
 

 

UTILIZATION AND LIMITATIONS OF SOIL HEALTH METRICS IN  

MISSOURI CORN PRODUCTION DECISIONS

 

A Dissertation Presented to 

The Faculty of the Graduate School 

at the University of Missouri 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

 

By 

JEFFREY DAVID SVEDIN 

Drs. Newell Kitchen, Kristen Veum, and Stephen Anderson Dissertation Supervisors 

May, 2022 

 

 

 

 

 

 

 

 

 

 

 

 



 

The undersigned, appointed by the dean of the Graduate School, have examined the 

dissertation entitled 

 

UTILIZATION AND LIMITATIONS OF SOIL HEALTH METRICS IN  

MISSOURI CORN PRODUCTION DECISIONS 

 

presented by Jeffrey D. Svedin, 

A candidate for the degree of Doctor of Philosophy, Natural Resources, and hereby 

certify that, in their opinion, it is worthy of acceptance. 

 

 

 

Dr. Newell Kitchen 

 

 

 

Dr. Stephen Anderson 

 

 

 

Dr. Kristen Veum 

 

 

 

Dr. Robert Myers 

 

  



 

 

DEDICATIONS 

To 

My beautiful and loving wife 

  



 

ii 

 

ACKNOWLEDGEMENTS 

First, I must thank my Heavenly Father and Savior Jesus Christ to whom I 

acknowledge for every good decision and major accomplishment in my life. I am filled 

with gratitude for their abundant mercy and love.  

I remember a distinct thought my senior year of high school that only someone truly 

idiotic would be willing to go 10+ more years of school just to add PhD to the end of their 

name. Well, 11 years after high school, I guess I was that special kind of crazy. Thankfully, 

my attitude has changed, and I could not have chosen a more worthwhile and rewarding 

pursuit. However, it would be a large leap of bravado to say that I have traveled this journey 

alone. The saying goes that it takes a village to raise a child, and I think that saying works 

well for finishing a PhD. There is no way that this ‘child’, me, could have finished my PhD 

without my own support ‘village’. 

First, I must thank my smoking hot wife Kayna. I started this PhD without her help, 

and it has been night and day difference with her at my side. She always showed her loving 

support when I needed it most; whether it was helping with dinner or giving me confidence 

during the all nighters studying for comprehensive exams, last minute finalization of final 

projects, or finalizing manuscripts for publication. She is the spice that adds flavor to my 

life and I’m the luckiest man in the world to have her by my side.  

Ninety-nine percent of who I am I owe to my parents. I couldn’t have asked for 

better examples of hard work and commitment to finishing what you start. Mom, thank you 

for encouraging me to push past my perceived boundaries while being a constant example 

that I always have enough time to help someone in need. Dad, thank you for dragging me 

around the farm to hand you tools and teach me how to farm, there isn’t anyone else I 



 

iii 

 

would rather spend a day working with. I am grateful for my FIVE younger sisters, without 

their examples and influence I would likely have grand delusions that men are the superior 

species. Each of them are my superior in every way that matters and I look up to each of 

them. 

I couldn’t have asked for a better equipped committee to guide and instruct me 

through this wonderful degree. They all worked tirelessly to ensure my success. Thank you 

Dr. Newell Kitchen for providing unwavering optimism, vision, and willingness to jump 

in and help harvest corn during the hottest parts of the year. Thank you for your timely 

wisdom and “life” advice, and I will always appreciate your hot tub insights. Thank you, 

Dr. Kristen Veum, for your patience as you walked me through the world of soil health and 

challenged me to open my eyes to the many soil analyses available. Thank you, Dr. Stephen 

Anderson, for always being willing to answer all my academic questions and helping 

ensure that I had every crossed “T” and dotted “I” for the twists and turns of the University 

of Missouri graduate programs. Thank you, Dr. Myers, for always having your door open 

to answer questions that I had and your willingness to connect me to materials that I was 

previously unaware. Finally, I must thank Dr. Curtis Ransom, the “unofficial” committee 

member. I started as his dish washer at Brigham Young University and ended up following 

him to Missouri to keep learning from his unending brain of information. He always was 

available to help, whether it was last minute R Studio homework, field work, or walking 

me through the world of machine learning. No one has been more committed and spent 

more time ensuring my success than Curtis.  

One of the unadvertised joys of graduate school are the other graduate students. I 

am forever indebted to Matthew Henry for his willingness to collaborate and work on this 



 

iv 

 

project together. I couldn’t have asked for a more willing partner to tackle the mountain of 

field and lab work. He always was willing to do anything that needed done and never 

complained. Most of practical agronomic knowledge for Missouri I owe to Lance Conway. 

He is a fantastic precision ag instructor, and no one has a better feel for the heartbeat of 

Missouri row crop production than Lance. He is an unending source of practical knowledge 

and always answered the phone when I had questions about how to grow corn in Missouri.  

Thanks must got to my cubicle mate and inspiration to keep life interesting Stirling 

Stewart. Thank you for your unending willingness to help with field work and the countless 

“crazy adventures” after work hours. There isn’t anyone else I would rather have a near 

death experience with. I must also acknowledge our fellow partner in crime Jacob Baily. 

Thank you for your constant energy and introducing me to the wonderful world of rock 

climbing and mountain biking. Graduate school can consume your life, and I must thank 

them for any semblance of a work life balance. Nothing energized me more than a weekend 

spent with them mountain biking and playing Monopoly deal or spikeball until 2 am.  

I couldn’t have asked for a better research team than the USDA Water Quality and 

Cropping Systems ARS unit. Thank you, Dr. Ken Sudduth, Scott Drummond, Kurt 

Heilman, and Matt Volkmann, for providing technical assistance. They were always a 

phone call away when the equipment wasn’t working or when I had a flat tire. Further, I 

could not have done my work without the many farmers or agronomists that provided fields 

for us to conduct this research. A huge thank you goes out to them for their patience and 

eagerness to help. 

Finally, I must acknowledge Dr. Bryan Hopkins and Neil Hansen for introducing 

me to my love of soil and their continued support even after I left BYU. I have had 



 

v 

 

wonderful professors that have put in countless hours of tutelage that were integral in my 

success as a student.  

This is but a small list of the few “village” members that contributed to my PhD 

completion. There are countless others that I have not listed, I thank each of you. I am 

forever in your debt.    



 

vi 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS ............................................................................................. ii 

LIST OF TABLES ........................................................................................................... ix 

LIST OF FIGURES ........................................................................................................ xii 

ABSTRACT .................................................................................................................... xix 

DISSERTATION INTRODUCTION ..............................................................................1 

Chapter 1: ...........................................................................................................................3 

Literature Review ..............................................................................................................3 

1.1 Relating Soil health Indicators with Soil Function .............................................. 4 

1.1.1 Soil Respiration .................................................................................................. 5 

1.1.2 Potassium Permanganate Oxidizable (Active) Carbon ...................................... 8 

1.1.3 Autoclaved-citrate extractable (ACE) Soil Protein .......................................... 11 

1.1.4 Extracellular Enzymes ..................................................................................... 14 

1.1.5 Soil Health Scores ............................................................................................ 16 

1.2 An Introduction to Soil Health and Soil Fertility with their Possible Interactions . 17 

1.3 Behind the Curtains of Fertilizer Recommendations ......................................... 18 

1.4 Comprehensive Soil Sampling: Connecting Soil Health and Soil Fertility ............ 23 

1.5 Connecting Soil Health to Productivity ............................................................. 25 

1.6 Research Objectives ................................................................................................ 27 

1.7 Bibliography ........................................................................................................... 28 

1.8 Tables and Figures .................................................................................................. 42 

Chapter 2: .........................................................................................................................43 

Can Soil Biological Properties Improve Phosphorus and Potassium Corn Fertilizer 

Recommendations? ..........................................................................................................43 

2.1 Abstract ................................................................................................................... 43 

2.2 Introduction ............................................................................................................. 44 

2.3 Materials and Methods ............................................................................................ 46 

2.3.1 Field Conditions and Experimental Design ..................................................... 46 

2.3.2 Soil and Plant Sample Collection, and Fertilizer Treatments .......................... 47 

2.3.2 Data Processing, Analysis, and Statistics ........................................................ 50 



 

vii 

 

2.4 Results and Discussion ........................................................................................... 51 

2.4.1 Evaluating Missouri Phosphorus and Potassium Fertilizer Recommendations51 

2.4.2 Integrating Soil Health into Soil Fertility Recommendations.......................... 54 

2.4.3 Identifying Soil Analyses to Advise Fertilizer Recommendations .................. 57 

2.5 Conclusions ............................................................................................................. 59 

2.6 Bibliography ........................................................................................................... 61 

2.7 Tables and Figures .................................................................................................. 67 

Chapter 3: .........................................................................................................................76 

Developing Agronomic Recommendations for Potassium Permanganate Oxidizable 

Carbon ..............................................................................................................................76 

3.1 Abstract ................................................................................................................... 76 

3.2 Introduction ............................................................................................................. 77 

3.3 Materials and Methods ............................................................................................ 80 

3.3.1 Site Description and Experimental Design ...................................................... 80 

3.3.2 Soil and Plant Collection, Processing, and Analysis ....................................... 82 

3.3.3 Data Processing, Analysis, and Statistics ........................................................ 84 

3.4 Results and Discussion ........................................................................................... 87 

3.4.1 Linear Relationships and Model Performance ................................................. 87 

3.4.2 Identifying Yield Governing Factors ............................................................... 89 

3.4.3 Benchmarks for Interpreting Soil Health Metrics ............................................ 92 

3.4.4 Potential Application of the POXC Benchmark .............................................. 95 

3.5 Conclusions ............................................................................................................. 98 

3.6 Bibliography ........................................................................................................... 99 

3.7 Tables and Figures ................................................................................................ 107 

Chapter 4: .......................................................................................................................118 

A Regional Missouri Soil Health Assessment: Endemic and Management Effects 

when Interpreting Soil Health Metrics ........................................................................118 

4.1 Abstract ................................................................................................................. 118 

4.2 Introduction ........................................................................................................... 119 

4.3 Materials and Methods .......................................................................................... 121 

4.3.1 Field Site Description and Data Collection ................................................... 121 



 

viii 

 

4.3.2 Data Processing, Analysis, and Statistics ...................................................... 125 

4.4 Results and Discussion ......................................................................................... 127 

4.4.1 Random Forest and LASSO Results .............................................................. 128 

4.4.2 Soil and Environmental Conditions Effect Upon Soil Health Factors .......... 138 

4.4.3 Regional Evaluation Soil Health Indicators Sensitivity to Management Practices

................................................................................................................................. 140 

4.5 Conclusions ........................................................................................................... 143 

4.6 Bibliography ......................................................................................................... 145 

4.7 Tables and Figures ................................................................................................ 152 

DISSERTATION CONCLUSIONS .............................................................................157 

APPENDIX .....................................................................................................................160 

APPENDIX A: ................................................................................................................161 

Supplementary Materials for Chapter 2 ...................................................................... 161 

APPENDIX B: ................................................................................................................164 

Supplemental Materials for Chapter 3 ........................................................................ 164 

APPENDIX C: ................................................................................................................170 

Supplemental Materials for Chapter 4 ........................................................................ 170 

APPENDIX D: ................................................................................................................185 

Legacy Benefits of Pasture Systems on Soil Health and Productivity Remain 10 Years 

after Row Crop Production...........................................................................................185 

D.1 Abstract ................................................................................................................ 185 

D.2 Materials and Methods ......................................................................................... 186 

D.3 Results and Discussion......................................................................................... 188 

APPENDIX E: ................................................................................................................191 

Anthropogenic Management Practices Effect Spatial Variability of Common Soil 

Health Indicators ...........................................................................................................191 

E.1 Abstract................................................................................................................. 191 

E.2 Materials and Methods ......................................................................................... 192 

E.3 Results and Discussion ......................................................................................... 195 

VITA................................................................................................................................199 

 



 

ix 

 

LIST OF TABLES 

 

Chapter 2: Can Soil Biological Properties Improve Phosphorus and Potassium 

Corn Fertilizer Recommendations? 

Table 2.1 Soil test abbreviations, common names, brief method descriptions, units, and 

primary references. ............................................................................................... 67 

Table 2.2 List and description of environmental and management data collected and used 

in phosphorus and potassium random forest models predicting relative yield 

response to fertilization. All management data are reflective of the previous five 

years before implementation of fertilizer monitoring sites. .................................. 68 

Table 2.3 Model statistics for random forest model algorithms with relative yield to 

phosphorus or potassium fertilization as dependent variables. Included explanatory 

variables includes suites of soil fertility, soil health, management and 

environmental variables that are identified in Tables 1 & 2. Eighty percent of the 

dataset was partitioned for model calibration with the remaining 20% used for 

validating developed models. RMSE was calculated from the difference between 

predicted error and observed error. ....................................................................... 69 

Chapter 3: Developing Agronomic Recommendations for Potassium 

Permanganate Oxidizable Carbon 

Table 3.1 Descriptions of management and environmental variables included in evaluation 

of grain productivity. All management practices reflect the previous five years of 

management history. Major Land Resource Area descriptions are available through 

the USDA Natural Resources Conservation Services. ....................................... 107 

Table 3.2 Variable descriptive statistics for soil analysis, climate, and management 

practices. ............................................................................................................. 108 

Table 3.3 Reported statistics for training and testing datasets for three statistical methods.

............................................................................................................................. 109 

Table 3.4 Stepwise linear model results fit to the whole dataset with reported model 

statistics and variable coefficients. The stepwise model fit was restricted to identify 

the five most significant variables. The optimal number of final variables was 

determined a priori through cross-validation (Table 3.3). .................................. 110 

Table 3.5 Reported statistics for nonlinear models, shown for both training and testing 

datasets. ............................................................................................................... 111 

 



 

x 

 

 

Chapter 4: A Regional Missouri Soil Health Assessment: Environmental and 

Management Effects when Interpreting Soil Health Metrics 

Table 4.1 Summary statistics for soil biological analysis broken apart by depth. Summary 

statistics include mean ± standard error, minimum, and maximum observed values.

............................................................................................................................. 152 

Table 4.2 Number of soil samples for each management practice. ................................ 153 

Table 4.3 Results for random forest and least absolute shrinkage selection operator 

(LASSO) statistics. Final model correction factors are included for random forest 

(mtry) and LASSO (lambda). Models were trained on 80% of the dataset with 

reported R2 and RMSE from final model predictions upon the validation dataset. 

The highest R2 are bolded to identify the best model performance for each soil 

health indicator.................................................................................................... 154 

Table 4.4 Coefficients for final LASSO regression models used to predict each soil health 

indicator and separated by sampling depth. The top three coefficients with the 

largest magnitude are bolded for each model. Coefficients are scaled, but the 

relative magnitude within a model represent the relative impact that indicator 

presents on the specific soil health metric. ......................................................... 155 

Table 4.5 On-farm recommendations for regional soil health assessments. Recommended 

sampling depths were determined by choosing the lowest RMSE and highest R2 of 

the models. Soil and environmental co-factors were included if their coefficient 

magnitude was one of the top three in magnitude in the LASSO models (Table 3). 

Checkmarks reflect regional sensitivities with  identifying the effect was one of 

the top three factors governing that soil health indicator while a single  represents 

the effect was meaningful but not one of the governing factors identified in Table 

4.4........................................................................................................................ 156 

Appendix D: Perennial System Benefits on Soil Health and Row Crop 

Productivity Remain 10 years after Implementing Row Crop Production 

Table D.1 Annual yield from two adjacent fields with similar soil and topographies. Both 

fields are currently corn-soybean rotation with no-till soil management. Before 

2011, the North field was a perennial pasture for 30+ years while the south was in 

a corn-soybean rotation with annual tillage. Positive effects from the perennial 

system are evident, with greater yield observed in the North field in every season. 

Further, effects from the perennial system remain after 10 years of row cropping, 

with 2021 corn yield in 130% greater in the North field. Perennial systems effects 

disproportionately benefited corn yield with a 10% greater average yield increase 

than soybean over the 10-year period. Further work is necessary to identify why 

corn grain yield is more sensitive to soil health systems, but I hypothesize that at 

this field site differences occur because of challenges in planting and emergence in 

the south field. The impacts from historical erosion processes on the hydrologic 



 

xi 

 

cycle and surface topsoil in the South field provide challenges in planting with 

effects on seedling emergence, which disproportionately effects corn grain yield. 

Therefore, effects of improved soil health are not limited to soil biological, 

physical, and chemical processes, but can expand to effect agronomic practices that 

facilitate productive and sustainable cropping systems. ..................................... 188 

 

Appendix E: Perennial System Benefits on Soil Health and Row Crop 

Productivity Remain 10 years after Implementing Row Crop Production 

Table E.1 Mean statistics and results for selected soil health indicators and corresponding 

soil fertility tests. Erosion impacts are evident in the clay content, with clay content 

being the greatest where the terraces were recently implemented and the least in the 

perennial pasture. The greater clay content in the S-Terraces reflects the impact of 

topsoil erosion and subsequent exposure of subsoil clay content. ...................... 195 

  



 

xii 

 

LIST OF FIGURES 

Chapter 1: Literature Review 

Figure 1.1 An example empirical relationship of relative yield response to soil nutrient 

concentration with “optimal” interpretation classes. Yield response to fertilizer 

above the “critical level” is unexpected but yield increases are expected with some 

level of certainty below that nutrient concentration threshold (McGrath et al., 

2014). .................................................................................................................... 42 

  

Chapter 2: Can Soil Biological Properties Improve Phosphorus and Potassium 

Corn Fertilizer Recommendations? 

Figure 2.1 Panel a) monitoring site design, fertilizer treatments, and soil sampling scheme, 

and panel b) a map of Missouri soil regions by Major Land Resource Areas and 

geolocation of fields with fertilizer monitoring sites. ........................................... 70 

Figure 2.2 Pearson correlation matrix of soil analysis included in soil fertility and soil 

health evaluations. The size and color of circles reflect the sign and magnitude of 

the correlation between variables with coefficients identified within each circle. See 

Table 1 for analysis descriptions........................................................................... 71 

Figure 2.3 Boxplots of sampled soil fertility and soil health analyses. Abbreviations and 

descriptions are included in Table 1. Bold line in the middle indicates the median 

value, top and bottom of the boxes represent 75 and 25% of the data, respectively, 

while top and bottom of the whiskers represent 95 and 5 % of the data, respectively; 

outliers are represented by circles outside the whiskers. ...................................... 72 

Figure 2.4 Boxplots of yield across treatments and seasons with means identified with 

white diamonds. Treatment fertilization included 1) no fertilization 2) 112 kg K2O 

ha-1 3) 112 kg P2O5 ha-1. Bold line in the middle indicates the median value, top and 

bottom of the boxes represent 75 and 25% of the data, respectively, while top and 

bottom of the whiskers represent 95 and 5% of the data, respectively; outliers are 

datapoints outside the whiskers. ........................................................................... 73 

Figure 2.5 Relationships between a) STK and b) STP and relative corn yield response from 

fertilization across all experimental years. Vertical dashed lines represent 

University of Missouri soil fertility ratings. Fertility ratings are labeled with crop 

response considered unlikely for soil test values in the High rating categories. 

Under each rating label, the number of observations and percent of observations in 

that fertility rating with ≥ 5% yield increase are reported. .................................. 74 

Figure 2.6 Variable importance plots for established random forest models that included 

soil fertility tests. Panels A and B reflect random forest prediction of relative yield 

response to P fertilization, panels C and D reflect random forest prediction of 

relative yield response to K fertilization. Two methods of VIP are displayed, panels 



 

xiii 

 

A and C are the increase in node purity which reflect the reduction in the residual 

sum of squares at each split and summed over all splits and trees while panels B 

and D represent the percent increase in mean-square-error as the variable is 

randomly selected and permutated over the dataset while. For both methods, the 

greater the number the greater the relative importance in predicting yield response 

to fertilization. ....................................................................................................... 75 

Chapter 3: Developing Agronomic Recommendations for Potassium 

Permanganate Oxidizable Carbon 

Figure 3.1 A map of Missouri soil regions by Major Land Resource Areas and geolocation 

of fields with established monitoring sites for yield collection. ......................... 112 

Figure 3.2 Linear relationships between soil health indicators (0-5 and 0-15 cm) and yield 

with reported model equations and r2 statistics. Included soil health indicators are 

A) acid phosphatase B) arylsulfatase C) β-glucosidase D) permanganate oxidizable 

carbon, E) soil organic carbon, F) soil respiration, G) total nitrogen, and H) 

autoclaved citrate extractable protein. ................................................................ 113 

Figure 3.3 Variable importance rankings from the Random Forest results predicting corn 

grain yield at 445 monitoring sites in 89 fields in Missouri. Variable importance is 

calculated by measuring the mean decrease in accuracy (MSE) as an explanatory 

variable is randomly permutated. The greater the number and ranking, the more 

important the variable in predicting productivity. All soil tests, management 

practices, and SSURGO data are included. ........................................................ 114 

Figure 3.4 Variable importance rankings from the conditional inference forest (CIF) results 

predicting corn grain yield at 445 monitoring sites in 89 fields in Missouri. The 

greater the number and ranking, the more important the variable in predicting 

productivity. All soil tests, management practices, and SSURGO data are included.

............................................................................................................................. 115 

Figure 3.5 Partial dependency plots for climate, soil health, and soil fertility variables in 

predicting yield with the random forest algorithm. Blue lines reflect a LOESS 

smoothed line to highlight general trends. The y-axis is predicted yield from the 

random forest model with the x-axis reflects the range of values observed in this 

dataset for the indicated explanatory variable. The raw partial dependency 

relationship is indicated with the black line, with the overlaying blue line reflecting 

a smoothed function of the partial dependency relationship. Vertical red lines in 

soil test K and P plots are established regional critical concentrations to inform P 

and K fertilization. .............................................................................................. 116 

Figure 3.6 Decision and conditional inference tree for Missouri corn grain yield 

productivity. Splitting values are in the units of the parameter used for the split 

(Table 3.1), with n representing the number of observations included in each split 

and terminal node. Decision tree splits are conditional upon the minimization of 

residual sum of squares of the dataset while conditional inference trees are 



 

xiv 

 

dependent upon an a priori significance level (p < 0.05). Boxplots for the 

conditional inference tree reflect the variability of yield (Mg ha-1) at the terminal 

node with significant p-values identified at each node split. .............................. 117 

 Appendix A: Supplemental Material for Chapter 2 

Figure A.1 Relationships between soil organic matter and relative corn yield response from 

sulfur fertilization across all experimental years. Generally, soil organic matter was 

a poor indicator of yields response to sulfur fertilizer application. .................... 161 

Figure A.2 Relationships between the University of Missouri recommended sulfate-sulfur 

test and relative corn yield response from sulfur fertilization across all experimental 

years. No significant trends were identified, indicating that the current 

recommended sulfur soil analysis is an ineffective indicator of sulfur nutrient status.

............................................................................................................................. 162 

Figure A.3 Observed yields over all experimental sites for each fertilizer treatment divided 

by major land resource area (MLRA). Treatments included 1) unfertilized control; 

2) 112 kg ha-1 K2O; and 3) 112 kg ha-1 P2O5 and 4) 28 kg ha-1 of sulfate-sulfur. 

White diamonds represent average for the treatment and colored boxplots correlate 

with fertilizer treatments. .................................................................................... 163 

Appendix B: Supplemental Material for Chapter 3 

Figure B.1 Grain productivity prediction error on the validation set for the conditional 

inference forest method....................................................................................... 164 

Figure B.2 Grain productivity prediction error on the validation set for the random forest 

regression method. .............................................................................................. 165 

Figure B.3 Grain productivity prediction error on the validation set for the best subset linear 

regression method. .............................................................................................. 166 

Figure B.4 Grain productivity prediction error on the validation set for the decision tree 

method................................................................................................................. 167 

Figure B.5 Interaction plot for weather, soil health, and soil chemical factors based on the 

random forest results predicting grain yield kg ha-1. These results highlight that 

yield increases from soil health and soil fertility were first governed by weather 

parameters (SDI and Seasonal rainfall). ............................................................. 168 

Figure B.6 Average POXC values for each field included in this dataset divided by major 

land resource area (MLRA). Colors represent the tillage practice, with Heavy 

indicating more than three tillage events in five years, light less than three tillage 

events, and no-till meaning no tillage occurred in the previous five years. Error bars 

are the standard error of the mean. ...................................................................... 169 

 



 

xv 

 

Appendix C: Supplemental Material for Chapter 4 

Figure C.1 Variable importance rankings from random forest model results predicting soil 

organic carbon (SOC) sampled at two depths (0-5 cm; 0-15 cm) at 446 sites across 

101 fields in Missouri. Variable importance is calculated by measuring the mean 

decrease in accuracy (MSE) as an explanatory variable is randomly permutated. 

The greater the number and ranking, the more important the variable in predicting 

SOC. .................................................................................................................... 170 

Figure C.2 Variable importance rankings from random forest model results predicting 

potassium permanganate oxidizable carbon (POXC) sampled at two depths (0-5 

cm; 0-15 cm) at 446 sites across 101 fields in Missouri. Variable importance is 

calculated by measuring the mean decrease in accuracy (MSE) as an explanatory 

variable is randomly permutated. The greater the number and ranking, the more 

important the variable in predicting POXC. ....................................................... 171 

Figure C.3 Variable importance rankings from random forest result model results 

predicting soil respiration sampled at two depths (0-5 cm; 0-15 cm) at 446 sites 

across 101 fields in Missouri. Variable importance is calculated by measuring the 

mean decrease in accuracy (MSE) as an explanatory variable is randomly 

permutated. The greater the number and ranking, the more important the variable 

in predicting soil respiration rates. ...................................................................... 172 

Figure C.4 Variable importance rankings from random forest result models predicting 

autoclaved citrate extractable soil protein (ACEp) sampled at two depths (0-5 cm; 

0-15 cm) at 446 sites across 101 fields in Missouri.  Variable importance is 

calculated by measuring the mean decrease in accuracy (MSE) as an explanatory 

variable is randomly permutated. The greater the number and ranking, the more 

important the variable in predicting ACE protein............................................... 173 

Figure C.5 Variable importance rankings from random forest model results predicting β-

glucosidase activity sampled at two depths (0-5 cm; 0-15 cm) at 446 sites across 

101 fields in Missouri. Variable importance is calculated by measuring the mean 

decrease in accuracy (MSE) as an explanatory variable is randomly permutated. 

The greater the number and ranking, the more important the variable in predicting 

β-glucosidase activity. ........................................................................................ 174 

Figure C.6 Variable importance rankings from random forest results models predicting 

arylsulfatase activity sampled at two depths (0-5 cm; 0-15 cm) at 446 sites across 

101 fields in Missouri. Variable importance is calculated by measuring the mean 

decrease in accuracy (MSE) as an explanatory variable is randomly permutated. 

The greater the number and ranking, the more important the variable in predicting 

arylsulfatase activity. .......................................................................................... 175 

Figure C.7 Variable importance rankings from random forest models predicting acid 

phosphatase activity sampled at two depths (0-5 cm; 0-15 cm) at 446 sites across 

101 fields in Missouri. Variable importance is calculated by measuring the mean 



 

xvi 

 

decrease in accuracy (MSE) as an explanatory variable is randomly permutated. 

The greater the number and ranking, the more important the variable in predicting 

acid phosphatase activity. ................................................................................... 176 

Figure C.8 Least absolute shrinkage selection operator (LASSO) coefficients for each 

dependent variable for all soil health indicators. Coefficients are separated by 

selected soil health indicator and colored bars refer to unique coefficients used for 

the 15 cm and 5 cm sampling depths. The larger the magnitude of the dependent 

variable coefficient indicates a strong relationship with that soil health indicator.

............................................................................................................................. 177 

Figure C.9 Average observed Autoclaved citrate extractable (ACE) protein values 

separated by management practices and sampling depth. Error bars are the standard 

error of the mean. ................................................................................................ 178 

Figure C.10 Average observed Acid Phosphatase values separated by management 

practices and sampling depth. Error bars are the standard error of the mean. .... 179 

Figure C.11 Average observed Arylsulfatase values separated by management practices 

and sampling depth. Error bars are the standard error of the mean. ................... 180 

Figure C.12 Average observed β-glucosidase values separated by management practices 

and sampling depth. Error bars are the standard error of the mean. ................... 181 

Figure C.13 Average observed potassium permanganate oxidizable carbon (POXC) values 

separated by management practices and sampling depth. Error bars are the standard 

error of the mean. ................................................................................................ 182 

Figure C.14 Average observed soil organic carbon (SOC) values separated by management 

practices and sampling depth. Error bars are the standard error of the mean. .... 183 

Figure C. 15 Average observed soil respiration values separated by management practices 

and sampling depth. Error bars are the standard error of the mean. ................... 184 

 

  



 

xvii 

 

Appendix D: Perennial System Benefits on Soil Health and Row Crop 

Productivity Remain 10 years after Implementing Row Crop Production 

Figure D.1 Linear relationships between common soil health metrics and standardized 

yield between 2011-2021 between the North (Red) and South (Blue) fields. Since 

2011 both fields soil and crop management are no-till and a corn-soybean rotation. 

Prior to 2011 the North field was in a perennial hay system for 30+ years while the 

south field remained in corn soybean rotation with annual tillage. Universal 

improvements in soil health indicators on the North field remain evident 10 years 

after row crop production. Further, improvements in soil health were strongly 

related with average grain production, with soil organic carbon and autoclaved 

citrate extractable protein displayed the strongest relationship with yield (r2> 0.70). 

Sensitivity to grain productivity was unique to each soil health indicator, with soil 

respiration displaying the poorest (r2 < 0.43). These results demonstrate positive 

agronomic outcomes by fostering soil health through conservation management 

practices. ............................................................................................................. 189 

Figure D.2 Linear relationships between soil biological indicators of soil health and 

average yield from 2011-2021. Results treat each field as unique populations with 

results reporting within field relationships. Relationships between yield and soil 

health metrics were universally poor (r2 < 0.43). Soybean yield appeared to be more 

correlated than corn yield with generally higher r2, but these relationships remain 

poor. I conclude that within these field sites, impacts from topsoil depth, water 

dynamics, weed pressure, etc. have greater impacts on productivity than soil health.  

Consequently, benefits from soil health are best observed when evaluated between 

fields with divergent management histories. ...................................................... 190 

Appendix E: Perennial System Benefits on Soil Health and Row Crop 

Productivity Remain 10 years after Implementing Row Crop Production 

Figure E.1 Field sample sites for the North (aspirational soil health field), South (business 

as usual), and West (perennial pasture) fields. The South field sample sites were 

separated by management effects. With half of the sites overlaying recently built 

terraces (2011) and the other South field sampling reflecting the summit landscape 

position. ............................................................................................................... 193 
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Figure E.3 Box and whisker plots of selected soil health analysis separated by 

anthropogenic influence. The Pasture is treated as a reference state for the North 

and South Field sites to qualify soil health in the two row crop systems. Positive 
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This dataset does not provide information regarding the trajectory of the soil health 



 

xviii 

 

status of each system. Future soil health assessments would provide information 

whether the North field has reached a new equilibrium or further decay is possible 

and whether recently implemented regenerative practices in the South field will 

facilitate further increases in soil health. ............................................................ 196 

Figure E.4 Semi variograms with fitted functions and reported values for range, nugget, 

and model error (residual sum of squares), and fitted model function. In general, 
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ABSTRACT 

Soil health benefits are widely acknowledged but empirically-vetted connections to 

agronomic outcomes remain absent. Therefore, recommendations for on-farm soil health 

assessments and interpretation remain ambiguous. Empirical connections to two major 

outcomes remain absent, specifically row crop productivity and fertilizer 

recommendations. This dissertation investigates potential benefits from incorporating soil 

health indicators with established phosphorus (P) and potassium (K) fertilizer 

recommendations, evaluates links between soil health indicators and corn grain 

productivity, and identifies optimal sampling depths and regional sensitivity to common 

conservation practices for seven unique soil health indicators. All results and conclusions 

derive from a dataset collected over three seasons (2018-2020) including 446 sample 

locations collected from 101 Mid-Missouri commercial row crop systems. Current P and 

K fertilizer recommendations accurately identified where fertilizer improved yield with 42 

and 34% accuracy, respectively. No significant or measurable benefit occurred from 

incorporating soil health indicators with established P and K soil nutrient analysis when 

identifying nutrient deficiencies. Investigations into general productivity discovered an 

empirical relationship between potassium permanganate oxidizable carbon (or POXC) and 

grain yield. This relationship identified a POXC value of > 415 mg kg soil-1 where corn 

productivity was optimized. Further, POXC outperformed all other established soil 

analyses in predicting corn grain yield. Finally, regional sensitivity analysis of soil 

biological indicators of soil health identified important environmental and soil properties 

to consider when interpreting soil health assessments in Mid-Missouri. Recommendations 

were unique for each soil health assessment, with specific conservation practices and 



 

xx 

 

optimal sampling depth. In total, these results provide the needed groundwork connecting 

soil health with agronomic outcomes to support on-farm soil health interpretations. 
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DISSERTATION INTRODUCTION 

Soils are the overlooked backbone of regional, national, and local beneficial 

ecosystem services. Soils regulate the hydrologic cycle, facilitate nutrient cycling, provide 

a medium for food production, and is a habitat for plant and microbial populations. 

However, anthropogenic stewardship has historically accelerated soil degradation 

processes. A disrupted soil system results in a disrupted hydrological cycle, soil erosion 

disrupting nutrient cycles and displacing them into sensitive aquatic ecosystems, and the 

modification of plant and microbial communities. Often anthropogenic impacts on soils 

are best observed when they are negative, such as the effects of the Dust Bowl, or the 

estimated loss of half of the topsoil in some Missouri soils during the last 200 years. These 

impacts from poor management decisions not only have negative impacts on the 

surrounding ecosystems, but effect on-farm productivity and sustainability. 

In recent decades, efforts have been underway to measure, evaluate, and interpret 

the current state of soil processes to provide these ecosystem services. Simply, it is an 

evaluation of the soils ability to function or an assessment of a soil’s health. At the heart 

of these evaluations are soil biological indicators, because of the cascading effects on soil 

processes and dynamic sensitivity to soil management. However, developing these 

assessments are challenging because of the complex interactions between soil formation 

factors and processes, management impacts, and the unique objectives of each assessment. 

Thus, widespread on-farm soil health evaluations remain elusive. Therefore, the 

corresponding objectives of this dissertation are to address some of the current questions 

and critiques regarding on-farm soil health utilization and interpretation.  
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Chapter 1 outlines the research objectives of the dissertation while providing a 

literature review of soil health evaluations, current soil biological indicators of soil health, 

and soil fertility recommendations. Chapter 2 seeks to address a major question regarding 

soil fertility and soil health assessment. This is accomplished by reviewing the 

effectiveness of current P and K fertilizer recommendations and evaluating whether 

integrating soil health assessments into soil fertility recommendations improves current P 

and K fertilizer recommendations. Chapter 3 addresses current criticisms that soil health 

assessments are not well connected to relevant agronomic outcomes, specifically grain 

productivity. Finally, Chapter 4 investigates questions of scalability of identified plot level 

relationships between soil biological indicators and management practices when employed 

regionally across a diversity of environments and soils.  
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Chapter 1:  

Literature Review 

Soils are composed of biological, chemical, and physical properties which interact 

to govern and facilitate soil processes that lead to beneficial functions. At regional scales 

these functions provide essential services for an ecosystem. Soil health assessments 

generally measure a suite of individual chemical, physical, and biological tests to determine 

the status of current soil functions (Andrews et al., 2004; Moebius-Clune et al., 2016). 

Development of these evaluations have been underway for decades, but biological 

assessments emerged as effective indicators to determine the ‘health’ of a soil (Karlen et 

al., 2019; Ndiaye et al., 2000). 

The beginnings of soil biological assessments can be traced back to 1916, where 

organic amendments were used to investigate carbon (C) and nitrogen (N) ratios (Brown 

& Allisons, 1916). Over 100 years after these first initial investigations, the official USDA-

NRCS definition of soil health is “the continued capacity of a soil to function as a vital 

living ecosystem that sustains plants, animals, and humans.” These early investigations 

remain the heart of many complex soil health research questions today with empirical 

connections between soil assessments and soil functions remaining largely understood 

(Karlen et al., 2019; Yang et al., 2020). Considerable debate remains as how to effectively 

measure, evaluate, and communicate soil functions (Bünemann et al., 2018; Karlen et al., 

2019; Norris et al., 2020).  

Looking to the future, it is projected that soil health will move beyond an agronomic 

perspective and develop a comprehensive management view of soil’s many functions to 

promote effective economic, environmental, and socially acceptable soil management 
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practices (Karlen et al., 2019). Current national and regional efforts are investigating soil 

health impacts on cropping systems and identifying indicators that are sensitive to 

management practices and reflect soil functions (Norris et al., 2020). These efforts will 

yield management sensitive indicators that measure soil function to inform environmental 

threats and ecosystem services (Bünemann et al., 2018). This literature review provides a 

brief summarization of the current research   

1.1 Relating Soil health Indicators with Soil Function 

Promoting soil health emphasizes conservation efforts to increase soil organic 

matter because of its cascading beneficial effect on soil processes (Karlen et al., 2019). 

Over time, soil conservation efforts to conserve or improve soil organic properties have 

coalesced around several main principals, which include:  

1) Reducing tillage intensity and frequency; 

2) Diversifying crop rotations, including the use of perennial systems;  

3) Removing periods of fallow by incorporating cover crops;  

4) Returning and retention of crop residues; and 

5) Site-specific soil and crop management practices to increase soil organic 

carbon (SOC). 

These practices improve overall soil function by promoting specific agroecosystem 

functions including soil aggregation, water infiltration and storage, chemical buffering, 

nutrient cycling, and physical structure for plant growth.  

Traditional soil analysis estimates total organic matter, which does not readily 

respond to management changes. In contrast, soil health indicators were developed to 

reflect short-term changes in soil properties as a function of management changes, and 

therefore directly or indirectly measure the labile C pool (Dou et al., 2008; Bongiorno et 
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al., 2019). Constituents of the labile C pool are theorized as water soluble and readily 

available for microbial turnover and nutrient cycling (Ghani et al., 2003; Singh et al., 2018). 

These properties make the labile C pool, or biological properties associated with this pool, 

ideal sample targets to evaluate a soil’s function to supply plant essential nutrients. Haynes 

(2005) went as far as to state labile C pool measurements as central to evaluate soil quality 

and nutrient cycling in agricultural soils and Franzluebbers (2016) indicated these tests 

should be included in regular soil fertility testing. 

Choosing analyses to include in soil health evaluations has proven difficult, as they 

must meet a large set of criteria. These criteria have been discussed and debated but largely 

these tests are i) sensitive to management practices, ii) well correlated with specific soil 

functions, iii) reflect beneficial ecosystem processes, iv) provide useful information to land 

managers, and v) easy and inexpensive to measure (Doran & Zeiss, 2000). Additionally, 

they must be adaptable for high throughput laboratories where traditional soil-testing has 

occurred (Franzluebbers, 2016; Hurisso et al., 2018b). The following will discuss selected 

biological tests which reflect direct measurement of properties associated with the labile C 

pool. These tests are all candidates for commercial laboratory test adoption, and several are 

included in soil health evaluations such as the Cornell Assessment of Soil Health. 

Additionally, the NRCS Soil Health Technical Note (NO. 450-TCH-3, 2018) references 

each of these as direct indicators of nutrient cycling, C food sources, or general reflection 

of microbial activity. 

1.1.1 Soil Respiration 

Soil respiration is one of the most employed indicators of soil biological health 

(Bünemann et al., 2018). Various soil processing and analysis protocols are available, 
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though all involve rewetting of air-dried soil and capturing and measuring the flush of CO2 

released during the predetermined incubation period (Franzluebbers et al., 1996, 2000; 

Haney et al., 2018; Franzluebbers & Veum, 2020). In the literature, this analysis is 

sometimes referred to as soil respiration, mineralizable C, or soil-test biological activity 

(Moebius et al., 2007; Hurisso et al., 2018a; Wade et al., 2018; Franzluebbers & Assmann, 

2020). For the duration of this paper, the term soil respiration is used when referring to this 

measurement. 

Soil respiration is broadly defined as the amount of organic C mineralized to CO2 

given a certain time, temperature, and moisture (Diederich et al., 2019). It reflects two 

portions of soil C dynamics, the availability of labile C sources (i.e., the energy) and 

general microbial activity. It is commonly utilized to reflect microbial turnover and 

estimate nutrient mineralization (Gregorich et al., 1997; Franzluebbers et al., 2018; 

Franzluebbers & Pershing, 2020). Additional applications include soil productivity 

(Culman et al., 2013; Wade et al., 2020a), changes in soil function induced by management 

practices (Culman et al., 2013), and potential soil microbial activity (Franzluebbers et al., 

2000; Franzluebbers, 2020a). Improving soil respiration with management changes can be 

complicated by native soil and environmental properties (Dou et al., 2008; Ladoni et al., 

2015; Franzluebbers & Assmann, 2020; Franzluebbers & Pershing, 2020).  

Hurisso et al., (2016) summarized that soil respiration rate reflects management 

practices that stimulate or promote mineralization of soil nutrients. Example management 

practices that should affect soil respiration rates include conventional tillage, manure 

application, perennial crop, and leguminous cover crops. To this end, Franzluebbers et al., 

(2020) observed that 3-day respiration rates were greater in an integrated livestock and 



 

7 

 

organic system when compared with a conventional tillage in corn-wheat (Triticum 

aestivum L.) -double cropped soybean (Glycine max L.) and wheat – sorghum [Sorghum 

bicolor (L.) Moench] rotation with rye cover crop proceeding corn production. Culman et 

al., (2013) observed that respiration was three times more sensitive to crop rotation than 

other management practices, likely because microbial activity is sensitive to residue 

quality.  

During a temporal sampling experiment, Diederich et al., (2019) observed that 

respiration rates were greater in forage cropping systems compared to grain based systems, 

with no significant difference between grain systems with various conservation practices. 

They concluded that increasing the labile C pool in a US Midwest Mollisol required a 

change in system rather than a simple change in practice. Caudle et al,. (2020) observed 

the opposite with respiration rates nearly two times greater in a grain crop system compared 

to a forage based system. This might explain observations by Roper et al., (2017) who 

observed a significant difference in soil respiration between cash crop conservation 

management systems, but only at one of three long-term research sites included in the 

study. Roper et al., (2017) concluded that further investigations would be required to ensure 

scalability of current soil respiration relationships to all soils and environments.  

Soil respiration has received the greatest amount of attention in incorporating a 

biological test into fertilizer recommendations (Haney et al., 2008; Franzluebbers, 2016). 

Marumoto et al., (1982) suggested the possibility of using soil respiration from rewetted 

soil to estimate mineralization of soil N and P. Hurisso et al., (2016) observed that soil 

respiration reflected short-term mineralization and could be a useful indicator for short-

term nutrient availability. More recently, Franzluebbers & Pershing (2020) suggested 
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merging soil respiration with STK and STP analysis as an overall fertility assessment. 

Culman et al., (2013) asserted that soil respiration was a good indicator of overall 

agronomic productivity. However, this was contradicted in a regional analysis of the US 

corn belt where soil respiration was more related to inherent site characteristics rather than 

relative yield (Wade et al., 2020a). Further work is needed to tease out the nuances of soil 

respiration’s connection to agronomic productivity and nutrient availability. Field 

calibration is especially needed to quantify theorized connections between soil respiration 

and fertilization recommendations.  

Incorporating soil respiration into fertilizer management has generally coalesced 

around predicting N fertilization decisions (Franzluebbers, 2016; Franzluebbers & 

Pershing, 2020). Soil respiration is utilized as an indicator of N mineralization and N 

recommendation rates are derived from these respiration rates. But soil respiration is 

inconsistent in improving N fertilizer recommendations across environment and climate 

conditions (Franzluebbers, 2018, 2020b; Yost et al., 2018; Bean et al., 2020; McDaniel et 

al., 2020). Further work is required to connect soil respiration to N recommendation and 

other plant essential nutrients. Further, SR research has overlooked improving other 

macronutrient fertilizer recommendations. Exploring potential relationships with P, K, and 

S are justified as they constitute regular fertilizer applications with economic demands and 

pollution concerns (Sharpley et al., 1998). Sulfur is especially interesting because the 

nutrient cycle is largely driven by microbial processes (Schoenau & Malhi, 2015) and is 

increasingly deficient in cropping systems (Haneklaus et al., 2015).  

1.1.2 Potassium Permanganate Oxidizable (Active) Carbon 
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Potassium permanganate oxidizable carbon (POXC) refers to a method established 

in 2003 which uses potassium permanganate to oxidize soil C as an indicator of “active 

carbon” (Weil et al., 2003). Traditional soil-testing measures total oxidation of organic C 

while POXC measures a partial, or incomplete oxidation (Culman et al., 2012). POXC 

analysis utilizes slightly alkaline K permanganate (KMnO4) to react with the most readily 

oxidizable forms of soil C to estimate labile C (Weil et al., 2003; Culman et al., 2013; 

Hargreaves et al., 2019). This is likely a relatively processed pool of labile soil C, which is 

sensitive to management and the nature of the present vegetation (Skjemstad et al., 2006; 

Hurisso et al., 2016). As such, POXC responds to management changes more quickly than 

total soil organic C, and is often used to evaluate short- and long-term impacts of crop and 

soil management (Melero et al., 2009; Culman et al., 2012; Plaza-Bonilla et al., 2014; 

Tatzber et al., 2015; Hurisso et al., 2016; Morrow et al., 2016; Ramírez et al., 2020). 

POXC is sensitive to various conservation management practices in different 

environments. In Michigan, POXC values were observed to reflect current fertilizer 

management and rotational diversity, with greater POXC measured in corn-soybean-wheat 

rotation compared to continuous corn (Culman et al., 2013). In North Dakota, POXC values 

increased with conservation practices, but there was no difference when comparing no-till 

and strip-till practices (Awale et al., 2013). A similar observation was made in the 

southeastern US, where there was a difference when comparing no-till and moldboard 

plough, but no detectable differences when compared to other conservation tillage practices 

(Singh et al., 2020). However, there was a significant difference between conservation 

tillage practices when cover crops and double cropped wheat-soybeans were included with 

the no-till management (Singh et al., 2020). This observation coincided with Plaza-Bonilla 
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et al., (2014) who concluded POXC was more sensitive to management practices when 

organic matter inputs are increased. This conclusion is harmonized with increased POXC 

measurements from a radish cover crop in the top 0-15 cm that extended into deeper 

horizons reaching 90-105 cm (Wang et al., 2017). In general, it was noted that POXC 

reflects management practices that promote the accumulation and stabilization of soil 

organic matter; and it might be a good indicator of long-term soil C sequestration (Hurisso 

et al., (2016). In concert with this conclusion, POXC has been used to indicate soils where 

improved soil organic matter management is likely to improve productivity (Lucas & Weil, 

2012). 

POXC is a chemically-defined fraction of soil C and as such it is thought to reflect 

the biologically active pool related to other biological tests (Wade et al., 2020b). It is related 

to soil respiration (Culman et al., 2013; Hurisso et al., 2016), aggregate stability (Fine et 

al., 2017b), and microbial diversity and abundance (Ramírez et al., 2020) in a variety of 

environments. However, while related to these other biological tests, POXC responds 

uniquely to C inputs and management practices. When comparing labile C measurements 

in 10 long-term European field experiment, POXC was the most sensitive labile C 

measurement to tillage practice and C inputs and was recommended as the labile C fraction 

measurement for soil health assessments (Bongiorno et al., 2019). Similar observations 

were made in Canada, where POXC was recommended as the most useful indicator for 

farmers to track improvements from soil health practices in organic farms (Hargreaves et 

al., 2019). In an analysis of the Cornell Assessment of Soil Health (CASH), POXC was 

found to be the best single predictor of soil health status when evaluated with the CASH 

score index (Fine et al., 2017a). Finally, after a comparison between biological tests at five 
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study sites in the United States Pacific Northwest, Morrow et al., (2016) recommended 

POXC as an integral component of soil health assessment. However, POXC measurement 

values are related to inherent soil properties and further research is required to develop 

baseline or reference values for various soils (Caudle et al., 2020).   

1.1.3 Autoclaved-citrate extractable (ACE) Soil Protein  

Soil autoclaved citrate extractable (ACE) protein was developed and reported as 

the “easily extractable glomalin” procedure by Wright & Upadhyaya (1996). The analysis 

includes the addition of 0.02 mol L-1 sodium citrate (pH = 7) followed by autoclaving with 

protein extracts quantified using the Bradford or bicinchoninic acid assays. Initially 

reported as an extraction method for “glomalin”, a protein produced in large quantities by 

arbuscular mycorrhizal fungi (Wright & Upadhyaya, 1996), the “easily extractable 

glomalin” method was expanded to represent general organic soil proteins extracted using 

the ACE protein method (Rosier et al., 2006; Hurisso et al., 2018b). As such, ACE protein 

has replaced all future references of glomalin for the remainder of this paper. This test is 

already included in the CASH assessment (Schindelbeck et al., 2016) and this rapid 

analysis is creating significant interest in widespread adoption (Hurisso et al., 2018b). 

Interest in ACE protein is generated in two parts, i) as an indicator of N mineralization to 

be used as a tool to inform N fertilization; ii) as an indicator of soil health connected to soil 

organic matter and aggregation processes.  

The general soil protein pool which ACE protein measures represents the largest 

pool of organically bound N in soil, and is considered a reservoir of N that could quickly 

be released through mineralization processes (Roberts & Jones, 2008; Hurisso et al., 

2018b). Historically, commercial laboratories offered inorganic N (NO3
- , NH4

+) analysis 
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and total N for fertilizer recommendations. The inorganic N pool is temporally variable 

and represents a fraction of the seasonally available N and while total organic N is a less 

seasonally variable pool, neither inorganic or total organic N have proved reliable for 

fertilizer recommendations (Culman et al., 2013). Therefore, measuring a stable and readily 

available pool of N might give greater insight into mineralizable N for fertilizer 

recommendations. Depolymerization of soil protein is widely considered the rate limiting 

step in N mineralization, and measuring soil protein has been compared to measuring the 

‘source’ of mineralized N (Jan et al., 2009; Hurisso et al., 2018b). Autoclaved citrate 

extractable soil protein is an effective estimate of this pool of N with detection reported up 

to 78% of the total pool (Geisseler et al., 2019). However, in this same study, ACE protein 

did not correlate well with net N mineralization rates (10-week incubation time) across a 

diversity of climates in California. Similarly weak correlations between ACE protein and 

7-d anaerobic N mineralization have been observed but were attributed to the high 

variability of the N mineralization method (Hurisso, Moebius-Clune, et al., 2018b). Further 

investigation of the nuances between ACE protein concentrations and mineralizable N are 

needed prior to fertilizer recommendation development. Despite the weak correlation with 

N mineralization, ACE protein remains useful for soil health assessment because of its 

sensitivity to management practices and its relationship with soil aggregation processes.  

Autoclaved citrate extractable protein has demonstrated clear correlations with soil 

aggregate processes, specifically aggregate stability (Geisseler et al., 2019). Connections 

between aggregate stability and ACE protein were established quickly after development, 

with greater concentrations of ACE protein connected with greater aggregate stability 

(Wright & Upadhyaya 1998). Concentrations of ACE protein were significantly correlated 
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with increased aggregate size, and it was concluded that the ACE protein pool acted as a 

microbial glue in soil aggregation (Wright et al., 2007). In a three-year transition from 

plough tillage to no-till and a grass-covered reference, a positive correlation coefficient of 

0.78 between ACE protein concentrations and aggregate stability was observed (Wright et 

al., 1999). A similar correlation coefficient (r = 0.77) was observed after partitioning soil 

aggregates into various sizes under a diversity of tillage and cropping practices (Nichols & 

Millar, 2013).  

Due to clear correlations with aggregate stability, ACE protein provides value from 

its sensitivity to management practices. Incorporating wheat and millet into a no-till crop 

rotation increased ACE protein concentration relative to traditional crop rotations (Wright 

& Anderson 2000). In Chile, Borie et al., (2006) observed no-till and reduced tillage 

systems led to increased ACE protein concentrations compared to a 20cm depth moldboard 

plough tillage. Rillig et al., (2003) observed greater concentrations of ACE protein in native 

forest soils compared to agricultural fields. In South Dakota, Nichols & Millar (2013) 

observed elevated ACE protein concentrations in perennial grazed rangeland systems 

compared to row crop systems. In the same study, wheat-corn rotations with conventional 

tillage and manure applications contained the greatest ACE protein with no difference 

between no-till and conventional tillage without manure. The addition of manure would 

naturally increase ACE protein as it contains a significant protein pool, but the authors did 

not explain why there was no difference between no-till and conventional tillage without 

manure additions. However, study of tillage effects on soil organic matter constituents and 

aggregate stability observed a 63% increase in aggregate stability which the author 

attributed to increased concentration of ACE protein, fungal populations, and wax 
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compounds found in the no-till system (Pikul et al., 2009). Liebig et al., (2006) observed a 

27% increase in ACE protein from reduced tillage and increased crop diversity; however, 

this observation only occurred at one of seven research locations. They concluded that 

inherent soil characteristics influence how ACE protein responded to management 

practices. This observation aligns with Fine et al., (2017) which observed regional soil 

characteristics, such as soil texture and climate, influence baseline ACE protein 

concentrations. Concentrations of ACE protein were significantly different among three 

US regions: Midwest, Northeast, and Mid-Atlantic and varied by soil textural grouping. 

For example, average regional concentrations varied by textural class with the greatest 

concentrations in the Northeast US region observed in coarse textural groups and the 

greatest concentrations in the Mid-Atlantic region found in medium textural groups. 

1.1.4 Extracellular Enzymes 

Microorganisms, and to a lesser degree plants, exude extracellular enzymes (EE) to 

facilitate the breakdown and recycling of C rich bio-macromolecules. Originally brought 

into agroecosystems to enrich soil fertility knowledge (Kuprevich & Shcherbakova, 1971), 

research exploring response of EE to soil management later shifted towards soil health 

(Dick, 1994). These enzymes have sensitivity to accumulation of organic C in surface soils 

from no-till, organic amendments, and cover crops that make them key candidates to reflect 

soil nutrient cycling functions (Dick, 1984; De la Horra et al., 2003; Melero et al., 2009).  

β-Glucosidase catalyzes the hydrolysis of β-D-glucopyranosides in the final, rate-

limiting step in the degradation of cellulose (Stott et al., 2010). Cellulose is the most 

abundant polysaccharide in the earth and β-glucosidase is the final step in providing simple 

sugars for the soil microbial population. As a component of the decomposition of SOM, β-
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glucosidase reflects a soil’s capacity to break down plant residues and cycle nutrients. It is 

sensitive to soil and residue management changes (Miller & Dick, 1995; Deng & 

Tabatabai, 1996), responds to cover crops and organic amendments (Bandick & Dick, 

1999), and can respond within 1-3 years after adoption of conservation or no-till practices 

(Roldán et al., 2005). Ndiaye et al., (2000) observed β-glucosidase and arylsulfatase 

activity were significantly greater after the second season of cover crops, while standard 

physiochemical soil tests did not respond to cover crop treatments even after 7 years of 

implementation.  De la Horra et al., (2003) observed a 44% increase under no-till 

management in the top 0-5 cm in a no-till system. The sensitivity to management practices 

and soil functions led Stott et al., (2010) to propose β-glucosidase as a soil health indicator 

in the Soil Management and Assessment Framework (SMAF).  

Other enzymes are integral to specific nutrient cycling. Arylsulfatase catalyzes the 

hydrolysis of arylsulfate by fission of the O-S bond and provides plant available SO4
- 

(Spencer, 1958) and was discovered in soil by Tabatabai & Bremner (1970). Acid 

phosphatase is a phosphoric monoester hydrolase that acts on ester bonds to release 

orthophosphate (Deng & Tabatabai, 1997). Deng & Tabatabai (1997) demonstrated that 

both enzyme activities are more sensitive to organic additions than tillage management. 

Dick (1984) observed that 19 years of no-till led to amplified activity rates relative to tillage 

treatments. Deng & Tabatabai (1997) observed that arylsulfatase was more sensitive to the 

additions of mulching applications than tillage management with no significant mulch 

effect for acid phosphatase activity. Klose et al., (1999) observed that arylsulfatase activity 

increased with less tillage disturbance with the greatest activity observed in cereal-meadow 

or oats rotation. Finally, García-Ruiz et al., (2008) summarized that as tillage intensity 
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increased, extracellular enzyme activity decreased and improvements to soil quality 

significantly slowed down. Fertilizer application can also inhibit extracellular enzyme 

activity, such as where P and S fertilization inhibited acid phosphatase and arylsulfatase 

activities (Baligar et al., 2005).  

1.1.5 Soil Health Scores 

Soil health measures the complex functions of a soil to evaluate the ‘health’ of the 

soil. Single indicators are inherently limited in their ability to measure the multitude of 

chemical, physical, and biological functions soils perform. Further interpretation is 

complex because of the interactions between soil formation factors and processes and 

genetic soil characteristics. For example, all soil biological tests are corelated with SOC; 

thus, in soils with greater baseline SOC (e.g. mollisols) the aforementioned soil biological 

indicators will be greater—but that does not indicate the relative soil health is greater. 

Therefore, regional interpretations must account for baseline physical, chemical, and 

biological characteristics.  

 Alternatively, developed indexes give recommendations from compiled analyses 

used to measure a suite of soil functions. Examples of this approach include the SMAF 

(Andrews et al., 2004), CASH (Moebius et al., 2007; Moebius-Clune et al., 2016), or Soil 

Health Assessment Protocol and Evaluation (SHAPE; Nunes et al., 2021). The SMAF was 

primarily developed as a tool to answer whether current management practices were 

improving, sustaining, or degrading soil function (Andrews et al., 2004; Karlen et al., 

2019). The CASH and SHAPE evolved from the SMAF, but each tool incorporates a suite 

of physical, biological, and chemical analysis to assess the complex interactions of land 

management impacts on soil health (Andrews et al., 2004). The CASH and SMAF are 
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somewhat restricted to the region their correlation data were developed while SHAPE was 

developed to overcome these regional deficiencies (Roper et al., 2017; Chu et al., 2019; 

Nunes et al., 2021). Work is ongoing to link these tools to specific ecosystem services and 

outcomes, including soil fertility recommendations.  

1.2 An Introduction to Soil Health and Soil Fertility with their Possible Interactions 

A doubling of global crop yield from 1960-2000 coincides with a seven- and three-

fold increase in nitrogen (N) and phosphorus (P) fertilizer applications (Tilman et al., 

2002). In the United States and England, 40-60% of recent corn (Zea mays L.) yield 

increases are attributed to fertilizers (Stewart et al., 2005). It is obvious that fertilization is 

fundamental in agricultural yield success worldwide. However, widespread fertilization in 

agroecosystems is leading to regional, local, and worldwide environmental issues (Fausey 

et al., 1995; Mueller & Helsel, 1996; Sharpley et al., 1998, 2018; Kleinman et al., 2011, 

2019; Krempa & Flickinger, 2017). These positive, yet also adverse effects, place judicious 

fertilizer management at the heart of sustainable agroecosystems (Sharpley et al., 2015; 

Ros et al., 2020).  

Sustainable fertilizer management has evolved around the 4R program. These R’s 

include the right source of nutrients, at the right rate, at the right time, and in the right place 

(Johnston & Bruulsema, 2014). Addressing the right rate addresses two primary questions 

1) How much of nutrient “x” will be plant available during the season? and 2) How much 

fertilizer should I place to maximize yield and limit environmental impacts? Public and 

private initiatives have been developed to address these two questions. The most widely 

adopted, whether directly or through modified recommendations, are Land Grant 

University fertilizer decision support recommendations. These tools are built on measuring 

plant available nutrients (soil-test values) and then through correlation and calibration field 
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trials establishing yield responses to these soil measurements (Bray, 1954; Mehlich, 1984; 

McGrath et al., 2014).  

Fundamental research evaluating soil-tests and yield relationships were developed 

decades ago under monoculture systems with regular tillage and fallow (Bray, 1954; 

Mehlich, 1984). Today’s agriculture fields are managed under no-till or reduced tillage, 

and may include diverse crop rotations with cover crops grown between cash crops. These 

conservation management practices have multifaceted impacts on soil management 

including erosion prevention, alleviating weed and disease pressure, and improving soil 

biological activity (Dou et al., 2008; González-Chávez et al., 2010). Improved soil 

biological activity has been connected to greater nutrient cycling and some have suggested 

agroecosystems with improved conservation practices requiring less fertilizer (González-

Chávez et al., 2010). Others suggest incorporating biological or soil health tests may 

improve fertilizer recommendations (Franzluebbers, 2016). However, while conceptual 

support exists, there is no empirical evidence regarding how biological tests can 

meaningfully direct fertilization decisions (Bünemann et al., 2018) Therefore, a significant 

need exists to investigate whether including additional soil health metrics, specifically 

biological soil tests, will improve current fertilizer decision-support tools. 

1.3 Behind the Curtains of Fertilizer Recommendations 

Soil-testing and fertilizer recommendations were established as commercial 

fertilizer became available and the agriculture industry asked a simple question, how much 

fertilizer should be applied to maximize yield? The subsequent fertilizer recommendations 

were developed with similar approaches, including nutrient extraction with corresponding 

calibrations to field plot trials (Voss, 1998; McGrath et al., 2014). Such fertilizer 

recommendation development began in the 1920s with the majority of field calibration 
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work peaking during the 1950s and 1960s. Validation research has continued, but little has 

been conducted since the 1980s (Voss, 1998).  

From this work, two primary recommendation philosophies emerged within the 

United States. Both these philosophies generally reflect the premise popularized as 

‘Liebig’s law of the minimum’ (Voss, 1998; McGrath et al., 2014). This law states that 

production is restricted by the most limiting nutrient for a specific plant’s needs (Jungk, 

2009; McGrath et al., 2014). Therefore, each plant essential nutrient must be at a plant 

specific sufficient level to maximize yield. However, at some point, adding this nutrient 

will no longer produce a yield response, leading to economic losses and environmental 

impacts. Therefore, these recommendation philosophies are centered around identifying 

definable soil-test levels below which crops will respond to fertilizer additions, and above 

which they likely will not respond to further application (Voss, 1998). These are commonly 

referred to as “critical values” as identified in Figure 1.1.  

The ‘build-up and maintenance’ philosophy identifies a critical soil-test value 

below which increasing fertilizer rates are recommended to increase yield, and above this 

critical value fertilizer application rates should match crop removal (Voss, 1998). This 

approach was largely developed to identify yield relationships with soil-test P and K values 

with methods identified in Figure 1.1 (Bray, 1944, 1948, 1954). A variation to this was 

called the ‘sufficiency’ philosophy. This approach, as described by Olson et al., (1987), 

established “low”, “medium”, and “high” soil-test values with respective probability of 

crop response to applied nutrients [i.e., ‘assured’, ‘possible’, and ‘unlikely’, respectively 

(Voss, 1998)]. Both of these methods hinge on relating accurate yield response with 
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fertilizer applications at various soil-test values; therefore, environmental sustainability of 

fertilizer inputs depend on the accuracy of soil-test values and yield response relationships.  

Recent research demonstrated possible improvements in soil-test P (STP) and soil-

test K (STK) recommendations. In Arkansas it was observed STP and STK 

recommendations only accurately predicted the correct crop response to fertilization at 38-

50% of locations for P and 60-78% of locations for K (Fryer et al., 2019). Earlier, Heckman 

et al., (2006) observed yield responses to fertilization at only 17-43% of the 51 field sites 

with STP levels below state recommended optimal levels. They also observed yield 

responses to fertilization at sites above optimal and some excessively high STP (Heckman 

et al., 2006). In Minnesota, Randall & Evans, et al., (1997) observed similar yield response 

to P fertilization near the critical Bray STP 20 mg kg-1 soil (6 of 12 site years) and then at 

half the critical limit of 10 mg kg-1 soil (8 of 12 site years). In this same study, K fertilization 

increased yields 4 of 24 years at sites with STK greater than the critical limit (Randall et 

al., 1997a). Finally, Fulford & Culman (2018) observed yield responses to fertilizer at only 

9 of 42 sites years and challenged the appropriateness of Ohio fertilizer P and K 

recommendation rates because fertilization at double the recommended rate (removal rate) 

failed to maintain STP and STK over nine years.  

The question arises, in what environmental conditions do traditional soil-test 

recommendations fail, and why? A number of possible explanations exist. Fertilizer 

recommendation error could be introduced by applying state or regional soil-test values 

across diverse environments and soils (Dodd & Mallarino, 2005). Investigations have 

shown how build-up of soil nutrient levels and the associated removal with yield vary with 

soil properties and environmental conditions, with some soils not displaying yield 
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decreases until up to 8 years after no fertilization (Randall et al., 1997b; a; Fulford & 

Culman, 2018). Minnesota observed up to 30% yield losses attributed to low STP and 

therefore identified a recommended STP critical range from 15-20 mg kg-1. However, the 

critical values varied between calibration sites with optimums being identified as low as 

12.7 and as high as 19.2 mg kg-1 (Randall et al., 1997b). Similar results were observed in 

Iowa when examining over a 30-year period yield response to STP. Here critical 

concentrations varied from 6-10 mg kg-1 at various research sites with different soils (Dodd 

& Mallarino, 2005).  

Another issue is interpretation subjectivity. For example, in Iowa the STK 

recommendations were confirmed as being robust with accurate critical values when 

identifying profitability standards for corn production (Mallarino et al., 1991). Yet in 

Arkansas Fryer et al., (2019) observed fertilizer recommendations were highly accurate for 

identifying soil that did not require fertilizer P (100% accuracy), but suboptimal in 

accuracy (0-20%) at identifying soils responsive to P fertilizer application. They concluded 

Arkansas recommendations were skewed to minimize the risk of yield loss from under 

fertilization. Heckman et al., (2006) made a similar observation when concluding soil-test 

recommendations are often tailored to error toward over fertilization to avoid yield 

decreases from under fertilization. Yet, recommendations built for over fertilization can 

lead to financial and environmental costs to farmers and society (Mallarino et al., 1991b; 

Lemunyon & Gilbert, 1993; Sharpley et al., 1993, 1998; Randall et al., 1997b; Dodd & 

Mallarino, 2005; Dodd & Sharpley, 2015). These recommendation systems are especially 

environmentally and fiscally concerning.  



 

22 

 

Finally, in addition to environmental variability and some subjectivity in 

developing fertilization schemes, cropping systems and management have changed 

substantially during the last 50 years. During peak fertilizer rate recommendation 

developments, cropping systems were often monocultures with limited or no crop rotation, 

absent of cover crops, and regularly buried crop residue with intensive tillage (Voss, 1998; 

McGrath et al., 2014). These practices resulted in nutrient loss and severe soil erosion, 

degrading local and regional water quality and soil resources. Over time, governments and 

organizations have responded with many initiatives promoting the prevention of nutrient 

pollution and soil erosion by: (1) keeping the soil covered; (2) disturbing the soil as little 

as possible; (3) keeping plants growing throughout the year; and (4) diversifying crop 

species in the rotation (Dodd & Sharpley, 2015). These conservation practices have the 

overall goal of preventing soil erosion, improving soil conditions by building soil organic 

matter (SOM), and improving soil biological activity. Adoption of these practices has 

created a sharply contrasting agroecosystem when compared with the systems soil fertility 

recommendations were based on. 

Generally, conservation practices have been promoted to benefit landowners 

through reduced fertilizer inputs, increased crop yields, improved nutrient cycling, and 

reductions in nutrient and sediment losses (Snapp et al., 2005; González-Chávez et al., 

2010; Kuhn et al., 2016; Duncan et al., 2019). The improvement of soil chemical and 

physical properties with conservation practices have been well documented over the past 

50 years (Veum et al., 2015; Baffaut et al., 2020). There is growing evidence that benefits 

from these practices derive from improved soil biological activity (Dou et al., 2008; Wilson 

et al., 2019). Many have concluded that current soil fertility physiochemical tests do not 
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capture the improved dynamic soil biological properties in these conservation systems. 

However, it has yet to be demonstrated that these biological changes can be translated into 

reduced fertilizer demands. Benefits of improved biology are thus primarily conceptual, 

with little empirical evidence confirming soil fertility recommendations should be adjusted 

based on biological properties (Bünemann et al., 2018; Wade et al., 2020a). Vetted 

empirical evidence is required to support claims that improved soil biology reduces 

fertilizer demand. 

1.4 Comprehensive Soil Sampling: Connecting Soil Health and Soil Fertility 

Soil health and soil fertility evolved to accomplish unique objectives. Soil fertility 

was developed to answer the clear question of “how much fertilizer should I apply?”, while 

soil health integrates soil chemical, biological, and physical components to answer, “how 

is this soil functioning?” (Doran & Safley, 2002; Andrews et al., 2004; Kibblewhite et al., 

2008; Lynch, 2015; Fine et al., 2017b; Haney et al., 2018). These unique objectives have 

prevented the linkage of soil sampling and analysis approaches. Soil fertility reflects 

productivity and profitability with large-scale adoption while soil health reflects 

management changes with limited application to agronomic outcomes. Joining these 

approaches will provide benefits to both. Biological tests in soil health assessment respond 

to management improvements more quickly than standard physiochemical tests, while soil 

fertility tests provide actionable support tools that soil biological tests currently lack 

(García-Ruiz et al., 2008; Veum et al., 2015; Bünemann et al., 2018). With similar spatial, 

temporal, and lab analysis variability, these tests could easily be blended, particularly if 

improved management recommendations reduce economic costs [e.g., reduced fertilizer 

requirements (Hurisso et al., 2018a; Franzluebbers, 2020c)].  
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Reasonable evidence exists that conservation efforts alter nutrient cycling enough 

to justify using soil biology to inform fertilizer recommendation decisions. Klein & Koths 

(1980), Hargrove (1985), and González-Chávez et al., (2010) all observed enriched soil C 

dynamics in no-till systems and concluded that improved nutrient cycling should reduce 

fertilizer demand. Rheinheimer et al., (2019) observed a 31% greater bioavailability of 

organic P and twice the soil microbial biomass with no tillage. In Tennessee, incorporation 

of cereal rye, crimson clover, hairy vetch, and a soil health mix of cover crops increased 

plant available Mehlich-3 K (Chu et al., 2019). In Missouri, the incorporation of organic 

based fertilizers altered soil P cycling in long-term soil studies (Motavalli & Miles, 2002). 

When comparing historic soil fertility tests with current biological tests, McDaniel et al., 

(2020) concluded that N recommendations would improve with the incorporation of 

biological tests. Finally, Wade et al., (2020) observed that biologically healthier soils 

produce greater corn yields per unit of N fertilizer.  

Each of these studies confirm postulated theories that improved biological activity 

and nutrient cycling should influence fertility decisions. However, biological tests still lack 

critical thresholds and decision support recommendations necessary for decision support 

systems (Mendes et al., 2019). Critical thresholds for biological tests are in initial stages of 

development. One example, in Brazil, is the establishment between a suite of individual 

biological tests and relative corn and grain yield (Lopes et al., 2013). Further investigation 

of these thresholds led to interpretive classes as a function of soil organic C and a soil 

sampling concept that combines soil health and soil fertility sampling (Castro Lopes et al., 

2018; Mendes et al., 2019). Similar work was done in rice systems in three different soil 

orders, but critical values varied significantly among soil orders (Biswas et al., 2017). 
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These critical limits lay the groundwork for future soil health decision support systems, but 

do not reflect nutrient cycling but rather agronomic productivity. Therefore, quantitative 

connections between soil health and soil fertility largely remain absent.  

My unique hypotheses are that established soil fertility physiochemical are not 

static, as historically utilized, but dynamic; and adjusted to reflect soil biological properties. 

Integrating soil health tests into soil fertility evaluations offers an opportunity to refine 

fertilizer recommendations to reflect modern cropping systems and recent improvements 

to assess soil biology.  

1.5 Connecting Soil Health to Productivity 

One of the major “long-term goals of sustainable agriculture research” is to 

connect labile soil C assessments to agronomic performance (Culman et al., 2013). 

However, only half of published research investigating soil health indicators report clear, 

absolute interpretations (Bünemann et al., 2018). Improved productivity is often implied 

by soil health literature, but productivity is rarely evaluated or reported in soil health 

assessments (Bünemann et al., 2018; Miner et al., 2020). Stewart et al., (2018) reported 

less than one-third of peer-reviewed soil health studies included productivity data. There 

is evidence of a connection between soil health metrics and corn grain yield (Culman et 

al., 2013; Hargreaves et al., 2019), but an interpretive framework for on-farm application 

is lacking.  

Conceptual diagrams illustrating soil and crop management impacts on soil health 

are effective tools providing insight into cropping system impacts on soil processes and 

functions (Veum et al., 2014). However, conceptual illustrations lack the underpinning 

quantitative recommendations that translate conceptual illustrations into decision support 

systems. Current on-farm commercial utilization of soil health metrics uses two 
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approaches: 1) comparing measured values between conservation management practices 

and conventional practices within a farm or region, or 2) evaluating potential degradation 

by comparing a cropping system with a “reference state” such as a fence line or local native 

vegetation to represent undisturbed soil (Veum et al., 2014, 2015; Chu et al., 2019; 

Hargreaves et al., 2019; Caudle et al., 2020). While effective and informative for on-farm 

comparisons, these approaches cannot be scaled to regional interpretations nor do they 

establish trends that provide a framework for practitioners to interpret soil health metrics 

across a diversity of cropping systems, management practices, or soils (Zuber et al., 2020). 

Soil health decision support systems are needed to provide context to identify deficiencies 

and the environmental and economic benefits associated with ameliorating the indicated 

deficiency. The critical need for developing these decision support tools is the 

identification of soil health assessment threshold at which grain productivity is optimized. 

Therefore, empirical identification of these potential thresholds is critical for further 

development of on-farm soil health interpretation. Delivering these regional thresholds will 

provide a framework in which to interpret and inform on-farm implementation of soil 

health and the groundwork for evaluating potential benefits in economic and environmental 

sustainability of conservation management practices.  
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1.6 Research Objectives 

The purpose of this multi-pronged research was to: 

 

1) Evaluate corn yield response to P and K fertilization as impacted by soil 

fertility and soil health indicators. 

2) Investigate relationships between regional soil health analysis and corn 

grain productivity. 

3) Report sensitivities between soil health indicator sampling depths and soil 

and crop management practices within governing physical and chemical soil 

characteristics.  
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1.8 Tables and Figures 

 

  

Figure 1.1 An example empirical relationship of relative yield response to soil nutrient 

concentration with “optimal” interpretation classes. Yield response to fertilizer above the 

“critical level” is unexpected but yield increases are expected with some level of certainty 

below that nutrient concentration threshold (McGrath et al., 2014).  
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Chapter 2:  

Can Soil Biological Properties Improve Phosphorus and Potassium 

Corn Fertilizer Recommendations? 

2.1 Abstract 

Integrating soil health biological properties with soil fertility evaluations offers a 

unique opportunity to potentially refine fertilizer recommendations. The objectives of this 

research included: 1) evaluating current University of Missouri phosphorus (P) and 

potassium (K) fertilizer recommendations for corn (Zea mays L.), and 2) assess whether 

soil health biological metrics are effective indicators of yield response to P and K 

fertilization. In Missouri, 446 monitoring sites (148 m2) were implemented on 84 

production corn fields over the 2018-2020 growing seasons. For each monitoring site, soil 

health and soil fertility samples were collected prior to planting, followed by application 

of non-replicated single-rate fertilizer treatments: 1) unfertilized control; 2) 112 kg ha-1 

K2O; and 3) 112 kg ha-1 P2O5. At monitoring sites below recommended critical soil test 

values, P (n=152) and K (n =86) fertilization increased yield at 42% and 36% of the sites 

respectively, with average yield increasing 10% and 11% for P and K, respectively. At the 

lowest fertility ratings, P and K fertilization increased yield at only 52 and 56% of sites, 

respectively, highlighting inherent inconsistency that exists with current recommendations. 

However, integrating soil health with soil fertility indicators failed to improve prediction 

of yield increases from P or K fertilization. Further, variable importance ranking confirmed 

that current physiochemical soil fertility tests remain the most effective factors identifying 

when fertilizer nutrients are necessary. Although soil health metrics offer insight into other 

agronomic or environmental benefits, established soil fertility evaluations remain the most 

effective tool for guiding P and K fertilizer decisions in Missouri corn production. 
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2.2 Introduction 

Forty to sixty percent of current United States corn (Zea mays L.) yield is credited 

to nitrogen, P, and K fertilization (Stewart et al., 2005). Notwithstanding substantial 

contributions to productivity, offsite transport of fertilizer nutrients is leading to regional, 

local, and worldwide environmental issues (Kleinman et al., 2019; Smith et al., 2019). 

Continued environmental pollution, especially in freshwater systems, is leading to regional 

political pressure and restrictions on fertilizer application. Moving forward, sustainable 

agroecosystems require functional fertilizer recommendations that balance crop 

productivity and minimize environmental losses (Sharpley et al., 2015; Ros et al., 2020; 

Cassman & Dobermann, 2022).  

Soil fertility testing is the bedrock of current crop fertilizer recommendations 

(McGrath et al., 2014). These decision support systems identify soil nutrient concentration 

thresholds, or critical concentrations, where additional fertilizer does not improve yield 

(Voss, 1998; McGrath et al., 2014). Basing fertilization decisions on these critical 

concentrations offers economic incentive to reduce unnecessary fertilization while 

preventing excessive application susceptible to off-site pollution (Hopkins & Hansen, 

2019; Osmond et al., 2019). However, recent regional evaluations have highlighted needed 

improvements with some recommendation accuracies as low as 40% (Heckman et al., 

2006; Fulford & Culman, 2018; Fryer et al., 2019). Investigating current inadequacies and 

improving these recommendations is one critical step in averting ongoing environmental 

degradation.  

One plausible hypothesis for erroneous recommendations is the adoption of modern 

soil management practices. Many of the datasets that inform fertilizer recommendations 

date back over fifty years ago, often in monoculture fields with fallow between cash crops 
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and regular tillage to prepare the seedbed and facilitate residue decomposition (Bray, 1948; 

Mehlich, 1984; Voss, 1998; McGrath et al., 2014). In contrast, many of the current 

recommendations are to improve soil health by diversifying crop rotations, adding cover 

crops, and minimizing tillage (Kibblewhite et al., 2008). These conservation practices 

improve physical, chemical, and biological soil properties, creating an environment 

different from when soil fertility recommendations were developed. Despite these changes 

in common management practices, soil fertility analysis and evaluations have largely 

remained unchanged. 

Enhancing soil health properties improves nutrient cycling and reduces nutrient and 

sediment loss from erosion, leading to the promotion of these practices as a way to reduce 

fertilizer inputs and increase crop yields (Snapp et al., 2005; González-Chávez et al., 2010; 

Kuhn et al., 2016; Duncan et al., 2019). These improved soil processes are linked to 

enhanced soil biological activity (Dou et al., 2008; Wilson et al., 2019). This has led to the 

hypothesis that current physiochemical soil fertility evaluations do not reflect the beneficial 

improvements in biological properties from these conservation systems (Ndiaye et al., 

2000; Mijangos et al., 2006; García-Ruiz et al., 2008; Franzluebbers, 2016). However, 

these advantages to fertilizer requirements remain largely conceptual for P and K 

fertilization, with the few empirical studies investigating these improvements focusing on 

nitrogen plant demand (McDaniel et al., 2019; Wade et al., 2020). Therefore, it remains 

unclear whether improving soil health affects crop nutrient demand and subsequent 

fertilizer requirements.  

Integrating soil biological analysis with soil fertility evaluations offers a unique 

opportunity to refine fertilizer recommendations and investigate whether improved soil 



 

46 

 

biological properties affect fertilizer requirements. Initial investigations integrating soil 

health and soil fertility in nitrogen recommendations have shown promise, with McDaniel 

et al., (2020) concluding incorporating biological tests would improve current 

recommendations and Wade et al., (2020a) observing biologically healthier soils produce 

greater corn yields per unit of applied N. Similar approaches integrating soil health with P 

and K recommendations are absent, leaving the asserted benefits of soil health unrealized. 

The objectives of this research included: 1) evaluating current University of Missouri P 

and K fertilization recommendations for corn, and 2) assessing whether soil health 

biological metrics are effective indicators of yield response to P and K fertilization. 

2.3 Materials and Methods 

2.3.1 Field Conditions and Experimental Design 

Research was implemented on 84 fields in mid-Missouri across a diversity of 

management practices, climate patterns, and soils over three growing seasons (2018-2020). 

To evaluate response to P and K fertilization across these diverse environmental conditions, 

multiple fertilizer response trials were established on each of these fields. Each individual 

trial, called a “monitoring site”, was a 148 m2 and included four 37 m2 non-replicated 

single-rate fertilizer treatments (Figure 2.1). Coordinates of each site center were measured 

using Trimble GeoXT 6000 and Geo 7x GPS devices with approximately 6-cm accuracy. 

With the center of the site identified, pre-cut webbing was stretched to define the site area. 

Using a hand-held compass, the sites were oriented on a north-south bearing regardless of 

field-location. Monitoring sites were established in unique environments and did not 

behave as replications of the same treatments; therefore, treatment randomization was not 

required to meet assumptions required in many randomized plot trials. The relatively small 
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plot size allowed seamless implementation into commercial operations. Typical field trials 

included three to five sites per field, with 446 sites over the three growing seasons. Through 

communication with cooperating growers and applicators, sites were outlined with flags to 

ensure P, K, or S fertilizers were not applied to each site. Cooperating farmers selected 

hybrids, weed control, tillage, nitrogen fertilization, planting dates, and other practices 

based on their standard field management. Planting dates ranged from April 5-June 10. 

2.3.2 Soil and Plant Sample Collection, and Fertilizer Treatments 

Each monitoring site included a characterization of the soil profile and a suite of 

chemical, physical, and biological soil analyses (Table 2.1). Soil sampling occurred in the 

spring prior to planting (Mar-Apr). Eight to twelve 2.54-cm cores, to a depth of 15 cm, 

were collected within the site area for soil fertility and soil health analysis (Figure 2.1). At 

the time of sampling, each sampled core was split into two depths (0-5 cm depth and 5-15 

cm depth) and composited into buckets. After gentle hand mixing of each sample depth, a 

0.11 L sub-sample was collected from the 0-5 cm depth and 0.22 L subsample from the 5-

15 cm depth and combined for a depth-weighted, composite soil fertility sample. The 

remaining 0-5 cm and 5-15 cm samples were stored in re-sealable zipper storage bags and 

stored in coolers for soil health analysis. A Giddings Model #5-UV / MGSRPSUV soil 

sampling machine (Giddings Machine Company, Windsor, CO) was used to obtain one 

4.5-cm profile core to an approximate depth of 1 m, from which the soil profile was 

characterized, and sub-surface soil fertility assessments were measured. Each core was laid 

out on a processing table and characterized by visual and tactile properties into pedogenetic 

diagnostic horizons. Each core was characterized into four or five horizons, with a 

standardized surface 0-15 cm Ap horizon—to match the depth of the soil health and soil 
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fertility samples. Soil samples were bagged and removed from the monitoring area before 

fertilizers were applied to treatment plots. 

Following soil sampling, sites were sub-divided into four equal 6.1 by 6.1 m 

quadrats (37.2 m2). Fertilized treatments for the quadrats included the following: 1) control 

(i.e., no fertilizer treatment), 2) K treated with 112 kg ha-1 of K2O as KCL (0-0-60), 3) P 

treated with 112 kg ha-1 P2O5 as triple super phosphate (0-46-0), and 4) sulfur (S) treated 

with 28 kg ha-1 of S as ammonium sulfate (21-0-0-24S; S results not reported in this 

analysis). An additional 25 kg ha-1 of nitrogen was applied as SuperU® (46-0-0) to 

treatments one, two, and three to match the nitrogen included in treatment four. An 

additional 40 kg ha-1 nitrogen (46-0-0) was applied at V6 to guard against late season 

nitrogen deficiencies from wet spring conditions in 2019 and 2020. 

Soil fertility samples were air-dried and submitted for analysis to Ward 

Laboratories (Ward Laboratories, Kearney, NE). Soil fertility analyses (Table 2.1) were 

examined using published University of Missouri soil fertility recommendations (Buchholz 

et al., 2004). Soil health samples were broken into two depths (0-5 and 5-15 cm), stored in 

a cooler at 1.6° C, then processed by passing through a 1 cm screen, air-drying, and dry 

sieving through a 2 mm screen. For potassium permanganate oxidizable carbon (POXC) 

and SOC soils were ground to a powder prior to analysis. All biological soil analyses were 

completed in the USDA-ARS Soil Quality Lab on the University of Missouri Columbia 

Campus following methods listed in Table 1. The deep core soil characterization samples 

were air-dried and measured for bulk density and gravimetric soil moisture with the top 

three pedogenic horizons submitted for soil textural and fertility analyses (Ward 

Laboratories, Kearney, NE). Corn grain yield was hand harvested at maturity from an 11 
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m2 area within each quadrat of each site, with ears collected and weighed in bulk using a 

Rapala ProGuide Digital Scale (Rapala, Minnetonka, MN). An eight-ear subsample was 

oven dried at 65°C to measure grain moisture. Grain yield was estimated at 15.5% moisture 

and cob weight subtracted using a grain to cob ratio of 0.89, calculated from a published 

dataset (Kitchen et al., 2017; Ransom et al., 2021). For each monitoring site, relative yield 

for each fertilized treatment was calculated by dividing the non-fertilized control yield by 

the fertilized yield, expressed as a percent (Eq. 1). 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑌𝑖𝑒𝑙𝑑 =
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑌𝑖𝑒𝑙𝑑

𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑌𝑖𝑒𝑙𝑑
∗ 100 

(1) 

The fertilized treatment yield was considered the fertilized treatment yield at the 

specific site, unlike other methods which use averages or maximums of fertilized 

treatments (Dodd & Mallarino, 2005). Without replication statistical evaluations of yield 

response at individual sites were unattainable, as such, a five percent yield increase was 

considered ‘responsive'. This benchmark was obtained by hand-harvesting a site that did 

not receive fertilization in ten corn fields (n =10) to estimate error in yield between 

harvested plots. The average variability between unfertilized plots was five percent. 

Descriptive statistics of historic cropping system and soil properties were collected 

for each site (Table 2.2). Soil series, Major Land Resource Area, and drainage class 

information were collected from the Natural Resources Conservation Service (NRCS) Soil 

Survey Geographic (SSURGO) database based on site geospatial locations. Landscape 

positions of sites were identified during soil sampling (Table 2.2). The previous five years 

of cropping system management histories were collected including tillage, manure, cover 

crop, and crop rotation practices. Cropping systems practices were indexed relative to the 

guidelines outlined in Table 2. 
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2.3.2 Data Processing, Analysis, and Statistics 

All statistical algorithms were fit using the ‘caret’ package in R statistical software 

(R Core Team, 2016). The dataset was randomly partitioned into calibration (90%) and 

validation (10%) datasets prior to analysis. Cross validation, tuning of internal parameters, 

and model development were conducted on the calibration dataset while evaluation of final 

model performance was assessed using the validation dataset. Tuning of internal model 

parameters used a range of values and a ten-fold cross-validation repeated ten times to 

ensure model optimization. Models were trained on nine of the ten folds, with the accuracy 

measured using RMSE between the predicted and actual values on the final tenth fold. 

Tuning parameters with the lowest RMSE across each of the 100 cross-validation folds 

were chosen for the final model. Evaluations and comparisons between models were 

conducted on the validation dataset with R2 and Root-mean-square-error (RMSE) statistics. 

Relative response to fertilizer application was the dependent variable for each of 

the model algorithms. Explanatory variables included standard soil fertility analysis, a suite 

of soil biological analyses, environmental factors, and management practices (Tables 2.1 

and 2.2). All variables were not included in every model but were utilized in three separate 

scenarios: 1) standard soil fertility analyses only; 2) standard soil fertility and soil 

biological analyses; and 3) all available explanatory variables (i.e., all shown in Tables 1 

and 2). Respectively, these three model scenarios will be referred to as soil fertility Model, 

Integrated Model, and Full Model. Nonparametric random forest algorithms were used for 

modeling relative yield response for each fertilizer treatment. The RMSE and R2 statistics 

were used to evaluate whether integrating soil biological tests, environmental conditions, 

and management practices improved model performance (Ransom et al., 2019). Random 
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forest algorithms are resistant to multicollinearity, but highly correlated variables can 

introduce bias in conditional variable importance (VIP) evaluations (Strobl et al., 2007). 

Therefore, for the Integrated and Full Models, total nitrogen and organic matter (OM) were 

not included because of the high correlation with SOC (Figure 2.2). Two conditional 

methods of VIP were utilized to evaluate VIP of model performance: 1) increase in mean 

square error, which measures the decay in model mean square error as an explanatory 

variable is randomly assigned and permutated over the dataset and 2) increase in Node 

Purity, which reflects the difference in the residual sum of squares at each split and summed 

over all splits and trees (Hastie et al., 2009; Genuer et al., 2010).   

2.4 Results and Discussion 

The distribution of sampled soil properties reflects the diversity of environments in 

which the monitoring sites were deployed (Figure 2.3). Standard physiochemical analyses 

in soil fertility evaluations (Table 2.1) were within established regional recommendations 

for grain crop production (Buchholz et al., 2004). Biological analyses do not yet have 

established regional standards, but values observed in this dataset were comparable to other 

regionally reported values (Zuber et al., 2020). The variability in the soil biological analysis 

values reflects the wide diversity of cropping system practices and edaphic environmental 

properties in which the sites were employed (Veum et al., 2015). Corn yields varied by 

year, with better yields in seasons with greater precipitation during crop growth (Figure 

2.4). Across all observations, P and K fertilization did not significant increase yields, 

demonstrating the need to investigate site-specific factors that govern regional yield 

response to P and K fertilization (Dodd & Mallarino, 2005; Fulford & Culman, 2018; Fryer 

et al., 2019). 

2.4.1 Evaluating Missouri Phosphorus and Potassium Fertilizer Recommendations 
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Yield response relative to soil test values for P and K (STP and STP) generally 

follow trends established by the University of Missouri fertility guidelines (Figure 2.5). 

The greatest yield increases, and percent of sites with a yield response, occurred where 

fertilizer recommendations indicated a deficiency in available P and K (Figure 2.5). Where 

STP was below the recommended critical concentration, P fertilizer improved yield at 42% 

of the sites with an average 10% yield increase (n = 152). Potassium fertilization yielded 

similar results, with yield increases at 36% of sites below established STK critical 

concentration with an average 11% increase in yield (n = 86). In the lowest fertility rating 

(Low and Very Low), over 50% of the sites responded to fertilizer application for both P 

and K respectively (Figure 2.5). These results emulate a regional Northeast USA 

assessment where P fertilization increased yield at 17-43% of sites below established 

critical concentrations (Heckman et al., 2006) and performed better than an Ohio study 

where P and K fertilization increased yield in five and four of 42 total site-years 

respectively (Fulford & Culman, 2018). At fertility ratings above the critical concentration 

(High, Very High, Extremely High) the percent of sites responding to fertilization were 

generally low (< 25%). These results follow the Dodd and Mallarino (2005) observation 

that the probability of fertilization increasing yield above the soil-test critical concentration 

is < 25%.  

The low response in the “Medium” fertility ratings were unexpected and highlight 

the persistent uncertainty in fertilizer recommendations near recommended critical 

thresholds. These inconsistencies likely derive from bias during recommendation 

developments and the complexity of the dynamic soil-plant system (Fryer et al., 2019; 

Brouder et al., 2021). The uncertainty observed in regional P and K soil-tests involve 
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complex interactions between environmental conditions, soil properties, and management 

practices. Long-term and thorough site-specific fertilizer response trials can provide 

effective soil-test prediction of yield response to P and K fertilization (Dodd & Mallarino, 

2005; Schlegel & Havlin, 2017). These types of trials form the bedrock of P and K fertilizer 

recommendations (McGrath et al., 2014). 

Several reasons why site-specific derived soil fertility calibration datasets do not translate 

to strong regional responses exist. Typical recommended soil fertility sampling protocols 

do not sample the full rooting depth, but rather rely on the topsoil sample (< 15 cm) as an 

indicator of potential nutrient supply. Plant roots are not limited to recommended sampling 

depths, and acquisition of deeper soil nutrients can overcome deficiencies indicated in the 

topsoil (Woodruff & Parks, 1980). This subsoil nutrient supply and root acquisition are 

contingent upon intrinsic soil formation factors which vary considerably between regional 

soil types and likely not well represented in current soil fertility recommendations. 

Deficiencies in other nutrients, such as N, will mask deficiencies in P and K (Hirniak, 

2018), though I do not anticipate this effected this dataset. Phosphorus and K fertilizer 

responses are sensitive to soil conditions and properties which vary between research 

locations where the calibration data are collected (Randall et al., 1997a; b; Dodd & 

Mallarino, 2005). Finally, inherent soil properties that interact with P and K nutrient cycles, 

such as clay mineralogy, can influence the effectiveness of soil tests as an indicator of 

fertilizer requirement (Breker et al., 2019). This dataset includes over 20 soil types, with 

unique soil properties and response conditions to P and K fertilization, and likely contribute 

substantial unpredictability in the effectiveness of soil tests to estimate P and K crop supply 

during the growing season. These site-specific interactions are the principal justification 
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for investigating multivariate approaches to improve current regional P and K 

recommendations in modern management systems (Fulford & Culman, 2018; Brouder et 

al., 2021).  

2.4.2 Integrating Soil Health into Soil Fertility Recommendations 

Each random forest model (SF, Integrated, and Full Models) performed poorly in 

predicting yield response to both P and K fertilization (Table 2.3). The relatively low R2 

and high RMSE for both the calibration and validation datasets indicate poor model 

performance and only allow for general model interpretations. Predicting yield response to 

K fertilization performed better than P fertilization, with greater R2 in the calibration 

dataset and lower RMSE in the validation dataset. This is because of the stronger yield 

responses to K fertilization in low STK environments relative to yield increases to P 

fertilization in low STP environments (Figure 2.5). The addition of SH, management, and 

environmental factors improved the out-of-bag error R2 values for the calibration dataset 

for K fertilization (Table 2.3). However, no substantial improvement in RMSE indicates 

the supplementary factors did not improve model accuracy. The addition of variables in 

the Integrated and Full models lead to model overfitting on the calibration dataset, and 

when applied to a unique dataset (validation dataset) prediction accuracy remained poor 

(Table 2.3). The Integrated and Full models for predicting yield response to P fertilization 

did not improve R2 or RMSE, leading to the overall conclusion that soil health and 

management factors did not improve current soil fertility recommendations.   

Poor performance is common in regional P and K fertility assessments, with 

similarly low R2 values (R2 = 0.09-0.28) in both Ohio and the Northeast USA (Heckman 

et al., 2006; Fulford & Culman, 2018). As discussed previously, the challenges in providing 
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robust P and K recommendations are attributed to site-specific, complex management, 

climate, and soil interactions. Adding other soil analyses has been demonstrated to improve 

fertilizer recommendations (Wortmann et al., 2009), but the addition of soil biological tests 

did not improve P and K recommendations in this dataset (Table 2.3). This confirms other 

work where a commercially available soil biological test (Haney Soil Health Test) failed 

to improve estimations of plant available P (Singh et al., 2020). Three hypotheses explain 

why model performance did not improve when biological indicators were included: 1) the 

stated purposes of many biological tests are quite different than the purpose of soil fertility 

tests, 2) connections of soil health tests to P and K nutrient cycles are likely weak, and 3) 

biological and soil fertility connections are likely site-specific and degrade when employed 

regionally. Each of these will be discussed further. 

Soil fertility analysis assesses physiochemical processes that govern labile P and K 

availability (Khan et al., 2014; Brouder et al., 2021) while soil health tests detect effects of 

management on soil biological properties (Karlen et al., 2019). Their associated 

recommendations reflect these differences, with soil fertility tests informing fertilizer 

management while soil health tests inform soil and general cropping system practices. 

There are conceptual connections to these evaluations, such as biological improvements in 

nutrient cycling (González-Chávez et al., 2010; Franzluebbers, 2016), but these 

connections are outside the scope of stated soil health purposes. Therefore, it is 

unsurprising that the soil health indicators did not improve P and K recommendations 

because it is simply outside the purpose of their development (Duncan et al., 2019).  

Physiochemical, rather than biological, processes predominantly govern P and K 

nutrient supply to crops (Sharpley et al., 1993; Brouder et al., 2021). These biological 
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relationships are underdeveloped, but are hypothesized to be connected with P and K 

nutrient supply to crops through two processes: 1) estimating P and K mineralization from 

organic material, and 2) indirect effects on physiochemical processes that govern labile P 

and K availability. The effects of soil biology on P and K mineralization are conceivably 

masked by the larger physiochemical pool source while any biological impacts on 

enhancing physiochemical nutrient supply are likely already captured in current P and K 

soil analysis. The disconnect between soil biological tests and major P and K nutrient 

cycles leads to weak relationships with yield response from fertilization which offers little 

value to soil fertility evaluations. 

Finally, the complex and multi-factor relationships between biological properties, 

labile P and K, and yield are not yet developed and likely site-specific (Bünemann et al., 

2018). Direct relationships between the chemical and soil biological analyses are not 

established, but the regional nature of this dataset suggests connections are weak (r = 0.16 

- 0.32; Figure 2.2). This is because soil fertility and soil health analyses are sensitive to 

distinctive management practices (historic fertilizer application vs rotation, tillage 

management, cover crop, etc.). Correlated tests could also be interpreted to imply that 

information provided from the biological analyses has already been captured in the STP 

and STK estimates of plant nutrient availability. Or in other words, the biological analyses 

are redundant and do not provide unique information to improve identification of soils 

responsive to P or K fertilization. For example, POXC is believed to reflect an ‘active’ pool 

of carbon (C) that is easily accessible to microbial turnover, and it is likely that current STP 

and STK soil extractions adequately estimate P and K availability from this same pool; 

therefore, including POXC as a predictor of yield response to P or K fertilization is 
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unnecessary. However, as previously stated, these connections remain conceptual and 

further empirical evidence is required to establish mechanistic relationships between these 

biological and physiochemical analysis.  

2.4.3 Identifying Soil Analyses to Advise Fertilizer Recommendations 

Variable importance analysis offers insight into the relative importance explanatory 

variables contribute to the overall predictive structure of a random forest model (Archer & 

Kimes, 2008; McDaniel et al., 2020). I effectively use VIP to evaluate which agronomic 

factors govern yield response to P and K fertilization. Two methods of VIP are reported to 

demonstrate the robust nature of the top individual predictor variables (Figure 2.6). 

Because neither the Integrated or Full model improve identification of yield response to P 

and K fertilization, only the soil fertility model VIP plots are reported.   

For yield response to K fertilization, both VIP methods identified STK as the top 

predictor (Figure 2.6, panels C and D). This aligns with decades of research confirming 

STK is an effective too for evaluating soil fertility status in a diversity of environments and 

cropping systems (Mallarino et al., 1991; Vyn & Janovicek, 2001; Brouder et al., 2021). 

Dependent upon the VIP method, CEC and percent clay were the second most important 

variables (Figure 2.6; panels C and D). Both CEC and clay content are related to the major 

potential loss of K fertilizer to interlayer positions in phyllosilicate clay minerals, 

commonly recognized as K fixation (Khan et al., 2014; Brouder et al., 2021). Clay content 

is a direct measure of potential fertilizer loss to interlayer positions while CEC acts as an 

indirect measurement that is presently included as a site-specific adjustment to reflect this 

process in STK fertilizer recommendations (Buchholz et al., 2004). Other studies have 

identified pH and OM as factors that can improve K recommendations, but no mechanistic 
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descriptions of why were provided (Wortmann et al., 2009). Both pH and OM contribute 

to bulk soil CEC which is why VIP identify CEC as the superior indicator to pH and OM 

in these analyses.  

For yield response to P fertilization, the top variables in the VIP analysis were CEC 

and Bray STP (Figure 2.6, panels A and B). Both VIP methods identified CEC as the top 

indicator with the Bray STP test as the second variable governing yield response to P 

fertilization. Current Missouri recommendations only utilize the Bray STP estimate 

(Buchholz et al., 2004), implying CEC could improve P fertilizer recommendations (Figure 

2.5). Soil CEC stems from clay mineralogy and soil OM (Williams, 1932; Solly et al., 

2020) which govern three main mechanisms of P availability: 1) applied P fertilizer is 

susceptible to adsorption to clay mineral surfaces, 2) soil OM prevents adsorption through 

stable organic phosphate complexes and coating iron and aluminum oxides, and 3) soil OM 

provides an indication of potentially mineralizable P (Sanchez & Uehara, 1980). Cation 

exchange capacity was moderately correlated with both OM and SOC (Figure 2.2), which 

suggests CEC’s hybrid sensitivity to both physical (clay percentage) and biological (OM, 

SOC) properties influences its effectiveness as an indicator of yield response to P 

fertilization.  

The inclusion of STP as an effective variable was anticipated because of its use as 

the indicator for P fertilization and demonstrated effectiveness in identifying P deficient 

soils (Bray, 1944; Dodd & Mallarino, 2005). The VIP ranking of STP confirms its 

effectiveness as an indicator identifying P deficient soils, but the greater importance of 

CEC remains unknown. Common soil tests do not directly measure available P, but rather 

act as indicators of a soil’s capacity to supply, or for plant roots to acquire, P for crop 
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growth (Brouder et al., 2021). These mechanisms are impacted by other soil properties and 

the diversity of environments and soil properties likely affected the effectiveness of STP 

in identifying P sufficiency levels (Dodd & Mallarino, 2005). Organic P has been proposed 

as an unrecognized and underutilized method of improving P recommendations, because it 

comprises between 30-65% of total soil P (Dodd & Sharpley, 2015). This research does 

not support that assumption. While no direct measurements of organic P were included, 

three biological analyses were included as potential indicators of organic P nutrient supply 

to crops: acid phosphatase, POXC, and soil respiration. Acid phosphatase measures 

extracellular enzymatic activity releasing plant available phosphate from organic 

compounds (Acosta-Martínez & Tabatabai, 2011), POXC estimates the labile C pool which 

is readily available for microbial turnover and release of nutrients, and soil respiration 

reflects the mineralizable C and is considered an indirect measurement of microbial activity 

(Hurisso et al., 2016). Including these indirect measurements of organic P supply did not 

improve identification of P deficient soils (Table 2.3) and further research, with either 

direct measures of organic P or biological analyses linked to organic P pools, would 

elucidate the failure of these soil health metrics to improve soil fertility evaluations. 

Integrating both soil fertility and soil health indicators failed to improve prediction 

of yield response to P and K fertilization; however, further research investigating links 

between these two soil evaluation methods and the biochemical processes that govern 

nutrient availability in soil are needed. These results again confirm the limitations in 

current soil fertility recommendations but refute the hypothesis that integrating currently 

available soil health indicators improves regional P and K fertilizer recommendations. 

2.5 Conclusions 
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These results confirm the efficacy of University of Missouri fertilizer 

recommendations and highlight the current limitations in P and K recommendations. Soil-

test estimation of yield response to fertilization was most accurate at low nutrient levels 

and exhibited diminished precision at or above established critical concentrations. Variable 

importance analysis confirmed the effectiveness of current soil-tests, and indicated CEC is 

an underutilized tool in P fertilizer recommendations. These results reflect challenges in 

developing regional recommendations that effectively operate across natural variability 

among a wide range of soil types, environmental conditions, and management practices. 

Integrating soil health indicators failed to improve current model identification of yield 

response to P and K fertilization. These findings found little support for using soil health 

metrics to identify crop fertilization needs. Although soil health metrics offer insight into 

environmental or agronomic benefits, established soil fertility analysis remains the most 

effective tool to guide P and K fertilizer decisions in Missouri corn production. Further 

research is needed to improve current P and K recommendations to ensure sustainable 

economic and environmental management of these nutrients. 
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2.7 Tables and Figures 

 

 

Table 2.1 Soil test abbreviations, common names, brief method descriptions, units, and 

primary references. 

Abbreviation Common Name Brief Method Description Units Reference 

 

Soil Fertility Measurements 

OM Organic Matter Loss on ignition organic matter g 100 g-1 Nelson & 

Sommers, 1996 

STP Bray 1 

Phosphorus 

Bray 1 phosphorus extraction mg kg-1 Frank et al., 1998 

 Mehlich 3 

Phosphorus 

Mehlich 3 extraction of Phosphorus mg kg-1 Mehlich, 1984 

STK Soil Test 

Potassium 

Extraction of base cations with 

ammonium acetate buffer solution at 

pH 7 

mg kg-1  Warncke & 

Brown 1998 

STS Sulfate Sulfur Mehlich 3 Extraction of Sulfate-Sulfur mg kg-1 Mehlich, 1984 

CEC Cation Exchange 

Capacity 

Sum of base cations mel 100 g-1 Burt and Soil 

Survey Staff, 2014 

pHwater pH Soil pH measured in water, with 

electrode (1:1 w/w) 

 
Coleman & 

Hargrove, 1984 

% Clay Particle Size Hydrometer method g 100 g-1 Burt and Soil 

Survey Staff, 2014      

Soil Biological Tests 

SOC Soil Organic 

Carbon 

Measured via combustion on LECO 

TruMac C/N combustion analyzer 

(LECO Corp., St. Joseph, MI, USA). 

g 100 g-1 Nelson & 

Sommers, 1996 

TN Total Nitrogen Measured via combustion on LECO 

TruMac C/N combustion analyzer 

(LECO Corp., St. Joseph, MI, USA). 

g 100 g-1 Nelson & 

Sommers, 1996 

POXC Permanganate 

Oxidizable 

Carbon 

Oxidation with 0.2 M KMnO4 and 

shaken for 2 min at 240 oscillations per 

min with a 10 min settling time 

mg C kg 

soil-1 

Weil et al., 2003 

SR Soil Respiration 4-day incubation with KOH alkali trap mg CO2 

kg soil-1 

Moebius-Clune et 

al., 2016 

ACE Protein Soil/ Total / 

ACE Protein 

Autoclaved citrate extractable (ACE) 

protein, 3 g soil with 24 mL Na3C6H5O7 

buffer, autoclaved and quantified with 

Bradford BCA  

mg g soil-1 Moebius-Clune et 

al., 2016 

 
Acid 

Phosphatase 

p-nitrophenyl phosphate substrate 

addition with 1 hr incubation at 36°C 

with p-nitrophenol (PNP) standard 

µg PNP g 

soil -1 hr -1 

Acosta-Martínez & 

Tabatabai, 2011 

 
Arylsulfatase p-nitrophenyl sulfate substrate addition 

with 1 hr incubation at 36°C with p-

nitrophenol (PNP) standard 

µg PNP g 

soil -1 hr -1 

Klose et al., 2011 

 
β-Glucosidase p-nitrophenyl-β-D-glucopyranoside 

substrate addition with 1 hr incubation 

at 36°C with p-nitrophenol (PNP) 

standard 

µg PNP g 

soil -1 hr -1 

Deng & Popova, 

2011 
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Table 2.2 List and description of environmental and management data collected and used 

in phosphorus and potassium random forest models predicting relative yield response to 

fertilization. All management data are reflective of the previous five years before 

implementation of fertilizer monitoring sites. 

Variable Description 

 

Environmental Conditions 

Drainage 

Class 
USDA NRCS Soil Survey Classifications: excessively drained well-drained, 

moderately well-drained, somewhat poorly drained, poorly drained 
Soil Type USDA NRCS Soil Survey Classifications 
Major Land 

Resource 

Area 

USDA NRCS geographically associated land resource units including: 107B, 

Deep Loess Hills; 112,113,116A, Claypan Areas; 107, Heavy Till Plain; 155B, 

115C Central Mississippi Valley Wooded Slopes,  
Landscape 

Position 
General landscape positions including summit, back-slope, terraced back-slope, 

foot-slope, and floodplain steppe   

Management Data 

Crop 

Rotation 
Reflective of the past five years. Monoculture: corn after corn, Corn-Soybean: 

Corn after Soybean rotation, Diverse: any additional cash crop additions (wheat, 

triticale, etc.) 
Manure 

Application 
Reflective of the past five years. Heavy: 2+ years of manure application, Light: 

one year of manure application, None: no manure applied in last five years 
Tillage 

Practices 
Reflective of the past five years. Heavy: 3+ years of tillage, Light: 1-2 years of 

tillage, No-Till: Zero tillage in last five years 
Cover Crops Reflective of the past five years. Heavy: 2+ years of Cover Crop; Light: one 

year of cover crops; None: No cover crops in last five years 
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Table 2.3 Model statistics for random forest model algorithms with relative yield to 

phosphorus or potassium fertilization as dependent variables. Included explanatory 

variables includes suites of soil fertility, soil health, management and environmental 

variables that are identified in Tables 1 & 2. Eighty percent of the dataset was partitioned 

for model calibration with the remaining 20% used for validating developed models. 

RMSE was calculated from the difference between predicted error and observed error. 

Dependent Variable and Model Title Model Inputs Calibration Validation 

    R2 RMSE RMSE 

Relative Yield to Potassium Fertilization       

SF Model Soil Fertility 10% 7% 5% 

Integrated Model Soil Fertility + Soil Health 15% 7% 6% 

Full Model Soil Fertility + Soil Health + 

Management + Environment 

14% 7% 5% 

Relative Yield to Phosphorus Fertilization 
   

SF Model Soil Fertility 6% 6% 7% 

Integrated Model Soil Fertility + Soil Health 7% 6% 7% 

Full Model Soil Fertility + Soil Health + 

Management + Environment 

4% 6% 7% 
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Figure 2.1 Panel a) monitoring site design, fertilizer treatments, and soil sampling scheme, and panel b) a map of Missouri soil 

regions by Major Land Resource Areas and geolocation of fields with fertilizer monitoring sites. 
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Figure 2.2 Pearson correlation matrix of soil analysis included in soil fertility and soil 

health evaluations. The size and color of circles reflect the sign and magnitude of the 

correlation between variables with coefficients identified within each circle. See Table 1 

for analysis descriptions. 
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Figure 2.3 Boxplots of sampled soil fertility and soil health analyses. Abbreviations and 

descriptions are included in Table 1. Bold line in the middle indicates the median value, 

top and bottom of the boxes represent 75 and 25% of the data, respectively, while top and 

bottom of the whiskers represent 95 and 5 % of the data, respectively; outliers are 

represented by circles outside the whiskers.  
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Figure 2.4 Boxplots of yield across treatments and seasons with means identified with 

white diamonds. Treatment fertilization included 1) no fertilization 2) 112 kg K2O ha-1 3) 

112 kg P2O5 ha-1. Bold line in the middle indicates the median value, top and bottom of the 

boxes represent 75 and 25% of the data, respectively, while top and bottom of the whiskers 

represent 95 and 5% of the data, respectively; outliers are datapoints outside the whiskers. 
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Figure 2.5 Relationships between a) STK and b) STP and relative corn yield response from 

fertilization across all experimental years. Vertical dashed lines represent University of 

Missouri soil fertility ratings. Fertility ratings are labeled with crop response considered 

unlikely for soil test values in the High rating categories. Under each rating label, the 

number of observations and percent of observations in that fertility rating with ≥ 5% yield 

increase are reported.   
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Figure 2.6 Variable importance plots for established random forest models that included 

soil fertility tests. Panels A and B reflect random forest prediction of relative yield response 

to P fertilization, panels C and D reflect random forest prediction of relative yield response 

to K fertilization. Two methods of VIP are displayed, panels A and C are the increase in 

node purity which reflect the reduction in the residual sum of squares at each split and 

summed over all splits and trees while panels B and D represent the percent increase in 

mean-square-error as the variable is randomly selected and permutated over the dataset 

while. For both methods, the greater the number the greater the relative importance in 

predicting yield response to fertilization. 
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Chapter 3:  

Developing Agronomic Recommendations for Potassium Permanganate 

Oxidizable Carbon 

3.1 Abstract 

The absence of clear empirical relationships and recommendations between soil 

health and agronomic outcomes are a clear obstacle to wide-spread adoption of soil health 

assessments in commercial row crop systems. The objectives of this research included 1) 

determine whether soil health indicators are connected to corn (Zea mays L.) productivity 

in Missouri cropping systems, and 2) establish interpretive benchmarks for assessing and 

interpreting soil health indicators in Missouri corn cropping systems. The objectives were 

accomplished by collecting soil and corn grain yield at 446 monitoring sites (37 m2) in 84 

commercial production fields in 2018-2020 growing seasons. Soil health and soil fertility 

samples were collected prior to planting with corn grain yield collection occurring after 

corn maturity. These data, along with site-specific soil and weather data, were modeled 

using linear regression, conditional inference forest (CIF), and random forest (RF) 

methods. Random forest partial dependency plots were used to identify potential 

interpretive benchmarks for high importance factors, with corresponding decision and 

conditional inference trees to serve as a graphical framework of potential on-farm 

application of the identified top indicator variables. Root-mean-square-error of the three 

model approaches were similar (~1.4-1.5 Mg ha-1) with distinct improvements in R2 for the 

CIF (R2 = 0.45) and RF (R2 = 0.46) algorithms over the stepwise approach (R2 = 0.30). 

Seasonal rainfall and soil health indicator potassium permanganate oxidizable carbon 

(POXC) were the only factors included as top tier factors governing grain productivity in 

each model approach. A potential POXC benchmark ~450 mg POXC kg soil-1 was 
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observed through partial dependency analysis of the RF algorithm and confirmed and 

refined to 415 mg kg-1 for both a decision tree and conditional inference tree analyses. 

Little evidence was found connecting grain productivity with soil health indicators 

autoclaved citrate extractable protein and soil respiration. These findings demonstrate the 

unrealized importance of POXC on corn grain productivity and underscores the potential 

power of emerging indicators to assess and quantify soil health management effects on 

productivity. Identification and leverage of similar quantitative relationships with 

agronomic outcomes will spur on-farm soil health assessments and facilitate sustainable 

cropping systems. 

3.2 Introduction 

Soil health is defined as “the continued capacity of a soil to function as a vital living 

ecosystem that sustains plants, animals, and humans” (USDA-NRCS 2020). Per this 

definition, soil health metrics were developed to provide a holistic view of the complex, 

multi-faceted functions in the soil system. Farmer-level interest is clear, with the expansion 

of soil health analysis offered in soil test laboratories and increased interest in soil health 

management practices (Gruver and Weil, 2007; Moebius-Clune et al., 2016; Stewart et al., 

2018). Parallel with this movement, significant research efforts have identified soil 

analyses that reflect improvements in soil biological properties from adoption of 

conservation land use practices. However, only half of published research investigating 

soil health indicators report clear, absolute interpretations (Bünemann et al., 2018). 

Establishing quantitative interpretative frameworks for soil health metrics is critical for 

widespread adoption.  

Conceptual diagrams illustrating soil and crop management impacts on soil health 

are effective tools providing insight into cropping system impacts on soil processes and 
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functions (Veum et al., 2014). However, conceptual illustrations lack the underpinning 

quantitative recommendations that translate conceptual illustrations into decision support 

systems. Current on-farm commercial utilization of soil health metrics uses two 

approaches: 1) comparing measured values between conservation management practices 

and conventional practices within a farm or region, or 2) evaluating potential degradation 

by comparing a cropping system with a “reference state” such as a fence line or local native 

vegetation to represent undisturbed soil (Veum et al., 2014, 2015; Chu et al., 2019; 

Hargreaves et al., 2019; Caudle et al., 2020). While effective and informative for on-farm 

comparisons, these approaches cannot be scaled to regional interpretations nor do they 

establish trends that provide a framework for practitioners to interpret soil health metrics 

across a diversity of cropping systems, management practices, or soils. (Zuber et al., 2020). 

Soil health decision support systems are needed to provide context to identify deficiencies 

and the environmental and economic benefits associated with ameliorating the indicated 

deficiency. Several frameworks are available to evaluate soil health including the Soil 

Management Assessment Framework (Andrews et al., 2004), Cornell University’s 

Comprehensive Assessment of Soil Health (Moebius-Clune et al., 2016; Fine et al., 2017), 

the Haney Soil Health Tool (Haney et al., 2018), and the recently developed Soil Health 

Assessment Protocol and Evaluation tool (Nunes et al., 2021). These tools provide a 

framework for interpretation of soil health metrics, but do not provide specific 

recommendations for agronomic outcomes.  

Improving soil health through conservation practices has been connected to 

enhanced nutrient cycling, greater productivity, reduced anthropogenic erosion, and 

improved water dynamics (Snapp et al., 2005; González-Chávez et al., 2010; Kuhn et al., 
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2016). However, the currently available decision support tools do not quantify the 

outcomes or benefits of improved soil health. Ideally, soil health assessments would offer 

quantified interpretations similar to soil fertility evaluations. For example, soil fertility 

decision support tools provide specific recommendations for a common management 

decision (fertilizer application) to accomplish a specific objective (grain yield). This type 

of decision support system spurred commercial adoption of soil fertility assessments which 

have become an invaluable on-farm tool to improve productivity and mitigate 

environmental impacts (Peck, 1990; Voss, 1998). The effectiveness of these 

recommendations can be attributed, in part, to simple quantitative benchmarks with direct 

connections to agronomic decisions and outcomes (Bray, 1944). Improved productivity is 

often implied by soil health literature, but productivity is rarely evaluated or reported in 

soil health assessments (Bünemann et al., 2018; Miner et al., 2020). Stewart et al., (2018) 

reported less than one-third of peer-reviewed soil health studies included productivity data. 

There is evidence of a connection between soil health metrics and corn grain yield (Culman 

et al., 2013; Hargreaves et al., 2019), but an interpretive framework for on-farm application 

is lacking. These nuanced relationships are regionally dependent (Oldfield et al., 2019) and 

further research is needed to confirm these observations while developing a quantitative 

interpretation that identifies conditions where improved soil health leads to improved 

productivity. Achieving these goals would launch soil health metrics from research-based 

applications to “boots-on-the-ground” agronomic implementation and recommendations. 

The objectives of this research were to 1) determine where soil health indicators are 

connected to productivity in Missouri corn cropping systems, and 2) establish interpretive 

benchmarks for Missouri corn production. 
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3.3 Materials and Methods 

3.3.1 Site Description and Experimental Design 

Research was implemented across 84 fields in mid-Missouri between 2018-2020. 

The research encompassed central Missouri (Figure 3.1) and spanned across six Major 

Land Resource Areas (MLRA) predominantly classified as Mollisol and Alfisol soils with 

predominantly smectitic clay mineralogy (NRCS-SSURGO). Soil conditions are variable 

with generally deep moderately or well drained soils located in the Deep Loess Hills 

(107B) or Heavy Till Plain (109) to poorly drained in the Claypan (113) and Wooded 

Slopes (115B; Table 1). Legacy impacts from current and historical cropping practices are 

abundant in the area, with estimates that claypan soils have lost nearly one-half of their 

original topsoil (Bird & Miller 1960). Further, addressing environmental concerns from 

offsite transport of sediment, nutrient, and herbicides from cropping fields into regional 

watersheds remain major research and state conservation objectives (Willett et al., 2012; 

Sadler et al., 2015; Baffaut et al., 2020).  

Grain yield productivity data were extracted from an established soil fertility trial 

where three to six fertilizer response trials (‘monitoring sites’) were established in each 

field (Svedin et al., 2021). Each monitoring site (148 m2), 446 sites total, was divided into 

four equal 37 m2 non-replicated, single-rate, fertilizer treatments implemented prior to 

planting (Figure 3.1). A standardized plot plan was followed and included the following 

fertilizer treatments, 1) unfertilized control, 2) K treated with 112 kg ha-1 of K2O using 

KCL (0-0-60), 3) P treated with 112 kg ha-1 P2O5 using triple super phosphate (0-46-0), 

and 4) sulfur (S) treated with 28 kg ha-1 of S using ammonium sulfate (21-0-0-24S). An 

additional 25 kg ha-1 of N was applied as SuperU® (0-0-46) to treatments one, two, and 

three, to match the N included in treatment four. An additional 40 kg ha-1 N as urea (46-0-
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0) was applied at V6 in 2019-2020 to ensure sufficient N supply. Cooperating farmers 

selected hybrids, weed control, tillage, N fertilization, planting dates, and other practices 

for each individual field. Climate and soil conditions dictated planting dates, which ranged 

from April 5 to June 10. The reported results and conclusions reflect only the control 

treatment grain yield to avoid confounding results from fertilizer application, with the 

assumption that soil fertility tests would be sufficient to describe potential nutrient 

deficiencies.  

Major Land Resource Area (MLRA) and drainage class information was collected 

based on geospatial location from the NRCS Soil Survey Geographic (SSURGO) database 

(Soil Survey Staff, Natural Resources Conservation Service). Landscape positions were 

identified during soil sample collection while cropping system management practices were 

collected from the previous five seasons. Historic cropping system practices included 

tillage, manure practices, cover crop incorporation, and cropping diversity (Table 3.1). 

Daily minimum and maximum temperature, precipitation, and day length were extracted 

based on monitoring site geospatial location from the Daymet 1 km2 grid climate database 

(Thornton et al., 2020). Total seasonal rainfall was calculated as the total rainfall between 

planting date and 105 days after harvest. Shannon diversity index (SDI) measures rainfall 

distribution, and was calculated as  

𝑆𝐷𝐼 =
[− ∑ 𝑝𝑖 ln(𝑝𝑖)]

ln (𝑛)
 

where pi is the daily rainfall relative to the total rainfall in a given time (the growing season) 

and n is the total number of days. The SDI has been demonstrated to impact other 

management practices (e.g. nitrogen management) and affects potential soil infiltration and 

runoff (Ransom et al., 2019). 
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3.3.2 Soil and Plant Collection, Processing, and Analysis 

Soil fertility, soil health, and pedogenic soil profile samples were obtained in spring 

prior to planting and fertilizer treatments (Mar-Apr). Soil fertility and soil health samples 

were collected from eight random 0-15 cm depth cores for each site. Soil fertility samples 

were air-dried and submitted for analysis to Ward Laboratories (Kearney, NE). A standard 

suite of soil fertility analysis was conducted, including: loss on ignition organic matter 

(Nelson and Sommers, 1996), soil test phosphorus (STP) following the Bray extraction 

methods (Frank et al., 1998), soil test potassium (STK) following the ammonium acetate 

extraction buffered at pH 7.0 (Warncke and Brown, 1998), cation exchange capacity (CEC) 

from the sum of base cations (Soil Survey Staff, 2014), and pH (1:1 w/w) measured in 

water (Coleman and Thomas, 1967).  

Soil health samples were broken into two fixed-depth horizons, 0-5 and 5-15 cm, 

and stored in a cooler at 1.6° C. Samples were subsequently homogenized by passing 

through a 1 cm screen, air-dried, then dry-sieved through a 2 mm screen. These sampling 

depths were selected to reflect two approaches, 1) soil health metrics are often more 

sensitive to management changes at the 0-5 cm depth (Karlen et al., 2014), and 2) Missouri 

soil fertility sampling guidelines recommend a 0-15 cm depth (Nathan, et al., 2012). Soil 

biological analysis included soil respiration, soil autoclaved-citrate extractable protein 

(ACE Protein), potassium permanganate extractable carbon (POXC), soil organic carbon 

(SOC), total nitrogen, β-glucosidase activity (Deng and Popova, 2011), arylsulfatase 

activity (Klose et al., 2011), and acid phosphatase activity (Acosta-Martínez and Tabatabai, 

2011). Analysis for soil respiration, ACE Protein, and POXC followed methods outlined 

in the Cornell Soil Health Assessment (CASH) protocols (Moebius-Clune et al., 2016). 
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Briefly, soil respiration was estimated by rewetting 20g of dry soil and measuring the 

release of CO2 after a 4-day incubation period, ACE protein estimated by adding 20mM 

sodium citrate solution (pH 7) to 3.0 g of dry soil followed by autoclaving and mixing with 

1mL of Pierce BCA protein reagent (Thermo Scientific). Finally, POXC was based on Weil 

et al., (2003) with 20mL of 0.02 mol L-1 KMnO4 added to 2.5 g of dry soil, shaken for 2 

minutes and allowed to settle for 10 minutes, after which 0.5 mL of supernatant was 

transferred to 49.5 mL of deionized water and sample absorbance read with a 

spectrophotometer (Cary 60 UV-Vis, Agilent Technologies, Santa Clara, CA, USA) at 550 

nm (Moebius-Clune et al., 2016). All enzyme analyses were conducted by adding an 

enzyme-specific substrate to 1 g of dry soil, incubating for 1 hr at 36o C, and measuring 

sample absorbance with a spectrophotometer at the specified wavelength (Cary 60 UV-

Vis, Agilent Technologies). Soil organic carbon and total nitrogen were analyzed following 

(Nelson and Sommers, 1996) on a LECO Trumac C/N combustion analyzer (LECO Corp., 

St. Joseph, MI, USA). Soils were ground to a powder prior to analyze for POXC, SOC, 

and total nitrogen. All soil biological analyses were completed in the USDA-ARS Soil 

Quality Lab in Columbia, MO. 

For soil profile characterization, a single 1.2 m deep and 4.086 cm diameter soil 

core sample was taken at the center of each monitoring site using a Giddings Model #5-

UV / MGSRPSUV (Giddings Machine Company, Windsor, CO). Because these samples 

were collected in agricultural production fields, the first horizon was standardized to a 0-

15 cm depth and assumed as the plough layer (Ap) horizon. Subsequent pedogenic horizons 

were characterized using visual and tactile clues with a maximum five horizons identified 

per soil core. Identified horizons were subsequently sampled and air-dried. Bulk density 
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and soil moisture were collected for each sampled horizon, and the top three horizons 

analyzed for particle size (Soil Survey Staff, 2014) and the same soil fertility analysis 

previously listed.  

Corn grain yield was estimated from an 11 m2 area harvested by hand at grain 

maturity in each treatment. Harvested ears were collected and weighed in bulk using a 

Rapala ProGuide Digital Scale (Rapala, Minnetonka, MN) with an eight-ear subsample 

oven dried at 65°C to measure grain moisture. Grain yield was adjusted to 15.5% moisture 

and cob weight subtracted using a grain to cob ratio of 0.89, calculated from a published 

regional dataset (Kitchen et al., 2017; Ransom et al., 2021).  

3.3.3 Data Processing, Analysis, and Statistics 

 Explanatory variables included the previously listed soil fertility and soil health 

analyses, coupled with site-specific seasonal climate factors, public soil information, and 

management practices (Tables 3.1 & 3.2). A combination of traditional statistics and 

nonparametric tools were used to optimize prediction of grain yield productivity to 

determine which parameters governed yield variability in this dataset. All statistical 

analyses were conducted in R statistical software (R Core Team, 2016). Stepwise linear 

regression, random forest (RF), and conditional inference forest (CIF) models were fit 

using the ‘caret’ package (Kuhn, 2017). The dataset was partitioned into calibration (80%) 

and validation (20%) datasets prior to analysis. The tuning of internal parameters and 

model development were conducted through a cross validation approach on the calibration 

dataset while final model performance was assessed using the validation dataset. Model 

statistics were evaluated by calculating root-mean-square-error (RMSE) and R2 (Qin et al., 

2018). Tuning of internal model parameters used a range of values and a ten-fold cross-
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validation repeated ten times to ensure model optimization. Models were trained on nine 

of the ten folds, with the accuracy measured using RMSE between the predicted and actual 

values on the final tenth fold. Tuning parameters with the lowest RMSE across each of the 

100 cross-validation folds were chosen for the final model (Breiman, 2001; Ransom et al., 

2019).  

Stepwise regression was used as a traditional linear approach for predicting yield 

and identifying factors governing productivity (Culman et al., 2013). Cross validation was 

utilized to identify the optimized number of final predictor variables to be incorporated into 

the model. After determination of the optimal number of variables, the model was fit to the 

whole dataset to determine optimal factors for predicting grain yield. Nonparametric RF 

and CIF algorithms were utilized for modeling grain yield productivity to address some of 

the challenges in linear modelling approaches, such as assumptions regarding linear 

relationships and multicollinearity between predictor variables. The nonparametric 

algorithms provide a robust means of investigating the complex interactions between soil, 

environmental, and management effects upon grain yield without the same associated 

assumptions. Further, they provide novel variable importance measures that do not suffer 

from similar shortcomings of traditional variable selection methods (Cutler et al., 2007). 

The RF control parameters were ntree = 501 (number of trees to grow) with mtry = 1 

through 8 and cross validation identifying mtry = 8 as the optimum number of variables to 

consider for splitting at each node. For the CIF control parameters, ntree = 500 and 

mincriterion = 0 (significance level for a split to occur) to grow out the maximum trees. 

Both RF and CIF are boosted approaches that build upon to decision trees (Random Forest) 

and conditional inference trees (Conditional Inference Forests) to improve accuracy at the 



 

86 

 

expense of interpretability (James et al., 2000). Decision trees and conditional inference 

trees utilize recursive binary splitting to determine optimal splits of a feature space 

assembled by variables that influence grain yield productivity. The difference between 

decision and conditional inference trees is the criterion that constitutes a node split. For 

decision trees, the split is selected to maximize the information measured (reduce residual 

sum of squares) while conditional inference trees select splits with a test of significance 

(Hothorn et al., 2006). Each of these approaches are effective approaches that overcome 

the challenges in linear approaches (Cutler et al., 2007).  

Variable importance evaluations were calculated for both RF and CIF models using 

the ‘randomForest’ and ‘partykit’ packages in R (Liaw & Wiener 2002; Hothorn et al., 

2006; Hothorn & Zeileis, 2015). Two variable importance methods were utilized to 

evaluate important factors in the RF model 1) decay in mean standard error (MSE) which 

measures the decay in model accuracy as a variable is randomized, and 2) node purity, 

which measures the change in residual sum of squares at each node split weighted across 

the 501 decision trees in the random forest (Breiman, 2001). Highly correlated variables 

can interfere with variable importance evaluations or partial dependency evaluations in RF 

evaluations (Strobl et al., 2007; Elith et al., 2008). Therefore, loss-on-ignition organic 

matter and total nitrogen were not included because of their high correlation with SOC (r 

> 0.90). The CIF variable importance was specifically developed for the challenges in RF 

variable importance evaluations and potentially confirm variable importance from the other 

methods. Partial dependence plots were used to further explore the relationship between 

individual explanatory variables and predicted productivity. Given the complexity of the 

soil system, partial dependency plots were provided to obtain a description of some of the 
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major aspects of the functional relationships between grain yield productivity and soil, 

management, and climate factors. They provide a graphic representation of the dependence 

of grain yield on individual predictor variables (i.e. soil test potassium, rainfall, etc.) after 

averaging out the effects of the other predictor variables in the model (Cutler et al., 2007). 

After the top indicators were determined, decision and conditional inference trees were fit 

using the identified variables (Tables 3.1 and 3.3) to serve as a graphic framework of 

potential on-farm application of the identified top indicator variables. 

3.4 Results and Discussion 

A wide range of soil conditions and environmental properties were observed. Soil 

fertility conditions were variable, with observed deficiencies and soil nutrient 

concentrations above recommended soil test values (Table 3.2). While no 

recommendations are currently available for soil health indicators, there was considerable 

variability in each indicator, similar to other published regional observations (Zuber et al., 

2020). In 2018, weather conditions were substantially drier than the subsequent years 

resulting in yields considerably lower during that season. It is noteworthy that less than 

10% of monitoring sites were executed in 2018; consequently this dataset predominantly 

reflects seasons of sufficient, or excessive rainfall.  

3.4.1 Linear Relationships and Model Performance 

In general, correlations between bivariate linear relationships were not strong 

between soil health indicators and grain yield (Figure 3.2). While several relationships 

were significant, the low r2 values highlight the limitations of bivariate analysis in detecting 

complex relationships between soil properties and productivity. Relationships between 

yield and several soil health indicators (POXC, SOC, TN) were significant, but substantial 

variability remained (r2 ≤ 0.06) indicating these relationships are complex and multi 
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factored, and therefore simple bivariate linear methods are inadequate. Reported 

correlation coefficients as high as 0.64 and 0.35 have been reported, such as in Michigan, 

USA (Culman et al., 2013) and in Honduras (r2 = 0.74) for various soil health indicators 

(Stine and Weil 2002). However, these previously published relationships reflect long-term 

studies at single locations, which are ideal for identifying site-specific management 

impacts on soil health indicators, by controlling for the complex interactions introduced 

from sites in multiple climate and environmental conditions. These reported site-specific 

single-factor relationships likely degrade as more cropping systems, climate, and soil 

conditions are included in a dataset (Wade et al., 2020). Reducing sampling depth to 0-5 

cm from the standard 15 cm sampling depth did not meaningfully impact the bivariate 

relationship for any of the soil health indicators (Figure 3.2).  

Cross-validation with stepwise regression identified a five-variable model as the 

model with the lowest RMSE and highest R2 (Table 3.3). Yet, both the CIF and RF models 

outperformed the stepwise linear regression prediction on the validation dataset, with 

modest reductions in RMSE and considerable increases in R2 values (Table 3.3). The RF 

model outperformed the CIF model on the calibration dataset, but both performed similarly 

on the validation dataset with RMSE equal to 1.4 Mg ha-1. It is worthwhile to note that 

while RF and CIF methods of deriving node-splits differ, they provided similar precision 

(Table 3.3). The improvements in reduced error and improved accuracy highlight the 

potential benefits of RF and CIF as alternatives to traditional approaches when examining 

non-linear and interacting factors in agricultural research. Model performances were 

moderate (R2 < 0.50) but acceptable considering parameters only included soil properties, 

limited management practices, and precipitation patterns. Further data collection including 
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factors such as corn variety, weed and pest pressure, nitrogen management, and final stand 

would potentially further improve model performance.  

3.4.2 Identifying Yield Governing Factors 

After identifying the optimal five variable limit, a stepwise regression model with 

a five variable limit was fit to the whole dataset to identify key factors governing grain 

yield (Table 3.4). The final model performed modestly (R2 = 0.32) with the top variable 

subset including total rainfall, CEC, POXC, and MLRA (Table 3.4). Seasonal rainfall, 

CEC, and MLRA currently have well established links to grain productivity. Precipitation 

patterns drive productivity through absence, or supply, of plant available water and its 

subsequent effects upon fertilizer nitrogen losses (Tremblay et al., 2012; Li et al., 2019). 

Cation exchange capacity reflects both physical (soil texture) and chemical (soil exchange 

sites) soil properties and is linked to grain productivity through the storage and supply of 

essential plant nutrients. POXC is a relatively processed portion of the labile carbon (C) 

pool that has been connected to corn grain yield and is sensitive to management practices 

that promote soil C stabilization (Weil et al., 2003; Lucas and Weil, 2012; Hurisso et al., 

2016). Finally, MLRA echoes the effect of parent material and soil formation processes on 

grain productivity (NRCS-USDA Agricultural Handbook 296). The inclusion of POXC 

confirms other reports that it is a superior indicator of productivity than current standard 

measurements of organic matter (Stine and Weil, 2002; Culman et al., 2013; Wade et al., 

2020). 

Variable importance in the random forest algorithm was calculated by measuring 

the decay in model accuracy as a single variable’s values are randomly permutated 

(Breiman, 2001). An increase in MSE indicates greater error is introduced when that 
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specific variable is randomly permutated (Figure 3.3). Model error increased most for 

seasonal rainfall, SDI, POXC, and planting date, with model error over 50% more for these 

four variables than the other explanatory variables. Four variables again clearly separated 

from the remainder of the explanatory variables in the CIF variable importance evaluations: 

seasonal rainfall, SDI, MLRA, and POXC. The CIF variable importance is not included as 

a superior method to identify variable importance, but rather as further evidence confirming 

the importance of high impact factors upon corn grain productivity. The inclusion of SDI, 

rainfall, and POXC in both the RF and CIF evaluations suggests a strong connection with 

grain yield. Further, the importance of MLRA as the fifth most important variable in the 

RF ranking compliments the stepwise regression approach (Table 3.4).  

It is also worthy to note established soil fertility measurements were influential 

upon grain yield. Both CEC and STK were included in the top ten variables for both the 

RF and CIF variable evaluations, while STP was included in the top five indicators of the 

CIF evaluation (Figure 3.4). Soil test K and STP estimate the potential seasonal soil supply 

of P and K nutrients, while CEC reflects the potential storage of nutrients and, in Missouri, 

is closely related to clay content (Bray, 1944, 1954; Solly et al., 2020). ACE protein, a soil 

health indicator, was also included in the top ten variables for both RF and CIF variable 

importance evaluations (Figures 3.3 & 3.4). While not included as the “top” indicators of 

productivity, these indicators constitute a secondary tier of influence. The omission of soil 

respiration as a top or secondary indicator of grain yield was surprising, considering its 

reported links to yield production and suggestions it be included in regular soil sample 

analysis (Culman et al., 2013; Hurisso et al., 2016; Franzluebbers, 2016; Adhikari et al., 

2021). In another regional assessment of soil health indicators and agronomic outcomes, 
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Wade et al., (2020) observed that soil respiration reflects characteristics that are inherently 

site specific, and when employed across a diversity of environments this relationship with 

productivity is diminished. The results from this dataset confirm this observation.  It should 

be noted that these results reflect seasons with adequate precipitation and the relative 

importance of soil respiration could be highlighted during seasons of water stress.  

Planting date, MLRA, and SDI were included as top tier indicators but not in each 

evaluation method (Table 3.4, Figures 3.3 & 3.4). Planting dates set annual yield potential 

with cascading effects on yield from interactions with weather determining final stand 

counts and whether plant growth stages align with critical precipitation patterns (Van 

Roekel and Coulter, 2011; Baum et al., 2019). Shannon diversity index reflects the 

distribution of rainfall and potential infiltration into the soil surface. For example, a poor 

SDI indicates high intensity rain events over a short time, which leads to less potential soil 

infiltration and soil water storage for crop use. Finally, MLRA reflects soil forming factors 

and processes and their relative impacts upon physical, chemical, and biological soil 

properties that govern grain yield. The exclusion of MLRA, planting date, and SDI from 

top tier indicators in variable importance evaluations derive from unique method 

assumptions and mathematical approaches used to determine important relationships 

between independent and dependent variables. These various methods are not provided to 

support one method, but rather as confirmation of the robust nature of the independent 

variables’ impact upon productivity.  

 Only seasonal rainfall and POXC were included in the top tier in every method of 

identifying impactful factors on grain yield (Table 3.4; Figures 3.3 & 3.4). The inclusion 

of rainfall is unsurprising because of its previously discussed relationship between water 
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supply and grain yield. Excessive rainfall or drought are the top two drivers of yield loss 

from extreme events in the US (Li et al., 2019). Surprisingly, POXC, rather than any other 

established soil fertility or soil health indicator, demonstrated the strongest quantifiable 

link with grain yield. This was not expected because of the well-established connections 

between productivity and soil fertility assessments and the poor bivariate relationship 

between POXC and grain yield (Figure 3.2). This demonstrates the unrealized importance 

of POXC on corn grain productivity and further underscores the potential power of 

emerging indicators to assess and quantify soil health management effects on productivity.  

3.4.3 Benchmarks for Interpreting Soil Health Metrics 

Stepwise regression identified POXC, rainfall, CEC, and MLRA as important 

indicators of grain yield. While useful, the practical on-farm application of these model 

coefficients is limited to “positive” or “negative” impacts on grain yield. The coefficients 

do not provide a framework to interpret whether a certain POXC, CEC, or rainfall amount 

can maximize yield. Therefore, there is limited on-farm utility of these coefficients. While 

specific coefficients are not provided in variable importance evaluations, external partial 

dependency plots (PDP) offer insight into the input-output variable relationships and 

provide a useful basis for interpreting the relationship of these factors with grain yield 

(Friedman, 2001; Elith et al., 2008). Partial dependency plots further provide insights into 

possible thresholds for an indicated variable and the relative impact upon prediction of a 

response variable (Cao et al., 2015; Zeng et al., 2017; Lawrence et al., 2021).  

The PDP plots confirmed the findings of the variable importance evaluations with 

weather related factors (Seasonal rainfall and SDI) resulting with the largest increases (1.0-

1.5 Mg ha-1) in predicted yield (Figure 3.5). Both seasonal rainfall and SDI follow S-shaped 



 

93 

 

membership curves (Figure 3.5) where optimal yield occurred at seasonal rainfall above 

500 mm and SDI above 0.70 (Figure 3.5) with the lowest yield below 300 mm seasonal 

rainfall and SDI below 0.60 (Figure 3.2). This relationship between yield and seasonal 

rainfall was expected, with yield increases no longer occurring once the necessary rain was 

achieved for optimal production. I expect the lower SDI values reflect high intensity spring 

rain events which negatively impacted seedling emergence and vigor and subsequent stand 

counts and final yield. Planting date itself was included as an important variable in the 

variable importance evaluations, but the indicated effect on yield is minimal unless planted 

after d 150 (May 30th; Figure 3.5). This date is later than other Missouri reports that 

observed 10% yield decreases beginning May 11th and 22% yield decreases by May 31st 

(Wiebold and Massey 2012). However, this corresponds well with other reports that 

optimal planting for the US Corn Belt is typically late April with yield declines beginning 

in late May (Nafziger, 1994) that can reach up to 15-30% if delayed more than 4 weeks 

(van Roekel and Coulter, 2011). Missouri seasonal climate variability is substantial and 

further research is required to verify the seasonal stability of these observed trends. As 

previously mentioned, yield was collected predominantly in sufficient or excessive 

seasonal rainfall, any discrepancies with other reported trends are likely because native to 

the environmental and climate conditions from 2018-2020.  

The PDP relationship between the soil fertility tests (STP, STK) behaved similarly 

to current recommendations (Figure 3.5). Typical P and K fertilizer recommendations are 

based on fitted quadratic curves between relative yield and soil test (STP and STK), where 

fertilizer application is not recommended above the fitted curve plateau, referred to as the 

critical concentration (Dodd and Mallarino, 2005). The PDP relationships for STP and STK 
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mimic quadratic response curves, with yield increases plateauing near established 

University of Missouri critical concentrations (Figure 3.5; current critical concentrations 

identified with vertical red dashed lines). The similarities between the PDP plots and 

established STP and STK recommendations lends credibility to optimizing yield based on 

these soil tests and adds prospective reliability to the other reported PDP relationships 

(Figure 3.5).  

Soil health PDP plots each demonstrated distinct relationships with grain yield 

(Figure 3.5). POXC demonstrated an S-shape membership curve with optimal yield 

observed above ~450 mg kg-1 and the lowest yields below 300 mg kg-1 (Figure 3.5). The 

relative yield gains from POXC were not as large as climate (0.6 Mg ha-1), but were the 

largest of all other soil analyses (Figure 3.5). Yield and ACE protein demonstrated a 

generally positive relationship (Figure 3.5). There was an indicated plateau near 4 mg g 

soil-1, but the relative yield increase (0.3 Mg ha-1) is nearly half of the POXC yield effect. 

ACE protein has not been historically utilized to estimate productivity, but rather is 

connected to the soil protein pool, potentially available organic nitrogen, and aggregate 

stability (Wright et al., 1999; Rosier et al., 2006; Hurisso et al., 2018; Geisseler et al., 

2019). The positive link between ACE protein and productivity could reflect the supply of 

nitrogen through mineralization, or indirect links between aggregate stability and grain 

productivity. Finally, the soil respiration effect on grain yield was minimal, without a 

strong observable relationship (Figure 3.5).  

Both soil respiration and POXC have been previously related to grain yield while 

ACE protein is typically utilized to estimate potentially available organic nitrogen pool or 

the impacts of management practices on soil properties. In one analysis, soil respiration 
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and POXC were identified as the top two variables in predicting yield (Hurisso et al., 2016). 

Further, at a long-term research site, soil respiration was identified as a more sensitive 

indicator of corn productivity and agronomic performance than POXC and other 

commonly employed soil organic matter methods (Culman et al., 2013). That trend is 

contrary to the reported results here (Figures 3.3 and 3.4). While both soil respiration and 

POXC measure distinct portions of the labile C pool, soil respiration also reflects soil 

metabolic potential (Hurisso et al., 2016). Soil metabolic potential is highly sensitive to 

site-specific soil conditions (texture, structure, soil organic matter, etc.) and Wade et al., 

(2020) observed the site-specific characteristics of soil respiration connections with corn 

productivity are diminished when employed regionally. I expect the regional nature of this 

dataset rendered soil respiration as an ineffective indicator of corn grain yield. It should be 

noted that evaluations of POXC and soil respiration typically only include total soil C as a 

covariate (Stine and Weil, 2002; Lucas and Weil, 2012; Culman et al., 2013; Hurisso et al., 

2016; Singh et al., 2020). Expanding explanatory variables to include weather, 

management, and soil fertility factors in a universal approach suggests the POXC 

relationship with yield is robust, while the role of soil respiration may have been 

diminished by the influence of other factors (e.g. weather, soil fertility, management 

practice). In total, these results indicate soil respiration may not be an effective regional 

predictor of grain yield and may best serve as a side-by-side comparison or as an indicator 

of other agronomic outcomes (e.g. nitrogen mineralization). In contrast, this study confirms 

that POXC is an effective regional indicator of corn grain productivity and provides, for 

the first time, a potential benchmark for agronomic interpretation of POXC measurements.  

3.4.4 Potential Application of the POXC Benchmark 
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The regression and conditional inference trees yielded similar RMSE and R2 values 

on the validation dataset and performed the poorest of the previously evaluated model 

approaches (Tables 3.4 & 3.5). Both approaches included only two variable splits with the 

primary difference being the primary node split. SDI was the primary split in the decision 

tree, and seasonal rainfall was the primary split for the conditional inference tree (Figure 

3.6). In both evaluations, POXC values of 415 and 416 mg kg soil-1 were identified as a 

second split (Figure 3.6). This split criterion corresponds with the PDP plots which indicate 

a noticeable increase in yield near this POXC value (Figure 3.5). The 1.0 Mg ha-1 difference 

between terminal nodes after the POXC split in the conditional inference plot correspond 

well with the observed PDP analysis (Figures 3.4 and 3.5). These results could simply be 

summarized by stating that the most productive yields occurred in environments with 

sufficient rainfall with less intense precipitation events where POXC was above 415 mg 

kg-1 (Figure 3.6). These results confirm the previous conclusions that precipitation factors 

are the primary drivers of productivity and POXC is an effective tool to evaluate 

productivity once sufficient precipitation variables are satisfied (Figure 3.3 & 3.4). It is 

important to note that decision tree and conditional inference tree analyses provide clearly 

understood results with easily interpreted graphical representations (James et al., 2000). 

However, this approach does not provide the same level of precision as linear regression, 

RF, and CIF approaches. Therefore, rather than generating a universally applicable 

decision support tool, the decision and conditional inference trees provided a potential 

framework for application of the observed weather and soil health benchmarks. 

The results address two major critiques of soil health assessments 1) including 

empirically derived relationships with agronomic outcomes and 2) the pressing need for 
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interpretive baselines for soil health indicators (Bünemann et al., 2018; Caudle et al., 2020). 

Further, it is the first step to providing a necessary baseline for connecting labile soil C 

assessment to agronomic performance, one of the “long-term goals of sustainable 

agriculture research” (Culman et al., 2013). Further research is needed to investigate the 

robust nature of this benchmark within and outside Missouri corn cropping systems and 

potential interactions with natural edaphic and management practices (Zuber et al., 2020). 

Further, it is uncertain whether POXC is mechanistically connected to grain productivity, 

or it is connected to other soil processes that improve productivity. Current assessments of 

POXC conclude that it is one of the most sensitive fractions of the labile soil C pool 

(Bongiorno et al., 2019), reflects general soil health (Fine et al., 2017), and is recommended 

as an integral soil health component (Morrow et al., 2016). POXC is related to a relatively 

processed portion of the labile soil C pool that is sensitive to management practices that 

promote soil C stabilization (Culman et al., 2012; Hurisso et al., 2016) which suggests 

POXC reflects the agronomic production benefits associated with reducing tillage 

practices. I would reiterate that while POXC is sensitive to biological soil health status, it 

is not a universally equipped indicator for evaluation of all aspects of soil health (Karlen 

et al., 2019). These results are not proposed to replace current and effective decision tools 

that evaluate soil management affects upon soil functions, and I expect these thresholds or 

relationships could be incorporated into established regional soil health assessments in the 

future (Andrews et al., 2004; Moebius-Clune et al., 2016; Nunes et al., 2021). Rather, these 

results are proposed to empirically demonstrate the agronomic benefits of enhancing soil 

health indicators and provide an interpretive framework for practitioners to incentivize 

adoption of conservation management practices and soil health assessments.  
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3.5 Conclusions 

These results provide a plausible framework for interpreting soil health indicators 

within the context of environments, management practices, and soil conditions found in 

Missouri corn cropping systems. These results report POXC as a more sensitive predictor 

of corn grain yield than both traditional measures of soil organic matter and soil fertility 

analyses. Further, a clear POXC benchmark is reported whereupon corn grain yield was 

maximized. Further evidence is required to validate this benchmark within and outside of 

Missouri corn cropping systems across soil and weather conditions. This study found little 

to support the use of soil respiration as an indicator of corn grain yield under these 

conditions and only identified a weak relationship with ACE protein. Future work is needed 

to explore the specific soil properties and processes represented by POXC and how POXC 

contributes to grain yield productivity. This will inform whether yield directly responds to 

improvements in POXC, or whether POXC serves as a proxy or indirect measure of other 

soil properties that enhance the growing environment. These results also demonstrate the 

advantages of using statistical non-parametric approaches to understand relationships 

between soil health indicators and productivity. Overall, this provides the first empirical 

relationship between POXC and corn grain yield that is uniquely designed to inform on-

farm decision support systems. Identifying and leveraging similar quantitative soil health 

relationships with economic incentives will aid in incentivizing and spurring on-farm 

adoption of conservation management practices.  
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3.7 Tables and Figures 

Variable Description n 

   

Major Land Resource Areas  

113          Central Claypan Areas 173  
107B        Iowa and Missouri Deep Loess Hills 132  
109          Iowa and Missouri Heavy Till Plain 79  
115A,B   Central Mississippi Valley Wooded Slopes, Western Part 53     

Tillage      
Heavy Tillage Three or more years of tillage 171  
Light Tillage Two years or less of tillage 15  
No-Till No Tillage operations 251     

    

Cover Crops      
Heavy  Two or more years of planted cover crops. 138  
Light  One year of planted cover crops. 98 

 
No Cover Crops No planted cover crops. 201 

    

Cropping Rotation      
Corn-Soybean Corn soybean rotation. 362  
Diverse  The incorporation of any other cash crops aside from 

corn and soybeans (cover crops not included). 

62 

 
Monoculture A single crop grown each season. 8     

Manure 

Management 

    

 
Heavy Two or more years of manure application 30  
Light One year of manure application 41  
None No manure application in previous five seasons 366 

        

  

Table 3.1 Descriptions of management and environmental variables included in evaluation 

of grain productivity. All management practices reflect the previous five years of 

management history. Major Land Resource Area descriptions are available through the 

USDA Natural Resources Conservation Services. 
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Variable Units Mean Median St. Dev Min Max 

Grain Yield Mg ha-1 15.9 16.1 1.97 8.84 20.2        

Soil Fertility Analysis 

pH 
 

6.6 6.6 0.5 5.0 7.7 

Organic Matter % 3.3 3.2 0.59 2.0 5.3 

Soil Test P (STP) mg kg-1 22 17 19 2.0 168 

Soil Test K (STK) mg kg-1 144 129 70 49 544 

CEC meq 100 g soil-1 14 13 3.7 6.1 27 

Sulfate-S mg kg-1 7.4 7.2 2.3 1.8 16 

Sand % 18 17 5.3 4.0 58 

Silt % 55 57 7.6 21 73 

Clay % 27 26 6.9 11 73        

Soil Health Analysis 

Beta-Glucosidase µg PNP g soil -1 hr -1 77 77 20 4 163 

Acid-Phosphatase µg PNP g soil -1 hr -1 166 158 50 66 294 

Arylsulfatase µg PNP g soil -1 hr -1 47 44 19 18 123 

Soil Respiration mg C-CO2 kg soil-1 144 141 41 49 318 

ACE Protein mg g soil-1 3.6 3.7 1.1 1.5 6.6 

POXC mg kg soil-1 445 440 105 198 752 

SOC % 1.6 1.5 0.35 0.85 2.8 

Total N % 0.15 0.15 0.03 0.09 0.28 

 

Cropping System Management 

Planting Date Ordinal Day 129 131 18 96 160        

Climate and Environment 

Total Rainfall mm 230 241 77 43 394 

Shannon Diversity 

Index 

 
0.63 0.63 0.06 0.43 0.74 

Abundantly Well-

Distributed 

Rainfall 

  149 147 58 24 279 

  

Table 3.2 Variable descriptive statistics for soil analysis, climate, and management 

practices.  
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Training Testing 

Model R2 RMSE R2 RMSE   
Mg ha-1 

 
Mg ha-1 

Stepwise Linear Regression 0.30 1.7 0.30 1.5 

Conditional Inference Forest 0.33 1.7 0.45 1.4 

Random Forest 0.45 1.5 0.46 1.4 

 

Table 3.3 Reported statistics for training and testing datasets for three statistical methods. 
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Coefficients Variables Model Statistics 

    p-value R2 

12.3 Intercept 2.20E-16 0.32 

-0.157 CEC 
  

0.00435 POXC 
  

0.00707 Rain 
  

0.956 MLRA Loess Hills 
  

-0.260 MLRA Heavy Till Plain     

 

Table 3.4 Stepwise linear model results fit to the whole dataset with reported model 

statistics and variable coefficients. The stepwise model fit was restricted to identify the five 

most significant variables. The optimal number of final variables was determined a priori 

through cross-validation (Table 3.3).   
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Training Testing 

Model R2 RMSE R2 RMSE 

Conditional Inference Tree 0.24 1.78 0.20 1.64 

Regression Decision Tree 0.25 1.75 0.19 1.63 

 

Table 3.5 Reported statistics for nonlinear models, shown for both training and testing 

datasets. 
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Figure 3.1 A map of Missouri soil regions by Major Land Resource Areas and geolocation 

of fields with established monitoring sites for yield collection.  
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Figure 3.2 Linear relationships between soil health indicators (0-5 and 0-15 cm) and yield 

with reported model equations and r2 statistics. Included soil health indicators are A) acid 

phosphatase B) arylsulfatase C) β-glucosidase D) permanganate oxidizable carbon, E) soil 

organic carbon, F) soil respiration, G) total nitrogen, and H) autoclaved citrate extractable 

protein.  
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Figure 3.3 Variable importance rankings from the Random Forest results predicting corn 

grain yield at 445 monitoring sites in 89 fields in Missouri. Variable importance is 

calculated by measuring the mean decrease in accuracy (MSE) as an explanatory variable 

is randomly permutated. The greater the number and ranking, the more important the 

variable in predicting productivity. All soil tests, management practices, and SSURGO data 

are included.  
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Figure 3.4 Variable importance rankings from the conditional inference forest (CIF) results 

predicting corn grain yield at 445 monitoring sites in 89 fields in Missouri. The greater the 

number and ranking, the more important the variable in predicting productivity. All soil 

tests, management practices, and SSURGO data are included.  
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Figure 3.5 Partial dependency plots for climate, soil health, and soil fertility variables in 

predicting yield with the random forest algorithm. Blue lines reflect a LOESS smoothed 

line to highlight general trends. The y-axis is predicted yield from the random forest model 

with the x-axis reflects the range of values observed in this dataset for the indicated 

explanatory variable. The raw partial dependency relationship is indicated with the black 

line, with the overlaying blue line reflecting a smoothed function of the partial dependency 

relationship. Vertical red lines in soil test K and P plots are established regional critical 

concentrations to inform P and K fertilization. 
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Figure 3.6 Decision and conditional inference tree for Missouri corn grain yield 

productivity. Splitting values are in the units of the parameter used for the split (Table 3.1), 

with n representing the number of observations included in each split and terminal node. 

Decision tree splits are conditional upon the minimization of residual sum of squares of the 

dataset while conditional inference trees are dependent upon an a priori significance level 

(p < 0.05). Boxplots for the conditional inference tree reflect the variability of yield (Mg 

ha-1) at the terminal node with significant p-values identified at each node split.  
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Chapter 4: 

 A Regional Missouri Soil Health Assessment: Endemic and 

Management Effects when Interpreting Soil Health Metrics 

 

4.1 Abstract 

Effective regional soil health assessments hinge upon regionally robust soil 

analyses sensitive to critical soil processes and functions. Standardized soil health 

recommendations, sampling depths, and connections to conservation management 

practices are not yet fully developed. Therefore, objectives of this research included 1) 

identify important soil factor conditions to consider in regional assessments, 2) evaluate 

regional sensitivity of soil health indicators to manure application, tillage practice, cover 

crop implementation, and crop rotation, and 3) empirically evaluate sampling depth 

approaches. Between 2018-2020, soil samples were collected at two depths (0-5 cm; 0-15 

cm) at 446 sample sites across 101 commercial row crop fields in Missouri. Random forest 

and least absolute shrinkage and selection operator (LASSO) were utilized to model 

selected soil health indicators with subsequent environmental and management effects 

determined by LASSO coefficients. Model R2 varied (0.22-0.56) with soil respiration 

performing the poorest and potassium permanganate oxidizable carbon (POXC) the 

greatest. These results affirm the importance of interpreting soil health indicators within 

the parameterization of baseline soil organic carbon (SOC) measurements, soil texture, and 

soil formation factors and processes related to major land resource areas. Soil pH was 

identified as a major governing factor upon five of the seven soil health indicators—

highlighting its important governing effect on biological processes and potential 

interference with established laboratory methods. The greatest and strongest crop 
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management effects upon soil heath indicators were related to field manure application 

with no-till and crop rotation relationships less robust but still effecting three of the seven 

indicators. Only soil respiration was regionally sensitive to cover crop practices. Finally, a 

framework is provided that identifies optimal sampling depths and regional management 

sensitivity for each soil health indicator. Overall, these results provide a needed framework 

for practitioners and soil test laboratories to consider when providing regional soil health 

evaluations.   

4.2 Introduction 

Effective soil health assessments hinge upon regionally robust soil analyses 

sensitive to critical soil processes and functions. Development of these indicators began in 

the 1990’s (Karlen et al., 2019) with recent focus on biological assessments (Veum et al., 

2015). On-farm interest is evident with recent public and private research initiatives 

(Karlen et al., 2017; Norris et al., 2020) and commercial laboratories now offering soil 

health biological soil analysis (Fine et al., 2017; Stewart et al., 2018; Wade et al., 2018).  

Several management principals are recommended to improve soil health, including 

1) diversifying plant communities, 2) minimizing of soil disturbance, 3) maintaining root 

growth throughout the season, and 4) maintaining soil cover to protect against disturbance 

(USDA-NRCS 2020). Integrating livestock grazing or manure inputs are recommended as 

well as a fifth soil health principal. Implementing these practices fosters soil health by 

preventing erosion processes, promoting soil biology, reduces losses and restoring soil 

organic carbon (SOC), stimulating nutrient cycling, and enhancing the hydrologic cycle 

(Doran and Safley, 2002; Doran, 2002; Lehman et al., 2015; Nunes et al., 2020). Recently, 

many soil biological indicators have been developed to track improvements from these 

management practices. These indicators are useful to assess management impacts upon 
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nutrient cycling, soil C stabilization, aggregation processes, and soil microbial activity 

(Deng and Tabatabai, 1997; Veum et al., 2015; Hurisso et al., 2016; Geisseler et al., 2019). 

Empirical relationships between these soil biological indicators and the management 

practices are documented at plot or sub-field evaluations (Stine and Weil, 2002; Lucas and 

Weil, 2012; Culman et al., 2013; Veum et al., 2015). These results identified site-specific 

relationships that can be further verified in other environmental conditions and 

management practices. However, inherently these assessment conclusions are limited to 

the environmental conditions in which they are conducted. Ample evidence exists to show 

soil health indicators are sensitive to site-specific properties, such as soil texture, native 

SOC content, and other environmental properties (Ladoni et al., 2015; Fine et al., 2017). 

Therefore, there is a need to scale plot-level relationships to landscape and regional 

environments (Andrews et al., 2004; Fine et al., 2017). 

These challenges are acknowledged, and efforts to address them are underway 

through the Soil Management Assessment Framework (SMAF), Comprehensive 

Assessment of Soil Health (CASH), and Soil Sealth Assessment Protocol and Evaluation 

(SHAPE) tool (Andrews et al., 2004; Moebius-Clune et al., 2016; Nunes et al., 2021). 

These tools largely remain research based and have not been widely adopted at commercial 

soil testing laboratories (Wade et al., 2018). Consequently, without associated 

recommendations or interpretive frameworks, (Andrews et al., 2004; Fine et al., 2017; 

Nunes et al., 2021) reports are focused on raw values that do not account for specific soil 

or environmental conditions. Further, important factors that influence each of the seven 

soil health indicators are not well established. Soil formation factors and physical 
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properties are already recognized (Zuber et al., 2020), but further work is needed to identify 

regional impacts upon regional efficacy of soil health metrics in Missouri.  

Finally, there is no standardized universal sampling depth for soil health 

evaluations; which are encouraged for regionally relevant and reproducible 

recommendations. Rather, soil health sampling depths in are variable, and dependent upon 

sampling objectives. Some opt to sample surface soil depths (e.g., 0-5 cm) because of the 

increased sensitivity to management practices (Veum et al., 2015; Zuber et al., 2020) while 

other soil health evaluations replicate established sampling depths (Missouri; 0-15 cm). 

Both sampling depths provide benefits, with surface sampling providing increased 

sensitivity to management effects upon soil processes and functions (Veum et al., 2015), 

while deeper sampling streamlines on-farm implementation by eliminating an extra 

sampling depth. It remains undetermined whether one sampling depth is ideal for regional 

assessments. The associated objectives of this paper are to 1) identify important soil and 

environmental conditions to consider in regional assessments, 2) evaluate regional 

sensitivity of soil health indicators to manure application, tillage practice, cover crop 

implementation, and crop rotation, and 3) empirically evaluate two soil health sampling 

depth approaches. 

4.3 Materials and Methods 

4.3.1 Field Site Description and Data Collection 

Soil samples were collected from commercial row crop systems in mid-Missouri 

between 2018-2020. Field sites were predominantly classified as Mollisols and Aflisols 

with smectite clay mineralogy (NRCS-SSURGO). Field sites were encompassed within six 

Major Land Resource Areas (MLRA) with variable soil conditions. Typical parent material 

for this area is a layer of loess over glacial till while alluvium dominates along the Missouri 
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and Mississippi Rivers. Deep well drained soils were located in the Deep Loess Hills 

(107B) or Heavy Till Plain (109) while poorly drained soils were located in the Claypan 

(113) and Wooded Slopes MLRA’s (115B).  

Soil samples were collected in cooperation with a regional fertilizer response trial. 

Details of the fertilizer trials are described in detail in previous chapters. Bulk soil samples 

were collected in the spring (March through April) from 8-12 soil cores collected within a 

148 m2 area with. Three to five bulked samples were collected within a field with a total 

of 446 soil samples collected from 101 commercial row crop fields. Soil cores were 

sampled to a 15-cm depth and broken into two fixed depths; 0-5 cm and 5-15cm. These 

sampling depths were selected to reflect two approaches, 1) the 0-5 cm depth is more 

sensitive to management changes (Karlen et al., 2014), and 2) the 0-15 cm depth is the 

established Missouri soil sampling guideline (Nathan, et al., 2012). Sampled depths were 

individually mixed with 0.12 L and 0.25 L subsampled from the 0-5 cm and 5-15 cm depths 

for a soil fertility sample. In total, two soil health samples were collected, one at 0-5cm and 

one at 5-15cm depths. The third sample was the corresponding 0-15 cm soil fertility 

sample. All samples were transported in coolers to avoid major temperature fluctuations. 

Soil fertility samples were immediately air-dried and submitted for analysis, while soil 

health samples were stored in a cooler at 1.6° C and later homogenized by passing through 

a 1 cm screen, air-dried, and dry-sieved through a 2 mm screen. After analysis the soil 

health samples were standardized to reflect a 0-5 cm and 0-15 cm depth. The 0-15 cm depth 

was estimated by multiplying the top 0-5 analysis by 0.33 and the bottom 5-10cm by 0.66 

to represent a 0-15 cm depth sample.  
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Soil fertility analysis were conducted at Ward Laboratories (Kearney, NE) with a 

standard suite of soil fertility analysis, including: loss on ignition organic matter (Nelson 

and Sommers, 1996), Bray extraction soil test phosphorus (STP) (Frank et al., 1998), soil 

test potassium (STK) from buffer pH 7.0 ammonium acetate extraction (Warncke , and 

Brown 1998), sum of base cations cation exchange capacity (CEC) (Burt and Soil Survey 

Staff, 2014), and water pH (1:1 w/w) (Coleman and Thomas, 1967). Soil texture was 

further analyzed to estimate sand, silt, and clay content. All soil biological analyses were 

completed through the USDA-ARS Soil Quality Lab in Columbia, MO.  

Seven soil biological analyses were included in this investigation: SOC, soil 

respiration, soil autoclaved-citrate extractable protein (ACE Protein), potassium 

permanganate extractable carbon (POXC), β-glucosidase activity (Deng and Popova, 

2011), arylsulfatase activity (Klose et al., 2011), and acid phosphatase activity (Acosta-

Martínez and Tabatabai, 2011). The Cornell University CASH protocols were followed for 

soil respiration, ACE protein, and POXC (Moebius-Clune et al., 2016). Briefly, soil 

respiration was estimated by rewetting 20g of dry soil and capturing CO2 release during a 

4-day incubation period with a KOH alkali trap, ACE protein estimated by adding 20mM 

sodium citrate solution (pH 7) to 3.0 g of dry soil followed by autoclaving and mixing with 

1mL of Pierce BCA protein reagent (Thermo Scientific). POXC was based on Weil et al., 

(2003) with 20mL of 0.02 mol L-1 KMnO4 added to 2.5 g of dry soil, shaken for 2 minutes 

and allowed to settle for 10 minutes, after which 0.5 mL of supernatant was transferred to 

49.5 mL of deionized water and sample absorbance read with a spectrophotometer (Cary 

60 UV-Vis, Agilent Technologies, Santa Clara, CA, USA) at 550 nm (Moebius-Clune et 

al., 2016). All enzyme analyze were conducted by adding an enzyme specific substrate to 
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1 g of dry soil, incubating for 1 hr at 36o C, and measuring sample absorbance with a 

spectrophotometer at a enzyme specific wavelength (Cary 60 UV-Vis, Agilent 

Technologies). Soil organic carbon and total nitrogen were analyzed following (Nelson and 

Sommers (1996) on a LECO TRUMAC C/N combustion analyzer (LECO Corp., St. 

Joseph, MI, USA). For SOC, total nitrogen, and POXC soils were ground to a powder prior 

to analyze and decrease variability between replicates.  

For soil profile characterization, a single 1.2 m deep and 4.086 cm diameter soil 

core sample was taken at the center of each monitoring site using a Giddings Model #5-

UV / MGSRPSUV (Giddings Machine Company, Windsor, CO). Because these samples 

were collected in agricultural production fields, the first horizon was standardized to a 0-

15 cm depth and assumed as the plough layer (Ap) horizon. Subsequent pedogenic horizons 

were characterized using visual and tactile clues with a maximum five horizons identified 

per soil core. Identified horizons were subsequently sampled and air-dried. Bulk density 

and soil moisture were collected for each sampled horizon, and the top three horizons 

analyzed for particle size (Burt and Soil Survey Staff, 2014) and the same soil fertility 

analysis previously listed.  

Coordinates of each soil sample sites were collected using a Trimble GeoXT 6000 

and Geo7x GPS device (Sunnyvale, CA, USA) with approximately 6-cm accuracy. 

Drainage class information, soil series, and MLRA were extracted from the NRCS Soil 

Survey Geographic (SSURGO) database (Soil Survey Staff, Natural Resources 

Conservation Service) from geospatial location. Drainage class was converted from a 

categorical to numeric ranking: 1) representing well drained soils, 2) moderately well 

drained, 3) somewhat poorly drained, and 4) poorly drained. Landscape positions for each 
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sample site were identified during soil sample collection. Landscape positions included 

standard classifications of summit, backslope, and toe slope, with additional positions 

including terraced backslope, floodplain, and floodplain steppe. Previous five years of 

cropping system histories including tillage, cover crop implementation, manure 

application, and cash crop rotation were collected through communication with current 

farm managers. Management practices were indexed as to whether they were present or 

not present with management separated as follows: tillage (no-till or tillage); cover crops 

(yes or no), manure application (yes or no); and crop rotation (diverse or grower standard 

practice—GPS). To be noted, if any winter cover crop was grazed, it was indexed as yes 

to manure application. Cover crop indexing did not include stand density or biomass 

amount. Crop rotation only reflects cash crop diversity with diverse reflecting 3 or more 

cash crops or a perennial crop prior to row crop production, while GSP included corn-

soybean and corn-corn rotations.  

4.3.2 Data Processing, Analysis, and Statistics 

Multiple statistical approaches were utilized to evaluate management impacts on 

soil health analysis within soil and environmental conditions. Dependent variables 

included each of the seven soil biological analyses at both 0-5 cm and 0-15 cm sampling 

depths. Independent factors included a combination of soil formation properties (drainage 

classification, landscape position, MLRA), edaphic soil properties (clay content, sand 

content, pH, CEC, SOC), and management factors (tillage, cover crop, crop rotation, and 

manure inputs). Soil organic carbon and CEC were removed as independent variables when 

predicting SOC as a dependent variable. Arylsulfatase and acid phosphatase facilitate the 

release of sulfate sulfur and phosphatase, and high concentrations of these nutrients can 
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disincentivize plant and microbial populations production of these enzymes. To account 

for this effect, sulfate and soil test phosphorus concentrations were included when 

predicting these specific extracellular enzymes.  

Two approaches were utilized to identify important co-factors to include when 

evaluating management impacts on soil health indicators, first a random forest algorithm 

and the least absolute shrinkage and selection operator (LASSO). All statistical analyses 

were conducted in R statistical software (R Core Team, 2016). Identification of important 

co-factors governing soil health analysis were identified through random forest and 

LASSO regression techniques. Random forest and LASSO regression models were fit 

using the ‘caret’, ‘rpart’, and ‘glmnet’ packages (Kuhn, 2017). The dataset was partitioned 

into calibration (70%) and validation (30%) datasets prior to analysis. Internal parameter 

tuning for both LASSO and random forest model development were conducted through 

tenfold cross validation repeated ten times. Internal model parameters were trained on nine 

of the ten folds and model accuracy assessed using RMSE between predicted and observed 

values in the tenth fold. Tuning parameters with the lowest RMSE across each of the 100 

cross-validation folds were chosen for the final model (Breiman, 2001; Ransom et al., 

2019). Final model performance was evaluated by calculating RMSE and R2 for the 

partitioned validation dataset (Qin et al., 2018).  

Nonparametric random forest (RF) algorithms were utilized for modeling each soil 

health analysis, to provide a robust means of investigating the complex interactions 

between soil, environmental, and management effects upon each soil health indicator 

without the same associated assumptions of linear regression (Breiman, 2001). The random 

forest control parameters were ntree = 501 (number of trees to grow) with mtry = 1:5 which 
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is the optimum number of variables to consider for splitting at each node. For LASSO 

regression, lambda tuning hyperparameter was identified between 0.0001:1 with 100 

randomly selected values to identify the optimal lambda hyperparameter.  Variable 

importance evaluations were calculated for the random forest models using the 

‘randomForest’ (Liaw & Wiener 2002; Hothorn et al., 2006; Hothorn & Zeileis, 2015.). 

Variable importance in the random forest model was estimated by the decay in mean 

standard error (MSE) as all other factors are held constant at their average value and the 

variable of interest is randomized. Highly correlated variables can interfere with variable 

importance evaluations. therefore, loss-on-ignition organic matter and total nitrogen were 

excluded because of a high correlation coefficient (R > 0.90) with SOC (Strobl et al., 2007; 

Elith et al., 2008).  

 Evaluation of important co-factors for interpreting soil health indicators were done 

based upon whether they were included in the final LASSO model. The top three largest 

coefficients in magnitude were identified as the “top tier” factors governing the prediction 

of a soil health indicator. Evaluation of sampling depth was based upon LASSO and 

random forest R2 and RMSE values, with the model with the highest R2 and lowest RMSE 

chosen as the optimal sampling depth.  

4.4 Results and Discussion 

The regional variety in soil conditions, environment, and management practices 

lead to a broad distribution of sampled soil health indicator values (Tables 4.1 and 4.2). 

Over 50% of sample sites were no-till management or cover crops with 38% of all sites 

were both no-till with implemented cover crops. Duration of cover crop and tillage 

practices implementation were variable, with cover crops planted at least three of the 

previous five seasons for 60% of the sites where cover crops were implemented. Only 18% 
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of the soil sample locations received manure application, and 14% of the sample sites were 

in a rotation that included a third cash crop (Table 4.1). For each soil health indicator, the 

0-5 cm depth led to higher mean values than the 0-15 cm depth (Table 4.1). On average, 

surface sample indicators were 34-78% greater in the 5 cm depth (Table 4.1) which 

corresponds well with other observations (Veum et al., 2015). Limiting sampling depth to 

5 cm emphasizes the dynamic soil interface with residue accumulation, water, atmospheric 

gas exchange, and temperature. As such, microbiological activity is generally higher in the 

soil surface relative to deeper soil samples. Conservation practices, especially no-till, 

facilitate this stratification, and depth ratios between biological measurement have been 

proposed as a soil quality indicator (Franzluebbers, 2002). Regarding on-farm 

recommendations, this stratification highlights the need for, and importance of, a 

standardized sampling protocol for regional soil health evaluations.  

4.4.1 Random Forest and LASSO Results 

 Model accuracies varied by soil health analyses and sampling depth, but generally 

LASSO and random forest models produced similar RMSE per indicator and sampling 

depth (Table 4.3). Random forest models produced equal or better R2 values than the 

LASSO approach, with four soil health indicators resulting in R2 > 0.50 (POXC, SOC, acid 

phosphatase and arylsulfatase; Table 4.3). The model for soil respiration was the poorest 

(R2 = 0.22). It is noteworthy that the R2 for enzyme activity and ACE protein performed 

better on the 0-5 cm depth while POXC, soil respiration, and SOC R2 were greater in the 

0-15 cm depth.  

Feature selection between the random forest and LASSO also yielded similar 

results, with the top indicators in random forest variable importance evaluations generally 
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aligning with LASSO coefficients (Table 4.4, Appendix I). To eliminate redundancy, only 

the LASSO results are discussed further because of their advantage of eliminating non-

significant factors and the benefits of their coefficients easily describing the relationship 

between independent variables and the selected soil health indicator. Figures depicting 

random forest variable importance for each soil health indicator by soil sampling depth are 

supplied in Appendix C.    

4.4.1.1 Soil Organic Carbon 

The final model SOC-5 cm included a diversity of environmental, soil properties, 

landscape, and management factors (Table 4.4). The only independent factors not included 

in the final model were crop rotation and sand content. The factors with the largest 

influence (i.e., highest coefficient) were MLRAs Deep Loess Hills and Heavy Till Plain, 

with the former having influence two times greater than any other factor. These factors too 

were positive, meaning compared to the population of samples, SOC-5 cm was greater for 

soils from these two MLRAs. Other strong and positive relationships were observed with 

manure application, no-till, and clay content. Others have also shown how manure and no-

till have positive influence on SOC (citations). Other factors were significant, but their 

influence minor based on the magnitude of the model coefficients.  

Results were similar for the SOC-15cm model, with the greatest effects deriving 

from MLRAs and clay content (Table 4.4). The relationship of other factors remained 

similar to the SOC-5cm in both magnitude and whether the effect was positive or negative. 

Of note, the influence of adding manure and tillage was half or less as important with the 

SOC-15cm sample as compared to the shallow sampling. These results reaffirm soil 

forming factors and processes effects on regional soil health assessments (Andrews et al., 
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2004; Nunes et al., 2021) and reaffirm reports that SOC varies significantly between 

MLRA’s in Missouri (Zuber et al., 2020).  

 Sampling depth provided unique sensitivity of management practices on SOC. Both 

identified manure application as the management practice with the greatest impact. The 

SOC-5cm gave greater weight to tillage practices than SOC-15, which confirms other 

reports in Central Missouri that the effects of tillage practices are greater in surface samples 

(Veum et al., 2015).  

Therefore, both sampling depths are appropriate for identifying regional effects of tillage, 

but the relative benefits of no-till on SOC will be more evident at a shallower sampling 

depth. This is because organic residue and nutrients become concentrated at the soil 

surface, which lead to greater differences in soil biological activity between tillage 

practices at this surface depth. These results were inadequate to fully investigate the 

potential regional impacts of management on SOC, but they were consistent with other soil 

and crop management studies. Further work with more observations within each MLRA 

may be necessary and beneficial for evaluating whether specific regions respond uniquely 

to conservation management practices. 

4.4.1.2 Potassium Permanganate Oxidizable Carbon 

Soil biological, chemical, and physical properties governed POXC-5cm rather than 

regional and landscape features (Table 4.4). Soil organic carbon and pH were positively 

related with POXC, while clay content was negatively associated. These top tier factor 

coefficients were over two times greater than the others. The second tier of factors included 

no-till and manure application, both positively related with greater POXC concentrations. 
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The final tier of factors included MLRA, landscape features, and crop rotation, all having 

similarly minimal impact on POXC-5cm.  

Results for POXC-15cm were similar positive effects from SOC, pH, and negative 

effects from clay content (Table 4.4). Greater weight was given to manure applications in 

the POXC-15cm depth than the surface sample, with the manure effect being twice as large 

as no-till. The positive effects of tillage were minimized in POXC-15 with effects similar 

to landscape position and crop rotation. The effects of MLRA and drainage class were not 

included in the POXC-15cm model, which suggests their effects were not as important 

with deeper sampling.  

POXC is one of the most recommended soil health indicators because of its 

advantages of readily field measurable and responsiveness to land management practices 

(Weil et al., 2003; Fine et al., 2017). Identifying SOC as the governing factor of regional 

POXC values is unsurprising considering POXC measures a specific SOC pool (Weil et 

al., 2003; Lucas and Weil, 2012; Culman et al., 2012). As SOC changes, it is reasonable 

that the other commensurately changes. Therefore, baseline SOC is critical for accurate 

interpretation of management effects upon POXC values. The positive relationship with 

pH is surprising considering the poor correlation in both sampling depths, and no reported 

links between POXC oxidation efficacy and soil pH. The POXC method is an unbuffered 

reaction (Weil et al., 2003) and pH variability between sites could potentially affect the 

thermodynamics of the KMnO4 oxidation of the carbon (C) pool. Permanganate oxidation 

efficacy is reported to be pH-independent (Dombrowski et al., 2018), but decomposition 

rate of perfluoroctanesulfonate by permanganate in freshwater systems is optimized in low 

pH systems (Liu et al., 2012). Further investigation is necessary to confirm these observed 
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effects of pH on the unbuffered POXC reaction, and whether pH specific adjustments are 

necessary in regional evaluations. There are already acknowledged modifications in POXC 

evaluations needed for textural variability, which are included in other soil health scoring 

calculations, and expanding this correction for pH may be necessary (Moebius-Clune et 

al., 2016; Nunes et al., 2021). It is noteworthy that MLRA impacts were limited to the 

POXC-5cm. I conclude this is because of the significant impact from SOC in the surface 

soil and therefore governing the POXC models. As mentioned previously SOC was highly 

impacted by MLRA, and I speculate that variability in POXC introduced by MLRA is 

already captured in the strong relationships between SOC and POXC. Extending the 

sampling depth to 15 cm appears to effectively remove any regional effect from MLRA.  

In general, for both sampling depths, POXC values were greater in no-till systems, 

where manure was included with the cropping management, and in GSP crop rotations 

(Table 4.4). The effects of cover crops were not included and suggest POXC is not an 

effective regional indicator of the benefits from incorporating CC into a crop rotation, at 

least based on the amount of CC use on fields evaluated. The large impacts from tillage 

practice and manure inputs align with other work that has observed that POXC is an 

effective indicator of soil C stabilization and accumulation processes (Culman et al., 2012, 

2013; Hurisso et al., 2016). This confirms that these are regionally robust relationships that 

can be measured and used to inform recommendations. Reducing sampling depth to 5 cm 

lends greater weight to tillage impacts on these processes, while the 15 cm depth highlights 

the impacts of manure inputs (Table 4.4). 

4.4.1.3 Soil Respiration 
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 Compared to the other indicator models, the model performance was poorest for 

soil respiration (Table 4.3), indicating the available independent features were insufficient 

to describe variability in this measurement at a regional scale. I conclude this is because 

the only biological factor provided was SOC, which only represents energy source for the 

microbial population. Soil respiration measures the release of CO2, which further reflects 

microbial metabolic potential. I expect that expanding to include microbial biomass or 

communities would improve regional prediction of soil respiration. However, the practical 

feasibility (e.g., special sample handling and analysis costs) of using these evaluations to 

calibrate soil respiration rates is questionable.  

 Soil organic carbon, manure application, and MLRA Deep Loess Hills governed 

the Resp-5cm model (Table 4.4). The effect of SOC was two times greater than any other 

factor, with MLRA and manure application 30% greater than the other landscape, 

management, and soil chemical or physical properties. Soil texture properties, drainage 

classification, and landscape position effects were similar. Tillage practice was the only 

excluded management practice in the final model, with increased soil respiration rates 

observed in soils cover cropped and diversified crop systems. Model results for the Resp-

15cm closely mimicked the Resp-5cm observations, with SOC and manure inputs 

providing the greatest relative impact (Table 4.4). Both Resp-5cm and Resp-15cm models 

included more environmental factors than any other evaluated soil health indicator (Table 

4.4). This highlights this metric’s unique sensitivity to site-specific environmental 

conditions, landscapes, soil properties, and management practice. This observation aligns 

with other reports that soil respiration is susceptible to site-specific characteristics 
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interfering with scaling to regional implementation (Franzluebbers and Assmann, 2020; 

Wade et al., 2020).  

 Soil respiration is typically correlated with SOC, microbial biomass, and is a 

sensitive and early indicator of management impacts on soil biological processes 

(Franzluebbers et al., 2000; Ladoni et al., 2015; Hurisso et al., 2016). In general, soil 

respiration rates were greater where organic inputs were greater (e.g., manure) and where 

diversification of crop species occurred (cover crop implementation and diversification of 

cash crops; Table 4). The larger soil respiration rates observed in manure incorporated 

cropping systems confirms other observations that integrated livestock systems have 

significant positive impacts on soil respiration metrics (Franzluebbers et al., 2020). Though 

tillage was included as a factor in the final 15 cm depth model, its relative impact was 

minor. This too confirms other research that rather than soil stabilization processes, soil 

respiration is sensitive to the benefits of organic amendments, C inputs, and practices that 

stimulate mineralization (Culman et al., 2013; Hurisso et al., 2016).  

4.4.1.4 ACE Protein 

Modeled ACE protein yielded no notable difference in important parameters 

between the two sampling depths, with both sampling depths identifying the same major 

and minor factors (Table 4.4). Though similar between soil depths, overall model 

performance was better for the ACE-5cm model (Table 4.3). Consequently, while the 

relevant factors were identified regardless of sampling depth, the features were more 

pronounced with the shallower sampling. These results support the 5 cm sampling depth is 

preferred for regional evaluations of ACE protein. 
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Since important factors were similar by depth and to avoid redundancy, discussion 

on factors governing ACE protein will focus on the 5 cm depth. The top tier factors 

included SOC, pH, and the Heavy Till Plain MLRA (Table 4.4). These effects were 50-

300% greater than the other environmental, management, and soil properties. Greater SOC 

and soils from the Heavy Till Plain led to ACE Protein, while a negative relationship was 

found with pH. ACE protein samples the organic nitrogen pool which explains the high 

impact of SOC (Geisseler et al., 2019). The inclusion of soil pH as a strong predictor of 

ACE protein was unexpected, a point not previously reported in the literature. Further 

research is needed to shed light upon the mechanisms behind this indicated relationship. 

ACE protein measurements appear to be robust against variability introduced in landscape 

and MLRA features. The only MLRA impact was the Heavy Till Plain, and minor 

sensitivity to landscape position and drainage class. The minor effect from clay content 

does not align with other regional ACE protein evaluations, where textural classification 

was a major contributor in ACE protein measurements (Fine et al., 2017). I conclude that 

this discrepancy is because the results reported by Fine et. al. (2017) represented three U.S. 

regions, which contain substantially greater textural and soil formation variability that the 

Mid-Missouri region in which these data were collected.  

Though the magnitude effect was minor, the greater concentrations of ACE protein 

found in the diversified crop rotations aligns with other work that diversified crop rotations 

and perennial systems facilitate ACE protein and aggregate stability (Wright et al., 1999; 

Wright and Anderson, 2000). ACE protein is typically connected to aggregation processes, 

such as manure and tillage inputs (Wright and Upadhyaya, 1998; Geisseler et al., 2019). It 

has been noted that ACE protein sensitivity to management effects vary regionally with 
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conservation management practices increasing ACE protein at only one of seven research 

sites (Liebig et al., 2006). Further regional work in Missouri is necessary to validate tillage 

and manure impacts on ACE protein. Currently, these results suggest connections between 

ACE protein and diversified cropping systems are regionally robust.  

4.4.1.5 β-Glucosidase Activity 

 The most influential governing factors impacting β-glucosidase at both sampling 

depths were SOC, pH, and manure, effects at least three times greater than other 

environmental, soil, and management practices (Table 4.4). Generally, no-till also 

promoted β-glucosidase activity, but the effect was minor. β-glucosidase catalyzes the 

hydrolysis of β-D-glucopyranosides in the final, rate-limiting step in the degradation of 

cellulose (Stott et al., 2010). Therefore, it’s activity is directly connected to organic C 

inputs. The greater activity rates observed in manure applied fields correlates well with the 

improved C cycling that occurs when organic amendments are utilized (Bandick and Dick, 

1999). Sensitivity to pH is not typically reported in soil health assessments. Analytical 

analysis of β-glucosidase activity utilizes a buffered solution to maintain pH during enzyme 

activity analysis (Deng and Popova, 2011); however, there is evidence that universal 

buffering can deviate from target pH as much as 1.6 units depending on soil pH and clay 

content (Li et al., 2021). Future research is necessary to identify whether the role of pH is 

from interactions with laboratory methods, or the facilitation of in situ stabilization of β-

glucosidase. 

Also, as mentioned with previous indicators, further work is needed for verifying 

whether inherent soil pH conditions are necessary for regional soil health assessments. 

Sensitivity to management practices were similar between the two sampling depths, with 
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positive effects found with manure additions, diversified crops, and no-till. These results 

align with other observations that β-glucosidase is sensitive to tillage, organic amendments, 

and residue management (de la Horra et al., 2003; Roldán et al., 2005). Since overall model 

performance was greater in the 5 cm sampling depth, these results support the conclusion 

that the shallower sampling is preferred for regional evaluations of β-glucosidase. 

4.4.1.6 ArylSulfatase 

 Arylsulfatase activity in the 5 cm depth was largely governed by three positive 

relationships: SOC, MLRA Wooded Slopes, and no-till management (Table 4.4). These 

effects were at least two times greater than the other factors. The next tier of factors 

included pH, clay content, MLRA Heavy Till Plain, and diversified crop rotation. Results 

were similar for the 15 cm sampling depth, but the effect of no-till was not as prominent in 

the 15 cm depth. Generally, measured arylsulfatase activity was greater where SOC and 

pH was high, and where no-till and diversified crop rotations were also implemented. 

Further work is necessary regarding the strong effect from pH for the same reasons 

discussed in the previous section (Tabatabai and Bremner, 1970). The strong effect of no-

till practices aligns with plot level observations of greater arylsulfatse activity in long-term 

no-till systems (Dick, 1984) and reduced activity in tilled systems (García-Ruiz et al., 

2008). These results confirm tillage relationship impacts are regionally observable and are 

especially highlighted in the 5 cm sampling depth. Arylsulfatase has also been reported to 

have greater sensitivity to organic amendments rather than tillage management (Deng and 

Tabatabai, 1997; Klose et al., 1999); however this relationship was not found with this 

investigation.   

4.4.1.7 Acid Phosphatase 
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Important positive relationships for acid phosphatase activity at both sampling 

depths were SOC and crop rotation. Cation exchange capacity, clay, and landscape position 

were likewise positively related, but with less influence. Inclusion of SOC and pH were 

unsurprising, with strong links between acid phosphatase and SOC well established in this 

dataset and other published reports (Dick, 1984). Further, it is well established that pH 

influences the activity and abundance of acid phosphatase (Eivazi and Tabatabai, 1977). 

For both depths greater acid phosphatase activity was observed in diversified crop 

rotations, not unlike what others have shown (Eivazi and Tabatabai, 1977; Dick, 1984) The 

unique sensitivity to crop rotation for both sampling depths highlights the potential 

sensitivity of this soil health indicator to benefits from a diversified crop rotation. The 

reason manure application and cover crops inhibited acid phosphatase activity is unknown 

but deserves additional study. I recommend a 5 cm sampling depth because of the improved 

overall model performance (Table 4.3) and similar sensitivity to management practices 

between sampling depths.  

4.4.2 Soil and Environmental Conditions Effect Upon Soil Health Factors 

Each soil health indicator was affected by regional and landscape properties, 

highlighting the need to develop regionally specific frameworks for interpretation (Fine et 

al., 2017; Nunes et al., 2021). While not significant at each sampling depth, landscape 

position and MLRA were significant drivers of variability for each soil health indicator. 

ACE protein appears to be the least affected by these environmental conditions, but as 

described previously, I expect that these effects were likely incorporated through the strong 

relationship with SOC. Further work verifying this observation is needed, and if true, could 

indicate that standardizing soil health indicators by SOC could overcome challenges in 
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providing robust regional recommendations. The effects of landscape position and MLRA 

affirm other regional soil health evaluation conclusions that MLRA is a significant driver 

in determining baseline soil health indicator values (Zuber et al., 2020). These results 

further align with conclusions regarding the implementation of the CASH soil health 

assessment, that regionalized parameterization is likely necessary for correct interpretation 

of soil health metrics (Fine et al., 2017).  

Soil organic carbon and pH were included as significant factors for each soil health 

metric and sampling depth. The inclusion of SOC was expected, with commonly reported 

connections between each soil health indictor and baseline SOC values (Eivazi and 

Tabatabai, 1977; Lucas and Weil, 2012; Moebius-Clune et al., 2016). Soil texture is also 

commonly reported and incorporated into regional soil health evaluations, but this study 

did not find texture to be as relevant, likely because most of the sampled production fields 

are of soils with loess parent material. This research suggests the role of soil pH is an 

underrealized and underreported controlling factor in soil health evaluations. While pH is 

commonly incorporated into holistic soil health evaluations (Andrews et al., 2004; Fine et 

al., 2017), these data suggests there are direct impacts from pH on specific biological 

indicator values. Soil pH plays an integral part in regulating microbial processes, such as 

in nitrogen fixation and denitrification. Further, it regulates solubility of essential nutrients 

for microbial and plant communities. Inclusion of pH in soil respiration was unsurprising 

considering pH’s governing role in microbial processes, its effect on microbial composition 

and diversity and equilibrium effects nutrient solubility. Specifically, to enzyme activity, 

pH can affect the concentration of inhibitors or activators in the soil solution and variability 

in clay and pH in soils can cause challenges in universal buffer evaluations in extracellular 
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enzyme evaluations (Wade et al., 2021). This study further highlights that while biology 

assessments are sensitive to management practices, pH evaluations remain a vital part of a 

soil health assessment and regional adjustments for interpreting soil health indicators. 

Adjustments for these indicators based on soil pH could be warranted, and further research 

is required to confirm the magnitude and effect of pH in soil health indicator measurements 

to go along with sensitivity assessment to management practices.  

Overall, these results confirm recommendations by Stewart et al., (2018) that 

baseline chemical and physical soil properties are essential for proper interpretation of 

regional health assessments. Adjustments for soil texture and soil formation factors are 

well acknowledged; at the same time these results highlight the underrealized potential 

effect of soil chemical properties on soil biological assessments used in soil health 

evaluations. These findings support that soil biological tests examined for sensitivity to 

management practices need to include baseline soil properties for proper interpretation.  

4.4.3 Regional Evaluation Soil Health Indicators Sensitivity to Management Practices 

 Each soil health indicator demonstrated distinctive regional sensitivity to the 

evaluated management practices. Effects of manure were evident with over half of the soil 

health indicators responding to it being incorporated into the cropping system management 

practices (Table 4.5). Soil organic carbon, POXC, soil respiration, and β-glucosidase were 

each highly sensitive to manure application. These data confirms that previous plot level 

relationships between manure application and soil health indicators are regional applicable 

(Deng and Tabatabai, 1997; Hurisso et al., 2016; Hargreaves et al., 2019). Manure has been 

identified as an effective management practices to facilitate C sequestration, which aligns 

with the SOC and POXC sensitivities which are reported to reflect soil C stabilization 
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(Culman et al., 2012; Hurisso et al., 2016). The sensitivity of soil respiration and β-

glucosidase highlight this practice impact on nutrient cycling (Du et al., 2020) which 

highlights the regional robust sensitivity of these indicators to the benefits of manure inputs 

on soil health. Finally, the sensitivity to a robust set of soil health indicators highlights the 

importance and positive benefits on soil processes and function from manure application 

in row crop systems.   

 Soil organic carbon, POXC, and arylsulfatase were all uniquely sensitive to tillage 

practices, with greater activity and concentrations observed in no-till management (Table 

4.4 & 4.5). These results confirm that plot-level connections between POXC and SOC and 

soil stabilization processes facilitated from reduced tillage are regionally robust (Culman 

et al., 2012; Hurisso et al., 2016). The inclusion of arylsulfatase confirms that no-till 

practices facilitate nutrient cycling (specifically sulfur) and can be regionally employed to 

evaluate nutrient cycling benefits from no-till practices (Tabatabai and Bremner, 1970). 

Arylsulfatase is uniquely qualified for evaluating no-till benefits, with tillage practice being 

the only regionally robust sensitivity for that indicator. Further, the effect of tillage practice 

was relatively greater in the 5-cm sampling depth for SOC and POXC, which corresponds 

with other reports that reduced tillage effects are more prominent in surface soil samples 

(Veum et al., 2015; Nunes et al., 2018).  

Despite plot level reports that cover crops promote many of these soil health 

indicators, these data suggests these reported links do not scale regionally. The 

insensitivity of the evaluated soil health indicators to cover crop implementation is likely 

because of the variability in cover crop species, establishment, and specific soil 

interactions in this dataset (Poffenbarger et al., 2015). This variability is common in 
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cover crop management systems and highlights the challenges of observing regional 

impacts of cover crops on soil biological properties. Despite these challenges soil 

respiration is well suited as an effective regional measurement for cover crop benefits 

upon soil health. This derives from soil respirations sensitivity to recent residue and 

organic inputs that promote mineralization processes (Culman et al., 2013; Hurisso et al., 

2016; Franzluebbers and Assmann, 2020). 

These results offer a unique opportunity to identify soil health indicators that are 

regionally sensitive to benefits from conservation management practice. Specifically, these 

results lay the groundwork for targeting soil health assessments for specific management 

practices. For example, acid phosphatase was uniquely sensitive to the diversification of 

cash crops while, arylsulfatase, SOC, and POXC were ideal candidates to demonstrate 

improvements from no-till implementation. Soil respiration was uniquely sensitive to cover 

crop implementation whilst SOC, POXC, soil respiration, and β-glucosidase were ideal 

soil health indicators for measuring changes in soil processes from manure management.  

From this work, a potential framework for identifying which practices are ideal for 

identifying benefits from soil health management practices are summarized in Table 4.5. 

Benefits of this framework could potentially reduce the number of required soil health 

samples required to empirically measure benefits from soil health practices. For example, 

if a practitioner desired to evaluate the benefits of cover crops, acid phosphatase is a soil 

health indicator that is regionally sensitive to cover crop benefits upon soil health 

processes. Further, this table summarizes recommendations that proper interpretation 

requires SOC and pH assessments and a knowledge of soil formation factors and processes 

(MLRA). Finally, for optimal sensitivity, a sampling depth of 5-cm is recommended for 
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that indicator (Table 4.5). Further work is necessary to confirm these observations, with 

the next steps being to develop empirical thresholds where agronomic benefits occur. These 

will provide an interpretive framework that can be leveraged to inform on-farm 

management decisions and facilitate the improvement of soil health assessments and 

management adoption. 

4.5 Conclusions 

This paper reports a regional evaluation of the sensitivity of seven soil biological 

metrics to soil formation factors and processes, variability in intrinsic soil properties, and 

management practices. For each soil health indicator, MLRA, SOC, and pH were major 

factors governing soil health measurements. Effects of MLRA and SOC are widely 

recognized, however, the impacts of pH on baseline soil health metrics are commonly 

underreported. Further work is necessary to identify the magnitude of the effect of pH on 

these soil biological factors and whether parameterization based on this soil characteristic 

is necessary for regional interpretation of these indicators. These results emphasize current 

challenges in developing regional interpretations of soil health metrics that operate across 

natural variability in Missouri cropping systems. Despite these challenges, sensitivities to 

conservation management practices remained evident, justifying regional employment of 

these soil biological indicators to assess management impacts upon soil health. In general, 

optimal sampling depths were specific to each soil health indicator, with effects from 

specific management practices generally observed regardless of sampling depth. Soil 

organic carbon and POXC were an exception, with greater effects of no-till practices 

observed in the 0-5 cm sampling depth. Finally, a framework is provided for each soil 

health indicator identifying optimal sampling depths, important soil factors to consider, 

and regional management sensitivity. Overall, these results provide a needed framework 
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for practitioners and soil test laboratories to consider when providing regional soil health 

evaluations.    
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4.7 Tables and Figures 

 
 

    0-5 cm 0-15 cm 

Soil Health 

Indicator 

Units Mean Min Max Mean Min Max 

SOC g 100 g soil-1 2.15 ± 0.01 1.0 4.7 1.61± 0.01 0.85 2.98 

POXC mg POXC kg soil-1 648 ± 3.25 253 1040 440 ± 2.41 198 836 

ACE Protein mg protein g soil-1 4.86 ± 0.04 1.8 15.5 3.63 ± 

0.02 

1.5 8.8 

Soil 

Respiration 

mg C-CO2 kg soil-1 219 ± 1.82 35.5 612 140 ± 1.16 22 345 

Acid 

Phosphatase 

μg p-nitrophenol g-1 

soil h-1 

241 ± 1.42 62.4 344 174 ± 1.19 66 298 

ArylSulfatase μg p-nitrophenol g-1 

soil h-1 

72.2 ± 0.639 18.7 256 46.0 ± 

0.41 

16 154 

β-Glucosidase μg p-nitrophenol g-1 

soil h-1 

139 ± 0.968 4.5 310 78.1 ± 

0.49 

4.0 163 

Table 4.1 Summary statistics for soil biological analysis broken apart by depth. Summary 

statistics include mean ± standard error, minimum, and maximum observed values. 
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2018 2019 2020 Total 

Management Practice Number of Observations 

Tillage Practices 
 

No-Till 13 101 137 251 

Tillage 
 

94 101 195 

Cover Crop Incorporation 
 

No 9 109 83 201 

Yes 4 86 155 245 

Manure Application 
 

Yes - 22 58 80 

No 13 173 180 366 

Crop Rotation 
 

C-SB 11 166 207 384 

Diverse 2 29 31 62 

 

Table 4.2 Number of soil samples for each management practice. 
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Table 4.3 Results for random forest and least absolute shrinkage selection operator (LASSO) statistics. Final model correction factors are 

included for random forest (mtry) and LASSO (lambda). Models were trained on 80% of the dataset with reported R2 and RMSE from final 

model predictions upon the validation dataset. The highest R2 are bolded to identify the best model performance for each soil health indicator.   

   
0-5 cm 0-15 cm 

   
LASSO  Random Forest  LASSO  Random Forest  

Soil Health Indicator   Units R2 RMSE mtry R2 RMSE R2 RMSE mtry R2 RMSE 

Soil Organic Carbon 
 

g 100 g soil-1 0.39 0.36 4 0.43 0.33 0.39 0.26 4 0.50 0.23 

POXC 
 

mg kg soil-1 0.39 99.5 5 0.29 106 0.55 70 5 0.56 70.1 

Soil Respiration  mg C kg soil-1 0.11 67.4 5 0.09 62.5 0.09 46.2 5 0.22 41.0 

ACE Protein 
 

mg g soil-1 0.32 1.19 5 0.43 1.10 0.21 0.85 5 0.29 0.81 

β-Glucosidase    

μg p-nitrophenol g-1 soil h-1 

 

0.43 33.2 5 0.49 31.2 0.3 18.1 5 0.37 16.9 

ArylSulfatase 
 

μg p-nitrophenol g-1 soil h-1 
 0.52 18.7 5 0.53 19.0 0.46 12.3 5 0.48 12.4 

Acid Phosphatase 
 

μg p-nitrophenol g-1 soil h-1 
 0.49 47.00 5 0.52 46.5 0.37 41.9 5 0.40 41.2 



 

 

 

1
5
5
 

 
SOC POXC Soil Resp. ACE Protein β-Gluc. Arylsulf. Acid Phos. 

Sample Depth (cm) 5 15 5 15 5 15 5 15 5 15 5 15 5 15 

lambda 0.10 0.01 1.52 2.02 1.01 0.505 0.035 0.027 1.52 0.51 0.51 0.76 1.01 0.61 

Intercept 2.1 1.6 649 439 218 140 4.8 3.6 138 78 71 46 239 173 

Soil Physical, Chemical, and Biological Properties 

SOC NA NA 102 69.9 24.6 16.7 0.79 0.42 23.1 11.2 18.5 9.88 25.0 23.3 

pH 0.03 0.02 42.0 28.8 -2.25 1.15 -0.17 -0.10 12.9 8.00 2.83 2.59 -13.8 -4.00 

CEC NA NA 
  

-0.01 
     

-2.86 
 

9.14 7.69 

Clay 0.06 0.07 -19.3 -13.0 -7.67 -6.02 -0.04 -0.003 
    

4.49 3.56 

Sand 
   

0.81 -6.67 -4.59 -0.01 -0.01 -1.37 -0.97 -0.39 -0.21 
 

0.22 

Environmental Conditions 

Drainage Class -0.05 -0.03 -1.34 
 

5.79 2.62 -0.11 -0.08 
   

-0.10 2.70 
 

MLRA : Deep Loess Hills 0.16 0.11 1.84 
 

10.0 4.96 
   

-1.68 0.32 
 

-4.13 -11.1 

MLRA : Heavy Till Plain 0.08 0.06 
  

-4.81 -3.78 0.27 0.15 
 

-1.09 -2.13 -0.62 -7.08 -7.61 

MLRA : Wooded Slopes -0.02 -0.03 3.83 
 

2.90 2.29 
    

5.07 4.25 
  

LP : Floodplain -0.04 -0.04 4.76 7.99 
   

0.01 -1.03 
     

LP : Summit 
  

-3.39 -3.31 -2.67 -2.05 
        

LP : Backslope -0.01 -0.02 -4.51 -6.24 -5.29 -3.93 
  

1.64 0.94 1.24 0.26 2.84 4.07 

LP : Toeslope 
   

-1.11 -5.54 -3.65 0.11 0.05 0.25 
 

0.76 
 

1.07 1.25 

Management Practices 

No-Till 0.06 0.01 9.90 5.29 
 

1.16 -0.06 -0.06 2.04 1.30 4.89 2.52 
 

0.55 

Cover Crop: Yes -0.0004 -0.01 
  

7.57 5.55 
      

-0.88 -3.55 

Manure Application 0.08 0.04 8.43 13.1 12.9 10.6 -0.15 -0.08 6.89 4.07 -0.44 
 

-2.56 -3.89 

Diversified Crop Rotation 
 

-0.01 -4.60 -4.10 5.47 2.40 0.10 0.06 0.43 0.49 2.03 1.22 13.4 10.1 

S-SO4 
          

-0.04 
   

Soil Test Phosphorus 
             

2.20 

  

Table 4.4 Coefficients for final LASSO regression models used to predict each soil health indicator and separated by sampling 

depth. The top three coefficients with the largest magnitude are bolded for each model. Coefficients are scaled, but the relative 

magnitude within a model represent the relative impact that indicator presents on the specific soil health metric. 
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Soil Health 

Indicator 

Recommended 

Sampling 

Depth (cm) 

Important  

Environmental Factors 

 

No-Till 

Cover 

Crops 

Manure 

Application 

Diverse Crop 

Rotation 

SOC 15  MLRA 







POXC 15  SOC; pH; Clay Content 







Soil Respiration 15  SOC; MLRA; Clay 
 

  

ACE Protein 5  SOC; MLRA; pH 
  



β-Glucosidase 5  SOC; MLRA; pH 
 





Arylsulfatase 5  SOC; MLRA; pH 

  

Acid 

Phosphatase 

5  SOC; pH; MLRA 
  



 

 

 

 

 

 

 

 

 

 

Table 4.5 On-farm recommendations for regional soil health assessments. Recommended sampling depths were determined by 

choosing the lowest RMSE and highest R2 of the models. Soil and environmental co-factors were included if their coefficient 

magnitude was one of the top three in magnitude in the LASSO models (Table 3). Checkmarks reflect regional sensitivities with 

 identifying the effect was one of the top three factors governing that soil health indicator while a single  represents the 

effect was meaningful but not one of the governing factors identified in Table 4.4. 
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DISSERTATION CONCLUSIONS 

The objectives of this dissertation were to address current questions and critiques 

regarding on-farm soil health utilization and interpretation. The presented results outline 

benefits and limitations of regional on-farm soil health assessments. These results confirm 

the efficacy of current University of Missouri fertilizer recommendations and highlight 

existing limitations in P and K recommendations. Soil-test estimation of yield response to 

fertilization was most accurate at low nutrient levels and exhibited diminished precision at 

or above established critical concentrations. Variable importance analysis confirmed the 

effectiveness of current soil-tests, and indicated CEC is potentially an underutilized tool in 

P fertilizer recommendations. These results reflect challenges in developing regional 

recommendations that effectively operate across natural variability among a wide range of 

soil types, environmental conditions, and management practices. Integrating soil health 

indicators failed to improve current model identification of yield response to P and K 

fertilization. These finding found little to support using soil health metrics to identify crop 

P and K fertilization needs. Further work is necessary to evaluate whether other soil health 

indicators are effective indicators of P and K fertilization needs, or potential impacts upon 

other fertilizer nutrients whose plant availability are largely governed by biological 

processes (e.g. nitrogen). Although soil health metrics offer insight into environmental or 

agronomic benefits, established soil fertility analysis remains the most effective tool to 

guide P and K fertilizer decisions in Missouri corn production.  

Further investigations into grain productivity resulted with a plausible framework 

for interpreting soil health indicators in Missouri corn cropping systems. These results 

report POXC as a more sensitive predictor of corn grain yield than traditional measures of 
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soil organic matter and soil fertility analyses. Further, a clear POXC benchmark is reported 

whereupon corn grain yield was maximized. Further evidence is required to validate this 

benchmark within and outside of Missouri corn cropping systems across soil and weather 

conditions. This study found little to support the use of soil respiration as an indicator of 

corn grain yield under these conditions and only identified a weak relationship with ACE 

protein. Future work is needed to explore the specific soil properties and processes 

represented by POXC and how POXC contributes to grain yield productivity. This will 

inform whether yield directly responds to improvements in POXC, or whether POXC 

serves as a proxy or indirect measure of other soil properties that enhance the growing 

environment. These results also demonstrate the advantages of using statistical non-

parametric approaches to understand relationships between soil health indicators and 

productivity. Overall, this provides the first empirical relationship between POXC and corn 

grain yield that is uniquely designed to inform on-farm decision support systems. 

Identifying and leveraging similar quantitative soil health relationships with economic 

incentives will aid in incentivizing and spurring on-farm adoption of conservation 

management practices.  

Finally, random forest and LASSO regression models were developed to determine 

whether soil health indicators are viable for on-farm implementation and associated 

recommendations. The summarization of important observations include, 1) current 

assessments of soil health do not improve current P and K fertilizer recommendations for 

corn in Missouri, 2) POXC is an effective indicator of corn grain productivity with a 

reported framework to guide Missouri POXC interpretations, 3) robust regional soil health 

recommendations would benefit from incorporating site-specific SOC, pH, and soil 
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texture, and 4) a guide for optimal sampling depths and sensitivities to seven soil health 

indicators is provided. Validation of these results are encouraged through further research 

efforts to improve on-farm implementation and application of soil health indicators.  
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APPENDIX A:  

Supplementary Materials for Chapter 2 

 

Figure A.1 Relationships between soil organic matter and relative corn yield response from 

sulfur fertilization across all experimental years. Generally, soil organic matter was a poor 

indicator of yields response to sulfur fertilizer application. 
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Figure A.2 Relationships between the University of Missouri recommended sulfate-sulfur 

test and relative corn yield response from sulfur fertilization across all experimental years. 

No significant trends were identified, indicating that the current recommended sulfur soil 

analysis is an ineffective indicator of sulfur nutrient status.  
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Figure A.3 Observed yields over all experimental sites for each fertilizer treatment divided 

by major land resource area (MLRA). Treatments included 1) unfertilized control; 2) 112 

kg ha-1 K2O; and 3) 112 kg ha-1 P2O5 and 4) 28 kg ha-1 of sulfate-sulfur. White diamonds 

represent average for the treatment and colored boxplots correlate with fertilizer 

treatments. 
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APPENDIX B:  

Supplemental Materials for Chapter 3 

 
 

 

 

Figure B.1 Grain productivity prediction error on the validation set for the conditional 

inference forest method.  
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Figure B.2 Grain productivity prediction error on the validation set for the random forest 

regression method.  
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Figure B.3 Grain productivity prediction error on the validation set for the best subset linear 

regression method.  
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Figure B.4 Grain productivity prediction error on the validation set for the decision tree 

method.  
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Figure B.5 Interaction plot for weather, soil health, and soil chemical factors based on the 

random forest results predicting grain yield kg ha-1. These results highlight that yield 

increases from soil health and soil fertility were first governed by weather parameters (SDI 

and Seasonal rainfall).  
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Figure B.6 Average POXC values for each field included in this dataset divided by major land resource area (MLRA). Colors 

represent the tillage practice, with Heavy indicating more than three tillage events in five years, light less than three tillage 

events, and no-till meaning no tillage occurred in the previous five years. Error bars are the standard error of the mean.  



 

 

 

1
7
0
 

APPENDIX C:  

Supplemental Materials for Chapter 4  

 

 

Figure C.1 Variable importance rankings from random forest model results predicting soil organic carbon (SOC) sampled at two 

depths (0-5 cm; 0-15 cm) at 446 sites across 101 fields in Missouri. Variable importance is calculated by measuring the mean 

decrease in accuracy (MSE) as an explanatory variable is randomly permutated. The greater the number and ranking, the more 

important the variable in predicting SOC. 
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Figure C.2 Variable importance rankings from random forest model results predicting potassium permanganate oxidizable 

carbon (POXC) sampled at two depths (0-5 cm; 0-15 cm) at 446 sites across 101 fields in Missouri. Variable importance is 

calculated by measuring the mean decrease in accuracy (MSE) as an explanatory variable is randomly permutated. The greater 

the number and ranking, the more important the variable in predicting POXC. 
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Figure C.3 Variable importance rankings from random forest result model results predicting soil respiration sampled at two 

depths (0-5 cm; 0-15 cm) at 446 sites across 101 fields in Missouri. Variable importance is calculated by measuring the mean 

decrease in accuracy (MSE) as an explanatory variable is randomly permutated. The greater the number and ranking, the more 

important the variable in predicting soil respiration rates. 



 

 

 

1
7
3
 

 

Figure C.4 Variable importance rankings from random forest result models predicting autoclaved citrate extractable soil protein 

(ACEp) sampled at two depths (0-5 cm; 0-15 cm) at 446 sites across 101 fields in Missouri.  Variable importance is calculated 

by measuring the mean decrease in accuracy (MSE) as an explanatory variable is randomly permutated. The greater the number 

and ranking, the more important the variable in predicting ACE protein. 
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Figure C.5 Variable importance rankings from random forest model results predicting β-glucosidase activity sampled at two 

depths (0-5 cm; 0-15 cm) at 446 sites across 101 fields in Missouri. Variable importance is calculated by measuring the mean 

decrease in accuracy (MSE) as an explanatory variable is randomly permutated. The greater the number and ranking, the more 

important the variable in predicting β-glucosidase activity. 
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Figure C.6 Variable importance rankings from random forest results models predicting arylsulfatase activity sampled at two 

depths (0-5 cm; 0-15 cm) at 446 sites across 101 fields in Missouri. Variable importance is calculated by measuring the mean 

decrease in accuracy (MSE) as an explanatory variable is randomly permutated. The greater the number and ranking, the more 

important the variable in predicting arylsulfatase activity. 
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Figure C.7 Variable importance rankings from random forest models predicting acid phosphatase activity sampled at two depths 

(0-5 cm; 0-15 cm) at 446 sites across 101 fields in Missouri. Variable importance is calculated by measuring the mean decrease 

in accuracy (MSE) as an explanatory variable is randomly permutated. The greater the number and ranking, the more important 

the variable in predicting acid phosphatase activity. 
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Figure C.8 Least absolute shrinkage selection operator (LASSO) coefficients for each dependent variable for all soil health 

indicators. Coefficients are separated by selected soil health indicator and colored bars refer to unique coefficients used for the 

15 cm and 5 cm sampling depths. The larger the magnitude of the dependent variable coefficient indicates a strong relationship 

with that soil health indicator. 
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Figure C.9 Average observed Autoclaved citrate extractable (ACE) protein values 

separated by management practices and sampling depth. Error bars are the standard error 

of the mean.  
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Figure C.10 Average observed Acid Phosphatase values separated by management 

practices and sampling depth. Error bars are the standard error of the mean. 
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Figure C.11 Average observed Arylsulfatase values separated by management practices 

and sampling depth. Error bars are the standard error of the mean. 
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Figure C.12 Average observed β-glucosidase values separated by management practices 

and sampling depth. Error bars are the standard error of the mean. 
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Figure C.13 Average observed potassium permanganate oxidizable carbon (POXC) values 

separated by management practices and sampling depth. Error bars are the standard error 

of the mean. 
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Figure C.14 Average observed soil organic carbon (SOC) values separated by management 

practices and sampling depth. Error bars are the standard error of the mean. 
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Figure C. 15 Average observed soil respiration values separated by management practices 

and sampling depth. Error bars are the standard error of the mean. 
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APPENDIX D:  

Legacy Benefits of Pasture Systems on Soil Health and Productivity 

Remain 10 Years after Row Crop Production 

D.1 Abstract 

The absence of clear empirical relationships between soil health and crucial 

agronomic outcomes remains an obstacle for implementing soil health recommendations 

in commercial row crop systems. Two adjacent commercial fields presented an excellent 

opportunity to empirically evaluate the benefits of soil health on corn (Z. mays) and 

soybean (Glycine max L. Merr.) productivity.  Prior to 2011, the north field (historical 

pasture) was a perennial pasture while the other south field (long-term grain field) was a 

corn-soybean rotation with annual tillage and history of erosion. After 2011, both fields 

were converted to no-till corn soybean crop rotation. The objectives of this research 

included 1) measure soil health status in both the historical pasture and long-term grain 

fields, 2) evaluate whether variation in soil health is an effective indicator of productivity. 

Soil health assessments (0-15 cm depth) collected in 2021 were 62% greater in the North 

field. Likewise, the North field yield averages from 2011-2021 were 51% greater for corn 

and 42% for soybean. Soil health tests were significantly related to the ten-year average 

yields, with the strongest links with citrate extractable protein (r2 > 0.70) and soil organic 

carbon (r2 = 0.77). However, these strong relationships deteriorated when evaluated on a 

per field basis rather than between fields. Thus, yield benefits from soil health are generally 

not relevant for within field evaluations, but rather between fields with diverse 

management histories. These results demonstrate significant agronomic benefits from soil 



 

186 

 

health management adoption and the lasting impact of poor soil management on soil health 

and productivity. 

D.2 Materials and Methods 

Three distinct field sites within a 0.65 km2 area near Clifton Hills Missouri, USA 

were selected because of their distinct cropping system histories. Prior to 2011, the North 

(historical pasture) and West (on-going pasture) fields were in perennial pastures for 30+ 

years (per cooperating farmer’s memory). During the same 30+ year period, the South field 

(long-term grain field) was in a corn-soybean rotation with annual tillage. In 2011, no-till 

was implemented in the long-term grain field while the historical pasture was converted to 

a no-till corn soybean rotation while the on-going pasture remained as perennial pasture. 

Both the historical pasture and long-term grain fields have remained in a no-till corn 

soybean rotation since 2011, with terraces implemented in the long-term grain field in 

2012. In summarization, three systems represent three cropping systems 1) perennial 

system (on-going pasture), 2) aspirational soil health management system (historical 

pasture), 3) restoration system (long-term grain field). The fields are a complex of Grundy 

and Lagonda soil series (NRCS-SSURGO) formed from loess upland prairies. The 

Lagonda is a somewhat poorly drained Aquertic Hapludalf located on hillslopes and 

shoulders while the Grundy is a somewhat poorly drained Aquertic Argiudoll located on 

summits and interfluves.  

Soil samples were collected on a single sample date in March, 2021 on 30-m grids 

with one third of the samples collected randomly to measure small-scale variability. Thirty-

two soil samples were collected across 2.67 ha in the west field, thirty-three samples 

sampled across 2.54 ha in the north field, and 74 samples collected across 5.02 ha for the 

south field. The south field was further divided based on anthropogenic impact with 39 
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samples collected across 2.41 ha of the terraces, and 35 samples collected across 2.61 ha 

of summit landscape position. Coordinates of each soil sample sites were collected using a 

Trimble GeoXT 6000 and Geo7x GPS device (Sunnyvale, CA, USA) with approximately 

15 cm accuracy. Soil samples were collected from eight cores to a 15 cm depth. After 

sampling, soils were stored in re-sealable zipper storage bags and transported in coolers. 

Soil samples were stored in a cooler a 1.6° C and later homogenized by passing through a 

1cm screen, air dried, then dry-sieved through a 2 mm screen. Further preparation was 

made by grinding a subsample to a powder for potassium permanganate oxidizable carbon 

(POXC) and soil organic carbon (SOC) analysis.  

Four soil biological indicators of soil health were evaluated at each sample location, 

including soil respiration, POXC, autoclave citrate extractable protein (ACE Protein), and 

SOC analysis were completed through the USDA-ARS Soil Quality Lab in Columbia, MO. 

The Cornell Soil Health Assessment protocols were followed for soil respiration, ACE 

Protein, and POXC. Soil organic carbon and total nitrogen were analyzed following on a 

LECO TRUMAC C/N combustion analyzer (LECO Corp., St. Joseph, MI, USA). Soil test 

phosphorus (STP) was conducted at the soil health assessment center (University of 

Missouri, USA) following the Bray 1 soil text extraction method (Bray and Kurtz, 1945). 

Yield data for the North and South fields were collected from 2011-2021 using a 

commercial combine equipped with a calibrated yield monitor (John Deer, Moline, IL, 

USA) with an attached mass flow sensor.  Calculated means for each sample site are the 

mean of observed datapoints from a 0.05 ha (circle around geospatial location with 12.5 m 

radius) surrounding each sample site geospatial location.   
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For soil profile characterization, a single 1.2 m deep and 4.086 cm diameter soil 

core sample was taken at the center of each monitoring site using a Giddings Model #5-

UV / MGSRPSUV (Giddings Machine Company, Windsor, CO). Because these samples 

were collected in agricultural production fields, the first horizon was standardized to a 0-

15 cm depth and assumed as the plough layer (Ap) horizon. Subsequent pedogenic horizons 

were characterized using visual and tactile clues with a maximum five horizons identified 

per soil core. Identified horizons were subsequently sampled and air-dried. Bulk density 

and soil moisture were collected for each sampled horizon, and the top three horizons 

analyzed for particle size and the same soil fertility analysis previously listed.  

D.3 Results and Discussion 

Year 2011 2012 2014 2015 2016 2017 2018 2019 2020 2021 Average 

Crop Corn SB SB Corn SB Corn SB Corn SB Corn Corn SB  
Mg ha-1 

Historical 

Pasture* 

11.0 1.92 5.40 12.3 5.05 14.2 5.37 9.32 4.59 11.7 11.7 5.7 

Long-term 

Grain** 

7.2 1.34 3.79 10.5 4.47 10.9 3.46 4.98 3.24 5.07 7.74 4.0 

 
% 

Percent 

Difference 

53.3 42.9 42.4 16.4 13.1 30.0 55.0 87.4 41.9 130 51.1 41.5 

*North Field; **South Field 

 

Table D.1 Annual yield from two adjacent fields with similar soil and topographies. Both fields 

are currently corn-soybean rotation with no-till soil management. Before 2011, the North field was 

a perennial pasture for 30+ years while the south was in a corn-soybean rotation with annual tillage. 

Positive effects from the perennial system are evident, with greater yield observed in the North 

field in every season. Further, effects from the perennial system remain after 10 years of row 

cropping, with 2021 corn yield in 130% greater in the North field. Perennial systems effects 

disproportionately benefited corn yield with a 10% greater average yield increase than soybean 

over the 10-year period. Further work is necessary to identify why corn grain yield is more sensitive 

to soil health systems, but I hypothesize that at this field site differences occur because of challenges 

in planting and emergence in the south field. The impacts from historical erosion processes on the 

hydrologic cycle and surface topsoil in the South field provide challenges in planting with effects 

on seedling emergence, which disproportionately effects corn grain yield. Therefore, effects of 

improved soil health are not limited to soil biological, physical, and chemical processes, but can 

expand to effect agronomic practices that facilitate productive and sustainable cropping systems. 
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Figure D.1 Linear relationships between common soil health metrics and standardized 

yield between 2011-2021 between the North (Red) and South (Blue) fields. Since 2011 

both fields soil and crop management are no-till and a corn-soybean rotation. Prior to 2011 

the North field was in a perennial hay system for 30+ years while the south field remained 

in corn soybean rotation with annual tillage. Universal improvements in soil health 

indicators on the North field remain evident 10 years after row crop production. Further, 

improvements in soil health were strongly related with average grain production, with soil 

organic carbon and autoclaved citrate extractable protein displayed the strongest 

relationship with yield (r2> 0.70). Sensitivity to grain productivity was unique to each soil 

health indicator, with soil respiration displaying the poorest (r2 < 0.43). These results 

demonstrate positive agronomic outcomes by fostering soil health through conservation 

management practices. 
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Figure D.2 Linear relationships between soil biological indicators of soil health and 

average yield from 2011-2021. Results treat each field as unique populations with results 

reporting within field relationships. Relationships between yield and soil health metrics 

were universally poor (r2 < 0.43). Soybean yield appeared to be more correlated than corn 

yield with generally higher r2, but these relationships remain poor. I conclude that within 

these field sites, impacts from topsoil depth, water dynamics, weed pressure, etc. have 

greater impacts on productivity than soil health.  Consequently, benefits from soil health 

are best observed when evaluated between fields with divergent management histories.  
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APPENDIX E:  

Anthropogenic Management Practices Effect Spatial Variability of 

Common Soil Health Indicators 

E.1 Abstract 

Spatial characteristics of soil health assessments are underrepresented in the 

literature. Further, it remains unknown whether different conservation management 

practices have unique effects upon the spatial structure of these measurements. Field based 

research was conducted in 2021 to explore the spatial characteristics of soil health practices 

in three fields with distinct management histories. The objectives of this research included 

1) the quantification of soil health spatial autocorrelation between management systems 

and 2) comparison of these trends with established soil fertility tests. Soil samples (0-15 

cm depth) were collected Spring 2021 from three fields with unique management histories. 

The North field was a perennial system for 30+ years until 2011 when it was transferred to 

a no-till corn-soybean rotation. Finally, the south field has been in corn-soybean rotation 

for the past 40+ years, with no-till implementation beginning in 2010. Terraces were built 

in 2011 to assist in erosion control. As such, the fields were evaluated with ascending levels 

of anthropogenic influence (Pasture < North < S-Summit < S-Terraces). One hundred and 

forty-three soil samples were collected on 30-m grid split between the three field locations. 

Spatial trends were calculated with fitted semi-variograms. Soil health measurements were 

10, 41, and 46% less on the North, S-Summit, and S-Terraced fields relative to the 

perennial systems.  In general, the soil health indicators reflected landscape positions in the 

perennial system, while ACE Protein failed to provide adequate information to identify 

spatial structure at all but the terraced field site. In general soil health assessments were 
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similar in spatial structure to other soil fertility evaluations in the row-crop systems. These 

results justify that, excluding autoclaved citrate extractable protein, common soil health 

indicators display similar spatial structure to soil fertility assessments in row-crop systems. 

While soil heath sampling could be reduced to sampling unique landscape positions in 

perennial systems. 

E.2 Materials and Methods 

 See Materials and Methods within APPENDIX D for a description of data 

collection and cropping system management histories.  
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Figure E.1 Field sample sites for the North (aspirational soil health field), South (business 

as usual), and West (perennial pasture) fields. The South field sample sites were separated 

by management effects. With half of the sites overlaying recently built terraces (2011) and 

the other South field sampling reflecting the summit landscape position.  
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Figure E.2 Graphical description of historic management practices for each field prior to 

soil sampling in March 2021.  



 

195 

 

E.3 Results and Discussion 

 
Field POXC Resp TP SOC pH STP STK Clay 

 
mg kg-1 mg kg-1 g mg-1 % 

 
mg kg-1 mg kg-1 % 

Pasture 818 301 4.18 3.01 6.24 12.0 72 22.6 

North 725 250 3.97 2.82 5.75 17.8 135 25.2 

S-Summit 541 150 2.5 1.81 6.16 36.3 104 25.3 

S-Terraces 470 152 2.23 1.66 6.26 26.3 103 29.7 

Potassium permanganate oxidizable carbon, POXC; Soil Respiration, Resp; autoclaves 

citrate extractable protein, TP; soil organic carbon, SOC; soil test phosphorus, STP; soil 

test potassium, STK 

 

Table E.1 Mean statistics and results for selected soil health indicators and corresponding 

soil fertility tests. Erosion impacts are evident in the clay content, with clay content being 

the greatest where the terraces were recently implemented and the least in the perennial 

pasture. The greater clay content in the S-Terraces reflects the impact of topsoil erosion 

and subsequent exposure of subsoil clay content.  
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Figure E.3 Box and whisker plots of selected soil health analysis separated by 

anthropogenic influence. The Pasture is treated as a reference state for the North and South 

Field sites to qualify soil health in the two row crop systems. Positive effects upon the 

North Field soil health from the previous perennial system remain ten years after 

implementing no-till corn-soybean crop rotation. Soil health decreased with greater 

anthropogenic impact (Perennial > North > South Summit > South Terrace) for nearly 

every soil health indicator (exception soil respiration). This dataset does not provide 

information regarding the trajectory of the soil health status of each system. Future soil 

health assessments would provide information whether the North field has reached a new 

equilibrium or further decay is possible and whether recently implemented regenerative 

practices in the South field will facilitate further increases in soil health.   
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Figure E.4 Semi variograms with fitted functions and reported values for range, nugget, 

and model error (residual sum of squares), and fitted model function. In general, spatial 

trends in soil health indicators varied between management systems. As demonstrated by 

SOC and POXC, the large range to reach spatial independence suggest that these features 

are inherently governed by landscape position. Then, once management impacts are 

imposed, the spatial structure of these indicators begin to decrease and reflect erosion 

processes or disruptions to soil processes. Therefore, the stronger the anthropogenic 

influence (S-Terraced Field) the shorter the spatial scale. This was further highlighted by 

the results that no spatially measurable structure was observed for ACE protein and soil 

respiration. Measuring spatial structure was most difficult with ACE protein. I expect this 

is because of insufficient sample collection, or too greater of a sampling grid (30-m). These 

results highlight that ACE protein could require greater sampling intensity than the other 

soil health indicators. Soil test phosphorus spatial structure was generally similar to other 

soil health indicator ranges—with the notable exception being in the perennial pasture 

system. Finally, these results confirm that integrating soil health and soil fertility in spatial 

assessments are justified in row crop systems, while soil heath sampling could be reduced 

to sampling unique landscape positions in perennial systems.  
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