPINB13 0.0183 
GO:BP Negative regulation of hydrolase 

activity 
SERPINB12, SERPINB13 0.0183 

GO:BP regulation of endopeptidase activity SERPINB12, SERPINB13 0.0216 
GO:BP Phosphate ion transmembrane 

transport 
SLC37A1 0.0224 

GO:BP Regulation of peptidase activity SERPINB12, SERPINB13 0.0224 
GO:BP Regulation of postsynaptic 

neurotransmitter receptor activity 
DLGAP1 0.0311 

GO:BP Phosphate ion transport SLC37A1 0.0344 
GO:BP Negative regulation of catalytic 

activity 
SERPINB12, SERPINB13 0.0344 

GO:BP Regulation of proteolysis SERPINB12, SERPINB13 0.0386 
GO:BP Regulation of molecular function DLGAP1, SERPINB12, 

SERPINB13 
0.0407 

GO:BP Negative regulation of epithelial cell 
apoptotic process 

SERPINB13 0.0407 

GO:BP Negative regulation of protein 
metabolic process 

SERPINB12, SERPINB13 0.0476 

GO:BP Negative regulation of molecular 
function 

SERPINB12, SERPINB13 0.0476 

GO:BP Regulation of neurotransmitter 
receptor activity 

DLGAP1 0.0476 

GO:BP Negative regulation of cellular 
protein metabolic process 

SERPINB12, SERPINB13 0.0476 

GO:BP Regulation of epithelial cell apoptotic 
process 

SERPINB13 0.0476 

GO:BP Regulation of hydrolase activity SERPINB12, SERPINB13 0.0476 
KEGG Glutamatergic synapse DLGAP1 0.0264 

 

Table 3. Days to conception KEGG terms from linear models (GCTA & GEMMA) 

DO KEGG terms from linear models 
Source Term name Intersection p-value 
KEGG Signaling pathways regulating pluripotency of stem cells ESRRB 0.0341 
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Table 4. Heifer pregnancy GO and KEGG terms using de-regressed EBV (SNP1101) 

HP GO and KEEG terms using de-regressed EBV from threshold model 

source Term name Intersections P-value 

GO:BP Pyramidal neuron development ZMIZ1 0.0285 

GO:BP Pyramidal neuron differentiation ZMIZ1 0.0285 

GO:BP Pyramidal neuron migration to cerebral cortex ZMIZ1 0.0285 

GO:BP Central nervous system neuron differentiation GRID2, ZMIZ1 0.0285 

GO:BP Cerebellar granule cell differentiation GRID2 0.0285 

GO:BP Regulation of postsynaptic specialization assembly GRID2 0.0285 

GO:BP Regulation of postsynaptic density assembly GRID2 0.0285 

GO:BP Cerebellar granular layer formation GRID2 0.0285 

GO:BP Cerebellar granular layer morphogenesis GRID2 0.0285 

GO:BP Radial glia-guided pyramidal neuron migration ZMIZ1 0.0285 

GO:BP Cerebellar granular layer development GRID2 0.0285 

GO:BP Positive regulation of long-term synaptic depression GRID2 0.0285 

GO:BP Prepulse inhibition GRID2 0.0285 

GO:BP Vitellogenesis ZMIZ1 0.0285 

GO:BP Regulation of excitatory synapse assembly GRID2 0.0285 

GO:BP Regulation of postsynaptic density organization GRID2 0.0285 
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GO:BP Regulation of long-term synaptic depression GRID2 0.0285 

GO:BP Postsynaptic density assembly GRID2 0.0285 

GO:BP Postsynaptic specialization assembly GRID2 0.0299 

GO:BP Brain development GRID2, ZMIZ1 0.0299 

GO:BP Cytoplasm organization ZMIZ1 0.0299 

GO:BP Head development GRID2, ZMIZ1 0.032 

GO:BP Long-term synaptic depression GRID2 0.033 

GO:BP Telencephalon glial cell migration ZMIZ1 0.033 

GO:BP Postsynaptic density organization GRID2 0.033 

GO:BP Regulation of protein sumoylation ZMIZ1 0.033 

GO:BP Ionotropic glutamate receptor signaling pathway GRID2 0.033 

GO:BP Postsynaptic specialization organization GRID2 0.033 

GO:BP Cell-cell adhesion GRID2, ZMIZ1 0.033 

GO:BP Cerebral cortex radial glia-guided migration ZMIZ1 0.033 

GO:BP Postsynapse assembly GRID2 0.033 

GO:BP Cerebellar cortex formation GRID2 0.033 

GO:BP Cell differentiation in hindbrain GRID2 0.033 

GO:BP Excitatory synapse assembly GRID2 0.033 



 55 

GO:BP Central nervous system development GRID2, ZMIZ1 0.033 

GO:BP Ligand-gated ion channel signaling pathway GRID2 0.033 

GO:BP Startle response GRID2 0.033 

GO:BP Forebrain neuron development ZMIZ1 0.033 

GO:BP neuron development GRID2, ZMIZ1 0.0422 

GO:BP Negative regulation of synaptic transmission GRID2 0.0422 

GO:BP Positive regulation of fibroblast proliferation ZMIZ1 0.0422 

GO:BP Androgen receptor signaling pathway ZMIZ1 0.0422 

GO:BP Hindbrain morphogenesis GRID2 0.0422 

GO:BP Positive regulation of Notch signaling pathway ZMIZ1 0.0422 

GO:BP Cerebellar cortex morphogenesis GRID2 0.0422 

GO:BP Cerebral cortex radially oriented cell migration ZMIZ1 0.0422 

GO:BP Forebrain neuron differentiation ZMIZ1 0.0422 

GO:BP Glial cell migration ZMIZ1 0.0422 

GO:BP Cerebellum morphogenesis GRID2 0.0422 

GO:BP Heterophilic cell-cell adhesion via plasma membrane 

cell adhesion molecules 

GRID2 0.0422 

GO:BP Cerebral cortex cell migration ZMIZ1 0.0428 

GO:BP Forebrain generation of neurons ZMIZ1 0.0428 
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GO:BP Glutamate receptor signaling pathway GRID2 0.0439 

GO:BP Positive regulation of developmental process GRID2, ZMIZ1 0.0439 

GO:BP Protein sumoylation ZMIZ1 0.0439 

GO:BP Cerebellar cortex development GRID2 0.0439 

GO:BP Positive regulation of synapse assembly GRID2 0.0439 

GO:BP Regulation of multicellular organismal development GRID2, ZMIZ1 0.0445 

GO:BP Positive regulation of multicellular organismal 

process 

GRID2, ZMIZ1 0.046 

GO:BP Artery morphogenesis ZMIZ1 0.046 

GO:BP Regulation of postsynapse organization GRID2 0.046 

GO:BP Neuron differentiation GRID2, ZMIZ1 0.046 

GO:BP Telencephalon cell migration ZMIZ1 0.046 

GO:BP Forebrain cell migration ZMIZ1 0.0472 

GO:BP Cell adhesion GRID2, ZMIZ1 0.0472 

GO:BP Fibroblast proliferation ZMIZ1 0.0472 

GO:BP Central nervous system neuron development ZMIZ1 0.0472 

GO:BP Biological adhesion GRID2, ZMIZ1 0.0472 

GO:BP Synaptic transmission, glutamatergic GRID2 0.0472 

GO:BP Regulation of fibroblast proliferation ZMIZ1 0.0472 
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GO:BP Vasculogenesis ZMIZ1 0.0481 

GO:BP Excitatory postsynaptic potential GRID2 0.0491 

GO:BP Generation of neurons GRID2, ZMIZ1 0.0491 

KEGG Glycosaminoglycan biosynthesis - heparan sulfate / 

heparin 

HS3ST3A1 0.0227 

KEGG Long-term depression GRID2 0.0281 

 

Table 5. Days to conception GO and KEGG terms using de-regressed EBV (SNP1101) 

DC GO & KEGG terms from de-regressed GWAS 

source Term name intersections p-value 

GO:BP Activation of cysteine-type endopeptidase activity 

involved in apoptotic process by cytochrome c 

DIABLO 0.0278 

GO:BP Poly-N-acetyllactosamine metabolic process B3GNT4 0.0278 

GO:BP Poly-N-acetyllactosamine biosynthetic process B3GNT4 0.0278 

KEGG Glycosphingolipid biosynthesis - lacto and neolacto series B3GNT4 0.0209 

KEGG Apoptosis - multiple species DIABLO 0.0209 

 
 


