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QUANTIFYING CORN EMERGENCE 

USING UAV IMAGERY AND MACHINE LEARNING 

 

Chin Nee Vong 

Dr. Jianfeng Zhou, Dissertation Supervisor 

ABSTRACT 

Corn (Zea mays L.) is one of the important crops in the United States for animal 

feed, ethanol production, and human consumption. To maximize the final corn yield, one 

of the critical factors to consider is to improve the corn emergence uniformity temporally 

(emergence date) and spatially (plant spacing). Conventionally, the assessment of 

emergence uniformity usually is performed through visual observation by farmers at 

selected small plots to represent the whole field, but this is limited by time and labor 

needed. With the advance of unmanned aerial vehicle (UAV)-based imaging technology 

and advanced image processing techniques powered by machine learning (ML) and deep 

learning (DL), a more automatic, non-subjective, precise, and accurate field-scale 

assessment of emergence uniformity becomes possible. Previous studies had 

demonstrated the success of crop emergence uniformity using UAV imagery, specifically 

at fields with simple soil background. There is no research having investigated the 

feasibility of UAV imagery in the corn emergence assessment at fields of conservation 

agriculture that are covered with cover crops or residues to improve soil health and 

sustainability.  

 The overall goal of this research was to develop a fast and accurate method for the 

assessment of corn emergence using UAV imagery, ML and DL techniques. The 

pertinent information is essential for corn production early and in-season decision making 

as well as agronomy research. The research comprised three main studies, including 
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Study 1: quantifying corn emergence date using UAV imagery and a ML model; Study 2: 

estimating corn stand count in different cropping systems (CS) using UAV images and 

DL; and Study 3: estimating and mapping corn emergence under different planting 

depths. Two case studies extended Study 3 to field-scale applications by relating 

emergence uniformity derived from the developed method to planting depths treatments 

and estimating final yield. For all studies, the primary imagery data were collected using 

a consumer-grade UAV equipped with a red-green-blue (RGB) camera at a flight height 

of approximate 10 m above ground level. The imagery data had a ground sampling 

distance (GSD) of 0.55 – 3.00 mm pixel-1 that was sufficient to detect small size 

seedlings. In addition, a UAV multispectral camera was used to capture corn plants at 

early growth stages (V4, V6, and V7) in case studies to extract plant reflectance 

(vegetation indices, VIs) as plant growth variation indicators. Random forest (RF) ML 

models were used to classify the corn emergence date based on the days after emergence 

(DAE) to time of assessment and estimate yield. The DL models, U-Net and ResNet18, 

were used to segment corn seedlings from UAV images and estimate emergence 

parameters, including plant density, average DAE (DAEmean), and plant spacing 

standard deviation (PSstd), respectively.  

 Results from Study 1 indicated that individual corn plant quantification using 

UAV imagery and a RF ML model achieved moderate classification accuracies of 0.20 - 

0.49 that increased to 0.55 – 0.88 when DAE classification was expanded to be within a 

3-day window. In Study 2, the precision for image segmentation by the U-Net model was 

≥ 0.81 for all CS, resulting in high accuracies in estimating plant density (R2 ≥ 0.92; 

RMSE ≤ 0.48 plants m-1). Then, the ResNet18 model in Study 3 was able to estimate 
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emergence parameters with high accuracies (0.97, 0.95, and 0.73 for plant density, 

DAEmean, and PSstd, respectively). Case studies showed that crop emergence maps and 

evaluation in field conditions indicated an expected trend of decreasing plant density and 

DAEmean with increasing planting depths and opposite results for PSstd. However, 

mixed trends were found for emergence parameters among planting depths at different 

replications and across the N-S direction of the fields. For yield estimation, emergence 

data alone did not show any relation with final yield (R2 = 0.01, RMSE = 720 kg ha-1). 

The combination of VIs from all the growth stages was only able to estimate yield with 

R2 of 0.34 and RMSE of 560 kg ha-1.  

 In summary, this research demonstrated the success of UAV imagery and ML/DL 

techniques in assessing and mapping corn emergence at fields practicing all or some 

components of conservation agriculture. The findings give more insights for future 

agronomic and breeding studies in providing field-scale crop emergence evaluations as 

affected by treatments and management as well as relating emergence assessment to final 

yield. In addition, these emergence evaluations may be useful for commercial companies 

when needing justification for developing new technologies relating to precision planting 

to crop performance. For commercial crop production, more comprehensive emergence 

maps (in terms of temporal and spatial uniformity) will help to make better replanting or 

early management decisions. Further enhancement of the methods such as more 

validation studies in different locations and years as well as development of interactive 

frameworks will establish a more automatic, robust, precise, accurate, and ‘ready-to-use’ 

approach in estimating and mapping crop emergence uniformity.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background and Problem Statement  

Corn (Zea mays L.) is one of the vital crops in the United States with about 37.8 

million hectares planted area and 11.11 metric tons of grain yield per hectare in 2021 

(USDA, 2022). The usage of corn in US was mostly for animal feed (nearly half) as it 

provides a good source of energy, followed by ethanol production, export to other 

countries, and human consumption (USDA, 2015). Achieving a high corn yield is usually 

the ultimate goal for production, yet, reducing negative impacts to the environment such 

as reducing excess runoff of chemical applications is also critical to ensure long-term 

sustainable production to provide adequate food for the future population (Hunt et al., 

2019).  

One of the initial factors affecting the final yield is the corn emergence 

uniformity, which can be evaluated temporally (by emergence date) and spatially (by 

plant spacing). Corn plants that emerge uniformly at about the same time and sufficient 

distance between them reduce competition for available water, nutrients, and sunlight as 

well as limit weed intrusion (Karayel & Özmerzi, 2008; Zhang et al., 2018). Previous 

research indicated that temporal variation in emergence causes consistent yield 

reductions. For example, Nafziger et al. (1991) indicated that with delayed planting of 10 

to 12 and 22 days, the average yield decreased by 6% and 12%, respectively. Another 

study showed an average yield reduction by 4.3% and 8.7% when planting was delayed 

for 12 and 21 days, respectively (Liu et al., 2004a). Moreover, Andrade and Abbate 

(2005) also illustrated that the average yield difference between plots with emergence 
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variability of three days was about 12% less than that of control plots with uniform 

emergence.  

On the other hand, mixed results were found on the effects of spatial variability in 

plant spacing on yield. For instance, Lauer and Rankin (2004) showed a decrease of 5% 

to 18% in relative yield when plant spacing standard deviation was above 12 cm. A 

separate study showed an average yield decrease of 62 kg ha-1 for each centimeter 

increase in plant spacing standard deviation when it was greater than 5 cm (Nielsen, 

2001). However, Liu et al. (2004b) indicated that there was no strong correlation between 

plant spacing standard deviation and yield (R2 = 0.06).   

With these studies showing negative effects of emergence uniformity on yield, 

early assessment of emergence parameters, including stand count, emergence date, and 

plant spacing variability, become valuable for early and in-season management decisions, 

such as replanting, post-emerge herbicide applications, and fertilizers applications (Vong 

et al., 2021). Furthermore, these assessments can be used to evaluate spatial yield 

variability as shown in yield maps. However, these measurements were seldom 

conducted in commercial fields, which is mostly due to the time-consuming and labor-

intensive manual measurements needed especially for large fields (Varela et al., 2018). 

These manual measurements can only be done by field scouting at multiple sites, which 

is subjective and may not be representative of whole fields with variable soil conditions 

and landscape positions that affect the seed germination and emergence.  

With the advent of unmanned aerial vehicle (UAV)-based imaging and advanced 

image processing techniques, a more automatic, non-subjective, precise, and accurate 

assessment of emergence is now feasible. Many studies have shown the usage of high-



3 

 

resolution red-green-blue (RGB) UAV imagery for evaluating crop emergence such as 

plant density, emergence rate, coefficient of variation of emergence region, canopy cover, 

and spacing uniformity of corn, wheat, cotton, and potato with a high coefficient of 

determination of R2 > 0.80 (Feng et al., 2020; Jin et al., 2017; Li et al., 2019; Liu et al., 

2017; Shirzadifar et al., 2020; Shuai et al., 2019). Moreover, some studies also indicated 

success of mapping corn and wheat emergence and status at a field scale using an 

orthomosaic generated from the sequential images captured by an UAV (Shirzadifar et 

al., 2020; Sona et al., 2016; Torres-Sánchez et al., 2014). These maps are beneficial in 

visualizing the crop emergence and status in the field and to examine emergence 

variability due to different environment or treatment factors and relating to spatial yield 

variability.  

Among the studies of UAV applications in estimating corn emergence, none of 

them had detected corn at a much earlier stage (before V2) and determined the corn 

emerged date and temporal emergence uniformity. Most of the studies were focused on 

estimating corn stand count at V2 to V8 vegetative growth stages in fields under 

conventional agriculture (with conventional tillage or minimum tillage forming a simple 

image background dominated by soil) (Gnädinger & Schmidhalter, 2017; Kitano et al., 

2019; Shuai et al., 2019; Varela et al., 2018). They were not applied to corn fields 

practicing conservation agriculture (CA) with more complex background containing a 

mixture of soil and crop residue from previous crops and cover crops. In recent years, CA 

with principles of crop planting with minimum soil disturbance (i.e., no-till), permanent 

soil cover from crop residues or cover crops, and crop rotation has become popular in 

practice as it can mitigate negative environmental impacts while maintaining desired 
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yield (Conway et al., 2018; Hobbs et al., 2008; Yost et al., 2016). Meanwhile, limited 

studies have demonstrated corn emergence uniformity mapping (Shirzadifar et al., 2020) 

and studied the relationship between emergence uniformity and early growth as well as 

final yield using UAV imagery at a field scale.  

There is a need in further discovering the potential of UAV imagery in evaluating 

corn emergence uniformity and the effects on early growth and final yield at a field scale 

in fields practicing CA. To accomplish this, new methods such as machine learning and 

deep learning techniques are needed. 

1.2 Literature Review 

1.2.1 Corn Emergence Parameters 

 One of the corn emergence parameters is plant density, defined as the number of 

plants per unit area. It is also one of the grain yield components (i.e., ear number per unit 

area, seed number per ear, and seed weight) in maximizing the final corn yield (Assefa et 

al., 2016). A higher plant density increases yield as there are more plants per unit area. 

However, it increases the interplant competition for sunlight, water, and nutrients 

resulting in increased stem lodging and barrenness (Sangoi, 2001). Subsequently, the 

number of ears produced per plant and kernels set per ear will decrease and reduce the 

final grain yield. On the other hand, a lower plant density will not secure a good yield as 

modern corn hybrids usually produce only one ear per plant (Sangoi, 2001). Hence, an 

optimum plant density is required when planting corn in different conditions.  

The other corn emergence parameters describing emergence uniformity are 

emergence time (temporal) and plant spacing (spatial). Uniform emergence is desired as 

it reduces competition for the available resources among plants and increases yield. 
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Factors affecting this uniform emergence include soil environment, planting depths, 

planter performance, management practices, and their interactions (Andrade & Abbate, 

2005; Pommel et al., 2002; Rutto et al., 2014). A good seed-soil contact is critical for 

successful germination, where the ideal condition is when the soil temperature is between 

20 to 30 °C and moisture is near field capacity (Schneider & Gupta, 1985). These factors 

will be influenced by planting depths and management practices, for instance, a deeper 

depth and surface residue (from no-till) lowers the soil temperature and increases the time 

for the coleoptile elongation to the soil surface (Pommel et al., 2002). At the same time, 

seeds should not be planted too shallow (<1.9 cm) to attain a strong nodal system for 

plant structural support and increased resistance to drought stress. Meanwhile, planters 

with low precision in placing seeds and careless planting operations (traveling at high 

speed) also result in non-uniform emergence (Andrade & Abbate, 2005). These factors 

will not just induce seeds to emerge at different times but also result in missing plants 

when seeds do not germinate or experience early death, subsequently resulting in higher 

plant spacing (average and standard deviation) and lower plant density. 

1.2.2 Conservation Agriculture (CA) 

Conservation agriculture (CA) has been known as a strategy to manage agro-

ecosystems with the aims to increase or maintain productivity, profits, and food security 

as well as conserving and enhancing the resource base and environment (Friedrich et al., 

2012). It is composed of three cropping management principles, which are crop planting 

with continuous zero or minimum soil disturbance (e.g., no-till and minimum disturbance 

from farm traffic), permanent organic soil cover from previous crop residues or cover 

crops, and crop rotation to diversify the crop species grown (Friedrich et al., 2012; Hobbs 
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et al., 2008; Pittelkow et al., 2015). Studies demonstrated that CA with no-till, crop 

rotation, and cover crop implementation improved soil health (e.g., increased soil organic 

matter) when compared to minimum-till or plow-till while maintaining or increasing 

yield (Conway et al., 2018; Nunes et al., 2018). This improved soil health lowers the 

overall fertilizer inputs, increasing crop productivity and reducing negative 

environmental impacts such as excess fertilizer runoff (Conway et al., 2018; Johnston et 

al., 2009). Moreover, with the same crop rotation (corn-soybean), corn yield was similar 

between no-till and mulch tillage and yield stability was higher in no-till (Yost et al., 

2016). These results collectively indicated that CA could achieve the goal of long-term 

sustainable agricultural production, which is to produce more food from limited lands by 

using natural resources efficiently with minimal impact on the environment (Hobbs et al., 

2008). This can then provide sufficient food for our future generations. 

1.2.3 UAV System in Assessing Crop Emergence 

  An UAV can be defined as a space-traversing vehicle operated by remote control 

or flying autonomously without needing a human crew on board (Cai et al., 2014). The 

two common types of UAV are fixed-wing and rotary-wing (Radoglou-Grammatikis et 

al., 2020). The former has a predefined airfoil and fixed wings to enable lift based on the 

UAV forward airspeed while the later (also known as multirotor UAV) has more than 

two rotors to produce appropriate power for the propellers to create lift for take-off and 

active flight. A rotary-wing UAV has the advantage over fixed wing UAV that they are 

easier to fly, take-off, and land as operation by controllers and autonomous flight is 

feasible (Thamm et al., 2015). Furthermore, they do not need a landing strip (as needed 

by a fixed-wing UAV), which is more convenient in field conditions. However, they have 
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the limitation of shorter flight time (12 to 30 mins) and restricted speeds to cover a large 

area (Cai et al., 2014). Despite of the disadvantages of rotary-wing UAV, they are still 

widely utilized in studies for agricultural applications due to their more user-friendly and 

developed features.    

Numerous studies used the rotary-wing UAV to assess crop emergence such as 

corn (Gnädinger & Schmidhalter, 2017; Shirzadifar et al., 2020; Shuai et al., 2019; 

Varela et al., 2018), wheat (Jin et al., 2017; Liu et al., 2017), cotton (Chen et al., 2018; 

Feng et al., 2020), rapeseed (Zhao et al., 2018), and potato (Li et al., 2019). The 

emergence assessment consisted of stand count or plant density (Chen et al., 2018; Feng 

et al., 2020; Gnädinger & Schmidhalter, 2017; Jin et al., 2017; Shirzadifar et al., 2020; 

Shuai et al., 2019; Varela et al., 2018; Zhao et al., 2018), spacing uniformity (Shirzadifar 

et al., 2020), emergence rate (Li et al., 2019), coefficient of variation (CV) of emergence 

region (Liu et al., 2017), and canopy cover (Feng et al., 2020; Li et al., 2019). The rotary-

wing UAV used, as categorized based on number of rotors, included quadcopters (e.g., 

DJI Mavic Pro, DJI Phantom 2 and 4, and DJI 1 Inspire) (Chen et al., 2018; Feng et al., 

2020; Liu et al., 2017; Shirzadifar et al., 2020; Shuai et al., 2019), hexacopters (e.g., 

Atechsys) (Jin et al., 2017), and octocopters (e.g., DJI S1000 and DJI Matrice 600) 

(Varela et al., 2018; Zhao et al., 2018).  

In these crop emergence assessment studies, a high-resolution red, green, and blue 

(RGB) camera with at least 12 megapixels was mounted on the rotary-wing UAV to take 

RGB color images. Their flight heights (above ground level) were between 3 to 20 m to 

achieve a ground sampling distance of 0.60 – 8.91 mm pixel-1 so that small size seedlings 

can be detected for further emergence estimation and assessment. The images were 
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mostly taken at the very early emergence time such as 6 to 16 days after planting (DAP) 

for cotton (Chen et al., 2018; Feng et al., 2020), vegetative growth stage V2 for corn 

before overlapping plants occurred (Shuai et al., 2019; Varela et al., 2018), and 1.0 to 2.5 

visible leaves for wheat (Jin et al., 2017). 

The typical procedure to process the UAV RGB images collected to estimate the 

emergence parameters comprised: 1) segment them into target (each plant) and 

background (soil, residue, and weeds) to detect each plant; 2) extract direct information 

(stand count or plant density) or image features to estimate emergence parameters (plant 

spacing, canopy area, emergence rate, and CV of emergence region). For image 

segmentation, most of the studies used vegetation indices (VIs) such as excess green 

(ExG), excess red (ExR), difference between excess green and excess red (MNVI), 

normalized green minus red difference index (NGRDI), and green leaf index (GLI) (Jin et 

al., 2017; Li et al., 2019; Liu et al., 2017; Shirzadifar et al., 2020; Shuai et al., 2019; 

Varela et al., 2018; Zhao et al., 2018) to first signify the green pixels in the image. A few 

studies used image contrast enhancement such as the decorrelation stretch procedure for 

signifying the green pixels (Feng et al., 2020; Gnädinger & Schmidhalter, 2017). Next, a 

threshold value determined based on pixel distribution in a histogram (Shirzadifar et al., 

2020), visual inspection (Shuai et al., 2019), or Otsu algorithm (Jin et al., 2017; Li et al., 

2019; Liu et al., 2017; Varela et al., 2018; Zhao et al., 2018) was used to segment the 

plants from background. Occasionally, threshold values determined from other color 

spaces including HSV and L*a*b, especially after image enhancement, were used to 

perform the image segmentation (Gnädinger & Schmidhalter, 2017; Shirzadifar et al., 

2020). 
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The final output of the image segmentation was a binary image with white color 

(pixel value = 1) as plants and black color (pixel = 0) as background. Sometimes, weeds 

which has a similar green color as plants were detected as plants. Further processing such 

as removing detected objects with size less than a certain value (small size weeds and 

noise) and merging two objects (individual plant separated into two parts when certain 

parts were segmented as background as affected by sunlight and view angle) (Shirzadifar 

et al., 2020; Shuai et al., 2019; Varela et al., 2018; Zhao et al., 2018).  

The second step of information or image feature extraction included directly 

counting the detected objects in a specific image area to determine the stand count or 

plant density. For plant spacing estimation, generally, the centroid of each object was 

extracted and used in the Euclidean distance method (Shirzadifar et al., 2020; Shuai et al., 

2019; Zhang et al., 2018). Certain crops such as wheat, cotton, rapeseed, and potato have 

multiple seedlings in one individual plant or overlapped plants, hence, image features 

were extracted to correlate with the plant density (Chen et al., 2018; Jin et al., 2017; Li et 

al., 2019; Zhao et al., 2018). The common image features extracted included area, convex 

area, perimeter, major axis length, minor axis length, eccentricity, and solidity. Then, a 

statistical model was developed to estimate the emergence parameter using multiple 

linear regression (e.g., multiple stepwise regression) (Zhao et al., 2018) and machine 

learning (ML) methods (e.g., support vector machine and random forest) (Jin et al., 2017; 

Li et al., 2019). This typical procedure is usually feasible for fields with simple soil 

background but not for complex background especially with the combination of soil, crop 

residue, and weeds. Therefore, more advanced techniques using ML and deep learning 
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(DL) are required and will be discuss in more detail in section 1.2.3. Moreover, DL can 

be used directly to extract information from images without needing image segmentation.  

To evaluate the capability of the UAV system and models in assessing the crop 

emergence, several statistical measures were used to compare the actual and estimated 

emergence parameters in these studies. The most widely used measure is coefficient of 

determination (R2) to show the agreement between the actual and estimated parameters 

(Feng et al., 2020; Gnädinger & Schmidhalter, 2017; Jin et al., 2017; Li et al., 2019; Liu 

et al., 2017; Shirzadifar et al., 2020; Shuai et al., 2019; Zhao et al., 2018). The second 

most widely used measure is the root-mean-square-error (RMSE), which is the standard 

deviation of the residuals (difference between actual and estimated values) to show the 

deviation of the estimated parameters from the actual ones (Jin et al., 2017; Li et al., 

2019; Shuai et al., 2019). The other measures consisted of precision, recall, accuracy, and 

F-measure when the analysis involved image classification (instead of regression) or 

single plant estimation in small plots (Chen et al., 2018; Varela et al., 2018; Zhao et al., 

2018). The studies’ results showed high R2 when estimating stand count or plant density 

(0.72 – 0.95) for corn, cotton, and wheat; plant spacing (0.89 – 0.94) for corn; and canopy 

area (0.93 – 0.99) for cotton and potato. Meanwhile, a low RMSE was shown for corn 

plant spacing estimation (1.70 – 2.56 cm) (Shuai et al., 2019). Other measures showed 

high precision and accuracy (> 0.71) in estimating stand count or plant density for corn 

and cotton (Chen et al., 2018; Shuai et al., 2019; Varela et al., 2018). All these results 

illustrated the feasibility of a UAV system in estimating and assessing crop emergence. 
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1.2.4 Machine Learning (ML) and Deep Learning (DL) in UAV Imagery for Crop 

Emergence Assessment 

 Machine learning can be defined as providing the ability for machines to learn 

without strictly being programmed, which involves a learning process to learn from 

“experience” (training data) to perform a specific task (Liakos et al., 2018). The general 

procedures of ML techniques are building a model using training data (data with features 

as independent variables and responses or labels as dependent variables) and testing the 

model performance using testing data. The tasks performed can be regression (usually for 

numeric value estimation or prediction), classification (for categorical data), and 

clustering (for finding natural groupings of data). The learning process of ML can be 

divided into supervised and unsupervised learning. Supervised learning requires both the 

features and label data for learning in order to match the features with the label and uses 

the trained model for prediction or classification in testing data. On the other hand, 

unsupervised learning uses the feature data without label data in order to discover hidden 

patterns.   

 Deep learning is a kind of ML, which has different functions (e.g., convolutions, 

pooling layers, and fully connected layers) to transform the data in a hierarchical way and 

form a “deeper” neural network model (Kamilaris & Prenafeta-Boldú, 2018). A 

significant advantage of DL over conventional ML is its ability for feature learning, 

which extracts features automatically from raw data through the different functions 

(LeCun et al., 2015). One type of DL model extensively used for pattern recognition in 

image data is convolutional neural network (CNN) (Albawi et al., 2017). It possesses a 

convolution layer for extracting features automatically from each input image, a pooling 

layer for reducing the dimensionality of the extracted features (Amara et al., 2017), and a 
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fully-connected layer at the end for classification of the input images with the learned 

features. The following paragraphs will demonstrate ML and DL techniques in UAV 

imagery for crop emergence assessment. 

 For ML techniques, several studies first used VIs (e.g., ExG) and thresholding 

(e.g., Otsu) methods to segment the plants from the background (Banerjee et al., 2021; 

Jin et al., 2017; Li et al., 2019; Varela et al., 2018). Image features such as size (e.g., 

area, convex area, perimeter, major axis length, and minor axis length), shape (e.g., 

eccentricity, solidity, and elongation), and reflectance (i.e., different VIs) were extracted. 

These features were used to either classify plants and non-plants (soil and weeds) in corn 

(Varela et al., 2018) or estimate the plant density of wheat (Banerjee et al., 2021; Jin et 

al., 2017) and potato (Li et al., 2019) with ML models such as support vector regression, 

Gaussian process regression, decision tree, and random forest. On the other hand, a few 

studies used k-means clustering and supervised maximum likelihood classifier ML 

techniques to directly classify the images into plants and non-plants followed by plant 

counting in corn (Shirzadifar et al., 2020) and cotton (Chen et al., 2018). Results showed 

that the image classification using ML methods had higher accuracies than that of VIs 

and thresholding method (0.86 – 0.96 vs. 0 – 0.86) when estimating corn stand count 

(Shirzadifar et al., 2020).  

 Most of the studies used DL models in detecting individual plants in a bounding 

box for further stand count or plant density in corn (Hosseiny et al., 2020; Velumani et 

al., 2021), cotton (Oh et al., 2020), soybean (Habibi et al., 2021), and potato (Mhango et 

al., 2021). The common type of DL model used for this application is region based 

convolutional neural networks (R-CNN) with the widely used version as faster R-CNN in 
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detecting corn (Hosseiny et al., 2020; Velumani et al., 2021) and potato (Mhango et al., 

2021). The other type is YOLO (You Only Look Once) with the general version used as 

YOLOv3 in detecting cotton (Oh et al., 2020) and soybean (Habibi et al., 2021). Both of 

these types of DL models used a deep feature extractor backbone, derived from available 

DL models to extract features from images. For faster R-CNN, the DL models used 

include ResNet (Hosseiny et al., 2020; Velumani et al., 2021) and VGG (Mhango et al., 

2021) while for YOLOv3, the DL model used was DarkNet (Habibi et al., 2021). These 

studies showed high accuracy or R2 when estimating stand count or plant density 

(accuracy > 0.64; R2 > 0.82). 

 Moreover, several studies used DL models in image classification to detect the 

exact area of an individual plant and/or its center point (i.e., stem) in sugar-beet, corn, 

strawberry (Barreto et al., 2021), and rapeseed (Zhang et al., 2020). Barreto et al. (2021) 

used a fully convolutional network (FCN) with encoder-decoder structure while Zhang et 

at. (2020) used an image analysis software known as eCognition Developer 9.3 with 

CNN module for image classification. Detecting the exact area of each plant helps for 

further analysis, for instance, relating plant responses (e.g., leaf area and plant 

reflectance) to emergence parameters such as emergence date. Detecting the center point 

of plants can determine more accurate plant stand count especially when there are 

overlapping plants and for more precise plant spacing estimation, subsequently increasing 

accuracy in estimating spacing uniformity. Lastly, a study by Feng et al. (2020) used a 

pre-trained CNN model, ResNet18 to estimate emergence parameters including plant 

density and canopy area directly from RGB images. The results from these studies 

indicated a low MAPE of less than 4.5% when estimating plant density and canopy area 
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for sugar beet, corn, strawberry, and cotton. Overall, all the studies indicated the 

feasibility of using ML and DL and UAV imagery for assessing crop emergence 

parameters. 

1.2.5 Mapping of Crop Emergence using UAV Imagery 

 Conventionally, studies have focused on the different image processing, ML and 

DL techniques in UAV imagery for detecting individual plants and estimating different 

crop emergence parameters. Limited studies further applied the estimation at field scale, 

which is critical in investigating the emergence variability in fields as affected by soil 

properties and landscape position. Precision agriculture (PA) involves the observation of 

field spatial variability and management according to the principle of right practice at the 

right place and the right time (Mulla, 2013). Field-scale mapping is needed to identify 

spatial variability, which is usually affected by variable soil conditions,. One of the 

methods used to measure and map the soil properties such as soil salinity, clay content, 

and moisture content was soil apparent electrical conductivity (ECa) measured by 

proximal soil sensors (Corwin & Lesch, 2003; Doolittle et al., 1994; Sudduth et al., 

2005). The patterns estimated from the ECa measurement are used to define management 

zones (Mulla, 2013). Moreover, yield maps available from yield monitors could also be 

used as to define the management zones (King et al., 2005). 

 There are some available software to stitch UAV imagery to generate an 

orthomosaic such as Agisoft Metashape (Agisoft LLC, St. Petersburg, Russia) or Pix4D 

mapper (Pix4D S.A., Lausanne, Switzerland). This orthomosaic can then be used to 

produce the crop emergence maps (Feng et al., 2020; Mhango et al., 2021; Shirzadifar et 

al., 2020). These maps showing the emergence distribution in a field can give some 
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insight on the field spatial variability as demonstrated by Feng et al. (2020). The cotton 

emergence maps showed similar patterns with yield and ECa maps, i.e., regions of field 

with low canopy area had low ECa and yield. Hence, crop emergence mapping is 

beneficial to investigate the field spatial variability as affected by soil properties and can 

be related to early crop growth and final yield. 

1.3 Goal and Objectives 

The overall goal of this research was to apply ML and DL techniques in UAV 

imagery processing to provide corn emergence information, essential for early and in-

season decision-making in corn production as well as agronomy research. The emergence 

parameters include emergence time (which had not been widely determined in other 

studies), plant density, and spatial variability based on plant spacing standard deviation, 

critical for replanting decisions and post-emergence management as well as for relating to 

early growth and final yield. The assessment was conducted in CA fields of different 

cropping systems, which could show the capability of UAV imagery with ML and DL 

techniques in estimating the corn emergence in CA. The research comprised three studies 

with these specific objectives: 

Study 1: To estimate corn emergence date using ML technique in UAV imagery. 

Since corn emerges across a range of days, early and late emerging 

seedlings have different size and shape characteristics. Image features 

extracted from UAV seedling images were used in a ML model to 

estimate the corn emergence date based on days after emergence (DAE) 

on the imaging date. 
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Study 2: To estimate corn early stand count in different cropping systems (CS) 

using a DL technique with UAV imagery. With a complex background 

containing soil, residue from the previous crop and cover crop, and 

weeds existing in corn of different CS, a DL model was used to segment 

the UAV imagery and identify individual plants for further stand count 

estimation. 

Study 3: To estimate and map temporal and spatial emergence uniformity of corn 

planted at different planting depths. With the promising results from 

objective 1 and 2, another DL technique was applied to UAV imagery to 

estimate more emergence parameters temporally and spatially. Maps of 

these emergence parameters were produced to visualize the emergence 

uniformity between planting depth treatments.     

The descriptions of Studies 1 to 3 are detailed in the following dissertation 

chapters 2 to 4. Chapter 5 demonstrates example applications of studying the relationship 

between corn emergence at field scale (mapping from Study 3) and early corn growth 

with final yield under different planting depths. 
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CHAPTER TWO 

CORN EMERGENCE DATE ESTIMATION USING UAV IMAGERY 

2.1 Abstract 

  Assessing corn (Zea Mays L.) emergence uniformity soon after planting is 

important for relating to grain production and making replanting decisions. Unmanned 

aerial vehicle (UAV) imagery has been used for determining corn densities at vegetative 

growth stage 2 (V2) and later, but not as a tool for quantifying emergence date. The 

objective of this study was to estimate days after corn emergence (DAE) using UAV 

imagery and a machine learning method. A field experiment was designed with four 

planting depths to obtain a range of corn emergence dates. UAV imagery was collected 

during the first, second and third weeks after emergence. Acquisition height was 

approximately 5 m above ground level, which resulted in a ground sampling distance of 

1.5 mm pixel-1. Seedling size and shape features derived from UAV imagery were used 

for DAE classification based on a random forest machine learning model. Results showed 

that 1-day DAE could be distinguished based on image features within the first week 

after initial corn emergence with a moderate overall classification accuracy of 0.49. 

However, for the second week and beyond, the overall classification accuracy diminished 

(0.20 to 0.35). When estimating DAE within a 3-day window (-1 to +1 day), the overall 

3-day classification accuracies ranged from 0.54 to 0.88. Diameter, area, and the ratio of 

major axis length to area were important image features to predict corn DAE. Findings 

demonstrated that UAV imagery can detect newly-emerged corn plants and estimate their 

emergence date to assist in assessing emergence uniformity. Additional studies are needed 

for fine-tuning image collection procedures and image feature identification in order to 
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improve accuracy. 

2.2 Introduction 

Corn is one of the most important food crops in the world as well as a vital source 

for animal feed and biofuel (Klopfenstein et al., 2013; Shiferaw et al., 2011). Based on 

the latest report from the Food and Agriculture Organization of the United Nations 

(2020), total global corn (maize) production in year 2018 was more than 1.1 billion tons, 

with a harvested area of close to 200 million ha. To maximize corn grain yield, 

management is needed to optimize seedling emergence uniformity (i.e., emergence time) 

and seedling spatial uniformity (i.e., plant spacing). Temporal variation in seedling 

emergence leads to consistent yield reductions (Andrade & Abbate, 2005; Liu et al., 

2004; Nafziger et al., 1991). The study by Nafziger et al. (1991) showed that the average 

harvested yield of corn decreased by 6% and 12% when the plant date was delayed 10 to 

12 days and 22 days, respectively. Meanwhile, Liu et al. (2004) found that the average 

yield decreased 4.3% and 8.7% with delayed planting of 12 and 21 days. In a separate 

investigation, the average yield of corn with an emergence difference of three days was 

about 12% less than that of the corn in control plots with uniform emergence (Andrade & 

Abbate, 2005). 

Evaluating the temporal variation in seedling emergence is also necessary for 

making replanting decisions, by assessing the effect of the variation both in time of 

emergence and proportion of delay plants on final grain yield (Nafziger et al., 1991). As 

stated by (Lauer & Rankin, 2004), the first step to make the replanting decision is crop 

scouting at multiple regions of the field to determine the plant population and its 

uniformity. However, this method is labor intensive, subjective, and spatially inadequate 
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for fields with variable soil conditions that influence seed germination and emergence. 

With the advantages of unmanned aerial vehicles (UAV), optical sensors, advanced 

image processing, and analytic technologies, time and labor needed for crop scouting can 

be greatly reduced (Shuai et al., 2019), and a more precise and accurate estimation of 

plant density can be acquired. 

Research has shown the usefulness of UAV red-green-blue (RGB) imagery in 

determining corn plant density and spacing estimation at early stages. Gnädinger & 

Schmidhalter (2017) used aerial images to determine corn post-emergence plant density 

at their vegetative growth stages of V3 to V5 (with three to five visible leaves, Ransom et 

al., 2013) and achieved an accuracy of R2 = 0.89. In other work, Varela et al. (2018) 

demonstrated the potential of using high–resolution RGB images with a spatial resolution 

of 2.4 mm pixel-1 to estimate corn stand count at the V2 to V3 growth stages based on 

supervised learning techniques. In addition, UAV imagery was used to estimate corn 

plant spacing (Zhang et al., 2018) and corn plant density at about two weeks after 

emergence (Shuai et al., 2019). The results from Shuai et al. (2019) showed at least 96% 

of precision when estimating the number of plants and R2 of 0.89 to 0.91 when estimating 

the plant spacing. All the stated studies showed promising results of using UAV imagery 

in detecting and counting the corn seedlings as well as estimating plant spacing. 

However, none of them used UAV imagery for detecting corn emergence at much earlier 

stages (i.e., pre-growth stage V2) and quantifying emergence date of seedlings.  

Previous research has also used UAV-derived image features, including size and 

shape (e.g., area, diameter, major axis length, minor axis length, solidity, and 

eccentricity) to estimate wheat density (Jin et al., 2017) and detect corn at an early 
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growth stage (Varela et al., 2018). Jin et al. (2017) used these features in a support vector 

machine to estimate the wheat density and achieved R2 from 0.80 to 0.91 at different 

experiment sites. Varela et al. (2018) used image features in a decision tree to classify 

corn and non-corn objects (weeds) and found that image features of aspect ratio, axis-

diameter ratio, convex area, thinness, and solidity were significant in the classification. In 

addition, image features of size and shape utilized in artificial neural network modeling 

were effective in distinguishing different varieties of corn seed (accuracy from 0.88 to 

0.92, Chen et al., 2010) and rice seed (accuracy from 0.70 to 0.95, Chaugule & Mali, 

2014).  

Our review of the literature did not reveal any previous research to determine 

plant emergence date based on image features. Since corn emerges across a range of 

days, early and late emerging seedlings have different size and shape characteristics. 

These characteristics could be identified using image features, and would be useful in 

classifying the number of days after emergence (DAE) for each individual plant seedling. 

The overall objective of this study was to estimate the DAE using size and shape features 

extracted from UAV imagery. Specific objectives were: 1) to extract size and shape 

features from corn plant images, 2) to build a random forest (RF) machine learning model 

to predict corn plant DAE, and 3) to identify important image features in predicting plant 

DAE. 

2.3 Materials and Methods 

2.3.1 Experimental Site and Setup 

The experiment was conducted at the Bay Farm Research Facility, University of 

Missouri, Columbia, MO, USA (38°52’ 45.3” N, 92°12’15.3” W) with 18 plots arranged 
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in a randomized complete block design as illustrated in Fig. 2-1a. Treatments included 

four planting depths (3.8, 5.1, 6.4, and 7.6 cm) with four replications (with an additional 

replication for 5.1 and 7.6 cm depths). This range of depths produced variability in corn 

emergence date. Each plot was 3.0 m long and included four rows of corn with an inter-

row spacing of 0.76 m and average intra-row spacing of 17.7 cm. Only the middle two 

rows were selected for manual measurement and image analysis as shown in Fig. 2-1b. 

All corn was planted on 9 April 2019 with no-tillage using a custom-built John Deere 

four-row planter, equipped with MaxEmerge XP row units (Deere & Co., Moline, IL, 

USA) adjusted to plant seeds at the four defined depths. Seed-firmer sensors 

(SmartFirmer, Precision Planting, Tremont, IL, USA) were also mounted on the planter 

to estimate the soil conditions while planting. Corn emergence was checked daily 

between 8 to 10 am beginning on 22 April (first emergence) until complete emergence 

(29 April), with newly emerged plants marked with unique color stakes for each day. 

Emergence was not checked on 28 April due to time constraint and the plants emerged on 

28 April were therefore grouped with the plants emerged on 29 April. 

 

Figure 2-1. a) Schematic diagram of the plots arranged in randomized complete block design and 

b) an example UAV image of one study plot captured at about 5 m height on 3 May 2019 (DAE 5 

to 12). 
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2.3.2 UAV Image Collection 

Aerial images were collected using a Phantom 4 Advanced UAV imaging system 

(DJI, Shenzhen, Guangdong, China) with an onboard camera that has a field-of-view 

(FOV) of 84° and an image size of 4864 by 3648 pixels (20M pixels). The DJI Go 4 app 

was used to set the UAV height at 5 m above ground level (AGL) resulting a ground 

sampling distance (GSD) of 1.5 mm pixel-1. The GSD is the distance between two 

consecutive pixel centers measured on the ground (Orych, 2015). The camera was 

adjusted to vertically facing down to the field, i.e., nadir view (Lillesand et al., 2004), to 

manually acquire images for each plot. The images were taken manually using default 

camera settings (auto white balance and ISO range). Aerial image data were collected on 

26 April and 3, 11, and 15 May between 10 am and 2 pm local time (i.e., minimum 

changes in the solar zenith angle). The aerial image collected on 26 April was to test the 

capability of the UAV images to detect corn within the first week after first emergence 

(DAE 1 to 5 in this study). Aerial images collected on later dates represented five to 12, 

13 to 20, and 17 to 24 days after the first emergence. Figure 2-2 summarizes a timeline of 

corn emergence and dates of aerial image collection. 

 

Figure 2-2. Summary of corn emergence dates and UAV image collection dates. 
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2.3.3 Image Data Processing and Image Feature Extraction 

Small corn seedlings from DAE 1 to 5 were difficult to identify due to the small 

size. Additionally, identifying seedlings was particularly difficult on the no-till research 

site as abundant ground residue and patches of winter annual weeds obscured seedlings 

(Fig. 2-1). Therefore, each corn seedling was manually cropped from the UAV images to 

simplify the image processing procedure. To signify corn seedlings in images, a contrast 

enhancement procedure based on linear contrast stretch was performed on each image 

using the ‘decorrstretch’ function from MATLAB (R2017b, MathWorks, Inc., Natick, 

MA, USA) (Gnädinger & Schmidhalter, 2017). Linear contrast stretch expands the 

original pixel value in the image linearly into a new distribution (Chandpa et al., 2014). 

The decorrstretch function in MATLAB transforms the pixel values of each band into the 

color eigenspace of the 3-by-3 (three bands of R, G, and B) correlation matrix followed 

by stretching them to equalize the band variances and transformed the color range to a 

normalized interval between 0.01 and 0.99 (used ‘Tol’, ‘0.01’ arguments in 

‘decorrstretch’ function in Matlab). This function is able to enhance the color differences 

between corn seedlings and their background (soil or residue) (Fig. 2-3) to segment corn 

seedlings accurately. Contrast enhanced images in RGB color space were converted to 

HSV (hue, saturation, value) color space to eliminate the luminance effect. The “Color 

Thresholder App” from MATLAB was used to determine the threshold value for each 

band in HSV color space to segment the image (Fig. 2-3). Size and shape features were 

then extracted using the ‘regionprops’ function from MATLAB or computed using 

equations listed in Table 2-1. 
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Figure 2-3. Illustration of segmented corn images at different DAE using contrast enhancement 

and segmentation with a threshold value from HSV color space. 

Table 2-1. Description of size and shape features (SF) extracted from each single corn image. 

Feature Description or Equation Reference 

Area Total pixel number of a segmented seedling in images. MATLAB* 

Perimeter 
The pixel number around the boundary of a segmented 

seedling. 
MATLAB* 

Diameter 
The pixel number of the diameter of an equivalent circle with 

the same area as the segmented seedling. 
MATLAB* 

Major Axis 

Length 

The pixel number of the major axis of an equivalent ellipse of 

the segmented seedling. 
MATLAB* 

Minor Axis 

Length 

The pixel number of the minor axis of an equivalent ellipse to 

the segmented seedling. 
MATLAB* 

Eccentricity 

The ratio of the distance between the foci of the ellipse and 

its major axis length (ellipse with eccentricity 0 is a circle and 

1 is a line segment). 

MATLAB* 

Solidity 
Proportion of the pixels in the convex hull that are also in the 

region.  
MATLAB* 

Aspect Ratio 
𝑀𝑎𝑗𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ

𝑀𝑖𝑛𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ
 

(Najafabadi & 

Farahani, 2012) 

Roundness 
4𝜋 × 𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
 

(Najafabadi & 

Farahani, 2012) 

Compactness 
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2

𝐴𝑟𝑒𝑎 
 

(Najafabadi & 

Farahani, 2012) 

SF1 
1

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 
 

(Chaugule & Mali, 

2014) 

SF2 
𝑀𝑎𝑗𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ

𝐴𝑟𝑒𝑎
 

(Chaugule & Mali, 

2014) 

SF3 
𝐴𝑟𝑒𝑎

𝑀𝑎𝑗𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ3 
 

(Chaugule & Mali, 

2014) 

SF4 

𝐴𝑟𝑒𝑎

(
𝑀𝑎𝑗𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ

2
)2  × 𝜋

 (Chaugule & Mali, 

2014) 

SF5 

𝐴𝑟𝑒𝑎

𝑀𝑎𝑗𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ
2

×
𝑀𝑖𝑛𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ

2
× 𝜋 

 (Chaugule & Mali, 

2014) 

SF6 
𝑀𝑖𝑛𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ

𝐴𝑟𝑒𝑎 
  

SF7 
𝐴𝑟𝑒𝑎

𝑀𝑖𝑛𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ3 
  

DAE 1 DAE 2 DAE 3 DAE 4 DAE 5

Original 

Image

Contrast 

Image

Segmented 

Image
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* Image features extracted using image regions function (‘regionprops’) from MATLAB (R2017b). 

 

The actual values (in mm or mm2) of the calculated image features listed in Table 

2-1 were computed using the product of the number of pixels of the stated image features 

and the GSD. The GSD of each image was determined using reference boards with 

known dimensions and the length of color stakes in each UAV image. This GSD 

determination is useful to show the needed GSD ranges for detecting the small newly-

emerged plants.  

2.3.4 Random Forest Machine Learning Modeling 

A Random Forest (RF) modeling method was used to predict corn plant DAE. 

The RF model is a type of classification and regression tree (CART) machine learning 

method employing ensembles of classifications (James et al., 2013; Rodriguez-Galiano et 

al., 2012). Advantages offered by an RF model include its fast training, higher accuracy, 

less potential of overfitting (when using a large number of trees), measures of variable 

importance, ability to capture non-linear correlation between the variables and predictors, 

and no requirement for data distribution assumptions such as normality (Belgiu & 

Drăguţ, 2016; Gareth, 2010; O’Brien & Ishwaran, 2019; Rodriguez-Galiano et al., 2012). 

To develop the RF model, a dataset consisting of the response variable (DAE) and 17 

image features (Table 2-1) was established with 70% of the images as training data and 

30% of the images as testing data. The number of observations for image dates 26 April 

and 3 May was 310 and 627, and the number was 624 for 11 and 15 May. For every tree 

branch built in the RF model, only four features were randomly selected instead of using 

the full set of features to decorrelate the trees and build a reliable model (Gareth, 2010). 

Since the RF model will not overfit even using a large number of trees, studies have 
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suggested the ideal number of trees ranging from 64 to 500 (Belgiu & Drăguţ, 2016; 

Gareth, 2010; Oshiro et al., 2012). In this study, an open source software RStudio (ver. 

1.2.1335, RStudio, Boston, MA, USA.) was utilized for conducting RF modeling using 

the ‘randomForest’ package (Breiman & Cutler, 2018). The default value of 500 trees in 

the package was used.  

The model performance was evaluated using the test data with two metrics, i.e., 

accuracy of each class and overall accuracy for the classification (Kuhn, 2019). The 

accuracy of each class was defined as the ratio of the number of seedlings correctly 

classified to each DAE class to the total number of actual samples (seedlings) in each 

DAE class. The overall accuracy was defined as the ratio of the number of correctly 

classified seedling in all DAE classes to the total number of actual seedlings in all DAE 

classes. An additional metric, i.e., 3-day accuracy, was also defined to study the potential 

of UAV imagery in predicting the DAE within a 3-day window. The 3-day accuracy was 

the ratio of the number of samples predicted one day before and after the actual DAE (-1 

to +1 DAE) to the total number of actual samples in each DAE class. To clarify, 1-day 

accuracy in DAE means that the predicted DAE was the same as the actual DAE, while 

3-day accuracy in DAE means that the predicted DAE was within a 3-day window 

centered on the actual DAE.   

The importance of the image features to the DAE prediction was evaluated using 

the mean decrease in the Gini index (Belgiu & Drăguţ, 2016; Gareth, 2010). The Gini 

index is used to measure the variance impurity (purity), i.e., the variance of a distribution 

associated with each class, where a small value implies a node has observations 

predominantly from a single class (Gareth, 2010). The mean decrease in Gini index was 
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defined as the ratio of the total decrease in Gini index from all the nodes when the feature 

was used to the number of trees used (Gareth, 2010). A large value in the mean decrease 

in Gini index implied an important feature. This approach was used in this study to 

identify the important features in predicting DAE. An analysis of variance (ANOVA) test 

(Sawyer, 2009) at a 0.05 significance level (α = 0.05) was performed to determine the 

significance in the difference between DAE of the two top-ranked features identified at 

earlier image dates (first and second weeks of emergence). When the ANOVA test 

showed a significant result, a pairwise comparison technique known as Tukey’s Honest 

Significant Difference (HSD, α = 0.05) test (Abdi & Williams, 2010) was computed to 

compare the feature mean difference between DAEs. The statistical analysis was 

performed using the ‘aov’ and ‘TukeyHSD’ functions in RStudio. All the image data 

processing and ML modeling were performed in a laptop configured as Intel Core i7-

7600U 2.80 GHz CPU, a Intel HD Graphics 620 GPU with 7.9 GB memory, 16 GB 

RAM, and a 463 GB hard disk drive. 

2.4 Results and Discussion  

2.4.1 Ground Sampling Distance (GSD)  

The ground sampling distance (GSD) in each image was different due to the 

variation of actual flight heights. Although the UAV was set to fly at a nominal height of 

5.0 m, the actual height varied based on the launch location of the UAV and the field 

slope. The computed GSD ranged from 0.55 to 1.54 mm pixel-1 in different plots for 

UAV images captured on different days. Figure 2-4 shows images taken on 26 April for 

two plots with the lowest (0.55 mm pixel-1) and highest (0.94 mm pixel-1) computed 

GSD. The small sized plants at DAE 1 and 2 were detectable using the described image 
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processing workflow. This result supports the conclusion that a range of GSD from 0.55 

to 0.94 mm pixel-1 can be used to detect corn at DAE 1 and 2. 

 

Figure 2-4. UAV images captured on 26 April at two different computed ground sampling 

distances (GSD). Blue and green color stakes indicate emergence dates of 26 April (DAE 1) and 

25 April (DAE 2), respectively. 

2.4.2 Classification Accuracy for Each Image Date 

The classification accuracies of the RF model using data of different imaging 

dates are shown in Fig. 2-5. The digit in each grid indicates the ratio between the 

predicted number of samples for each DAE and the actual number of samples for the 

DAE with darker blue color indicating a higher ratio. Diagonal grids show the 

classification accuracy for each DAE while grids at the bottom indicate 3-day accuracy. 

As presented in Fig. 2-5a, i.e., during the first week of emergence, approximately half of 

the samples for all the DAE classes were predicted correctly. The classification accuracy 

ranged from 0.45 to 0.56, with the exception of the DAE 5 that had an accuracy of only 

0.20. Figure 2-5a also shows that 36% of DAE 1 plants were predicted as DAE 2 plants, 

and more than 20% of DAE 2 plants were predicted as plants of either DAE 1 or DAE 3. 
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Figure 2-6 illustrates representative plants for each DAE to analyze the potential reasons 

for the low classification accuracy. It can be seen that plants of both DAE 1 and DAE 2 

could be described as ‘through surface’ or ‘spike’ (Poncet et al., 2019), having similar 

morphological appearance in size and shape. The similarity in size and shape of newly 

emerged plants may cause the misclassification of plants between DAE 1 and DAE 2.  

 

Figure 2-5. Heat maps of the classification accuracy and 3-day accuracy (-1 to +1 DAE) of each 

DAE class on each image date (emergence date in parentheses). 
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Figure 2-6. Example cropped corn images from UAV images of different DAE on each image 

date. 

On the other hand, plants in DAE 3 could be described as having the first leaf 

opened, which increases the distinction in size and shape when compared to those in 

DAE 1 and DAE 2, and might be reason for slightly improved accuracy in DEA 3 (56%). 

Another possible reason for the low accuracy was that some of the plants in DAE 3 were 

in the transition stage from ‘spike’ to first leaf, causing 30% of the plants in DAE 3 to be 

predicted as those in DAE 2. Similar results were shown for DAE 4 (about 50% of the 

samples were predicted as DAE 2 and 3) and DAE 5 (80% of the samples were predicted 

as DAE 4), which the second leaf was becoming visible, but the plant size and shape 

were similar in both DAEs. 

Figure 2-5b illustrates the classification accuracy for the second week of 

emergence (DAE 5 to DAE 12), showing that less than half of the samples for all DAE 
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classes were predicted correctly with accuracy ranging from 0.21 to 0.43. About 30% of 

DAE 5 plants were predicted as DAE 7 and DAE 8, which had two leaves opened (Fig. 

2-6). The low classification accuracy might be due to the lack of distinctive features for 

some plants transitioning from one to two leaf, i.e., some DAE 5 plants may have 

transitioned to two leaf plants. Similarly, about 75% of DAE 7 plants were predicted to 

have emerged earlier. The prediction for 1-day DAE was best from DAE 8 through 10, 

but still not better than about 40%. There was a combination of over- and under-

prediction for these DAEs that could be due to the similar characteristics during these 

days with two opened leaves without substantial differences (Fig. 2-6). Meanwhile, both 

DAE 11 and DAE 12 had the third leaf visible (Fig. 2-6), which could help improve the 

classification (the highest classification accuracy of 0.43 for DAE 12 among the other 

DAEs). However, more than half of them were classified as earlier DAEs because they 

were transitioning from two to three leaves. 

Accuracy of predicting 1-day DAE for the third and fourth image dates (Fig. 2-5c 

and d; image dates 5/11 and 5/15) was generally worse than the earlier image dates, 

ranging from 0.00 to 0.43 accuracy. The poor classification accuracy in these DAEs 

might be due to emergence of the third leaf and its expansion over a three- to four-day 

window (DAE 15 to 19 in Fig. 2-6) with an insignificant increase in size. Although the 

third leaf provides additional features for image analysis, the fact that its emergence and 

expansion occurs over about four to five days diminishes the ability of nadir-view images 

to accurately classify DAE. Similarly, the fourth leaf emerged and expanded over many 

days (DAE 20 to 24 in Fig. 2-6) confounded the 1-day DAE prediction. Additionally, at 

the fourth leaf stage, older leaves on the lower part of plants were blocked by newer 
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leaves, which caused image features to be less sensitive in differentiating plants at 

different DAEs. In general, these results support that 1-day DAE prediction will be best 

from emergence through the two-leaf stage, and after that the sensitivity in predicting 

DAE classes getting weak. 

Another reason for DAE misclassification was the limited number of plants being 

evaluated. The total number of plants emerged between 22 to 29 April was 627. The plant 

number ranged from 120 to 170 for emergence dates 24 to 26 April but was less than 70 

for other dates. The small datasets for training and testing potentially skewed model 

sensitivity (O’Brien & Ishwaran, 2019). Additionally, although the camera was adjusted 

to obtain nadir images, seedlings that were not at the center of images had a somewhat 

oblique view resulting in errors due to image distortion (Seifert et al., 2019). 

Occasionally, emergence and growth of each individual seedling may not be 

uniform due to soil and residue conditions, which causes some variability in the image 

features from plant to plant. One of the most vital factors affecting the corn emergence 

and seedling growth in the first six weeks is soil temperature (Alessi & Power, 1971). 

Studies showed that lower soil temperature caused by residue from no-till (similar to the 

field in our study) delayed corn emergence, early growth and development (Al‐Darby & 

Lowery, 1987; Bollero et al., 1996). Figure 2-7a and b illustrate the two examples of 

residue distribution and their influence on growth rate from plants that emerged on the 

same day, DAE 5. In Fig. 2-7a, a DAE 5 plant was classified correctly with the common 

feature of the second visible leaf (Fig. 2-6). On the other hand, Fig. 2-7b shows a DAE 5 

plant but this plant was growing in low residue surroundings and was misclassified as a 

DAE 7. The low residue environment (i.e., more darker soil absorbing light) enabled 
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higher soil temperatures and more rapid growth. Figure 2-7c and d show another example 

of image feature variability caused by the coleoptile (a protective sheath covering the first 

leaf) orientation. In Fig. 2-7c, a DAE 1 plant was classified correctly with the coleoptile 

emerged vertically from the soil surface. In Fig. 2-7d, the coleoptile did not emerge 

vertically from the soil surface but instead was forced to grow horizontally as it 

encountered surface residue, and was misclassified as a DAE 2 plant. 

 
Figure 2-7. Example images showing correctly classified and misclassified plants. (a) A correctly 

classified DAE 5 plant surrounded by the average residue for the field; (b) a DAE 5 plant 

misclassified as a DAE 7 plant surrounded with less residue; (c) a correctly classified DAE 1 

plant with coleoptile emerged vertically from the soil surface (red circle) and (d) a DAE 1 plant 

misclassified as a DAE 2 plant with the coleoptile growing horizontally (red circle). 

 

2.4.3 Three-day Classification Accuracy for Each Image Date and Overall Classification 

Accuracy 

During the first week of emergence, the 3-day accuracy was high for each DAE 

(> 0.85) except for DAE 4 (0.67) (Fig. 2-5a). For the second image date (Fig. 2-5b), 3-

day accuracy was not as good as the first week, but still ranged from 0.36 to 0.84, with no 

consistent trend from day to day. Similar results were indicated for the last two image 

dates (Fig. 2-5c and d). Figure 2-8 shows the overall prediction accuracies of the 1-day 

DAE and 3-day DAE for each image date. On average, UAV imagery predicted the 1-day 

DAE with moderate overall accuracy (i.e., < 0.5), but accuracy was greatly improved 

when the performance measure for DAE was expanded to be within a 3-day window. As 

with predicting 1-day DAE, DAE classification sensitivity using the 3-day window was 
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reduced as plants matured. Prediction of plant emergence in a 3-day period is useful for 

studies about corn emergence uniformity. Previous studies on the effects of delayed 

emergence on yield used wider day ranges such as one to three weeks (Andrade & 

Abbate, 2005; Liu et al., 2004; Nafziger et al., 1991). Only one study investigated the 

effects of delayed planting of 2, 5, 8 and 12 days on yield (Lawles et al., 2012). 

Moreover, indication of delayed days was based on delayed planting days without 

documenting the exact emergence day. This might be due to the time-consuming and 

labor-intensive field work needed to record the exact emergence day. Therefore, this 

study shows proof of concept of using high-resolution UAV images for predicting DAE 

within a 3-day period. Additional automation in data processing procedure would be 

needed to extend the scale of this process. 

 

Figure 2-8. Overall accuracies of exact DAE and DAE within a three-day window for each image 

date. 

2.4.4 Identification of Important Image Features  

It is useful to evaluate the importance of different image features on the 

performance of estimation of DAEs. Figure 2-9 demonstrates the variable importance 

plots for the important features determined using the mean decrease in Gini index. As can 
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be seen, three features, i.e., diameter, area, and SF2 (ratio of major axis length to area) 

were consistently within the top five of the 17 features across all image dates. Diameter 

was within the top three for all dates. The fact that these three features were consistently 

strong contributors for predicting DAE suggests their importance, and therefore should be 

focused on in future studies. Figure 2-10 illustrates the mean diameter and area for the 

first two image dates (26 April and 3 May) at different DAEs. The diameter and area 

increased with increasing DAE, which corresponded to the plant growth with increasing 

leaf size and additional visible leaves. These morphological features captured through 

UAV images provide phenological information that may be useful for crop growth 

modeling (Dodig et al., 2019; Wang et al., 2018). Interestingly, for the first image date, 

minor axis length ranked as the most important feature, but was much less important in 

the subsequent image dates. Figure 2-11 depicts the minor and major axis length of the 

ellipse region of the corn plant at different DAEs. During the first week of emergence 

(Fig. 2-11a), the ellipse region of the plant covered the complete area of the first leaf. 

Thus, minor axis length increased with increasing leaf size. On the other hand, for the 

second week onwards (Fig. 2-11b to 2-11d), the ellipse region depicted the overall nadir 

view of the plant, which the minor axis length sometimes represented the width of one 

leaf or the center region of the plant (at the whorl or nearby it, Fig. 2-11d). This 

uncertainty caused inconsistent trends in this feature at different DAEs. 
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Figure 2-9. Variable importance plots indicating important features based on mean decrease in the 

Gini index for image date a) 26 April, b) 3 May, c) 11 May, and d) 15 May. 
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Figure 2-10. Mean diameter and area for image date a) 26 April and b) 3 May (different letters in 

each chart show significant differences in the mean at p-value less than 0.05 for the Tukey HSD 

test). 

 

Figure 2-11. Minor and major axis length representation for corn plants at different DAEs in 

image date a) 26 April, b) 3 May, c) 11 May, and d) 15 May (value in parentheses is minor axis 

length). 
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2.4.5 Future Study and Applications 

This study provided meaningful estimates of post-emergence DAE using UAV 

images. In order to achieve this, it is necessary to fly the imaging system at a low altitude 

(~5 m) to acquire sufficient GSD, which will require higher resolution cameras to achieve 

the equivalent GSD with larger areas per scene. In addition, manual identification of corn 

plants was required for this study because of the presence of winter annual weeds 

growing alongside the emerging corn plants. Also, plant residues from the previous 

growing season added a challenge with image processing for predicting DAE. However, 

since conservation and no-tillage systems are often encouraged for soil conservation and 

health, this issue needs to be resolved. Future work should include more advanced image 

processing or deep learning (DL) models to automate the background removal (weeds 

and residues) such as using DL models to detect and segment single plants from each 

image.   

As automation of image processing is developed and refined, time and labor 

needed for collecting field-scale UAV imagery for this type of analysis will be 

reasonable. As a bridge to that, more large-scale field experiments on emergence 

uniformity evaluation using UAV images should be conducted. These studies might 

include other soil and crop management factors, such as investigating the effects of 

emergence uniformity due to tillage systems (Lithourgidis et al., 2005), different planting 

depths (Hussen et al., 2013; Molatudi & Mariga, 2009), and seed size (Molatudi & 

Mariga, 2009). In addition, plant morphological features may be affected by 

environmental factors including soil and weather conditions, which may cause bias of 

DAE estimation using only image features. Therefore, in future work, the DAE 
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estimation model should also include environmental information such as growing degree 

day (GDD), soil apparent electricity conductivity (ECa), and soil information from a real-

time planting sensor (SmartFirmer, Precision Planting, Tremont, IL, USA). 

To improve the classification accuracy, different approaches of UAV data 

collection could be tested. For example, collecting a sequence of multiple images 

captured with varied “sufficient overlaps”, such as 85% front and 70% side overlap for 

field-scale experiments as suggested by aerial image stitching software, Pix4D (Pix4D 

Inc. Denver, CO, USA) to produce an orthomosaic (Lin & Medioni, 2007). This will 

reduce the variability of image features caused by imaging plants at an oblique angle. In 

addition, orthomosaic generation can be useful for mapping emergence uniformity for the 

entire field and the proportion of early and delayed emergence. This would be beneficial 

in making replanting decisions (Nafziger et al., 1991). Another UAV data collection 

approach could be collecting a series of nadir and oblique (camera adjusted to vertical 

angle of 45° and 135°) images to generate a 3D dense point clouds (Che et al., 2020; 

Karpina et al., 2016; Zhou et al., 2018). These 3D dense point clouds may be useful to 

extract other features such as plant height and total number of leaves. 

2.5 Conclusion  

This research demonstrated UAV imagery can be used to detect newly-emerged 

corn plants and estimate emergence date, which will be valuable for evaluating plant 

emergence uniformity and replanting decisions. The required GSD to detect the small 

corn seedlings (DAE 1 to 5) during the first week after emergence ranged from 0.55 to 

0.94 mm pixel-1. Unmanned aerial vehicle imagery was not able to predict the 1-day DAE 

with high overall accuracies, but was capable of predicting DAE within a 3-day window 
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(-1 to +1 DAE) with higher overall accuracies. DAE prediction was best for the first two 

weeks after emergence (from emergence through two-leaf stage). Afterward, sensitivity 

in predicting DAE was reduced. Diameter, area and SF2 (i.e., minor axis length/area) 

were important features identified to differentiate DAE for all image dates with one 

additional feature of minor axis length for the first week of emergence. Further studies 

should acquire multiple images and generate an orthomosaic to reduce image feature 

variability. More plant samples at each DAE should be included to obtain a more robust 

model and subsequently, increase the actual DAE prediction accuracy. Furthermore, 

additional environmental data should be included in the prediction model to reduce the 

DAE estimation bias. To conclude, this study serves as the very first approach in 

estimating corn emergence date in field conditions using UAV imagery with a high 

overall 3-day estimation accuracy. The methods and results of this study may provide 

baseline information for researchers who will conduct similar projects in the future. 
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CHAPTER THREE 

EARLY CORN STAND COUNT OF DIFFERENT CROPPING SYSTEMS USING 

UAV-IMAGERY AND DEEP LEARNING 

 

3.1 Abstract 

 Optimum plant stand density and uniformity is vital in order to maximize corn 

(Zea mays L.) yield potential. Assessment of stand density can occur shortly after 

seedlings begin to emerge, allowing for timely replant decisions. The conventional 

methods for evaluating an early plant stand rely on manual measurement and visual 

observation, which are time-consuming, subjective because of the small sampling areas 

used, and unable to capture field-scale spatial variability. This study aimed to evaluate 

the feasibility of an unmanned aerial vehicle (UAV)-based imaging system for estimating 

early corn stand count in three cropping systems (CS) with different tillage and crop 

rotation practices. A UAV equipped with an on-board RGB camera was used to collect 

imagery of corn seedlings (~14 days after planting) of CS, i.e., minimum-till corn-

soybean rotation (MTCS), no-till corn-soybean rotation (NTCS), and no-till corn-corn 

rotation with cover crop implementation (NTCC). An image processing workflow based 

on a deep learning (DL) model, U-Net, was developed for plant segmentation and stand 

count estimation. Results showed that the DL model performed best in segmenting 

seedlings in MTCS, followed by NTCS and NTCC. Similarly, accuracy for stand count 

estimation was highest in MTCS (R2 = 0.95), followed by NTCS (0.94) and NTCC 

(0.92). Differences by CS were related to amount and distribution of soil surface residue 

cover, with increasing residue generally reducing the performance of the proposed 

method in stand count estimation. Thus, the feasibility of using UAV imagery and DL 
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modeling for estimating early corn stand count is influenced by soil and crop 

management practices. 

3.2 Introduction  

Optimum plant density and uniformity are critical crop management parameters to 

maximize crop production and yield, especially for corn (Zea mays L.) (Sangoi, 2001). 

Optimal plant density is determined based on a number of factors, such as hybrid, 

maturity, length of growing season, and planting date (Sangoi, 2001). For example, 

higher planting density is suggested for early planting where there is a risk of yield loss 

due to the lower soil and air temperature (Bollero et al., 1996; Sangoi, 2001; Stanger & 

Lauer, 2006). In addition, higher planting density is utilized to increase the stress-

tolerance of corn hybrids to maximize yield (Assefa et al., 2016; Van Roekel & Coulter, 

2011). Although seeds may be planted at the optimum density, spatial variation of the 

plant density can occur due to poor seed germination (including emergence delays and/or 

failed emergence), planter performance problems, and early-season plant death due to 

stress (Thorp et al., 2007). Collectively, this variability affects final corn grain yield. 

Therefore, early assessment of plant density by quantifying stand count is valuable for 

subsequent management decisions (e.g., replanting and post-emerge herbicide 

applications) and for evaluating spatial yield variability as shown in yield maps. 

 The conventional method for an early stand count is usually based on manually 

counting the number of seedlings at multiple sites within a given field (Nielsen, 2003). 

Manual assessment of stand count is time consuming, labor intensive, subjective due to 

small sampling areas used, and may not be representative of whole fields (Varela et al., 

2018). In addition, sensors mounted on the row-dividers of a combined head have been 
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developed to count and map plant density at harvest, resulting in more information for 

crop management recommendations for the next growing season (Birrell & Sudduth, 

1995; Sudduth et al., 2000). However, this measurement has no value for guiding in-

season management. 

Recently, UAV-based imaging systems have shown the potential of capturing 

high-resolution red-green-blue (RGB) images for detecting and estimating stand counts 

of different crops including corn (Gnädinger & Schmidhalter, 2017; Kitano et al., 2019; 

Shuai et al., 2019; Varela et al., 2018), wheat (Triticum aestivum L.) (Jin et al., 2017), 

cotton (Gossypium L.) (Chen et al., 2018), rapeseed (Brassica napus L.) (B. Zhao et al., 

2018), and sorghum (Sorghum bicolor L.) (Ghosal et al., 2019; Guo et al., 2018). These 

studies acquired images using high-resolution RGB cameras at a low altitude (3 to 20 m) 

that resulted in a ground sampling distance (GSD) of 0.20 to 8.9 mm pixel-1. Studies 

showed that UAV-based methods could estimate stand counts accurately with 

coefficients of determination (R2) of 0.80 to 0.91, 0.56 to 0.84, 0.72 to 0.89, and 0.89 for 

wheat (Jin et al., 2017), sorghum (Ghosal et al., 2019; Guo et al., 2018), rapeseed (B. 

Zhao et al., 2018), and corn (Gnädinger & Schmidhalter, 2017), respectively.  

One of the most important steps in the assessment of crop stand count using UAV 

imagery is to segment plants from images. The crop segmentation can be conducted using 

vegetation indices to signify the difference between crop and background. For example, a 

simple excess green vegetation index was used to segment corn plants from UAV images 

where there were only small amounts of residue on the soil surface (Shuai et al., 2019; 

Varela et al., 2018). (Gnädinger & Schmidhalter, 2017) used contrast enhancement and 

threshold value in two color spaces (i.e., HSV and L*a*b) for image segmentation to 
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detect plants at the 3- to 5-leaf development stage, while (Kitano et al., 2019) used a deep 

learning (DL) method to estimate plant density with different treatments (plant densities, 

flying heights and growth stages). Although these studies demonstrated the potential of 

detecting plants and determining corn stand count at early growth stages using global 

thresholds, they focused on fields under traditional agriculture practices that included 

conventional or minimum tillage, where the image background was simple and 

dominated by soil. In recent years, conservation agriculture has become popular due to its 

potential for mitigating negative environmental impacts while maintaining desired yield 

(Conway et al., 2018; Hobbs et al., 2008; Nunes et al., 2018; Pittelkow et al., 2015; Yost 

et al., 2016). Conservation agriculture fields that include no-till (crop planting with 

minimum soil disturbance), cover crops, and diverse crop rotations (Hobbs et al., 2008; 

Pittelkow et al., 2015) have plant residues that make it difficult to identify early-stage 

plants for accurate evaluation of stand count. For UAV imagery stand count methods to 

be widely adoptable, the stand count assessment methods need to be evaluated for corn 

fields where conservation agriculture is practiced and where there is a more complex 

background. Based on our best knowledge, the performance of UAV-based method in 

stand count assessment for crops managed using conservation agriculture has not been 

evaluated. 

 Due to advances in image processing and deep learning (DL) techniques, it is 

now possible to process images with more complex backgrounds. Deep learning is a kind 

of machine learning (ML), which is composed of different functions (e.g., convolutions, 

pooling layers, and fully connected layers) to transform data in a hierarchical way, 

forming a “deeper” neural network model (Kamilaris & Prenafeta-Boldú, 2018). Deep 
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learning techniques are more effective than conventional ML in the identification of 

subtle differences in images due to their ability for feature learning from raw data and 

automatic feature extraction in the model. Deep learning has shown great potential in 

segmenting plants from the soil background using low-altitude UAV images (Fan et al., 

2018; Fawakherji et al., 2019; Kitano et al., 2019; Trujillano et al., 2018; Zhang et al., 

2020; Zhuang et al., 2018). The RGB color and multispectral images captured from a 

UAV have been used in a DL model to segment tobacco (Nicotiana tabacum L.) (Fan et 

al., 2018), corn (Fawakherji et al., 2019; Kitano et al., 2019; Trujillano et al., 2018), 

sugar beet (Beta vulgaris L.) (Fawakherji et al., 2019) and purple rapeseed leaves (Zhang 

et al., 2020). Moreover, RGB images collected from a camera mounted on an agricultural 

robot were used in a DL model to segment corn and sugar beet plants under different 

light conditions (Zhuang et al., 2018). All these studies used the same type of DL model 

known as a convolutional neural network (CNN), which is primarily used for pattern 

recognition within images (Albawi et al., 2017). The main architecture of CNN is formed 

by stacked layers of convolution, pooling, and fully-connected layers. The convolution 

layer extracts features automatically from each input image and the pooling layer reduces 

the dimensionality of the extracted features (Amara et al., 2017). Then, the fully-

connected layer at the end utilizes the learned features to classify the input images. 

Examples of the CNN models used include U-Net for corn and purple rapeseed leaves 

segmentation (Kitano et al., 2019; Zhang et al., 2020), Segnet and VGG-UNet for corn 

and sugar beet classification (Fawakherji et al., 2019), and LeNet for corn classification 

(Trujillano et al., 2018).  
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With the promising results from using UAV imagery and DL modeling for 

segmenting images, the present study aimed to evaluate the feasibility of UAV-based 

imagery and a DL model for estimating early corn stand count in different cropping 

systems (CS). The specific objectives included: 1) to build a DL model for segmenting 

corn plants in different CS from UAV images; and 2) to build an image processing 

workflow for corn early stand count estimation. 

3.3 Material and Methodology 

3.3.1 Experimental Site 

This study was conducted in 2019 at a research farm in the United States 

Department of Agriculture, Agricultural Research Service (USDA-ARS) Long-Term 

Agroecosystem Research (LTAR) network (Sadler et al., 2015) near Centralia, MO 

(39°13’48” N, 92°7’14” W). A detailed description and research history of the site have 

been reported previously (Conway et al., 2018; Yost et al., 2016). In the present study, a 

large-plot area (12 ha) and an adjacent 4-ha field were used (Fig. 3-1). The replicated plot 

area had 10 CS main plots with three replications. Each plot was 190 m by 20 m (0.4 ha). 

As indicated in Table 3-1, this study included two of the 10 CS, i.e., minimum-tillage 

corn-soybean rotation (MTCS, Fig. 1) and no-till corn-soybean rotation (NTCS, Fig. 1). 

These have been managed in this same rotation for > 25 years. A third CS, no-till 

continuous corn with cover crops (NTCC) was implemented in the adjacent 4-ha field 

(Fig. 3-1). For MTCS and NTCS, the plots were planted with soybean (Glycine max) in 

2018, resulting in low to medium amounts of residue in the plots when planting corn in 

2019 (Fig. 3-2a to d). Meanwhile, in the spring of 2018, corn was planted in the NTCC, 

followed by a cover crop seeding in the fall. The cover crop consisted of cereal rye 
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(Secale cereale L.) and hairy vetch (Vicia villosa Roth), causing a higher percentage of 

residue cover when planting in 2019 (Fig. 3-2e and f). The cover crops were terminated 

using 32 oz. of glyphosate (Roundup) and 32 oz. of glufosinate (Liberty) herbicides. 

 

Figure 3-1. Long-Term Agroecosystem Research (LTAR) experimental site used for this study 

with different cropping systems (MTCS: minimum-till corn-soybean; NTCS: no-till corn-

soybean; NTCC: no-till corn-corn including cover crop) identified. 

Table 3-1. Cropping system description, date of planting, and UAV image acquisition date in 

2019 at the study site near Centralia, MO. 

Cropping 

System 
Description 

Residue 

Cover 

Planting 

Date 

UAV Image 

Date 

MTCS 
Minimum-till; Corn following 

soybean 
None/Low May 15th May 28th 

NTCS No-till; Corn following soybean Medium May 15th May 28th 

NTCC 
No-till; Corn following corn with 

cover crops 
High May 31st June 14th 
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Figure 3-2. Images of the three cropping systems with different types and amounts of residue 

cover. Images (a), (c) and (e) were taken using the UAV system, and (b), (d) and (f) were taken 

using a camera from the ground. Images (a) and (b) are minimum-till corn-soybean rotation 

(MTCS) with no or low residue; (c) and (d) are no-till corn-soybean rotation (NTCS) with 

medium residue; and (e) and (f) are no-till continuous corn including cover crops (NTCC) with 

high residue. Images were acquired at 13 (MTCS and NTCS) or 14 (NTCC) days after planting. 

A 4-row planter with John Deere MaxEmerge XP row units (Deere & Co., 

Moline, IL, USA) was used for planting corn (hybrid Pioneer 0589, Corteva Agriscience, 

Wilmington, DE, USA) in all plots at a row spacing of 0.76 m and a travel speed of 1.9 m 

s-1. In 2019, MTCS and NTCS plots were planted on May 15, while the NTCC field was 

planted on May 31 (Table 3-1). Seeding rate was set as 81,510 seeds ha-1 across the site, 

which was equivalent to a plant spacing of 16 cm. Additionally, the planter was outfitted 

with a Precision Planting hydraulic downforce system (DeltaForce®), finger-pickup seed 

meters (Precision Planting, LLC., Tremont, IL, USA), and seed-firmer sensors 

(SmartFirmer, Precision Planting, Tremont, IL, USA). No planter residue management 

(e.g., row cleaners and no-till coulters) was used during the seeding operation.  

3.3.2 UAV Data Collection 

Aerial image data was collected using a Phantom 4 Advanced UAV (DJI, 

Shenzhen, Guangdong, China) equipped with an on-board RGB camera. The camera had 

a field-of-view (FOV) of 84° and the selected image size was 4864 by 3648 pixels (20 M 
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pixels). Imagery was taken about two weeks after planting when the corn was at the 

second leaf vegetative growth stage (V2) or earlier. Specifically, data were collected for 

the MTCS and NTCS plots on May 28 and the NTCC field on June 14, 2019 (Table 3-1) 

between 10 am and 2 pm local time when the changes in the solar zenith angle are 

minimal. Sequential images were taken at 0.5 frames per second (fps) at a 10-m flight 

height and a speed of 2 m s-1, which were set by planning the mission waypoints using 

the UAV control app Litchi (VC Technology Ltd, London, U.K.) to ensure image overlap 

of 75% in both forward and sideward directions. Each image frame had a calculated 

ground sampling distance (GSD) of 0.3 cm pixel-1 and covered an area of approximately 

159.1 m2 (14.6 m × 10.9 m). This resulted in about 19 corn rows per image.  

3.3.3 Image Processing and Data Analysis 

 Due to the complexity of images with small corn plants and heavy residues, as 

well as cover crops in the NTCC CS, an image processing method based on deep learning 

(DL) was used in this study to segment corn seedlings from UAV imagery. The image 

processing method included three major steps of 1) developing a DL model for image 

segmentation; 2) pre-processing UAV image data to prepare the input images for the DL 

model; 3) post-processing the segmented images from the DL model to obtain final 

segmented images with the background removed. 

3.3.3.1 Development of the Deep Learning Model  

The DL model used in this study was the U-Net model, which is a type of 

convolutional neural network and was first introduced for image segmentation in 

biomedical applications (Livne et al., 2019; Ronneberger et al., 2015). Recently, it has 

been widely used in agricultural applications for segmenting and classifying plants, 



64 

 

weeds, and ground straw coverage (Fawakherji et al., 2019; Kitano et al., 2019; Zhang et 

al., 2020; X. Zhao et al., 2019; Zhou et al., 2020). The U-net model is able to extract 

global features and context information from small-sized images and does not require a 

large training dataset (Zhou et al., 2020), making it feasible for this study. These features 

make it suitable for object segmentation with low resolution, uncertain size, and complex 

backgrounds (Zhang et al., 2020). Studies also showed that the image segmentation 

accuracy (pixel-to-pixel comparison) was higher as compared to other DL models such as 

SegNet (Fawakherji et al., 2019; Zhang et al., 2020). 

In this study, the U-Net model was built using the ‘unetLayers’ function in Matlab 

with an encoder and a decoder as illustrated in Fig. 3-3. The encoder learned image 

features from input images, and reduced its dimension (width × height) by the max pool 

operation (2 × 2 filter size). The decoder identified the localization of the object-of-

interest based on the corresponding reference feature map from the encoder part (depth 

concatenation). The depth concatenation also restored the image to its original dimension 

by up-convolution (2 × 2 filter size) and up-ReLU (Rectified Linear Unit) operations. The 

bridge section connected the encoder and decoder parts. All convolution operations had a 

filter size of 3 by 3, except for the final convolution layer before the output segmented 

image, which had a filter size of 1 by 1. The dropout operation selected a probability (0.5 

in this study) at which input elements were dropped out randomly to prevent overfitting 

when training the neural network. Fig. 3-3a to 3-3g visualize some channels from the 

multi-channel feature map of the step-by-step image segmentation from the model. 

Training options as indicated in Table 3-2 were used. 
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Figure 3-3. The architecture of the U-net deep learning model used in the study with legend at the 

bottom left. Each rectangle represents a multi-channel feature map with the number of channels 

given above. Image dimension (width × height) is indicated at the left edge. (a) to (g) show 

example channels from the feature map.  

Table 3-2. Training option values used to train the model. 

Training Option Name Value 

Solver ‘adam’ 

Learning Rate 0.0001 

Max Epoch 50 

Mini Batch Size 64 

3.3.3.2 Pre-processing UAV Images 

Ten UAV images were randomly selected from each CS to train the U-Net model 

for image segmentation. Images were rotated to ensure plant rows were vertical based on 

visual inspection. Each plant row image was subsequently cropped to 200 pixels wide by 

the height of the rotated image (Fig. 3-4a to 3-4c) using Matlab (R2019b, MathWorks, 

Natick, MA, USA). The image width of 200 pixels (equivalent to 60 cm based on the 

average GSD of 0.3 cm pixel-1) was selected to include one corn row in the middle and an 

adequate background. Then, smaller-sized images with a dimension of 200 by 304 pixels 
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were cropped from the plant row images, where the 304 pixels of image height covering 

91 cm included one to five corn plants in each cropped image (Fig. 3-4d). Theoretically, 

five plants should have been included in the cropped images based on the 91 cm image 

length and plant spacing of 16 cm. However, the actual GSD changed during flight due to 

the variation of flight height caused by field slope and the error of UAV elevation sensor, 

resulting in fewer plants covered in some images. The cropped images were divided into 

training (70%), validation (20%), and testing (10%) datasets (Table 3-3). Training and 

validation datasets were used to build the DL model, and the model was evaluated using 

the testing dataset. Ground truth images (i.e., binary images of corn plants in white [pixel 

value = 1] and background in black [pixel value = 0]) of each cropped image were 

prepared using ‘Image Segmenter’ apps from the ‘Image Processing and Computer 

Vision’ toolbox in Matlab. Regions of interest (i.e., corn plants) were drawn using ‘Draw 

ROIs’ in the ‘Image Segmenter’ apps and the binary image was exported.  

 

Figure 3-4. Illustration of image data preparation for building the deep learning (DL) model in 

this study: (a) original UAV image where red boxes indicate plant rows; (b) rotated UAV image; 

(c) cropped images of plant rows; and (d) cropped images used to build DL model. 
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Table 3-3. Number of cropped images from each cropping system used in training, validation and 

testing datasets. 

Dataset MTCS NTCS NTCC Total 

Training 1020 1000 1016 3036 

Validation 290 280 288 858 

Testing 140 130 139 409 

Total 1450 1410 1443  

 

3.3.3.4 Post-processing Segmented Images from DL Model 

 Followed by the U-Net model, image post-processing steps including an adaptive 

image thresholding method (Bradley & Roth, 2007) and the morphological operation of 

image erosion were used to remove the remaining background or any noise in the image. 

The final segmented binary image was compared with the ground truth binary image to 

evaluate the image segmentation of the U-Net model using three parameters, namely 

precision, recall, and F1 (Table 3-4), which were computed by ‘bfscore’ in Matlab 

(Csurka et al., 2013). The average of each parameter for all the images in each CS as well 

as overall (for all CS) was calculated and reported. 
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Figure 3-5. Illustration of image segmentation using the proposed deep learning (DL) model and 

final segmentation results. Images (a) to (c) are the original images; (d) to (f) are output from the 

proposed DL model; (g) to (i) are final segmented images; (j) to (l) are ground truth binary 

images prepared using the ‘Image Segmenter’ apps for each cropping system: minimum-tillage 

corn-soybean rotation (top row); no-till corn-soybean rotation (middle row); no-till continuous 

corn including cover crops (bottom row).  

Table 3-4. Parameter used to evaluate image segmentation (Csurka et al., 2013). 

Parameters Description 

Precision 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

where TP = true positive, number of pixels on the ground truth segmentation 

boundary that are also on the predicted segmentation boundary;  

           FP = false positive, number of pixels on the predicted segmentation 

boundary but not on the ground truth segmentation boundary 

  

Recall 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where TP = true positive, number of pixels on the ground truth segmentation 

boundary that are also on the predicted segmentation boundary;  

           FN = false negative, number of pixels on the ground truth segmentation 

boundary but not on the predicted segmentation boundary 

 

F1 

Measures how close the predicted boundary of an object matches the ground 

truth boundary. 

𝐹1 =  
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛
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3.3.4 Image Processing Workflow for Plant Stand Count Estimation 

An image processing workflow (Fig. 3-6) was built to estimate plant stand count 

(number of plant m-1) for each corn row.  Firstly, UAV images were cropped to 4800 by 

3648 pixels from the original dimension of 4864 ×3648 pixels using the ‘imcrop’ 

function in Matlab. This was done so that 288 images could be equally cropped from the 

UAV image to be used as input images in the U-Net model. The same DL model and 

post-processing steps as described previously (henceforth referred to as proposed 

method) were used to segment the cropped images. Then, the cropped images were 

combined sequentially, followed by a row detection step to prevent counting non-corn 

objects between rows (Fig. 3-6b to 6e). The row detection step began by first finding the 

lines (rows) in the binary image using a Hough transformation (Fig. 3-6c), and the angle 

detected was used to rotate the binary (Fig. 3-6d) and original images. When summing 

the number of pixels at each image width of the binary image (“1” for plants and “0” for 

background) and smoothing the data using a Gaussian filter, the detected peaks (red 

circles in Fig. 3-6e) represented each row (Varela et al., 2018). The image width position 

of each peak was used to crop each plant row from the rotated original image and binary 

image. Additionally, the plants in each row were manually counted using the original 

color image (Fig. 3-6f) and denoted as manual count. Likewise, the plants in the binary 

image (Fig. 3-6g) were counted by detecting the number of connected components in the 

image and denoted as UAV count. Since the corn plants were mostly in V2 or earlier 

growth stages, no plants overlapped. The exception to this was a small number of “double 

plants”, caused by two seeds being released by the planter at the same time.  
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Figure 3-6. Workflow of estimating plant population in each row of a single UAV image captured 

for the cropping system of no-till continuous corn including cover crops in this study. (a) original 

UAV image; (b) segmented binary image; (c) segmented binary image with lines in green found 

by Hough transformation; (d) rotated binary image; (e) smoothed curve with peaks representing 

plant row positions; (f) cropped original image for manual count (37 plants); (g) cropped binary 

image for UAV count (36 plants).  

Seven to nine UAV images, comprised of about 60 plant rows for each CS were 

randomly selected for the manual and UAV corn stand count comparison in plants m-1. 

The stand count in each row was determined using the ratio of the total number of plants 

in the row to the row length. The GSD for each selected image was different due to the 
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variability of actual flight height caused by the UAV launch location and field slope. 

Thus, actual GSD (cm pixel-1) was first calculated using the division of constant planter 

row spacing (76 cm) by row spacing in pixels from the image. The computed GSD 

ranged from 0.14 to 0.26 cm pixel-1 for the UAV images used in the analyses. Then, the 

row length was determined by multiplying the number of pixels by the computed GSD. 

Lastly, scatter plots were created to compare the manual and UAV count. Previous studies 

used several metrics to describe model performance in estimating stand count, including 

coefficient of determination (R2, Gnädinger & Schmidhalter, 2017) and MAPE (Kitano et 

al., 2019). Thus, these two metrics were utilized to allow for comparison with previous 

studies, and an additional performance metric of root-mean-square error (RMSE) was 

also computed. All the data processing and analysis were performed in a laptop 

configured as Intel Core i7-7600U 2.80 GHz CPU, a Intel HD Graphics 620 GPU with 

7.9 GB memory, 16 GB RAM, and a 463 GB hard disk drive. 

3.4 Results and Discussion 

3.4.1 Image Segmentation Evaluation 

Example images of different CS with different precision, recall, and F1 values are 

shown in Fig. 3-7. The overlay showed a very close agreement between boundaries when 

the values of all three parameters were equal to one (Fig. 3-7a). Precision values were 

low when the UAV prediction indicated more plant area than that of the ground truth 

(Fig. 3-7d), or detected other green objects (Fig. 3-7c) as indicated in the overlay by the 

green color. Meanwhile, recall values were low when a portion of a plant (Fig. 3-7e and 

3-7f) or a complete small-sized plant (Fig. 3-7b) in the ground truth was not included in 

the prediction as shown in the purple color of the overlay.  
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Figure 3-7. Example images showing different precision, recall, and F1 values in three cropping 

systems: minimum-tillage corn-soybean rotation (a and b), no-till corn-soybean rotation (c and d), 

and no-till continuous corn including cover crops (e and f). ‘Ground Truth’ is the binary image 

prepared by ‘Image Segmenter’ apps, ‘Prediction’ is the segmented binary image from the 

proposed method, and ‘Overlay’ compares ground truth and segmented binary images.  

 

Results using the proposed method are listed in Table 3-5, including the average 

precision, recall, and F1 of training, validation and testing datasets for each CS and all the 

CS (overall). The MTCS had the highest performance with the greatest average precision, 

recall, and F1 (0.93 – 0.96), followed by NTCS (0.85 – 0.93), and NTCC (0.74 – 0.90). 

Thus, performance of the proposed method decreased as residue cover increased. Overall, 

the proposed method was able to segment corn plants from the background in UAV 

images of different CS with high precision, recall, and F1 for all the datasets (0.86 – 

0.92). The MTCS and NTCS had higher average recall than precision for all datasets, 

suggesting that most prediction images in these CS had plants with larger area than that 
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of the ground truth images. Nonetheless, the additional area of plants in the ground truth 

images was usually on the edge of the plants (Fig. 3-7d), and likely did not negatively 

affect the accuracy of plant stand count estimation. The low precision value also 

indicated the possibility of detecting other green objects, such as weeds, that were usually 

found between rows and would cause an over-prediction of stand count. This issue could 

be addressed by including the row detection step (Fig. 3-6b-e) to avoid counting non-corn 

objects between rows. 

Table 3-5. Average precision, recall and F1 of training, validation and testing datasets for different 

cropping systems. 

Dataset Parameter MTCS NTCS NTCC Overall 

Training 

Precision 0.95 0.89 0.90 0.91 

Recall 0.96 0.93 0.86 0.92 

F1 0.96 0.92 0.88 0.92 

Validation 

Precision 0.93 0.86 0.78 0.86 

Recall 0.94 0.92 0.74 0.86 

F1 0.94 0.90 0.74 0.86 

Testing 

Precision 0.94 0.85 0.81 0.87 

Recall 0.96 0.91 0.74 0.86 

F1 0.95 0.90 0.77 0.87 

 

The NTCC had higher average precision than recall, indicating that most of the 

prediction images had plants with smaller area than that of the ground truth images. The 

NTCC had the highest amount of residue, with some of the residue covering part of the 

plant leaves. Hence, this covered part was not included in the prediction image (Fig. 3-7e, 

f). Additionally, low recall values could be caused by some plants not being detected, 

which would result in under-prediction during stand count estimation. This issue was 

especially apparent when the corn plants were surrounded by other green residue (i.e., 

plants not completely senesced after pre-plant herbicide application) in this NTCC CS, as 

illustrated in Fig. 3-8.  
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Figure 3-8. Images showing a low recall value in the cropping system with no-till continuous corn 

including cover crops due to some plants that were not detected when surrounded by green 

residue. The original image is on the left (a) and the overlaid image between ground truth and 

segmented binary images is on the right (b).  

3.4.2 Plant Stand Count Estimation 

Nearly all the background was removed in images from MTCS and NTCS (Fig. 3-

9). However, for NTCC, some of the background consisting of green residue was not 

completely removed (Fig. 3-9i and 3-9l). By introducing the additional step of row 

detection (Fig. 3-6b to 3-6e), these background objects were not included in the final 

cropped plant row image (Fig. 3-6f and 3-6g), thus improving the estimation accuracy. 

Good correspondence was observed between manual and UAV counts of corn for all the 

CS with R2 of more than 0.9. (Fig. 3-10). The MTCS had the lowest RMSE and MAPE 

followed by NTCS and NTCC, suggesting that higher amounts of residue increased the 

difficulty of counting the correct number of plants. 
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Figure 3-9. Examples of UAV images from cropping systems: minimum-tillage corn-soybean 

rotation (top row), no-till corn-soybean rotation (middle row), and no-till continuous corn 

including cover crops (bottom row) used in plant stand count estimation. The original UAV 

images are in the first column (a-c) and segmented images using the proposed method are in the 

second column (d-f). Those parts of the original UAV and segmented images in the red boxes are 

enlarged and shown in the third and fourth columns (g-l). 

 

 

Figure 3-10. Comparison between manual and UAV stand count for each cropping system: 

minimum-tillage corn-soybean rotation (MTCS), no-till corn-soybean rotation (NTCS), and no-

till continuous corn including cover crops (NTCC). 

 

The under-prediction in MTCS and NTCS was attributed to small-sized plants, 

which were late-emerging plants, and were considered as image noise and removed (Fig. 
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3-11a to d). Occasionally, the under-prediction was also due to the overlapped leaves of 

two close plants (“double plants”, Fig. 3-11e to h). On the contrary, over-prediction in 

MTCS and NTCS resulted from a limitation of the image processing workflow when the 

UAV image was cropped equally into 288 images. Some corn plants were split, with 

portions appearing in two images (Fig. 3-12a to d), and after the background removal 

using the proposed method followed by combining the images sequentially, the same 

plants were divided into two parts (Fig. 3-12e and f). For NTCC, higher amounts of 

residue resulted in more under- and over-prediction. These residues varied in color from 

yellow or white dry straw (Fig. 3-13a) to yellow or light green cover crops or weeds (Fig. 

3-13c). As indicated in Fig. 3-13a and b, some plants (red circle) were not detected, while 

in Fig. 3-13c and d, some plants (red box) were divided into two parts.  

 

Figure 3-11. Examples of original (a, b, e, and f) and segmented (c, d, g, and h) images showing 

under-prediction of plant stand count caused by small-sized plants (a-d) and overlapped leaves (e-

h) for two cropping systems: minimum-tillage corn-soybean rotation (top row) and no-till corn-

soybean rotation (bottom row). 
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Figure 3-12. Examples of original (a, b, and e) and segmented (c, d and f) images showing corn 

plants that were divided into two parts, resulting in over-prediction of plant stand count.  

 

Figure 3-13. Examples of original (a and c) and segmented (b and d) images showing under-

prediction (a and b) and over-prediction (c and d) of plant stand count for the cropping system 

with no-till continuous corn including cover crops. 

 

  Although there was some under- and over-prediction for all the CS, our results 

show better or comparable performance of corn stand count estimation when compared to 

similar previous studies. For example, our results of R2 > 0.90 for all the CS were higher 

than the R2 of 0.89 in the study by (Gnädinger & Schmidhalter, 2017). Although neither 

the crop growth stage or CS were specificed, the UAV image shown in their article 

illustrated larger corn plants (3- to 5-leaves) with only soil background, which was 
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comparable to the MTCS in the present study. Hence, the proposed method attained a 

higher performance at an earlier growth stage than this previous study. 

Similarly, the MAPE results ranged from 4.51% to 16.57% across all CS. This 

showed comparable or better performance of the proposed method to results from 

previous research performed by (Kitano et al., 2019), which found MAPE to range from 

2.6 to 53.3%. They used DL and UAV images in estimating corn stand counts with 

different factors such as plant density (45,000, 70,000, and 90,000 plants ha-1), flight 

height (10, 15, and 20 m), and vegetative growth stage (V4, V6, and V8). When 

considering the same flight height in our study (10 m), their MAPE ranged from 11.6 to 

14.4% when estimating plant stand count at V4 stage. Although the NTCS in our study 

had MAPE of 16.57%, our proposed method was able to estimate the plant stand count at 

an earlier stage (V2 compared to V4, which is about 140 growing degree days earlier, Lee 

et al., 2007). Earlier detection of stand establishment could result in more time to 

implement management stragies, such as replanting.  

Meanwhile, the RMSE in the present study was low for all the CS and ranged 

from 0.28 to 0.48 plants m-1 (Fig. 3-7a to b). A study by Shuai et al. (2019) estimated 

corn stand count at V2 (UAV images taken 25 DAP at 4 and 5 m flying height) in a field 

previously planted to wheat and tilled with a vertical tillage implement prior to corn 

planting. The UAV image in their paper illustrated only soil background, which was 

similar to MTCS. Their results showed that the model missed two to five plants per plot 

(129 to 141 plants) in six 5-m rows. An equivalent calculation based on RMSE from our 

research showed our proposed method missed eight plants per plot. The higher number of 

missing plants might have been caused by the lower spatial resolution of our study (3.0 
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mm pixel-1) as compared to theirs (1.1 and 1.4 mm pixel-1). Although our method 

provided a lower estimation accuracy, it was able to estimate corn stand 11 days earlier 

than this previous study (14 vs. 25 DAP).  

 Overall, the proposed method was able to estimate early corn stand count (two 

weeks after planting, i.e. ~V2) for different CS with R2 ranging from 0.92 to 0.95, RMSE 

of 0.28 to 0.48 plants m-1, and MAPE of 4.51 to 16.57%. Further application of the 

proposed method could produce plant population maps of larger fields using stitched 

UAV images. This will potentially allow determining the exact location of areas of poor 

or no emergence in a field. As such, less time and labor will be needed as compared to 

traditional crop scouting methods. 

3.5 Conclusion 

 This study proposed a method of using UAV imagery and a DL model in 

estimating early (V2) stand count of corn planted with different CS that varied in soil and 

residue backgrounds (MTCS, NTCS, and NTCC). Results showed that plant 

identification by UAV imagery was more difficult as the complexity of the background 

increased with average precision of 0.94, 0.85, and 0.81 in the testing dataset for MTCS, 

NTCS, and NTCC CS, respectively. The proposed method using a U-Net DL model and 

further image processing was able to remove the background from a UAV image and 

increase plant identification accuracy. For plant stand count estimation, the row detection 

step improved R2 to > 0.90 for all CS. Moreover, low RMSE (0.28 to 0.48 plants m-1) and 

MAPE (4.51 to 16.57%) were attained for all the CS. The proposed method can be 

extended to estimate plant stand count for larger fields using stitched UAV images to 

produce plant population maps. These maps would be useful to researchers for making 



80 

 

replanting decisions, estimating yield potential and nutrient recommendations, and 

evaluating effects of environmental factors on emergence. To test the reliability of the 

proposed method, future validation work will be needed in plots and fields planted with 

similar or other soil and crop residue conditions.  
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CHAPTER FOUR 

CORN EMERGENCE UNIFORMITY ESTIMATION AND MAPPING USING 

UAV IMAGERY AND A DEEP LEARNING MODEL 

 

4.1 Abstract 

 Assessment of corn (Zea Mays L.) emergence uniformity is important to evaluate 

crop yield potential. Previous studies have shown the potential of unmanned aerial 

vehicle (UAV) imagery and deep learning (DL) models in estimating early stand count 

and plant spacing uniformity, but few have extended further to field-scale mapping. 

Additionally, estimation of plant emergence date using UAV imagery in field-scale 

studies has not been achieved. This study aimed to estimate and map corn emergence 

uniformity using UAV imagery and DL modeling. Corn emergence uniformity was 

quantified with plant density, plant spacing standard deviation (PSstd), and mean days to 

imaging after emergence (DAEmean). Corn was planted at four depths (3.8, 5.1, 6.4, and 

7.6 cm). A UAV imaging system equipped with a red, green, and blue (RGB) camera was 

used to acquire images at 10 m above ground level at 32 days after planting (20 days after 

the first emergence at V2-V4 growth stage). A pre-trained convolutional neural network, 

ResNet18, was used to estimate the three emergence parameters. Results showed the 

estimation accuracies in the testing dataset for plant density, PSstd, and DAEmean were 

0.97, 0.73, and 0.95, respectively. The developed method had higher accuracy and lower 

root-mean-square-error for plant density and DAEmean, indicating better performance 

than previous studies. A case study was conducted to assess the emergence uniformity of 

corn at different planting depths using the developed estimation models at field-scale. 

From this maps were produced. Results showed that the average plant density and 
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DAEmean decreased and the average PSstd increased with increasing depths, indicating 

deeper planting depths caused less and later emergence, as well as less spatial uniformity 

in this field. These emergence uniformity field maps could be used for future field-scale 

agronomic studies on temporal and spatial crop emergence uniformity and for making 

planting decisions in commercial production. 

4.2 Introduction 

 The uniformity of corn (Zea Mays L.) stand is critical in maximizing yield as it 

reduces competition between plants for available water, nutrients, and sunlight (Karayel 

and Özmerzi, 2008). Corn stand uniformity can be assessed temporally and spatially 

based on emergence date and plant spacing. Pommel et al. (2002) and Rutto et al. (2014) 

summarized a few factors and their possible interaction that affect crop stand uniformity, 

including soil environment, planter performance, planting depths, and tillage practices. 

Seed germination requires adequate water and optimum soil temperature (20 °C to 30 °C) 

to rupture the seed coat and initiate the seed embryonic tissue development (Poncet et al., 

2019; Schneider and Gupta, 1985). Planter configuration and operating parameters often 

require adjustment for particular soil conditions to facilitate reliable seed placement at a 

desired depth and spacing (Badua et al., 2018; Poncet et al., 2018). Furthermore, no-

tillage practices leave residues on the soil surface that can lower early-season soil 

temperature and reduce seed germination and emergence (Boomsma et al., 2010; Rutto et 

al., 2014).  

Past research studied the effects of corn emergence uniformity on yield (Kovács 

and Vyn, 2014; Lawles et al., 2012; Nafziger et al., 1991), using different planting dates 

to create non-uniform emergence. Other research also investigated the impacts of 
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different crop management practices such as planter type and settings, tillage, and 

nitrogen rate on emergence uniformity (Kovács and Vyn, 2014; Liu et al., 2004a; Poncet 

et al., 2019). The emergence uniformity was quantified by measuring the number of days 

from planting to 50% plant emergence with more days indicating late emergence (Liu et 

al., 2004a) and accumulated thermal units or growing degree units (GDU) from planting 

using 10 and 30°C temperature thresholds, with higher GDU for later emergence (Kovács 

and Vyn, 2014). Poncet et al. (2019) used Gibb’s Index, which determines variability for 

categorical variables, in predefined seedling categories to quantify emergence uniformity 

with higher index values indicating more uniformity. A more recent study used days after 

emergence (DAE) to the time of assessment with lower DAE signifying later emergence 

(Vong, Stewart, et al., 2021). 

For corn spatial uniformity, the parameters most often used include average and 

standard deviation (SD) of plant spacing (PS) (Lauer and Rankin, 2004; Liu et al., 2004a; 

Liu et al., 2004b), where higher SD of PS indicates less spatial uniformity. Furthermore, 

some indices are calculated relative to the theoretical PS, such as the International 

Organization for Standardization (ISO) multiple index (the percentage of PS with spacing 

less than 0.5 times the theoretical spacing), ISO miss index (the percentage of PS with 

spacing more than 1.5 times the theoretical spacing), and coefficient of precision (the 

percentage of PS with spacing within ± 1.5 cm of the theoretical spacing) (ISO, 1984; 

Kachman and Smith, 1995; Shirzadifar et al., 2020; Singh et al., 2005). These corn 

uniformity measurements are conventionally conducted manually in multiple selected 

sampling plots, which may not be representative of the whole field.  
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 Advances in unmanned aerial vehicle (UAV)-based imaging and image 

processing technologies provide the ability to efficiently collect high-resolution images of 

crops at field scale to quantify crop growth conditions. Recent studies have shown the 

usage of high-resolution red, green, and blue (RGB) UAV imagery for evaluating 

emergence in corn (Shirzadifar et al., 2020; Shuai et al., 2019; Vong, Conway, et al., 

2021), wheat (Jin et al., 2017; Liu et al., 2017), cotton (Feng et al., 2020), and potato (Li 

et al., 2019). The UAV imagery data can be used to evaluate stand count or plant density 

(Feng et al., 2020; Jin et al., 2017; Shirzadifar et al., 2020; Shuai et al., 2019; Vong, 

Conway, et al., 2021), spacing uniformity (Shirzadifar et al., 2019), emergence rate (Li et 

al., 2019), coefficient of variation (CV) of an emergence region (Liu et al., 2017), and 

canopy cover (Feng et al., 2020; Li et al., 2019), with relatively high coefficients of 

determination (R2 > 0.80). In addition, UAV imagery has been used to map and visualize 

crop emergence and growth status in a large field (Shirzadifar et al., 2020; Sona et al., 

2016; Torres-Sánchez et al., 2014).  

Previous studies regarding the evaluation of corn emergence using UAV imagery 

focused on the assessment of stand count (Kitano et al., 2019; Vong, Conway, et al., 

2021) and plant spacing uniformity (Shirzadifar et al., 2020; Shuai et al., 2019). Studies 

analyzing the temporal variation of emergence date are limited (Vong, Stewart, et al., 

2021). Some studies used UAV imagery to estimate plant stand count at later vegetative 

growth stages (e.g., 3 to 8), which is not feasible for early-season decision making, e.g., 

replanting (Gnädinger and Schmidhalter, 2017; Kitano et al., 2019). In addition, among 

the published studies that used image processing methods for estimating crop emergence 
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(Varela et al., 2018; Vong, Conway, et al., 2021; Vong, Stewart, et al., 2021), only one 

mapped entire fields using UAV imagery (Shirzadifar et al., 2020).  

Crop emergence uniformity estimation and mapping in early growth stages are 

critical for some management decisions, such as replanting and post-emerge herbicide 

applications (Vong, Conway, et al., 2021). Meanwhile, emergence mapping can also be 

used to evaluate the spatial variability of yield since non-uniform crop emergence may 

lead to consistent yield reductions (Andrade and Abbate, 2005; Liu et al., 2004b). 

Moreover, precision planting, which places seed at a precision spacing and depth to 

ensure uniform emergence for maximizing final yield, has been facilitated with 

technologies in today’s planter systems. These include hydraulic or pneumatic downforce 

systems for active in-field adjustment (Poncet, 2019), seed singulation to drop one seed at 

a time (Iacomi and Papescu, 2015), variable rate seeding based on varying soil conditions 

(Silva et al., 2021), and variable planting depths based on soil moisture data in real-time 

(Precision Planting, 2019). Early crop emergence uniformity maps could be critical to 

evaluate the performance of these technologies up to a field scale level to make necessary 

adjustments or improvements. The high-resolution data may help understand the 

constraint factors for better crop emergence. 

A challenge of using UAV imagery in assessing crops in early growth stages is 

the small size of plants and complex background in images. The common procedures of 

image processing include segmenting the images to remove the soil and residue 

background and extracting information such as reflectance and morphological appearance 

of the plants. Generally, conventional image segmentation methods first used vegetation 

indices (VIs) or contrasting the image to signify the difference between plants and 
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background (Gnädinger and Schmidhalter, 2017; Shuai et al., 2019; Varela et al., 2018). 

Then, a threshold value was manually determined based on visual inspection of the 

images to do the segmentation (Gnädinger and Schmidhalter, 2017; Shirzadifar et al., 

2020; Shuai et al., 2019). Meanwhile, an automatic method to determine the threshold 

value, known as the Otsu threshold, was also widely used (Otsu, 1979; Varela et al., 

2018). These methods have been used to process images with a predominantly soil 

background and are not readily applicable to images with complex backgrounds, i.e., 

surface residue (Vong, Conway, et al., 2021). 

 More recently, deep learning (DL) techniques have been widely used to process 

images with complex backgrounds (Vong, Conway, et al., 2021; Zhang et al., 2019) or 

extract information directly from the segmented images (Espejo-Garcia et al., 2020; Feng 

et al., 2020; Yalcin, 2019). The advantage of DL-based image processing methods over 

conventional approaches is that they can learn the different features from the images or 

datasets automatically (Vong, Conway, et al., 2021; Yalcin, 2019; Zhang et al., 2019). In 

addition, DL techniques can be used directly to process raw images to extract novel crop 

characteristics automatically without human intervention. The DL techniques have been 

widely used in research related to agriculture, such as assessment of stand count, canopy 

area and yield (Feng et al., 2020; Yalcin, 2019), weed detection (Milioto et al., 2017), 

plant growth monitoring (Yalcin, 2019), and leaf disease classification (Deeba and 

Amutha, 2020).  

 Deep learning models require significant computing resources and large datasets 

for training (Espejo-Garcia et al., 2020; Feng et al., 2020). In practice, agriculture-related 

datasets are usually small due to limited time and resources available for recording 



92 

 

ground truth data. Many DL models have been developed for general-purpose image 

processing and analytics using the convolutional neural network (CNN), such as AlexNet 

(Krizhevsky, 2014), VGG (Simonyan and Zisserman, 2014), GoogleNet (Szegedy et al., 

2015), ResNet (He et al., 2016), and DenseNet (Huang et al., 2017). These models have 

been trained and tested on large image datasets for classification, object recognition, and 

semantic segmentation, and the trained model can be transferred to other similar research. 

These pre-trained DL models can be fine-tuned to do a specific task by using a smaller 

training dataset, which is known as transfer learning (Pan and Yang, 2009). In recent 

years, many studies have used transfer learning for agricultural purposes, such as 

estimating stand count and canopy area (Feng et al., 2020), classifying plant leaf diseases 

(Deeba and Amutha, 2020; Subetha et al., 2021), and detecting weeds in fields (Ahmad et 

al., 2021; Espejo-Garcia et al., 2020).   

This study aimed to evaluate the potential of UAV imagery and a DL model to 

estimate and map temporal and spatial emergence uniformity. In this study, the temporal 

uniformity referred to stand count and different emergence dates while spatial uniformity 

was related to evenness of plant spacing. Specific objectives consisted of 1) 

implementing a pre-trained DL model to estimate corn emergence uniformity, and 2) 

demonstrating the applicability of the model to estimate and map emergence uniformity 

at field-scale with corn planted at different depths.  

4.3 Materials and Methodology 

4.3.1 Study Site and Ground Data Collection 

 The study was conducted at a 2.6-ha sub-field located at the western portion of a 

14-ha corn field near Columbia, MO, USA (38°56’45.7” N, 92°07’57.4” W) as shown in 
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Fig. 4-1. The dimensions of the study area were 320 m (N-S direction) by 81 m (E-W 

direction). The study included four planting depths (i.e., 3.8, 5.1, 6.4, and 7.6 cm) with 

three replications. Each planting depth of each replication included eight rows (6.1 m) of 

corn along the entire length of the field (~320 m) that resulted in a total of 96 rows of 

corn with 24 rows per seeding depth.  

 

Figure 4-1. Study site with a schematic diagram of 8-row corn planting depth treatments and an 

example image of a monitoring site taken on 22 May 2020.  

The corn hybrid used in the study was Pioneer 0589 (Corteva Agriscience, 

Wilmington, DE, USA). This corn hybrid had a stress emergence rating of “7” on a 1 to 9 

scale according to Corteva’s evaluation, with 1 being poor emergence and 9 being high 

emergence rates (Corteva Agriscience, 2021). The site was planted on 20 April 2020 

using a custom-built four-row planter equipped with MaxEmerge XP row units (Deere & 

Co., Moline, IL, USA) at a 0.76-m row spacing travelling at a speed of 2.0 ms-1. Seed-

firmer sensors (SmartFirmer, Precision Planting, Tremont, IL, USA) were also mounted 

3.8 cm (1.5”)

5.1 cm (2.0”)

6.4 cm (2.5”)

7.6 cm (3.0”)

Monitoring Site

8-row Planting Depth Treatments

75 m

6m

2 corn rows

Color Stake

0.76m

Enlarged Image
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on the planter to estimate the soil conditions while planting. The corn seeds were no-

tilled into soybean stubble from the previous crop in 2019. No row-cleaners or no-till 

coulters were used on the planter row units. Seeds were planted at the four defined depths 

at a seeding rate of 81,510 seeds ha-1, which was equivalent to an average plant intra-row 

seed spacing of 16 cm. The planter was also equipped with a hydraulic downforce system 

(DeltaForce®) on each row unit and finger-pickup seed meters (Precision Planting, LLC., 

Tremont, IL, USA).  

A total of 23 monitoring sites (five for the 5.1-cm depth and six for each other 

depth) were marked with flags for ground data collection. Each monitoring site consisted 

of two 6.0-m long adjacent corn rows (Fig. 4-1a). Corn emergence was checked daily 

between 8 to 10 am and the newly emerged plants were marked with unique color stakes 

for each day. The first and last emergence checks in the monitoring sites were 2 and 12 

May 2020, equivalent to 12 and 22 days after planting (DAP). Cumulative emergence 

percentage was also calculated as the cumulative percentage of the number of plants 

emerged from the first to the last emergence. The different color stakes were used to 

determine the DAEs on the day when UAV data was collected and to calculate the mean 

DAE (DAEmean) in 1-m row of the images (details in section 4.3.3.1). The PS was 

measured using a measuring tape on 15 June 2020 (56 DAP) and used to correlate with 

the PS estimated using image pixels (details in section 4.3.3.1)  

4.3.2 UAV Data Collection 

 The UAV aerial image data was collected on 22 May 2020 (32 DAP or 20 days 

after first emergence) when the plants were at vegetative growth stage V2 to V4. The 

image data collection time was between 10 am and 2 pm local time, coinciding minimum 
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changes in the solar zenith angle. Aerial images were acquired using a Phantom 4 

Advanced UAV imaging system (DJI, Shenzhen, Guangdong, China) with an onboard 

RGB camera with a field-of-view (FOV) of 84° and image size of 4864 by 3648 pixels. 

Images were taken sequentially for the whole field at 0.5 frames per second (fps) at a 

flight height of 10 m and speed of 2 m s-1. The flight mission plan with targeted 

waypoints was set up through the UAV control app Litchi (VC Technology Ltd, London, 

UK). This setup ensured an image overlap of 75% in both forward and sideward 

directions and resulted in a calculated ground sampling distance (GSD) of 0.3 cm pixel-1 

for each frame.  

4.3.3 Image Processing and Data Analysis 

4.3.3.1 DL Model Implementation for Plant Emergence Parameters Estimation 

 The images collected in this study were processed using a previously developed 

DL technique (Feng et al., 2020) based on a CNN model (ResNet18; He et al., 2016). The 

model was previously used to estimate the stand count and canopy size of cotton 

seedlings. The ResNet18 model was selected among other well-known pre-trained CNN 

models (e.g., AlexNet, VGG, SqueezeNet, and DenseNet) because it achieved a similar 

or higher accuracy and required fewer computational resources (Feng et al., 2020). 

Hence, a similar framework was adapted in this study to estimate three corn emergence 

parameters in a 1-m row segment: plant density, DAEmean, and PS standard deviation 

(PSstd).  

Figure 4-2 summarizes the workflow of the required sizing and normalization step 

applied to the original images to create an input image in the ResNet18 model for 

emergence parameter estimation. The required image size for the model is 224 by 224 
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pixels (Fig. 4-2a). Since the ResNet18 model was trained and tested using the ImageNet 

dataset (Russakovsky et al., 2015) with 1000 classes, the same normalization steps were 

followed (Fig. 4-2b) to create the input images (Fig. 4-2c) for the model (Fig. 4-2d). The 

model had seven stages, with the first five stages containing different numbers of 

convolution layer combinations, batch normalization layer, ReLU activation layers, and 

max-pooling layers for feature extraction (Fig. 4-2d). The last two stages were average 

pooling and full connection layers. The details of the ResNet18 architecture have been 

reported previously (Feng et al., 2020). The model was trained once for each emergence 

parameter. In addition, our images have the color stakes used to represent the emergence 

date of each plant as shown in Fig. 4-2a, which may affect the feature learning from the 

model. Thus, feature maps (Zeiler and Fergus, 2014) in stages 3 to 5 were plotted to 

visualize the learned features for better interpretation of the results. The training and 

testing of the model and the plotting of feature maps were performed in Python (ver. 

3.8.5). 

 

Figure 4-2. Workflow of image segmentation and normalization used to create inputd images in 

ResNet18 model for estimation of plant density, mean days to imaging after emergence 

(DAEmean), and plant spacing standard deviation (PSstd) in 1-m row segments.  



97 

 

  To prepare the training and testing datasets for the ResNet18 model, 212 images 

covering the monitoring sites were selected from the series of sequential images taken by 

the UAV. Each image covered part of or the whole monitoring site. As the input image 

requires a consistent size of 224 by 224 pixels, an image size equivalent to the actual area 

of 1.0 m2 was first segmented. The size was chosen for further usage in field mapping 

with a grid cell size of 1.0 m2. The segmented image was then resized to the required size 

before normalization (Fig. 4-2a and 4-2b). The actual GSD of each image was first 

calculated based on the consistent plant row spacing (76.0 cm) to segment the images 

into an equivalent 1.0 m2 size. The image processing steps to determine the actual GSD 

(Fig. A1) were conducted using Matlab 2019a (The MathWorks, Inc., Natick, MA, 

USA). The original image was first enhanced using decorrelation stretch (Gnädinger and 

Schmidhalter, 2017; Vong, Stewart, et al., 2021). Then, a threshold value of 220 (tested 

using a trial-and-error method and visual inspection) in the green band of the enhanced 

image was used to remove most of the background to create binary images. Plant rows 

were detected using the standard Hough transform (SHT), and the binary image was 

rotated using the detected angle from SHT to obtain the plant row spacing in pixels. The 

actual GSD in cm pixel-1 was calculated using the division of 76.0 cm by the plant row 

spacing in pixels.  

The detected angle by SHT was also used to rotate the original images to segment 

each plant row of the monitoring site. Next, plant rows of the monitoring site were 

segmented from the rotated binary images and region of interest (ROI), i.e., each corn 

plant was detected using ‘regionprops’ in Matlab. The steps for preparing the ResNet 

model input images included labeling each ROI, segmenting the image to an image size 
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equivalent of about 1.0 m2 (ranged from 0.9 to 1.1 m2) using the actual GSD to determine 

the required pixels, and computing the final labels for each segmented image (Fig. A2). 

There were some corn plants not being detected using the ‘regionprops’ and hence, the 

labels of the missed ROI were manually recorded. The centroid of each ROI was 

extracted to estimate the PS in image pixels by using the Euclidean distance between the 

centroid coordinates of two adjacent plants (Eq. 1, Zhang et al., 2018). The estimated PS 

in cm was calculated by multiplying the spacing in pixels by the GSD. To test the 

method’s reliability, the estimated PS was compared with the ground measured PS. The 

final labels included the three emergence parameters of plant density, DAEmean, and 

PSstd in a 1-m row segment determined by calculating the total number of plants, the 

mean of each DAE label, and standard deviation of estimated PS in each segmented 

image (different color boxes in Fig. A2).  

𝑃𝑆𝑒𝑠𝑡 =  √(𝑐𝑥𝑖+1 − 𝑐𝑥𝑖)2 + (𝑐𝑦𝑖+1 − 𝑐𝑦𝑖)2   (1) 

where  PSest = estimated plant spacing in pixels, cx and cy = centroid coordinates of 

region-of-interest (ROI), and i = ROI ID. 

 

A total of 7,989 images were segmented and divided into training (90%) and 

testing (10%) datasets, which is a commonly used split ratio for pre-trained DL models in 

agricultural applications (Nguyen et al., 2021; Xu et al., 2020). The performance of the 

model was evaluated using the estimation accuracy of the testing dataset in estimating the 

three parameters (plant density, DAEmean, and PSstd), as calculated using Eq. 2.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
|𝐴𝑐𝑡𝑢𝑎𝑙−𝑃𝑟𝑒𝑑𝑖𝑐𝑡|

𝐴𝑐𝑡𝑢𝑎𝑙
    (2) 
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where  Actual = actual parameter value, Predict = estimated parameter value. The overall 

workflow of image processing, model training, and testing is summarized in Fig. 4-3. The 

image processing as well as model training and testing were performed in a desktop 

configured as an Intel Core i9-9900K 3.60 Ghz CPU, a NVIDIA GeForce RTX 2060 

GPU with 6 GB memory, 32 GB RAM, and 256 GB solid-state drive (SSD).  

 

 

Figure 4-3. Flowchart of image processing overview, including dataset preparation as well as 

deep learning model training and testing.  

4.3.3.2 Map and Evaluate Plant Emergence in Field Condition  

 An UAV image processing software Agisoft Metashape Professional (ver. 1.6.3, 

Agisoft LLC, St. Petersburg, Russia) was used to stitch UAV images and produce an 

orthomosaic of the field. The desktop for this image stitching was configured as an Intel 

Xeon CPU E5-1630 v4 (3.70 Ghz), a NVIDIA Quadro K1200 GPU with 20 GB memory, 

32 GB RAM, and a 918 GB hard disk drive. The stitching workflow and parameters used 

were summarized in Table A1. The GNSS coordinates of each image pixel in the 

orthomosaic were extracted using the functions ‘geotiffinfo’ and ‘pixcenters’ from the 

Matlab Mapping Toolbox (MATLAB R2019a). The GSD of the orthomosaic was 0.28 
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cm pixel-1. Therefore, images with a size of 357 by 357 pixels (equivalent to 1.0 m2) were 

segmented for each plant row and used as the input images for the trained ResNet18 

model to estimate plant density, DAEmean, and PSstd. The coordinates of each input 

image were determined using the center position of the input image. The maps of field 

plant density, DAEmean, and PSstd in 1-m row segments were overlaid on a Google map 

(Google, Mountain View, CA, USA) and were produced using QGIS (ver. 3.18, 

www.qgis.org).  

Statistical analyses were conducted using Rstudio (ver. 1.2.1335, Rstudio, Boston, 

MA, USA) to compare the plant density, DAEmean, and PSstd distributions for the 

different planting depths treatments across the field. An analysis of variance (ANOVA) 

test (Sawyer, 2009) at a 0.05 significance level (α = 0.05) was performed to determine 

significant differences in the three emergence parameters between planting depth 

treatments (‘aov.test’ function in ‘stats’ package). When the ANOVA test showed a 

significant result, Tukey’s Honest Significant Difference (HSD) test (Abdi and Williams, 

2010) was performed to compare the mean difference between planting depths 

(‘TukeyHSD’ function in ‘stats’ package).  

4.4 Results and Discussion 

4.4.1 Corn Emergence and Plant Spacing at Monitoring Sites  

As determined by manual counts, the average number of plants that emerged at 

each monitoring site were 65.5, 66.2, 64.5, and 51.8 for the planting depths of 3.8, 5.1, 

6.4, and 7.6 cm, respectively. For comparison, the target number of seeds planted at each 

monitoring site based on the target seeding rate of 81,510 seeds ha-1 was 74.0. Figure 4-

4a shows the cumulative emergence percentage throughout the emergence window, 

http://www.qgis.org/
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indicating that corn planted at both 3.8 and 5.1 cm had the first emergence 12 DAP on 2 

May, while corn at 6.4- and 7.6-cm depths had the first emergence on 3 May (13 DAP). 

The graph also shows that the cumulative emergence percentage decreased with 

increasing planting depth with the difference in emergence days between plants at 3.8 and 

5.1 cm was mostly 0.5 day, and 1.0 to 2.0 days for each defined depth increment from 5.1 

cm. The range of emergence dates between planting depths provided variability for the 

DAEmean testing in this study. 

 

Figure 4-4. (a) Cumulative emergence percentage (%) from the first to last day of emergence and 

(b) plant spacing ranges at the four defined planting depths for the monitoring sites. (c) Estimated 

and ground measured plant spacing comparison. 

 The largest percentage of the PS for all the planting depths in all the monitoring 

sites was centered at about 15 to 19 cm, as indicated in Fig. 4-4b. For about 9% of the 

data, PS was centered at 31 to 37 cm (about double the average spacing), which was 

caused by skips between consecutive plants. The cause of skipped plants was most likely 

due to the seed failing to germinate and emerge. The range of PS from all the planting 

depths provided variability for the PSstd testing in this study. Figure 4-4c shows that the 

estimated PS using Eq. 1 from the UAV images was able to estimate the true 

measurement at an accuracy of R2 = 0.92 and RMSE = 1.89 cm, which was similar to 

previous studies where R2 ranged from 0.89 to 0.94 (Shirzadifar et al., 2020; Shuai et al., 
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2019) and RMSE ranged from 1.70 to 2.56 cm (Shuai et al., 2019). This result establishes 

the reliability of this method for further PSstd calculation when preparing the labeled 

images.  

4.4.2 Estimation of Emergence Parameters based on DL Model 

 Figures 4-5 illustrates the feature maps from stages 3 to 5 of the ResNet18 model 

for the three emergence parameters: plant density, PSstd, and DAEmean, with the higher 

color value indicating stronger features learned and passed to the next layer. Learned 

features for both plant density and PSstd focused on the color stakes and plants (Fig. 4-5: 

top and middle rows), which was evident through the higher color value of light blue to 

red in the middle of the images. The performance of the model in identifying plants was 

tested using images without color stakes. The model was still able to detect the plants 

(higher color values assembled in the middle of the images) from the images without 

color stakes (Fig. A3: top and middle rows). Conversely, for DAEmean, the learned 

features seemed to only focus on the colored stakes in stage 3, followed by no clear trend 

in stage 4, and lastly, scattered colored values in the image in stage 5 (Fig. 4-5: bottom 

row). A similar trend was shown when testing the model on an image without colored 

stakes (Fig. A3: bottom row), where the light blue to red colors were scattered in the 

image in all three stages.  

Therefore, an additional image segmentation step was added using a U-net DL 

model as described by Vong, Conway, et al. (2021). The U-net DL model was built to 

segment images of corn within different cropping systems, which included no-tillage. 

The U-net model was able to segment the images with the entire background removed as 

demonstrated in Fig. A4 (Segmented). The segmented images were used to train the 
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model again, and feature maps in stages 3 to 5 with and without color stakes are shown in 

Fig. A4. The learned features in all of the stages focused only on the plants with higher 

color values that are highlighted in the middle of the images. 

 

Figure 4-5. Features maps of one example image from testing datasets in stages 3 to 5 of the 

ResNet18 model for the three emergence parameters: plant density (top row), standard deviation 

of plant spacing (PSstd, middle row), and mean days to imaging after emergence (DAEmean, 

bottom row). 

 The estimation accuracy of the ResNet model calculated from Eq. 2 was high for 

all of the emergence parameters (≥ 0.95), except PSstd, where the accuracy was 0.73 

(Table 1). The accuracy of plant density (0.97) was higher than previously reported by 

Shirzadifer et al. (2020) with accuracy 0.91. Their UAV images were taken at about the 

same growth stages as this study (i.e., V2 to V4). Moreover, the RMSE = 0.39 plant m-1 

was similar to that of a previous study with no-till management (RMSE = 0.40 plant m-1, 
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Vong, Conway, et al., 2021). Another previous study (Vong, Stewart, et al., 2021) 

estimated individual corn plant DAE using a random forest machine learning method and 

showed moderate 3-day classification accuracies of < 0.85 (-1 to +1 DAE) when 

estimating the DAE after two weeks of emergence (DAE 13 to DAE 20). Our study 

showed improved results at estimating the mean of the DAE in 1-m row segments with 

an accuracy of 0.95 and RMSE of 1.0 day. Although this improved result was not based 

on individual plants, the DAEmean per 1-m row segment was still useful in examining 

and mapping the temporal emergence throughout the field. These results collectively 

indicated that our method outperforms the previous similar methods in estimating the 

corn emergence uniformity. 

Table 4-1. Accuracy and root mean square error (RMSE) of testing datasets for plant density, 

standard deviation of plant spacing (PSstd), and mean days to imaging after emergence 

(DAEmean). 

Parameter (n = 798) Accuracy RMSE 

Plant Density 0.97 0.39 plant m-1 

PSstd 0.73 2.03 cm m-1 

DAEmean (segmented image) 0.95 1.06 days 

 

4.4.3 Mapping and Evaluation of Plant Emergence in Field Conditions 

Figure 4-6 shows maps of the three emergence parameters (b to d) and images 

with planting depths for reference (a). There were a few minor portions missing at the 

south part of the field due to stitching errors. It was observed that the DAEmean followed 

a trend with planting depth, where the shallow depth had higher DAEmean as seeds 

emerged earlier and vice versa at the deeper depths. There were no specific trends 

visually apparent for plant density and PSstd among the different planting depths. 

However, when statistically comparing each emergence parameter between different 

planting depths, some significant differences were found. As indicated in Fig. 4-7, plant 
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density and DAEmean decreased with increasing planting depths and the opposite result 

was observed for PSstd. These trends were likely due to the lower soil temperature at 

deeper planting depths, which can reduce emergence (hence, higher PSstd, Gupta, et al., 

1988). For plant density, no significant difference was found between the 3.8 and 5.1 cm 

planting depths and the two deepest depths had significantly lower density than that of 

the two shallowest depths (Fig. 4-7a). For PSstd, the deepest (7.6 cm) depth had 

significantly lower PSstd than all the other depths (Fig. 4-7b). Meanwhile, DAEmean for 

all the depths were significantly different from each other (Fig. 4-7c). Figure 4-8 shows 

the density distribution of PSstd (a) and DAEmean (b) at different planting depths. PSstd 

seemed to have a similar distribution for all the planting depths with the maximum 

density at 2.5 cm m-1. The planting depth of 7.6 cm had a slightly higher density at 

PSstd > 2.5 cm m-1, indicating less spatial uniformity as compared to the shallow planting 

depths. The DAEmean distribution showed a difference of about 0.5 days between each 

subsequent planting depth. 
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Figure 4-6. Image showing the different planting depth strips of eight plant rows (a) and maps of 

the three emergence parameters: (b) plant density, (c) plant spacing standard deviation (PSstd), 

and (d) mean days to imaging after emergence (DAEmean; earlier emerging plants have a higher 

DAEmean) in a 1-m row segment. 

 

Figure 4-7. Planting depth effects on the three emergence parameters: (a) plant density, (b) plant 

spacing standard deviation (PSstd), and (c) mean days to imaging after emergence (DAEmean) at 

the four defined planting depths (earlier emerging plants have a higher DAEmean). Values at the 

top of each error bar show the average and different letters represent significant differences at p-

value < 0.05 from Tukey HSD test. 
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Figure 4-8. Density distribution of (a) plant spacing standard deviation (PSstd) and (b) mean days 

to imaging after emergence (DAEmean, earlier emerging plants have a higher DAEmean) at 

different planting depths. 

  The ability to use UAV imagery and DL model in estimating and mapping these 

corn emergence parameters in field condition as demonstrated could be a useful tool for 

other field-scale agronomic studies and commercial production. One example of 

applications could be to study the emergence uniformity of crops at different 

management practices (e.g., no-till vs. tillage, cover crops) and environment (e.g., 

weather, soil conditions, and topographic features). Other examples may include to 

access the need and performance of precision planting technologies, such as variable-rate 

seeding and on-the-go variable-planting depth based on real-time soil moisture sensing. 

Additionally, knowing the spatiotemporal emergence uniformity may help breeding 

programs to better understand the interactions of genotype × environment × management 

factors. For commercial production, the application could be aiding in replanting decision 

making and relating to final yield to better understand the yield variability throughout the 

field.  
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4.5 Conclusion 

 This study evaluated the potential of UAV imagery and a pre-trained deep 

learning (DL) model (ResNet18) in estimating and mapping corn temporal and spatial 

emergence parameters, including plant density, PSstd, and DAEmean. The DL model 

was able to estimate the parameters with accuracies that ranged from 0.73 to 0.97. The 

model performed better in estimating stand count and DAEmean than previous studies, 

providing higher accuracy and lower RMSE. Then, this estimation was extended to the 

field scale with different planting depth treatments as a case study. The DAEmean map 

demonstrated the expected trends of higher DAEmean at shallower planting depths as the 

plants emerged earlier, and therefore on the date of UAV assessment, early emerged 

plants would be more mature based on the growth development stage. When comparing 

the average emergence parameters among planting depths, the deeper planting depths had 

lower plant density and spatial uniformity as well as delayed emergence.   

Further validation studies should be conducted to test the reliability and robustness of this 

workflow in estimating the same and/or other emergence parameters at other fields and 

different years, and to refine the workflow for more automated application. Moreover, 

with future technology of higher resolution cameras mounted on UAVs, flight height can 

be increased to cover larger fields and still achieve similar GSD. Then, this method will 

provide more opportunities for researchers and breeders in studying field-scale crop 

emergence as affected by different factors (genotype, management, and environment) as 

well as for producers in making better planting decision.   
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CHAPTER FIVE 

CASE STUDIES: EARLY CORN EMERGENCE UNIFORMITY AT DIFFERENT 

PLANTING DEPTHS AND YIELD ESTIMATION USING UAV IMAGERY 

 

5.1 Abstract 

Uniform corn emergence is critical for maintaining optimum yield. Conventional 

studies relating plant emergence and early growth to yield for different treatments and 

management were based on small plots as limited by labor and time for in-field 

evaluation. Precision agriculture technologies such as proximal sensors, yield monitors, 

and UAV-based remote sensing have now enabled field-scale evaluation. The goal of this 

study was to demonstrate the applications of UAV imagery in corn production at field-

scale level with two case studies: 1) investigating corn emergence spatial variability at 

different planting depths; 2) estimating corn yield using image features. Images taken at a 

corn field planted with four planting depths (i.e., 3.8, 5.1, 6.4, and 7.6 cm) by a red-

green-blue camera and multispectral camera mounted on a UAV were used to determine 

corn emergence parameters and different vegetation indices (VIs) for early plant growth 

(V4, V6, V7) indicators. For case study 1, the average emergence parameters in 1.0 m × 

6.1 m transects along the N-S direction of the field and coefficient of variation were 

computed to examine the emergence parameters for each planting depth and replication. 

Meanwhile, for case study 2, a random forest machine learning approach was used to 

estimate the yield with different feature datasets (i.e., only emergence data, each 

vegetative growth stage VIs, and their combination). Results demonstrated that there was 

spatial variability within the planting depth treatments at different replications along the 

transects as affected by elevation (and/or other soil and landscape environmental factors). 
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Emergence data alone could not explain variation in yield with R2 of 0.01 while the 

combination of all growth stages VIs could estimate yield with R2 of 0.34. The maps of 

the two most important VIs (V6VIREmax and V4NormRstd) showed some parts with 

lowest values similar with yield map. The case studies demonstrated the usage of UAV 

imagery in studying crop emergence variability and estimating yield at the field-scale 

level. Future studies should include more timely UAV data along the growing season at 

different fields and years to develop a more robust model.  

5.2 Introduction 

 Seedling emergence is the initial most crucial phenological event determining the 

success of an annual plant (Forcella et al., 2000). Seedling emergence can be defined as 

the point of time when a seedling is independent of its seed’s nutrient reserves and produces 

its own food through photosynthesis. Meanwhile, crop emergence can be defined as the 

appearance of the first leaf, which is an important input for crop development and biomass 

accumulation models (Gao et al., 2020). The emergence is influenced by both 

environmental factors (e.g., soil properties and weather) and the farmer’s management (e.g., 

planting equipment, planting time, tillage, and cropping system). In corn, temporally and 

spatially uniform emergence is also critical to maintain optimum yield (Karayel & Özmerzi, 

2008).  

Many studies have investigated the effect of these factors on corn emergence, 

growth, and yield such as planting depth, tillage, cover crop implementation, crop rotation, 

seed size/shape, soil variability, landscape position, and interaction between two or three 

of these factors (Al‐Darby & Lowery, 1986; Drury et al., 1999; Gupta et al., 1988; 

Molatudi & Mariga, 2009; Nemergut et al., 2021; Stewart et al., 2021). Conventionally, 
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the studies were performed in a randomized complete block design with small plots and 

evaluation of corn emergence, growth, and yield would be in smaller monitoring sites 

within the plots. The evaluation of the whole plots or fields is not possible as limited by 

labor and time.  

The advent of technologies in precision agriculture (PA, field management based 

on field spatial variability (Mulla, 2013)) such as remote sensing, proximal sensing, and 

yield monitoring have now made whole-plot or field-scale evaluation feasible. For example, 

apparent soil electrical conductivity (ECa) measured by proximal soil sensors and yearly 

yield maps from yield monitors were related with field-scale soil properties to create crop 

management zones in PA (Anderson-Cook et al., 2002; King et al., 2005; Kitchen et al., 

2003; Singh et al., 2016; Sudduth et al., 2005). The results showed high correlations of ECa 

with clay content and cation exchange capacity (CEC) (Sudduth et al., 2005). Soil types 

were classified accurately with classification accuracy > 85% when using only ECa data 

and > 90% when combining it with yield data (Anderson-Cook et al., 2002).  

Recently, remote sensing technology based on unmanned aerial vehicle (UAV) 

imagery was extensively used to estimate emergence of different crops, including stand 

count, plant density, emergence rate, spacing uniformity, canopy cover in corn, wheat, 

cotton, and potato (Chen et al., 2018; Feng et al., 2020; Jin et al., 2017; Liu et al., 2017; 

Mhango et al., 2021; Shirzadifar et al., 2020; Shuai et al., 2019; Varela et al., 2018). The 

results showed R2 of >0.80 when comparing the estimated and actual crop emergence 

parameters. Furthermore, the mapping of these crop emergence parameters was achievable 

using orthomosaics generated from continuous images captured in the field (Feng et al., 

2020; Mhango et al., 2021; Shirzadifar et al., 2020).  



120 

 

Besides crop emergence, UAV imagery was also used to estimate crop growth and 

status including leaf area index (LAI), biomass, plant height, leaf nitrogen (N) content, 

canopy cover, and relative water content (dos Santos et al., 2021; Herrmann et al., 2020; 

Maresma et al., 2016; Xu et al., 2021) as well as final yield (Herrmann et al., 2020; 

Maresma et al., 2016; Olson et al., 2019) by determining the crop reflectance (i.e., 

vegetation indices, VIs). Results indicated R2 ranged from 0.29 to 0.91 when estimating 

corn LAI, biomass, and plant height (dos Santos et al., 2021), 0.40 to 0.59 when estimating 

corn leaf N content (Xu et al., 2021), and 0.00 to 0.92 when estimating corn and sugarbeet 

yield (Herrmann et al., 2020; Maresma et al., 2016; Olson et al., 2019). The wide ranges 

of R2 in estimating yield were due to images captured at different growth stages and at 

different locations. 

 These previous studies illustrated the feasibility of UAV imagery in estimating crop 

emergence, growth, and field-scale mapping. Hence, the goal of this study was to 

demonstrate the applications of UAV imagery in corn production at the field-scale level. 

Two case studies were examined: 1) corn emergence spatial variability investigation at 

different planting depths and 2) corn yield estimation using UAV image features.  

5.3 Materials and Methodology 

5.3.1 Study Site 

Figure 5-1a shows the study site, which is the same as that in Chapter 4 with the 

same experiment setup and ground data collection. The site has notable landscape 

variability, as illustrated in the elevation map retrieved from the John Deere StarFire 

3000 receiver (Deere & Co., Moline, IL, USA) that was mounted on the tractor during 

the planting operation (Fig. 5-1b). Corn was harvested on 22 October 2020 using a 4-row 
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combine harvester, equipped with an Ag Leader yield monitor (Ag Leader Technology, 

Ames, IA, USA). The harvester speed was about 1.5 ms-1 and the yield monitor recorded 

the geo-referenced grain yield every 2 s, resulting in approximately 3 m of 4-rows plants 

(3 m) for each yield data point. The yield data were pre-processed using Yield Editor 

software (Sudduth et al., 2012) to remove data artefacts. For the first case study 

(emergence spatial variability among planting depths), data from all the replications (Rs) 

were used. Yield data was missing (16 plants rows in 5.1 cm depth) in R3 while the yield 

in western rows of R1 (5.1 cm depth) was not reliable due to different nitrogen treatments 

applied at the plants row beside them. Hence, only R2 data was used in the second case 

study (estimating yield using UAV image features). 

 

Figure 5-1. (a) Study site with a schematic diagram of 8-row corn planting depth treatments (R1 

to R3 = replication 1 to 3) and an example image of a monitoring site taken on 22 May 2020; (b) 

Elevation map from Global Positioning System receiver mounted on the tractor used during 

planting. 
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5.3.2 UAV Data Collection 

 For corn emergence uniformity estimation, a Phantom 4 Advanced UAV imaging 

system (DJI, Shenzhen, Guangdong, China) with an onboard RGB camera was used to 

acquire aerial images on 22 May 2020. The details of this data collection were reported in 

Chapter 4. For corn early growth estimation, a multispectral camera (RedEdge-M, 

MicaSense, Seattle, WA, USA) mounted on a DJI Matrice 600 Pro UAV (DJI, Shenzhen, 

China) was used to capture multispectral images for the study field on 12 and 25 June, and 

2 July 2020, corresponding to V4, V6, and V7 growth stages, respectively. These images 

were taken between 10 am to 2 pm (i.e., at minimum changes in the solar zenith angle). 

The multispectral images comprised of five bands: blue, green, red, red-edge, and near-

infrared with the resolution of 1260 by 960 pixels. The frame rate used was 1 frame per 

second. Images of a calibration reflectance panel were taken before each flight for later 

image processing to convert the raw pixel values into reflectance. Autopilot (Hangar 

Technology, Austin, TX, USA) was used to define the flight settings and paths for the UAV. 

The flight speed and height were set as 2.0 m s-1 and 30 m, respectively, which 

corresponded to a calculated ground sampling distance (GSD) of 2.1 cm pixel-1. These 

settings were used to ensure sufficient forward and side overlaps (at least 75%).  

5.3.3 Image Processing and Data Analysis 

5.3.3.1 Case Study 1: Corn Emergence Spatial Variability at Different Planting Depths 

The procedures for RGB images processing and corn emergence estimation using 

DL model were detailed in Chapter 4. The emergence parameters estimated included 

plant density, mean days to imaging after emergence (DAEmean), and plant spacing 

standard deviation (PSstd) in 1-m by 1-m (each plant row) resolution. Each emergence 
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parameter was averaged across all treatment rows, resulting in a spatial resolution of 1.0 

m × 6.1 m in transects along the N-S direction. Subsequently, a moving average was 

fitted to these data, where each point was calculated as the mean of ten adjacent points to 

better represent the trend in each emergence parameter along the N-S direction. The CV, 

which is the division of standard deviation by the mean and multiplied by 100 (Lewontin, 

1966), was also calculated at the same spatial resolution to examine the relative 

variability of the three emergence parameters for each planting depth and replication. 

5.3.3.2 Case Study 2: Corn Yield Estimation using UAV Image Features 

Multispectral images were first stitched using Pix4D Mapper (Pix4D, Lausanne, 

Switzerland) to generate orthomosaics of each band for the study field. The template “Ag 

Multispectral processing” was selected for the image stitching. The orthomosaic of each 

band for each data collection was exported as a .tif image.  

 There were three data sets as tabulated in Table 5-1, which were different in data 

type and resolution, QGIS (ver. 3.18, www.qgis.org) was used to merge the three layers. 

Firstly, a multispectral orthomosaic from each growth stage was geo-referenced using 

‘Georeferencer’ so that they aligned to each other. Then, each four plant rows were 

segmented from all the aligned orthomosaics by first creating a polygon for every four rows 

and clipping the orthomosaic based on the polygon (‘Clip Raster by Mask Layer’). For 

both emergence and yield vector data, each 4-row data was also exported and saved as 

separate vector files. Each 4-row data was processed separately to ensure all of the data 

types aligned to each other. For some data points which did not align well, ‘Move Feature’ 

and ‘Rotate Feature’ were used to align them. Then, a polygon based on each yield point 

(yield polygon) was created and all the emergence points within the yield polygon were 

http://www.qgis.org/
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assigned to the same yield value in kg ha-1 (Fig. 5-2a) by joining both the vector data using 

‘Join Attributes by Location’. Next, a polygon for each emergence point was created using 

‘Buffer’ (Fig. 5-2b). These polygons were used to segment the orthomosaic for further VIs 

extraction.  

Table 5-1. Data type and resolution of the three data sets in this study. 

Data Set Data Type Resolution 

UAV RGB – Emergence Vector 1 m by 1 m (each plant row) 

UAV Multispectral – Growth Raster 1.95 cm pixel-1 

Yield Vector 3 m by 3 m (4 plant rows) 

 

 

Figure 5-2. a) Example of a 4-row data with emergence and yield points, segmented orthomosaic, 

and created yield polygon to join yield point to emergence point; b) polygon created from buffer 

for further orthomosaic segmentation to extract vegetation indices. 

A total of 15 VIs (Baio et al., 2018; Sripada et al., 2006) as listed in Table 5-2 were 

computed using Matlab 2019a (The MathWorks, Inc., Natick, MA, USA) and their average 

(mean), standard deviation (std), maximum (max), and minimum (min) were calculated. 

Different feature datasets as listed in Table 5-3 were used to estimate the yield using a 

random forest (RF) model. These different feature datasets were tested to investigate which 

components or combinations of them (emergence and early growth) could explain the 

variation in final yield. Furthermore, planting depth as a categorial variable was included 

in each dataset for the yield estimation to study the effect of planting depth on yield.  
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Table 5-2. Vegetation indices computed from multispectral orthomosaic. 

Vegetation Index Equation Reference 

Normalized difference vegetation 

index (NDVI) 
𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 (Baio et al., 2018) 

Green normalized difference 

vegetation index (GNDVI) 
𝐺𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 (Sripada et al., 2006) 

Normalized difference red-edge 

(NDRE) 
𝑁𝐷𝑅𝐸 =  

𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 + 𝑅𝐸
 (Baio et al., 2018) 

Normalized red (NormR) 𝑁𝑜𝑟𝑚𝑅 =  
𝑅

𝑅 + 𝐺 + 𝑁𝐼𝑅
 (Sripada et al., 2006) 

Normalized green (NormG) 𝑁𝑜𝑟𝑚𝐺 =  
𝐺

𝑅 + 𝐺 + 𝑁𝐼𝑅
 (Sripada et al., 2006) 

Normalized near-infrared 

(NormNIR) 
𝑁𝑜𝑟𝑚𝑁𝐼𝑅 =  

𝑁𝐼𝑅

𝑅 + 𝐺 + 𝑁𝐼𝑅
 (Sripada et al., 2006) 

Vegetation index red-edge 

(VIRE) 
𝑉𝐼𝑅𝐸 = (𝑙𝑛𝑁𝐼𝑅 − 𝑙𝑛𝑅𝐸) × 100 (Baio et al., 2018) 

Difference vegetation index 

(DVI) 
𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅 (Sripada et al., 2006) 

Green difference vegetation index 

(GDVI) 
𝐺𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝐺 (Sripada et al., 2006) 

Ratio vegetation index (RVI) 𝑅𝑉𝐼 =  
𝑁𝐼𝑅

𝑅
 (Sripada et al., 2006) 

Green ratio vegetation index 

(GRVI) 
𝐺𝑅𝑉𝐼 =  

𝑁𝐼𝑅

𝐺
 (Sripada et al., 2006) 

Soil adjusted vegetation index 

(SAVI) 
𝑆𝐴𝑉𝐼 =  

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 0.5
× 1.5 (Sripada et al., 2006) 

Green soil adjusted vegetation 

index (GSAVI) 
𝐺𝑆𝐴𝑉𝐼 =  

𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺 + 0.5
× 1.5 (Sripada et al., 2006) 

Optimized soil adjusted 

vegetation index (OSAVI) 
O𝑆𝐴𝑉𝐼 =  

𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅+0.16
 (Sripada et al., 2006) 

Green optimized soil adjusted 

vegetation index (GOSAVI) 
𝐺𝑂𝑆𝐴𝑉𝐼 =  

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 0.16
 (Sripada et al., 2006) 

 

Table 5-3. Different feature datasets for yield estimation. 

No. 
Feature Dataset 

Name 
Description 

No. of 

Features 

No. of Selected 

Features 

1 Emergence 
Emergence data collected from UAV 

RGB imagery 
3 3 

2 V4 
Early growth data (V4) collected from 

UAV multispectral imagery 
60 7 

3 V6 
Early growth data (V6) collected from 

UAV multispectral imagery 
60 10 

4 V7 
Early growth data (V7) collected from 

UAV multispectral imagery 
60 8 

5 AllGrowth Combination of no. 2 – 4 180 25 

6 Emergence+V4 Combination of no. 1 and 2 63 9 

7 Emergence+V6 Combination of no. 1 and 3 63 12 

8 Emergence+V7 Combination of no. 1 and 4 63 10 

9 AllUAV Combination of no. 1 – 4 183 29 
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Statistical analysis and RF modeling were performed using Python 3.8. There are 

many features in the feature datasets (except emergence, Table 5-3) with multicollinearity, 

hence, the variance inflation factor (VIF) was calculated to remove the features with high 

collinearity (James et al., 2013). This is computed as a dependent variable of the coefficient 

of determination (R2) of each feature against all other features. The VIF was calculated 

using ‘variance_inflation_factor’ in the ‘statsmodels’ module for each feature dataset 

(except emergence) and the variable with the highest VIF was removed. This step was 

repeated in a loop until all the remaining features with VIF of less than or equal to 5. Then, 

these remaining features were used in the RF model (‘RandomForestRegressor’ in the 

‘sklearn’ module) to estimate the yield. The number of trees in the RF model was set as 

100 (default value) and the maximum feature size was determined using the division of 

total number of features by three (James et al., 2013). The total number of datasets was 

9405, divided into training (80%) and testing (20%) datasets. To test the model 

performance and which feature datasets contribute more to the yield, R2 and root-mean-

square error (RMSE) were calculated between the actual and estimated yield. To determine 

which features contributed more in estimating the yield, the importance of variables based 

on the mean decrease in the Gini index was calculated (James et al., 2013) with the higher 

the value, the more important the feature.  

5.4 Results and Discussion 

5.4.1 Case Study 1: Emergence Spatial Variability among Planting Depths 

As shown in Fig. 5-3, the average elevation along the N-S direction varies across 

the site, with increasing elevation (about 269 to 272 m) from 0 to 100 m down each 



127 

 

replication (R1, R2 or R3) transect and decreasing elevation (about 272 to 265 m) 

afterward. The two deeper planting depths (6.4 and 7.6 cm) generally had a lower plant 

density and higher PSstd than the two shallow depths for all of the Rs along the transects 

(Fig. 5-3a to c, e to g). These results suggest shallower planting depths resulted in more 

consistent corn stands across the site. The DAEmean also decreased with increasing 

depths for all the Rs along the transects except R2 (Fig. 5-3j), where 6.4 cm depth had the 

lowest DAEmean, from 40 to 180 m. Moreover, for certain transects, some depths had 

similar DAEmean, such as from 60 to 100 m for 5.1- and 7.6-cm planting depths at R2 

(Fig. 5-3j), as well as from 80 to 100 m for 3.8- and 5.1-cm depths, and 120 to 140 m for 

6.4- and 7.6-cm depths at R3 (Fig. 5-3k). This result suggests that, in general, deeper 

planting depths reduced the emergence window at this study site. 
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Figure 5-3. Line charts showing every 1-m transect (after a 10-m moving average) from north to 

south of the field with the average of the three emergence parameters at different planting depths 

and their coefficient of variation (bar charts) as well as average elevation: (a) to (d) plant density 

(plant m-1), (e) to (h) plant spacing standard deviation (PSstd, cm m-1), and (i) to (l) mean days to 

imaging after emergence (DAEmean, days) for each replication (R). 
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When examining the variability of each emergence parameter along the transects 

using CV (Fig. 5-3d, h, and l), the 5.1 cm planting depth consistently showed the lowest 

CV as compared to other planting depths. There were only three exceptions – R3 for 

plant density (Fig. 5-3d), R1 for PSstd (Fig. 5-3h), and R3 for DAEmean (Fig. 5-3l). The 

findings indicate that, generally, the 5.1 cm planting depth had the least variability for all 

the emergence parameters, which could make it an ideal depth for corn planting in this 

situation. The 5.1 cm planting depth was also within the recommended corn planting 

depth range of 4.4 to 5.7 cm, as suggested by (Luce, 2016). Moreover, the deepest depth 

had the highest CV for plant density and PSstd for most of the Rs, indicating their lower 

spatial uniformity along the transects (Fig. 5-3d and h). However, emergence uniformity 

(temporal) was more consistent at 7.6 cm than at the 3.8 and 6.4 cm depths (Fig. 5-3l). 

The higher CV for plant density and PSstd but lower CV for DAEmean for the 7.6 cm 

depth than other depths (most of the Rs) suggested that it had fewer emerged plants and 

higher PSstd variability caused by missing plants, with the emerged plants having similar 

emergence date.  

These results collectively demonstrated spatial variability within the planting 

depth treatments at different Rs along the transects as affected by elevation (and/or other 

soil and landscape environmental factors such as aspect, wetness, encompassed by 

relative elevation). Furthermore, it is unlikely that these phenomena would be captured 

by a few monitoring sites along the N-S transects, which would be limited in numbers 

due to more time required for assessment. Therefore, the UAV imagery shows its 

practicality in capturing spatial variability of the emergence parameters at a field-scale 
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level with comparable accuracy but higher precision than only using monitoring sites to 

monitor the crop response. 

5.4.2 Case Study 2: Yield Estimation using UAV Image Feature 

The deepest depth (7.6 cm) had significantly lowest average yield followed by the 

shallowest depth (3.8 cm) as indicated in Fig. 5-4a. The 6.4 cm depth had the highest 

average yield of 13.59 Mg ha-1, which was slightly higher than that of the 5.1 cm depth. 

When comparing with the emergence parameters in average (Fig. 5-4b to d), the deepest 

depth of 7.6 cm with the lowest plant density and highest PSstd (i.e., higher spatial 

variability) had the lowest yield. The 6.4 cm depth had the lowest CV (Fig. 5-4e), indicating 

a lower plant density variation, corresponding to the highest yield. Similarly, the deepest 

depth of 7.6 cm with the highest CV (i.e., highest plant density variation) had the lowest 

yield. As illustrated in Fig. 5-3f, the 5.1 cm depth with the lowest CV, suggesting the most 

uniform emergence in DAEmean had a higher average yield as compared to other depths 

(except 6.4 cm depth). Surprisingly, the 6.4 cm depth with the highest CV indicating more 

emergence variability had the highest yield. These mixed results might be caused by the 

effects of landscape variability and soil condition across the field (Stewart et al., 2021).   
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Figure 5-4. The average yield (a), emergence parameters (b – d), and their CV in percentage (e – 

g) at different planting depths. Different letters indicating significantly difference in average 

values at p < 0.05 for the Tukey HSD test. 

 After calculating VIF, only 12 to 19% of the original number of the UAV image 

features remained for further ML modelingfor each feature dataset except emergence (did 

not undergo feature selection) as indicated in Table 5-3. Most of the UAV image features 

with mean were removed and the remaining features were with standard deviation and 

maximum as illustrated in Fig. A5 and A6. As indicated in Table 5-4, the R2 were improved 

when planting depths were included as features suggesting there were effects from planting 

depths on the final yield. The RMSE of all the feature datasets was lower than the yield 

standard deviation (686 kg ha-1, Fig. 5-4) except for emergence datasets. The emergence 

did not explain any variations in yield with the lowest R2 and highest RMSE among all the 

feature datasets. With the addition of emergence data to early growth data for estimating 

yield, the R2 either reduced or remained the same and RMSE increased except for 

Emergence+V7.  
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Table 5-4. R2 and RMSE of different feature datasets with and without planting depths as features 

in estimating yield for testing dataset. 

Feature Datasets 
With Planting Depth Without Planting Depth 

R2 RMSE R2 RMSE 

Emergence 0.01 720 0.00 727 

V4 0.20 611 0.09 655 

V6 0.18 617 0.07 659 

V7 0.15 630 0.03 679 

AllGrowth 0.34 560 0.24 595 

Emergence+V4 0.18 618 0.08 656 

Emergence+V6 0.18 617 0.07 659 

Emergence+V7 0.16 627 0.04 676 

AllUAV 0.34 561 0.24 596 

 

Meanwhile, when comparing the different early growth stages (among V4, V6, and 

V7), V4 had the highest R2 and lowest RMSE, indicating some yield variation could be 

detected as early as V4 growth stage. The feature dataset with the best performance (highest 

R2 and lowest RMSE) was AllGrowth. Overall, the findings implied that emergence data 

had least relationship with yield. Early growth data might have a little contribution in 

explaining the final yield. Previous studies indicated that VIs at later vegetative growth 

stages (≥ V10) and early reproductive stages (R1 – R2) had higher R2 in estimating corn 

yield than that of earlier grow stages (Olson et al., 2019).  

Both V6VIREmax and V4NormRstd ranked as the top two important features as 

they have the highest mean decrease in Gini index (Fig. A5). The field maps of these two 

VIs were drawn in QGIS overlaid on a Google map (Google, Mountain View, CA, USA) 

as illustrated in Fig. 5-5b and c. with yield map included in Fig. 5-5a. Based on visual 

inspection, there were a few parts showing similarly low values for yield and both VIs (Fig. 

5-5, black circles). However, there was also a big contrasting part specifically in 

V4NormRstd (Fig. 5-5, red circles), having the smallest value while V6 had the highest 

value and yield was mostly higher. These results implied some inconsistencies when using 
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these VIs in estimating the yield or further analysis involving other environmental factors 

such as landscape positions were needed. Overall, these maps still demonstrated some 

usefulness of UAV imagery in visualizing field-scale plant growth variation. 

 

Figure 5-5. Maps of yield (a) and two top vegetation indices (VIs) determined from random forest 

variable importance: V6VIREmax (b) and V4NormRstd (c). Black circles indicate part with 

similarly low values among yield and both VIs while red circles shows the contrasting parts 

specifically for V4NormRstd. 

5.5 Conclusion and Future Study 

 Both the case studies demonstrated the usage of UAV imagery in relating crop 

emergence uniformity to treatments such as planting depths (in this study) and estimating 

final yield at field-scale level. For case study 1, the spatial variability across the field in 

this study showed the 5.1 cm depth generally had the least variability for all the emergence 

parameters. The 7.6 cm depth had the highest variability for plant density and PSstd but 

lower variability for DAEmean than other depths except for 5.1 cm. This suggests it had 
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fewer emerged plants with similar emergence dates and higher PSstd variability due to 

missing plants. This study serves as the initial study of evaluating field-scale crop 

emergence at affected by planting treatments. Further studies should be conducted in 

multiple fields and years to further justify the usefulness of UAV imagery in evaluating 

emergence uniformity for different treatments such as tillage, cover crop implementation, 

crop rotation, landscape position, and interactions between them. 

For case study 2, the average emergence parameters did not follow a trend similar 

in the yield at different planting depths except PSstd. When estimating the yield with UAV 

image features, the estimated emergence data was not able to explain final yield variation. 

Plant growth data as represented by UAV VIs at all the growth stages (V4, V6, and V7) 

was only able to represent a small amount of the variations in yield (R2 = 0.16 – 0.34). 

Future studies should include weekly or biweekly UAV data to observe the growth 

variation along the season and relate it with the final yield. Moreover, more data collected 

in different fields and years integrated with environmental data such as weather and soil 

properties should be included to develop a more robust model for yield estimation.  
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CHAPTER SIX 

CONCLUSION AND FUTURE STUDIES 

6.1 Summary and Conclusions 

This project successfully employed a UAV-based imagery system integrated with 

ML and DL techniques to quantify, assess, and map corn emergence temporally and 

spatially. The emergence parameters estimated included DAE to determine the 

emergence time uniformity, plant density to determine the number of emerged plants, and 

PSstd to indicate the emergence spatial variability. The project comprised three specific 

studies (Study 1 to 3) conducted at fields practicing certain components of CA (no till, 

crop rotation, and/or cover crop implementation) to evaluate the capability of a UAV 

system, with ML and DL techniques in quantifying and estimating the emergence 

parameters under this practice. Meanwhile, it also consisted of a further investigation 

extended from the third of the specific studies for two case evaluations, demonstrating the 

usefulness of UAV imagery in field-scale evaluation and mapping for planting depth 

treatments and final yield estimation. 

This project was performed gradually by first evaluating the feasibility of RGB 

UAV imagery in detecting corn emergence as early as the first day of emergence in Study 

1. Image features extracted from UAV imagery of individual corn seedlings were used to 

classify the DAE with assessment time of first, second, and third weeks after the first 

emergence using RF ML models. The findings indicated GSD ranging from 0.55 to 0.94 

mm pixel-1 was required to detect DAE 1 and 2 seedlings. The UAV imagery and ML 

model were capable of classifying DAE within a 3-day window (-1 to +1 DAE) for the 

first two weeks after first emergence (from emergence through two-leaf stage). The 
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features important to be able to classify the DAE included diameter, area, and SF2 (ratio 

of major axis length to area).  

Then, Study 2 implemented a DL model to segment RGB UAV images of early 

corn plants (≤ V2 growth stage) at plots and field practicing different CS (minimum-till 

vs no-till, crop rotation, cover crop implementation) with complex backgrounds of soil 

and crop residue (from a previous crop and cover crops). The results showed that the 

precision of image segmentation by the DL model and accuracy of plant density 

estimation using the segmented images reduced with increasing crop residue (more 

complex background). Nonetheless, the overall precision was still high for all the CS at 

0.87 and the overall accuracy of plant density estimation was comparable with previous 

similar studies (R2 ≥ 0.92; RMSE ≤ 0.48 plants m-1).  

Next, Study 3 was conducted in a 2.6-ha field to further evaluate the potential 

usage of RGB UAV imagery and DL techniques for estimating and mapping corn 

emergence parameters at a field scale with planting depth treatments. From the first 

study, there were limitations in using UAV imagery and ML models in classifying the 

DAE, i.e., a very high GSD was required to detect newly emerged seedlings and 

moderate classification accuracies were obtained in classifying individual plants. On the 

other hand, the second study demonstrated better performance of using DL models in 

processing UAV imagery. Hence, this third study adapted a DL model for estimating the 

emergence parameters in a 1-m area instead of individual plants. Besides DAE and plant 

density, another parameter indicating the spatial variability, i.e., PSstd was added. Results 

indicated an improved accuracy (≥ 0.97) in estimating DAEmean and plant density, while 

for PSstd, the accuracy was 0.73. The RMSE for each parameter was low: 1.06 days, 0.39 
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plant m-1, and 2.03 cm m-1 for DAEmean, plant density, and PSstd, respectively. The 

maps and plant emergence evaluation in field conditions indicated the expected trends of 

decreasing plant density and DAEmean with increasing planting depths and opposite 

results for PSstd.  

Lastly, Study 3 was extended to additional case studies to evaluate the emergence 

parameters at field scale under different planting depths and replications as case study 1. 

Results showed that mixed trends of emergence parameters among planting depths at 

different replications and across the N-S direction of the field, which was mostly affected 

by elevation (and/or other soil and landscape environmental factors). This variability was 

unlikely to be captured by a few monitoring sites. Then, in case study 2, multispectral 

images collected at three early growth stages (V4, V6, and V7) were used to extract VIs 

as indicators of plant growth variation for yield estimation. The combination of VIs from 

all the growth stages used as features in a RF ML model was only able to estimate yield 

with R2 of 0.34 and RMSE of 560 kg ha-1. Emergence data alone did not show any 

relation with final yield (R2 = 0.01, RMSE = 720 kg ha-1).  

Overall, the projects served as initial studies to quantify corn emergence date 

using UAV imagery and ML techniques, segmenting corn UAV imagery with complex 

background using DL techniques, estimating different emergence parameters for 

uniformity assessment temporally and spatially under field conditions. The research also 

evaluated the feasibility of UAV imager and DL models in mapping the emergence, plant 

early growth, and using VIs as indicators for yield estimation. Eestimating crop 

emergence and assessing their uniformity at field scale provide more opportunities for 

other agronomic studies to relate early crop emergence with treatments such as planting 
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depths, tillage, crop rotation, landscape position, soil variability, and interaction between 

them as well as final yield. New technologies such as precision planting to place seeds at 

a precise spacing and depth to ensure uniform emergence will need these emergence 

performance data in field conditions for further adjustments or improvements. For 

breeding programs, the spatiotemporal emergence uniformity data may help to better 

understand the interactions of genotype × environment × management factors. 

Furthermore, the emergence data will serve as the first information required by farmers in 

making replanting decisions. 

6.2 Future Studies 

 To fully establish the usage of a UAV imagery system integrated with ML and 

DL techniques for quantifying and estimating emergence, future studies should be 

conducted to resolve the limitations of the current project. For individual plant emergence 

quantification, more image features (besides size and shape) including reflectance and 3D 

structure could be included to further differentiate plants emerged at different days. 

Moreover, other environmental data such as soil and weather affect plant morphological 

features. Hence, features such as growing degree days (calculated based on weather) as 

well as soil temperature and moisture data (from soil sensors inserted in the soil) should 

be included to further improve the classification accuracy.  

 For image segmentation and emergence parameter estimation using DL models, 

more validation studies should be conducted in fields planted with similar or other 

cropping systems at different locations and years to produce more robust models or used 

as pre-trained models for other researchers. An interactive framework can be developed 

to include the models as pre-trained models and users (e.g., farmers and researchers) can 
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input fewer images for training; thus in a shorter time obtaining final outputs of the 

segmented images or estimated emergence parameters maps. Meanwhile, for yield 

estimation, more timely UAV data will be needed to examine the growth variation along 

the season and environmental data such as weather and soil properties should be 

included. Other types of DL models such as recurrent neural networks should be explored 

to process and analyze these time-series data. 
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APPENDIX 

Table A1: Stitching workflow and parameter set in Agisoft Metashape Professional to produce the 

orthomosaic of the field. 

Stitching Workflow Parameter 

Align Photos Accuracy: High; Generic preselection: Yes; Reference 

preselection: Source 

Build Dense Point Cloud Quality: High; Depth filtering: mild 

Build Mesh Source data: Dense cloud; Surface type: Height field; 

Depth maps quality: Medium 

Build Orthomosaic Surface: Mesh; Blending mode: Mosaic 

 

 

 

Figure A1. Demonstration of image processing steps to determine actual ground sampling 

distance: (a) original image; (b) enhanced image using decorrelation stretch; (c) binary image 

showing line detected by standard Hough transform; and (d) rotated binary image to determine 

the plant row spacing in pixels. The red box shows the monitoring site marked by two flags.  
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Figure A2. Illustration of labeled image preparation with (a) label for each ROI including the ID, 

stand count, days after first emergence (DAE), and centroid coordinate (cx and cy) used for plant 

spacing (PS) estimation; (b) final label for each segmented image (label image) for plant density, 

mean days to imaging after emergence (DAEmean), and standard deviation of PS (PSstd) in 1-m 

row segments. 

 

Figure A3. Features maps of one example image from the sequential UAV images collected with 

no color stake labeling in stages 3 to 5 of the ResNet18 model for the three emergence 

parameters: plant density (top row), standard deviation of plant spacing (PSstd, middle row), and 

mean days to imaging after emergence (DAEmean, bottom row). 
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Figure A4. Features maps of segmented images with (top row) and without (bottom row) color 

stake labeling in stages 3 to 5 of the ResNet18 model for the parameter mean days to imaging 

after emergence (DAEmean). The actual and estimated DAEmean for the image with a color 

stake are 17.2 and 16.5 days, respectively.  
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Figure A5. Variable importance plots of UAV feature datasets without planting depths. 
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Figure A6. Variable importance plots of UAV feature datasets with planting depths. 
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