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Spontaneous Cluster Formation in Stoichiometric Quantum Critical Systems

Alex Bretaña

Dr. Wouter Montfrooij, Dissertation Supervisor

ABSTRACT

Metallic systems with magnetic ions embedded which have been prepared to un-

dergo a second-order phase transition at zero Kelvin (called the quantum critical

systems) historically appear to fall into two distinct categories: (chemically) heavily-

doped systems in which the unusual properties can be attributed to a disorder-induced

distribution of Kondo shielding temperatures, and (nearly) stoichiometric systems

where the departures from Fermi-liquid theory have been attributed to intrinsic in-

stabilities. We show that this distinction between doped and stoichiometric systems

is no longer a clear-cut boundary and that magnetic clusters associated with a distri-

bution of Kondo shielding temperatures found in the heavily doped quantum critical

Ce(Fe0.755Ru0.245)2Ge2 are also present in CeRu2Si2, a stoichiometric system close to

a quantum critical point.

By revisiting published data on CeRu2Si2 and comparing them to the results of

Ce(Fe0.755Ru0.245)2Ge2, we show that clusters consisting of Ce-ions with their moments

aligned with their neighbors exist in both systems at low temperatures and dominate

the macroscopic response of these systems. We show these clusters form from a dis-

tribution of Kondo shielding temperatures which naturally arises from a distribution

in inter-ionic separations; the chemical doping of ruthenium in Ce(Fe0.755Ru0.245)2Ge2

and zero-point motion in stoichiometric CeRu2Si2. We show that the dominant

physics which drives heavily-doped systems, namely spontaneous formation of mag-

x



netic clusters, also plays a leading role in the response of homogenous systems.

We investigate the presence of these spontaneous clusters in the heavily studied

YbRh2Si2 where neutron scattering data have not been published. We show that

the specific heat and susceptibility are naturally interpreted when ordered magnetic

clusters are taken into account. Thus, cluster formation appears to be ubiquitous at

the quantum critical point.

We end with potential implications of the findings (that small changes in inter-

ionic separations ends up dominating the macroscopic response) to another class

of highly correlated electron systems: the cuprate high Tc superconductors. We

speculate that ionic displacements associated with hole doping leads to a pathway for

the formation of Cooper pairs. We show that this pathway leads to an explanation

for the many experimental observations, such as the striped phase and the hourglass

dispersion.
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Chapter 1

Introduction to Cluster Formation
in Quantum Critical Systems

1.1 Introduction

We begin with an introduction into the dominant physics at play in cluster formation.

We introduce Fermi-liquid theory, the Ruderman-Kittel-Kasuya-Yoshida (RKKY) in-

teraction, and Kondo shielding. We show that cluster formation is rooted in a dis-

tribution of interatomic separations, which upon cooling, naturally leads to a distri-

bution of Kondo shielding temperatures and percolation physics. We show that the

introduction of finite size effects leads to the ordering of neighboring moments within

the clusters that form upon cooling.

We use published data and results on heavily doped Ce(Fe0.755Ru0.245)2Ge2 and

show that these clusters consisting of Ce-ions with their moments aligned with their

neighbors dominate the low temperature macroscopic response. We show that these

clusters form from a distribution of Kondo shielding temperatures which naturally

arises from a distribution in inter-ionic separations; the chemical doping of ruthenium

in Ce(Fe0.755Ru0.245)2Ge2.
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1.2 Fermi Liquids and Strange Metals

In the early 90’s, unexplained behavior in the resistivity was seen upon cooling certain

metals[2]; at the root of this unexplained behavior is the quirky little particle known

as an electron which must be described quantum mechanically. Electrons have both

a particle and wavelike nature; therefore, a quantum mechanical wave function must

be used to describe them. As such, we cannot determine the exact location of an

electron inside a metal, we must use a probabilistic approach to finding the electron

at any given location. The mathematical function that describes the probability of

finding an electron at any specified location inside an atom is called an atomic orbital.

These orbitals are characterized by three quantum numbers which describe the state

of the electrons inside the orbital. Atomic orbitals are commonly labeled s, p, d,

and f orbitals; each of which refers to the value of l, the eigenvalue of the angular

momentum operator, where l = 0, 1, 2, 3 for each orbital s, p, d, and f respectively.

Electrons also have a half integer spin creating a small magnetic moment associated

with the electron. Half integer spins mean electrons are fermions thereby obeying

Fermi-Dirac statistics as well as the Pauli Exclusion principle. Therefore, no two

electrons can occupy the same quantum state. As such, each electron in a metal will

fill a single state thereby making the ground state of any metal a “sea” of electrons

all filling the lowest available energy states all the way up to the highest energy state

for the final electron. This occupied final energy level in the ground state is known

as the Fermi level, and is denoted as Ef [1].

In order to create a low temperature excitation in a metal, an electron below Ef

must become excited to above Ef leaving behind an “electron hole”. For an electron

2



with an initial energy Ei near the Fermi level to occupy a state above the Fermi level,

the electron would need to be excited with enough energy E, such that Ei+E → Ef .

Therefore only electrons whose energies are close to Ef can be excited to unoccupied

states above Ef and as a consequence only a small number of electrons contribute

to the macroscopic properties of a metal. The range or bands of energy that cross

the Fermi level are known as conduction bands and electrons which occupy states in

the conduction band are known as conduction electrons. If an electron did become

excited to a new state above Ef , the initial Ei would become unoccupied thereby

creating an “electron hole”[1].

Ultimately, to accurately describe a metal at low temperatures, we must take

into account the unique properties of the electron as well as the excitations and

interactions these electrons and “electron holes” have with each other. In essence,

we must describe the behavior of a group of interacting electrons. In 1956, Lev

Davidovich Landau[3] proposed these strongly interacting electrons can be described

as a “weakly” interacting degenerate gas of “quasiparticles” by assuming the electrons’

interactions with the entirety of the metal lattice can be captured through an effective

mass of the electron m∗. Landau first considered a non-interacting system of fermions

(i.e. electrons) referred to as a Fermi gas. Landau then hypothesized that if we “turn

on” interactions between these fermions, then the ground state of the Fermi gas

would adiabatically transform into the ground state of the interacting system. When

this interaction is “turned on” in the Fermi gas, the charge, momentum, and spin

of the fermions remain unchanged, but the dynamic properties are renormalized to

new values. This leads to a one-to-one correspondence in the excitations of the non-

3



interacting Fermi gas to the excited states of the interacting system. These excited

states are known as “quasiparticles”.

The one-to-one correspondence between a Fermi gas and the interacting system

led Landau to theorize that the excitations at low temperatures in metals can be

described using the mathematical framework of a non-interacting Fermi gas through

these quasiparticle excitations (quasi-excitations); this model is known as Fermi liquid

theory (FLT) and describes the low temperature behavior of metals. Considering the

case in which the quasiparticles interact (the interaction has been “turned on”), we

obtains the corresponding magnetic susceptibility χ, the specific heat cV and the

resistivity ρ as

χ =
m∗pFµ

2
B

4π2~
1

1 + FA
0

(1.1)

cV =

(
∂S

∂T

)
V

=
m∗pF
3~3

kB
2T (1.2)

ρ(T ) ∼ T 2 (1.3)

where µB is the Bohr magneton, pF is the Fermi momentum, kB is the Boltzmann

constant, T is the temperature, and m∗ is the effective mass of the electron reflecting

its interactions with the entirety of the metal lattice. The class of systems that were

discussed in the 90’s were characterized by very large values of m∗[2] and therefore

these systems are known as heavy fermions. FA
0 is the Landau Fermi Liquid parame-

ter and parametrizes the collective interactions between quasiparticles. Fermi liquid

theory only works when strongly interacting electrons can be modeled as a group
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of “weakly” interacting quasiparticles, but what happens when the strength of the

interaction becomes so strong this model no longer holds?

As the interactions between quasiparticles get stronger and stronger, FLT breaks

down entirely and exotic new phenomena emerge, such as superconductivity. These

materials where Eq. 1.1-1.3 no longer hold are known as non-Fermi liquids (nFl)

or sometimes “strange metals” for their unique properties[1]. nFl behavior can be

observed experimentally in the specific heat, uniform susceptibility, resistivity and the

dynamic susceptibility where E/T -scaling has been observed in some systems [7–10].

1.3 Magnetic Ordering vs Shielding

Fermi-liquid theory breaks down when quasiparticles are interacting too strongly; two

such interactions that play a critical role in the formation of magnetic clusters are the

Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction[4–6] which is responsible for

the formation of long range order, and Kondo shielding [20][21] which is responsible

for the prevention/destruction of long range order by shielding of magnetic moments.

The RKKY interaction is a long range coupling mechanism mediated by conduc-

tion electrons, in which two local (neighboring) magnetic moments align with each

other. Conduction electrons can scatter off of magnetic moments after which the

conduction electron’s own magnetic moment reflects the direction of the magnetic

moment it scattered off of. In other words, the conduction electron has become po-

larized by the magnetic moment via the exchange interaction, the strength of which

is denoted as J . These newly reorientated conduction electrons continue to move

through the material and by scattering off of a second magnetic moment, they ef-

fectively mediate an interaction between the first and second magnetic moments,
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orientating their moments to be parallel with each other (ferromagnetic) or antifer-

romagnetic or even a more complicated incommensurate arrangement reflecting the

topology of the Fermi surface[1]. This interaction with the second moment again in-

volves the exchange interaction, and therefore the strength of the RKKY interaction,

JRKKY , is proportional to J2. It is also oscillatory in nature and depends on the

separation between magnetic ions (Appendix A). We note here that the RKKY in-

teraction is an effective interaction between two neighboring magnetic moments and

not between conduction electrons, it is only mediated by the conduction electrons.

In competition with the RKKY interaction and the ordering of neighboring magnetic

moments is Kondo shielding.

Kondo shielding was first proposed by J. Kondo [11]: conduction electrons inter-

act so strongly with the magnetic moments that they become localized around the

magnetic moments, thereby shielding the magnetic moment by having their intrinsic

moment aligned opposite. Kondo was the first to describe the ability of conduction

electrons to form a magnetic singlet with the magnetic ion (an ion is an atom or

molecule with a net electric charge and a magnetic singlet refers to having the con-

duction electron(s) having their moments aligned antiparallel)[1]. While the Kondo

model is accurate at high temperatures, the resistivity diverges upon cooling due

to the model’s logarithmic increase in scattering between conduction electrons and

the magnetic impurity. Phillip Anderson[72] and Kenneth Wilson[13] later refined

the Kondo Model, such that the strength J of the exchange interaction increases

upon cooling while the magnitude of the scattering does not logarithmically increase

thereby solving the low temperature divergence of the resistivity. Thus, upon cooling

6



a metal, the interaction between conduction electrons and magnetic moments be-

gins to increase, until at a specific temperature, known as the Kondo Temperature

Tk[11], the conduction electrons will find it energetically favorable to become localized

around magnetic moments forming a singlet state (technically this is not entirely true

as the cloud of electrons around a magnetic impurity is dynamic, meaning electrons

are constantly leaving, while others are becoming localized around that same mag-

netic impurity). The Kondo temperature TK depends on the bandwidth D of the

conduction band, on the strength of the exchange interaction J , and on the density

of states at the Fermi level ρ as[11]

TK = De−1/ρ|J |. (1.4)

As the metal is cooled further, more and more conduction electrons become localized

around magnetic impurities, in other words, the conduction electrons act as if they

have become very massive. Due to the alignment of a localized conduction electron’s

spin being antiparallel to the direction of the magnetic impurity it is localized around,

the more conduction electrons that bunch up around a single magnetic ion, the smaller

its moment effectively becomes. This process is known as Kondo shielding and can

become so strong that an ion’s magnetic moment will become completely shielded by

the conduction electrons and will cease to be magnetic[20, 21]. We make a small note

here that Kondo shielding is a dynamic process and is not solely associated with the

onset of TK but happens gradually over the course of several decades of temperature.

Ultimately as we cool a metal down, there is direct competition between magnetic

ordering through the RKKY interaction and shielding of the same moments through

Kondo shielding. As both these interactions are rooted in the same exchange inter-
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action between conduction electrons and magnetic moments, it is the strength of the

exchange interaction J that will determine the ground state of the system. If J is

large, the conduction electrons will favor becoming localized around a single electron

and Kondo shielding will dominate leading to a disordered phase i.e., short range

correlations and heavy-fermion behavior as displayed in Fig. 1.1. If J is small, the

conduction electrons are not as strongly attracted to the magnetic moments and can

move more freely through the lattice leading the RKKY interaction to dominate and

long range order to emerge as shown in Fig. 1.1. Therefore, extremely small changes

to the strength of the exchange interaction J can drive the system towards ordered

or disordered behavior when it is delicately poised between these two regimes.

𝐽 𝐷 𝜀

Te
m

pe
ra

tu
re

magnetism Fermi liquid

quantum critical 
point

𝑇

𝑇

Figure 1.1: Doniach phase diagram [39] adapted from [54] showing the competition between
order (the RKKY interaction) and disorder (the Kondo shielding mechanism). Jcf is the
exchange interaction strength between conduction electrons and f-orbital electrons of a rare
Earth ion. D(εF ) is the electron density of states at the Fermi energy D(εF ).
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1.4 Quantum Critical Systems and Percolation

When the competition between magnetic ordering and shielding (disorder) persists all

the way down to 0 K, systems end up neither in an ordered nor disordered phase but

instead at the the so-called quantum critical point (QCP). This is shown in Fig. 1.1. In

this region, these systems display low-temperature responses that do not follow Fermi

Liquid theory and thus are non-Fermi liquids in this critical region. In a magnetic

system, a change from longe-range magnetic order to disordered behavior (or vice

versa) is known as a magnetic phase transition. When the phase transition occurs at

0 K, these systems are referred to as quantum critical systems. Since phase transitions

at 0 K are not driven by thermal fluctuations, they (should) fall into new universality

classes. Such second order (continuous) phase transitions are referred to as quantum

phase transitions. We show a typical Doniach phase diagram in Fig. 1.1[39]. From

Fig. 1.1 we see that for high J , Kondo shielding dominates and we end up with

Fermi-liquid and heavy fermion behavior, while for small J the RKKY interaction

dominates resulting in long range order. However, if the competition between order

and disorder survives all the way down to 0K, we end up in a non-Fermi liquid regime

at the quantum critical point.

In nature, most materials are not quantum critical, however, there are two com-

mon methods we can use to tweak or push a material towards the quantum criti-

cal point; hydrostatic pressure and chemical pressure (doping). Hydrostatic pressure

compresses the material such that the ions are pushed just a little closer together. This

directly affects the atomic orbital overlap between neighboring ions. The strength of

the exchange interaction J depends extremely sensitively on this orbital overlap and
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therefore, applying hydrostatic pressure allows increases J . This increase in J will

drive the system towards the Fermi liquid regime where Kondo shielding dominates

(Fig. 1.1). “Life finds a way” and in some rare cases, applying just a small amount

of hydrostatic pressure is enough to affect the exchange interaction J to the point

the system ends up at the QCP. However, in most cases the amount of pressure re-

quired is immense and difficult to implement for large single crystal samples and thus,

chemical doping is preferred.

In the case of chemical pressure, we substitute an atom in the material with an-

other similar (iso-electronic, meaning the same number of valence electrons) atom

of different size. In order to not affect the magnetic ions, a smaller (or larger)

iso-electronic atom is used to substitute for a non-magnetic atom. Doping larger

atoms generally increases inter-atomic separations while doping smaller atoms gen-

erally decreases inter-atomic separations, both of which directly affect inter-atomic

separations. This in turn alters the orbital overlap between neighboring atoms and

subsequently changes the strength of the exchange interaction J , driving the mate-

rial towards an ordered or disordered phase (closer to the QCP). Chemical doping is

considered to be “dirty”, as we can never be sure how the microscopic properties of

the material change by introducing new atoms. However from this point on, we will

focus solely on chemical doping as this is (in practice) how large samples are prepared

to be at the QCP. In such a chemically doped system, the doped atoms are randomly

substituted throughout the material and therefore we end up with a local distribution

(local meaning in the vicinity of the doped atom) of inter-atomic separations as some

atoms are pushed closer together while other atoms are forced further apart.
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In practice, systems that have been tuned to be at the QCP fall into two categories,

and the efforts at a theoretical understanding of the low temperature response of these

systems reflect this dichotomy. On the one hand there exist (nearly) stoichiometric

compounds whose composition is already so close to a QCP that they can be fine-

tuned to be exactly at the quantum critical point by applying hydrostatic pressure,

or by small amounts of chemical substitution to expand or shrink the lattice, thereby

affecting the degree of orbital overlap in order to achieve the fine-tuning. Naturally,

these systems have received the bulk of theoretical attention and various theories

have been forwarded to describe the low-temperature response either as a localized

instability against moment formation[16] or as a collective instability against ordering

rooted in the topology of the Fermi surface.[17, 18] On the other hand, systems far

from a QCP can still be tuned but now chemical pressure is required, resulting in high

levels of chemical dopants, introducing a high degree of disorder[2]. Given the high

degree of disorder, theoretical efforts have focused on disorder related effects in these

systems, such as a distribution of Kondo shielding temperatures and manifestations

of a Griffith phase[19] where rare ordered subvolumes of the sample have a dispro-

portionate influence on the overall response. A perusal of the literature on quantum

critical systems leads one to believe that heavily-doped systems do not shed light

on the true nature of quantum phase transitions in (non-disordered) stoichiometric

systems.

From Eq. 1.4 we can see that changes to J affect the temperature at which a

moment will become shielded and therefore, a distribution of interatomic separations

due to chemical doping necessarily leads to a distribution of Kondo shielding tem-
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peratures. This causes a network of isolated clusters to form (a percolation network

emerges): upon cooling such a doped system, at a given temperature T some moments

have become Kondo shielded while others still survive. This is illustrated in Fig. 1.2.

The shielded moments are shown in grey (the orientation is shown to be random as

the magnetic moments are Kondo shielded), while we can see groups of moments

that are not shielded shown in red. Thus, a percolation network has emerged in the

material in which isolated clusters of un-shielded moments form.

Figure 1.2: Schematic of magnetic moments arranged in a crystalline lattice. Left Panel a):
Kondo shielded moments are shown in grey, while groups of isolated unshielded moments are
shown in red. Right Panel b): Finite size effects (see text) force the moments in a cluster to
align with their neighbors. Counting the number of moments on individual clusters reveals
a net uncompensated moment.

From Fig. 1.2, we see that once a group of isolated moments have formed (in red),

the moments inside that cluster order with their respective cluster members due to

finite size effects. At a given temperature T , thermal fluctuations will attempt to

destroy this ordering inside an isolated cluster, however, this type of disordering fluc-

tuation simply costs too much energy to occur due to quantum mechanical finite size

effects. Finite size effects occur because the wavelength of any disordering fluctuation
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must be proportional to the size of the cluster it is disordering. Thus, for clusters

with a small size the energy required to produce a disordering fluctuation is quite

large (as energy and wavelength are inversely related, a short wavelength fluctuation

requires a large energetic cost). Thus we can calculate an ordering temperature T for

a given cluster of radius R (Fig. 1.3)[34]. Assuming an antiferromagnetic system as

an illustration; for a cluster of radius R = 16 Å, the ordering temperature is ' 45 K

and thus at temperatures below ' 45 K, any clusters of size 16 Å and smaller must

order due to finite size effects. Once a group of moments forms and orders (due to

finite size effects), the cluster is protected from further Kondo shielding (spin-flips are

necessary for Kondo shielding and are severely impeded in an ordered environment)

and thus, once these isolated clusters form and order, they survive down to the lowest

possible temperatures.

This restriction on Kondo shielding manifests in the fact that only moments from

the lattice spanning cluster (the infinite (largest) cluster that spans from one side of

the crystal lattice to the other) may become Kondo shielded at low temperatures.

The infinite cluster has an infinite radius. With an infinite radius, any disordering

fluctuation (with any wavelength, large or small) would have no problem fitting inside

the bounds of the infinite cluster and thus, the moments on the infinite cluster never

order but are constantly fluctuating. It is for this reason that moments on the infinite

cluster can still become Kondo shielded. Thus upon cooling, when moments from the

infinite cluster will become shielded, groups of moments can peel away from the lattice

spanning cluster and order due to finite size effects (forming groups of isolated order

clusters shown in red in Fig. 1.2). The point at which the infinite cluster breaks apart
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Figure 1.3: Magnon dispersion curve for an antiferromagnetic system in which the minimum
excitation energy for a magnon in a cluster of radius R is calculated using finite size effects.
The ordering temperatures for several clusters (of size shown above the figure) are displayed
using dotted lines. In this example, below T = 20 K clusters with a radius of size 32 Å and
smaller will order magnetically. This figure was adapted from [34].

is known as the percolation threshold. This particular type of percolation is referred

to as protected percolation and falls into its own universality class [33, 55–57]. We

see from Fig. 1.4 that in the high J region where Kondo shielding dominates, most of

the infinite cluster has become shielded and thus only short range order exists (small

isolated clusters shown in blue). For low J when the RKKY interaction dominates

and long range order is reached, we see not only the infinite cluster (shown in red)

but also groups of isolated clusters which have formed and ordered (shown in blue).

Depending on the size and shape of the these ordered clusters, a single cluster can

have a (large) number of uncompensated moments and therefore, the net moment

of the cluster will be nonzero. Such a net moment is known as the super spin of

that cluster. Effectively, these clusters behave like ferromagnetic impurities. As

14



Figure 1.4: The phase diagram for a quantum critical system under the effects of cluster
formation caused by changes in interatomic separations via chemical disorder or pressure
viewed from a cluster perspective. The size of ordered clusters are shown for each phase.
Upon cooling, a magnetically ordered long-range phase (shaded in grey) can be reached.
We see the largest cluster shown in red spans the entire lattice i.e., connects two opposite
sides (for example the top and bottom). We can apply pressure or magnetic fields in order
to drive this transition temperature down to 0 K; the quantum critical point (shown as
black dot QCP). The introduction of chemical doping introduces changes in interatomic
separations which induces a distribution of Kondo shielding temperatures. Upon cooling,
some moments will become shielded before others and a percolation network will form.
These clusters are subject to finite size effects and therefore must order, protecting them
from further Kondo shielding (spin-flips are necessary for Kondo shielding and are severely
impeded in an ordered environment, the ordered clusters). The temperature at which such
isolated clusters form and order is given by the dashed line. Below this line, only small
isolated clusters exists (shown in blue), and they lead to the appearance of short-range
order. We see that at the quantum critical composition upon cooling, the average cluster
size increases until at the quantum critical point where the lattice spanning cluster survives
all the way down to 0 K. At this point, the infinite cluster is about to order magnetically
which would result in long range order. This figure is adapted from [33].

an illustration of this super spin effect, the number of uncompensated moments are

circled in blue in the largest ordered cluster that we showed in Fig. 1.2 (and now shown

in Fig. 1.5) revealing the super spin associated with this cluster of two uncompensated

moments. This super spin can align with external magnetic fields and it contributes

to the system’s magnetic susceptibility. The ordered environment of these isolated

clusters gives us two more experimental predictions. First, because Kondo shielding
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of moments is random, we should expect equal number of moments to be correlated

along different directions in the material independent of the interaction strength J

along that direction and second, we should see the entropy loss associated with the

formation of ordered clusters in the specific heat of the material.

Figure 1.5: Schematic of magnetic moments arranged in a crystalline lattice. Left Panel a):
Groups of isolated moments, clusters, are shown in red and the uncompensated moments of
the largest isolated cluster are circled in blue. Right Panel b): The same clusters are shown
in red but the compensated moments have been removed from the largest isolated cluster
and the super spin of that cluster is shown.

In summary, doping leads to a distribution of interatomic separations. This dis-

tribution of interatomic separations affects the orbital overlap between neighboring

atoms. The changes in orbital overlap greatly affect the strength of the exchange

interaction J and ultimately the temperature at which moments will become Kondo

shielded. Thus, doping leads to a distribution of Kondo shielding temperatures. Upon

cooling, some moments will become shielded before others and a percolation network

emerges. Once a group of moments peels away from the lattice spanning cluster, that

group of moments must order due to finite size effects and we are left with groups of

ordered magnetic clusters. We will show how these ordered clusters can be seen in
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the system’s susceptibility, specific heat, and in the number of moments correlated

along a crystallographic direction (in the next section Section 1.5).

1.5 Cluster Formation in Ce(Fe0.755Ru0.245)2Ge2

We will use the doped compound Ce(Fe0.755Ru0.245)2Ge2 as a reference to understand

cluster formation in a quantum critical system with a static distribution of inter-

atomic separations. The published results on this compound that we discuss below

formed the inspiration for this thesis. In Chapter 2 and 3 we will apply the same

reasoning to stoichiometric compounds, a new avenue. We show that the static distri-

bution of interatomic separations present in Ce(Fe0.755Ru0.245)2Ge2 is created by the

random doping of ruthenium, creating local lattice distortions, pushing some cerium

atoms closer, while pushing others further apart. This static distribution of inter-

atomic separations induces a distribution of Kondo shielding temperatures. Upon

cooling, this leads to fragmentation of the magnetic lattice and to cluster formation.

We show that these magnetic clusters dominate the low temperature response of

Ce(Fe0.755Ru0.245)2Ge2. For heavily-doped systems, the distribution of atomic sepa-

rations is (mostly) static. Randomly substituting smaller or larger ions locally leads

to lattice shrinking and expansion, necessarily leading to a permanent distribution of

inter-ionic separations. Of course, time-dependent changes are also present in heavily-

doped systems. For simplicity, we treat the distribution of Kondo temperatures in

heavily-doped systems as if they were entirely static, we return to dynamic, zero-point

motion induced distributions when we discuss stoichiometric systems (Chapter 2-3).
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1.5.1 Non-Fermi Liquid, Structure, and Phase Diagram

Ce(Fe0.755Ru0.245)2Ge2 is a heavy-fermion compound where expansion of the tetrag-

onal lattice from the stoichiometric CeFe2Ge2 by a substitution of one in four iron

atoms for ruthenium atoms drives the system to the quantum critical point where it

experiences both short and long range fluctuations. Ce(Fe0.755Ru0.245)2Ge2 crystallizes

in the ThCr2Si2 structure[25] or 122-structure (panel a) of Fig. 1.6) and it displays a

strong Ising character in which the easy axis for the moment of the Ce-ions is along

the c-axis[36]. Iron and ruthenium do not carry a local moment in this compound,

therefore from a magnetic point of view, the Ce-Ions form a body centered tetragonal

lattice with the length of the c-axis being approximately 2.5 times the length of the

a-axes[35]. The random doping of one in four iron atoms for ruthenium creates local

lattice distortions around each doping site, pushing some atoms closer together while

forcing others further apart as illustrated in panel b) of Fig. 1.6. Thus, the doping of

ruthenium naturally leads to a distribution of Kondo shielding temperatures. Elastic

neutron scattering experiments[33] on Ce(Fe0.755Ru0.245)2Ge2 demonstrated that it is

on the verge of ordering magnetically. The ordering wave vector was found to be

(0, 0, 0.45) implying a spin density wave (SDW) instability and confirming that the

RKKY interaction is indeed responsible for any long range order observed. There-

fore, Ce(Fe0.755Ru0.245)2Ge2 appears to be in the paramagnetic phase just shy of long

range ordering and thus, extremely close to its quantum critical point and an ideal

candidate to understand cluster formation.
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Figure 1.6: Left Panel a): ThCr2Si2 crystal structure, reproduced from Sven et al.[15].
Right Panel b): Schematic showing the lattice distortions associated with the chemical
doping of ruthenium for iron atoms in Ce(Fe0.755Ru0.245)2Ge2.

1.5.2 Evidence of Static Cluster Formation

Montfrooij et al.[33] discovered through neutron scattering experiments the presence

of magnetic clusters in Ce(Fe0.755Ru0.245)2Ge2: upon cooling the system, identical

number of magnetic moments were observed to be correlated along distinct crystal-

lographic directions. This is reproduced in Fig. 1.7. The horizontal axis in Fig. 1.7

is in reciprocal lattice units and therefore, the inverse of the width is directly pro-

portional to how many moments are correlated along that particular direction in the

crystal. We see that for all temperatures, the curves for all directions fall directly

on top of one another, meaning that there are identical numbers of moments lined

up along the c-direction (red) as there are along another distinct (in plane) direc-

tion (black). We know the RKKY interaction is responsible for long range order

in Ce(Fe0.755Ru0.245)2Ge2 and depends on the distance r between moments. In the

tetragonal lattice the strength of the exchange interaction J varies along different

crystallographic directions as well. Thus, we would expect to see the number of mo-
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ments aligned along the c-direction to be vastly different than along the a-direction

because of to the tetragonal lattice (c/a = 2.5). As this is not the case, we are not

dealing with incipient long-range range order due to the RKKY interaction and there-

fore, the most likely culprit for this magnetic intensity are groups of ordered clusters

which formed upon cooling. After all, the only situation in which the strength of the

ordering interaction no longer plays a role is when all moments have ordered. This is

clear indication of the presence of ordered clusters in the sample as was detailed in

reference [33].

Figure 1.7: Figure reproduced from [33]. Left Panel (a): The temperature dependence of the
magnetic scattering in Ce(Fe0.755Ru0.245)2Ge2, measured by means of neutron scattering.
The peaks observed were associated to cluster formation by Montfrooij et al.[33]. Upon
cooling, we observe that the magnetic scattering begins to emerge around 16K and increases
in intensity while also narrowing in width in q-space. The inverse of this width is directly
proportional to how many moments are correlated and thus, we see that there are identical
number of moments ordered along the c-direction (red symbols) as there are along another
distinct high symmetry direction (black symbols). This holds for all temperatures observed.
In Ce(Fe0.755Ru0.245)2Ge2, the lengths of the c and a axes differ by 2.5, and thus, this is clear
indication that we are dealing with ordered magnetic moments. These clusters have formed
via random Kondo shielding of moments. The curves have been offset along the vertical axis.
Right Panel (b): Displays the same data, but now plotted on top of each other, the curves
are not offset. We observe that once clusters form and order, that these clusters remain
intact upon cooling. Upon cooling further, we observe that new (and larger, as observed by
the narrowing width) clusters form, and that the scattering from these clusters augments
the scattering of any clusters already present. Thus, isolated clusters are protected from
further Kondo shielding upon forming and subsequently ordering.
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In protected percolation, once clusters form, they must order due to finite size

effects and are protected from further Kondo shielding [33]. Upon cooling, these

clusters cannot be further shielded and keep contributing to the magnetic scattering.

Therefore we should see increased magnetic scattering appear on top of or in addition

to already existing magnetic scattering upon cooling. Looking at Fig. 1.7, we see that

upon cooling, new (and larger, as implied by the narrowing width) clusters form and

order. This scattering augments the scattering of the clusters already present. This is

clear indication that isolated magnetic clusters are protected from any further Kondo

shielding once they have formed (and ordered due to finite size effects).

When clusters form and order in Ce(Fe0.755Ru0.245)2Ge2, they shed their entropy.

This can be seen in the specific heat of the sample. When a single moment “peels

away” from the lattice spanning cluster in an Ising system, a total of kBln2 in entropy

is shed. If a cluster of n moments peels away from the lattice spanning cluster, the

cluster moments must order and a total of (n − 1)kbln2 in entropy is shed. The

loss of entropy is proportional to n − 1 because the cluster still has a single degree

of freedom remaining related to the super spin of the cluster[46]. As we approach

the point at which the lattice spanning cluster breaks apart closer and closer, the

clusters which peel away become larger and larger. Effectively the entropy of the

system is locked into the lattice spanning cluster as the super spins do not shed their

entropy in the absence of an applied field. Gaddy et al.[42] calculated the entropy

of Ce(Fe0.755Ru0.245)2Ge2 through numerical integration of the specific heat and then

performed protected percolation simulations as a function of occupancy p and used

this entropy-lattice spanning cluster correspondence to determine the occupancy as
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Figure 1.8: The entropy of Ce(Fe0.755Ru0.245)2Ge2 (circles) determined through numeral
integration of specific heat data. By equating entropy to the occupancy, we can plot the
occupancy as a function of temperature p(T ). We note here that while the occupancy
changes relatively little at low temperatures, the system is on the verge of a phase transition
and therefore even small changes in occupancy give rise to large changes in the strength
of the lattice spanning cluster as larger and larger clusters break away from the lattice
spanning cluster.

a function of temperature. We show this in Fig. 1.8.

The ordered clusters that have formed in Ce(Fe0.755Ru0.245)2Ge2 also have a su-

per spin associated with them. This super spin can align with external magnetic

fields and can be seen in the system’s susceptibility. Interestingly, we can completely

bypass any in-between computer simulations and relate the measured specific heat

to the observed uniform susceptibility using the above entropy-lattice spanning clus-

ter correspondence. Assuming moments in Ce(Fe0.755Ru0.245)2Ge2 follow protected

percolation, then kBln2 is lost in entropy every time a single Ce-moment becomes

shielded from the lattice spanning cluster. Thus, we can make the assumption that

the susceptibility of the infinite cluster, χ∞, while undergoing Kondo shielding of its
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moments, can be written as

χ∞ =
S(T )

Rln2
χfree(T ). (1.5)

where S(T ) is the entropy of the system calculated by numerical integration of the

specific heat c(T )/T , R is the gas constant, and χfree is the known susceptibility of

an individual cerium ion placed in the local tetragonal crystal electric field (CEF)

of Ce(Fe0.755Ru0.245)2Ge2. Thus, S(T )S is the number of remaining Rln2 unshielded

moments on the infinite cluster. From experiments on CeRu2Si2, it is known[35] that

the three ground state doublets are split by 33 and 55 meV, and therefore barely

influence the specific heat below 100 K. However, we do not know the CEF levels

for Ce(Fe0.755Ru0.245)2Ge2. Considering both systems’ similarity, in order to model

χfree[38] we assume the CEF levels in Ce(Fe0.755Ru0.245)2Ge2 to be similar to those

seen in CeRu2Si2. We chose a value of the moment of the individual free cerium ion

to be of 1.43µB per Ce-ion; this value was found to yield the best agreement between

entropy and susceptibility. Note that, based on the admixture of the |Jz = 5/2〉 and

|Jz = 3/2〉 states, we could have expected a free moment of around 1.85 µB (using gJ

=6/7), fairly close to the value obtained from the fit.

As seen in Fig. 1.9, the agreement proposed in Eq. 1.5 is nearly perfect from 10 K

to 120 K (with 120 K being the upper bound of the measured specific heat data).

Of special note is the underestimation of the predicted susceptibility (solid curve)

seen around 10 K. This is around the same temperature at which neutron scattering

data (Fig. 1.7)[38] suggests isolated clusters begin to emerge. The super spin of iso-

lated clusters can align with an external magnetic field and thereby contribute to the

susceptibility measurements. Therefore, as isolated clusters emerge, Eq. 1.5 should
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indeed underestimate χ∞ as it leaves out the super spin contribution. In conclusion,

Eq. 1.5 appears to correctly describe the susceptibility of the disordered moments and

is useful as a diagnostic tool when looking for the appearance of magnetic clusters

that form from a static distribution of Kondo shielding temperatures.

Figure 1.9: The uniform susceptibility for Ce(Fe0.755Ru0.245)2Ge2 (diamonds) measured[33]
for a field of 0.2 T parallel to the crystallographic c-axis in this (almost) Ising system. The
dotted curve follows the Curie Weiss law at high temperatures which has only a very limited
range of validity. The solid curve (Eq. 1.5) is the measured entropy of the sample, divided
by Rln2 and multiplied by the temperature dependence of the magnetic response of a three
level doublet system with energy gaps of 33 and 55meV[35], with the ground state magnetic
moment taken to be 1.43µB (and the two excited state moments reduced by a similar factor,
although the excited states do not play a factor in this visual comparison). The measured
susceptibility and the specific heat based prediction start to deviate below T < 10 K where
clusters first appear in the neutron scattering spectra.

Im summary, we have discussed here a distribution of interatomic separations

creates a distribution of shielding temperatures. Upon cooling, some moments will

become shielded before others, leading to fragmentation of the magnetic lattice into
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groups of ordered moments. These ordered magnetic clusters dominate the low tem-

perature response seen in Ce(Fe0.755Ru0.245)2Ge2 [33, 38]. Next we address the mech-

anism through which clusters can form in a stoichiometric system and we show that

not only are magnetic clusters present in such systems, they also dominate the low-

temperature response near the QCP.

25



Chapter 2

Cluster Formation in
Stoichiometric CeRu2Si2

2.1 Introduction

When describing stoichiometric systems that are (very) close to a quantum critical

point, such as CeRu2Si2[26], CeCu6[70], and YbRh2Si2[63], disorder is not taken into

account. Instead, the experimental observations are compared to the theoretical

predictions, such as the spin density wave scenario,[18, 24] local moment scenario,[8,

16] or the self-consistent spin renormalization (SCR) model.[24] We will not detail the

various scenarios here; none of the scenarios describe all quantum critical systems,

but each scenario appears to capture the essence of particular systems quite well. As

mentioned, these theories tend to be applied solely to (near) stoichiometric systems

while the response of heavily-doped systems is viewed as being disorder driven. We

show that this is not the case: we show that the effects of a static distribution of Kondo

shielding temperatures induced by chemical doping are very similar to the effects of

a dynamic distribution of Kondo temperatures originating from zero point motion.

We have chosen stoichiometric CeRu2Si2 as the reference system for understanding

cluster formation in a disorder free system as this compound has been investigated
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by many groups.[22, 26–29] In particular, we use the data gathered by Tabata[22]

on susceptibility and specific heat measurements, and the neutron scattering data on

single crystal samples by Kadowaki et al.[27, 28].

Stoichiometric CeRu2Si2 and heavily doped Ce(Fe0.755Ru0.245)2Ge2 show quite a

lot of similarities: both systems crystallize in the ThCr2Si2 structure (Fig. 1.6)[25]

and neutron scattering experiments[27, 29] on both systems demonstrated a strong

Ising character, i.e., the ordered moments point along the tetragonal c-axis. The

crystal electric fields split the JZ-energy levels into three doublets[35] with the first

excited state in CeRu2Si2 being well separated from the lowest level (∆ > 30 meV).

The ground state of both systems displays mostly a |JZ = 5/2〉 character[35]. Flou-

quet et al.[29] showed CeRu2Si2 to be on the cusp of a spin density wave (SDW)

transition. This was confirmed by Kadowaki et al.[27] using inelastic neutron scat-

tering experiments on two large single crystals, one of CeRu2Si2 and subsequently,

on a lightly doped crystal of CeRu1.94Rh0.06Si2 [28]. Montfrooij et al.[33] also ob-

served the tell-tale SDW incommensurate ordering wavevectors (short-range cor-

relations) in Ce(Fe0.755Ru0.245)2Ge2. Ultimately, both Ce(Fe0.755Ru0.245)2Ge2 and

CeRu1.94Rh0.06Si2 appear to be in the paramagnetic phase just shy of long range

ordering. Long range order has been observed[33, 37] in both systems when chem-

ically doped a little bit more into the SDW-range. Therefore, we conclude that

CeRu1.94Rh0.06Si2 and Ce(Fe0.755Ru0.245)2Ge2 are at nearly identical points in their

Doniach[39] phase diagrams.

As we are dealing with ordering in both compounds that was unambiguously iden-

tified as a spin density wave[28, 33], we know the ordering interaction must be the
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RKKY interaction discussed in Chapter 1. This interaction is oscillatory in nature

and depends on the separation between magnetic ions as ∼ 1/r4 (Appendix A).

Again, similar to Ce(Fe0.755Ru0.245)2Ge2, CeRu2Si2 is tetragonal with Ce-Ce dis-

tances distances along the c-axis larger than along the in plane directions. In de-

tail, dCe−Ce (distance from Cerium to Cerium atom) along the a-axis is 4.08 Å in

Ce(Fe0.755Ru0.245)2Ge2 while it is 4.20 Å in CeRu2Si2; along the body diagonal (c-

axis) we have dCe−Ce = 5.97 Å in Ce(Fe0.755Ru0.245)2Ge2 and 5.73 Å in CeRu2Si2.

Thus, in the absence of clusters we would expect to find different number of moments

correlated along different crystallographic directions reflecting the difference in inter-

action strength along each direction. In contrast, if clusters were to be present in

stoichiometric CeRu2Si2, then we would expect to see identical number of magnetic

moments correlated along different directions. Ultimately, considering the similarities

between Ce(Fe0.755Ru0.245)2Ge2 and CeRu2Si2, the latter is the ideal stoichiometric

compound to look for cluster formation resulting from a distribution of shielding

temperatures.

2.2 Zero Point Motion and Cluster Formation

In a disorder-free stoichiometric system, what could cause a distribution of inter-

atomic separations and, upon cooling, lead to magnetic cluster formation? At low

temperatures (even at 0 K) atoms are still jiggling back and forth in a process known

as zero point motion. This back and forth motion is equivalent to vibrations that

travel through the system known as phonons. These phonons produce changes in

interatomic separations; the amplitude of such changes can be assessed in neutron

scattering experiments and is found to be on the order of 0.05 Å[25], extremely simi-
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lar to that of chemical doping. These distributions in interatomic separations affect

the orbital overlap, thereby changing the strength of the exchange interaction J , and

driving the system towards an ordered or disordered phase or even towards quantum

criticality. Upon cooling, this leads some moments to become shielded before others

and a percolation network emerges. The introduction of finite size effects leads to

groups of ordered, isolated clusters to form. Thus, a distribution of ordered clusters

will indeed form, albeit a time-varying distribution, following the dynamic distribu-

tion of interatomic separations.

Whether the dynamic distribution of Kondo temperatures will actually be reflected

in experimentally accessible quantities is a matter of timescales. Should the electronic

timescale associated with Kondo shielding of moments be fast enough that it appears

to the electrons as if this ever-changing distribution were static, then we could see the

effects of the distribution in the experiments. This is none other than the adiabatic

approximation in phonon theory. On the other hand, if the electronic timescales

are comparable to those associated with zero point motion, or if (the timescales of)

the experiments are such that the probes only measure time-averaged values, then

we would not see a reflection of this instantaneous disorder. Since ionic motion is

significantly slower than electronic motion, to moving electrons as well as to neutrons,

this dynamic distribution of clusters will appear as a static distribution. Therefore,

despite the fact that this distribution of shielding temperatures is dynamic, it should

(upon cooling) create a measurable percolation network and associated distribution of

magnetic clusters. These ordered clusters should, provided they are present, dominate

the low temperature response of CeRu2Si2 similar to the low temperature response
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of the heavily doped Ce(Fe0.755Ru0.245)2Ge2 (Section 1.5).

2.2.1 Distribution of Shielding Temperatures P (TK)

In order to understand cluster formation in stoichiometric CeRu2Si2, we must first

begin to understand what a dynamic distribution of Kondo shielding temperatures in-

duced by zero-point motion looks like. To do so, we have modified the distribution of

Kondo temperatures used by Bernal et al. to describe the non-Fermi liquid behavior

seen in UCu3.5Pd1.5 and UCu4Pd. This distribution is known as the Kondo disorder

model[20, 21] in which the response of a heavily-doped quantum critical system is de-

scribed as the response of a collection of non-interacting magnetic ions that are being

Kondo shielded at different temperatures. The advantage of this model is that, given

a distribution of Kondo shielding temperatures P (TK), the known expressions[22]

for susceptibility and specific heat for dilute magnetic moments can be applied and

weighed with the overall distribution in order to arrive at the response of the doped

system at any temperature. The parameters of the distribution can then be fine-

tuned (fitted) to arrive at the best overall agreement with the experimental results

for susceptibility and specific heat. Moreover, the idea of there being a distribution

of Kondo temperatures in the first place in doped systems has a solid physical foun-

dation as the Kondo temperature depends exponentially on the degree of overlap of

neighboring orbitals, which in turn depends on the interatomic separation[23] r as ∼

1/r10 or ∼ 1/r12.

Bernal et al.[20] used three free parameters to describe their distribution of Kondo

shielding temperatures P (TK): D the bandwidth of the conduction band, 〈λ〉 =

ρ|J |, and the width w of the Gaussian. This allowed the authors to model the
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susceptibility and specific heat simultaneously by using one Gaussian distribution

of the exchange interaction J , representing the physical overlap between localized

moment-carrying orbitals and extended conduction electron orbitals. Applications

to other disordered systems also showed that disorder plays a role, although it was

not always possible to model both the susceptibility and specific heat with one set

of parameters (such as when modeling[22] heavily-doped CeRuRhSi2). While this

particular disorder model does capture some of the experimental observations, we

note that the model is unphysical: the assumption of a Gaussian in λ introduces

an ln(TK) divergence. We introduce an improvement on this distribution of shielding

temperatures, P (TK), that is free from this artifact and that is based upon the average

deviations of ions from their equilibrium lattice positions, the so-called Debye-Waller

factor. This factor can be directly measured using neutron scattering experiments[32]

and therefore reduces the number of “free” parameters in the distribution of Kondo

shielding temperatures. To create such a distribution, we will use the method outlined

by Endstra et al.[23].

The effective exchange interaction J between a d-electron and an f -electron in a

metal can be written as

Jdf ∝ V 2
df/(Ef − εf ) ∝ 1/r12 (2.1)

where Vdf is the hybridization matrix element for d − f electron hybridization, εf

is the location of the f level relative to the Fermi energy Ef and r is the average

separation between neighboring ions. Endstra et al.[23] reasoned that the variation

in Ef − εf could be ignored, resulting in a 1/r12 dependence for J . Thus the Kondo
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temperature (Eq. 1.4) can now be written as

TK = De−r
12/A, (2.2)

where A is the constant of proportionality encapsulating ρ (Eq. 1.4).

We build a distribution of shielding temperatures P (TK) by assuming a Gaussian

distribution of interatomic separations r given by

P (r) =

√
ln2√
πσ

e−(r−rc)2/σ2ln2, (2.3)

where σ is the width of the Gaussian and rc is the average center-to-center distance

of two ions. The distribution P (r) is rooted in neutron scattering experiments and

amounts to neglecting anharmonic contributions to the motion of ions around their

equilibrium position[30]. This distribution naturally describes how zero-point motion

can induce a distribution of shielding temperatures by atoms oscillating back and

forth about a central position. Building a distribution of shielding temperatures

P (TK) based upon a Gaussian distribution in P (r) removes the ln(TK) divergence

seen Bernal’s approach[20] that comes from assuming a Gaussian distribution in λ.

Using conservation of probability, we relate the distribution P (TK) to the distribution

of interatomic separations P (r) as

P (TK) = | dr

dTK
|P (r) = [

A

12r11TK
]P (r). (2.4)

We note that we can then relate the parameters to those of the Bernal distribution

by equating the mean Kondo temperature and the width of the distribution yielding

A = 〈λ〉r12
c ;

σ

rc
=

w

12〈λ〉
. (2.5)

For example, using the distribution parameters published for UCu4Pd[20] and the

measured[31] U-Cu distance of 3.49 Å, we find σ = 0.049 Å. Using the parameters
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listed by Tabata[22] for CeRuRhSi2, we find σ = 0.038 Å. These are reasonable val-

ues for the Debye-Waller factor at low temperatures: for instance, the measured[32]

isotropic Debye-Waller factors for Ce and Ru in CeRu2Si2 are 0.039 Å and 0.058

Å, respectively (although reported[32] with large uncertainties). Note that since

the Debye-Waller factor is experimentally accessible, this reduces the number of ad-

justable parameters in the distribution of Kondo shielding temperatures from three

to two.

Figure 2.1: The distribution of Kondo temperatures according to Eq. 2.4 for three values
of σ: σ = 0.001 Å (dotted curve), σ = 0.039 Å (solid curve), σ = 0.058 Å (dash-dotted
curve). All the distributions have the same average Kondo temperature < TK >= 24 K
(arrow). Note the absence of the ln(TK) divergence as TK → 0 K.

Fig. 2.1 shows the distribution of Kondo temperatures, P (TK) according to Eq. 2.4

for three values of σ (one being the measured Debye-Waller factor), the reported value

for 〈λ〉 = 0.18 for CeRuRhSi2, and the average Kondo 〈TK〉 = 24 K for CeRu2Si2.

Whereas this value for 〈λ〉 will not be exactly correct for stoichiometric CeRu2Si2,

the figure offers a good indication of what an instantaneous distribution of Kondo
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temperatures looks like in a disorder-free system. As can be seen in this figure, for

realistic values for the amplitude of zero point motion of the order of ∼ 0.05 Å,

the instantaneous distribution of Kondo temperatures is very wide. It is only for

unphysical values of σ ∼ 0.001 Å, as opposed to the two realistic values shown in the

figure, that the distribution is sharp at T =< TK >. What is clear from this figure

is that theoretical approaches describing quantum critical physics in stoichiometric

systems wherein the Kondo temperature is treated as a uniform parameter throughout

the lattice and throughout time are simply not justified as a starting assumption.

2.2.2 ARPES Measurements

We have taken angle-resolved photoemission spectroscopy (ARPES) measurements

on pieces of Ce(Fe0.755Ru0.245)2Ge2 in an attempt to measure the bandwidth of the

conduction band D to reduce the number of “free” parameters in the distribution

of Kondo shielding temperatures. Cuts from the top and bottom of a large single

crystal of Ce(Fe0.755Ru0.245)2Ge2 were used (Fig. 2.2 (a)); the bottom piece was un-

treated, while the top was remelted and allowed to cool and recrystallize in order

to prepare a uniformly flat surface. Both top and bottom pieces produced results

which were inconclusive and showed extensive polycrystalinity as well as roughness

of the surface. As such, we did not obtain accurate estimates for the bandwidth D

in Ce(Fe0.755Ru0.245)2Ge2. To estimate D more accurately, we therefore looked at the

wealth of data published on CeRu2Si2. Yano et al.[64] performed just such an ARPES

experiment (Fig. 2.2 b)); considering that conduction electrons which participate in

Kondo shielding result in a Kondo resonance at the Fermi level, we can identify the

Kondo band (b of Fig. 2.2) and estimate D to be ∼ 0.6 eV. This estimate is entirely
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consistent with estimates from Ce(Fe0.755Ru0.245)2Ge2 and in principle, reduces the

number of free parameters in the distribution of Kondo shielding temperatures to just

one. Therefore, the distribution function shown in Fig. 2.1 is grounded entirely in

experiment.

Figure 2.2: Left Panel (a): Top and bottom pieces of Ce(Fe0.755Ru0.245)2Ge2 used for
ARPES measurements (data not shown) yielding an estimate for the bandwidth of the
conduction band D ∼ 0.5 − 0.8 eV. Right Panel (b): ARPES spectra of CeRu2Si2 near
Ef at 20 K with hν = 725 eV. Second order differential image along the Γ−X directions.
Energy resolutions are set to about 100 meV and the dashed lines representing each band
are guides to the eye. The Kondo band is seen in the top right part of this figure, from Γ
dispersing downward by about 0.6 eV. Right panel (b) reproduced from [64].

2.3 Dynamic Cluster Formation in CeRu2Si2

2.3.1 Neutron Scattering

CeRu2Si2 is an heavily studied system with a host of experimental data published[22,

26–29]; Kadowaki et al.[27][28] have performed neutron scattering experiments similar
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Figure 2.3: Elastic neutron scattering data for Ce(Fe0.755Ru0.245)2Ge2 [33] at T = 2 K (left
two panels) and for E = 0.2 meV for CeRu1.94Rh0.06Si2 [28] at T = 1.6 K (right two panels)
as a function of momentum transfer along the directions specified on the axes. The solid
line through the data is a Lorentzian fit with a width of 0.166/2 r`u for all four panels (r`u
= reciprocal lattice units).

to the ones seen in Fig. 1.7 taken by Montfrooij et al.[33], albeit at an energy transfer

of E = 0.2 meV (nearly elastic). We reproduce each group’s results in Fig. 2.3. We

observe in CeRu1.94Rh0.06Si2 [27, 28] (Fig. 2.3 right panel) that the number of moments

aligned along the a- and c-directions is identical. Moreover, the solid curve through

all four data sets is a Lorentzian fit with a width of 0.166/2 r`u (reciprocal lattice

units) which reasonably describes all four panels. This indicates that we not only have

identical numbers of moments correlated along each direction in each compound, but

that the cluster distribution in both CeRu1.94Rh0.06Si2 and Ce(Fe0.755Ru0.245)2Ge2
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[33] is nearly identical despite one being dynamic and the other one static. We are

not aware of any other explanation other than ordered magnetic clusters that could

explain short-range order appearing because of an interaction whose strength depends

on separation between neighboring magnetic ions, but whose spatial extent does not

depend on this intermoment separation.

Identical number of correlated moments along different directions might not in

itself be conclusive, but taken with the ratios of ddiagonal
Ce−Ce /d

a
Ce−Ce for the two compounds

(1.463 for Ce(Fe0.755Ru0.245)2Ge2 and 1.365 for CeRu1.94Rh0.06Si2), we can rule out an

accidental effect intrinsic to the RKKY interaction. Using data taken by Kadowaki

et al. at higher temperatures (Fig. 1 reference [28]), it appears that the correlation

lengths between the a and c-directions continue to be identical at all temperatures

(within the accuracy of the experiments). This was also seen by Montfrooij et al.[33]

and can be seen in Fig. 1.7.

So far, we have shown that neutron scattering experiments offer strong evidence for

the presence of ordered magnetic clusters in (nearly) stoichiometric quantum critical

CeRu2Si2. As discussed in the previous section (Section 2.2), neutron scattering

experiments cannot reveal whether these clusters are fleeting or permanent as the

speed of the probing neutron is much faster than the speed of ionic motion.

2.3.2 Uniform Susceptibility

We turn to the specific heat and susceptibility of CeRu2Si2 to investigate how these dy-

namic clusters may differ from a static distribution. Applying Eq. 1.5 to the uniform

susceptibility measured by Tabata et al.[22] on CeRu2Si2, we only see agreement in the

low temperature region (see Fig. 2.4) where the magnetic specific heat curve c(T )/T
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as well as the uniform susceptibility were found to be T -independent[22, 43, 44]

for moderate field values (H = 0.1 T) and low temperatures (1.5 K < T < 5 K).

The specific heat curve below T = 5 K was found to have a constant value of

γ = c/T = 0.38 J/mol/K2, while the value for the slightly doped CeRu1.94Rh0.06Si2

is higher with a weak temperature dependence[22] (γ = 0.5 J/mol/K2 at T = 0.2 K).

We note that for CeRu2Si2 the specific heat curve was found to differ by as much as

50% at T = 10 K between three independent sources (inset of Fig. 2.4). We choose to

use the data measured by Tabata[22] since the sample used is the same sample used

in the susceptibility measurements shown in Fig. 2.4.

When c/T reaches a constant value at low temperatures, then the entropy of the

system depends on temperature as S = γT and in this region, we approximate the

non-interacting Ising susceptibility as χfree = (gJJeffµB)2/kBT as µBH/kBT � 1

when H = 0.1 T. Eq. 1.5 then reduces to

χ∞ =
γ

Rln2

(gJJeffµB)2

kB
= 0.1166γ(gJJeff)2 µB

T.Ce
. (2.6)

where gJ is the Landé g-factor which has a value of 6/7 for Ce3+[30].

Applying Eq. 2.6 to Fig. 2.4 we deduce a low temperature moment value for the Ce-

ions (which constitute the lattice spanning cluster) of 1.21 µB per Ce-ion. This value

appears entirely reasonable when compared to the high-temperature susceptibility

(Fig. 2.4) yielding a ground state moment of 1.68 µB/Ce-ion when fitting to a system

that is an isolated doublet (and 2.33 µB/Ce-ion when fitting to a pair of doublets).

Moreover, even though the values for χ differ by 30% (Fig. 2.4) between the doped

and undoped compounds, the low temperature unshielded moment values inferred

from Eq. 2.6 remain identical, as should be expected upon minimal doping.
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Figure 2.4: The uniform susceptibility for CeRu2Si2 (diamonds) and CeRu1.94Rh0.06Si2
(stars) measured for an applied field of 0.1 T parallel to the c-axis[22]. The solid curve
(Eq. 1.5) is the measured entropy of the sample using the data by Tabata[22] for c/T ,
divided by Rln2 and multiplied by the temperature dependence of the magnetic response of
a three level doublet system with energy gaps of 33 abd 55 meV[35], with the ground state
magnetic moment taken to be 1.21 µB. The measured susceptibility and the specific heat
based prediction start to deviate around T = 5 K, with the prediction underestimating the
measured susceptibility. The dashed curve is the high temperature susceptibility using the
same energy gaps, but now with a ground state moment of 1.68 µB. The inset shows the
c/T data for CeRu2Si2 measured by three groups: Laquerda et al.[44] (diamonds), Besnus
et al.[43] (starts), and Tabata[22] (circles).

Applying Eq. 1.5 to Fig. 2.4 in the intermediate temperature regime (5 < T <

30 K), we observe clear deviations (even when taking into account the variations seen

in the specific heat curves, see inset of Fig. 2.4). A similar deviation was seen in

the doped Ce(Fe0.755Ru0.245)2Ge2 when isolated clusters formed below TK = 10 K.

Assuming isolated clusters also form in CeRu2Si2, we expect to see their super spins

contribute to the susceptibility; the difference being that once the clusters form in

CeRu2Si2, they do contribute to the susceptibility but they can still dissipate upon
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lowering T[13]. This is in contrast to what is seen in Ce(Fe0.755Ru0.245)2Ge2 where the

isolated clusters are protected from any further Kondo shielding owing to the static

nature of the shielding distribution. We cannot ascertain whether the above scenario

is a reasonable interpretation for this discrepancy or not, however we do know from

neutron scattering data that isolated clusters begin to appear around TK = 24 K[22].

Thus, in the intermediate temperature regime (5 < T < 30 K), isolated clusters likely

begin to appear and their super spins contribute to the susceptibility.

We end this subsection with a discussion of Eq. 2.6. A temperature independent

ratio of the susceptibility and the linear coefficient of the specific heat is anything but

a new finding: the Wilson ratio RW captures exactly this:

RW ≡
π2k2

Bχ

3µ2
Bγ

(
=
g2
JJ

2
effπ

2

3ln2
= 4.75g2

JJ
2
eff

)
, (2.7)

where for the part in brackets we have used Eq. 2.6 to evaluate the ratio. Using

the measured values for CeRu2Si2 (γ = 0.38 J/mol/K2 and χ(T = 1.8 K) = 0.064

µB/T/Ce-ion), we find RW = 6.9 and a corresponding moment of 1.21 µB. However,

Eq. 2.6 does not represent the standard Wilson ratio: the Wilson ratio pertains to

the electronic susceptibility and the electronic specific heat[1]. We arrived at a T -

independent ratio based on the susceptibility associated with localized, unshielded

moments and the specific heat reflecting the disappearance of these moments; the

two entities that go into the ratio do not involve the effective electron mass nor the

density of states at the Fermi-level.

2.3.3 Super-paramagnetic Response

When clusters are present at low temperatures, some of these clusters will have a

large super spin. In fact, this super spin is on average of the order of 2− 3 µB as we
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Figure 2.5: Top Panel: Magnetization data[33] for Ce(Fe0.755Ru0.245)2Ge2 as a function of
applied field along the c-axis for the temperatures indicated in the figure. Bottom Panel:
Displays the accompanying susceptibility data for Ce(Fe0.755Ru0.245)2Ge2. Note, the upturn
at fields below H = 1 T. The inset shows the temperature dependence of the susceptibility,
on the same scale, in a very small applied field of 1.5 mT.

show in the next section, with some rare clusters that have a very large super spin.

Such very large clusters take on the role of ferromagnetic entities, capable of locally

enhancing the applied external magnetic field, i.e., when clusters with the largest

super spin align with the external magnetic field, they themselves enhance the external

field, more strongly allowing neighboring super spins to align with the external field.

This leads to a rapid growth in the susceptibility known as a super-paramagnetic

response[45]. We show in Fig. 2.5 and 2.6 that this super-paramagnetic response is

present in both Ce(Ru0.755Fe0.245)2Ge2[33] measured at low temperatures and in high-

purity CeRu2Si2[26] measured at very low temperatures and very low fields. While
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a super-paramagnetic response is to be expected when ferromagnetic contamination

is present in the sample, the level of which can be calculated[45] to be on the order

of 10−3 µB per Ce-ion for CeRu2Si2 (or an impurity level of 1 : 1000). This level of

impurity is extremely large considering the starting materials for CeRu2Si2 were of 5N

purity. We also mention that Tabata[22] observed this behavior in CeRuRhSi2 and

observed that it could not be satisfactorily explained by modeling it with the Kondo

disorder model. Note, the Kondo disorder model does not include the formation of

clusters.

Figure 2.6: The susceptibility as a function of applied field a few tens of a degree away from
the c-direction[26] for CeRu2Si2 at very low temperatures. The data have been normalized
to the observed paramagnetic, temperature independent susceptibility[26] measured for T >
50 mK, that is, the zero on the vertical axis corresponds to this paramagnetic level. The
sharp upturn in the susceptibility below H = 1 mT is quite pronounced, especially as the
temperature is lowered to T = 0.3 mK.

Based on the prevalence of the observation of this super-paramagnetic effect in

multiple samples, we believe it is much more likely that we are actually seeing a feature

of the system’s response rather than a manifestation of unintended contamination

at a level exceeding the purity of the starting ingredients. We can also turn the
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reasoning around: should clusters be present, then percolation theory[41] tells us that

there must be a large number of clusters with a net moment, and a small number of

clusters with a very large net moment. Therefore, for the cluster model to be valid,

we must observe a super-paramagnetic response. While the presence of this effect is

not necessarily proof of the presence of clusters, an absence of this effect would have

implied an absence of (large) ordered clusters. In summary, the cluster scenario does

offer a very natural explanation for the super-paramagnetic behavior observed in the

122-systems, even in compounds that have been prepared using a purity of starting

materials higher than the observed ferromagnetic effects should they be attributable

to impurities.

2.3.4 AC Susceptibility

We have shown substantial evidence for ordered cluster formation in stoichiomet-

ric CeRu2Si2 through neutron scattering experiments, susceptibility and specific heat

measurements. A series of ac-susceptibility and magnetization experiments performed

by Takahashi et al.[26] at very low temperatures (milliKelvin range) and fields (mil-

liTesla) showed considerable temperature and field dependence where earlier experi-

ments at higher temperatures (T > 2 K) and larger fields (0.1− 0.2 T) had found[29]

that the susceptibility would reach a constant value for T < 10 K (see Fig. 2.4),

although at a level that was strongly dependent on rhodium concentration[22].

From the ac-susceptibility data (see Fig. 2.7), Takahashi et al.[26] determined

two vastly different Ce-moment values; one moment value of 0.01µB per Ce-ion from

the low µBH/kBT -region using a Curie-behavior fit to the susceptibility data and

another much lower (by nearly a factor of 1000) moment value from the saturation
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Figure 2.7: Figure reproduced from Takahashi et al.[26]. The low temperature ac-
susceptibility (∂M/∂H) of CeRu2Si2 for extremely small applied field values. Inset: The
low temperature static susceptibility of CeRu2Si2 in the same temperature region and ap-
plied field values. Plotted on a logarithmic scale. The arrows indicate the peaks observed
in both curves, while the solid lines are Curie law fits.

magnetization at high µBH/kBT -values. In fact, there is a third moment value that

can be inferred from their data[26]: the ac-susceptibility (Fig. 2.7) shows a distinct

maximum in fields of 0.2, 0.39, 0.95 mT at temperatures of T = 0.5, 0.9, and 3 mK

respectively.

Clusters provide a natural explanation for these disparate moment values. Con-

sidering that CeRu2Si2 is an Ising system at low T, we know that the super spin of

any given cluster, Jcluster, can have two possible orientations along the easy axis[35].

Therefore, the ac-susceptibility associated with a particular cluster with super spin
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Jcluster is given by

χac =
(gJJclusterµB)2

kBT

1

cosh2(gJJclusterµBH/kBT )
. (2.8)

Thus, the ac-susceptibility peaks at a maximum value of kBT = 1.296gJJclusterµBH

and therefore, we can apply Eq. 2.8 (and its predicted peak position) to associate

the observed peaks (Fig. 2.7) with a Ce-moment value of 3 ± 0.5 µB. We find this

moment value to differ by a factor of up to 100,000 when compared to the other

moment values determined by the authors and far exceeds the value for a single

unshielded Ce-ion. Thus, even though CeRu2Si2 is generally considered to be well

understood as a compound on the verge of a SDW transition, the scrutiny reveals

that only a rudimentary understanding of the low temperature physics in CeRu2Si2

can be claimed. We show in the following how cluster formation can account for this

discrepancy in average moment values.

We stop briefly and take note that the magnetization level referred to as a satura-

tion magnetization by Takahashi et al.[26] where the values become independent of

H/T is not a saturation magnetization as normally understood. Takahashi et al.[26]

used this saturation magnetization to determine a saturation moment of 10−5 µB per

Ce-ion. Despite the fact that the magnetization becomes independent of H/T for

H/T ≥ 1 T/K, the actual level was seen to still depend on applied magnetic field

(Fig. 2.8), and thus, these values should not be viewed as a saturation magnetiza-

tion. We also note that the data were presented with reference to the paramagnetic

level observed in the susceptibility for T > 50 mK. It is unclear what reference level

the author’s are referring to, whether presented with reference to the level of 0.03

emu/mol[22, 29] as measured in much higher fields for T > 1K or whether an entirely
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different paramagnetic level was used as an offset. Also, while the authors did not

discuss the moment value associated with the peak in the ac-susceptibility, they did

rule out[26] small amounts of disorder and a putative spin glass phase as the cause

of the factor 1, 000 discrepancy between susceptibility and saturation magnetization

inferred Ce-moment values.

Figure 2.8: The saturation magnetization for CeRu2Si2 measured in low fields and plotted
as a function of the logarithm of applied field[26]. Fitting the data to a log dependence, we
find the saturation magnetization reaches zero at H = 0.02 mT.

In order to understand the factor of 1,000 difference seen in moment values as well

as the even much larger moment value observed in the ac-susceptibility, we invoke

cluster formation in stoichiometric CeRu2Si2. Based on the understanding of cluster

formation caused by a static (permanent) distribution of Kondo temperatures, we

propose the following for stoichiometric CeRu2Si2 based on a dynamic distribution

of Kondo temperatures. At any moment in time, CeRu2Si2 is subject to a distribu-

tion of Kondo temperatures. The Kondo temperature at any given Ce-site dictates
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whether that Ce-moment will be (mostly) shielded, or persist as an unshielded mo-

ment. Therefore, at any temperature we can expect manifestations of percolation

physics, and at low temperatures we can expect the appearance of isolated clusters.

As in Ce(Ru0.755Fe0.245)2Ge2, the moments on isolated clusters have to line up with

their neighbors due to finite-size effects, provided that the temperature is low com-

pared to the allowed quantized energies of disordering spin fluctuations on the cluster.

An isolated cluster can acquire a net super spin. When the moments line up in-

side a cluster, pairs of neighboring moments will cancel each other out, but there

will be dangling moments on the surface of the cluster, the sum of which is known

as super spin. Of course, surface is a term we use loosely here as the topology of a

cluster that formed by random removal of moments is closer to that of a fractal than

that of a solid object.[41] In susceptibility measurements, one observes only the net

moments of the clusters. The net moment only represents a small fraction of all the

moments on any given cluster given the anti-ferromagnetic ordering of clusters. Ad-

ditionally, only a small fraction of the moments will end up in clusters. For reference,

in quantum critical Ce(Ru0.755Fe0.245)2Ge2, 27% of the moments are believed to end

up in clusters at the QCP. This number corresponds to the percolation threshold for

protected percolation.[55] For large clusters, somewhere in the neighborhood of 1%

of the moments may end up not being compensated, as we detail below. The main

consequence of cluster formation is that the entities that give rise to the susceptibil-

ity signal are far less numerous than the number of Ce-ions in the sample: there are

far fewer clusters than there are unit cells, and there are far fewer uncompensated

moments on a cluster than there are compensated moments on a cluster.
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We illustrate how these considerations lead to an artificially large ratio between

the moment determined from the high temperature susceptibility compared to that

determined from the saturation magnetization. When we determine the moment per

Ce-ion from the high temperature susceptibility, we compare the measured signal to

Nµ2, with N the known number of Ce-ions in the sample. Similarly, for determining

the moment based on the saturation magnetization µs, we compare the signal to

Nµs. We can then simply divides both terms by N and compares the two moments.

Provided saturation has been reached, the two moment values should be identical.

However, when only a fraction f of all the moments end up being the uncompensated

cluster moments that produce the measured susceptibility and magnetization, then

the normalization is wrong by a factor of f , and after taking the square root of Nµ2,

the factor f does not cancel, but we end up with an overestimation of µ based on the

high temperature susceptibility by a factor of 1/
√
f . From computer simulations we

estimate f to be in the range of 0.1 − 2%, accounting for a factor of 5 − 30 in the

observed[26] discrepancy of ∼ 1, 000 discussed previously.

There are three more factors that reduce the observed discrepancy. First, the

authors[26] assumed that the high temperature term in the susceptibility would be

proportional to µ2/3kB, but for an Ising system, the proportionality is given by µ2/kB,

removing a factor of
√

3. Second, the level of discrepancy is dependent on the applied

field (Fig. 2.8), with the highest field in the study (H = 6.2 mT) yielding the smallest

discrepancy factor of 720. Using the data in Fig. 2.8, the discrepancy would be reduced

by another factor of 2 by the time the applied field reaches 0.1 T. Third, when there is

a distribution of net moments, then the moment derived from the high temperature
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susceptibility will exceed that of the saturation magnetization. This is a result of

averaging over µ2
cluster versus averaging over µcluster. Large net moments will skew the

µ2
cluster averaging towards higher values. For example, imagine applying the averaging

procedure to a system of 101 clusters, one with a net moment of 100, and 100 clusters

with a net moment of 1. With these numbers the moment determined from the

saturation magnetization would be 2, but the one determined from the susceptibility

would be 10. This illustrates how large clusters can skew what is measured in the

high temperature susceptibility. When we combine all these factors, we see that the

discrepancy is greatly reduced. Given the uncertainties, we cannot tell whether it

will disappear completely, but from computer simulations (to be discussed below),

we estimate that the discrepancy is reduced to within a factor of 5− 10.

The appearance of clusters with a super spin leads to a very natural explanation for

the high-moment value peak in the ac-susceptibility, as well as the overall small level

for the average moment. We performed computer simulations to model the protected

percolation network [55] described in Section 1.4 in order to determine the cluster

super spins for a given cluster distribution. We chose a lattice of size 400× 400× 400

magnetic sites using a body-centered nearest neighbor topology. We followed the

restriction governed by protected percolation, namely sites are only removed from

the lattice spanning cluster. Sites were characterized by 3 integer coordinates. The

individual moment directions (up/down) were determined by the z-direction integer

being odd or even, representing an Ising system with anti-ferromagnetic interactions.

Periodic boundary conditions were implemented to ensure the data were free from

any artificial edge-induced effects. We removed sites until the last connection in
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the lattice spanning cluster was severed such that the cluster would no longer have

a single continuous path from one side of the lattice to the other; in other words,

until the percolation threshold was reached. We used the distribution of clusters at

the percolation threshold in the comparison with experiment. We kept track of the

number of uncompensated moments in each cluster and used this to determine the

super spin of all clusters present. The data from the simulations are shown in Fig. 2.9.

Calculating the average moment, and the average of the square of the moments, we

find a mismatch factor of 18 between the two. Including the two additional factors

discussed previously (a factor of 2 to account for the dependence of the saturation

level on applied field, and the factor of
√

3), we find an ensuing mismatch about 100

times smaller than the mismatch reported by Takahashi et al.[26].

We note here that this protected type of percolation[55] is the one that describes

the clusters that form[33] in heavily doped Ce(Ru0.755Fe0.245)2Ge2. Of course, a fleet-

ing distribution of Kondo temperatures is not the same as a permanent distribution,

nor is stoichiometric CeRu2Si2 truly quantum critical; for that we need[22] 3.5%

rhodium doping on the ruthenium sites. Notwithstanding, using the cluster distribu-

tion at the percolation threshold generated through random moment removal while

leaving isolated clusters intact is expected to shed light on how many moments be-

come dangling moments (uncompensated), how many clusters we can expect to see

appear that have a super spin, and what the average net moment is associated with

such super spins.

At the threshold of this finite-sized simulation, 24.3% of the moments are in iso-

lated clusters, and 3% are in the lattice spanning cluster that is about to fracture.
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Figure 2.9: The distribution of uncompensated moments as a function of cluster size as
determined from a computer simulation at the percolation threshold. Clusters of size one
and clusters with a zero net moment have been omitted. The two solid lines correspond to
an average number of uncompensated moments per cluster of 3 (lower line) and to a high
super spin of 50 uncompensated moments (upper curve).

This 0.243 fraction of the 64 million moments (4003) are divided over 2.6 million

clusters, or 0.041 clusters per lattice site using percolation notation.[41] Removing

clusters with a super spin of zero (since they do not show up in magnetization and

susceptibility experiments) and clusters of size one (since these are simply isolated

moments that are not in an environment that protects them from shielding), we find

that the total fraction (compared to the number of sites in the lattice) of uncompen-

sated moments is 0.0147. Thus, the average moment per Ce-ion is of the order of 0.02
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µB using the value of 1.21 µB per uncompensated moment (see Fig. 2.4). This value

is in agreement with µSR experiments.[47] The average number of uncompensated

moments per cluster equals 1.87. Note, this is the average number of uncompensated

moments of all clusters whose super spin does not equal zero and who have more

than one cluster member, divided by the total number of such clusters. This large

average value is what determines the peak position in the ac-susceptibility: this po-

sition is independent of any normalization we performed to determine the value of

the average moment from susceptibility or magnetization data, and it is not affected

by whether the clusters are fleeting or static in nature. Note that it is actually the

full distribution of cluster moments that determines the exact peak position as the

averaging involves µ2
cluster. For completeness, we mention that the largest net moment

of a cluster in this simulation was a cluster with 94, 000 members and a net moment

of 326 uncompensated moments (see Fig. 2.9).

Thus, a distribution of clusters successfully explains the very large moment value

observed in the peak in the ac-susceptibility (as we will discuss shortly when scruti-

nizing the ac-susceptibility[26]) as well as the smallness of the moment value when

inferred from a Curie-Weiss law and normalizing the average moment value to the

number of lattice sites. Whereas it does not fully remove the discrepancy in the

moment values found by Takahashi et al.[26] of ∼ 1000, it does greatly reduce the

discrepancy to a factor of about 10. Even taking into account that CeRu2Si2 is not

exactly at the QCP but extremely close, and that the applied field makes an angle

of a few tens of a degree with the easy axis, we still cannot remove this discrepancy

factor entirely. This remaining factor of 10 mismatch may actually be the fact that
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the distribution of clusters seen in the stoichiometric CeRu2Si2 is dynamic in nature

as the dynamic nature leads to a different experimental response when different mea-

surement techniques are used. Scrutinizing the literature data[26] for dc- and ac-

susceptibility, we see that the dc susceptibility follows the Curie-Weiss law down to

2mK, while the ac susceptibility only does do down to 8mK. This hints at the fleeting

distribution of clusters does indeed create a different signal based upon the chosen

measurement technique. In dc measurements, the sample is moved physically during

the measurement cycle, whereas in ac measurements the signal is being detected in-

stantaneously. Thus, if the clusters form and disappear on a timescale faster than the

measurement cycle, we may not see evidence of their presence. However, since ac-

susceptibility measurements detect clusters the moment they form, ac-susceptibility

measurements may help to reveal the dynamic nature of any cluster distribution

present.

We compare the ac-susceptibility data taken by Takahashi in a field of 0.2 mT

and for very small temperatures (mK) to the calculated ac response for the collection

of clusters (in Fig. 2.9) using Eq. 2.8. In order to model the ac-susceptibility, we

assumed a value for the unshielded Ce-moments of 1.21 µB (the value determined

from the low temperature fit using Eq. 2.6 in Fig. 2.4). We have applied an overall

vertical scale factor to accommodate the arbitrary units the data[26] were reported

in. We show the results of the comparison in Fig. 2.10.

The agreement between the calculated curve based on the simulated cluster dis-

tribution and the measured ac-susceptibility data is highly encouraging (Fig. 2.10).

Whereas there clearly is not perfect agreement, there is no trace of a large discrep-
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Figure 2.10: The measured ac susceptibility[26] in an applied field of 0.02 mT (circles).
The solid line is the result of a computer simulation where each cluster at the percolation
threshold was analyzed for uncompensated moments to arrive at the net moment (super
spin). The temperature dependence of each super spin was modeled using (Eq. 2.6), with
each uncompensated moment in these clusters taken to be 1.21 µB. This number for the
unshielded Ce moments was inferred from the ratio of the uniform susceptibility and the
specific heat at low temperatures (see text). An overall scale factor was applied to accom-
modate the arbitrary units the data were reported in. Note, the agreement for both the
peak level as well as for the higher temperature. In addition, the position of the peak is
also in agreement between the data and simulation. There is zero indication of a mismatch
of a factor of 100, 000.

ancy between the higher temperatures (the Curie-Weiss law region) and the low

temperatures (the saturation magnetization region). For reference, the peak posi-

tion corresponds to a temperature where the magnetization in the magnetization

measurements[26] had already reached more than 90% of its saturation value. Thus,

with one (vertical) scale factor we are able to capture all three moment values (as the

peak position of the ac-susceptibility does not depend on the vertical scale factor). As

such, we conclude that the discrepancy of a factor of ∼ 100, 000 between the highest

and lowest moment values as determined from the peak in the ac-susceptibility and

the saturation magnetization can be accounted for when taking into account that
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clusters form, and that these clusters have a fleeting nature.

We end this section with a discussion on the in-phase and out-of-phase components

of the ac-susceptibility, also referred to as the real part χ′ and the imaginary part χ′′

of the complex susceptibility χ. The real part represents the response to the applied

external field, whereas the imaginary part yields information about the dissipation of

this response. Typically, the imaginary part is small compared to the real part unless

the system is close to a phase transition. In contrast, Takahashi et al.[26] showed that

the imaginary part displayed an identical temperature dependence to the real part

(Fig. 1 in reference [26]). In fact, in an earlier publication[48] it was reported that

χ′ ≈ χ′′ at a frequency of 16 Hz. Using more measurement frequencies and assuming

the validity of the thermodynamic theory for a magnetic system relaxing through

coupling with the lattice [49], the authors inferred a relaxation time of approximately

11 ms.

The dynamic nature of the Kondo distribution allows for an alternative expla-

nation in CeRu2Si2. Because of the ever-changing distribution, resulting in an ever-

changing cluster morphology, we could also view the measured ac-response as clusters

appearing spontaneously and aligning with the external field. But these clusters also

disappear spontaneously, with the result that the signal we observe would not be very

strongly dependent on the field-amplitude of the probing ac field, but much more on

the primary static field. If this were the case, then we actually would expect that

χ′ = χ′′ as clusters appear and disappear, neither in-phase nor out-of-phase with

the ac-signal, but with an overall magnetization only depending on the static field.

In ac-susceptibility measurements, the sample is placed in an ever present (static)
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magnetic field while a much smaller (dynamic) magnetic field probes the sample for

changing magnetization. We are not sure what will prove the better explanation for

the observed equality of χ′ and χ′′ for all fields and temperatures reported in reference

[26], but if it turns out to be the fleeting nature of clusters in stoichiometric systems,

then the ac-susceptibility could act as a direct test for their presence.

In summary, we have shown that in disorder free stoichiometric CeRu2Si2, a dy-

namic distribution of interatomic separations is induced by zero-point motion. This

distribution of interatomic separations will upon cooling, lead to a distribution of

Kondo shielding temperatures and a dynamic percolation network forms. These dy-

namic isolated clusters dominate the low temperature response of CeRu2Si2. This

is very similar to Ce(Fe0.755Ru0.245)2Ge2, bearing in mind that the chemical doping

of ruthenium induces the static distribution of interatomic separations that creates

the static distribution of clusters seen in Ce(Fe0.755Ru0.245)2Ge2 (Section 1.5). Next

we apply the same methodology to another stoichiometric system close to a QCP:

YbRh2Si2 (Chapter 3). We demonstrate that clusters are also present in that system.
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Chapter 3

Cluster Formation in YbRh2Si2

3.1 Introduction

We investigate the potential presence of spontaneous clusters in the heavily stud-

ied YbRh2Si2 compound for which, unfortunately, neutron scattering data have not

been published. However, we show that the specific heat and susceptibility data are

naturally interpreted when ordered magnetic clusters are taken into account.

3.2 YbRh2Si2 vs CeRu2Si2 and Ce(Fe0.755Ru0.245)2Ge2

YbRh2Si2 is a heavy fermion system located very close to an antiferromagnetic quan-

tum critical point. YbRh2Si2 crystallizes in a 122−tetragonal lattice structure very

similar to CeRu2Si2 and Ce(Fe0.755Ru0.245)2Ge2. YbRh2Si2 displays easy-plane mag-

netic anisotropy (the magnetic moments like to align in-plane) which is different from

the Ising character found in CeRu2Si2 and Ce(Fe0.755Ru0.245)2Ge2 (magnetic moments

align along the easy c-axis)[62]. At zero fields, the system shows very weak AF or-

der (TN = 70 mK, solid line boundary in Fig. 3.1), while small fields (Bc = 0.06

T) applied perpendicular to the c-axis (field applied in-plane) can push this system

to its QCP and to a suppression of the ordering[63]. At this point, YbRh2Si2 dis-

plays strong non-Fermi liquid behavior down to the lowest temperatures and specific
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heat[66], resistivity[68], and ac-susceptibility[67] data have been published on this

system in this temperature region. Thus, YbRh2Si2 is an excellent candidate to look

for cluster formation. Note that unlike the compounds we previously discussed, this

stoichiometric system ”misses” the QCP by being in an ordered phase.

Figure 3.1: Figure adapted from Gegenwart et al.[65]. Temperature vs magnetic field phase
diagram for YbRh2Si2 (open symbols) and YbRh2(Si0.95Ge0.05)2 (closed symbols). The
magnetic field was applied perpendicular to the c-axis. The positions of the peaks in ac-
susceptibility χ(T ) (circles) and the inflection points of differential susceptibility dM/dB
(triangles) are shown (see text). The maxima in specific heat coefficient (squares) (which
according to Gegenwart et al.[63] represents the upper limit of Fermi Liquid behavior) are
shown as well.

In the compounds previously discussed, the size of the lattice spanning cluster

decreased upon cooling as more and more moments become Kondo shielded and

break away from the infinite cluster (see left panel of Fig. 3.2). In YbRh2Si2, the

situation is slightly more complex due to the system ending up in an ordered phase

upon cooling (rather than disordered as we have previously discussed in CeRu2Si2 and

Ce(Fe0.755Ru0.245)2Ge2). We propose that upon cooling in YbRh2Si2, more and more
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moments become shielded, i.e., the strength of the lattice spanning cluster decreases

with decreasing temperature until the ordering temperature TN . At TN , the infinite

cluster breaks apart entirely into groups of ordered moments. We believe that the

super spins of these clusters can align, which constitutes the antiferromagnetic order

seen. This proposal is illustrated in the right panel of Fig. 3.2. We further illustrate

this proposal in Fig. 3.3 by amending the phase diagram of YbRh2Si2 (Fig. 3.1). We

see from Fig. 3.3 and 3.2 that increasing the magnetic field can push the system

further from the QCP or vice versa, a decreasing magnetic field can drive the system

towards the QCP.

Figure 3.2: Left Panel: Size of the infinite (lattice spanning) cluster as a function of
occupancy p. The inset shows the exact occupancy the size of the infinite cluster goes
to zero, the percolation threshold. Right Panel: Size of the infinite cluster proposed in
YbRh2Si2 as a function of temperature. Upon cooling, more and more moments become
shielded and the size of the infinite cluster decreases until TN where the infinite cluster has
completely broken apart into ordered magnetic clusters.

We focus on the data collected by a group of Custers and Gegenwart who took low

temperature and low field measurements on high quality samples and who have dis-

seminated their evolving views on this system in various publications during 2000−
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Figure 3.3: See Fig. 3.1 for precise meaning of the symbols. Temperature vs magnetic field
phase diagram for YbRh2Si2 (open symbols) and YbRh2(Si0.95Ge0.05)2 (closed symbols).
As more and more moments become shielded upon cooling, the more and more the size of
the lattice spanning cluster decreases. Thus, we can make the assumption that the infinite
cluster increases in size with increasing temperature and/or magnetic field (shown as blue
arrows). The red arrow indicates the point at which the infinite cluster breaks apart and
the green shaded region depicts the area in which isolated cluster super spins may become
ordered.

2010[63, 65–68]. Driving YbRh2Si2 towards its quantum critical point can be done in

multiple ways, by chemical doping of germanium for silicon, as well as by applying

a magnetic field. Chemical doping of isoelectronic but larger germanium for silicon

atoms at a concentration of 1 : 20 atoms (x = 0.05) suppresses the ordering tempera-

ture from TN = 70 mK down to TN = 20 mK and subsequently the critical field from

Bc = 0.06 T to Bc = 0.027 T. Upon cooling from 1 K down to TN , evident non-Fermi

liquid behavior is observed[63] (the dotted line in Fig. 3.1 is the upper limit for Fermi

liquid behavior according to Gegenwart et al.[63]).

In summary, the behavior in YbRh2Si2 is markedly different from CeRu2Si2 and

Ce(Fe0.755Ru0.245)2Ge2 with these systems being on the verge of long ranger order but
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located just in the paramagnetic (disordered) phase. In contrast, YbRh2Si2 is close

to the border of long range magnetic order but is in an ordered phase showing very

weak AF order[63]. Thus, in Ce(Fe0.755Ru0.245)2Ge2 and CeRu1.94Rh0.06Si2, doping is

used to push the system from a disordered phase closer to the ordered phase to reach

their respective quantum critical point, whereas in YbRh2Si2, an ordered system

is driven closer to the disordered phase (through the doping of germanium or the

application of a magnetic field) to arrive at its quantum critical point. This makes

YbRh2Si2 a significantly more complex system, as it is already ordered and order must

be suppressed to drive the system to quantum criticality. Therefore, interpretation

of cluster formation will not be as straight-forward as in Ce(Fe0.755Ru0.245)2Ge2 or

CeRu2Si2, especially as we have not had to consider the effects of an external field in

stepping through the phase diagram. However, we will show that the specific heat and

susceptibility measurements are naturally interpreted when ordered magnetic clusters

are taken into account.

3.3 Dynamic Cluster Formation in YbRh2Si2

3.3.1 Specific Heat

Custers et al. performed[66] specific heat measurements on single crystals of YbRh2Si2

and YbRh2(Si0.95Ge0.05)2 which showed a low temperature peak associated with an

ordering temperature TN (Fig. 3.4). The integrated c)el/T curve showed that the

entropy associated with the ordering was a mere 0.008Rln2[68]. From Fig. 3.4, we see

cel/T is proportional to -ln(T ) for temperatures greater than 0.3 K while magnetiza-

tion measurements performed by Gegenwart et al.[63] indicate a second order phase

transition. Extrapolating down to 0 K when cel/T = constant = γ0 = 1.7± 0.2 J/K2
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reveals that the loss of entropy associated with the antiferromagnetic phase transition

at TN is only 0.008Rln2[68]. Performing a similar extrapolation on dc magnetization

data[63] towards zero field reveals a moment value of µs < 0.1µB, indicating that

the size of the ordered moments present in the AF region is much smaller than the

effective moment observed above TN (≈ 1.4µB)[65]. At least this is how the data

have been interpreted by the group of Custers and Gegenwart [63, 65–68].

Figure 3.4: Figure adapted from Custers et al.[66]. The low temperature specific heat
divided by temperature for high quality single crystals of YbRh2Si2 (x=0, blue squares)
and YbRh2(Si0.95Ge0.05)2 (x=0.05, red circles) as a function of temperature at zero applied
field. Note the semi-logarithmic horizontal scale. The cusp at 0.07 K indicates the loss of
entropy entering the ordered phase. This loss is pushed down to 0.02 K upon doping with
germanium (Ge).

The extremely small entropy associated with the AF phase transition at TN as well

as the small size of the ordered moment can be naturally explained within the cluster

formation scenario. Upon cooling to TN , more and more moments become shielded

from the infinite cluster and thus, the infinite cluster decreases in size upon cooling

as isolated clusters form and order. At TN , we propose that these isolated clusters
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order with one another and account for the weak antiferromagnetic order seen. We

can estimate the entropy involved with such super spin ordering as follows. Using

the protected percolation simulations described earlier (Section 2.3.4), on average

there are only 0.045 clusters per lattice site at the percolation threshold. Excluding

clusters with a zero net moment and clusters of size one as they can still become

Kondo shielded, we find that 0.0078 clusters per lattice site remain that can align

with other clusters. When these clusters order at TN , the entropy loss of the system

will be proportional to 0.0078Rln2, accounting for the experimental entropy seen

in the AF transition seen at TN [68]. This behavior can also been seen in doped

YbRh2(Si0.95Ge0.05)2 where the germanium doping has pushed the ordering down

to TN = 20 mK. The total net moment of all super spins present at the threshold is

0.0147 unpaired moments, therefore the average total moment per Yb ion left to order

below TN is less than 0.03µB (taking 2µB per surviving Yb ion as the upper limit

of the moment value of a single Yb moment). Thus, the cluster scenario naturally

accounts for both the small entropy and ordered moment of this transition.

Looking at the specific heat data as a function of applied field (Fig. 3.5) in

YbRh2(Si0.95Ge0.05)2 we see additional behavior attributable to cluster formation.

The weak maxima associated with antiferromagnetic order and the ordering temper-

ature TN (as seen in Fig. 3.4) shift towards higher temperatures with the application

of larger magnetic fields (Fig. 3.5). cel/T is seen to be T -independent for T (K) <

B(T) for all but the lowest field values. We proposed in Fig. 3.3 that applying a

magnetic field pushes the system away from the quantum critical point and thus,

according to the cluster formation scenario, further from the percolation threshold.
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Figure 3.5: Figure adapted from Custers et al.[66]. The specific heat divided by temperature
of a high quality single crystal of YbRh2(Si0.95Ge0.05)2 as a function of temperature for
various applied fields, displayed as a semi-logarithmic plot. Note that the curves for B >
0.1 T display a weak maximum, and that they trend towards constant cel/T values at the
lowest temperatures.

Upon cooling such a system in a magnetic field, cluster formation occurs as moments

become shielded before others, but now the demise of the infinite cluster is cut off by

the magnetic field. This cutoff is illustrated in Fig. 3.6. This behavior is expected

as pushing a system further from the QCP also pushes the system further from the

percolation threshold, i.e., the system stays in the higher occupancy ranges p > pc

(see Fig. 3.2). Once the demise of the infinite cluster is cut off, cluster formation

stops and the response of the system is a mixture of the infinite cluster as well as

of groups of isolated clusters, a cluster froth if you will. Overall, it is the ratio of

magnetic field to temperature B/T that determines the response of the system.

We now detail the high and low B/T limits and interpret the specific heat curve

in terms of the cluster scenario. At small B/T values, the specific heat curve reflects

the Kondo shielding of the moments on the infinite cluster and the loss of entropy
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Figure 3.6: Size of the infinite cluster proposed in YbRh2Si2 as a function of temperature.
Upon cooling, more and more moments become shielded and the size of the infinite cluster
decreases until TN where the infinite cluster has completely broken apart into ordered
magnetic clusters. With the application of a magnetic field, the infinite cluster is cutoff (at
the level of the red lines) from further demise.

associated with the breaking off of (small) clusters. As long as the demise of the

infinite cluster is not cut off yet by the application of the magnetic field (red lines in

Fig. 3.6), then the rate at which Kondo shielding removes entropy from the system

is determined by the temperature. As a consequence, at small B/T , the specific heat

curves depend on temperature, but not on applied field[66]. At the other end of the

spectrum (B/T � 1), we have the situation that the demise of the infinite cluster is

cut off by the external field, and cluster formation has ceased. Therefore, the only

contribution left in the specific heat is the response of the (heavy i.e., m∗ � melectron)

conduction electrons producing a response of c/T ∼ m∗[66]. The maxima in the cel/T

curves for B > 0.1 T are interpreted as follows. The maxima reflect the highest rate
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of cluster formation at a given field when the temperature is lowered. Depending on

the strength of the field, these clusters can still fluctuate if B is small, while if B is

large, these clusters become (fully) aligned with the applied field B.

The strength of Kondo shielding not only depends on temperature but also upon

the application of an external magnetic field: lowering the field increases the Kondo

interaction strength[67]. Upon lowering of the magnetic field, more and more mo-

ments become Kondo shielded, with more and more conduction electrons partaking

in the shielding. These conduction electrons become increasingly more massive due

to these interactions with the lattice. Thus, upon lowering the magnetic field, not

only does the interaction strength increase, increasing the effective mass m∗ of any

conduction electrons involved in Kondo shielding but it also increases the number

of conduction electrons involved in this dynamic Kondo shielding process. It is the

combined effect of an increase in m∗ as well as an increase in the number of these

heavy electrons which causes the increase in the constant value seen in cel/T with

decreasing field in the region when B/T � 1.

3.3.2 Entropy and Resistivity

Linear behavior in the resistivity of YbRh2Si2 can be naturally explained taking into

account magnetic clusters. Gegenwart et al.[68] observed that the low temperature

entropy of YbRh2(Si0.95Ge0.05)2 scales linearly in temperature as (left panel in Fig. 3.7)

while separate experiments revealed that the resistivity scaled linearly in a similar

temperature regime (right panel in Fig. 3.7)[67].

From Section 1.5.2, we know that the entropy of the system is locked into the

infinite cluster and therefore the entropy of the system is determined by the number
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Figure 3.7: Figure adapted from [68] and [67]. Left panel: Entropy scaling in
YbRh2(Si0.95Ge0.05)2 as a function of temperature temperature T and applied field B.
Shown is a log-log plot of the entropy S as b−2/3S vs T/b. Right Panel: The electrical
resistivity of YbRh2(Si0.95Ge0.05)2 at low temperatures for fields applied perpendicular to
the c-axis, showing ρ(T ) = ρ0 + AT .

of unshielded moments at a given temperature T . In other words, the entropy follows

the strength of the lattice spanning cluster as a function of temperature. Conduction

electrons scatter off the fluctuating moments in the lattice spanning cluster and as a

consequence, resistivity should be proportional to the strength of the lattice spanning

cluster. Ultimately, resistivity then becomes proportional to the entropy S of the

system (electrons can also scatter off of phonons, but we will ignore their contribution

at low T as the number of phonons goes as T 3). Thus, percolation physics and

magnetic clusters naturally account for the low temperature scaling of the resistivity

seen in YbRh2Si2: as long as S = γT , then the leading temperature dependence of

the resistivity should be linear in temperature.

3.3.3 Super-paramagnetic Response

Similar to the QCP-compounds (CeRu2Si2 and Ce(Fe0.755Ru0.245)2Ge2) discussed be-

fore, we expect to see a super-paramagnetic response in YbRh2Si2. At the lowest tem-

peratures when isolated clusters are present, these clusters have a super spin which
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can align with an external magnetic field. When clusters with the largest super spin

align with the external field, they themselves will produce a field which amplifies

the external field. This allows for nearby super spins to more strongly react to the

external field and thus leads to a rapid growth in the susceptibility of the system

(Fig. 3.8). The rapid increase in the system’s susceptibility is a super-paramagnetic

response (Section 2.3.3)[45]. Both CeRu2Si2 and Ce(Fe0.755Ru0.245)2Ge2 also display

this super-paramagnetic response (Figs. 2.5 amd 2.6), as does CeRuRhSi2 [22]. Con-

sidering that this behavior is found in four different samples, it is highly unlikely that

any ferromagnetic contamination could dominate the low temperature response of all

four systems in an identical way. Therefore, we believe this behavior must be a feature

of the system’s response, i.e., the super spins of clusters acting as ferromagnetic enti-

ties aligning with and amplifying the external field. We therefore take this behavior

as strong indication that super spins are indeed present in YbRh2Si2. We note that

in the literature this behavior has been ascribed to ferromagnetic fluctuations at the

QCP[65].

Figure 3.8: Left panel: Adapted from Gegenwart et al.[65]. The differential susceptibility
dM/dB as a function of magnetic field B for the temperatures indicated in the figure with
the field applied perpendicular to the c-axis. Right panel: The susceptibility χ =M/B for
Ce(Fe0.755Ru0.245)2Ge2 as a function of applied field along the easy-axis for the temperatures
indicated in the figure.
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3.3.4 AC-Susceptibility

Ac-susceptibility measurements performed on YbRh2Si2 and YbRh2(Si0.95Ge0.05)2

show a globally similar temperature and field dependence (Fig. 3.9) as the data ob-

tained on CeRu2Si2 (Fig. 2.7). From Fig. 3.9 we see that χac becomes field inde-

pendent for temperatures greater than 2 K while displaying a field and temperature

dependent peak (Fig. 3.9). At the lowest temperatures for fields B > 0.1 T, we see

that χac approaches a constant value. We will explain these three observations using

our cluster scenario.

Figure 3.9: Figure adapted from Custers et al.[67]. Displayed are the ac-susceptibility for
YbRh2Si2 (open circles) and YbRh2(Si0.95Ge0.05)2 (closed circles). The external field was
applied perpendicular to the c-axis.

When B/T � 1, the specific heat of the response of the system was seen to be

dominated by the infinite cluster (Section 3.3.1). The susceptibility of the system is

also dominated by the unshielded moments of the infinite cluster. Thus, we expect
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the susceptibility to be given by

χ(B � T ) =
S(T )

Rln2
χfree(B, T ) (3.1)

where S(T )/Rln2 is a measure of the number of unshielded moments left in the

infinite cluster, and χfree is the response of an individual moment, uncorrelated with

its neighbors. As χfree(B, T ) is independent of B for B � T , the observed χac should

be field independent. This is observed at T > 2 K in Fig. 3.9[67].

When B/T � 1, the specific heat of the system was found to be given by the

response of the heavy conduction electrons (Section 3.3.1). We expect the suscepti-

bility in this region to consist of two components. First, the heavy electrons contribute

their respective temperature independent Pauli susceptibilities (Eq. 1.1). However,

due to the dynamic nature of cluster formation in YbRh2Si2 in combination with

the details of ac-susceptibility measurements, there is an additional effect seen in the

ac-susceptibility not seen in cel/T . In ac-susceptibility measurements, the sample is

placed in an ever present static magnetic field and then a dynamic field probes the

sample for changes in magnetization: χac =dM/dB. Upon cooling, isolated clusters

form and order but these clusters are dynamic, they phase in and out of existence.

The moment these clusters form, they align with the ever present static field when

B/T � 1. These “freshly” (re)formed clusters will produce a signal in the pick up coil

and register in the ac-susceptibility. When these isolated clusters form and disappear

dynamically (the cluster froth state) we expect a temperature independent addition

to the ac-susceptibility. This together with the Pauli paramagnetic susceptibility

results in the temperature independent behavior seen in Fig. 3.9 when B/T � 1.

Interestingly, we would expect χ
′′

(the dissipative part of the susceptibility) to also
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produce a temperature independent level as clusters form and disappear while always

aligning with respect to the ever present static field. In other words, the phase of the

secondary dynamic probing field has no impact on the clusters which have formed and

aligned to the primary field. Thus, we would expect a large out-of-phase component

to χac, similar to what was reported in CeRu2Si2 [26]. It is unclear whether such a

signal was observed in YbRh2Si2. We have contacted Jeroen Custers, who reported

that a χ
′′

signal was observed[90] but that it was attributed to electronic pick-up and

removed from the study.

From Fig. 3.3, we can see that the lower the magnetic field, the closer the system

is to the QCP. Upon lowering the field (Fig. 3.3), more and more moments become

shielded and isolated clusters break away from the lattice spanning cluster. The lower

the field, the more isolated clusters are present. The super spins of these clusters can

align with an external field and contribute to the susceptibility. This was seen in

the system’s super-paramagnetic response in Section 3.3.3. Thus, lowering the field

increases the number of super spins contributing to the susceptibility and is the

dominant effect causing the increase in the constant value of χac seen with decreasing

field (Fig. 3.9) when B/T � 1. However, the increase in m∗ (Eq. 1.1) linked to

increased Kondo shielding may also contribute to the increase upon lowering the field

observed in χac.

Similar to the specific heat data, the ac-susceptibility curves show a maximum as

a function of temperature for fields B > 0.07 T (denoted Tmax in Fig. 3.9). This

peak position does not coincide with the peak positions in cel/T . This is shown in

Fig. 3.3 where it can be seen that (for a given field), the peak in the ac-susceptibility
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occurs at a higher temperature than the peak in cel/T . We believe that our cluster

scenario also naturally explains this observation without having to resort to more

exotic explanations[67].

The peak position in cel/T reflects the highest rate of entropy loss, or the highest

rate of cluster formation. However, depending on the ratio of B/T , the super spin of

these clusters might be “frozen”(aligned with the primary field field) and not respond

to the secondary ac-field. We illustrate this by following two trajectories in the phase

diagram. For the first trajectory, imagine cooling the system down in a constant field,

such as B = 0.2 T in Fig. 3.1. Upon cooling, more and more clusters with super spins

appear, shedding their entropy and reacting to the ac-field. However, upon cooling

more (increasing B/T), these clusters as well as any newly minted clusters become

more and more unresponsive to the ac-field as the primary field lines up the super

spins. Thus, we expect the ac-susceptibility signal to drop, even when the maximum

rate of cluster formation has not been achieved yet. Upon cooling even further, cluster

formation still increases down to the field cut-off (Fig. 3.6), explaining why the peak

in cel/T occurs at a lower temperature.

Lowering the field at constant temperature produces the same insights, such as

reducing the field at a constant temperature of 0.3 K (Fig. 3.1). At a fixed T > TN ,

the potential demise of the infinite cluster is cut off by the finite temperature. Starting

out at high field values and going down, we see more and more clusters form, down

to the cut-off value determined by the finite temperature. This produces a peak in

cel/T , reflecting the maximum possible rate of cluster formation. However, these

clusters do not react much to the secondary ac-field for reason already discussed. It
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is not until the field is lowered enough so that the cluster spins “unfreeze” that we see

the clusters show up un ac-susceptibility measurements. Thus, the ac-susceptibility

peaks at a lower field than the specific heat.
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Figure 3.10: Ac susceptibility of YbRh2Si2 [67] (blue open circles) and CeRu2Si2 [26] (orange
crosses) at fields of 0.075 T and 0.2 mT, respectively. The solid line is the result of a
computer simulation discussed in Chapter 2, where the susceptibility of each isolated cluster
was modeled using Eq. 2.6. As the argument of the function in this equation depends on
µH/T (with µ the moment of a magnetic ion), we also applied a horizontal scale factor.
The expected scale factor using the free moment value of Yb and Ce ions as well as the
ratio of field values used in each experiment, is given by sx = BY b × µY b/BCe × µCe =
(1.91× 0.075)/(0.2× 1.21) = 0.59. However we have chosen a value of sx to be 0.55 for best
visual agreement and corresponding to an uncompensated moment value for of 1.8µB per
Yb ion. The value of 1.91µB per Yb ion us based on the Wilson ratio, see text.

While the YbRh2Si2 data are more difficult to interpret than CeRu2Si2 data we

discussed in Chapter 2, a direct comparison between the two systems reveals many

similarities. We compare the ac-susceptibility in Fig. 3.10 for YbRh2Si2 at a field

of B = 0.075 T to the ac susceptibility for CeRu2Si2 shown in Section 2.3.4. For

this direct comparison, an overall scale factor has been applied in both directions

to accommodate for the arbitrary units used in CeRu2Si2 by Takahashi et al.[26] as

well as to account for the difference in magnetic field and moment values between

the two experiments and systems, respectively. The expected scale factor along the
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x-axis sx can be calculated using the free moment value of Yb and Ce ions as well

as the ratio of field values used in each experiment as sx = BY b × µY b/BCe × µCe =

(1.91× 0.075)/(0.2× 1.21) = 0.59, very close to the value of sx= 0.55 that yields the

best visual agreement (corresponding to a moment value for a free Yb ion of 1.8µB).

The value of µY b = 1.91µB follows from the observed Wilson rations of RW = 17.5,

yielding µY b = 1.91µB using Eq. 2.7. Thus, using a straightforward scale factor, we

observe a very similar response in both systems, with both responses close to the

expected response of a collection of isolated clusters. Based on this, we now show

that this collection of super spins can also quantitatively reproduce the measured

susceptibility of YbRh2Si2 and YbRh2(Si0.95Ge0.05)2.

Figure 3.11: Extrapolated T → 0 value as a function of field for both χac (stars) and cel/T
(diamonds and scaled to coincide with χac at high fields). Using protected percolation
simulations to model the super spin distribution at the percolation threshold, we can then
model the magnetic response of such a distribution. Adding that response in addition to
(on top off) the response of the cel/T produces the solid black curve (where we have used an
uncompensated moment value of µ = 1.91µB). Figure adapted from Gegenwart et al.[69].

The low temperature behavior of both χac and cel/T is shown in Fig. 3.11. This

figure is adapted from Gegenwart et al.[69] and displays the extrapolated T → 0

values as a function of field for both χac and cel/T . We have argued, qualitatively, that
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the low-T behavior reflects that of the conduction electrons in both the specific heat

and ac-susceptibility measurements. However, the ac-susceptibility should also reflect

how well super spins respond to a secondary ac-field, provided the super spins are not

“frozen”. The χac data shown in Fig. 3.11 were actually taken at T = 0.09 K; as a

result, the super spins remain frozen for fields B > 0.2 T and the two curves (specific

heat and ac-susceptibility) track each other. Once the super spins “unfreeze”, we see

their response in the susceptibility. The solid line in Fig. 3.11 quantifies this. We

have taken the cluster distribution at the percolation threshold, assigned a moment

value of 1.91µB to each unshielded Yb ion and calculated the susceptibility of the

collection of clusters at T = 0.09 K as a function of field, using Eq. 2.8. We then

added this contribution on top of the contribution of the conduction electrons (given

by the T → 0 values of the cel/T curve) to arrive at the solid line. The solid line

tracks the susceptibility data quite well. This is remarkable as the susceptibility data

were reported in absolute units so that our comparison is free from any scale factors.

3.4 Conclusion

In summary, we have shown that our cluster scenario accounts for all observed features

in the specific heat and susceptibility, and even comes with a natural explanation for

the linear T-independence of the resistivity. In the literature, this system has been

described as being close to an AF-QCP, but with strong ferromagnetic fluctuations.

We view these ferromagnetic fluctuations as super-paramagnetic behavior. The small-

ness of the loss in entropy and ordered moment has been ascribed (in the literature)

to the weakness of the ordering while at the same time viewing the QCP as the

point where the large moments re-appear. We proposed a much simpler explana-
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tion with unshielded moments that are very similar throughout the phase diagram.

We attributed the smallness of the entropy loss to the fact that the only remaining

entropy that could be removed being the orientation of the super spins. In our sce-

nario, the smallness of the ordered moment reflects that more moments in clusters

are compensated by their neighbors, not a small moment by itself.

We also differ in whether this compound displays multiple quantum critical[67]

points as opposed to just one. We view the maxima observed in the specific heat

and susceptibility curves as being related to whether clusters are “frozen” in (B/T

� 1) or free to respond to a small field (B/T � 1), Finally, a direct comparison

between the cluster distribution at the QCP and the measured susceptibility and

specific heat data shows that our cluster model yields the correct predictions, free

from any adjustable parameters.
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Chapter 4

Connection to the Pairing
Mechanism in High-Tc Cuprate
Superconductors

4.1 Introduction

In this chapter we make the connection between the findings concerning the influence

of small ionic displacements on the response of strongly correlated quantum critical

systems with the pairing mechanism in the cuprate superconductors, another family

of strongly correlated electron systems. While this chapter is speculative, we argue

that by considering the effects of small ionic displacements introduced by hole doping

into the parent compounds of the cuprates, we naturally arrive at a mechanism for

Cooper pairs to form, as well as other experimentally observed features such as a

striped phase.

This chapter is subdivided as follows. We first give a brief overview of the general

properties of the cuprate superconductors as well as of some salient details of the

response of these systems that all layered cuprates have in common. We pay special

attention to the so-called striped phase and the hourglass dispersion. Next, we show

how the introduction of holes in the CuO2 planes leads to small distortions that
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favor the formation of singlet Cooper pairs bound together by the anti-ferromagnetic

pairing of two intermediate copper atoms, driven both by an unscreened Coulomb

interaction as well as by electron-phonon coupling involving half-breathing modes.

Next, we show that a reasonable description of a dressed hole state leads to the

formation of a striped phase whose incommensurate ordering wave vector saturates at

doping levels above p = 1/8. We apply linear spin wave theory to the emerging striped

phase and observe an hourglass dispersion for the magnetic excitations. However, the

interpretation of this dispersion, as well as the role of AF stripes in the underdoped

superconducting phase departs from interpretations in the literature. We finish with a

comparison to the superfuid state of helium-4 and speculate that the superconducting

transition temperature is not linked to the breakup of Cooper pairs but rather to a

low energy gap that is likely associated with the spin anisotropy that forces the copper

spins to be confined to the Cu-O planes.

We define several acronyms commonly used in high cuprate superconductors to re-

fer to the various cuprates: La2−xBaxCuO4, known as LBCO; La2−xSrxCuO4, known

as LSCO; YBa2Cu3O6+δ, known as YBCO; Bi2Sr2CaCu2O6+δ, known as BISCO.

4.2 The Phase Diagram of the cuprates, Incom-

mensurate Order and hourglass Dispersion

In this section, we review what has emerged over 35 years as universal features between

all the superconducting cuprates[58]. We emphasize the phase diagram as a function

of doping the AF-parent compound with holes, the emergence of incommensurate

magnetic order, and the magnetic excitation spectra in the superconducting phase.

We will leave out many details as to how this information was acquired over the past
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decades, as well as features that are not necessarily universal between the cuprates.

However, we will use such details in later sections when the model makes predictions

about certain aspects of the low temperature response.

The parent compounds of the high-Tc superconductors are anti-ferromagnetic (AF)

systems characterized by high transition Néel-temperatures TN [71]. Below TN , the

spin-1/2 Cu ions that are located in the square lattice that form the CuO2 planes order

in an AF-pattern[58]. The Cu-Cu interaction that is responsible for this ordering is

the superexchange mechanism of the Cu-O-Cu bond. The singly occupied 3dx2−y2

Cu-orbitals overlap with the neighboring 2px and 2py O-orbitals, resulting in a net

AF superexchange interaction J between neighboring Cu-ions[72]. The value of J is

typically between 100 and 150 meV[73]. This mechanism is illustrated in Fig. 4.1.

All cuprates have the CuO2 layers, either as single layers, or as bi-layers, 3-layers or

4-layers. These layers are separated by non-magnetic layers along the c-axis. The

Cu-O layers are only weakly coupled ( magnetically) along this c-axis[86].

Chemical doping in the non-magnetic layers removes electrons from the Cu-O

planes, a process referred to as hole doping. It is observed that for as little as one

hole doped for every 50 Cu-ions that the AF order collapses and disappears[58]. This

leaves a phase rich in magnetic Cu-ions, but without long range order. Numerous

experiments have shown that the holes are predominantly located on the oxygens

[74]. Thus, to good approximation, we can treat the undoped systems as consisting

of a square lattice of Cu2+-ions and O2−-ions. With doping, some of the oxygen ions

become O−. Copper ions that are linked through such an O−-ion no longer align anti-

ferromagnetically. In fact, there now is a tendency to line up ferromagnetically (FM).
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This is illustrated in Fig. 4.1. Both AF and FM alignment can be viewed as direct

consequences of lowering the energy of a state through delocalization of electrons, a

process also referred to as ‘hopping’[75].

Figure 4.1: In the cuprates, there is an overlap between the half-filled copper dx2−y2 orbitals
and the oxygen 2p orbitals as shown in the left panel. The localized electrons can lower
their kinetic energy through virtual hopping processes such as the one shown in the middle
panel. This process requires the spins of the unpaired Cu-electrons to be aligned anti-
parallel. Introduction of a hole in the system that predominantly resides on the oxygen
results in a parallel spin alignment of the Cu-electrons as shown in the right panel. In
this sketch, all electrons (red arrows) that reside on dually occupied sites can hop to their
neighbors without restriction.

Once a doping level p ≈ 0.05 has been reached, the system becomes superconduct-

ing. Upon increased doping, Tc rises and peaks at a doping level of p ≈ 1/6, then

falls off again and the superconducting phase disappears at p < 0.3[76]. In addition,

the development of Tc with p can show a kink at p = 1/8 (LSCO), or even a severe

reduction (LBCO)[77]. Various other energy scales (besides kBTc) have been identi-

fied, such as the pseudo gap energy scale observed at less than optimal doping for

temperatures above Tc, and a spin gap energy scale for doping levels near optimal

doping and higher[58].

Mapping out the magnetic excitations as a function of doping by means of neutron

scattering experiments has revealed that the spin-waves present in the AF phase cast

their shadow into the superconducting phase in the sense that magnetic excitations

can still be observed, albeit not as well defined. Moreover, incommensurate (IC) mag-
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netic Bragg peaks with accompanying spin-waves have been observed below optimal

doping levels, transitioning into IC fluctuations for higher doping levels[76]. The IC

fluctuations exhibit an energy gap, referred to as the spin gap. The size of the spin

gap increases upon increased doping. The incommensurate position of these peaks

are captured by the parameter δ: Bragg peaks are observed [near the AF (1/2, 1/2)

Bragg peaks of the parent compound] at (1/2, 1/2± δ) and (1/2± δ, 1/2). At least,

this is the case for moderate doping levels such as p = 1/8[78]. For much lower doping

levels, the peaks occur in a pattern rotated by 45 degrees, either indicating diagonal

order, or a staircase type of structure[58]. We ignore this region (p < 0.06) in this

chapter.

The appearance of these IC lattice peaks is accompanied by the appearance of

satellite peaks around nuclear Bragg peaks with indices (h ± 2δ, k) and (h, k ± 2δ).

Thus, we observe the formation of larger unit cells with size 1/δ and 1/2δ[58]. It is

the appearance of these sets of peaks that have led to the discovery of the striped

phase[79]. We show the cartoon for this phase for p = 1/8 in Fig. 4.2. In this phase,

we have uni-directional stripes of AF-ordered Cu-ions spaced 1/2δ unit cells apart.

The AF stripes are in anti-phase, so it takes 1/δ unit cells for the pattern to repeat

itself, giving rise to the observed peaks at (1/2± δ, 1/2). In addition, the holes have

accumulated in between the stripes. The positive charges of these holes lead to small

lattice distortions every 1/2δ unit cells, which gives rise to satellite peaks (h±2δ, k) in

neutron and X-ray scattering experiments. Thus, both spin order (magnetic stripes)

and charge order (in between the magnetic stripes) is observed[80].

The composition p = 1/8 has been studied most extensively, but other composi-
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tions reveal a similar appearance of satellite peaks. For p < 1/8, we observe that δ

= p [81]. In other words, the number of holes per Cu-ion directly scales (inversely)

with the separation between stripes. For larger doping levels, it has been observed

that δ saturates at 1/8 [82]. We will see in the following paragraphs that our model

naturally accommodates this saturation. Note that because of the symmetry of the

square lattice, the h− and k-directions are (almost) equivalent.

Figure 4.2: Figure adapted from Tranquada et al.[58]. The appearance of superlattice peaks
at (1/2 ± δ, 1/2) and at (1/2 ± δ/2, 1/2) leads to the graphic shown here, where we have
vertical stripes of alternating charge accumulation and AFM-correlated Cu-moments. The
AFM-strips are in anti-phase, leading to a further expansion of the magnetic unit cell (8×2
nuclear units in this sketch).

When the energy cost of the magnetic excitations is plotted versus momentum

transfer in the Cu-O plane, then an hourglass shape is observed that is common be-

tween the three most studies families of superconductors: LSCO, YBCO, and BISCO.

We reproduce this pattern in Fig. 4.3[59]. We observe magnetic excitations dispersing

from the incommensurate magnetic superlattice peaks inwards towards (1/2, 1/2), the

zone center for the AF-structure of the undoped parent compound. Once at the ‘old’

zone center, new branches are seen to disperse outward with energies very similar to

those in the undoped compounds[58]. Also note that there do not appear to be any

branches dispersing outward from the IC-points. For dopings higher than p = 1/8,

the response at the IC peaks at the lowest energies (including E = 0, the static pat-

tern) disappears; this is referred to as the opening up of a spin gap E < ESG, that
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is, the dispersion follows the same curvature but no longer has intensity below E <

ESG[83].

The intensity of the response at (1/2, 1/2) at the middle of the hourglass varies

from compound to compound. The peak is especially intense in the bi-layered com-

pound YBCO, and goes under the moniker of ‘resonance peak’[58]. On cooling the

system down through the superconducting transition temperature, this peak becomes

very pronounced, and appears to be (almost) localized in both energy and momentum

space[84].

Figure 4.3: Figure reproduced from Fujita et al.[59] Shown are the measured excitation
energies for two single layer compounds (LSCO and LBSO) and two bi-layered compounds
(YBCO and BISCO) as a function of in-plane momentum transfer. The symbols are ex-
plained in the legend. When scaling the measured energies with the superexchange energy J
from the respective parent compounds, the data collapse onto a single hourglass-like shape.
The center point at (1/2, 1/2) is referred to as Ecross, and the dashed curves are guides
to the eye. Note that not every composition corresponds to the exact same doping level,
and that the horizontal axis covers both (1/2 + h, 1/2) as well as (1/2, 1/2 + h). The point
(1/2, 1/2) is the AF-zone center of the parent compound.
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In summary, much is now known about the magnetic dynamics and about what the

various families of cuprates have in common. Whereas early on it was thought that

AF order would be destructive to superconductivity as the movement of holes through

the lattice would involve spin flipping of the Cu-moments, the views have evolved in

that the separation of charge and spin order are now seen as being intimately linked

to the mechanism behind Cooper pairing. We refer to two review articles by John

Tranquada for further details cementing this new outlook[58, 86]. In the following

sections we make the case for how the small lattice distortions accompanying doping

can lead to the appearance of the striped phase, the hourglass dispersion, as well as

the dependence of δ on doping p.

4.3 Cluster Formation upon Doping through Coulomb

Repulsion and Electron-Phonon Coupling

At the heart of all magnetic interactions in the cuprates is the superexchange inter-

action of the Cu-O-Cu pathway. Given that an exchange interaction is determined

by the overlap of atomic orbitals, and given that this overlap depends sensitively

on inter-ionic distances, we can expect large effects on the strength of the magnetic

interaction when we have small changes in interatomic separations. Thus, we have

a similar problem as to what we encountered in the Kondo materials. In here, we

discuss how the introduction of holes into the CuO2 planes can locally enhance the

AF-pairing of neighboring Cu-ions, leading to the formation of regions with increased

AF ordering tendencies, interspersed with regions of subdued ordering tendencies. We

argue that this pattern is enhanced by electron-phonon coupling involving breathing

and half-breathing modes[52].
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We have seen in the discussion on CeRu2Si2 and YbRh2Si2 that the dynamic

changes in inter-ionic separations can lead to the appearance of spontaneous magnetic

clusters that end up dominating the response at low temperatures. So a natural

question to ask is: can something similar take place in the cuprates, another system

where the magnetic moments strongly interact with each other and are on the cusp

of long range order? The answer is likely yes, and the effect is likely even enhanced

by the unscreened Coulomb repulsion between holes and Cu-ions.

The phonon modes of particular interest to this scenario are the breathing and

half-breathing modes. These optical modes correspond to ion displacements in the

Cu-O plane, bringing groups of ions closer together (breathing), or strips of ions closer

together (half breathing)[52]. We show cartoons for these motions in Fig. 4.4. For

instance, the half-breathing mode for (0, 0, 0.25, 0) corresponds to a similar striped

pattern as the charge ordering observed for p = 1/8.[52] Most interestingly, it is the

energy of the half-breathing mode at (0, 0.25, 0) that shows the most changes upon

cooling the system down through the superconducting transition. We reproduce a

figure from Pinchovius’s review in Fig. 4.5 illustrating this phonon anomaly[52].

We now focus on the half-breathing mode for (0, 0.25, 0) for multiple reasons. First,

the renormalization of the phonon energy is strongest at this wave vector, correspond-

ing to a wavelength of λ = 4 times the in-plane size of the nuclear unit cell. Second,

the phonon linewidth is largest at this wavevector, indicating a coupling of this mode

to other processes in the system. Third, it is known that the incommensurate peak

positions δ saturate for doping levels p > 1/8, so this particular stripe pattern is

relevant to all doping concentrations[82].
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Figure 4.4: Figure reproduced from Pintschovius et al.[52] showing the displacement pattern
in interatomic distances due to anomalous phonons with wave vector (0, 0.25, 0). Displace-
ments shown are only in the CuO2 planes which are the dominant displacements. Grey
circles indicate that the displacements favor dynamic charge accumulation on every fourth
row of copper atoms.

When Cu ions are brought closer together, it enhances the superexchange inter-

action between them, thereby enhancing the ordering tendencies of the Cu moments

within these regions. When the ions move further apart, the superexchange is di-

minished, reducing the AF correlations in those regions. Thus, this mode appears to

be conducive to the formation of the p = 1/8 stripe pattern shown in Fig. 4.2[58].

Should the stripe pattern be connected to the superconducting state, then this nat-

urally explains the observed isotope effect[52]. Electron-phonon coupling is present

(and quite strong) in the cuprates, although the coupling is not strong enough to

explain the high transition temperatures according to BCS theory[87]. However, the

coupling could induce stripes to form, and provided that stripes play a role in the

superconducting dynamics, then the coupling sets the stage for the superconducting

state, without providing the energy scale for the Cooper pairs.

Could the phonon induced formation of stripes lead to the appearance of isolated
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Figure 4.5: Figure reproduced from Pintschovius et al.[52]. Top Panel: The striped
phase dispersion of Cu-O bond-stretching vibrations in La1.48Nd0.4Sr0.12CuO4 (left),
La1.85Sr0.15CuO4 (middle), and La1.7Sr0.3CuO4 (right). Bottom Panel: The phonon
linewidths (resolution-corrected) for the phonons shown above. Thin solid lines are guides
to the eye while thick solid lines are cosine-functions.

magnetic clusters, and potentially the appearance of super spins as it does in stoi-

chiometric quantum critical systems? The answer is that we do not expect any super

spins to appear, but the regions of strong coupling separated by regions of weak

coupling might have some minor influence on the magnetic response as probed by

neutron scattering. What turns out to be of the utmost importance though is that

this segregation of strongly and weakly coupled regions sets the stage for the forma-

tion of Cooper pairs. We discuss the latter in the next section, whereas the former

(the absence of super spins) is easy to visualize: should magnetic order ensue on the
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highly correlated magnetic stripes, then these stripes contain equal amounts of ‘up’

and ‘down’ Cu-moments and the super spin would be zero.

As an aside, the appearance of super spins could potentially have led to the for-

mation of Cooper pairs. One electron would emit a phonon, creating a magnetically

correlated volume with a super spin. This super spin could interact with the first

electron’s spin, as well as with the spin of a second electron, creating a magnetically

bound Cooper pair. Phonons that could do this would need to have a periodicity dif-

ferent from 2a, with a the lattice spacing. As far as we can tell, there are no phonons

that show strong anomalous behavior that meet this criterion, and we do not pursue

the super spin avenue further in this dissertation.

The formation of spin-stripes favors the accumulation of the holes in between the

stripes. The energy of a hole depends on how mobile it is: the more mobile, the

lower its kinetic energy. The mobility of holes in the AF environment is restricted as

hopping along the direction of the stripes needs to be accompanied by spin flips of the

Cu moments. When these moments are aligned with their neighbors, holes can only

hope diagonally, directly from oxygen to oxygen (hopping between the 2px and 2py

orbitals). In between the magnetic stripes, however, it is much easier for the holes to

hop, thereby reducing their energy. As such, in the presence of static stripes, holes

tend to accumulate in between the magnetically ordered stripes, resulting in charge

order[80]. Even in the case of dynamic stripes (stripes that appear and disappear),

diagonal hopping would see the holes leave the magnetic stripes and accumulate in

between them.

When the holes are located predominantly in between the AF-stripes, then the
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Coulomb interaction amplifies what gave rise to the formation of highly correlated

magnetic stripes in the first place. The accumulation of positive charge in between

the stripes pushes the Cu-ions within the stripes even closer together, further en-

hancing the superexchange mechanism. Thus, the system has a natural tendency

towards charge separation, independent of whether the magnetic order was initiated

by phonons, or not. In the next section we discuss how the enhanced superexchange

interaction can lead to Cooper pairing.

4.4 The Emergence of a Striped Phase and Cooper

Pairing

Decades of experimental work has shown that the cuprates have a tendency to form

uni-directional stripes of AF correlations, interspersed by regions rich in holes[58].

We show that oxygen holes, in the form of quasiparticles where the hole is spread

out over multiple sites, favors the formation of AF-stripes with neighboring stripes

in anti-phase. Moreover, for p < 1/8, this results in Cooper pairs bonded across the

stripes, while for p > 1/8 the Cooper pairs are likely still bonded across the stripes

but could potentially be restricted to the hole-rich regions. This scenario naturally

explains why the periodicity of the AF stripes cannot be less than 8 unit cells (of the

nuclear lattice).

While the observation of the stripe pattern through the observation of incommen-

surate lattice peaks led to the stripe pattern shown in Fig. 4.2, it is not immediately

clear what the reason could be for the magnetic stripes to be in anti-phase[58]. It

has been proposed that Cooper pairs form within the charge stripes, and that the

overall wave function of the superfluid phase is such that its amplitude is maximum
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on the charge stripes, and minimum on the magnetic stripes. This pattern goes under

the name of Pair Density Wave (PDW) and is sketched in Fig. 4.6[58, 88]. However,

since the amplitude of the PDW is small by (construction) on the magnetic stripes,

it is unclear why this pattern would favor alternating AF stripes, rather than stripes

with the same, or with random relative phases. In addition, it would not explain why

the separation between stripes saturates at distances 4 unit cells apart. We offer a

different explanation, resulting in Cooper pairs that bond across AF stripes rather

than in between AF stripes.

Figure 4.6: The proposed PDW wave function and spin density wave (SDW)[58, 88]. The
PDW (top panel) has small amplitude on the AF spin stripes (bottom panel) where the
SDW (middle panel) has a large amplitude. Thus, Cooper pairs avoid the AF-stripes,
remaining localized in between the stripes. Figure reproduced from Tranquada et al.[58].

When a hole is doped into the Cu-O plane, it is known that it mostly resides on

the 2px and 2py oxygen orbitals[74]. Should this hole not be mobile, then its zero-

point energy would be large. This can be estimated very roughly using Heisenberg’s
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uncertainty principle: ∆x∆p> ~/2. Using a/2 for the size of the oxygen orbital,

we can estimate the zero-point energy to be (∆p)2/2m > 1 eV. Should the hole be

allowed to hop from site to site (∆x increases), then this energy cost of placing a hole

on the oxygen is rapidly reduced. Note that using Heisenberg’s uncertainty relation

gives us an idea of the energy scale involved, but it also holds for the proper kinetic

energy term in the Hamiltonian: the energy scales inversely squared to the gradient of

the wave function. We can also readily estimate the energy cost of Coulomb repulsion.

Taking the radius of Cu2+ to be 73 pm, the Coulomb repulsion between two electrons

in the same Cudx2−y2 orbital is 10 eV, and the Coulomb repulsion between 2 holes

a distance 2a apart is 2 eV. These numbers illustrate that these energy scales, even

in the presence of some Coulomb screening, are much larger than the energy scale J

∼ 0.1 eV associated with the superexchange interaction between two copper moments.

This is the reason that once holes are introduced, their mobility quickly destroys AF

order[58].

In Fig. 4.7 we sketch our proposal for a somewhat delocalized hole located on

the oxygen p-orbitals. We have opted for a cross configuration to respect the square

symmetry of the lattice while at the same time not making the delocalization too

expansive as Coulomb repulsion between holes would make this unphysical in the

first place. In order for this hole to be delocalized in the configuration, all the Cu-

moments need to be aligned ferromagnetically, with the missing electron (the hole)

having the opposite spin. Note that in the sketch the ‘up’-spin electrons of the oxygen

(black arrows) are free to wander, greatly reducing their kinetic energy. Keeping the

central Cu-moment AF-aligned would only result in the mobility of a single electron.
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This also serves as a further illustration as to how quickly AF-order will be destroyed

upon hole doping[58].

Figure 4.7: Sketch of a single layer of the Cu-O planes in layered cuprate superconductors.
Shaded in blue we sketch a delocalized hole (a missing spin) located on an oxygen p-orbital.
Note that in the sketch the ‘up’-spin electrons of the oxygen (black arrows) are free to
wander, greatly reducing their kinetic energy. Down spins are shown as red arrows.

Next, we spread out the holes in the Cu-O planes. We do this for a concentration

of p = 1/8, or one hole per 8 copper ions and sketch the situation in panel a) of

Fig. 4.8. As can be seen, the holes are at roughly equal distance, minimizing their

Coulomb repulsion. Next we have to figure out whether there are preferred spin

directions for the Cu-moments associated with this arrangement. It is highly likely

that the two Cu-moments situated between two holes in the horizontal direction will

align anti-ferromagnetically. The two positive ions have been pushed together more

closely through the effective repulsive force between a Cu-ion and a hole, enhancing

the superexchange. This alignment reduces the energy of the state on the order of J ,
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Figure 4.8: Top Panel a): Sketch of a single layer of the Cu-O planes in layered cuprate
superconductors. Spreading out of delocalized holes (missing spins) is shown at a concen-
tration of one hole per 8 copper ions (p =1/8). The holes are located in between AF-stripes
roughly equal distances apart, minimizing Coulomb repulsion. Bottom Panel b): Sketch of
a single layer of the Cu-O planes in layered cuprate superconductors showing FM alignment
in between AF-stripes. Hole mobility is greatly increased and now the hole can ‘hop’ in
the vertical direction (the orange line). The two Cu-moments that have been forced closer
together are shown as red circles, acting as the glue that binds the Cooper pairs.

about 0.1−0.2 eV. In other words, two holes situated as sketched in panel a) reduces

their energy, resulting in an effective attraction (pairing) between the two holes of

the order J . Also note that the AF pairing probably forces the overall spin alignment

of the Cu-spins that make the hole, but it definitely forces the spin direction of the

hole. Since the Cu-moments between the holes are oppositely aligned, the spins of

the holes must also be oppositely aligned. In other words, we get a singlet pair of

holes, bound together by an energy scale of J .

Before we continue, we remark that the strength of the interaction that favors FM
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Figure 4.9: Top Panel a): Sketch of a single layer of the Cu-O planes in layered cuprate
superconductors after a hole has hopped vertically several times. Antiferromagnetic ar-
rangement between Cu moments in the vertical direction will likely occur as this lowers the
energy (shown as green arrows). This results in the antiferromagnetic and ferromagnetic
stripes seen. Bottom Panel b): Sketch of ‘naked’ holes in the Cu-O planes. The holes would
still spread out to reduce Coulomb repulsion and would result in the enhancement of the
superexchange interaction and formation of Cooper pairs (shown as red circles).

alignment of the Cu spins within a delocalized hole (5 Cu-ion cross) is different from

the strength of the interaction between two holes. The latter is enhanced by forcing

the Cu-ions closer together. We do not have a solid argument for estimating which

one is larger though, so we keep the option open that either energy scale can be the

largest when we do numerical calculations.

The alignment of the spins in the vertical direction is likely to be ferromagnetic,

but perhaps only weakly so. Should the alignment be FM, then this would greatly

enhance the mobility of the hole in the vertical direction. Holes can now travel along

the path sketched in panel b) of Fig. 4.8 (orange line). Should the alignment be
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AF, then the holes are much less mobile as their motion would involve a spin flip

somewhere. It is possible, however, to move without spin flipping as long as the

holes move directly from oxygen to oxygen, without ’visiting’ the Cu-ions. Given the

size of the respective hopping terms that have been estimated from experiments[58]

(with tpd ≈ 2tpp) we consider the latter possibility less likely and we have sketched a

FM-alignment in the vertical direction (panel a) of Fig. 4.9).

When the holes travel along the vertical direction along the FM aligned Cu-

moments (the direction of the stripes), then the situation after a few hops will be

the one sketched in panel a) of Fig. 4.9. These hops can be accommodated indepen-

dent of whether the spins that were ’unassigned’ in panel b) of Fig. 4.8 point up or

down. Therefore, it is likely that these Cu-moments will order AF along the vertical

direction to lower the energy of the state by a few more tenths of an electron Volt. We

sketch these directions in panel a). In short, it is likely that stripes will emerge when

holes are traveling in the vertical direction. These stripes consist of Cu-moments

aligned predominantly anti-ferromagnetically along one stripe, and ferromagnetically

in-between the stripes. Note that the overall alignment along the horizontal direction

is such that the direction of the spins in the stripes alternates from one AF (FM)

strip to the next AF (FM) strip.

Note that the particular depiction (Fig. 4.7) of a delocalized hole is not essential

to this argument. Even ‘naked’ holes spread apart by Coulomb repulsion would result

in an enhancement of the superexchange interaction and in the formation of Cooper

pairs consisting of a magnetic hole singlet glued together by a Cu-singlet. We show

this in panel b) of Fig. 4.9. The only issue that would be debatable for the ‘naked’
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holes is whether the vertical mobility of holes would be enhanced by an in-phase

arrangement of the AF bonds within a Cooper pair, or an anti-phase arrangement.

Since experiment tells us that an anti-phase arrangement occurs, it is likely that Cu

spins between the AF-stripes are aligned ferromagnetically near the holes, facilitating

hole mobility.

The scenario outlined above comes with a few predictions that appear to be borne

out by experiment. First, a minimum hole concentration is needed before the Coulomb

force would be able to squeeze two Cu-ions together enough to bind two holes together.

When the concentration is too low, holes are kept too far apart to benefit from any in-

crease in superexchange interaction, and Cooper pairs will not form. Experimentally,

a hole concentration of 1/16 appears to be sufficient for the onset of superconductiv-

ity, corresponding to an average hole separation of 4a. Second, the sketches in Fig. 4.8

and 4.9 demonstrate that holes move perpendicular to their bonding direction, or at

least not parallel to it as this would involve Cu-spin flipping. Thus, at concentrations

below p = 1/8, we would expect stripes to still form in the vertical direction, but

spaced further apart. Therefore, we expect to observe superlattice peaks at δ = p for

p < 1/8[81].

An interesting question to ponder is what the hole pattern will be for p > 1/8,

when more holes need to be accommodated in the arrangement shown in panel b)

of Fig. 4.8. We take p = 1/6, the optimal doping concentration, as an example.

The p = 1/8 unit cell of 8 × 4 nuclear unit cells that accommodated 4 holes now

needs to accommodate 6 holes. We can either squeeze the pattern along the hori-

zontal direction (perpendicular to the stripes) or in the vertical direction (along the
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stripes). The result of a horizontal compression is shown in panel a) of Fig. 4.10.

This appears to be an unlikely possibility as the ‘overlap’ between the holes would

force a greater localization of the holes, increasing their kinetic energy, compared to

a vertical compression (panel b) of Fig. 4.10). When we compress along the (vertical)

stripe direction, then the holes do not suffer in mobility. Thus, we would not pay

the same kinetic energy price, but we would lose the perfect anti-phase AF arrange-

ment along the magnetic stripes. However, every AF bond that has an increased

superexchange interaction can still be satisfied, so from kinetic energy arguments, a

horizontal compression of the unit cell is not favored over a vertical compression. As

a result, we expect to see the IC peak position saturate at δ = 1/8. Of course, this is

a well-known experimental observation[82].

Figure 4.10: Left panel: Schematic showing horizontal compression. Right panel: Schematic
displaying vertical compression. The resulting unit cell (red box) has 4 holes per 24 lattice
sites. Both panels are at a doping level of p= 1/6.

The consequence of losing a perfect anti-phase stacking arrangement of the AF

stripes (holes are now 3 lattice spacings apart along the vertical direction rather than

four) is that the static Bragg peak at (1/2± 1/8, 1/2) would disappear, but since the

magnetic stripes still exist, we can expect the same magnetic excitations along the

stripes to still persist, albeit with an altered intensity in neutron scattering experi-
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ments. The result is the development of a spin gap in the experiments. Note that one

does not observe the ferromagnetically ordered stripes in experiments probing around

(1/2, 1/2) as the magnetic structure factor corresponding to these spin arrangements

equals zero.

In summary, using basic energy consideration arguments combined with an in-

creased superexchange mechanism strength when Cu-ions are forced closer together,

we arrive at incommensurate lattice peaks with δ = p for p < 1/8, as well as a sat-

uration of δ at a value of 1/8 for p > 1/8. The observation of a spin gap in neutron

scattering experiments goes hand-in-hand with this scenario. What it does not au-

tomatically imply though is that Cooper pairs remain bonded across the AF stripes.

It is quite possible that the holes, located within the FM stripes, form Cooper pairs

for p > 1/8. These holes would be very mobile in their FM surroundings, and the

energy gain of ordered AF stripes would still be present. However, it would appear

that Cooper pairs within FM stripes would form a triplet, at least in the cartoon of

what a hole is. As far as we are aware, there is no experimental evidence to back up

this possibility of a triple state.

4.5 Magnetic Excitations and the hourglass Dis-

persion

The presence of a static striped phase allows for the determination of the magnetic

excitations through linear spin wave theory. We explore these theoretical spectra

as a function of coupling strength between the Cu-ions within the stripes and as a

function of the coupling strength between the stripes themselves. We find magnetic

dispersion curves that are similar to the experimentally observed hourglass dispersion
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and offer a slightly different interpretation of what the upper and lower branches of

the hourglass curve signify. Even though the static long-range order of the stripes

disappears for high hole dopings, the survival of shorter ranged dynamic correlations

between neighboring stripes indicates that the underlying mechanism of superex-

change enhancement remains the most relevant feature of the electronic response in

the cuprates.

We focus on the stripe pattern for p = 1/8 as this doping level has been studied

extensively[58]. We discuss the results of linear spin wave theory for two arrange-

ments: one a highly simplified magnetic unit cell consisting of four nuclear units

(panel a of Fig. 4.11) and the other the unit cell pattern of Fig. 4.2, but with added

FM correlations (panel b of Fig. 4.11). The latter pattern corresponds to panel a) in

Fig. 4.9.

The toy model shown in panel a) of Fig. 4.11 has the advantage that it can be solved

exactly (within the linear approximation) so that the influence of different ratios of

antiferromagnetic (JAFM) and ferromagnetic (JFM) couplings can be studied. We

defer the details of the calculation to Appendix D, here we simply list the spin wave

energies E for the two branches below:

E2 =A2 +B2 − C2 ± 2B
√
A2 − C2sin(2qxa)

A =
3

2
JFM +

1

2
JAFM − JFMcos(qya)

B =
1

2
JFM

C =
1

2
JAFM

(4.1)

We plot the spin wave energies in Fig. 4.12. There are two things to bear in

mind when looking at these dispersions. First, in an experiment we tend to observe
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Figure 4.11: Top panel: Schematic showing the magnetic ordering for a 4 × 1 unit cell.
Bottom Panel: Schematic displaying the magnetic ordering for a 8×2 unit cell. Interactions
JFM and JAFM are also shown.

excitations along the stripes and perpendicular to the stripes simultaneously as it is

experimentally known that the stripe direction alternates from layer to layer (along

the c-axis)[58]. Second, these dispersions do not include the magnetic structure factor

that determines the cross section for a neutron being able to excite these branches. For

instance, the neutron cross-section for this structure at (1/2, 0) equals zero, whereas it

is maximum for (1/4, 0). Combining the two branches into one plot and only plotting

them for momentum transfers in the zones where the structure factor does not vanish,

we arrive at the dispersion (shown in Fig. 4.13) that neutrons would measure in this

hypothetical system.

The toy model has some interesting features, such as already indicating that the

hourglass shape is the result of a superposition of excitations perpendicular and par-

100



Figure 4.12: Spin wave dispersion for the 4 × 1 unit cell along h and along k (solid lines).
The dotted curve is the dispersion for (3/8, k).

allel to the stripes. It also shows that the dashed curve in Fig. 4.3 that is drawn

through the experimentally measured magnetic excitations for the lower branch of

the hourglass is without merit. The point (1/2, 1/2) corresponds to a zone center,

not to a zone boundary.

The maximum Emax of the dispersion along the horizontal direction (corresponding

to excitations perpendicular to the stripes in the cuprates) is given by

E2
max = JFM(JFM + JAFM)− JFM [J2

FM + 2JFMJAFM ]0.5. (4.2)

This maximum depends on both exchange parameters. It is interesting to take the

limit JFM � JAFM as this effectively mimics an isolated AF-chain. Taking this limit,

the maximum of the dispersion reduces to Emax=JAFM/2, close to the theoretical

result[58] for an AF-chain (Emax≈ JAFM/2). Therefore, we expect the full model to

be able to include the excitations that are expected for uncorrelated AF-chains for
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Figure 4.13: Overlaid dispersion with inclusion of the magnetic structure factor. Solid lines
give the most prominent features in a neutron scattering experiment.

higher doping levels (p > 1/8)[58].

Next we discuss the spin wave results for the full model shown in the bottom panel

of Fig. 4.11. We did not attempt to solve this analytically as it involves finding the

eigenvalues of a 32x32 matrix. Rather, we have solved the eigenvalue problem numer-

ically using standard computer software and following the equations from the 1968

treatise written by S. Tjablikow[85]. We include the program for this in Appendix D

and plot the dispersion in Fig. 4.14 for three ratios JAFM/JFM .

As expected, the dispersion now has zone centers at integer multiples of 1/δ,

reflecting the size of the magnetic unit cell. We also see the appearance of many
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Figure 4.14: Dispersion for the full unit cell along h and k. Panel a) was calculated for a
ratio of JFM/JAFM = 2, panel b) for JFM = JAFM , and panel c) for JFM/JAFM = 0.5.

higher energy modes, but well separated from the modes we already identified with

the toy model. The most notable difference from the view of comparing the dispersion

to experimental values is that the peak of the dispersion for momentum transfers

perpendicular to the chain direction no longer reaches JAFM/2. Playing around with

the ratio JAFM/JFM the highest value we obtained was Emax≈ 0.3JAFM .

Another difference is the appearance of an optical branch at the zone center in the

energy range of neutron scattering experiments for JFM < JAFM . While this branch

has no weight in a neutron scattering experiment off of a perfectly ordered sample,

once the chains lose their horizontal phase arrangement this branch would acquire

some intensity (at the expense of the lower part of the hourglass). It is possible that
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the excitations at (1/2, 1/2) observed in (some) neutron scattering experiments[58]

(and referred to as Ecross[58]) do indeed reflect excitations that propagate along the

chain direction, but in a system where the phase arrangement between the chains has

been distorted.

Within the Cooper pairing model, there is a subtle difference between single layer

compounds such as LSCO and multi-layered compounds such as YBCO. Experimen-

tally, this difference is seen most markedly as the appearance of a resonance peak at

(1/2, 1/2) at finite energy (E = 41 meV for optimally doped YBCO)[58]. This peak

appears upon cooling through the superconducting transition, and is localized both

in energy as well as in momentum space. We believe that this peak might reflect a

much different process from the ones we described using spin wave theory. We detail

this in the following, but we urge the reader to digest this with caution as this is

rather speculative.

Should we be correct in the assertion that Cooper pairs are bonded across an AF-

correlated pair of Cu-ions, then we expect such entities to exist both in single layered

as well as in bi-layered compounds. However, in bi-layered compounds the Cu-ions

in the two layers that form the bi-layer are also correlated with each other. The

strength of this coupling is not negligible and is given by J⊥ ≈ 10 meV. We sketch

this situation in Fig. 4.15. At low temperatures, we expect all four Copper moments

in this Cooper pair to be aligned anti-ferromagnetically.

It is possible to excite this system, even without breaking the Cooper pair. In

order to show this, we have calculated the energy levels for the four-copper system

using the rules of angular momentum addition. We show the levels in Fig. 4.16. The
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Figure 4.15: Side view of the Cooper pair unit in YBCO. A neutron (blue ball) can interact
with this Cooper pair and flip the direction of the two copper moments without breaking
up the Cooper pair.

lowest energy transition is between two (L = 1, `z = 0) states with an excitation

energy corresponding to 4J⊥, or approximately 40 meV. Visually, this excitation can

be viewed as a simultaneous spin flip of the two Cu-moments that are not directly

involved in the Cooper pair (right panel of Fig. 4.15). Should this excitation be

responsible for the resonance peak, then it directly explains why it only shows as

a peak both in energy and in momentum transfer. The sharpness in momentum is

directly related to the finite-size effects we detailed when we discussed the ordering of

moments on clusters (Section 1.4). Here, the longest wavelength of an excitation able

to excite the system corresponds to 2a. That is, we would see a response at momentum

transfers of 1/2 reciprocal lattice units, but no other momentum transfers would be

allowed close to this value.

Headings et al. have performed [60] polarized neutron scattering experiments of

the resonance peak, and observed a signal corresponding to the resonance peak in the

neutron spin-flip channels. As the transition between the two `z = 0 states would be

a non spin-flip transition, these results appear to rule out our interpretation of the
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Figure 4.16: The excitation energies of the four-Cu system calculated using the rules of ad-
dition of angular momentum together with their degeneracies. The lowest energy transition
corresponds to 4J⊥, or approximately 40 meV.

resonance peak. However, when we look at the details of the experimental set-up, it is

not as simple, even to the point that Headings’s findings are actually consistent with

our interpretation. We list the argument below, but since this argument goes into the

details of what is actually measured in polarized neutron scattering experiments, the

reader may want to skip to the end of this section where we summarize the findings

from spin wave theory.

It is possible for a neutron to scatter in a non-flip process, but still be registered

as having its spin flipped. The essence of the argument is the following: imagine a

neutron is prepared with its spin polarized along a certain direction (let’s say the

x-direction). Next, it gets scattered by the sample in a process where its spin along

a different direction (let’s say the y-direction) is not flipped, such as scattering by

the Cooper pair unit we have described. Next, the scattered neutron is probed to see
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whether its polarization along the x-direction has changed. For the scattering process

described here, in half of the cases we will find that the direction of polarization has

indeed changed. Not because of a spin-flip process, but simply because the spin of

this spin-1/2 particle was measured along another direction (y-direction), erasing all

information of the spin direction perpendicular to this (y-)direction. Thus, in order

to ascertain that Headings et al.[60] were indeed looking at a true spin-flip process,

we need to look at the details of the experimental setup.

In their polarized neutron scattering experiments, Headings et al.[60] measured

the response for neutrons polarized along the direction of momentum transfer (which

made an angle of 21 degrees with the Cu-O planes), along a vector within the plane,

and along a vector perpendicular to both, that is, a vector at an angle of 69 degrees

to the plane. Neutrons only scatter magnetically if there is a component of the Cu-

spin perpendicular to the direction of momentum transfer (intensity ∼ 1-cos2α with

α the angle between the Cu-spin and the direction of momentum transfer). Another

complication is that the Cu-spins are confined to within the planes, but can still point

in any planar direction. Finally, spin excitations are transverse excitations, implying

that we also need a component of the neutron spin perpendicular to the copper spin

in order to get scattering.

We have evaluated these three intensity considerations numerically by averaging

over all possible spin directions of the Cu-moments in the plane, and calculating the

cross-sections for the three polarization directions. Then we ‘erased’ the initial polar-

ization for events where the direction of the neutron spin was probed perpendicular to

the initial polarization direction. In doing so, we found that we could expect non-flip
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scattering events in the spin-flip channel with an intensity ratio of roughly a factor

of 2 between the along-Q and perpendicular-to-Q polarization directions. This ra-

tio was consistent with the reported experimental data[60]. We also calculated the

cross-sections for the non-flip channel (the channel that is ’contaminated’ by phonon

scattering), but within the experimental accuracy we could not tell whether the cal-

culated level of scattering was present, or absent in this channel. Thus, we concluded

that it is quite possible that the resonance peak is associated with scattering by a

Cooper pair assembly, but until there is an experiment with higher accuracy in the

non-flip channel we cannot be confident in this conclusion.

In summary, we tried to make the following points in our discussion of the magnetic

excitations:

� As long as there is some coupling between the chains, then we can expect a

well-defined AF-dispersion in the direction perpendicular to the chains.

� The maximum of this dispersion is lower than that of an isolated AF-chain when

probed along the chain direction.

� There is no evidence for any dispersion curve connecting the incommensurate

lattice point (1/2+δ, 1/2) at E = 0, to excitations at (1/2, 1/2) at finite energy;

these two points are not part of the same branch of dispersions.

� The top part of the hourglass represents excitations along the chain direction,

the lower part is associated with excitations perpendicular to it.

� Within a phase of AF-chains, any intensity at (1/2, 1/2) can only arise from

disorder among the chain arrangements, such as a dynamic character for the
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chains location and phase.

� The resonance peak in the bi-layered compounds might be associated with di-

rectly probing a Cooper pair at an energy that happens to coincide with Ecross.

We have left one issue untouched: why does the lower part of the hourglass only

disperse inwards [toward (1/2, 1/2)], but not outward as it does for other striped

non-superconducting compounds? Note that this issue is independent of whether

the model (Fig. 4.8 and 4.9) or some other model is correct. Whenever we have a

superlattice peak, we expect to see two branches emanate from it. After all, what

system would it be where excitations can only propagate from left to right, but not

from right to left? We have not been able to find an explanation for this in the

literature, only mentions that intensity is transferred to the inward branch without

detailing a mechanism for this transfer. We also do not have an explanation. On

the one hand, we can see that the inward branch should be favored over the outward

branch as soon as disorder is introduced. In the extreme case of the stripes becoming

uncorrelated from each other, we expect all the intensity to be around (1/2, 1/2) at

the expense of the superlattice peak intensity. In addition, the dispersion is very

steep, and as such, we would not be able to observe two branches coming from the

zone center within the resolution of the instrument. Only high resolution experiments

on hypothetical perfectly arranged AF stripes would allow us to do this. In short,

we do not know whether the observed absence of outward dispersion presents a real

issue, or merely reflects the large degree of disorder in the locations and phases of

the AF stripes. We note, that this does not seem to have troubled anyone in the

literature either.
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4.6 Comparison to the Superfluid Phase of 4He

and Superconducting Transition Temperature

The energy scale of the Cooper pairs in the cuprates appears to be much higher than

the superconducting transition temperature; this is in contrast to BCS superconduc-

tors where the energy scale ∆ of the Cooper pairs is comparable to the transition

temperature: ∆ = 1.76kBTc[61]. In this section, we make a comparison between the

superfluid phase of 4He and the superconducting phase of the cuprates to argue that

the the transition temperature in the cuprates is not related to the pairing energy,

but to that of low lying magnetic excitations. As such, the transition temperature

is not linked to the breaking up of Cooper pairs, but rather to an energy gap that

Cooper pairs need to bridge in order to scatter inelastically. This section is the most

speculative of this chapter.

Ever since the discovery of superfluity in helium-4 there have been parallels drawn

between the flow without viscosity in He and the flow of electrons without resistance in

superconductors. This goes back to the early days of the two fluid model, and persists

today with more accurate models and theoretical understanding[61]. However, in

these comparisons the superfluid phase is often mischaracterized, in addition to the

comparisons only being qualitative. In here we make a more accurate comparison

with the aim of trying to find the energy scale in superconductors that determines

the transition temperature.

Liquid 4He undergoes a second order phase transition at T = 2.17 K from a normal

fluid phase into a superfluid phase where the liquid can flow through thin capillaries

without viscosity[61]. Neutron scattering experiments have revealed that the pre-
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diction by Fritz London that a Bose condensate forms in He was correct, with the

condensate fraction determined to be around 8%. This is similar to superconductors

where electrons condense into Cooper pairs. Unfortunately, in comparing the two

systems there is little distinction made between the condensate and the superfluid

fraction in He, whereas the two are very different entities. While the condensate

fraction reaches 8% at T = 0 K, the superfluid fraction (the fraction of the fluid that

partakes in frictionless flow) reaches 100%.

Another way to appreciate the difference between the condensate and the super-

fluid fraction is by looking at an ideal Bose gas of non-interacting atoms. This gas also

undergoes a phase transition, but here 100% of the atoms form the condensate while

the system is not superfluid (0% superfluid fraction). At the heart of this distinction

is that the condensate is a property of the ground state, but the superfluid fraction is

a property of the excited states. We have a similar situation in the superconductors:

the ground state is characterized by a condensation into Cooper pairs (not a conden-

sation of pre-formed Cooper pairs), while the superconducting properties are given

by the gap between the ground state and the excited states. The situation in helium

is often viewed, incorrectly, as being almost identical with the excited states being

associated with kicking a particle out of the Bose condensate. However, as Feynman

already showed, the gap between the ground state and excited states in He is due to

Bose statistics, not to the energy scale of the Bose condensate. We expand on this

in the following so as to arrive at the energy scale that does determine the superfluid

transition temperature and to look for a similar scale in the cuprates.

In order for a fluid flowing through a capillary to slow down, it needs to transfer its
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energy and momentum into internal degrees of freedom of the liquid. In other words,

there should be internal friction, allowing the fluid to heat up. Should a minimum

energy be required to excite an internal degree of freedom, then flow velocities below

that minimum requirement have no means of slowing down. An everyday analogue

would be to go shopping in a dollar store with 50 cents: ultimately, we leave the store

still holding the 50 cents. Bearing in mind, that the velocities are associated with the

slope of dispersion curves. We illustrate in Fig. 4.17[61] what determines the critical

flow velocity below which the flow cannot degrade.

Figure 4.17: Figure reproduced from Montfrooij et al.[61]. Left panel a) shows the quadratic
dispersion as a function of momentum transfer ~q for a non-interacting system of bosons.
This system is 100% Bose condensed, but it is not a superfluid. Left Middle panel (b):
Turning on the interaction between the bosons results in a low-q renormalization of the
dispersion, resulting in a superfluid with a critical velocity determined by the slope shown
by the dashed curve. Right Middle panel (c): Increasing the interaction strength sees
structure appearing in the dispersion curve. Right panel (d): The interaction has been
increased until it represents the interaction between helium atoms. The critical velocity is
now determined by the minimum of the dispersion (no longer by the dashed curve). Note
that the renormalization of the curve at low q is still essential to the argument of there
existing a critical velocity.

Looking at panel (a) of Fig. 4.17 we see the quadratic dispersion of an ideal Bose

gas. The ground state energy (including the condensate) constitutes the horizontal

axis at E = 0. We see directly that this ideal Bose gas is not superfluid as the mini-

mum slope of the dispersion equals zero. Bogoliubov[89] showed that by including a

small interaction between the atoms, that the lower part of the dispersion is renor-
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malized, and now the excitation energy is linear in momentum transfer. In other

words, we observe a finite slope, and therefore, there is a lower critical velocity that

is not equal to zero. Increasing the interaction further, we see that the atoms start to

carve out their own space and more structure appears in the dispersion. A minimum

develops for wavelengths corresponding to the interatomic separations. In essence,

the cost of imposing a density fluctuation in the liquid is lowest when the wavelength

matches the distance that atoms would already like to be at in the first place. In a

solid, this minimum (called the roton minimum in He) would go all the way to zero

and we would recover the phonon dispersion originating from a Bragg point. Notice

how the minimum velocity is now given by the curve through the origin and tangent

to the roton minimum; it is no longer determined by the low-q part of the dispersion.

Feynman explained how the roton minimum is a consequence of the Bose nature

of the 4He atoms, not of the presence of the condensate. These arguments were

quantified by Montfrooij et al.[61] who showed that the entire dispersion curve can

be calculated from first principles based on the notion that the excited states are

characterized by density fluctuations that cannot decay because of the roton gap.

The agreement between these calculations and experiment turned out to be highly

accurate. Moreover, it was possible to relate the superfluid transition temperature Tλ

directly to the minimum velocity vc obtained from the dispersion curve in a simple

equation:

1

2
m(2v2

c ) =
3

2
kBTλ. (4.3)

In a thesis on strongly correlated electron systems the point is not to go into the

details of superfluid helium, but rather to illustrate that it is not necessarily the size of
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the gap between the ground state and the excited states that is important, but rather

the critical velocity associated with it. This is particularly relevant to the cuprates

as they much more closely resemble the situation in He than BCS superconductors

do. The Cooper pairs are very strongly bonded, and the transition temperature is

well below the energy scale of this bond. This is similar to the situation in He where

superflow does not break down because the bosons (atoms) break up, in contrast

to BCS superconductors where the Cooper pairs do break up. This leads us to the

question: is there an equivalent of a critical flow velocity in the superconductors? Note

that a relation like the one shown above (Eq. 4.3) does not hold for superconductors as

electrons do not obey the same velocity distribution as bosons do (not even electrons

bound in Cooper pairs), it merely illustrates that there exists a critical velocity for

(composite) bosons to be able to slow down.

In order to develop an idea of the energy scale involved, we look at the maximum

critical current densities that have been achieved in the cuprates. The highest value

we came across was 8×106 A/cm2[58]. Bearing in mind that the supercurrent flows

through the Cu-O planes, and that a Cooper pair has a charge of 2e, we can convert

the value for of critical current to a critical flow velocity as follows. We use 4×4×12

Å3 as the typical unit cell size. A current density of 8×106 A/cm2 corresponds to

5×1025 electrons/s.cm2 passing by. Since the cross section of a unit cell equals 4×12

Å2, we have that 2.4×1011 electrons flow through a single unit cell every second. At

optimal doping in YBCO we have 1/3 of a charge carrier (1/6 per layer in the bi-

layer) per unit cell. Therefore, the charge contained in 3×2.4×1011 unit cells needs

to pass through a single unit cell. The length of that many unit cells in a row equals
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3×2.4×1011×4 Å= 300 m. Therefore, the average speed of an electron equals 300

m/s, equivalent to 2 meV.Å. This is the value we need to compare the slope of a

dispersion to when looking for critical velocities.

The energy values discussed so far when dealing with spin wave theory and the

resonance peak are far too high to be of relevance. For instance, the resonance peak

would correspond to a velocity of 40 meV/(π/4
√

2/Å)= 36 meV.Å. However, we are

looking for energy gaps of the order of 3 meV at the (1/2, 1/2) point. As it turns out,

energy gaps of this magnitude are present in the magnetic excitation spectrum of the

cuprates and are known as the anisotropy gap.

Because of spin anisotropy the Cu-moments are confined to point in the Cu-O

plane, where they are free to rotate. This is why the system is known as a good

approximation to a 2D Heisenberg anti-ferromagnet. Because of this anisotropy, it

costs a finite amount of energy to point the spins perpendicular to the Cu-O plane.

When doing linear spinwave theory on the AF parent compounds, we find that this

results in a spin gap at the zone center with an energy of J
√

2αD. The actual value

of the anisotropy parameter αD is difficult to determine, with estimates putting it

somewhere around 3 x 10−4 in YBCO. In other words, the anisotropy gap J
√

2αD is

of the order of 3 meV (J ≈ 100 meV), of the same order as hinted at by the reasoning

provided earlier on the critical current. Of course, this can simply be a numerical

coincidence, and it can also be that the comparison to superfluid helium does not hold

water, but it certainly would appear to be an avenue worth exploring as none of the

other energy scales discussed in the literature correspond to the observed transition

temperatures.
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4.7 Conclusions

We have applied the findings on the importance of small changes in inter-ionic sep-

arations to the response of a system to the cuprates. We have identified that the

increase in superexchange interaction when two Cu-ions are pushed closer together

should have ramifications for the understanding of the interplay between electronic ex-

citations and magnetic ones. We have identified particular phonon modes that would

be important in this process, the very same phonon modes that show anomalous

behavior upon cooling down through the superconducting transition. It is not clear

whether this represents electron-phonon coupling in the BCS sense, or whether the

phonon energies simply become renormalized because the Coulomb repulsion between

holes sets up the same ionic displacements that the phonon is trying to create.

We combined the increased likelihood of two individual Cu ions aligning anti-

ferromagnetically (where the superexchange is enhanced) with mobility arguments

for the holes. Doing so, we arrived at a Cooper pairing mechanism and a striped

pattern for regions of antiferromagnetic and ferromagnetic Cu-moment pairing. The

periodicity of these regions matches those observed in experiments. We applied spin

wave theory to these patterns to shed light on the famous hourglass dispersion mea-

sured in the cuprates, arguing that the lower part represents excitations perpendicular

to the stripes, and the upper part being excitations that propagate along the stripes.

We also discussed the resonance peak and how it might be related to probing a Cooper

pair directly, but we could only conclude that this interpretation was consistent with

the overall scenario, not evidence for it.

We ended by suggesting that the relevant energy scale at the heart of the super-
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conducting transition temperature might actually be the spin anisotropy of the Cu

moments that forces them to point in a direction in the Cu-O planes, rather than

perpendicular to it. We made this argument by drawing upon the lessons learned

from the superfluid transition in helium-4. Even if the arguments in that section

might prove to be fallacious, the conclusion that the spin anisotropy might be the

relevant energy scale in the cuprates could well be correct.
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Appendix A

RKKY Interaction - Hamiltonian

The Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is a long range coupling

mechanism mediated by conduction electrons, in which interactions of conduction

electrons with magnetic moments induce a coupling of localized magnetic moments.

Conduction electrons interact with magnetic moments through an exchange interac-

tion, the strength of which is defined as J . This interaction was first proposed as an

explanation for the uncharacteristically large nuclear spin resonance seen in silver by

M.A. Ruderman and C. Kittel in 1954 at th University of California, Berkeley. T.

Kasuya and K. Yoshida later generalized the theory to what is known today as the

RKKY interaction.

First, the material considered must be able to be described by a crystalline lattice

and can be described by a set of plane wave solutions to the Schrodinger Equation of

the form Ψ(r) = eik ·ru(r), where r is position, Ψ is the wave function, k is the crystal

momentum wave vector, and u is a function with identical periodicity as the crystal.

These solutions are colloquially known as Bloch States. Next, assume N electrons in

the crystal with well defined positions Ri and localized spins ~Si for i = 1, ..., N ; the
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Hamiltonian can be written as

rH =
∑
σ=↑↓

∑
k

E(k)c†skcsk +
N∑
i=1

∑
s,s′=↑↓

∑
k ,k ′

eiRi·(k ′−k)Jkk ′ ~Si · (c†sk ~σss′cs′k ′) (A.1)

where k is the Block momentum vector, ~σ is a a vector whose x,y,z components are the

Pauli matrices, and c†sk (csk ) are the creation and annihilation operations, respectively,

of an electron with spin s.

The conduction electrons mediating the interaction partially occupy the conduc-

tion band and only conduction electrons close to the Fermi Surface therefore con-

tribute strongly to the interaction strength. The energy of such electrons can be

written as E(k) = ~2k 2/2m∗ for k ≤ kF where kF is the momentum at the Fermi

Level and m∗ is the effective mass of the “heavy electron” in the crystal. Using sec-

ond order perturbation theory concerning J , we can write the matrix element Hij,

the interaction between two localized moments, as

Hij =
~Si · ~Sj

4

|J |2m∗
(2π)3R4

ij~2
[2kFRij cos(2kFRij)− sin(2kFRij)] . (A.2)

From this expression, the interaction strength of J ∼ J2 and is oscillatory in nature.

Therefore small changes in the distance between neighbors, Ri, can alter the strength

of J and can induce either ferromagnetic or antiferromagnetic coupling between two

magnetic moments.

120



Appendix B

Two and Three Level Systems

Consider a crystal solid comprised of N distinguishable atoms each with two distinct

energy levels ε and ε + ∆ corresponding to spin up or spin down respectively. This

system is colloquially known as a two level system.

The partition function for such a system can be written as

Z = [g1e
−ε/kBT + g2e

−(ε+∆)/kBT ]N = [e−ε/kBT (g1 + g2e
−∆/kBT )]N , (B.1)

where g1 and g2 are the degeneracies for the first and second energy level. We can

easily write down the energy, E, for the two level system as well

E = N [
g1εe

−ε/kBT + g2(ε+ ∆)e−(ε+∆)/kBT

e−ε/kBT (g1 + g2e−∆/kBT )
] = N [ε+

g2∆e−(ε+∆)/kBT

g1 + g2e−(ε+∆)/kBT
]. (B.2)

Using the partition function, the free energy, F , can be written as F = −kbT ln(Z),

F = N [ε− kbT ln(g1 + g2e
−∆/kBT )]. (B.3)

The specific heat can be found using C = dE/dT ,

C = Nkb(
∆

kbT
)2 g1

g2

e∆/kBT

[1 + g1
g2
e∆/kBT ]2

. (B.4)

Integrating C or using S = −dF/dT , we can calculate the entropy, S,

S = Nkb[ln(g1 + g2e
−∆/kBT ) +

∆e−∆/kBT

T [g1
g2

+ e−∆/kBT ]
]. (B.5)
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Assuming an effective magnetic moment p1 and p2 (in units of µB) respectively, the

susceptibility, χ, is given by

χ = [
NµB

2

3kbT
]
p2

1 + p2
2
g2
g1
e−∆/kBT

1 + g2
g1
e−∆/kBT

. (B.6)

For a three level system, consider the same system as the two level system; a

crystal solid comprised of N distinguishable atoms each albeit with three distinct

energy levels. Without loss of generality, the energy levels can be chosen to be 0, ε

and ε+ ∆.

The partition function for such a system can be written as

Z = [g1 + g2e
−ε/kBT + g3e

−(ε+∆)/kBT ]N = [g1 + e−ε/kBT (g2 + g3e
−∆/kBT )]N , (B.7)

From the partition function, we can calculate the appropriate derivatives from

above in order to calculate the necessary property.
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Appendix C

Magnetic Units - Gaussian (CGS)
and SI (MKS) Units

In magnetic systems and experiments, Gaussian-CGS units are commonly used. The

standard units are centimeters (cm), grams (g), and seconds (s) and while not as

common, the gauss (G) and the oersted (Oe) are used as well. In contrast, SI units

use meters (m), kilograms (kg), seconds (s), amperes (A), and moles (mol). The unit

of a tesla (T) is also commonly used in SI units and can be written as

[T] =
[Vs]

[m2]
=

[N]

[Am]
=

[J]

[Am2]
=

[kg]

[Cs]
=

[Ns]

[Cm]
=

[kg]

[As2]
(C.1)

where [C] = coulombs, [J] = joules, [N] = newtons, and [V] = volts. Constants for

magnetic systems can be written as

µB = 9.274× 10−21 [erg]

[G]
= 9.274× 10−24 [J]

[T]
. (C.2)

µ0 =
[Tm]

[A]
=

[N]

[A2]
=

[H]

[m]
. (C.3)

where [H] = Henry. In Gaussian units,

µ0 = 1. (C.4)
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In Gaussian-CGS units, [emu] is also commonly used and can be written as

1[emu] = 10−3 [J]

[T]
= 1.0783 ∗ 1020[µB]. (C.5)

In magnetization:

1
[emu]

[mol]
=

[1.0783 ∗ 1020[µB]]

[6.023 ∗ 1023[Fu]]
=

1

5585

[µB]

[Fu]
(C.6)

where [Fu] = formula units or particles, which could be atoms, molecules, electrons,

etc... depending on the system. In susceptibility:

1
[emu]

[mol]
∗ [1[µB]/[Fu]]

[5585[emu]/[mol]]
∗ 104[G]

[T]
=

1.7905[µB]

[FuT]
. (C.7)

In Gaussian units,

B[G] = H[Oe] +M [G or Oe]. (C.8)

Magnetization, M , can be defined as

M =
magnetic moment

per unit volume
. (C.9)

which can also be given as [µB]/[Fu]. DC susceptibility is given χ = M/H while the

ac-susceptibility is given by χ = dM/dH.
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Appendix D

Dispersion Program

We have solved the eigenvalue problem numerically using standard computer software

and following the equations from the 1968 treatise written by S. Tjablikow[85]. We

include the program for this below. The program was used to calculate the dispersion

seen in Fig. 4.14.
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 function spinwavematrixLSCOsmall,x,h,k,l,jab=jab,jaf=jaf
 ; returns eigenvalues for a given (h,k,l)
 ; x is a dummy variable)
 h=(double(h))(0) & k=double(k) & l=double(l)  
 if not keyword_set(jab) then jab=1.d0  ; ferromagnetic exchnage
 if not keyword_set(jaf) then jaf=1.d0  ; af exchange

 
 diag=lindgen(32)*33 
 mat=dcomplexarr(16,16)  
 sab=mat & rab=mat ; the S and R matrices from page 111 in Tjablikow

 
 ; we only look at nearest neighbors, take a=b=c=one
 ; use extended 8x2x1 unit cell
 nx=float(8) & ny=float(2) & nz=float(1)
 astar=dcomplex(0,1)*2.d0*!dpi/1.  
 bstar=dcomplex(0,1)*2.d0*!dpi/1.
 cstar=dcomplex(0,1)*2.d0*!dpi/1.
 ; phase factors for nearest neighbors
 horpos=exp(astar*scalar_product([h,k,l],[1./nx,0,0])) & conhor=conjugate(horpos)
 verpos=exp(bstar*scalar_product([h,k,l],[0.,1./ny,0])) & conver=conjugate(verpos)
 zpos=exp(cstar*scalar_product([h,k,l],[0.,0,1./nz]))  & conz=conjugate(zpos)
 ; first fill out the sab diagonal
 
 n=[0,3,4,7] & for i=0,n_elements(n)-1 do sab(n(i),n(i))=2.0*jab
 n=[8,11,12,15] & for i=0,n_elements(n)-1 do sab(n(i),n(i))=0.5*jaf+1.5*jab
 n=[1,2,5,6] & for i=0,n_elements(n)-1 do sab(n(i),n(i))=0.5*jab+1.5*jaf 
  n=[9,10,13,14] & for i=0,n_elements(n)-1 do sab(n(i),n(i))=2.*jaf

 ; do all neighbor pairs by only taking left-right and down-up directions to avoit 
double counting
 n= 0 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 sab(n,mu)=-0.5*jab*(conver+verpos) & sab(n,mr)=-0.5*jab*conhor & 
sab(mr,n)=conjugate(sab(n,mr)) & sab(mu,n)=conjugate(sab(n,mu)) 
 
 n= 1 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 rab(n,mu)=0.5*jaf*(conver+verpos) & rab(n,mr)=0.5*jaf*conhor & rab(mr,n)=rab(n,mr) 
& rab(mu,n)=rab(n,mu)

 n= 2 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 rab(n,mu)=0.5*jaf*(verpos+conver) & sab(n,mr)=-0.5*jab*horpos & 
sab(mr,n)=conjugate(sab(n,mr)) & rab(mu,n)=rab(n,mu)
 
 n= 3 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 sab(n,mu)=-0.5*jab*(verpos+conver) & sab(n,mr)=-0.5*jab*horpos & 
sab(mr,n)=conjugate(sab(n,mr)) & sab(mu,n)=conjugate(sab(n,mu))
 
 n= 4 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16



 sab(n,mu)=-0.5*jab*(verpos+conver) & sab(n,mr)=-0.5*jab*horpos & 
sab(mr,n)=conjugate(sab(n,mr)) & sab(mu,n)=conjugate(sab(n,mu))
 
 n= 5 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 rab(n,mu)=0.5*jaf*(verpos+conver) & rab(n,mr)=0.5*jaf*horpos & rab(mr,n)=rab(n,mr) 
& rab(mu,n)=rab(n,mu)
 
 n= 6 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 rab(n,mu)=0.5*jaf*(conver+verpos) & sab(n,mr)=-0.5*jab*conhor & 
sab(mr,n)=conjugate(sab(n,mr)) & rab(mu,n)=rab(n,mu)
 
 n= 7 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 sab(n,mu)=-0.5*jab*(conver+verpos) & sab(n,mr)=-0.5*jab*conhor & 
sab(mr,n)=conjugate(sab(n,mr)) & sab(mu,n)=conjugate(sab(n,mu)) 

 n= 8 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 rab(n,mr)=0.5*jaf*conhor & sab(n,mu)=-0.5*jab*(conver+verpos) & 
sab(mu,n)=conjugate(sab(n,mu)) & rab(mr,n)=rab(n,mr)

 
 n= 9 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 rab(n,mu)=0.5*jaf*(verpos+conver) & rab(n,mr)=0.5*jaf*horpos & rab(mr,n)=rab(n,mr) 
& rab(mu,n)=rab(n,mu)

 n= 10 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 rab(n,mu)=0.5*jaf*(conver+verpos) & rab(n,mr)=0.5*jaf*conhor & rab(mr,n)=rab(n,mr) 
& rab(mu,n)=rab(n,mu)
 
 n= 11 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 sab(n,mu)=-0.5*jab*(verpos+conver) & sab(n,mr)=-0.5*jab*horpos & 
sab(mr,n)=conjugate(sab(n,mr)) & sab(mu,n)=conjugate(sab(n,mu))
 
 n= 12 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 rab(n,mr)=0.5*jaf*horpos & sab(n,mu)=-0.5*jab*(verpos+conver) & 
sab(mu,n)=conjugate(sab(n,mu)) & rab(mr,n)=rab(n,mr) 
 
 n= 13 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 rab(n,mu)=0.5*jaf*(conver+verpos) & rab(n,mr)=0.5*jaf*conhor & rab(mr,n)=rab(n,mr) 
& rab(mu,n)=rab(n,mu)

 n= 14 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 rab(n,mu)=0.5*jaf*(verpos+conver) & rab(n,mr)=0.5*jaf*horpos & rab(mr,n)=rab(n,mr) 
& rab(mu,n)=rab(n,mu)

 n= 15 & mu=n+8 & mr=n+1 & if mr/8*8 eq mr then mr=mr-8 & if mu gt 15 then mu=mu-16
 sab(n,mu)=-0.5*jab*(conver+verpos) & sab(n,mr)=-0.5*jab*conhor & 
sab(mr,n)=conjugate(sab(n,mr)) & sab(mu,n)=conjugate(sab(n,mu))
 
 sab=conjugate(transpose(sab))



uber=dcomplexarr(32,32)
uber(0:15,0:15)=conjugate(sab)
uber(0:15,16:31)=-conjugate(rab)
uber(16:31,0:15)=rab
uber(16:31,16:31)=-sab

H = LA_ELMHES(uber, q,PERMUTE_RESULT = permute, SCALE_RESULT = scale)

; Compute eigenvalues

eigenvalues = LA_HQR(h, q, PERMUTE_RESULT = permute)

eigenvectors = LA_EIGENVEC(H, Q, PERMUTE_RESULT = permute, SCALE_RESULT = scale)

eigenvalues=float(eigenvalues)
ind=where(eigenvalues ge 0)
eigenvalues=eigenvalues(ind)
ss=sort(eigenvalues) & eigenvalues=eigenvalues(ss)
return,eigenvalues

 end  
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