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ABSTRACT

Moving object tracking is a fundamental computer vision task with a wide variety
of real-life applications ranging from surveillance and autonomous systems to biomed-
ical video analysis. A robust, accurate, scalable, and high-performance multi-object
tracking (MOT) system of sized objects, requires novel approaches for visual appear-
ance adaptation and generalized learning to handle challenging cases including object
shape and viewpoint invariance, illumination invariance, complex object dynamics,
clutter in the scene, partial or full occlusions and degraded environments. In this
dissertation, our tracking system develops two pipelines and a fusion mechanism to
provide precise trajectory information for detecting moving objects of interest and
trajectories for object behavior and activity-based scene understanding. For single
object trajectory estimation, we extended the recognition and feature fusion based
single object tracking framework called Likelihood of Features Tracker (LoFT) with
color attributes, scale selection, and kernelized correlation filter modules, to improve
object appearance description, adaptation to scale changes, and localization of the
target within the search window. For multi-object trajectories, we propose a time-
efficient detect-track-and-predict system based on a novel three-step cascaded data
association scheme. M2Track combines a fast hybrid spatial distance-based gating
short-term data association, a robust tracklet-linking stage using discriminative and
deep-learning-based object appearance models, with an explicit occlusion handling
module relying not only on motion patterns but also on environmental context in-
cluding the presence of potential occluders, and other foreground and background

objects in the scene. Experimental results on different international challenge bench-

xiil



marks, tasks, and datasets ranging from wide aerial motion imagery and full-motion
video to biomedical microscopy videos demonstrate the robustness and efficiency of

our pipelines that reach state-of-the-art performance.
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Chapter 1

Introduction

Technologies in computer vision and machine intelligence have served our lives for
decades. Producing meaningful, contextual information from the real world is not an
easy task. For many years, researchers attempt to adapt and mimic human capabil-
ities for automated purposes. Computer vision involves capturing, processing, and
analyzing real-world images and videos to accomplish a certain goal, which becomes
more complicated and more in demand with the recent advances in sensor technolo-
gies for both cameras and platforms. Some of these technologies involve robust video
compression, summarization, or activity analysis and recognition.

One of the most common and challenging tasks in a computer vision framework
is object tracking. There is a wide variety of applications in this field including vi-
sual surveillance, video summarization, sports video analysis, and biomedical video
analysis. There is no specific way to classify object tracking methods. Different liter-
atures classify them depending on different aspects (e.g., number of objects, detection

objects of interest approaches, or different object representations). Figure 1.1 elabo-



rates some of these categories. Object tracking aims to extract the motion trajectory
of the object(s) of interest in a video sequence. For single object tracking, track-
ing approach can be categorized in various ways (e.g., detection-based [5, 6] versus
recognition-based [7, 8]; or according to how the objects are localized within the search
region, as generative[9, 10] versus discriminative methods [11, 12]). For multi-object
tracking, the most popular categories are tracking-by-detection [13, 14, 15, 16, 17, 18],
and tracking-by-model evolution [19, 20, 21]. Tracking-by-detection consists of a de-
tection module that localizes the objects of interest in a frame, and an association
module that links these detected objects in time, maintaining their identity and pro-
ducing object trajectories. Tracking-by-model evolution involves an initialization step
to locate the objects of interest on the first frame followed by a per-object model evo-
lution in time by using deformable models such as active contours to keep track of
individual object states (position, motion, shape, and orientation) in the following
frames.

Single object tracking is the process of estimating the locations of an object over

time and is usually divided into three modules:

e Initialization: generating an object model by extracting the features from the

predefined target of interest from the first frame.

e Localization: detecting the object on the following frames by finding the most

relevant match with the object model.

e Update: updating the object model with the new features of the new target

located in the new frame.

The most challenges with the three modules are how to choose: the optimal features,
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Figure 1.1: An overview of different categories and techniques for object tracking that
can be used to build up a robust object tracking system.

the optimal matching approach, and the optimal update strategies. There are a lot of
previous works with different strategies and methodologies for single object tracking.
Some work used regular machine learning and computer vision approaches [22, 23,
24, 25, 26, 27] or used deep learning approaches [28, 29] in terms of initialization,
localization and matching.

In [22], the Sum of Template And Pixel-wise LEarners (Staple) tracker was intro-



duced. Staple combines complementary cues in a ridge regression framework using
two image patch representations that are sensitive to complementary factors to learn
a model online that is inherently robust to both color changes and deformations using
a combination of a Correlation Filter using HoG features and a global color histogram.

In [28], Convolutional Features for Correlation Filters (CFCF) tracker was pro-
posed. CFCF learns a discriminative convolution operator as its tracking model and
poses the learning problem in the continuous spatial domain. The tracker employs
a fully convolutional neural network (CNN) model, HoG, and Color Names (CN) as
matching features.

Zhang et al. [23], introduced robust tracking via Multiple Experts using Entropy
Minimization (MEEM). MEEM uses an online SVM with a re-detection based on the
entropy of the score function restoration scheme, which allows a tracker to evolve
backward to undo undesirable model updates. The tracker creates an example of
experts by storing historical snapshots while tracking. The tracker can restore the
snapshots when needed by the best of these experts selected by using an entropy
minimization criterion.

Correlation filter-based tracking is a discriminative method in which a filter based
on the object’s appearance is used to estimate the most likely target location in the
search window by distinguishing the target from its surrounding background. Convo-
lution of the search window image with the filter is performed in the Fourier domain
as element-wise multiplications to reduce complexity. The used filters are updated
online to adapt to object appearance changes. Since their first use in visual tracking
[12] [30], correlation filter-based tracking has been extended in multiple ways. [11, 31]

improved adaptation to scale changes; while [22] incorporated histogram-based ridge



regression learning to improve robustness to fast deformation and shape variations.
Kernelized Correlation Filter (KCF) tracker that was introduced by /cite was the
most popular correlation filter-based tracker. KCF operates on simple HoG features
and Color Names (CN). The KCF tracker is equivalent to a Kernel Ridge Regression
trained with thousands of sample patches around the object at different translations.
It implements multi-thread multi-scale support, sub-cell peak estimation, and replac-
ing the model update by linear interpolation with a more robust update scheme

Learning Adaptive Discriminative Correlation Filter on low-dimensional manifold
(LADCF) tracker [25] was proposed. LADCF utilizes an adaptive spatial regularizer
to train low-dimensional discriminative correlation filters. Adaptive spatial regular-
ization and temporal consistency are combined in an objective function. Robustness
is further considered by integrating HOG, Color Names, and ResNet-50 features.

Lukezic et al. [26] introduced the Discriminative Correlation Filter with Channel
and Spatial Reliability (CSR-DCF). The spatial reliability map adapts the filter sup-
port to the part of the object suitable for tracking which overcomes both the problems
of circular shift enabling an arbitrary search region size and the limitations related
to the rectangular shape assumption. The reliability is estimated from the properties
of the constrained least-squares solution. The channel reliability scores were used for
weighting the per-channel filter responses in localization.

Likelihood of Features Tracking (LoFT) [27] was proposed. A recognition-based
single target tracker that relies on the fusion of multiple complementary features. For
each feature, a likelihood map is estimated by comparing the target feature histogram
to search region sliding window histograms. Individual features perform differently

depending on the target characteristic and environmental conditions during tracking.



Fusing different features enable the adaptation of the tracker to dynamic environment
changes and target appearance variabilities.

Multi-object tracking (MOT) aims to locate multiple objects in a scene, maintain
their identities in time, and form motion trajectories for further analysis. MOT

divides into two steps:

e Detection step: the targets in each video frame are localized;

e Association step: the detected targets are assigned and connected to existing

trajectories.

The detection step is datasets dependent. The optimal approach chosen depends
on the context, the nature, and the availability of ground truth. Either trained or
pre-trained models using transfer learning are used as deep learning detection-based
approaches [32, 33, 34, 35]. While supervised [36, 37, 38|, or unsupervised [39, 40, 41]
can be used as machine learning-based approaches. The Association step is the core
of multi-object tracking. The process is to find the correspondence matching between
a set of new detections and the existing ones and identify the new objects entering
the scene and treat them as new tracks. Association algorithms can be performed
by gathering information from the most recent time step (i.e., past frames) which is
called online mode [42, 43], whereas in offline (batch mode), the information from
the entire video including past and future frames is used. Online mode tends to be
sensitive to detection errors, and produce fragmented tracklets [44, 45]. While the
offline mode has longer and more reliable trajectories. Some applications require to
be used online such as surveillance systems.

Most of the multi-object trackers and approaches [46, 47, 48, 49, 50, 51, 52, 53]

share the same concepts in finding the optimal association approach for assignment,



the optimal optimization approach to implement the association approach, and the
optimal features used for matching which can be machine learning features or deep
learning features.

Pirsiavash et al. [47] proposed the Globally-optimal greedy (GOG) tracker. GOG
formulates the multi-object tracking problem as the integer linear program (ILP).
The model is based on the min-cost flow network, It allows to handle long sequences
with a large number of objects, even in complex scenarios with long-term occlusion
of objects.

In [46], Visual Intersection Over Union Tracker (VIOU) was proposed. VIOU
is based on the IOU tracker and improved by track continuation using the ‘visual
tracker’ if no detection is available. If a valid detection can be associated with the
track again, the ‘visual tracking’ is stopped, and the tracker reduces to the original
IOU tracker.

Online and Real Time Tracking with the GMPHD Filter using Group Management
and Relative Motion Analysis (GMMA) tracker was proposed by [48]. GMMA tracker
is an online multiple-objects tracking framework with a two-stage data association
strategy with the Gaussian mixture probability hypothesis density (GM-PHD) filter.
GMMA also includes an occlusion handling method based on group management and
motion analysis.

In [49], the Continuous Energy Minimization for Multi-target tracking (CEM)
tracker was introduced. CEM is an offline multi-object tracking algorithm as mini-
mization of continuous energy overall target locations and all frames of a time window.
Motion and interaction of all objects of interest in the scenes are represented by a

suitable energy function.



The Simple Online and Real-time Tracking (SORT) tracker introduced by [50],
is an online and real-time tracking-by-detection tracker that uses object positions
and sizes for both motion estimation and data association. Then, It was extended
to Simple online and real-time tracking with a deep association metric (DeepSORT)
by integrating appearance information to improve the performance of SORT. Deep-
SORT [51] combines appearance information to track objects through long-term oc-
clusions with fewer identity switches. An offline pre-training stage is required to learn
a deep association metric on a large scale person re-identification dataset.

In [52], The deep affinity network (DAN) tracker was introduced. DAN is a deep
neural network tracker that explicitly learns the affinity between objects over time.
It is trained to predict the optimal linear assignment using ground truth assignment
matrices as supervision. Visual features are first extracted from a VGG network and
then processed by DAN to output a matrix of soft assignments, which finally are
stitched into tracks using the Hungarian algorithm.

Shuai et. al. [53] proposed the Siamese Multi-Object Tracking (SiamMOT) tracker.
SiamMOT is a region-based multi-object tracking network that detects and associates
object instances simultaneously. The Siamese tracker models the motion of instances
across frames, and it is used to temporally link detection in online multi-object track-
ing

Choosing the optimal approaches, which is the goal of this dissertation, is to de-
velop a robust, accurate, and high-performance moving object tracking to provide
comprehensive information about objects’ movement for further use with different
computer vision problems; Perform a persistent and adaptive tracking system under

different challenges, scenarios, and demands; Design image appearance-based detec-



tions and associations tracker that is scalable to thousands of detections or measure-
ments, running near real-time, fit to the variety of object size and density, invariant
to rigid and deformable objects, work with cross-domain objects, for instance, aerial,

ground-based, or biological videos.

1.1 Problem Statement

Visual object tracking is an integral part of many computer vision applications ranging
from video surveillance to biomedical image analysis. In general, the success of these
applications depends on robust and accurate detection and tracking under challenging
conditions such as changing object appearance, scale and illumination variations,
shadows, partial and full occlusions, the existence of distractors, and camera motion.

For single-object tracking, shape and appearance challenges, rapid object displace-
ment, camera motion, and object scale changes are the most common challenge. For
multi-object tracking, the performance of the tracking-by-detection methods is greatly
influenced by the performance of the object detection methods and object-to-track
association. False positives (false detections), false negatives (undetected objects),
under-segmentation (merging of neighboring objects), and over-segmentation (object
fragmentation) are major sources of detection error during the tracking process. Re-
cent advances in object detection [54, 55, 56| are important for the success of the
tracking task. Object-to-track association is the process of assigning detected objects
to already existing tracks over time. Association ambiguities may lead to trajectory
fragmentation, and identity switches, and may cause drift under occlusion [57, 58].

Moreover, the number of objects in the scene can cause a problematic issue in terms



of complexity, since the number of objects is directly proportional to the complexity
of implementation (e.g., the number of assigned hypotheses).

A robust visual moving object tracking system needs to generalize across different
datasets. The nature of benchmark datasets can be one of the most important fac-
tors in tracking system performance. Different datasets have different characteristics,
scalability, and requirements that need to be met. Wide aerial motion imaginary
(WAMI) datasets have different characteristics and challenges compared to regular
full-motion videos. WAMI videos suffer from extreme camera motion, low frame
rate, and small object sizes. While for full-motion video, frequent object deforma-
tions, rapid scale and appearance changes, shadow, and illumination artifacts. While
in biomedical fields, cell tracking datasets suffer from frequent object deformations,
non-distinct appearance, low videos quality (contrast, resolution, etc.), and image
acquisition artifacts. Figure 1.2 shows different datasets that have been used in our
implementations. Our goal is to focus on developing a robust and fast-moving object

tracking system to meet different dataset requirements.

1.2 Research Objective

Moving objects’ behavior and scene understanding usually involve many computer
vision problems, e.g., object detection, tracking, and behavior recognition. The ob-
jective of this dissertation is to develop a robust, accurate, and high-performance
moving object(s) tracking system for different computer vision tasks. We are focus-
ing on many computer vision problems to serve our tracking system. And that will

be integrated to have a comprehensive full scene understanding. Staring from object
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Figure 1.2: Different benchmarks for different purposes. The description for each
benchmark from the upper left: 1st, 2nd, 3rd images are from the VOT benchmark
[59] for single object tracking. The 4th image is from the UA-DETRAC benchmark
[60] for multi-object detection and tracking. The 5th and 6th images are from the
MOT16 [4] for multi-object tracking. The 7th is from the PETS09 benchmark [61] for
person counting and density estimation, multi-object tracking, and event recognition.
The 8th and 9th images are from the VisDrone benchmark|[62] for multi-object track-
ing. The 10th image is from Albuquerque urban aerial imagery ABQ video [1] for
single and multi-object tracking, vehicle detection, and 3D building reconstruction.
The 11th and 12th images are from the VIRAT benchmark [63] for action recognition
and tracking. The 13th,14th, and 15th images are from cell detection and tracking
challenge [64]. The 16th image is from the VOT-IR benchmark for single object
tracking in IR [59]
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detection, tracking ends with semantic scene understanding for better analysis. Our

tracking system has two pipelines:

e Single object tracker: recognition-based single object tracking system that relies on
the fusion of multiple sources of information about the target and its environment
to perform robust single object tracking that is invariant to occlusion, shadow,

illumination changes, scale changes, and object deformation.

e Multi-object tracker: a lightweight, efficient modular design, a time-efficient
detection-based multi-object tracking system that uses a multi-step cascaded data
association scheme to ensure time efficiency by reducing the hypotheses through
the steps, while preserving tracking accuracy by having discriminative object ap-

pearance models and retrieving trajectories after occlusion events

The main objective of our pipelines is to develop a robust, accurate, and high-
performance moving object tracking system for full-motion /real-world video and wide
aerial motion imagery as well as biomedical and microscopy videos. Our developed
system’s main objective is to perform persistent tracking under object appearance
changes, objects similarity, object entering and leaving the scene, camera motion,

background noises, occlusion, scenarios, environmental changes, etc.

1.3 Dissertation Layout

Our contribution to this dissertation has two folds. The first is to provide precise
trajectory information for an individual object of interest using the single object
tracking pipeline, and the second fold is to track all objects in the scene and produce

their trajectories using the multi-object tracking pipeline.
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1.3.1 Single Object Tracking Contributions:

Our group developed a Likelihood of Features Tracking (LoFT) system [27, 65, 66]
that fuses multiple sources of information about the target and its environment to
perform robust single object tracking. LoFT is a recognition-based target tracking
system initially designed for vehicle tracking in low frame rate wide-area motion
imagery. LoFT, shown in Figure 1.3, uses a rich feature set describing intensity,
edge, shape, and texture information. Target to search window feature comparison is
performed using cross-correlation and sliding window histogram differencing using an
efficient integral histogram computation scheme. The process produces a likelihood
map for each individual feature. Different features are more sensitive or more robust
against different target characteristics and environmental conditions. Fusing different
feature likelihood maps enables the adaptation of the tracker to scene dynamics and

target appearance variabilities. We extended and improve LoFT by incorporating:

e C-LoFT: extension of LoFT with color attributes: we extended the original
LoFT framework with color information to boost the performance of the tracker,
particularly for video sequences where foreground and background have distinct
color signatures. We used our extension of the Color Names (CN) feature scheme
instead of RGB color for lower computational cost and to ensure robustness and

invariance to shadow and illumination changes.

e An operation mode decision unit to activate color use: while color intro-
duces rich information for object description, color can affect the tracker negatively,
especially, when there is no adequate color dissimilarity between the tracked object

and its surrounding region. C-LoFT uses an adaptive tracking scheme and uses

13



LOFT

Template-Based

Kernelized
Correlation Filter

Region
Correlation-Based
Histogram
distance & Correlatio Region
]
Correlation _
1
Histogram
distance & Correlation Edge
Correlation
Local Shape

Histogram distance

Online Correlation based
Template Update

0“

Appearance based
Template Update

Figure 1.3: Single object tracking pipeline. The red borders show our contributions.

color depending on the availability and reliability of the color attribute. We use
Bhattacharyya distance [67] to measure color dissimilarity between the target and

the surrounding area.

e Frame level max-pooling scale selection: we extended C-LoFT by proposing a
novel frame-level scale selection. CS-LoFT, the proposed frame-level scale selection,
ensures scale coherence in the selected likelihood map (all pixels corresponding to
the same scale), robustness against local outliers, and adaptation to scale changes

caused by object motion, camera motion, or zoom.

e A multi-dimensional kernelized correlation filter module: we extend the
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original LoFT framework with a kernelized correlation filter (KCF), a discrimina-
tive module, to strengthen LoFT by enabling robust and efficient localization of
targets and strength adaptation to environmental changes. KC-LoFT also incor-
porates an online template update scheme to prevent drifts and to enable robust
handling of partial or full occlusions. Online template updating includes learning
filter parameters and updating the template for each frame, if necessary, by includ-
ing positive and negative examples within the search window using ridge regression.
We utilized Peak-to-sidelobe ratio (PTSR) [12] which evaluates the discrimination
power of a likelihood peak to avoid updating the correlation-based template and
regression parameters during occlusion and to prevent the correlation likelihood
map to be fused with the remaining maps when it is unreliable. During occlusion
events, PTSR helps suspend correlation template update until the object appears

again.

e Implemented on different datasets and participated in different chal-
lenges: we participated in the VOT16 challenge [68], implemented on VOT15 [59],
VOT16 [68] benchmarks, and ABQ WAMI dataset [1] to evaluate our contribution.

1.3.2 Muli-object Tracking Contributions

Our proposed multi-object tracker is named Multi-cue Multi-target Tracker M2Track.
M2Track is a lightweight, efficient modular design multi-object tracking system Fig-
ure 1.4. M2Track is a Detection-Tracking-Prediction-based multi-object tracking sys-
tem for sized video objects with three-level data association, shown in Figure 1.5.

M2Track combines a fast spatial distance only short term data association, a robust

15



tracklet linking step using discriminative object appearance models, and an explicit
occlusion handling module relying not only on the motion of tracked objects’ patterns
but also on environmental constraints such as the presence of potential occluders in
the scene. M2Track cascaded modular design ensures high performance in terms of
time efficiency, tracking accuracy, robustness to environmental challenges, and invari-

ance to camera acquisition types.

Detection
Detection Cascade block for speed improving
validation Level 1 Level 2 Level 3
| Detected Local _ass_lgnment Tracklets |Global assignment M Och_US|on _han.dllng
bboxes (Spatial distance) (Spatial & Temporal & (Motion estimation &
‘ 1 lf Appearance) Occluder prediction)

Tracks Tracks
initialization prediction

Trajectories
for moving
objects

Figure 1.4: Multi-cue Multi-target Tracker M2Track, a multi-step cascaded data
association multi-object tracking pipeline.

The main contributions of M2Track pipeline are:

e Multi-cue object detection: detection step in our pipeline is datasets dependent.
The datasets and their context affect the instance/object detection methods that
are used. For instance; adaptive k-means [69] was utilized; Deep learning object
detection using either trained or pre-trained models using transfer learning has been
used to fit with different dataset requirements and demands (i.e. Faster RCNN [32],
Mask RCNN [70], YOLO [33], DMNet [35]); Motion-based detection using flux

tensor spatio-temporal operator [71, 72| was exploited; Multi-cue object detection
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Figure 1.5: The three-step cascaded data association scheme

was proposed [73], which fuses both appearance and motion-based detections in

a complementary manner using deep learning combined with flux tensor spatio-

temporal filtering. The proposed multi-cue detection is able to detect moving

objects with high precision and recall, while filtering out false positives such as

stopped objects, through intelligent fusion.

Multi-object tracking cascade with multi-step data association: we pro-

posed a tracking-by-detection approach using a three-level cascaded data associa-

tion: start with short-term (levell) spatial data association using linear assignment

with the Hungarian optimization algorithm [74]. Followed by a long-term (level2)
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trajectory-level tracklet linking module to robustly re-link fragmented tracklets.
Robust re-linking of trajectories depends on several constraints for filtering un-
feasible tracklets by taking into account tracklets’ spatial, kinematics, and the
history of objects’” motion. For the occlusion handling module (level3), Kalman
filter prediction, tracking objects’ motion patterns, and environmental constraints
(i.e., surrounding objects and potential occluders) clues are used to support the
occlusion module for robust occlusion event detection. Figure 1.5 illustrates the

proposed three levels data association scheme.

Local assignment short-term tracklets (levell): low-cost local data associa-
tion operating at object level on consecutive frames relying only on spatial distance
information. The local assignment is used to have a time-efficient short-term but
reliable tracklet generator which represents the backbone of the trajectories for fur-
ther processes (e.g., re-linking, correction, switching ID). Hungarian optimization
algorithm [74] is utilized to assign the detected objects in the current frame with
the tracks, that are already generated from previous frames. A hybrid cost matrix
for frame-to-frame during data association is used to be invariant to wide cross-
domain datasets. In this step during the assignment, birth, death, appearance, and

the disappearance of objects in the scene are handled.

Track position prediction: Kalman filter [75] with a constant velocity model is
used to predict the new positions of the tracked objects using their past trajectories.
Velocity vectors for each target are stored to be used in the following steps for
tracklets re-linking and occlusion handling. The process involves prediction and
update steps. First, the positions of the targets are estimated from their current

states, then Kalman filter updates the target states using the detections from the
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current frame.

Hybrid cost matrix: A hybrid cost matrix during frame-to-frame data associa-
tion is used to be invariant to wide cross-domain datasets. Three types of special
information have been exploited. Centroid distance matching is helpful with objects
that have large movement displacement due to low frame rates (i.e., moving objects
on wide aerial imagery). The second uses bounding boxes overlapping matching
that is helpful with objects that have low displacement movement. (i.e., cells with
very slow motions). And, mask overlapping matching which is helpful with objects

that have an irregular shape or fast deformable nature.

Global assignment long-term tracklets linking (level2): the global data
association is a trajectory-level tracklet linking module that robustly re-links frag-
mented tracklets. Linking objects in this level are treated as trajectories rather
than detected objects to reduce the number of hypotheses and reduce computa-
tional cost. Robust re-linking of trajectories depends on several constraints for
filtering unfeasible tracklets by taking into account tracklets spatial, kinematics,
and the history of objects” motion. Besides that, robust and discriminative object
appearance models (i.e., novel color correlation cost matrix, object texture, deep

feature descriptor using Siamese network) are used.

Robust appearance model for long-term tracklet linking: the appearance
models of tracked objects provide powerful information to refine the set of candidate
matches. Our appearance model can discriminate different tracked objects while
being invariant against factors such as illumination, shadow, etc. We propose an

appearance model that combines shape and texture information using HoG descrip-
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tor [76] with object color attributes using our novel color correlation cost matrix.
And, Deep features for matching similarity using a trained Siamese network [77].
During matching, mean square error (MSE) is used to compute the distance be-
tween HoG descriptors for two potential matching. Earth mover distance [78] is
used to compute the distance between two color histograms. For deep features, the
comparison is done by calculating the Sigmoid function for each object to find the

probability of the similarity between two objects.

Occlusions Handling: to recover the tracker from miss detecting resulting from
detection algorithms errors or occluding behind other objects in the scene, we uti-
lize an occlusion handling module that relays on Kalman filter prediction, tracked
objects’ motion patterns, and environmental constraints (i.e. presence of potential
occluders) to build occlusion confidence map. Occlusion confidence maps predicted
the locations of the tracked objects after the occlusion event ends. Occlusion con-
fidence maps are generated by combining the tracklet’s motion model, occlusion

confidence, and motion prediction range.

M2Track is a detection-to-track tracker that exploited image appearance-based
detection and associations approach using objects’ visual appearance, masks, and
bounding boxes. M2Track is scalable to thousands of detections and runs in near
real-time for its efficiency designed in a modular system. M2Track handles rigid
and deformable objects by taking into account the outcome of detection variations
(i.e., object coordinates, object bounding boxes, object masks). M2Track has been

integrated into different approaches and applications:

— Moving vehicle detection and tracking: on wide aerial imagery datasets (i.e.,
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ABQ [1], CLIF [2]), drones-based videos (VisDrone [79], UAVDT [80]), and
fixed-camera videos (UA-DETRAC [60], FPSS [81]).

— Cell segmenting, detection and tracking (i.e., cell tracking with mitosis detec-

tion dataset CTMC [82], cell segmentation and tracking challenge dataset [64]).

— Video annotation and video analysis (i.e., biomedical cell annotation, surveil-

lance moving object annotation).

e M2Track shows its high performance by participating in different international
multi-object tracking challenges. M2Track has outperformed or comparable per-
formance compared to the different state-of-the-art participated trackers including:
UA-DETRAC [60], MOT16 [4], PETS09 [61], VisDrone[62], cell segmentation and
tracking challenge [64], and CTMC [82] dataset)

Algorithms and methods that are presented in this dissertation are published as
our contributions in [83, 84, 85, 86, 87, 88, 89, 90, 73, 91, 92, 93, 94, 95, 96, 97, 98,
99, 100, 101, 102, 103, 104]. Chapter 2 explains our extension and contributions to
single object tracking and shows some practical implementation on different datasets.
Chapter 3 presents M2Track, the multi-object tracking pipeline. Chapter 4 presents
the challenges, implementation, and experimental analysis on aerial imagery datasets
in terms of high and low altitude video acquisitions. Chapter 5 describes the imple-
mentation of our multi-object tracking pipeline on biomedical video benchmarking.
Chapter 5 shows our implementations and experimental results on the ground-based/
real-world videos. Followed by the conclusions for our contribution and discussion of

future directions.
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Chapter 2

Single Object Tracking Pipeline

2.1 Overview

Visual object tracking is one of the most essential problems in computer vision. Visual
object tracking is the process of estimating the locations of an object over time.
Most of the visual object tracking algorithms follow a similar pipeline that can be
divided into three modules: initialization, localization, and update. Initialization
is the process of generating an object model by extracting the features from the
predefined target of interest from the first frame. That model is used to localize and
detect the target on the subsequent frames. The localization module is the process of
detecting the object on the following frames by finding the most relevant match with
the object model created in the initialization module step. The update module is the
process of updating the object model with a new feature of the new target located

in the new frame. This step is very important to have a robust tracker to make the
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tracker adaptive to scene variations. Despite all the recent advancements in computer
vision, visual tracking remains to be a challenging task because of real-world sequence
challenges such as partial or full occlusions, background clutter, shadow, and other
illumination artifacts.

Recently our group proposed a recognition-based single object tracking system
LoFT (Likelihood of Features Tracking) [65, 27, 66] that relies on the fusion of mul-
tiple sources of information about the target and its environment to perform robust
single object tracking. Originally LoFT was developed to track objects on wide
aerial motion imagery (WAMI) acquired by an airborne camera sensor array where a
large field-of-view undergoes persistent observation. These sequences involved small
support regions for tracked objects and thus did not allow the use of detailed appear-
ance descriptions. However, full-motion video datasets like OTB [105], ALOV [106],
and VOT2016[59], include richer appearance information for tracked objects. These
objects also undergo large-scale changes due to either object or camera motion, or

camera zoom. In this chapter, we extend and improve LoFT by incorporating:

Color information using our extension of Color Name (CN) scheme

An operation mode decision unit to activate color use when there is an adequate

color dissimilarity between the tracked object and its surrounding region

Frame level max-pooling scale selection

A discriminative module using kernelized correlation filters to strengthen

LoFT’s adaptation to environment changes

A multi-dimensional kernelized template (beside LoFT’s original multi-feature
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template) to ensure comprehensive localization of the target in different scenar-

ios

e A decision module to adaptively update and fuse kernelized template

2.2 Likelihood of Features Tracking (LoFT) Frame-
work

Likelihood of Features Tracking (LoFT) [65, 27, 66] consists of three main modules:
(i) target modeling, (ii) likelihood fusion; and (iii) appearance update. Target mod-
eling models the appearance of the tracked object using a rich feature set including
intensity, edge, shape, and texture information. Gradient magnitude, gradient orien-
tation, intensity, shape, and curvature indices (derived from eigenvalues of the Hessian
matrix) are some of the features used. Figure 1.3 describes the features that LoFT
uses. LoF'T uses a recognition-based target localization approach. For each feature
in the feature set, a likelihood map is estimated by comparing the target’s feature
histogram to sliding window feature histograms within the search region. Efficient
sliding window histogram computation is performed using integral histogram-based
implementation [107]. Likelihood fusion combines likelihood maps from different fea-
tures into a single likelihood map. The maximum likelihood location in this map is
used for target localization. Likelihood fusion enables the adaptation of the tracker
to dynamic environment changes and target appearance variabilities. Each feature
performs differently depending on the target characteristic and environmental situa-
tions during tracking. Two weighting schemes are considered, Variance Ratio (VR)

[108] for histogram-based features, and Distractor Index [66] for correlation-based
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features. Appearance update enables dynamic appearance adaptation by maintaining
and updating a single template by calculating affine changes in the target to handle

orientation and scale changes [27].

2.3 C-LoFT: Extension of LoFT with Color At-
tributes

Most modern trackers ignore color information and rely purely on features derived
from grayscale information [109, 110, 111]. Grayscale images are sometimes sufficient
to produce reasonably good tracking results for a lower computational cost. How-
ever rich chromatic information can be very valuable for object tracking. Various
methods have been proposed to incorporate color information into trackers such as
simple color space transformations in [112, 113] or color histograms in [114]. More
recently, well-performing trackers have been further improved with the incorpora-
tion of color information. In [115] Centinet et al. combined color histograms with
Minimum Output Sum of Squared Error (MOSSE) correlation filter [12] as a robust
descriptor for object tracking. Danelljan et al. [116] explored the contribution of
color in tracking-by-detection frameworks and extended CSK tracker [117] with vari-
ous color incorporation approaches. While color introduces rich information for object
description, color measurements can vary significantly over an image sequence due
to variations in illumination, shadows, and specular reflections. Invariance to these
factors has been studied in image classification [117, 113], action recognition [117],

and tracking [116].
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2.3.1 Adaptive Color Use with Color Names (CN) Feature

We extend the original LoFT framework with color information using Color Names
(CN) feature [118]. The linguistic study described in [119] shows that the English
language has eleven basic color terms: black, blue, brown, gray, green, orange, pink,
purple, red, white and yellow. [118] explores this concept to generate CN (Color
Names) map. Color Names (CN) feature associates the RGB color model with lin-
guistic color labels. We use the mapping provided by [118] to map RGB color models
to 11 color names. The process reduces the 2563 RGB color space to 11 color names
space. The goal is to boost the performance of the tracker, particularly for video
sequences where foreground and background have distinct color signatures. Color
information is used in the tracking process only when the tracked object and its
surroundings have distinct color features. We use Bhattacharyya distance [120] to
measure color similarity between the target and the surrounding area. Let H,; and
Hyy be 11 — bin color names histograms for tracked object and surrounding back-
ground respectively. Discrete probability densities p(i) for the object, and ¢(7) for the
background, are computed by normalizing each histogram by corresponding number

of elements in it:

Hop; (i)

p(7) :Tbj (2.1)
q(i) ZH%? (2.2)

Bhattacharyya distance between object versus background color distributions is

computed as:

S = > Vi (2.3
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Figure 2.1: Two examples from different sequences of VOT15 showing different values
of S (similarity measures) between target and surrounding region histograms.

Inclusion (or exclusion) of color features is determined for each sequence based on the
value of S. Figure 2.1 shows the process of calculating S for two different sequences.
Low values of S correspond to discriminant color information (dissimilar object ver-
sus background color distribution). Figure 2.2 illustrates the incorporation of color

information in C-LoFT.
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Figure 2.2: Incorporation of color information in C-LoFT. In which the likelihood
map of I represents: Intensity histogram, GM: Gradient magnitude histogram, SI:
Shape index histogram, NCI: Normalize curvature index histogram, HoG: Histogram
of gradient, NCC(I): Normalized cross-correlation for intensity, and NCC(GM): Nor-
malized cross correlation for Gradient.

2.4 CS-LoFT: Scale Space Tracking

When tracked objects move along the camera axis, their sizes in the video change.
Many trackers such as CSK[117], or MOSSE[12] track the objects of interest at a

single scale and ignore possible changes in size. This implies poor performance in
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sequences with significant scale variations. Incorporation of multi-scale templates as
in DSST (Discriminative Scale-Space Tracking) [31] improves tracking performance
through scale changes.

CS-LoFT extends C-LoFT with multi-scale processing. Scale changes not only
alter the size of the tracked objects but also affect the scale of their texture. LoFT
features that are most sensitive to scale changes are local shape features local shape
index (Eq.2.6) and normalized curvature index (Eq.2.7) [66] derived from eigenvalues
of Hessian matrix. The Hessian matrix H describes the second-order structure of

local intensity variations around each image point L(z;y),

Lyo(z,y;0)  Lay(z,y;0
H(z,y;0) = ( ) Lol ) (2.4)

La:y(xu ya U) Lyy<xa ya 0)

where L,, = %, L(z,y;0) refers to the Gaussian smoothed intensity image

L(z,y;0) = g(x,y;0) * L(x,y) (2.5)

g is the Gaussian kernel, and o is the scale. Local shape index (Eq. 2.6) and normal-

ized curvature index (Eq. 2.7) are derived from the eigenvalues A; > Ay of Hessian

matrix H.
¢(z,y) = tan™" ijg z; 20
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2.4.1 Frame Level Max-pooling Scale Selection

We propose a novel frame level scale selection as described in Algorithm 1. First local
shape (Eq. 2.6) and normalized curvature (Eq. 2.7) indices are computed at multiple
scales. Sliding window template matching is performed between search window and
tracked object template; and, likelihood maps L,, are obtained for each scale o;.
Then, pixelwise maximum likelihood is computed as:

Lonaz(x,y) = maz(Ly,(x,y)) (2.8)

oF)

Finally, the best scale o is then selected as the scale that minimizes the mean square

error between the pixelwise maximum likelihood L., and each L,,.

o = argmin(Z(Emax - L)) (2.9)

(2
x,y

The described frame level max-pooling scale selection approach is applied to the
shape index and normalized curvature index separately. Figure 2.3 and Algorithm 1
describe frame level max-pooling scale selection approach. Likelihood maps corre-
sponding to selected scales are fused with likelihood maps for the remaining features.
Proposed frame level scale selection ensures (i) scale coherence in the selected like-
lihood map (all pixels corresponding to the same scale); and (ii) robustness against

local outliers.
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Algorithm 1 Frame level max-pooling scale selection
Input : Igy, I7: search window and object template
Output : %, L*: best scale and corresponding likelihood map

1: for each scale i do

2 L(z,y;0:) < g(x,y;04) x (2, y)

3:  Compute Hessian matrix H(x,y; o) Eq. 2.4 and its eigenvalues Aj,\g

4:  Compute local shape features ¢(z,y) Eq. 2.6, 0(z,y) Eq. 2.7

5 L, < sliding window template matching between search window & object
template

6: end for

7: Pixelwise maximum likelihood:L,4: (2, y) <= max (Lo, (z,y))

gq

8: Best frame level scale:o* «+ argmin(Z(L’max —L,.))

3 x,Y

Pixel-wise Maximization

A
2
m

minimum
error &£°

P S

|
map with :
|
|

Figure 2.3: Frame level max-pooling scale selection approach.
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2.5 KC-LoFT: Likelihood of Features Tracking with
Kernelized Correlation

Correlation filter-based tracking is a discriminative tracking method in which a filter
based on an object’s appearance is used to estimate the most likely target location
in the search window by distinguishing the target from its surrounding background.
Convolution of the search window image with the filter is performed in Fourier domain
as element-wise multiplications to reduce complexity. The used filters are updated
online to adapt to object appearance changes. Since their first use in visual tracking
[12] [30], correlation filter-based tracking has been extended in multiple ways. [11][31]
improved adaptation to scale changes; while [22] incorporated histogram-based ridge

regression learning to improve robustness to fast deformation and shape variations.

2.5.1 Kernelized Correlation Filter Module

Likelihood of Features Tracking (LoFT) system[27] fuses multiple sources of informa-
tion about target and its environment to perform robust single object tracking. Target
(template), to search window feature comparison is performed using cross-correlation
and sliding window histogram differencing using an efficient integral histogram com-
putation scheme. The process produces a likelihood map for each individual feature.
LoFT appearance adaptation scheme maintains and updates a single template by
calculating affine changes in the target to handle orientation and scale changes [27].
LoFT target template update is performed continuously to ensure accurate target
localization. However continuous template update has two main problems: i) drift

when target template is updated with non-target features during partial or full oc-
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clusions. ii) delayed recovery after occlusion events (many update steps are needed
to relearn target appearance).
The original LoFT framework is extended with kernelized correlation filter (KCF)

[30] module. The contribution on adding this module are:

1. A discriminative module to strengthen LoFT’s adaptation to environmental

changes.

2. A multi-dimensional kernelized template (beside LoFT’s original multi-feature
template) to ensure comprehensive localization of the target in different scenar-

108.

3. A decision module to adaptively update and fuse kernelized template. The
new decision module uses peak-to-sidelobe ratio (PTSR) criterion to avoid fus-
ing any irrelevant response from the kernelized correlation filters to the other
LoFT feature maps and to prevent the update of the regression parameters and
correlation-based template during occlusion or other cases of sudden appearance

change.

KC-LoFT kernelized correlation module uses two features, HoG, and intensity, to
localize the target within the search window. The two features are stacked to form
a single vector = that is then used in the kernelized correlation filter (KCF) scheme.
The goal of the correlation filter is to minimize the square error over the sample x

and the expected target y using the ridge regression loss function defined as follow
min Y (f () — ) + ] (2.10)
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where n is the length of the feature vector and A controls the regularization param-
eter w over the linear combination of samples f(x) = w?x. Following the description

and derivatives on [30] regression learning parameter, a can be learned using

~

O (2.11)
krT 4+ \
where k7% is a correlation kernel. Gaussian kernel is used as follow
’ 1 _ N Al
ke =eXp(—;(Ill“ll2+ |2'|*) — 2P~} (& © 2™)) (2.12)

Where & is the DFT of z, #* is the complex-conjugate of Z', ® is an element-
wise multiplication, and " is the Discrete Fourier Transform. To detect the position
of the object, a new patch z (search window) is cropped from the location estimated
from Kalman filter. The response is found according to the correlation between the

previously learned template z and new patch z.

f(z) = (k%) ®a (2.13)

The steps of the target detection and online training process are described in Algo-

rithm 2, where 6 is the learning rate assumed to be 0.1.

2.5.2 KC-LoFT: Integration of Modules (Online Updating,
Fusion)

KC-LoFT integrates the discriminative KCF module to the LoFT framework to enable

robust and efficient localization of targets. Algorithm 2 describes the steps for using
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Algorithm 2 Target detection and training process using correlation filter module

Input : Py, 2,044, %: predicted position, current patch (search region), dual space
coefficient, the previous updated correlation-based template

Output : Pj, oy, Tpeyw: estimated new position, the updated dual space coefficient,

updated correlated-based template

Calculate the kernel k% = exp(—%(||Z[|” + ||2[|*) — 2F~1(z ® 2*))

Calculate the response f(z) = (k%%)* © Gpq

Find the new position P from the maximum response f (2)

Crop new patch ., with P as a center of the region

Update the template T, = 07 + (1 — 0)Zpen

Calculate &pe = m

Update dual space coefficient ay = far_1 + (1 — 0)apew

correlation filter module. KC-LoFT also incorporates an online template update
scheme to LoFT to prevent drifts and to enable robust handling of partial or full
occlusions. Figure 1.3 illustrates modules involved in the proposed KC-LoFT pipeline.

The correlation filter learns filter parameters and updates the template for each
frame by including positive and negative examples within the search window using
ridge regression. KC-LoFT fuses the responses from LoFT features with the correla-
tion response from the correlation module to generate a final fused probability map
that is used to localize the target. Because the correlation template update hap-
pens during the processing of every frame, an online update on the correlation-based
template has a faster response to appearance changes than the appearance-based tem-
plate. The response f (z) from the correlation filter module is fused with the other
appearance-based template likelihood maps from LoFT to generate a final likelihood
map to localize the expected position of the target. Peak-to-sidelobe ratio (PTSR)
likelihood map evaluation criterion is used to avoid updating the correlation-based
template and regression parameters during occlusion and to prevent the correlation

likelihood map to be fused with the remaining maps when it is unreliable. Peak-to-
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Figure 2.4: Sample likelihood maps and associated peak-to-sidelobe ratio values.
Lower PTSR values indicate occlusions or other sudden appearance change scenarios
and suspend the template update process.

sidelobe ratio [12] evaluates the discrimination power of a likelihood peak as follow:

Pmax_ sidelobe
PTSR = Hsidelob (2.14)

O sidelobe

where P, is the value of the maximum response, figideiobe a0d Tgigerone are the mean
and standard deviation of the likelihood map values except an 11 x 11 area around
the maximum peak. Figure 2.4 shows sample likelihood maps and associated PTSR
measurements.

During occlusion events, PTSR helps suspend correlation template update until
the object appears again while the appearance-based template needs to be updated.
When the object reappears after an occlusion event, it will be hard to localize the
object again with the appearance-based template. Suspension of the template up-
date process is important to preserve the target template through occlusion events.

Figure 2.5 illustrates KC-LoFT template update and likelihood fusion processes.
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Figure 2.5: KC-LoFT template update and likelihood fusion pipeline.

2.6 Experimental Results for C-LoFT, CS-LoFT,
and KC-LoFT

We have evaluated our contribution on VOT2015 benchmark dataset [121] and on
ABQ dataset [1]. VOT15 contains 60 sequences with several visual attributes and
challenges including: illumination changes, scale variations, motion change, camera
motion, and occlusions. While ABQ is a wide aerial motion imagery video that
suffers from extreme camera motion, low frame rate, and small object sizes. For
evaluation, we adopted, Accuracy and Robustness, the two VOT15 evaluation metrics
that are considered on the VOT challenge and described on their websites [122].
Accuracy measures how well the bounding box predicted by the tracker overlaps with
the ground truth bounding box. Robustness measures how many times the tracker

loses the target during tracking. A failure is indicated when the overlap measure
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becomes zero [121].

2.6.1 Color and Scale Features Extension Evaluation

C-LoFT and CS-LoFT were implemented on VOT15 dataset. Figures 2.6 and 2.7
shows intermediate results related to color and scale processing in CS-LoFT. CS-
LoFT switches to color tracking mode only when the tracked objects and their sur-
roundings have different color features (figure 2.6a), otherwise relies on intensity (fig-
ure 2.6b). Figure 2.7 shows how much the proposed frame level max-pooling scale
selection method preserves spatial context while pixel-wise max-pooling over scales
generates distractors. Figure 2.8 shows the average robustness comparison between
LoFT tracker with only CN feature, baseline LoFT, and CS-LoFT trackers. The com-
parison shows the significance of using color information and scale selection. Also, it
shows that color information alone will not be helpful for a reliable tracker. Figure 2.9
shows detailed evaluation of LoFT and CS-LoFT on the all 60 video sequences. CS-
LoFT improves the performance of the original LoF T tracker in terms of both accuracy
and robustness by 12% and 21% respectively. Performance is particularly improved

for the sequences that have significant color distractor and rapid scale changes.

2.6.2 Kernelized Correlation Module Evaluation

For KC-LoFT evaluation, ABQ dataset was used to evaluate the extended LoFT with
the kernelized correlation filter module. For fair evaluation and comparison, some
of the best non-deep learning correlation-based trackers whose codes are available

publicly were used. Since 2013, VOT challenge group [122] has been organizing
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Figure 2.6: Color versus intensity. (a) Tracked objects and their surroundings have different
color features; (b) Tracked objects and their surroundings have similar color but different
intensity features. Columns left to right: original image, likelihood map obtained using
color names (CN) feature, likelihood map obtained using intensity feature. On (a), the
tracker fuses the likelihood map for color while on (b) the tracker does not.

single object tracking challenges for selected full-motion video datasets. Table 2.1
shows VOT2015[121] and VOT2016[68] ranks of LoFT with some other state-of-the-
art trackers used in this evaluation. All the listed trackers perform better than LoFT
on these full-motion videos datasets. However, the nature of benchmark datasets can

be one of the most important factors in tracker evaluation. LoFT and KC-LoFT

are trackers developed for aerial wide aerial motion imagery. Wide aerial motion
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Figure 2.7: Frame level max-pooling best scale selection versus pixel-based max-
pooling. The third column: the frame level £* over all scales (best selection), while
the sixth column: L,,,, pixel-based max-pooling result.

20 :
Robustness comparison

10

mCN mlLoFT mCS-LoFT

Figure 2.8: The average robustness comparison between LoFT tracker with only CN
feature, baseline LoFT, and CS-LoFT tracker.

imaginary (WAMI) datasets have different characteristics and challenges compared

to the regular full-motion videos. For tracker performance evaluation, we have used
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Figure 2.9:
robustness.

Performance evaluation on VOT2015 dataset: (Upper) accuracy, (Lower)
Sequences are reordered by robustness and accuracy values respectively.

the same two metrics described in the previous section. Table 2.2 summarizes the

tracking performances for the proposed KC-LoFT tracker and other state-of-the-art

trackers on ABQ dataset. KC-LoFT increases both the accuracy and robustness of

Table 2.1:

codes were

VOT2015 and VOT2016 rank the best non-deep learning trackers whose
made public. A lower rank is better. -’ means the tracker did not partic-

ipate in the challenge. The ranks and results are described in detail on VOT15 [121]
and VOT16 [68] challenge results reports.

| Tracker Name | Rank on VOT2015 | Rank on VOT2016 |

LoFT 460 #68
STAPLE[22] - #5
SAMF [11] #8 424
DSST [31] 438 443
SRDCF [123] #4 Z1T
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Table 2.2: Tracker performance comparison on ABQ wide aerial motion imagery
dataset.

Tracker Name | Rank] | Accuracy? | Robustness)|
SAMF[11] 2.5 0.63 0.91
KC-LoFT 2.5 0.59 0.81
SRDCF[123] |3 0.48 0.70
LoFT 3.5 0.54 0.85
DSST[31] 4 0.61 1.78
STAPLE[22] | 5.5 0.49 1.18

the original LoFT tracker (by 9.6% and 5.1% respectively) and produces better or
comparable results compared to the state-of-the-art trackers from the VOT2015[121]
and VOT2016[68] challenges according to Rank metric which is the average ranking
for evaluation metrics, accuracy, and robustness, used in this evaluation. Figure 2.10
shows sample tracking results for two cars. Trajectory color represents the number of
re-initialization after tracker failures. The lower number of trajectory colors indicates
tracker robustness. In both cases, KC-LoFT tracks the selected cars without any
failures or restarts, while for the first car LoFT, DSST, and Staple require one or
more restarts, and for the second car, all the trackers except KC-LoFT require one

or more restarts.

2.7 Single Object Tracking Conclusion

We presented a recognition-based object tracking framework that extends Likelihood
of Features Tracker (LoFT) with color attributes, scale selection, and kernelized cor-
relation filter module producing CS-LoFT, KC-LoFT. The addition of color attributes
improves object and background appearance description. Color information is incor-

porated through CN scheme. Automated feature scale selection adapts the tracker to
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Figure 2.10: Comparison of tracking results in terms of robustness. Trajectory color
represents the number of re-initialization after tracker failures. The lower number of
trajectory colors indicates higher tracker robustness.

scale changes caused by object motion, camera motion, or zoom. The proposed scale
selection method ensures scale coherence in the likelihood map and robustness against
local outliers. Experimental results show improved performance, particularly for the
sequences that have significant color distractors and rapid scene changes. KC-LoFT
extends the Likelihood of Features Tracker (LoFT) framework with the kernelized
correlation filter (KCF) scheme to better localize the target in a search window. KC-
LoFT combines the LoFT strengths such as multiple complementary features robust

to environmental conditions and shape deformations, with the KCF strength such as
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online template and parameter update and robustness to target shifts and rotations.
KC-LoFT overcomes the LoFT and KCF limitations by improving the performance
of the correlation filter with object location and search window prediction, and by
suspending updates during occlusion events to keep the correlation-based template
and parameters reliable. The use of appearance-based template helps KC-LoFT to
better localize object during deformation, and online update helps adapt to environ-
mental changes. Experimental results on wide aerial motion imagery show improved
performance in terms of accuracy and robustness compared to LoFT and better or

comparable results compared to other state-of-the-art trackers.
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Chapter 3

Multi-Object Tracking Pipeline

3.1 Overview

Multi-object tracking (MOT) aims to locate multiple objects in a scene, maintain
their identities in time, and form motion trajectories for further analysis. Multi-object
tracking divides into two steps: Detection step, in which targets in each video frame
are localized; Association step, where detected targets are assigned and connected to
existing trajectories. The association process can be performed online [124, 125, 126]
by only using information gathered from past frames, or offline (batch mode) [127,
128, 129] by exploiting information from the whole video including past and future
frames. Some applications (i.e., online video surveillance, navigation, autonomous
driving, etc.) require the use of online approaches because of their real-time nature,
others can use online or offline approaches.

The performance of the tracking-by-detection methods is greatly influenced by
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the performance of the object detection methods used. False positives (false detec-
tions), false negatives (undetected objects), under-segmentation (merging of neigh-
boring objects), and over-segmentation (object fragmentation) are major sources of
tracking errors. Recent advances in object detection [54, 55, 56] are thus impor-
tant for the success of the tracking task. Association links the detected objects in
time. Tracking-by-detection frameworks formulate tracking as an object-to-track as-
signment problem. Local data association performs assignment, also can be called
online association, considering information between adjacent frames [42, 43], whereas
global data association, also called offline association, takes multiple frames into ac-
count [44, 45]. The local assignment is more sensitive to detection errors, tends to
produce short fragmented trajectories (tracklets), and may cause drift under occlu-
sion [57, 58]. Association is done by comparing object descriptors with suitable cost
functions (similarity or dissimilarity measures). Features used to describe and com-
pare objects can vary. The selection of discriminative features is very important in
order to reduce association ambiguities. Features used in tracking should be able
to discriminate different objects while being robust to factors such as illumination,
viewpoint, pose, etc. changes. Appearance similarity of the detected objects is a
challenge for the association process since it may cause matching ambiguities. It is
important to integrate additional information such as scene structures [130], target
context [131, 132, 133], or target state prediction [134, 135, 136] to resolve association
ambiguities. However, these additional processes adversely affect the computational
cost of tracking.

Our pipeline for multi-object tracking is called Multi-cue Multi-object Tracker

(M2Track). M2Track is a tracking-by-detection framework proposed where results
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from an object detector are used as input to the tracker. M2Track consists of two main
steps. Detection step which is datasets dependent in our pipeline, and Association
step: a multi-step cascade data association applied on detected objects to ensure time
efficiency and preserve accuracy through the steps, and many other intermediate steps

that are shown in Figure 1.4 and will be discussed in details in next sections.

3.2 Multi-cue Object Detection

Advances in deep learning methods, sensor and GPU computing, sensor technolo-
gies, and training data collected for recent AI challenges [137, 138, 139, 140] have
led to significant performance improvements in object detection accuracy and time
efficiency. Researchers have used motion-based [141, 142, 56] or appearance-based
approaches [143, 144] to address the challenges of object detection. Others have com-
bined motion and appearance-based approaches for more robust performance [145,
146, 147].

Object detection is at the core of this section. For our multi-object tracking
pipeline, a number of object detection approaches have been used. Selecting the
detection approach depends on the dataset’s nature. Supervised or unsupervised
learning object detection (i.e., adaptive K-means), motion-based detection using flux
tensor spatio-temporal operator [71, 72|, deep learning object detection (i.e., Faster
RCNN [32], Mask RCNN [70], YOLO [33], DMNet [35]) using trained or pre-trained
models with transfer learning were implemented and utilized to fit with different
dataset requirements and context. Additionally, our proposed work, which will be

our goal in this section, a multi-cue object detection [73] has been used to detect the
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objects of interest to be tracked later in the further steps.

Despite the improvements, particularly on ground-based video analysis, moving
object detection remains a challenging task in wide area motion imagery (WAMI)
collected by drones. WAMI data presents unique challenges for video data fusion,
object detection, and object tracking. Some of these challenges are illustrated in
Figure 3.1 (a-c) such as small object sizes, object shape distortions, fast motion due
to low frame rates, high densities of similar objects (i.e., parking lots full of cars, busy
intersections with hundreds of vehicles and pedestrians), parallax, and, partial or full
occlusions which can drastically affect object detection and tracking performance.

There are different sources of motion in an airborne vehicle tracking scenario

including:
1. Motion of the drone platform itself
2. Motion of objects (i.e., vehicles and pedestrians) in the scene

3. Motion induced by parallax due to buildings and other tall structures in the

scene

The platform motion can be eliminated by applying an efficient video registration
technique to stabilize the video frames using [148]. Followed by a motion detection
algorithm to identify moving objects, However, classification of real moving objects
from parallax induced motions is a very challenging task in WAMI airborne video
analysis.

In this section, we introduce a novel pipeline, shown in Figure 3.2, to identify
true moving objects despite spurious detections by fusing deep appearance-based

object detection with spatio-temporal tensor-based motion detection. The pipeline
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(g) ABQ Fr#0500 (h) ABQ Fr#1000 (i) GP registered

Figure 3.1: Ilustration of challenges in WAMI: (a) Seams in multi-camera stitch-
ing from georegistration errors. (b) Small vehicle objects with drastic appearance
change due to relative viewpoint. (c¢) Uncorrected motion blur. (d), (e) Two frames
from CLIF 2007. (f) Composite pseudocolor image with (d) in red and (e) in green
channels, showing ground-plane misalignment. (g), (h) Two frames from ABQ 2013
dataset. (i) Composite image showing parallax of tall buildings.
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combines complementary appearance and motion information. Appearance-based
detections are obtained using YOLO (You Only Look Once) [149] deep learning-
based object detection system trained with vehicle image patches from aerial imagery.
Motion detection is performed using a robust 3D (2D + time) tensor-based approach

extending [150].

Video Summarization
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Figure 3.2: Multi-cue moving vehicle detection pipeline using motion, appearance,
and shape information from detections at different stages. In the first stage, the
aerial video is georegistered and stabilized using [148], in the second stage motion-
based flux detection is fused with appearance-based YOLO detections.

The proposed moving vehicle detection system, for airborne WAMI, consists of
three main modules: (1) tensor-based motion detection, (2) appearance-based vehicle
detection, and (3) decision fusion. These modules combine computer vision methods
for motion detection with machine learning approaches (deep learning for appearance-
based detection) and rely on complementary appearance and motion information.
Beyond moving vehicle detection, which is the main focus of this section, the proposed
hybrid and multi-cue system also helps in detection of other scene structures such as

high-rise buildings that is useful in scene understanding.
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3.2.1 Tensor-based Motion Detection

This section describes the tensor-based motion detection module used in the proposed
multi-cue pipeline. Structure tensors for images and video are a matrix representation
of partial derivative information [150]. They allow both orientation estimation and
image structure analysis with applications in image processing and computer vision.
2D structure tensors have been widely used in edge/corner detection and texture
analysis, and 3D structure tensors have been used in low-level motion estimation and
segmentation [151, 152].

The 3D structure tensor matrix J(x) for the spatiotemporal volume centered at

x can be written in matrix form, without the positional terms shown, for clarity, as

Eq. 3.1.
[ orar 1 oI OL AT 7o |
o oz 0z 0Y Q%a_ydy o oz 0t Y
_ o1 91 a1 o1 91 a1 1
J Q oy sy Q oy 8ydy Q oy Sidy (3.1)
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The elements of J (Eq. 3.1) incorporate information relating to local, spatial, or

Ja IV 1][*dy

incorporates total gradient change information in space and time corresponding to

temporal gradients. The trace of the structure tensor, trace(J) =
both moving and non-moving edges of the image sequence, but fails to capture the
nature of these gradient changes (i.e. spatial only versus temporal).

The flux tensor [72, 71], characterizes temporal variations in the optical flow field

within a local 3D spatiotemporal volume, and is our extension to 3D structure ten-

sors designed to detect only the moving structures without expensive eigenvalue de-
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compositions. In the proposed pipeline, in order to prevent information loss due to
isoluminance, we define the color fluz tensor, Jpc(x), as an extension to the regular

flux tensor computed as follows:

[ ST U DD D> Twly) > > (Tatlw)
Q Q

Q I=R,G,B I=R,G,B I=R,G,B

DD Uptlw) Y > (Iy)? XQ: D Uyl (3.2)
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where the following partial derivative notation is used:
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The elements of the flux tensor (Eq. 3.2) incorporate information about temporal
color gradient changes which leads to efficient discrimination between stationary and

moving image features. The trace of the flux tensor matrix,

0
trace(JFc):/ ||EVI||2dy (3.4)
Q

can be directly used to classify moving and non-moving regions without expensive
eigenvalue decompositions.

Both tensor formulations use spatio-temporal consistency efficiently, thus produc-
ing less noisy and more spatially coherent edge and motion evidence [151]. the use of
tensor-based edge and motion estimation also allows natural extension to color image

processing by taking into account vector nature of color data. Extending differential-
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based operations to color images is hindered by the multi-channel nature of color
images. The derivatives in different channels can point in opposite directions, hence
cancellation might occur by simple addition [153]. The use of tensor-based represen-
tation prevents these cancellation effects.

In the proposed system, color flux tensor is used to identify motion blobs. Since
this module is applied after video stabilization module which compensates for cam-
era motion, detected motion blobs predominantly correspond to moving vehicles or
parallax caused by high-rise buildings. Both of these structures are of interest for
video analytics. Moving vehicles to summarize dynamic content, parallax to summa-
rize static content (buildings) captured by a video. Unfortunately, while successful in
detecting these structures, tensor-based motion detection can not distinguish these

structures from each other (Figure 3.3).

Raw frames Color flux tensor

', A . \“

Motion
blob
detection

Static content
(Buildings)

Figure 3.3: Summarization of moving cars and buildings using tensor-based motion
detection result

93



3.2.2 Appearance-based Vehicle Detection using Deep Learn-
ing
Recently, deep learning approaches have revolutionized object detection. Faster R-
CNN [32], YOLO [33], and SSD [34] are some of the state-of-the-art object detection
methods. Deep learning-based object detectors can be divided into two main cate-
gories: region proposal based detectors (e.g. Faster R-CNN [32], R-CNN [154]), and
single shot detectors (e.g. YOLO [33], and SSD [34]), which do not require a separate
region proposal process, making them more computationally efficient. For instance,
instead of region proposals, YOLO divides the input image into a grid of cells. Real-
time moving object detection requires fast and accurate processing. YOLOv3 [149],
an extended version of YOLO, is one of the fastest and most accurate object de-
tections networks. It has 53 convolutional layers trained on ImageNet [155]. Then,
53 more layers are stacked to give the full 106 convolutional layers. YOLOv3 per-
forms detection at three different scales by applying 1 x 1 detection kernels on feature
maps of three different sizes at three different layers in the network. Detecting at
different scales improves the detection of small objects compared to the previous ver-
sions. YOLOvV3 was used since it has: (a) significant speed advantages over two-stage
detectors while maintaining high detection accuracies, and (b) better generalization
capabilities allowing the network to make reasonably accurate detections on unseen

images visually different from the training data (Figure 3.4).

3.2.3 Robust Multi-cue Moving Vehicle Detection

The goal of the fusion-based multi-cue vehicle decision module is to fuse complemen-

tary information from two inherently different approaches to allow semantic classifi-
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Parked vehicles

Appearance
based detection

Moving vehicles

Figure 3.4: Summarization of trackable vehicle objects (parked and moving)

cation of motion blobs, filter spurious detections, and boost overall vehicle detection
accuracy. Tensor-based motion detection produces spatio-temporally coherent mo-
tion detection results robust to illumination changes and soft shadows due to its use
of gradient based information. However, since the method relies on motion, it detects
not only moving vehicles but also changes due to motion parallax caused by buildings
(Figure 3.3). Appearance-based detection on the other hand returns only vehicles or
other regions with appearances similar to vehicles, whether they are moving or sta-
tionary (i.e., parked cars). Stationary cars unnecessarily burden follow-up processes
such as communication, tracking, and activity analysis. Unlike ground-based images,
where objects with larger support regions have distinct appearance features, WAMI
imagery consists of much smaller objects with less distinct features. When trained
and tested on these smaller, less distinct objects, false-positives are also most likely
compared to their counterparts in ground-based, higher resolution surveillance videos.
Table 3.1 and Figure 3.5 show the detection categories in the proposed system.

During the fusion process, besides the moving and stationary vehicle category
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Table 3.1: Fusion procedure for detecting moving vehicles and parallax-based buildings by
combining motion (M) and appearance (A) information (see figure 3.5).

Motion| Appearance Size Detection Category
(Flux) | (Vehicle
CNN)
1 1 any Moving vehicle
0 1 any Stationary vehicle or False (obj) detection
1 0 small | Other moving object or False (motion) detection
1 0 large Motion parallax-based buildings

masks, an explicit building category mask is first generated as
Maskpuyiding = Maskpi, N (1 — Maskyoro) (3.5)

Building mask is then refined by first size based filtering to remove potential false
detections, then by morphological operations, connected component labeling, and
bounding box fitting (Figure 3.6). While single instance of building roof-top detec-
tion is enough to filter-out false vehicle detections. Aggregation of building roof-top
detections in time, produces very valuable information regarding 3D scene structure,

since spread of the detection instances is directly correlated with building height.

3.3 Detection, Validation and Filtering

The system uses the detection masks/bounding boxes produced from object detection
algorithm frameworks. For each frame I, of a given video sequence V' = {1}, I, ...., I}
of length (), there are set of N detected objects D, = {d;1,d;2,....,di n} where dy;
represents object ¢ in frame [;. Detection filtering is applied to eliminate potential

false detections produced by the detector. Objects with low detection scores, or with
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undesired class are removed to reduce false positive objects and ensure reliable linking

in the further steps.

Figure 3.5: The detection categories in the proposed multi-cue detection system. See
Table 3.1 for details. Red marker for moving vehicles, blue for the stationary vehicles
of false object detection, gray for other moving objects or false motion detection, and
green for motion parallax-based building.
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Figure 3.6: Building roof-top detection using flux-based motion parallax response.
(a) Building parallax response, obtained fusing Flux tensor-based motion and YOLO-
based vehicle appearance cues, overlaid on the original frame, (b) building roof-top
bounding boxes for a single frame, obtained by post-processing output in (a), (c)
per frame building roof-top detections aggregated in time where light blue indicates
earlier instances, and red indicates later instances in the image sequence.

3.4 Track Initialization

When a new track is formed, four groups of information corresponding to the new

track are initialized:

1. Detected object’s location, width, height, detection score, detected class and
appearance histogram. Each detected object d;; is encoded with the vector
(deilx], dis[y], dei[w], dis[h], St cri, Ari), where the entries represent position,
width, height, detection score, detected class, and object appearance histogram

respectively.

2. Counters for age, start frame, end frame, visible frames, and invisible frames

for the tracks;

3. Kalman filter parameters K F} = {xz!, P!/} where z! represents state estimate for

the object i at frame ¢ and P} represents associated covariance matrix.
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4. Object velocity records.

3.5 Data Association Level 1: Short-term Local

Association

Short-term local data association is the first data association stage in our system.
In this stage, object detections D, = {d;,ds,....,d,} are assigned to the previously
tracked objects T, 1 = {T1,T%,....., T,n} . Where n is the number of the detected
objects at frame t and m is the number of tracked objects at frame ¢t — 1. We assume
that there is a matrix C; € R™" | with entries cij € (' representing the cost of
assigning detection j to track ¢ at time t. The goal is to find the optimal assignment
of detections to tracks so that the total assignment cost is minimized using Munkres
Hungarian algorithm [74]. Binary decision variables ¥ € {0, 1} are used to represent
a detection-to-track assignment existence. Spatial distance is used for detection-to-

track associations between consecutive frames.

min Zm: Zn: /b (3.6)

i=1 j=1
with constrains
2W=1 j=12n 3 W =1 i=12m (3)
i=1 i=1
¢ = \/(fﬂi — )2+ (g — yy)° (3.8)

Circular gating regions around the predicted track positions are used to eliminate

highly unlikely associations, reduce the computational cost, and reduce false matches.
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Figure 3.7: Association matrix at frame ¢ with all possible states. The Association
matrix is padded with dummy rows and columns to count for unsigned detections
and tracks.

Minimization on the cost matrix results in the assignment A; matrix containing the
indices of the corresponding detection and track pairs. A; determines track states
for frame t. The four possible states {new track, extended track, lost track, inactive
track} are illustrated in Figure 3.7 and as described in Algorithm 3. State descriptions

and associated parameter updates are summarized in Table 3.2.
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Algorithm 3 Data Association Level 1: Short-term Local Association

Input: Detections at time t, Dy = {d1, da, ...,
Output: Updated active tracklet set T = {71, 72, ..., Tm}

// Compute Assignment Cost Matrix
forall d; € D;,7; € T do

N
Ct :\/xz_% (yi — 95)

end
// Determine Assignment Matrix
A= MunkresHungarian(Cy)

d, }; active tracklet set 7 = {71, T2, ...

// Detected object not assigned to any active tracklet

forall d; where Ay(d;, Tt—1) =0 do

// Create New Tracklet: Init with detected object’s properties

Tik-DStates < d;.States
Ti i-Counters < {age = 1, VisibleFrames = 1,
InvisibleFrames = 0, StartFrame = t, EndFrame = NULL}
ﬁk KF + {$t Pt}

end

// Detected object matched to an active tracklet

forall d; where Ay(d;, Ti—1,4+) = 1 do

end
// Terminate Inactive Tracklets:

Ti j+=.Counters < { EndFrame = t}
Save(Tz;)

end

// Extend Tracklet: 7;;- extended with info from detection d;.

Ti j+.DStates < Update(T, j«.DStates, d;.States)

Ty j«.Counters < {age++, VisibleFrames++}

Ti j« KF « Update(Ty j«. KF,d;.States)end

// Tracklet not assigned to any detected object

forall 7;_1 ; where Ay(Dy, Ti—1,;) =0 do
// Maintain Lost Tracklet: 72_1,]- is assigned to lost state.
Ti j.Counters < {age++, Invisible Frames++}

forall 7;_1 ; that spends X\ time steps in lost state do
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Table 3.2: State description and associated parameter updates.

State Parameter Updates Description
- Track ID . .
New - Kalman filter state K F} = {z}, P!} Detected .Ob.JCCtb not assigned
.. ! DA to any existing tracks
Track - Counters: age, visible frames, invisible frames start new tracks
- Appearance: CN color histogram & HoG descriptor '
Extended | - Kalman filter state K F} = {zt, P!} Detected obJe<.:ts.successfully
’ v matched to existing tracks
Track frames
extend those tracks.
Tracks not assigned to any
Lost . . .
- Counters: age, invisible frames detected objects are assigned
Track
to lost state.
Sa’I‘;zck D After spending A time
Inactive | _ Full trajectory (previous and last seen positions) steps in lost state, unmatched
Track ) y P b tracks

- Appearance: CN color histogram & HoG descriptor
- Counters: age, born/death frames

are terminated.

3.5.1 Hybrid Cost Matrix Generation

To produce better assignment between tracks and new detection. A hybrid method

for generating a cost matrix for spatial information has been exploited depending on

the nature of objects that need to be tracked. Three types of spatial information have

been used

for generating cost matrix C}:

1. Centroid distance matching is helpful with objects that have large movement

displacement due to low frame rates (i.e., moving objects on wide aerial im-

agery). ¢

ij

object i and (z;,y;) of object j and computed as

represents the Euclidean distance between the centroid (z;,y;) of

& =/ (z

—23)2+ (s — )

2 (3.9)

2. Bounding boxes overlapping matching that is helpful with objects that have low

displacement movement. (i.e., cells with very slow motions). The value of ¢
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represents the intersection over union value between the bounding box area of

object i and the bounding box area of object j and computed as

i _ AU A — [Ain Ay
! |A; U A

(3.10)

3. Mask overlapping matching which is helpful with objects that have an irregular
shape or fast deformable nature. The value of cij represents the intersection
over union value between the mask area of object ¢« and object 7 and computed

as

Cij _ |Az’UAj| — |AiﬂAj‘

3.11
t |A; U Ay (3.11)

3.5.2 Track Position Prediction

The short-term data association step (Level 1), resolves the associations of the de-
tected object positions D, to the predicted track positions T; at frame t. Kalman filter
with a constant velocity model is used to predict the new positions of the tracked
objects using their past trajectories. Velocity vectors for each target are stored to be
used in the following steps. The process involves prediction and update steps. The
first positions of the targets are estimated from their current states, then Kalman

filter updates the target states using the detections from the current frame.
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3.6 Data Association Level 2: Long-term Global
Association with Appearance Model

Since the short-term association process considers only the information from con-
secutive frames, it can not recover from temporary detection or association prob-
lems that cause tracks to terminate early resulting in short tracklets rather than
full tracks. Such of these problems are occlusions, false detections, matching ambi-
guities, etc. Further stages of our pipeline are used to improve the performance in
these cases. Global data association is used to link fragmented tracklets to generate
longer tracks. Global data association is an expensive process because it optimizes
all possible hypotheses rather than only those on consecutive frames. In order to
reduce computational cost while still resolving complex assignment cases, we per-
form global association at tracklet level rather than detection level using refinement

process. Tracklet level global association offers two main advantages:
1. Reducing number of hypotheses thus reducing computational cost;
2. More information per hypothesis thus more reliable matching.

Re-linking on tracklet level reduces the number of hypotheses, supplies more
information per hypothesis, reduces the computational cost, and ensures more ro-
bust matching. Given tracklet 7; and the set of match candidates J where: J =
{T1, T2, ..., T} — Ti. The process is described in Algorithm 4. For a given tracklet T;,
at most one tracklet that belongs to the set of candidates J is assigned to 7; if the set
is not empty after refinement process. The refinement process filters out the infeasible
hypotheses to reduce assignment space for the tracklet candidates. The refinement

process starts by checking some conditions met with 7; to be refined from the can-
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didate set J. The refinement process relies on spatial distance, tracklet start and
end times, motion directions, and appearance models. Once all potential match sets
are refined, global data association determines the tracklet-to-tracklet associations by

minimizing spatial and appearance distances.

Algorithm 4 Data Association Level 2: Forward Tracklet Linking

Input: Early terminated tracklet 7;, set of match candidates J = {71, T2, ..., Te} — Ti
Output: 7;* candidate tracklet for forward linking

forall 7; € J initialized on frame borders or other source positions do
‘ J < J —T;; // remove tracklets entering the field of view
end
forall 7; € J where (T;.StartFrame < T;.EndFrame) do
‘ J < J —7Tj; // remove tracklets born before the death of T;
end
forall 7; € J where (T;.StartXY — T;.EndXY) > Dxy do
‘ J  J —7T;; // remove tracklets far from the last position of T;
end
forall 7; € J where (T;.StartFrame — T;.EndFrame) > D; do
‘ J < J —T;; // remove tracklets that started much later
end
// dissimilar in appearance
forall 7; € J do
D¢y = dist(7;.CN(First), T;.CN(Last) // color (CN distribution)
Dpoc = dist(T;.HoG(First), T;. HoG(Last)// shape/texture (HoG descriptor)
Dgiamese = dist(T;.Siamese(First), T;.Siamese(Last)// deep features/ (Siamese
network descriptor)
if (DCN > TCN)-OT- (DHOG > THOG)'OT' (DSiamese > TSiamese) then
‘ J < J —7T; // remove tracklets dissimilar in appearance
end

end
// best match in terms of spatial and appearance distances

if (7 # 0) then
‘ 7;* = argmin distxy, app(7i, 7;)
T;€T
end
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3.6.1 Appearance Model for Tracklet Linking

Appearance description and matching are integral components of the data association
process. Appearance descriptors used in tracking should be detailed enough to dis-
criminate different tracked objects, while still being robust to external factors such as
illumination changes, shadows, partial occlusions, pose, viewing angles, etc. A hand-
crafted /engineered and learned deep feature representations to distinguish matched
and unmatched pairs were combined to generate appearance model for the proposed
tracker. In terms of hand-crafted/engineered feature description, we use histogram of
oriented gradients (HOG) descriptor [76] and object color attributes using our novel
color correlation cost matrix. And for learned deep features, the Siamese network is
used for matching similarities between tracklet pairs.

HoG [76] is a widely used powerful descriptor that describes shape and texture
through histogram of gradient orientations in local image regions. We record the HoG
descriptor for all new tracks at the time of track initialization. Mean square error

(MSE) is used to compute the distance between HoG descriptors:

n

1
MSE = = Hy — Hp)? 12
S n;( K, — Hr;) (3.12)

where n is the number of HoG histogram bins, Hy, and Hf; is HoG histograms for
current tracklet and tracklet potential candidate match respectively.

We incorporate color information through an extension of the CN (Color Names)
model proposed in [118]. Linguistic study described in [119] shows that the English
language has eleven basic color terms: black, blue, brown, gray, green, orange, pink,

purple, red, white, and yellow. [118] explores this concept to generate CN (Color
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Names) map. CN model associates RGB color values with linguistic color labels and
reduces the 256 RGB color space to just 11! CN color space. The biggest challenge
in color description is sensitivity to illumination. Illumination variations and shadows
may alter the color (and intensity) of an object making the information not reliable
(e.g. shadow may change blue to black, or yellow to brown). When performing color
appearance comparison, it is important to consider the similarity of individual color
codes and the likelihood of colors switching from one value to another (e.g., while
blue, yellow, and orange are three distinct color names, the distance between blue
and yellow is higher than the distance between yellow and orange, and transition
likelihood from blue to yellow is lower compared to transition probability from yellow
to orange).

We have built and used an 11 x 11 CN-to-CN color correlation weight matrix
Wen to account for similarity between different CN values during color distribution

comparison. The elements of the color correlation matrix are computed as follows:
Wen(ci,e5) =1—2 x mlgm:(min (G(k,1),G(k,5))) (3.13)

where ¢; and ¢; are two CN codes and G is the 2'% x 11 matrix describing the mapping
from 32 x 32 x 32 quantized RGB space to 11-valued CN space provided by [118].
In order to compare object color distributions, we use earth mover distance (EMD)
[78]. EMD computes the minimum paid cost to transfer one histogram to another
histogram. We use color correlation matrix Wey as transfer cost. See Figure 3.8
for more details. Use of cross-bin color histogram distance computation using EMD
scheme and color correlation matrix VW described above decreases sensitivity to color

changes caused by illumination variations and improves tracking results compared
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Figure 3.8: Color correlation cost matrix and earth mover distance computation.

to bin-to-bin color histogram comparison. Linking at this stage is exclusively for
already partially tracked objects in the scene that suffered from early termination.
For cases where objects were not detected for a period of time, because of partial or
full occlusions, a separate occlusion handling stage is proposed.

In addition to the aforementioned hand-crafted feature descriptors, we use an of-
fline trained Siamese network [77, 156] to select tracklet match candidates. A Siamese
network is a type of deep learning network that uses two or more identical subnet-
works that have the same architecture and share the same parameters and weights.
We train the network to compare bounding boxes of two protentional tracklets match-
ing. The network was trained to identify whether two bounding box observations are
for the same object or not. The used Siamese network is originally for matching
images of handwritten characters and the network architecture is illustrated in Fig-
ure 3.9. During the training phase, a pair of similar or dissimilar objects are passed
through two identical deep learning branches that share the same parameters and

weights. The outputs are fed to a loss layer that minimizes the distance between
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similar objects and maximizes the distance between dissimilar ones. The learned fea-
ture representation and matching function is used to find the most relevant tracklet
from a candidate tracklet set. To compare two images, each image is passed through
one of two identical subnetworks that share weights. The subnetworks convert each
105 x 105 x 1 image to a 4096-dimensional feature vector. Images of the same object
have similar 4096-dimensional representations. The output feature vectors from each
subnetwork are combined through subtraction and the result is passed through a fully
connected operation with a single output. A sigmoid operation converts this value
to a probability between 0 and 1, indicating the network’s prediction of whether the
images are similar or dissimilar. The binary cross-entropy loss between the network

prediction and the true label is used to update the network during training.

loss = —glog(y) — (1 — g)log(1 — y) (3.14)

where g is a true label and it can be either 0 or 1, and y is the predicted label. The
comparison between the features of two pairs is calculated using Sigmoid function.
Sigmoid function is used to find the probability of the similarity between two bounding

boxes of two pairs.

3.7 Data Association Level 3: Occlusions Handling

When a tracked object gets occluded, lack of detection causes its track to terminate.
When the object later reappears, the system starts a new track with a new object id.
Occlusion handling module aims to link these tracklets corresponding to the same ob-

ject, preserving their object id through the occlusion events. Sample tracklets before
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Figure 3.9: Siamese network deep features for matching.

and after occlusion handling process are shown in Figure 3.10. The proposed occlusion
handling module extends the methods described in [157] with combined appearance-
based and geometric-based constraints instead of geometric only matching. Occlusion
handling process starts by identifying early terminated tracklets as pre-occlusion can-
didates, and late start tracklets as post-occlusion candidates. Tracks that exit the
scene at known exit locations or sinks are excluded from the pre-occlusion candidate
list. Tracks that enter the scene at known enter locations or sources are excluded from
the post-occlusion candidate list. The occlusion handling module uses two types of

information:

1. Tracklets history (i.e., initialization/termination times and positions, motion

direction, etc. for tracklets in pre- and post-occlusion candidate lists).
2. Scene information (i.e., object detection masks to locate potential dynamic
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Figure 3.10: Sample tracklets before and after occlusion handling. The first row
shows the trajectories after applying the first two data association stages from our
pipeline (short-term and long-term data association). The second row shows relinked
tracklets after applying occlusion handling module, the third data association stage.

occluders in the scene).

For each tracklet = in the pre-occlusion list, an occlusion confidence map 0 is gen-
erated. These maps encode predicted locations of the tracked objects post occlusion.
Occlusion confidence maps are generated by combining tracklet motion model Pr,
occlusion confidence Fp ,, and motion prediction range Py, for the tracked object

for t subsequent frames as described in Eq. 3.15:
0'(i) = Pra(i) x P54 (i) x Py (i) (3.15)

where i denotes pixel location and ¢ denotes the maximum occlusion duration con-

sidered by the proposed system (an input parameter).
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Tracklet motion model Pr, encodes inertial state of the tracked object using its

P (i) = exp (_ ((pe- ) — P[]} ) (316)

201 |[p (12| dI?

motion history:

where p, is the predicted motion direction of trajectory x, which is computed as the

mean of the motion direction history of x; d (d =i — x;) is the spatial distance from

pixel location ¢ to the last seen location of x; and o is the motion direction variance.
Occlusion confidence Py, measures the probability of a pixel being occluder/foreground

versus background in ¢ subsequent frames:

1, if i € detected regions (FG).
Po (i) = (3.17)

1 —a otherwise (BG).

where o = [0, 1] is detection score reliability. Motion prediction range Py, encodes

predicted motion of the tracked object in ¢ subsequent frames:

Pra(i) = exp ( . M) (3.18)

where o is the motion variance within ¢ frames. The combined confidence map 0" is
then used to find the most probable match from the post-occlusion list to the selected
tracklet in the pre-occlusion list. The process is repeated for each tracklet in the pre-
occlusion list. Figure 3.11 shows the intermediate results of the occlusion handling

process.
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Figure 3.11: Occlusion event handling process for a sample object from ViaDrone [62]
dataset. The object is occluded from frame #31 to #39. A time interval (¢ = 15)
is set to show how many frames are used for predicting the location of the object
after occlusion event starts. (a) Video frames with bounding box on the selected
object, last seen of the selected object, occlusion interval, and after occlusion. (b)
Tracklet motion model Py , that shows the inertial confidence of the object as a result
from its history, the higher probability is toward the direction of object motion. (c)
Occlusion Confidence Pp . the probability of potential occluders within ¢ frames. (d)
Object motion prediction Py, within ¢ frames. (e) The combined confidence 8" for
the tracklets initiated on a specific frame.

3.8 M2Track Versions and Names

For efficient implementation with different datasets and challenges. M2Track has

been written in Matlab and Python. M2Track has different pipeline components
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with different assigned names according to the purpose of using the tracker to fit

different applications. Different M2Track versions are:

1. M2Track-Lite: Slim version of M2Track with only levell data association
(Matlab/ Python)

2. M2Track-L2: up to Level 2 from M2Track (Matlab/ Python)

3. M2Track: all three data association modules (Matlab)

74



Chapter 4

Multi-object Detection and
Tracking for Aerial Videos

4.1 Overview

In recent years, there has been an exponential increase in detection and multi-object
tracking applications due to advances in sensor technologies, and rapid advances in
computational hardware in terms of both power and cost. These technological ad-
vances are leading to the emergence of new applications in different domains including
aerial surveillance [158, 159], traffic monitoring [160, 161], urban planning [162, 163],
precision agriculture [164, 165, 166], search and rescue [167, 168], and disaster relief
[169]. Society is seeing a growing need for robust aerial imagery and video analyt-
ics capabilities to take full advantage of data fusion and to meet such application
needs [170]. Novel methods, particularly those using artificial intelligence/machine

learning (AI/ML), coupled with rapid advances in computational hardware (more
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powerful, lighter weight, lower energy, lower computing cost) are revolutionizing im-
age processing, pattern recognition, and information fusion (e.g., WAMI fusion appli-
cations [171]). There is a growing need for robust video analytics capabilities to take
full advantage of this data and address its applications’ pressing needs. In this chap-
ter, wide aerial videos will be explored as high and low altitude data for applying our
object detection and tracking approaches to different acquisition methods to ensure
our work robustness to different cross-domain data for different analytical computer

vision applications.

4.2 Wide Aerial Motion Imagery/ High Altitude

Wide area motion imagery (WAMI) is characterized by large ground coverage of a few
square miles, many objects of interest, and high-altitude oblique viewing geometries.
WAMI platforms equipped with orientation sensors circle above a region of interest
at a constant altitude, adjusting steadily the orientation of the camera array pointing
to a narrow area of interest [172] within the region being imaged. Once georegistered
and stabilized, these videos provide a virtual nadir (i.e., downward) view of the region
being monitored [172] and enable large-scale surveillance and monitoring activity
analysis applications for extended periods of time.

WAMI exploitation pipelines for object recognition and multi-target tracking have
unique challenges such as large camera motion, low frame rate, small object sizes,
multi-camera arrays, hundreds to thousands of moving objects per frame, oblique
viewing angles, motion blur, parallax effects, shadows, etc., in addition to regular

sensor resolution and weather challenges. Figure 3.1 shows some examples of these
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challenges.

This section briefly describes some high-altitude WAMI videos of interest. Ta-

ble 4.1 gives a short description of sample publicly available WAMI datasets of inter-

est. Two of these datasets are our focus, a multi-camera Columbus Large Imagery For-

mat (CLIF) 2007 [2] dataset, and a single-camera Albuquerque, New Mexico (ABQ)

2013 [1] dataset. Video and annotation details for these datasets are summarized in

Table 4.2 and further described below:

Table 4.1: Five WAMI dataset collections and their characteristics.

‘ Name ‘ Sensors Scene ‘ Ground-truth ‘ Targets
UNICORN 2008 [173] Visible (6-cameras) Wright-Patterson | Manual+GPS Moving vehicles,
SAR Air Force Base Partial (4 million | radar reflectors,
labels) calibration targets
WPAFB 2009 [174, 175] | Visible (6-cameras) Wright-Patterson | 1,537 stitched im- | All moving vehicles
SAR Air Force Base ages; GT: 1/3 | for two-thirds of the

training; 1/3 self-
test

frames

MAMI 2013 [176, 177]

Aerial (5-color+1-gray)
Ground (4-color) cameras

Wright-Patterson
Air Force Base

Manual - Partial

Variety of objects in
the scene

Downtown

CLIF 2007 [2] Visible (6-cameras) Ohio State Univer- | Manual All moving vehicles
sity campus (3,502,4011a-
bels)
ABQ 2013 [1] Single camera Albuquerque, NM | Manual All moving vehicles

in an ROI

Columbus Large Image Format (CLIF) 2007 Dataset:

CLIF 2007

dataset [2] consists of several hours of imagery collected from a large format electro-

optical (EO) platform by AFRL Sensors Directorate on October 2007 over the Ohio

State University (OSU) campus. The data is collected using a matrix of six cameras

at approximately 2 frames per second. Figure 4.1 shows samples of the matrix of the

six cameras raw data, georegistered frame, and car samples.
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Matrix of raw images from
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Figure 4.1: CLIF 2007 sample for raw image, georegistered, cropped, and moving car
samples from the sequence

ABQ 2013 Dataset: Aerial urban imagery dataset collected by Transpar-
entSky [1] using a large format camera mounted on a gimbal with on-board GPS and
IMU, with a circular data collection flight path 1.5km above ground level over down-
town Albuquerque, NM on September 3, 2013 [178, 179]. Imaging was done at a frame
rate of 4Hz and 2.6km orbit radius. This dataset contains 1071 raw high-resolution
images (6600 x 4400) with a nominal ground resolution of 25cm. Ground-truth for the
dataset consists of manually marked bounding boxes and track IDs for all the moving
vehicles (139 vehicle tracks in total) in a 2000 x 2000 region of interest extracted
from 200 consecutive frames. Figure 4.2 shows samples of raw, georegistered ultra

high-resolution images, and car samples.
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Car samples

Figure 4.2: ABQ sample for raw image, georegistered, cropped, and moving car
samples for the first frame of the sequence

Table 4.2: Video and annotation details for the ABQ 2013 [1] and CLIF 2007 [2]
WAMI datasets.

| Dataset | ABQ 2013 [1] | CLIF 2007 [2] |
Frame per second 4 ~ 2
Raw frame size 6600x4400 pixels 4016 %2672 pixels
Registered frame size | &= 12000x 12000 pixels | 31744 x29696 pixels
ROI size with GT 2000x 2000 pixels Full frame
# Frames with GT 200 6,343
# Object instances 139 3,502,401

4.2.1 Moving Object Detection and Tracking

In this section, georegistered cropped images are used for both CLIF 2007 and ABQ
datasets for our multi-object tracking pipeline. First, our proposed multi-cue object
detection pipeline was applied to detect the moving cars on the scene. Then, the

detected moving cars are tracked with our proposed detection-based multi-object
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tracking pipeline (M2Track).

Moving Object Detection for ABQ and CLIF 2007: multi-cue moving
object detection was implemented on high altitude videos, in which, appearance-based
WAMI vehicle detection using YOLO, tensor-based motion, and change detection
Flux were fused to detect moving vehicles in the scenes.

For appearance-based object detection, single-stage detectors YOLOv3 [149]
since it has significant speed advantages over two-stage detectors while maintaining
high detection accuracy and having better generalization capabilities allowing the
network to make reasonably accurate detections on unseen images visually different
from the training data. YOLOv3 [149], an extended version of YOLO, is one of
the fastest and most accurate object detections networks. It has 53 convolutional
layers trained on ImageNet [155]. Then, 53 more layers are stacked to give the full
106 convolutional layers. YOLOv3 performs detection at three different scales by
applying 1 x 1 detection kernels on feature maps of three different sizes at three
different layers in the network. Detecting at different scales improves the detection
of small objects compared to the previous versions which are beneficial for detecting
small vehicles on WAMI.

We demonstrated appearance-based detection performance using two YOLO net-
works, one trained using the CLIF dataset [2], and one using the Vehicle Detec-
tion in Aerial Imagery (VEDAI) dataset [180]. VEDAI consists of 1200 satellite
images collected during Spring 2012, over Utah, USA with an image resolution of
12.5cm x 12.5cm per pixel. Figure 4.3 shows training loss versus iterations trained

using the CLIF dataset and a few image patches from the training set. During both

80



training and inference, the very large WAMI images are partitioned into 500 x 500
non-overlapping image patches and fed to the network patch by patch. This pro-
cess prevents loss of image resolution caused by image resizing, a critical problem for

WAMI datasets with small targets.
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Figure 4.3: Loss for appearance training phase in YOLOv3 on CLIF 2007 (left), and
ABQ (right) datasets. The red dots on the curves correspond to (recall, precision,
and f-measure) values listed in the sub-figure for each dataset.

For motion-based object detection, it is important to robustly detect true
object motion and structural changes in the scene as opposed to changes caused
by artifacts such as illumination changes [178]. Flux tensor [71, 72, 56] is used to
estimate and detects only the moving structures. Flux tensor is a 3D (2D+time)
tensor-based approach that estimates and detects only the moving structures with-
out expensive eigenvalue decompositions. The process detects the moving regions
corresponding to real moving objects (vehicles), but also apparent motion caused by
parallax of high-rise buildings. Building mask is then refined first by size-based filter-
ing to remove potential false detections, then by morphological operations, connected
component labeling, and bounding box fitting. While a single instance of building

roof-top detection is enough to filter out false vehicle detections, aggregation of build-
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ing roof-top detections in time produces very valuable information regarding the 3D
scene structure shown in Figure 3.6 since the spread of the detection instances is
directly correlated with building height. Figure 4.4 shows the intermediate results

and the final result after applying the multi-cue detection pipeline on ABQ dataset.

Figure 4.4: The intermediate results and the final result after applying multi-cue
detection pipeline on ABQ dataset. a) Raw data, b) Motion mask overlaid on flux
tensor motion-based detection. ¢) Appearance mask overlaid on the raw frame, the
red overlaid masks represent all predicted vehicles (moved and parked) in the scene.
d) Appearance-motion fusion result, some false positive appears on the top of the
buildings. e) Buildings mask. f) The final result after filtering out false positives on
the top of buildings.

For Object Tracking, we have tested and evaluated M2Track-Lite a slim version

of our multi-cue multi-target tracker M2Track as described in Section 3.8. We applied
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the vehicle detection results from our multi-cue object detection pipeline on both ABQ

and CLIF 2007 datasets. Figure 4.7 shows tracking results for both datasets.

4.2.2 FEvaluation Metrics

Detection Metrics: Detection accuracy was evaluated on object-level measures.
The results are quantitatively evaluated in terms of detection measures recall, preci-
sion (Eq. 4.1), and F-measure (Eq. 4.2), where GT, DT, and TP denote ground-truth,

detection, and true prediction objects respectively.

#TP .. #TP
_— Precision =

Il = —
Reca 4GT 4DT

(4.1)

Recall x Precision
F =2 4.2
meastre 8 Recall + Precision (4.2)

MOT Metrics: Different evaluation metrics have been proposed for multi-object
tracking [4, 181, 182]. For the evaluation of WAMI multi-object tracking results, we
adopted Multi-Object Tracking (MOT) challenge evaluation metrics summarized be-
low and described in [183, 182]. The toolkit for MOT benchmark evaluation provided
in [184] was used to evaluate the WAMI tracking results. Below is a brief description

of the MOT evaluation metrics used in this section:

1. MOTA: Multiple object tracking accuracy, the most popular metric, is cal-
culated by combining three types of errors on a per-frame basis, and can be

negative:
> (FNy+ FP, + IDS})
Zt GTi

MOTA =1 — (4.3)

where ¢ is the frame number, FN; is the number of undetected (missed) objects
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(false negatives), FP, is the number of extra detected objects (false positives),

and G7T; is the number of ground-truth objects in frame ¢.

. IDS: Identity switches, counts number of identity mismatches by considering
the ID mapping in frame ¢t and t — 1. The IDS metric describes the number of

times that the matched identity of a tracked trajectory changes.

. FRAG: Fragmentation metric is the number of times that trajectories are frag-
mented. Both IDS and FRAG metrics reflect the accuracy of tracked trajecto-

ries.

. MT: Mostly tracked metric computes the percentage of trajectories (with re-
spect to the number of ground-truth trajectories) tracked accurately for more

than 80% of the trajectory duration.
. PT: Partially tracked are cases not labeled as MT or ML.

. ML: Mostly lost metric computes the percentage of trajectories tracked ac-
curately for less than 20% of the trajectory duration. MT and ML metrics

determine how much of the trajectories are recovered by the tracker.

4.2.3 Evaluation and Experimental Results

Georegistration accuracy: Inaccurate georegistration can result in both unstable

ground-plane motion and motion from building parallax which makes filtering build-

ings more difficult and detecting vehicles inaccurate. Georegistration accuracy was

assessed using four manually tracked points on the dominant ground plane for ABQ

2013 (4 Hz, 200 frames) and CLIF 2007 (~2 Hz, 100 frames) to quantify pixel drift
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errors. The mean and standard deviation of the translation errors (Az, Ay, Euclidean
distance) for each tracked point, averaged over all frames, due to shifts (drift) aris-
ing from georegistration errors are shown in Table 4.3. Figure 4.5 shows the drift
with respect to the mean shift (left scatter plot) and with respect to adjacent frame
pairs (right line plot). It is evident that CLIF has very large georegistration errors
of more than one order of magnitude that is because the conventional homography
estimation methods used for CLIF only use the information available from 2D feature
correspondences and ignore (or unable) to utilize the 3D information in underlying
scenes. CLIF has higher errors than the errors in ABQ that uses BA4S pose refine-
ment [185, 148, 186] that utilizes the 3D information in underlying scenes. Outliers
have up to 50-pixel shift error, with respect to mean position, and over 25-pixel frame-
to-frame shift error in CLIF due to inaccuracies in multi-camera georegistration. The
former reflects georegistration accuracy, while the latter is indicative of difficulties

during vehicle detection and data association for tracking.

Table 4.3: Mean drift error in pixels for four points tracked in each WAMI sequence
for 200 and 100 frames respectively in ABQ and CLIF, after georegistration using

different methods.
Dataset Point A | Point B | Point C | Point D || Mean | StdDev

ABQ-BA4S | 0.5620 0.5095 0.4463 0.6607 || 0.5446 | 0.3599
CLIF-Conv | 6.3970 4.5907 6.7544 6.3670 | 6.0273 | 5.0900

Detection Results: Figure 4.6 shows motion detection results on sample frames
from two WAMI datasets ABQ 2013 single-camera WAMI, and AFRL CLIF 2007
multi-camera WAMI. For ABQ, there are motion responses from both moving ob-
jects and building structures due to motion parallax. This makes it difficult to use
only the estimated motion areas to aid in detecting and tracking vehicles. Despite the

fact that the ground plane in the video is well stabilized, by using 3D building struc-
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Figure 4.5: Drift in pixels for one manually tracked point in each WAMI sequence
across 200 (ABQ) and 100 (CLIF) frames.

ture cues, the motion responses due to building motion parallax can be accurately
filtered out. On the other hand, image transformation and mosaicing are another
challenge in large-scale WAMI datasets. Inaccurate georegistration can result in both
unstable ground-plane motion and motion from building parallax which makes filter-
ing buildings more difficult and detecting vehicles inaccurate. The detection problem
is further compounded by visible seams when mosaicing multiple cameras in WAMI
frames, which can lead to motion detection failures, as shown in Figure 4.6 for AFRL
CLIF dataset.

Table 4.4 shows detection performance for two moving vehicle detection approaches.
Appearance-only using CNN-based detections (YOLOv3) are shown in Figure 4.4c
and Figure 4.7b, and f. While, best recall is obtained by this approach, even lower
precision (9.36%) for ABQ dataset is obtained because of the parked vehicles. Com-
bining appearance and motion-based object detections generates promising results

(Figure 4.4d) since parked vehicles get filtered out thanks to the motion mask from
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the flux tensor. Some false positives still remain due to vehicles parked on building
rooftops. Explicit building detection through motion and appearance clues as de-
scribed in Section 3.2.3, and used of it to further filter vehicles parked on rooftops
results in the best precision (71.16%) and F-measure (64.41%) values for ABQ dataset

and best precision (63.65%) and F-measure (72.09%) values for CLIF dataset.

Figure 4.6: Motion detection results for sample images from two WAMI/ high-altitude
datasets: Row 1 is ABQ 2013, and Row 2 is AFRL CLIF 2007 dataset. Col 1 shows
the original images. Col 2 shows motion detection results using Flux and the detection
response is shown in blue

MOT Results: Table 4.5 shows M2Track-Lite multi-object tracker performance

on two sample high altitude WAMI datasets, single-camera ABQ 2013 [1] dataset with
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Table 4.4: Precision, recall, and F-measure (in percent) for YOLO [149] and the

proposed multi-cue moving vehicle detection pipeline for ABQ [1] and CLIF 2007 [2
‘ Datasets ‘ Detected Alg. ‘ #GT ‘ #Detection ‘ # Matches ‘ Precision ‘ Recall ‘ F-measure
ABQ YOLO [149] 8323 74368 6966 83.69 9.36 16.84
ABQ Multi-cue (proposed) | 8323 10066 5923 71.16 | 58.84 64.41
Cropped CLIF | YOLO [149] 7544 6550 5283 70.02 | 80.65 74.96
Cropped CLIF | Multi-cue (proposed) | 7544 5778 4802 63.65 | 83.10 72.09

fairly accurate georegistration, and multi-camera AFRL CLIF 2007 [2] dataset with
larger georegistration errors (Table 4.3, Figure 4.5) and visible inter-camera seams,
Figure 4.6. Detection and tracking performance evaluations are also presented for a
5,000 x 3,000 region of interest (ROI) from the AFRL CLIF 2007 dataset positioned
at (z = 8750,y = 11220). This ROI was selected because the region includes multiple
busy intersections and persistently stays in the field of view of the cameras resulting
in longer ground-truth trajectories. Tracking results are presented for three types
of detections corresponding to manually generated ground-truth (GT) detections,
appearance-based deep network detections (YOLO [149]), and the proposed multi-
cue detection approach based on the fusion of appearance-based and motion/change-
based detections described in 3.2.

WAMI multi-object tracking performance heavily depends on object detection and
georegistration accuracy. Figure 4.7 illustrates sample detection results (YOLO and
multi-cue object detection (the proposed approach) and multi-object tracking results.
Fusion of multiple cues provides better detections leading to improved tracking; using
YOLO only versus the multi-cue detection approach, MOTA improves from -310 to
73 on ABQ (see Table 4.5). The impact of georegistration accuracy on multi-object
detection and tracking was evaluated using CLIF 2007. When large georegistration

errors are present, average of ~6 pixels in CLIF, accurate estimation of motion and
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Table 4.5: Tracking performance using ground-truth vehicle detections, YOLO, and
multi-cue object detection (the proposed approach) in WAMI datasets ABQ 2013,
and cropped 5,000 x 3,000 pixel region of interest (ROI) from AFRL CLIF 2007 (see
Figure 4.7(e)). Evaluation metrics include Multi-object Tracking Accuracy (MOTA),
Id Switches (IDS), Fragmentation (FRAG), Mostly Tracked MT), Partially Tracked
(PT), Mostly Lost (ML), and GT-ID (Number of Tracks) as described in HOTA [183].
ABQ 4 Hz, 200 frames; CLIF ~2 Hz, 100 frames.

Datasets Georegistration | Detector Alg M2Track-Lite Tracker

Metrics MOTA?T | IDS] | FRAG| | MT?t | PT1 | ML| | GT-ID | #Detections
ABQ BA4S GT 99.70 24 0 139 0 0 139 8,323
ABQ BA4S YOLO [149] -310.0 53 0 68| 11 43 139 35,027
ABQ BA4S Multi-cue [73] 73.80 248 8 139 0 0 139 10,066
Full CLIF Conventional GT 90.42 | 3,559 676 885 | 1 0 886 12,413
Full CLIF Conventional YOLO[149] 40.30 184 46 571 0 0 571 17,574
Full CLIF Conventional Multi-cue [73] 30.30 | 1,058 45 551 | 15 5 571 16,338
Cropped CLIF Conventional GT 99.30 52 19 129 0 0 129 7,544
Cropped CLIF Conventional YOLO[149] 71.90 | 1054 281 100 | 25 4 129 6,550
Cropped CLIF Conventional Multi-cue [73] 68.30 622 264 73| 48 8 129 5,778

(e) Original AFRL CLIF 2007 with ROI  (f) YOLO vehicle detections in cropped region (g) M2Track-Lite tracks in cropped region

Figure 4.7: Sample detection and tracking results for ABQ 2013 [1] and AFRL
CLIF 2007 [2] WAMI showing improvement in detection accuracy when appearance
(YOLO) and motion (Flux) are combined.

change cues is adversely impacted, decreasing MOTA score from 71.9 for YOLO
only, to 68.3 for multi-cue detection in the cropped CLIF 2007 and from 40.3 to

30.3 for the Full CLIF 2007 dataset (see Table 4.5). These results demonstrate that
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early upstream processing stages of WAMI video analytics pipelines, especially multi-
camera georegistration accuracy, are crucial for accurate performance in small target
detection and tracking.

On the other hand, M2Track was tested and compared with some state-of-the-art
and the baseline trackers whose codes are available publicly online. The experiments
were implemented on ABQ dataset. Our M2Track tracker outperforms other com-
parable trackers. M2Track takes into account spatial, appearance, and kinematic
information to ensure reliable trajectory linking. While GOG [47] basically uses
pairwise edges between network flow graphs to link trajectories resulting in ignoring
kinematic constraints between observations. CMOT [42] is an online tracker that
does not exploit the visual information from future frames which is important for
increasing performance under unpredictable object displacement and camera motion.
THTLS [187] focuses on motion information to link the tracklets which leads to many
identity switches, especially with WAMI datasets since the motion is quite challeng-
ing. SORT [50], the online tracker, approximates the inter-frame displacements of
each object with a linear constant velocity model, which is independent of object
categories and camera motion. Table 4.6 shows the multi-object tracking results for
the selected baseline trackers and our M2Track-Lite tracker.

Table 4.6: Tracking performance comparison between four baseline trackers and our

proposed tracker M2Track-Lite on ABQ dataset. The bounding box detections from
the multi-cue object detection approach (proposed) were used for tracking.

| Tracker | MOTA 1 [MT 17 |PT 1t [ ML | | GT | IDS | | FRAG | |
M2Track-Lite 37.80 | 139 0 0] 139 248 8
GOG [47] 62.5 80 54 5] 139 [ 1500 428
CMOT [42] 66.3 70 39 30 [ 139 165 56
THTLS [187] 87.9| 110 20 9] 139 200 69
SORT [50] 54.1 26 93 20 | 139 [ 419 310
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4.3 Drone-base Aerial Imagery/ Low Altitude

Multi-object tracking for low-altitude aerial video analytics is exploited in this section.
Low-altitude aerial videos are captured by Unmanned Aerial Vehicles (UAVs). Object
detection and tracking implemented on UAVs have unique challenges, such as rapid
scale changes, partial or full occlusions, rotation and camera jittering, scenes and
camera view changes, high densities of similar objects, and shadow and illumination
changes.

VisDrone2018 dataset [79] is one of the drone-based low altitude datasets that
is used in our analytical implementation for our multi-object tracking pipeline. Vis-
Drone2018 dataset [79] consists of 263 video clips with 179,264 frames and 10,209
static images. The set includes different scenarios taken across 14 different cities in
China. The resolutions of video clips and static images are 3840 x 2160 and 2000 x 1500
respectively. The dataset was taken in different weather and light conditions. Ten cat-
egories are considered and annotated in VisDrone2018 dataset including pedestrian,
person, car, van, bus, truck, motor, bicycle, awning-tricycle, and tricycle. Occlusion
and truncation ratios are also provided. The dataset has many challenges (i.e., scale
changes, high object density, rapid camera movements, viewpoint, and camera angle
changes). The dataset was divided into training, validation, and testing set.

Since 2018, VisDrone team organizes challenge workshops. In 2018, A challenge
“Vision Meets Drone Video Object Detection and Tracking” (VisDrone-VDT2018)
was organized in conjunction with the European Conference on Computer Vision
(ECCV 2018). Next year, the challenge workshop was organized in conjunction with
International Conference on Computer Vision (ICCV 2019). The challenge focuses

on four tasks; 1) object detection on static images; 2) object detection on videos;
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3) single object tracking; 4) multi-object tracking. Fach task has its own set of

implementation and evaluation metrics. Multi-object tracking task is our focus.

4.3.1 Challenge Participation and Evaluation Metrics

We have tested and evaluated our M2Track tracker on VisDrone2018-test set that
consists of 16 challenging real-world drone videos. Our tracker participated in 2018
and 2019 challenge workshops as task4A and task4B for multi-object tracking respec-

tively as described below:

e Task4A:(without prior detection), for each object class, a list of bounding
boxes, trajectory identifications, and confidence scores are required for evalu-
ation. The evaluation protocol sorts the trajectories according to the average
confidence detection score of each trajectory. Then, intersection over union
overlapping with the ground truth according to specific thresholds will be con-
sidered for evaluation. Mean average precision mAP over different thresholds
is calculated. Three thresholds are considered for evaluation are (0.25, 0.50,

0.75).

e Task4B: (with prior detection), the average rank of 10 metrics which are:
MOTA, MOTP, IDF1, FAF, MT, ML, FP, FN, IDS, and FM is used
to compare different algorithms. The Multi-Object Tracking Accuracy metric

MOTP is:
Zt,i dt,i
DM

where m; denotes the number of matches in frame ¢ and d;; is the bounding

MOTP = (4.4)

box overlap of target ¢ with its assigned ground truth object. MOTP is the
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measure of localization precision that shows how well the algorithm is. IDF1 is
identification metric computes the matching between ground-truth trajectories
and predicted trajectories in term of three metric, IDTP True Positive 1D,
IDFP False Positive ID, and IDFN False Negative ID. IDF1 values can range
between 0 and 100%:

2IDTP
IDF1 = 4.
2IDTP+ IDFP+ IDFN (45)

The FAF metric shows the average number of false alarms per frame. FP,
TP, and FN count are determined by thresholding the intersection over union
(IoU) between predicted and target bounding boxes using a threshold d = 50%.

The remaining metrics are described in previous section 4.2.2.

4.3.2 Evaluation and Experimental Results

M2Track-L2 participated in VisDrone2018 challenge 2018 on task4B. M2Track-L2
combines the first two levels from M2Track tracker pipeline, short-term local associ-
ation, and long-term global association. We incorporate Faster R-CNN [188] object
detection output to be input to M2Track-L2 tracker. The results of the comparison
between our tracker to the other participants are shown in Table 4.7. Our rank was
the fourth out of six participants. The table is described in detail in the workshop
challenge report [138].

M2Track participated in VisDrone2018 challenge 2019 on task4A. M2Track uses
three-level cascaded data association (local, global, and occlusion handling). We

incorporate Faster R-CNN [188] object detection output to be input to M2Track
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Table 4.7: Multi-object tracking results with prior object detection in each frame
on VisDrone-VDT2018 testing set. The submitted algorithms are ranked based on
the average rank of the ten metrics. The performance of the trackers is presented
according to [138]

Method Rank| | MOTAT | MOTP1 | IDF17 | FAF| | MT1 | ML| | FP| | FN| | IDS| | FRAG]
V-IOU[46 2.7 40.2 74.9 56.1 0.76 297 514 11838 | 74027 | 265 1380
TrackCG [189] 2.9 42.6 74.1 58.0 0.86 323 395 14722 | 68060 | 779 3717
GOG [47] 3.2 36.9 75.8 46.5 0.29 | 205 589 5445 | 86399 | 354 1090
M2Track-L2 [101] | 3.8 35.8 75.6 45.1 0.39 211 550 7298 | 85623 | 798 2042
Ctrack [189] 3.9 30.8 73.5 51.9 1.95 369 | 375 | 36930 | 62819 | 1376 | 2190
FRMOT [138] 4.0 33.1 73.0 50.8 1.15 254 463 21736 | 74953 | 1043 | 2534

tracker. The results of the comparison between our tracker to the other participants
are shown in Table 4.8. The table is described in detail in the workshop challenge
report [190].

Table 4.8: Multi-object tracking results on the VisDrone-MOT2019 testing set. The

challenge focus on five object categories (i.e., pedestrian, car, van, bus, and truck).
The performance of the trackers is presented according to [190]

Method AP | AP@0.25 | AP@0.50 | AP@O0.75 | APcar | APbus | APtrk | APped | APvan
DBAI-Tracker [191] | 43.94 | 57.32 45.18 29.32 55.13 44.97 42.73 31.01 45.85
TrackKITSY [191] | 39.19 | 48.83 39.36 29.37 54.92 29.05 34.19 36.57 41.20
Flow-Tracker [192] | 30.87 | 41.84 31.00 19.77 48.44 26.19 29.50 18.65 31.56
HMTT[191] 28.67 | 39.05 27.88 19.08 44.35 30.56 18.75 26.49 23.19
TNT-DRONE 27.32 | 35.09 26.92 19.94 38.06 22.65 33.79 12.62 29.46
GGDTRACK 23.09 | 31.01 22.70 15.55 35.45 28.57 11.90 17.20 22.34
Ctrack 16.12 | 22.40 16.26 9.70 27.74 28.45 8.15 7.95 8.31
CMOT 14.22 | 22.11 14.58 5.98 27.72 17.95 7.79 9.95 7.71
IITD-DeepSort 13.88 | 23.19 12.81 5.64 32.20 8.83 6.61 18.61 3.16
T&D-OF 12.37 | 17.74 12.94 6.43 23.31 22.02 2.48 9.59 4.44
M2Track 10.09 | 14.95 9.41 5.92 18.98 17.86 4.86 5.20 3.58
VCLDAN 7.50 | 10.75 7.41 4.33 21.63 0.00 4.92 10.94 0.00
GOG 6.16 | 11.03 5.30 2.14 17.05 1.80 5.67 3.70 2.55
TBD 5.92 |10.77 5.00 1.99 12.75 6.55 5.90 2.62 1.79
CEM 5.70 ]9.22 4.89 2.99 6.51 10.58 8.33 0.70 2.38
H2T 493 |8.93 4.73 1.12 12.90 5.99 2.27 2.18 1.29
IHTLS 4.72 | 8.60 4.34 1.22 12.07 2.38 5.82 1.94 1.40
SGAN 2.54 | 4.87 2.06 0.69 10.42 0.00 0.00 2.27 0.00
OS-MOT 0.16 |0.18 0.18 0.13 0.00 0.00 0.71 0.00 0.09

For testing the contribution of appearance-based deep feature matching

on the Level2 global data association of M2Track, Siamese network [77, 156] to select

94



tracklet match candidates was used. The network was trained to identify whether two
bounding box observations of two fragmented tracklets are for the same object or not.
Al-City Challenge dataset/ vehicle re-Identification track [137] was used for training.
The network trained on (36,935 images for 1,879 cars) and evaluated on (18,290
images for 798 cars) each car taken from a single camera with an average accuracy of
(93.7%) on the validation data using 30 mini-batches on 19,000 iterations. For testing,
we used the trained weight on VisDrone2018-Validation set to test the similarity
between fragmented tracklets on the level2 global data association module. Table 4.9
shows the comparison results for M2Track tracker without deep features matching,
M2Track tracker with deep features matching for tracklet linking, and M2Track-L2
with using only Siamese network features for matching. The tested trackers use
YOLOv3 [149] detection approached pretrained on ImageNet [155] and implemented
on VisDrone2018-Validation set. The table shows using the Siamese network for
matching tracklets improves the performance. However, using only deep features by
excluding the other M2track module components affects the tracking performance.
M2Track’s modules accumulate for best performance and still important to have them
all together.

Table 4.9: The comparison results for different versions of M2Track. M2Track:
tracker without deep features matching, M2track+Siamese: M2Track with deep
features matching for tracklet linking, and M2Track-L2/Siamese: M2Track-L2

with using only Siamese network deep features for matching. The trackers use
YOLOv3 [149] detection approached trained on ImageNet [155] and implemented

on VisDrone2(018-Validation set
| Tracker MOTAT | MOTPT [ IDST [ FRAG] | FP| [FN| [ GT [ MTt | PT | ML{ |
M2Track 71.3 284 285 69| 4520 804 | 125] 114] 6 5
M2track+Siamese 735 27| 300 68| 4092 | 775 125| 115| 4 6
M2Track-L2/Siamese 31.4 30 218 2712808 | 369 | 125 116 5 5
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Chapter 5

Cells Segmentation, Detection and
Tracking for Biomedical Videos

5.1 Overview

The capacity of cells to interact with and exert forces on their environment and
alter their shape as they move [193] is essential to many biological processes includ-
ing the cellular immune response to infections [194], embryonic development [195],
wound healing [196] and tumor growth [197]. Detecting cell shape and their changes
over time as cells navigate the microenvironment is essential for understanding the
multiple mechanisms guiding and regulating cell motility [198]. It is important for
biomedical research and medical diagnosis applications to study the behavior move-
ment for individual cell formation, mitosis, lineage, density, etc. Manually locating
and tracking cells is labor-intensive, and subject to different opinions from domain

knowledge experts during validation. Automatic tracking methods are therefore re-
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quired to analyze microscopy videos in order to achieve accurate motion and behavior
analysis.

Over several decades, many classical computer vision methods and pipelines have
been developed for automated cell detection, segmentation, and tracking [196, 199,
200, 201]. More recently, various models have been developed for cell boundary
prediction to handle segmentation of touching cells [202, 203, 202, 203, 204, 205].
However, accurate cell analysis under different protocols, imaging modalities, and
cell types remains challenging due to experimental variability, low signal-to-noise
ratios, touching or overlapping cells, indistinct deforming boundaries, particularly in
high cell density cases, agile, unpredictable motion of individual cells, and dynamic
interactions between cells. In this chapter, two benchmarks for cell detection and
tracking were used to apply our multi-object tracking pipeline. Cell Segmentation
and Tracking Benchmark (CTC) offers a dataset of different cell types using different
imaging modalities, and Cell Tracking with Mitosis Detection Benchmark (CTMC-v1)

features a single imaging modality with different cell types.

5.2 Cell Segmentation and Tracking Benchmark

Automated methods and pipelines are needed to perform microscopy video analysis
for image data acquired during live-cell studies. Particularly to segment, track, and
characterize cells to accelerate scientific discovery and clinical adoption.

Cells segmentation and tracking benchmark (CTC) [206] consists of 2D and 3D
time-lapse video sequences of fluorescent counterstained nuclei or cells moving on

top or immersed in a substrate. The benchmark consists of 13 different datasets (8
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for (2D) and 5 for (3D)). They can be either contrast-enhancing or fluorescence mi-
croscopy recordings of live cells and organisms. Table 5.1 shows the names and brief
description for each datasets. Each dataset consists of two training and two testing
videos. The training videos were provided with annotations, gold annotation (con-
taining human-made reference annotations but not for all cells), and silver annotation
(containing computer-generated reference annotations). The benchmark has differ-
ent challenges: 1) Different appearances between datasets; 2) Low contrast between
foreground and background; 3) The benchmark was taken in different light conditions
and different image acquisition environments; 4) The ground-truth annotations for
the training set are not fully provided for gold annotations and not accurate for silver
annotations.

We participated in ISBI 2021 CTC-6 challenge, with over thirty teams reporting
results on the CTC website [206] which is updated monthly. Not every method
reported results for all datasets in the benchmark. We evaluated our pipeline on the

eight 2D datasets for cell segmentation and tracking.

5.2.1 Cell Segmentation and Tracking Pipeline

We propose an end-to-end pipeline for accurate cell segmentation and tracking as
shown in Figure 5.1. The goal is to localize and track different cell types in time-lapse
video sequences. The pipeline consists of two main modules: cell segmentation and
cell tracking modules. The cell segmentation module DMNet is designed to precisely
localize and segment different cells, and the multi-cell tracking module M2Track uses

a multi-step data association approach to efficiently track cells across frames.
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Table 5.1: The name of cell segmentation and tracking challenge benchmark (CTC).
The last columns show whether our algorithm is being implemented on videos or not

‘ Datset name | Type | Description | Used? |
BF-C2DL-HSC 2D | Mouse hematopoietic stem cells in hydrogel microwells | Yes
BF-C2DL-MuSC 2D | ouse muscle stem cells in hydrogel microwells Yes
DIC-C2DH-HeLa 2D | HeLa cells on flat glass Yes
Fluo-C2DL-MSC oD Rat mesenchymal .stem cells on Yos
a flat polyacrylamide substrate

Fluo-N2DH-GOWT1 | 2D | GFP-GOWT1 mouse stem cells Yes
HeLa cells stably expressing

Fluo-N2DL-HeLa 2D H2b-GFB Yes

PhC-C2DH-U373 °D Ghoblastoma—astrocyt(_)ma U373 Yes
cells on a polyacrylamide substrate

PhC-C2DL-PSC oD Pancreatic Stem Cells on Yos
a Polystyrene substrate
GFP-actin-stained A549 Lung

Fluo-C3DH-A549 3D | Cancer cells embedded in a No
Matrigel matrix

Fluo-C3DH-H157 D GFP—transfected H1b57 LL.mg Cancgr No
cells embedded in a matrigel matrix
MDAZ231 human breast carcinoma cells infected

Fluo-C3DL-MDA231 3D | with a pMSCV vector including the GFP sequence, No
embedded in a collagen matrix

Fluo-N3DH-CE 3D | C.elegans developing embryo No
Chinese Hamster Ovarian (CHO) nuclei

Fluo-N3DH-CHO 3D overexpressing GFP-PCNA No

Marker Detection

Encoder-Decoder

Mask Prediction

e 2ol

Encoder-Decoder

) —>
— Jaccard Loss

Weighted Cross

Entropy Loss Labeling

Morphological
Operations

Distance Penalty
Cross Entropy Loss

M2Track

— Jaccard Loss
Cell Detection &
Segmentation

Cell Tracking

Figure 5.1: Overall pipeline with two streams DMNet for cell segmentation and

M2Track for tracking.

For the cell segmentation module,

the task is defined to find the segmenta-

tion mask of each cell. There are two streams in the proposed DMNet, one stream is
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designed for cell marker detection, and the other is designed for cell mask prediction,
as shown in Figure 5.1.

Marker Detection Stream The marker-based loss function Lyapker(:) is com-
puted pixels with respect to the labeled marker annotations using a soft Jaccard and

weighted cross-entropy loss functions:

Lmarker - aLJaccard(') + 6Lwce(') (51)

where a and (3 are used to balance the Jaccard loss Ljaccara and weighted cross-entropy

loss Lyce. The Jaccard loss is,

N 5
1 —YiYk
L d == R = 5.2

fremrd TN kz:; Ye+ Yk — YeYk (52)

since the distribution of marker and non-marker pixels is highly biased, we use a class

balanced cross-entropy loss, which is defined as:

Lyee = =A- Y log(1=3%) = Ay > log(9s) (5.3)
Yk (7)€Y yi(,J)€Yy
where each prediction map in the mini-batch of marker detection stream is y, of
size R x C, yi € (0,1) denotes a predicted marker map (see Figure 5.2 (e)), yx is
the groundtruth mask (see Figure 5.2 (b), yi is the binarized version of it). A\, =
1Y% | — Y| _ : :

AR AL A= AR balance the marker /non-marker pixels to control the weight
of positive over negative samples.

For Mask Prediction Stream, the loss function L. is computed pixelwise

with respect to the labeled mask segmentation annotations using a a soft Jaccard and
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(b) Marker GT
0 1

’—-

o0
. e'.,.‘

(e) Marker Prediction (f) Labeled Marker Prediction

Figure 5.2: Ilustration of intermediate results in the DMNet workflow for cell seg-
mentation: (a) Normalized raw input image, (b) Marker Ground-Truth for the su-
pervision of the marker detection stream, (c) Distance penalty map in Ly, (d) Cell
segmentation ground-truth showing cells with tracking ids (binarized version provides
supervision for mask prediction stream), (e) Marker prediction output from marker
detection stream, (f) Labeled predicted markers after thresholding and connected
component labeling, (g) Mask prediction output from mask prediction stream, and
(h) Cell segmentation prediction using mask and marker, after splitting cells using

marker guided morphological watershed algorithm.

distance penalized cross-entropy loss functions as:

Lmask = CYLJaccard(') + 6Ldist(')

The Lg is defined as:

| N RO
Ldist:_ﬁzzz 1+ ¢(i, 5))

k=1 i=1 j=1

where L. is the cross-entropy loss, describe as:

Lce = mk(laj) 1Og mk(lvj) + (1 - mk(l7])> 1Og<1 - ﬁlk(zv.]))
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Here each prediction map in the mini-batch of mask prediction stream is my, (see
Figure 5.2 (g)), of size Rx C. The cross-entropy loss is modified by a distance penalty
map ¢, which inverses and normalizes the distance transform map D. The Euclidean

distance transform map is computed as:
R C
D(i,5) = > > ((i,5) = b(i, ))* (5.7)
i

where b(i, 7) is the location of a background pixel (value 0) that is closest to corre-
sponding input points x (i, 7), where edge pixels of cells are 0, and remaining pixels
are 1. Figure 5.2 (¢) shows an example distance penalty map ¢.

During the inference, both markers and masks are generated, and then the mor-
phological operation watershed [207] is applied to the split cell mask guided by the
generated markers. For each stream, the same Convolutional Neural Network (CNN)
structure HRNet [208, 52] as the CNN model is used to learn the marker localization
and mask prediction map since HRNet encodes rich representations of low-resolution
and high-resolution information.

For the cell tracking module, the detected cells estimated by the DMNet
segmentation module are used as input to the tracking module. The tracking module
is a multi-step cascade data association pipeline shown in Figure 5.3,

The cascade data association has two steps: first, short-term tracking which is
frame-to-frame data association and matching using mask intersection over union
(IOU) score. Followed by the second step, long-term tracking, which is called the
global data association step connects cells at the track level using spatial and temporal
clues to re-link fragmented tracklets.

Short-Term Tracking: Short-term data association step, optimizes the associa-
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Cascading multi-level data association

Detections

Levell: Linear Assignment _Tracklets Level2: Global Assignment

(I0U_Mask ) (Spatial and Temporal)
. i . l 1 l 1 . Missing cell __ Check tracklet
i Initialize Predict T

interpolation reliability
tracks tracks

| by

Update
Generate labeled . tracks Assign unique Ger.1er.ate
mask from detections ! | e acyclic linage
ll. cell ID (trajectory : ggrap;h :
l‘ masks) A

Figure 5.3: M2Track with intersection-over-union mask overlap matching for multi-
cell tracking-by-detection. The two major modules are Level 1 for managing frame-
to-frame linear assignments between detected cells and handling the entering and
exiting cells, and Level 2 for tracklet linking to re-link missing or occluded cells.

tions of current detected cells D! at frame ¢ to the predicted track 7¢~! at frame t —1,
where the set of detections, D' = {d;, ds, ....,dy} is assigned to the previously tracked
objects T*™1 = {1}, Ty, ...., Tar }, and T ! is the set of predicted cell trajectories from
previous cell motion history computed using Kalman filter with constant velocity
model, N is the number of the detected cells at frame ¢, M is the number of tracked

cells at frame ¢t — 1. Mask IOU score is used to assign detection-to-track between

following frames by minimizing a cost matrix using Munkres Hungarian algorithm

[74] as:

min i Zn: i (5.8)

i=1 j=1
where ¢ is an ¢ row to j column entry on cost matrix representing the cost of assigning

detection j to tracklet ¢ at time ¢ and its value represents the IOU between the area
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of i and j detect masks as:

Cij _ |Az‘ UAj| - |AiﬂAj|
! |A; U A

with constraints,

m

Zbijzl 1=12 ..., n

i=1
n

=1 i=12.m

j=1

Circular gating regions around the predicted track positions are used to eliminate
highly unlikely associations to reduce the computational cost, and to reduce false
matches. Pairs of detection and tracks represent the results of minimum optimiza-
tion. For each individual cell, a (one out of four) status (new track, linked track,
lost track, and dead track) is assigned according to the assignment process. Since
this step considers only information from consecutive frames, having false detections,
occlusions, and matching ambiguities causes track fragmentation. A further step is
important to improve the performance.

Long-Term Tracking: Problems during object detection or data association
process result in implicit fragmentation of cells. Long-term tracking is used to re-link
fragmented trajectories to produce longer tracks. Using information across long video
segments can make this process expensive. Optimizing hypotheses at the track level
rather than the object level reduces the computational cost of data assignment by
gating uncertain hypotheses. Spatial distances and temporal information are used for

filtering.
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5.2.2 Evaluation Metrics

For evaluation the performance of the algorithms, qualified overall measurements
for segmentation OPggp and tracking accuracy OFPorp are used. The segmentation
accuracy measurement O Pogp composes of segmentation metric SEG, and detection
metric DET, and tracking accuracy measurement O Porp composes of segmentation

metric SEG, and tracking metric TRA were:

OPcsp = 0.5 x (SEG + DET) (5.10)

OPcrp = 0.5 x (SEG + TRA) (5.11)

where SEG based on the Jaccard similarity index J of the sets of pixels of matching

objects:
GT'NR
GTUR

SEG = J(GT,R) = (5.12)

where R denotes the set of pixels belonging to its matching segmented object. and
GT the set of pixels belonging to ground truth. A ground truth object GT and a

segmented object R are considered matching if the following condition holds

IGT N R| > 0.5.|GT] (5.13)

The J is computed for each GT object in a video. It must always be in the [0,1]
interval, where 1 means perfect match and 0 means no match. For DET metric,

showed how accurately each given object has been identified, is computed as:

DET =1 — min(AOGMp, AOGMp,)/AOGMp, (5.14)

105



it is based on a comparison of the nodes of acyclic oriented graphs representing objects
in both the GT and algorithm’s outputs as described in [209]; Where AOGM}, is the
cost of transforming a set of objects provided by the algorithm into the set of GT
objects; AOGMpy is the cost of creating the set of GT nodes from scratch (i.e., have
an empty set of results). The normalization ensures that DET metric always falls in
the [0,1] interval, with higher values corresponding to better detection performance.
While the minimum operator in the numerator prevents from having a negative value
when it is cheaper to create the G'T set of objects from scratch than to transform the
results set of objects into the GT one.

For tracking metric TRA, it is calculated by computing the number of steps

required to match the ground-truth and predicted trajectory graphs:

min (AOGM, AOG M)

TRA=1-
R AOG M,

(5.15)

where AOGM is the cost for generating a graph for the predicted trajectories. SOG M,
is the cost for creating a predicted trajectory graph from scratch (i.e., assuming empty

tracking results).

5.2.3 Evaluation and Experimental Results

Implementation Details: input images are pre-processed to enhance contrast using
a z-score mapping. During training, the marker detection stream is trained with
supervision using ground-truth of tracking markers, and the segmentation mask is
supervised by silver-truth of annotations. Both the marker localization and mask

prediction streams were trained on eight 2D datasets (see Tables 5.2, 5.3, 5.4) and
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five 3D datasets.

Table 5.2: DMNet cell segmentation performance (OP¢cgp) on CTC-6 of March 2021.
All reported results are from the CTC Challenge website [206]. The first row is
OPgsp and the second row is ranking compared to other submitted algorithms. Not
all methods reported results for all datasets which are shown as NA. Since CALT-
US did not report results for Fluo-C2DL-MSC we provide two sets of Rankings — 8
datasets and 7 datasets for equivalent comparison. Rank Sum is the sum of all the
ranks across cell types. DMNet consistently outperforms other methods on 2D cell
segmentation.

BF C2DL  BF-C2DL DIC-C2DH Fluo C2DL  Fluo-N2DH Fluo-N2DL PhC-C2DH PhC-C2DL Rank
Dataset HSC -MuSC -HeLa MSC -GOWT1 -HeLa -U373 -PSC Avg  Sum(8,7)
KIT-Sch-GE [210] 0.905 0.878 0.850 0.686 0.895 0.938 0.927 0.859 0.893
1/14 1/14 14/27 6/32 20/42 11/40 15/30 1/33 69,63
PURD-US [211] 0.745 0.678 0.703 0.478 0.915 0.943 0.940 0.790 0.816
13/14 14/14 19/27 24/32 14/42 6/40 11/30 13/33 114,90
CALT-US [212] 0.901 0.852 0.925 0.948 0.915 0.959 0.703 0.886
2/14 4/14 1/27 - 3/42 18/40 1/30 25/33 NA,54
DMNet (Ours) 0.835 0.860 0.864 0.602 0.939 0.954 0.949 0.826 0.890
10/14 3/14 12/27 17/32 5/42 1/40 6/30 6/33 60,43

Table 5.3: DMNet cell tracking performance (OPcrg) on CTC-6 of March 2021. The
first row is O Porp and the second row is ranking compared to other submitted algo-
rithms. All reported results are from the CTC Challenge website [206]. Unreported
results are shown as NA. DMNet consistently outperforms other methods on 2D cell
tracking.

BF-C - - - - -C - an!
Dataset -HSC -MuSC —HeLd -MSC -GOWT1 -HeLa -U373 -PSC Avg FS{um

KIT-Sch-GE 0.901 0.872 0.848 0.683 0.894 0.938 0.925 0.855 0.865
1/10 1/10 8/20 3/26 13/35 10/33 10/24 1/26 47

PURD-US 0.716 0.670 0.684 0.479 0.914 0.941 0.939 0.783 0.766
9/10 10/10 13/20 18/26 10/35 6/33 8/24 9/26 83

CALT-US NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA

DMNet (Ours) 0.828 0.849 0.854 0.591 0.939 0.953 0.947 0.821 0.848
6/10 2/10 6/20 12/26 2/35 1/33 3/24 4/26 36

When using 3D datasets, we used one frame or slice per volume with the most
annotated labels for training. Input images are resized and then cropped for train-
ing. Resize scale factor for each dataset are: Fluo-C2DL-MSC:0.35, Fluo-C3DH-
H157:0.35, Fluo-C3DL-MDA231:2, Fluo-N3DH-CE:0.5, Fluo-N3DH-CHO:0.6, PhC-
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Table 5.4: Performance of DMNet segmentation and tracking pipeline on CTC-6 of
March 2021. For each performance metric, the first row is the accuracy metric and the
second row is the ranking compared to all other submitted algorithms (as of March
2021). The top three performances of DMNet by cell type are bolded.

~ BF-C2DL BF-C2DL DIC-C2DH Fluo-C2DL  FTuo-N2DH FTuo-N2DL  PhC-C2DH PhC-C2DL ™
Dataset -HSC -MuSC -HeLa -MSC -GOWT1 -HeLa -U373 -PSC
OPcrp 0.828 0.849 0.854 0.591 0.939 0.953 0.947 0.821
6/10 2/10 6/20 12/26 2/35 1/33 3/24 4/26
OPcsn 0.835 0.860 0.864 0.602 0.939 0.954 0.949 0.826
10/14 3/14 12/27 17/32 5/42 1/40 6/30 6/33
DET 0.971 0.979 0.926 0.681 0.946 0.985 0.975 0.945
8/14 2/14 13/27 17/32 10/42 10/40 16/30 9/33
SEG 0.699 0.742 0.802 0.522 0.931 0.923 0.923 0.708
6/10 2/10 6/20 13/26 1/35 1/33 3/24 4/26
TRA 0.957 0.957 0.907 0.661 0.946 0.983 0.972 0.933
4/10 4/10 9/20 12/26 7/35 10/33 11/24 8/26

C2DL-PSC:3, BF-C2DL-MuSC:0.75, BF-C2DL-HSC:0.75. We crop patches with the
size of 256 x 256 from images in each dataset to train the networks, except BF-
C2DL-HSC, BF-C2DL-MuSC which we crop patches of 512 x 512. Regular data
augmentation strategies were used including rotation, flip, and scale from 0.8 to 1.5
for each sample. Hyperparameters are learning rate of 0.001 with Adam Optimizer
for training both streams for 300 epochs with, a = 2.5 and g = 10.

Comparison on CTC-6 Benchmark: DMNet+M2Track performance is com-
pared with state-of-the-art methods on Cell Segmentation and Cell Tracking Tasks.
Since not every method reported results for all 2D datasets, we show the three most
competitive methods KIT-Sch-GE [210], PURD-US [211] and CALT-US [212], which
have results for almost all eight 2D cell microscopy videos.

DMNet is robust and achieves state-of-the-art cell detection and segmentation
performance on all eight 2D CTC-6 datasets. In Table 5.2, we compare our DMNet

with the state-of-the-art methods on the CTC-6 challenge. We compute the rank
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sum of each method of OP¢gg on all the datasets. Because CALT-US did not report
results on Fluo-C2DL-MSC, we put NA in that column, and compute the rank-sum
on eight datasets and seven datasets respectively as shown in the last column of
Table 5.2. Our DMNet achieves the best results on all the 2D datasets with a rank-
sum of 60 (eight datasets) and 43 (seven datasets), which demonstrates the robustness
and effectiveness on 2D cell segmentation. DMNet+M2Track is robust and achieves
state-of-the-art cell tracking performance on all eight 2D CTC datasets. In Table 5.3,
we compute the rank sum of each method of OPcrg on all the datasets. Because
CALT-US did not perform cell tracking, therefore it is empty in this table. Our
DMNet + M2Track achieves the best rank-sum with 36, which demonstrates the
robustness and effectiveness on 2D cell tracking task. Table 5.4 shows the ranks of
our pipeline compared to the other participants on CTC-6. Our pipeline ranked in the
top three on four out of the eight 2D cell type microscopy videos. Not every method
provided results for all cell types, whereas DMNet+M2Track results are given for all
videos.

Figure 5.4 shows the results of DMNet+M2Track segmentation and tracking
pipeline for three cell types. The first column shows the Raw Input image for three
cell types, which are typically low contrast, with dense, clustered cells and small
object sizes. A z-score normalization is applied to the raw input image to remove
outliers. The raw input is stretched to increase image contrast, as shown in the sec-
ond column Normalized Input. We show the ground truth segmentation with tracking
ids as Tracking GT in the third column. The fourth and fifth columns are the final
marker detections and cell tracking predictions for all the cells in each frame of the

video. We can clearly see in Figure 5.4 column (d) that DMNet accurately predicts
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(a) Raw Input (b) Normalized Input (c) Tracking GT (d) Marker Detection (e) Tracking Prediction

BEF-C2DL-HSC

Figure 5.4: Visualization of DMNet+M2Track segmentation and tracking results for
three cell types including Fluo-N2DH-GOWT1, PhC-C2DL-PSC, and BF-C2DL-HSC
exhibiting a range of cell sizes and densities.

and separates the cell markers. Hence, using labeled markers as guidance for the wa-

tershed algorithm to split the predicted cell masks results in consistently satisfactory

cell segmentation results.

5.3 Cell Tracking with Mitosis Detection Bench-
mark

CTMC-v1 is a human-annotated live-cell imaging dataset for cell tracking benchmark.

CTMC-v1 dataset [82] provides fully manual annotations in the format of bounding
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boxes that are persistently tracked over time. Additionally, CTMC-v1 dataset fea-
tures a single imaging modality with different cell types. The benchmark consists of
86 live-cell imaging videos (47 training + 39 testing). Videos represent 14 different
cell lines of various shapes and sizes, with each cell annotated using bounding boxes
with 400x320 frame resolution. Table 5.5 summarizes the statistics of the dataset
and Figure 5.5 shows examples of the given data. This dataset is part of the multi-cell

tracking with mitosis challenge [3].

o
>
z
s
E

Figure 5.5: Example frames for each of the 14 cell types in the CTMC-v1 dataset.

CTMC-v1 benchmark has a number of challenges, such as a wide range of cell
lines of various shapes and sizes, touching or overlapping cells, indistinct deformable
boundaries, high cell density, unpredictable motion of individual cells, dynamic in-
teractions between cells, cell mitosis, cell overlap, cell-to-cell interactions and shape
variations, low contrast and resolution with unclear cell edges with MPEG compres-
sion artifacts. Additionally, each cell type provides an average of two sequences, both
of which contain a significant amount of similar frames. This proposes a poorly dis-
tributed dataset despite its large scale, which, in turn, is a major cause of model

over-fitting.
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Table 5.5: Summary table that describes the CTMC-v1: cell tracking and mitosis
challenge dataset.

Imaging modality DIC: differential interference contrast mi-
CTOSCOPY

Number of sequences 86 (49 for training and 37 for testing, 4-10
sequences per cell type in total)

Number of cell types 14

Number of cells (tracks) 2,900 in total. The number of cells per se-
quence varies from 1-185

Number of frames 152,584 in total. The number of frames per
sequence varies from 300 to 4,440.

Number of detections 2,045,834 in total. The number of detections
per sequence varies from 1,196 to 172,074

Cell density 13 cells per frame on average. Density per
cell type ranges from 3.42 to 27.88

Mitosis events 457 mitosis events. Ranges from 2 to 115 per
cell type

5.3.1 Cell Segmentation and Tracking Pipeline

We propose an end-to-end pipeline for accurate cell detection and tracking. The goal
is to localize and track different cell types in CTMV-v1l benchmark. The pipeline
consists of two main modules: first, cell detection module EDF-YOLOv3, a model-
agnostic detection ensemble framework (EDF) that shows great robustness to over-
fitting, second, a multi-cell tracking module, by employing M2Track algorithm to link
cell detections and track cell lineage.

For cell detection, Yolov3 was adopted to detect the cells on the benchmark.
We train 14 folds; in each fold, one cell type out for validation was left and the
remaining 13 cell types were used for training. By excluding a whole cell type from
training and using it for validation, we trained our base models to generalize to new

cell types. The utilized YOLOv3 model has initialized with pre-trained weights from
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the ImageNet [155, 213] dataset. The final prediction layer is modified for a single
7cell” class; therefore it is initialized randomly using Kaiming He initialization [214].
All training in this work uses the same hyper-parameters: the mini-batch size of 48,
an input resolution of 416 x 416, a learning rate of 1072. We allow the training to
run for a maximum of 500,000 iterations and we multiply the learning rate by 0.1
at step 400,000 and once more at step 450,000. Figure 5.6 show an overview of the
ensemble detection framework EDF-YOLOv3.

Input Model ; Pooled ; E Grouped E Final
P outputs D; | detections D 0o detections G E detections F
Model 1 — D, G, [— Coalesce — d !

G2 —> Coalesce —Pi d2 i

Model2 — D, ! .
N ‘Pool = D — Grﬁggby

Model 14 |—{ D,

Figure 5.6: General overview of the proposed ensemble detection framework EDF-
YOLOv3. 14 detection sets D; are generated from 14 detection models (YOLOv3
in our experiments) trained on different subsets of the training dataset. These sets
are pooled together in a single set D, then grouped together such that for each pair
of detections in the same group d;,d; € Gy, IoU(d;,d;) > 0.5. Groups with fewer
detections than half the number of models (i.e., 7) are discarded. The remaining
groups are coalesced into a single detection by picking the detection with the highest
confidence score.

For cell tracking, the detected cells from EDF-YOLOv3 are used as input to
the tracking module. The tracking module is a multi-step cascade data association
pipeline M2Track shown in Figure 5.7. M2Track performs cascade data association

in two steps:
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M2Track cascading multi-level data association

Ensemble YOLOv3 detections

Level1: Linear assignment | Tracklets | Level2: Global assignment
(10U BBox) (Spatial and temporal) Tracked cell Bounding boxes

y

4
3 =
o 4 =
o -
[ 3 [+ El Q
@ [=3 3 o @ - @
=) 7] 5 - 2 eQ =N
= c = [ = 5 :
o o 9 2 o Q@ o3 .
. 5 a = =9 =9 L
LLC-MK2-run02b o o S Sl g2 L e
o ® [ @ AN
= > o ) R
MOTA score: 83.22

Figure 5.7: An overview diagram of M2Track implemented on CTMC-v1 benchmark.

Short-term tracking: is a frame-to-frame data association and matching us-
ing bounding box intersection over union (IoU) score to generate cost matrix. The
IoU cost matrix is used to optimize the associations of current N detected cells in
Dt set at frame t to the M predicted tracks in 7! set at frame t — 1, where the
set of detecitons, D' = {d},d},..,d\} is assigned to the previously tracked objects
T = {1 Tt Tir 'y, and TP s the set of predicted cell trajectories previ-
ously tracked. Kalman filter [75] with constant velocity model is used to predict the
motion of the cell in each frame. The optimization is implemented by minimizing the

cost matrix using Munkres Hungarian algorithm [74] as:

- i i
min Z Z b (5.16)
i=1 j=1
where cﬁj is an ¢ row to j column entry on cost matrix representing the cost of assigning
detection j to tracklet ¢ at time ¢ and its value represents the IOU between 7 and j
bounding box detect cells as:

i 14V ds| — |di N dj|
' |d; U dj

(5.17)
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and b is a binary assignment matrix to ensure the rows and columns of b are summed

to 1, with constraints,

ib"j =1 =12, ..,n;
=1

=1 i=12..m
j=1

To reduce false matches, to eliminate low certainty association, and to reduce
the computational cost, spatial circular gating regions around the predicted track
positions are used. Association cost matrix decision assigns one out of four statuses
(new track, linked track, lost track, and dead track) for each individual cell. Since
this step considers only information from consecutive frames, having false detections,
occlusions, and matching ambiguities causes track fragmentation. A further step is
important to improve the performance.

Long-term tracking: the second step of M2Track, uses information across long
video segments. Increasing the number of frames or the number of cells makes this
process expensive. Our approach optimizes fragmented tracklets re-linking by con-
necting cells at the track level rather than object level using spatial and temporal
clues. Cell interpolation is used to recover missing cells due to miss-detection or

occlusion events.

5.3.2 Evaluation and Experimental Results

In order to show the difficulty of generalization, we report the results for the different

methods on both the training and testing set in Table 5.6. The results for the hidden
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test sets were generated using the public benchmark [215, 216, 217, 64, 218]. Table 5.6
shows that a cell-specific model — that is trained on specific cell types — performs best
on training data and worst on testing data. This is a clear indication that training
a different model for each cell type yields over-fitting. In contrast, a general model
(using different approaches) consistently results in worse performance in training and
superior performance for the hidden test data.

Table 5.6: Summary result table showing the MOTA score for different proposed
methods compared to the baseline. YOLOv3 Model I: Pool data together and
select randomly 80% for training and 20% for validation (no ensemble). YOLOv3
Model II: Leave one sequence out from each cell type for validation (no ensemble).
YOLOv3 Model III: Leave one cell type out for validation (no ensemble); in our

experiments, the cell type that was left is 3T3. All of the methods below (excluding
the baseline) use M2Track for tracking.

Avg. MOTA per cell type | Avg. MOTA per sequence | Avg. MOTA per tracklet

Method train test train test train test

Baseline (FasterRCNN + Tracktor) [82] - 23.85 - 22.24 - 35.10
Cell-type specific YOLOv3 90.37 26.60 89.98 22.90 88.92 24.20
YOLOvV3 Model I 73.10 35.40 75.60 34.60 75.30 37.50
YOLOvV3 Model II 89.96 38.92 89.80 37.53 88.86 44.72
YOLOvV3 Model III 63.73 33.70 66.33 34.04 65.64 42.34
EDF-YOLOV3 (ours) 80.83 48.08 81.41 48.60 T77.74 50.55

It can also be observed how deep detection networks (in our case YOLOv3) are
sensitive to the way data is split into training and validation. We can see that
random splitting (YOLOv3 Model I) yields a baseline score of 37.50. Leaving one
sequence out from each cell type for validation (YOLOv3 Model IT) greatly improves
generalizability; giving a MOTA score of 44.72. Similarly, leaving an entire cell type
for validation (YOLOv3 Model III) can also yield to a comparable improvement,
giving a MOTA score of 42.34. Finally, our ensemble detection framework applied
to YOLOv3 (EDF-YOLOV3) produces a state-of-the-art MOTA score on the public
leader board with a MOTA score of 50.55.

We conclude that leaving a cell type for validation to train a deep detection model
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Table 5.7: Tracker performance comparison as reported on Cell Tracking with Mitosis
Detection Challenge website [3].

[Tracker | Detection [MOTAT [ IDF1{ | TRAT [ MTT | ML| [ FP|  [FN| | IDS| [ FRAG! |
M2Track | EDF-YOLOV3 (ours) | 50.6 56.7 | 52.51 |428 | 174 | 158,503 | 309,015 | 2,118 | 10,453
M2Track | DMNet [35] 39.0 410 [3695 [219 | 317 | 109,689 | 466,667 | 3,142 | 20,829
Tracktor [82] | FasterRCNN [188] | 35.1 505 | 51.95 | 427 | 126 | 299,941 | 312,368 | 4,318 | 25,992

can greatly boost the model’s generalizability. Furthermore, applying this method 14
times with each of the cell types and combining the resulting models into one using
our EDF method can produce the best cell detection framework on the CTMC-v1
dataset.

Since tracking performance is affected by the quality of the object detection algo-
rithm used. Table 5.7 shows tracking performance as reported on Cell Tracking and
Mitosis Detection Challenge website [3]. Our EDF-YOLOv3 method for detection
combined with M2Track tracker outperforms in most of multi-object tracking metrics
MOTA, IDF1, TRA, MT, FN, IDS, and FRAG. Our team achieved the top one
rank on the Computer Vision for Microscopy Image Analysis (CVMI) workshop at
CVPR 2021.
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Chapter 6

Multi-object Tracking for
Ground-based/ Real-world Videos

6.1 Overview

In recent years, with the increase accessing to social media networks, and the fact that
cameras are not exclusive anymore to professional usage in real-world life. Computer
vision approaches became more in demand, such as video enhancement and filtering,
video registration, object recognition, object detection, and moving object tracking.
Ground-based/ real-world videos are the most popular types of videos that are used
for multi-object tracking. Especially, modern object tracking methods can be applied
to real-time video streams of basically any camera. Therefore, performing object
tracking requires feeding the individual frames to the tracking approach, and apply-
ing some optimization techniques such as frame skipping or parallelized processing to

improve object tracking performance with the real-time video feed from one or multi-
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ple cameras. There are many challenges with using real-world videos for multi-object
tracking such as frequent object deformations, rapid scale and appearance changes,

shadow, and illumination artifacts, and fully or partially object occlusion.

6.2 UA-DETRAC Bechmark

UA-DETRAC is a challenging real-world multi-object detection and multi-object
tracking benchmark [60]. UA-DETRAC, University of Albany DETection and tRACk-
ing (UA-DETRAC) benchmark dataset, consists of 100 video sequences (60 for train-
ing and 40 for testing). The videos are selected from over 10 hours of videos taken at
24 different locations, representing various common traffic types and conditions in-
cluding urban highways, traffic crossings and T-junctions. The videos are recorded at
25fps, with a resolution of 960 x 540 pixels. The videos, 140,000 frames, were manually
annotated for 8,250 vehicles in a total of 1.21 million labeled bounding boxes. Besides
the bounding boxes, several attributes were annotated. 1) Vehicle category: car, bus,
van, and others. 2) Weather: cloudy, night, sunny, and rainy. 3) Scale: according to
the square root of vehicles’ area, small, medium, and large vehicle size categories are
used. 4) Occlusion ratio: the fraction of the vehicle bounding box being occluded is
used to define occlusion ratio with no occlusion, partial occlusion, and heavy occlusion
categories. 5) Truncation ratio: shows the degree of vehicle parts that are outside the
frame. The UA-DETRAC benchmark is designed to be used with object detection
and multi-object tracking applications. The UA-DETRAC dataset has videos with
large variations and challenges in scale, pose and illumination, occlusion, and back-

ground clutter. In 2017 and 2018, Advanced Video and Signal based Surveillance
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(AVSS) conference held a workshop on Advanced Traffic Monitoring, in conjunction
with the International Workshop on Traffic and Street Surveillance for Safety and
Security (IWT4S) on UA-DETRAC benchmark to evaluate the state-of-the-art ob-
ject detection and multi-object tracking algorithms using evaluation protocol. The
UA-DETRAC protocol considers object detection and tracking jointly to evaluate the

performance of multi-object tracking systems.

6.2.1 FEvaluation Metrics

In [60], UA-DETRAC evaluation protocol proposed a new evaluation metrics which
are PR-MOTA, PR-MOTP, PR-MT, PR-ML, PR-IDS, PR-FM, PR-FP, and
PR-FN. The new metrics are different than the classic metrics (i.e. FP, FN, IDS,
FM, MT, ML, MOTA, MOTP) that are described in previous chapters. The
proposed UA-DETRAC evaluation protocol considers object detection and tracking
jointly for evaluation. The protocol considers the relation between object detection
(recall, and precision) metrics and the classic object tracking metrics. According to
the evaluation protocol for the challenge, final evaluations are computed by applying
the competitive trackers on a set of object detection results obtained by different
detection thresholds corresponding to different detection precision and recall levels.
A robust object tracking method is expected to perform well even with detection

score variation.
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6.2.2 UA-DETRAC Benchmark Implementation and Exper-
imental Results

We have tested and evaluated our M2Track tracker on UA-DETRAC-test set con-
sisting of 40 challenging real-world traffic videos (10 videos for beginner level (easy),
30 videos for experienced level (medium and hard) as classified by [60]). Our tracker
participated in 2017 and 2018 challenge workshops as described below:
Participating in AVSS17 challenge on UA-DETRAC set: using M2Track-
L2 that combines the first two levels from M2Track tracker pipeline, short-term local
association and long-term global association. We incorporate CompACT [54] object
detection output to be input to M2Track-L2 tracker. The results of the comparison
between our tracker to the other participants that use CompACT object detection
algorithm are shown in Table 6.1. Our rank was the second out of seven participants
in the easy level and the fifth out of eleven in the experience level. The table is
described in detail in the workshop challenge report [139].
Table 6.1: Tracker performance comparison against AVSS2017 challenge participants
on 40 video sequences for the beginner (easy)/ experienced (medium and hard) levels
in various environmental conditions. ” —” indicates the data is not available. The
best two high ranks performance for each metric is marked in bold. The performance

of the trackers is presented according to [139]. The arrows indicate whether the metric
for the specific column is better when high or low.

Trackers Rank] | PR-MOTAT | PR-MOTP? | PR-MT{ | PR-ML] | PR-IDS] | PR-FM]| PR-FP| PR-FN|
GOG[47] 5/7 23.9/11.7 47.4/314 | 205/10.8 | 21.0/21.1 | 829.9/2571.2 | 776.2/2463.8 | 6276.5/25352.8 | 36738.3/145257.5
CEM][219] 6/9 8.1/45 14.2/332 3.8/26 | 40.9/345 | 73.7/198.1 | 88.3/267.5 | 3236.0/9047.6 | 60393.3/200703.1
THTLS[187] 7/11 20.8/3.7 165/312 | 202/10.7 | 21.6/21.1 | 178.0/774.0 | 735.8/2835.9 | 10484.0/42814.2 | 37172.1/145188.5
H?T[220] 5/6 21.8/10.1 44.0/33.6 | 21.7/115 | 21.7/203 | 162.9/687.8 | 191.7/922.2 | 10278.4/41193.8 | 36115.2/139703.2
CMOT(42] 3/3 22.5/10.3 15.9/334 | 23.3/12.6 | 20.0/19.7 | 40.7/243.2 | 254.1/1255.9 | 11424.4/45619.6 | 34134.9/134568.6
HGFT[221] BB 121 /335 7104 215 /19275 ~J2141.0 ~J24160.0 ~J145262.2
GM-PHD[222] ~/4 21.8/10.9 47.6/35.0 | 16.2/15.1 | 20.4/21.6 | 641.8/556.4 | 2038.5/1674.9 | 37963.0/29687.1 | 186043.9/147257.0
JTEGCTD[139] 1/ 28.4/14.2 17.1/344 | 23.1/18.5 | 18.3/18.7 | 69.4/415.3 | 260.6/1345.7 | 5084.0/26221.8 | 33093/133867.4
MTT[51] /10 /12,0 -/35.7 17 J23.2 J814.7 -/3158.9 -/14016.8 ~/156997.0
GMPHD-KCF[223] | -2 /120 /338 /108 -/19.5 /6438 ~/1300.2 -/30518.1 -/140669.4
M2Track-L2(ours) | 2/5 25.2/10.7 15.8/338 | 23.8/11.9 | 15.8/20.0 | 179.9/514.7 | 590.6/1705.5 | 10155.4/35624.7 | 32742.9/142110.0

Our tracking results were compared to ten MOT trackers participated on the chal-

lenge, including GOG [47], CEM [219], IHTLS [187], H>T [220], GMPHD-KCF [223),
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GM-PHD[222], HGFT [221], MTT [51], JTEGCTD [139], and CMOT [42]. Our
tracker outperforms the other trackers in term of PR-MOTA, PR-MT, PR-ML,
and PR-FN in beginner level; and the results are comparable for the remaining met-
rics. Using RANK metric which is the average ranking for the all evaluation metrics,
our tracker has scored the second place in beginner level and the fifth place for the
experienced level.

Table 6.2 summarizes frame rates (in terms of frames per second) for our tracker
and other state-of-the-art trackers provided in [139]. The frame rate for our tracker
has been obtained by averaging frame rates on 40 sequences of UA-DETRAC-test
set. Our tracker had outperformed other competitive trackers after GM-PHD|[222]
tracker. Our simple feature set combined with a two-step distance-only local and
distance appearance combined global data association scheme allows high frame rates

while still preserving the reliability and accuracy of our tracker.

Table 6.2: Average running speed (in FPS) of the object tracking algorithms on
the UA-DETRAC-test benchmark. ” — ” indicates the data is not available, and x
indicates the GPU is not used. The two highest trackers in terms of speed are shown
in bold. The running speed performance of the trackers is presented according to
[139]

Trackers Codes CPU RAM | Frequency | GPU | Speed | Rank
GOG Matlab Intel i7-3520M | 16GB | 2.90GHz X 389.51 |3
CEM Matlab Intel i7-3520M | 16GB | 2.90GHz X 4.62 8
IHTLS Matlab Intel i7-3520M | 16GB | 2.90GHz X 19.79 7
H2T C++ Intel i7-3520M 16GB | 2.90GHz X 3.02 11
CMOT Matlab Intel i7-3520M | 16GB | 2.90GHz X 3.79 10
HGFT Matlab - 32GB | - X 3.97 9
GM-PHD C++ Intel i7-4770 16GB | 3.50GHz X 947.24 | 1
JTEGCTD Matlab Intel i7-3720QM | 8GB 2.70GHz X 60.38 4
MTT Python, C++ | Intel E5-2650 128GB | 2.00GHz TitanX | 24.30 6
GMPHD-KCF | C++ Intel i7-4770 32GB | 3.50GHz X 24.60 )
M2Track-12 Matlab Intel i7-4720 16GB | 2.60GHz X 471.28 | 2

Participating in AVSS18 Challenge on UA-DETRAC dataset: We have
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Table 6.3: Tracker performance comparison against AVSS2018 challenge participants
on 40 video sequences for the beginner (easy)/ experienced (medium and hard) levels
in various environmental conditions. ” —” indicates the data is not available. The
best two high ranks performance for each metric is marked in bold. The performance
of the trackers is presented according to [93]. The arrows indicate whether the metric

for the specific column is better when high or low.
Tracker Rank| | PR-MOTA?T | PR-MOTP? PR-MT?T PR-ML/| PR-IDS| PR-FM| PR-FP| PR-FN|

GOGGOG[47] 3/6 23.9/11.7 47.4/344 | 205/108 21.0/21.1 829.9/2571.2 | 776.2/2463.8 | 6276.5/25352.8 | 306733.3/145257.5
JTEGCTD[139] | 1/1 28.4/14.2 17.1/34.4 23.1/13.5 18.3%/18.7% | 69.4/415.3 | 260.6/1345.7 | 5034.0/26221.8 | 33093.8/133867.4
DMC[224] 2 -/14.6 /341 /11.6% ~/20.6% /9083 /1287.4 -/16056.7 /1414632
GMMA[225] B /123 /343 -/10.8 210 -/6275 /24237 ~J25577.4 /144148.9
M2Track_L2 [100] | 2/5 25.2/10.7 15.8/33.8 23.8%/11.9% | 15.8%/20.0% | 179.9/514.7 | 590.6/1705.5 | 10155.4/35624.7 | 32742.9/142110.0
M2Track [94] 2/3 25.9/12.1 47.2/35.0 | 15.0/7.7 20.6/24.8 91.8/378.3 | 323.7/947.5 | 2485.2/8241.0 | 38820.9/162937.6

tested and evaluated our tracking-by-detection multi-object tracker M2Track that
uses three-level modules cascade for efficient data association (local, global, and oc-
clusion handling). We incorporate CompACT [54] object detection output to be input
to M2Track tracker. The results of comparison between our tracker to the other par-
ticipants that use CompACT object detection algorithm are shown in Table 6.3. We
denote M2Track tracker to be M2Track-L2, and M2Trck to differentiate between the
two versions that participated in AVSS17 and AVSSI18 respectively. M2Track-1.2
uses two modules for data association (local, and global), while M2Track uses three-
level modules for data association (local, global, and occlusion handling). Table 6.3
describes in detail the results that showed in the workshop challenge report [93].
Our tracking results were compared to four MOT trackers participant on the
challenge, including GOG [47], JTEGCTD [139], DMC [224], GMMA[225], and our
two level module M2Track-12 tracker. Our tracker M2Track outperforms the other
trackers in term of PR-MOTA, PR-MOTP, PR-IDS, PR-FM, and PR-FP in
beginner level; and PR-MOTP, PR-IDS, PR-DM, and PR-FP in experienced
level set; and the results are comparable for the remaining metrics. Using RANK

metric, our tracker has scored the second place in beginner level and the third place
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for the experienced level.

In terms of extending M2Track-L2 to M2Track, as shown in Table 6.3, the perfor-
mance of the tracker is improved in terms of identity switches PR-IDS and tracklet
fragmentation PR-FM, due to the third level of our pipeline (occlusion handling),
which links the fragmented tracklets. PR-FP metric also increased because the tar-
get bounding boxes are predicted and recovered during occlusion handling. Figure
6.1 shows sample results.

We have analyzed the contribution of different module components on our tracker
to the overall performance by systematically enabling/disabling different components.
We used UA-DETRAC-train set for evaluation. Our tests show that all components
contribute to better-accumulated performance. Figure 6.2 shows the contribution
of each tracker component evaluated on UA-DETRAC-train set. For example, in
the experiment shown on the fifth bar in Figure 6.2, disabling the CN-to-CN color
correlation weight matrix Wen and assuming uncorrelated color codes, results in a

drop in PR-MOTA metric from 0.84 to 0.8.

6.3 Multi-Object Tracking Benchmark (MOT16)

MOT16 benchmark [4] consists of 14 video sequences (7 for training and 7 for test-
ing) with a total of 11235 frames. MOT2016 sequences were collected to create a
framework for the standardized evaluation of multi-object tracking methods. The
dataset focuses on pedestrian tracking in different scenarios. The sequences have
different weather conditions, camera motion, crowded scenarios, and different view-

points. Around 215,166 object detection have been annotated. The ground truth
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Figure 6.1: Sample track results from two different sequences from UA-DETRAC-test
set.
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Figure 6.2: Contribution of each tracker component evaluated on UA-DETRAC-train
set. PR-MOTA metric for each experiment compared to the Full Mode (M2Track)
(higher is better).

was carefully annotated and multiple object classes beside pedestrians bounding
boxes were provided (i.e. pedestrian, person on vehicle, car, bicycle, motorbike, non-
motorized vehicle, static person, distractor, occluder, reflection). For each bounding

box confidence score, class, and visibility ratio have been provided.

6.3.1 MOT16 Benchmark Implementation and Experimental
Results

We have tested and evaluated our multi-object tracker on MOT16 benchmark testing
set. We used two object detection methods, automatic detection deformable part-

based model (DPM) [226] shown in Table 6.4 and YOLOv3 deep learning object
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detection [147] shown in Table 6.5. We use the metrics that are employed by the
MOT evaluation toolkit [227], MOTA, FP, FN, IDS, MOTP, MT, ML,IDS,
and FM.

Table 6.4: Our tracker performance comparison against MOT16 challenge trackers
that are described on [4]. The results were implemented on 7 test video sequences
using (DPM) [226] object detection method as an input to the trackers. The arrows
indicate whether the metric for the specific column is better when high or low.

Tracker Rank| | MOTAT | MOTPT | MT?T | ML} | FPJ FN|] |IDS| | FM]
TBD 4 33.7 76.5 7.2 54.2 | 5804 | 112587 | 2418 | 2252
CEM 3 33.2 75.8 7.8 54.4 | 6837 | 114322 | 642 731
DP_NMS 3 32.2 76.4 5.4 62.1 | 1123 | 121579 | 927 944
SMOT 6 29.7 75.2 4.3 47.7 | 17426 | 107552 | 3108 | 4483
JPDA M 5 26.2 76.3 4.1 67.5 | 3689 | 130549 | 365 638
M2Track L2 | 2 33.7 75.0 724 |49.8 | 6619 | 112133 | 2143 | 2199
M2Track 1 36.6 73.9 29.0 | 15.8 | 3525 | 76653 | 3600 | 3724

For Table 6.4, our results are compared with MOT16 challenge baseline trackers
described on [4] using the same object detection for fare comparison. Our tracker
ranks second place and outperforms the other trackers in terms of FP, FN, IDS,
MOTP, and FM. For Table 6.5 we compare our two trackers, M2Track-L.2 and
M2Track, to show the importance of our modules. Using the occlusion handling
module increases the accuracy of the tracker. MOTA increased from 33.7 to 36.6
and MT metrics increased from 55 to 220 since the trajectories preserved. ML
metric decreased from 378 to 120 trajectories that are being lost. Figure 6.3 shows
some samples of MOT16 challenge benchmark implemented on our tracker.

Table 6.5: Comparison between M2Track-1.2 and M2Track. YOLOv3 object detection
is used as an input to the trackers

Tracker MOTA?T | MOTPT | MT?T | MLY{ | FP| | FN| | IDS| | FM|
M2Track-L2 | 33.7 75 55 378 6619 | 12133 | 2143 | 2199
M2Track 36.6 73.9 220 120 | 35239 | 76653 | 3600 | 3724
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Figure 6.3: M2Track tracking results on the train sequences in the MOT16 bench-
mark. The color of the boxes represents the identity of the targets. The graph is best
shown in color.
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

One of the most common and challenging tasks in a computer vision framework is
object tracking. Visual object tracking applications range from video surveillance to
biomedical image analysis. The objective of our work is to develop robust, accurate,
and high-performance moving object tracking to provide comprehensive information
about objects’ movement for further use with different computer vision problems.
Many computer vision problems have been utilized to serve our tracking pipeline
to have a comprehensive full scene understanding. Staring from object detection,
tracking ends with semantic scene understanding for better analysis. Our contribution
to this thesis has two folds. The first is to provide precise trajectory information for
an individual object of interest using the single object tracking pipeline, and the

second fold is to track all objects in the scene and produce their trajectories using
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the multi-object tracking pipeline.

For the single object tracking: we presented a recognition-based object track-
ing framework that extends the Likelihood of Features Tracker (LoFT) with color at-
tributes, scale selection, and kernelized correlation filter module producing CS-LoFT,
KC-LoFT. The addition of color attributes improves object and background appear-
ance description. The automated feature scale selection makes the tracker adapts to
scale changes caused by object motion, camera motion, or zoom, and ensures scale
coherence in the likelihood map and robustness against local outliers. Kernelized
correlation filter (KCF) scheme is added to better localize the target in a search win-
dow. The online update helps adapt to environmental changes. Experimental results
show improved performance, particularly for the sequences that have significant color
distractors and rapid scene changes. Also, experimental results on wide-area motion
imagery show improved performance in terms of accuracy and robustness compared
to LoFT and better or comparable results compared to other state-of-the-art trackers.

For multi-object tracking: our pipeline M2Track tracker, (Multi-cue, Multi-
object tracker), is detection-based multi-object tracking with three-step data associ-
ation to ensure time efficiency, and tracking accuracy. M2Trck is light but efficient
modular pipeline for large-scale object density and robust to wide cross-domain bench-
marks by having a hybrid cost matrix for frame-to-frame data association; robust and
discriminative object appearance model; novel color correlation cost matrix; deep fea-
ture model for trajectory matching; and occlusion handling module using (Kalman
filter prediction, tracking objects’ motion patterns, and considering the environmen-
tal constraints). M2Track can handle birth/death, and the appearance/disappearance

of objects in the scene. M2Track is an image appearance-based detections and as-
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sociations pipeline that achieved and fulfilled the requirements of any robust and
reliable tracker since it is scalable to thousands of detections, running in near real-
time, invariant to object size and density, rigid and deformable objects, and works
with cross-domain objects (i.e., aerial, ground-based, biological, real-world, etc.)
M2Track outperforms or has comparable results with the state-of-the-art trackers
and baselines in different challenges such as the top three rank on cell segmentation
and tracking challenge in 2021 [206], the top one rank on the cell tracking with mi-
tosis detection dataset challenge in 2021 [3], the top two rank in the UA-DETRAC
challenge in 2017 and 2018 [101, 93], the top four at the vision meet drones challenge
in 2018 [92], and others that are described on the experimental result sections on this
dissertation. M2Track was integrated into/with different approaches and applications
such as video analysis [84, 85], object detection and tracking in WAMI [85, 95, 73],
biomedical cell segmenting and tracking [84], video annotation [87], and video com-

pression [90, 73].

7.2 Future Research

For future work, M2Track pipeline can be improved and upgraded by adding new
modules to support the accuracy and robustness to different scenarios. Develop a
high-performance multi-object detection and tracking pipeline near real-time for wide
aerial motion imagery that works with different environments on different camera ac-
quisitions. Develop framework descriptor for object feature analysis (i.e., appearance-
based of deep and non-deep features, motion kinematics, environmental constraints,

and depth estimation) by collecting information and cues regarding objects of inter-
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est. Develop fusion modules that adaptively select suitable features to be used for
trajectory matching. Exploiting the 3D world by tracking 3D moving objects on a
reconstructed 3D model. Develop M3Track (Multi-camera, multi-cue, multi-object
tracking) by considering object re-identification through multiple cameras, and global

coordinates using stitching and mosaicking approaches.

132



Bibliography

[1]
2]

ABQ video. http://www.transparentsky.net.

Todd Rovito, James Patrick, Steve Walls, Daniel Uppenkamp, Olga Mendoza-
Schrock, Vince Velten, Chris Curtis, and Kevin Priddy. Columbus Large Image
Format (CLIF) 2007 Dataset. https://github.com/AFRL-RY /data-clif-2007.

Cell Tracking with Mitosis Detection Challenge.

https://motchallenge.net/data/CTMC-v1/.

A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler. MOT16: A bench-
mark for multi-object tracking. arXiv:1603.00831v2, 2016.

I. Haritaoglu, D. Harwood, and L.S. Davis. W/sup4/: real-time surveillance
of people and their activities. IEFEE Transactions on Pattern Analysis and

Machine Intelligence, 22(8):809-830, 2000.

J. Shin, S. Kim, S. Kang, S. Lee, J. Paik, B. Abidi, and M. Abidi. Optical flow-
based real-time object tracking using non-prior training active feature model.

Real-Time Imaging, 11(3):204-218, 2005.

133



[7]

[10]

[11]

[12]

[13]

H. Possegger, T. Mauthner, and H. Bischof. In defense of color-based model-
free tracking. IEFEE Conference on Computer Vision and Pattern Recogni-

tion(CVPR), pages 21132120, 2015.

J. Xiao, R. Stolkin, and A. Leonardis. Single target tracking using adaptive
clustered decision trees and dynamic multi-level appearance models. [EEFE
Conference on Computer Vision and Pattern Recognition, pages 4978-4987,
2015.

A.D. Jepson, D.J. Fleet, and T.F. El-Maraghi. Robust online appearance mod-
els for visual tracking. IEEFE Transactions on Pattern Analysis and Machine

Intelligence, 25(10):1296-1311, 2003.

X. Mei and H. Ling. Robust visual tracking and vehicle classification via sparse
representation. [EEFE Transactions on Pattern Analysis and Machine Intelli-

gence, 33(11):2259-2272, 2011.

Y. Li and J. Zhu. A scale adaptive kernel correlation filter tracker with feature
integration. Furopean Conference on Computer Vision Workshops (ECCYV),
LNCS 8926, 2014.

D. S Bolme, J.R. Beveridge, B. A Draper, and Y.M. Lui. Visual object tracking
using adaptive correlation filters. IEEE Conference on Computer Vision and

Pattern Recognition(CVPR), pages 2544-2550, 2010.

M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-detection and people-
detection-by-tracking. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2008.

134



[14]

[15]

[16]

[17]

[18]

[19]

M.D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool.
Online multiperson tracking-by-detection from a single, uncalibrated camera.
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 33(9):1820—

1833, 2011.

M. Ullah, F.A. Cheikh, and A.S. Imran. Hog based real-time multi-target
tracking in bayesian framework. IEEE International Conference on Advanced

Video and Signal Based Surveillance (AVSS), 2016.

Jean-Baptiste Lugagne, Haonan Lin, and Mary J Dunlop. DeLTA: automated
cell segmentation, tracking, and lineage reconstruction using deep learning.

PLoS Computational Biology, 16(4):¢1007673, 2020.

Martin Magka, Ondiej Danék, Saray Garasa, Ana Rouzaut, Arrate Munoz-
Barrutia, and Carlos Ortiz-de Solorzano. Segmentation and shape tracking of
whole fluorescent cells based on the Chan-Vese model. IFEEE Transactions on

Medical Imaging, 32(6):995-1006, 2013.

Daniel H Rapoport, Tim Becker, Amir Madany Mamlouk, Simone Schick-
tanz, and Charli Kruse. A novel validation algorithm allows for automated
cell tracking and the extraction of biologically meaningful parameters. PLOS

One, 6(11):e27315, 2011.

Adel Hafiane, Filiz Bunyak, and Kannappan Palaniappan. Level set-based his-
tology image segmentation with region-based comparison. Proceedings Micro-

scopic Image Analysis with Applications in Biology, 2008.

135



[20]

[21]

[23]

[24]

[25]

[26]

Likhitha Kolla, Michael C Kelly, Zoe F Mann, et al. Characterization of the
development of the mouse cochlear epithelium at the single cell level. Nature

Communications, 11(1):1-16, 2020.

Adel Hafiane, Filiz Bunyak, and Kannappan Palaniappan. Evaluation of level
set-based histology image segmentation using geometric region criteria. In /EEFE

Int. Symp. on Biomedical Imaging (ISBI), pages 1-4, 20009.

L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. Torr. Staple: comple-
mentary learners for real-time tracking. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1401-1409, 2016.

J. Zhang, S. Ma, and S. Sclaroff. MEEM: robust tracking via multiple ex-
perts using entropy minimization. In European Conference on Computer Vision,

pages 188-203, 2014.

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed tracking
with kernelized correlation filters. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 37(3):583-596, 2014.

T. Xu, Z. Feng, X. Wu, and J. Kittler. Learning adaptive discriminative
correlation filters via temporal consistency preserving spatial feature selection
for robust visual object tracking. [FEE Transactions on Image Processing,

28(11):5596-5609, 2019.

A. Lukezic, T. Vojir, L. Cehovin Zajc, J. Matas, and M. Kristan. Discriminative

correlation filter with channel and spatial reliability. In Proceedings of the IEEE

136



28]

[29]

[31]

32]

[33]

Conference on Computer Vision and Pattern Recognition, pages 63096318,
2017.

R. Pelapur, S. Candemir, F. Bunyak, M. Poostchi, G. Seetharaman, and
K. Palaniappan. Persistent target tracking using likelihood fusion in wide-

area and full motion video sequences. In IEEFE International Conference on

Information Fusion, pages 2420-2427, 2012.

M. Danelljan, A. Robinson, F. Shahbaz Khan, and M. Felsberg. Beyond corre-
lation filters: Learning continuous convolution operators for visual tracking. In

Furopean Conference on Computer Vision, pages 472-488, 2016.

7. Zhang and H. Peng. Deeper and wider siamese networks for real-time visual
tracking. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4591-4600, 2019.

J.F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed tracking
with kernelized correlation filters. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 37(3):583-596, 2015.

M. Danelljan, G. Héger, F. Khan, and M. Felsberg. Accurate scale estimation

for robust visual tracking. British Machine Vision Conference, 2014.

R. Girshick. Fast R-CNN. In IEEFE Int. Conf. on Computer Vision (ICCYV),
pages 1440-1448, 2015.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 779788, 2016.

137



[34]

[35]

[37]

W. Liu et al. SSD: Single shot multibox detector. In European Conference on
Computer Vision (ECCYV), volume LNCS 9905, pages 21-37, 2016.

Rina Bao, Noor M Al-Shakarji, Filiz Bunyak, and Kannappan Palaniappan.
DMNet: dual-stream marker guided deep network for dense cell segmentation
and lineage tracking. In Proceedings of the IEEE International Conference on

Computer Vision (ICCV), pages 3361-3370, 2021.

Z. Ren, Z. Yu, X. Yang, M. Liu, Y.J. Lee, A. G. Schwing, and J. Kautz.
Instance-aware, context-focused, and memory-efficient weakly supervised object
detection. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 10598-10607, 2020.

G. Cheng, J. Yang, D. Gao, L. Guo, and J. Han. High-quality proposals for
weakly supervised object detection. IEEE Transactions on Image Processing,

29:5794-5804, 2020.

J. Wang, J. Yao, Y. Zhang, and R. Zhang. Collaborative learning for weakly

supervised object detection. arXiv preprint arXiw:1802.03531, 2018.

E. Crawford and J. Pineau. Spatially invariant unsupervised object detection
with convolutional neural networks. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 33, pages 3412-3420, 2019.

H. Tian, Y. Chen, J. Dai, Z. Zhang, and X. Zhu. Unsupervised object detection
with lidar clues. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5962-5972, 2021.

138



[41]

[42]

[43]

[44]

[45]

[46]

[47]

E. Xie, J. Ding, W. Wang, X. Zhan, H. Xu, P. Sun, Z. Li, and P. Luo. DetCo:
unsupervised contrastive learning for object detection. In Proceedings of the

IEEE International Conference on Computer Vision, pages 8392-8401, 2021.

S. Bae and K. Yoon. Robust online multi-object tracking based on tracklet
confidence and online discriminative appearance learning. IEEE Conference on

Computer Vision and Pattern Recognition(CVPR), pages 1218-1225, 2014.

A. Andriyenko, K. Schindler, and S. Roth. Discrete-continuous optimization
for multi-target tracking. IEEFE Transactions on Pattern Analysis and Machine

Intelligence, 38(10):2054-2068, 2016.

B. Yang and R. Nevatia. Multi-target tracking by online learning a CRF model
of appearance and motion patterns. International Journal of Computer Vision,

107(2):203-217, 2014,

J. Xing, H. Ai, and S. Lao. Multi-object tracking through occlusions by lo-
cal tracklets filtering and global tracklets association with detection responses.
IEEFE Conference on Computer Vision and Pattern Recognition (CVPR), pages
1200-1207, 20009.

E. Bochinski, T. Senst, and T. Sikora. Extending IOU based multi-object
tracking by visual information. In 2018 15th IEEFE International Conference on
Advanced Video and Signal Based Surveillance (AVSS), pages 1-6, 2018.

Hamed Pirsiavash, Deva Ramanan, and Charless C Fowlkes. Globally-optimal
greedy algorithms for tracking a variable number of objects. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 1201-1208, 2011.

139



[48]

[49]

[51]

[52]

[53]

Y. Song, K. Yoon, Y. Yoon, K. C. Yow, and M. Jeon. Online multi-object
tracking with GMPHD filter and occlusion group management. IEFE access,
7:165103-165121, 2019.

A. Milan, S. Roth, and K. Schindler. Continuous energy minimization for
multi-target tracking. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36(1):58-72, 2013.

A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Simple online and realtime
tracking. In IEEFE International Conference on Image Pprocessing (ICIP), pages
3464-3468, 2016.

Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime
tracking with a deep association metric. In IEEE International Conference on

Image Processing, pages 36453649, 2017.

S. Sun, N. Akhtar, H. Song, A. Mian, and M. Shah. Deep affinity network for
multiple object tracking. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(1):104-119, 2019.

B. Shuai, A. Berneshawi, X. Li, D. Modolo, and J. Tighe. Siammot: siamese
multi-object tracking. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 12372-12382, 2021.

7. Cai, M. Saberian, and N. Vasconcelos. Learning complexity-aware cascades
for deep pedestrian detection. IEEFE Transactions on Pattern Analysis and

Machine Intelligence, pages 1-16, 2019.

140



[55]

[56]

[58]

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. IEEE Conference on

Computer Vision and Pattern Recognition, pages b80-5H87, 2014.

R. Wang, F. Bunyak, G. Seetharaman, and K. Palaniappan. Static and moving
object detection using flux tensor with split gaussian models. IEEE Conference

on Computer Vision and Pattern Recognition, pages 420424, 2014.

C.R. del-Blanco, F. Jaureguizar, and N. Garcia. An efficient multiple object
detection and tracking framework for automatic counting and video surveil-
lance applications. IEEE Transactions on Consumer Electronics, 58(3):857—

862, 2012.

K. Yamaguchi, A.C. Berg, L.E. Ortiz, and T.L. Berg. Who are you with and
where are you going? I[IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1345-1352, 2011.

M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder, G. Fernandez,
G. Nebehay, F. Porikli, and L. Cehovin. A novel performance evaluation
methodology for single-target trackers. IEEFE Transactions on Pattern Anal-
ysis and Machine Intelligence, 38(11):2137-2155, 2016.

L. Wen, D. Du, Z. Cai, Z. Lei, M. Chang, H. Qi, J. Lim, M. Yang, and S. Lyu.
UA-DETRAC: A new benchmark and protocol for multi-object detection and

tracking. arXw:1511.04136, 2015.

141



[61]

J. Ferryman and A. Shahrokni. PETS2009: Dataset and challenge. IEEE In-
ternational Workshop on Performance Evaluation of Tracking and Surveillance,

pages 1-6, 2009.

P. Zhu, L. Wen, X. Bian, H. Ling, and Q. Hu. Vision meets drones: a challenge.
arXiv:1804.07437v2, 2018.

S. Oh et al. A large-scale benchmark dataset for event recognition in surveillance
video. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3153-3160, 2011.

V. Ulman et al. An objective comparison of cell-tracking algorithms. Nature

methods, 14:1141—1152, 2017.

R. Pelapur, K. Palaniappan, and G. Seetharaman. Robust orientation and
appearance adaptation for wide-area large format video object tracking. IEFE
International Conference on Advanced Video and Signal-Based Surveillance,

pages 337-342, 2012.

K. Palaniappan, F. Bunyak, P. Kumar, I. Ersoy, S. Jaeger, K. Ganguli, A. Hari-
das, J. Fraser, R. M. Rao, and G. Seetharaman. Efficient feature extraction and
likelihood fusion for vehicle tracking in low frame rate airborne video. [FEFE

International Conference on Information Fusion, pages 1-8, 2010.

A. Bhattacharyya. On a measure of divergence between two multinomial pop-
ulations. Sankhya: the Indian Journal of Statistics (1933-1960), 7(4):401-406,
1946.

142



[68]

[69]

[71]

[72]

[73]

[74]

Matej Kristan et al. The visual object tracking VOT2016 challenge results. In

European Conference on Computer Vision (ECCV), volume LNCS 9914, 2016.

James MacQueen et al. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the fifth Berkeley symposium on mathe-
matical statistics and probability, volume 1, pages 281-297. Oakland, CA, USA,
1967.

K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-CNN. In IEEFE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 2961-2969,
2017.

F. Bunyak, K. Palaniappan, S.K. Nath, and G. Seetharaman. Flux tensor
constrained geodesic active contours with sensor fusion for persistent object

tracking. Journal of Multimedia, 2(4):20, 2007.

F. Bunyak, K. Palaniappan, S. K. Nath, and G. Seetharaman. Geodesic active
contour based fusion of visible and infrared video for persistent object tracking.
In IEEE Workshop on Applications of Computer Vision (WACYV), pages 35-35,
2007.

N. Al-Shakarji, F. Bunyak, H. AliAkbarpour, G. Seetharaman, and K. Pala-
niappan. In Multi-cue vehicle detection for semantic video compression in geo-

registered aerial videos, pages 56-65, 2019.

J. Munkres. Algorithms for the assignment and transportation problems. Jour-

nal of the Society for Industrial and Applied mathematics, 5(1):32-38, 1957.

143



[75]

[78]

[79]

[30]

[81]

[82]

R.E. Kalman. A new approach to linear filtering and prediction problems.

Journal of Basic Engineering, 82(1):35-45, 1960.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

volume 1, pages 886-893, 2005.

G. Koch, R. Zemel, R. Salakhutdinov, et al. Siamese neural networks for one-
shot image recognition. In ICML Deep Learning Workshop, volume 2, page 0,
2015.

Y. Rubner, . Tomasi, and L. J Guibas. The earth mover’s distance as a metric
for image retrieval. International journal of Computer Vision, 40(2):99-121,

2000.

Pengfei Zhu, Longyin Wen, Xiao Bian, Ling Haibin, and Qinghua Hu. Vision

meets drones: A challenge. arXiv preprint arXiv:1804.07437, 2018.

D. Du, Y. Qi, H. Yu, Y. Yang, K. Duan, G. Li, W. Zhang, Q. Huang, and
Q. Tian. The unmanned aerial vehicle benchmark: Object detection and track-
ing. In Proceedings of the European Conference on Computer Vision (ECCYV),
pages 370-386, 2018.

Alex L. Chan. A description on the second dataset of the U.S. Army: research

laboratory force protection surveillance system. 2009.

S. Anjum and D. Gurari. CTMC: cell tracking with mitosis detection dataset
challenge. In Proceedings of the IEEE/CVFE Conference on Computer Vision
and Pattern Recognition Workshops, pages 982-983, 2020.

144



[83]

[84]

[85]

[30]

[87]

E. Asante, D. Hummel, S. Gurung, Y. Kassim, N. Al-Shakarji, K. Palaniappan,
V. Sittaramane, and A. Chandrasekhar. Defective neuronal positioning cor-

relates with aberrant motor circuit function in zebrafish. Frontiers in Neural

Circuits, 15, 2021.

R. Bao, N. Al-Shakarji, F. Bunyak, and K. Palaniappan. Dmnet: Dual-stream
marker guided deep network for dense cell segmentation and lineage tracking.
In IEEE International Conference on Computer Vision Workshops (ICCVW),
pages 3354-3363, 2021.

N. Al-Shakarji, K. Gao, F. Bunyak, H. Aliakbarpour, E. Blasch, P. Narayaran,
G. Seetharaman, and K. Palaniappan. Impact of georegistration accuracy on
wide area motion imagery object detection and tracking. In IEEE International

Conference on Information Fusion (FUSION), pages 1-8, 2021.

H. Fan, D. Du, L. Wen, P. Zhu, Q. Hu, H. Ling, M. Shah, J. Pan, A. Schumann,
B. Dong, D. Stadler, D. Xu, F. Bunyak, G. Seetharaman, G. Liu, V. Haritha,
P. S. Hrishikesh, J. Han, K. Palaniappan, K. Zhu, L. W. Sommer, L. Zhang,
L. Shine, M. Yao, N. Al-Shakarji, S. Li, T. Sun, W. Sai, W. Yu, X. Wu, X. Hong,
X. Wei, X. Zhao, Y. Zhao, Y. Gong, Y. Yao, Y. He, Z. Zhao, Z. Xie, Z. Yang,
7. Xu, 7. Luo, and Z. Duan. Visdrone-mot2020: The vision meets drone mul-

tiple object tracking challenge results. In Furopean Conference on Computer

Vision (ECCV), pages 713-727. Springer International Publishing, 2020.

N. Al-Shakarji, E. Ufuktepe, F. Bunyak, H. Aliakbarpour, G. Seetharaman,
and K. Palaniappan. Semi-automatic system for rapid annotation of moving

objects in surveillance videos using deep detection and multi-object tracking

145



[88]

[90]

[91]

techniques. In IEEE Applied Imagery Pattern Recognition Workshop (AIPR),

pages 1-6, 2020.

E. Ufuktepe, V. Ramtekkar, K. Gao, N. Al-Shakarji, J. Fraser, H. AliAkbarpour,
G. Seetharaman, and K. Palaniappan. pytag: Python-based interactive training

data generation for visual tracking algorithms. volume 11398, 2020.

. Wen, P. Zhu, D. Du, X. Bian, H. Ling, Q. Hu, J. Zheng, T. Peng, X. Wang,
. Zhang, L. Bo, H. Shi, R. Zhu, A. Jadhav, B. Dong, B. Lall, C. Liu, C. Zhang,
. Wang, F. Ni, F. Bunyak, G. Wang, G. Liu, G. Seetharaman, G. Li, H. Ardo,

L
Y
D
H. Zhang, H. Yu, H. Lu, J.-N. Hwang, J. Mu, J. Hu, K. Palaniappan, L. Chen,
L. Ding, M. Lauer, M. Nilsson, N. M. Al-Shakarji, P. Mukherjee, Q. Huang,
R. Laganiere, S. Chen, S. Pan, V. Kaushik, W. Shi, W. Tian, W. Li, X. Chen,
X. Zhang, Y. Zhang, Y. Zhao, Y. Wang, Y. Song, Y. Yao, Z. Chen, Z. Xu,
Z. Xiao, and Z. Tong. Visdrone-mot2019: The vision meets drone multiple

object tracking challenge results. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops (ICCVW), pages 189-198, 2019.

N. Al-Shakarji, F. Bunyak, H. Aliakbarpour, G. Seetharaman, and K. Pala-
niappan. Performance evaluation of semantic video compression using multi-

cue object detection. In IEEFE Applied Imagery Pattern Recognition Workshop
(AIPR), pages 1-8, 2019.

A. Bouix, N. Al-Shakarji, K. Gao, F. Bunyak, A. Chazot, A. Hafiane, and
K. Palaniappan. Robust target tracking using adaptive color feature and likeli-

hood fusion. In Geospatial Informatics, Motion Imagery, and Network Analytics

VIII, volume 10645, page 106450L, Apr 2018.

146



[92]

[94]

[95]

P. Zhu, L. Wen, D. Du, X. Bian, H. Ling, Q. Hu, H. Wu, Q. Nie, H. Cheng,
C. Liu, X. Liu, W. Ma, L. Wang, A. Schumann, D. Wang, D. Ortego, E. Luna,
E. Michail, E. Bochinski, F. Ni, F. Bunyak, G. Zhang, G. Seetharaman, G. Li,
H. Yu, [. Kompatsiaris, J. Zhao, J. Gao, J. M. Martinez, J. C. S. Miguel,
K. Palaniappan, K. Avgerinakis, L. Sommer, M. Lauer, M. Liu, N. M. Al-
Shakarji, O. Acatay, P. Giannakeris, Q. Zhao, Q. Ma, Q. Huang, S. Vrochidis,
T. Sikora, T. Senst, W. Song, W. Tian, W. Zhang, Y. Zhao, Y. Bai, Y. Wu,
Y. Wang, Y. Li, Z. Pi, and Z. Ma. Visdrone-vdt2018: The vision meets drone
video detection and tracking challenge results. In Proceedings of the European

Conference on Computer Vision (ECCV) Workshops, 2018.

S. Lyu, M.-C. Chang, D. Du, W. Li, Y. Wei, M. D. Coco, P. Carcagni, A. Schu-
mann, B. Munjal, D.-Q. Dang, D.-H. Choi, E. Bochinski, F. Galasso, F. Bunyak,
G. Seetharaman, J.-W. Baek, J. T. Lee, K. Palaniappan, K.-T. Lim, K. Moon,
K.-J. Kim, L. Sommer, M. Brandlmaier, M.-S. Kang, M. Jeon, N. M. Al-
Shakarji, O. Acatay, P.-K. Kim, S. Amin, T. Sikora, T. Dinh, T. Senst, V.-G.
Che, Y.-C. Lim, Y. m. Song, and Y.-S. Chung. Ua-detrac 2018: Report of
avss2018 amp; iwtds challenge on advanced traffic monitoring. In IEEFE Inter-
national Conference on Advanced Video and Signal Based Surveillance (AVSS),

pages 1-6, 2018.

N. Al-Shakarji, F. Bunyak, G. Seetharaman, and K. Palaniappan. Multi-object
tracking cascade with multi-step data association and occlusion handling. pages

1-6. IEEE, 2018.

N. Al-Shakarji, F. Bunyak, G. Seetharaman, and K. Palaniappan. Robust multi-

147



[96]

[97]

[100]

[101]

object tracking for wide area motion imagery. pages 1-5, 2018.

N. M. Al-Shakarji, F. Bunyak, G. Seetharaman, and K. Palaniappan. A hybrid
local and global multi-object tracking with semantic spatial and appearance

modules. volume 10645, page 1064508, 2018.

Y. M. Kassim, N. Al-Shakarji, E. Asante, A. Chandrasekhar, and K. Pala-
niappan. Dissecting branchiomotor neuron circuits in zebrafish - toward high-

throughput automated analysis of jaw movements. pages 943-947, 2018.

N. Al-Shakarji, Y. Kassim, and K. Palaniappan. Unsupervised learning method

for plant and leaf segmentation. pages 1-4, Apr 2017.

N. Al-Shakarji, F. Bunyak, G. Seetharaman, and K. Palaniappan. Vehicle track-
ing in wide area motion imagery using kec-loft multi-feature discriminative mod-
eling. In IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pages
1-6, 2017.

N. Al-Shakarji, F. Bunyak, G. Seetharaman, and K. Palaniappan. Robust multi-

object tracking with semantic color correlation. pages 1-7, 2017.

S. Lyui, M. Chang, D. Du, L. Wen, H. Qi, Y. Li, Y. Wei, L. K., T. Hu,
M. DelCoco, P. Carcagni, D. Anisimov, E. Bochinski, F. Galasso, F. Bunyak,
G. Han, H. Ye, H. Wang, K. Palaniappan, K. Ozcan, L. W. L. Wang, M. Lauer,
N. Watcharapinchai, N. Song, N. Al-Shakarji, S. Wang, S. Amin, S. Rujikiet-
gumjorn, T. Khanova, T. Sikora, T. Kutschbach, V. Eiselein, W. Tian, X. Xue,
X.Yu, Y. Lu, Y. Zheng, Y. Huang, and Y. Zhang. Ua-detrac 2017: Report of

avss2017 amp; iwtds challenge on advanced traffic monitoring. pages 1-7, 2017.

148



[102]

103]

M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. Ce-
hovin, T. Vojir, G. Hager, A. Lukezic, G. Fernandez, A. Gupta, A. Petrosino,
A. Memarmoghadam, A. Garcia-Martin, A. S. Montero, A. Vedaldi, A. Robin-
son, A. J. Ma, A. Varfolomieiev, A. Alatan, A. Erdem, B. Ghanem, B. Liu,
B. Han, B. Martinez, C.-M. Chang, C. Xu, C. Sun, D. Kim, D. Chen, D. Du,
D. Mishra, D.-Y. Yeung, E. Gundogdu, E. Erdem, F. Khan, F. Porikli, F. Zhao,
F. Bunyak, F. Battistone, G. Zhu, G. Roffo, G. R. K. S. Subrahmanyam, G. Bas-
tos, G. Seetharaman, H. Medeiros, H. Li, H. Qi, H. Bischof, H. Possegger, H. Lu,
H. Lee, H. Nam, H. J. Chang, I. Drummond, J. Valmadre, J. c¢. Jeong, J. i. Cho,
J.-Y. Lee, J. Zhu, J. Feng, J. Gao, J. Y. Choi, J. Xiao, J.-W. Kim, J. Jeong, J. F.
Henriques, J. Lang, J. Choi, J. M. Martinez, J. Xing, J. Gao, K. Palaniappan,
K. Lebeda, K. Gao, K. Mikolajczyk, L. Qin, L. Wang, L. Wen, L. Bertinetto,
M. K. Rapuru, M. Poostchi, M. Maresca, M. Danelljan, M. Mueller, M. Zhang,
M. Arens, M. Valstar, M. Tang, M. Baek, M. H. Khan, N. Wang, N. Fan, N. Al-
Shakarji, O. Miksik, O. Akin, P. Moallem, P. Senna, P. H. S. Torr, P. C. Yuen,
Q. Huang, R. Martin-Nieto, R. Pelapur, R. Bowden, R. Laganiere, R. Stolkin,
R. Walsh, S. B. Krah, S. Li, S. Zhang, S. Yao, S. Hadfield, S. Melzi, S. Lyu, S. Li,
S. Becker, S. Golodetz, S. Kakanuru, S. Choi, T. Hu, T. Mauthner, T. Zhang,
T. Pridmore, V. Santopietro, W. Hu, W. Li, W. Hiibner, X. Lan, X. Wang,
X. Li, Y. Li, Y. Demiris, Y. Wang, Y. Qi, Z. Yuan, Z. Cai, Z. Xu, Z. He,
and Z. Chi. The visual object tracking vot2016 challenge results. In Furopean
Conference on Computer Vision Workshop (ECCVW), pages T77-823, 2016.

M. Felsberg, M. Kristan, J. Matas, A. Leonardis, R. Pflugfelder, G. Héger,
A. Berg, A. Eldesokey, J. Ahlberg, L. Cehovin, T. Vojir, A. Lukezic, G. Fernan-

149



[104]

[105]

[106]

[107]

dez, A. Petrosino, A. Garcia-Martin, A. S. Montero, A. Varfolomieiev, A. Er-
dem, B. Han, C.-M. Chang, D. Du, E. Erdem, F. S. Khan, F. Porikli, F. Zhao,
F. Bunyak, F. Battistone, G. Zhu, G. Seetharaman, H. Li, H. Qi, H. Bischof,
H. Possegger, H. Nam, J. Valmadre, J. Zhu, J. Feng, J. Lang, J. M. Martinez,
K. Palaniappan, K. Lebeda, K. Gao, K. Mikolajczyk, L. Wen, L. Bertinetto,
M. Poostchi, M. Maresca, M. Danelljan, M. Arens, M. Tang, M. Baek, N. Fan,
N. Al-Shakarji, O. Miksik, O. Akin, P. H. S. Torr, Q. Huang, R. Martin-Nieto,
R. Pelapur, R. Bowden, R. Laganiere, S. B. Krah, S. Li, S. Yao, S. Hadfield,
S. Lyu, S. Becker, S. Golodetz, T. Hu, T. Mauthner, V. Santopietro, W. Li,
W. Hiibner, X. Li, Y. Li, Z. Xu, and Z. He. The thermal infrared visual object
tracking vot-tir2016 challenge results. In European Conference on Computer

Vision Workshop (ECCVW), pages 824-849, 2016.

N. Al-Shakarji, F. Bunyak, and K. Palaniappan. Cs-loft: Color and scale adap-

tive tracking using bhattacharyya distance and max pooling consistency. 2016.

Y. Wu, J. Lim, and M. Yang. Object tracking benchmark. IEEE Transaction
on Pattern Analysis and Machine Intelligence, 37(9):1834-1848, 2015.

A.W.M. Smeulders, D.M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and
M. Shah. Visual tracking: An experimental survey. [EEE Transactopm on
Pattern Analysis and Machine Intelligence, 36(7):1442-1468, 2014.

F. Porikli. Integral histogram: a fast way to extract histograms in cartesian
spaces. IEEE Confrence on Computer Vision and Pattern Recognition, 1:829—
836, 2005.

150



[108]

109]

[110]

[111]

[112]

[113]

114]

[115]

R.T. Collins, Y. Liu, and M. Leordeanu. Online selection of discriminative
tracking features. IEEFE transaction on Pattern Analysis and Machine Intelli-

gence, 27(10):1631-1643, 2005.

S. Hare, A. Saffari, P. Torr, et al. Struck: structured output tracking with
kernels. [EFEE Transactions on Pattern Analysis and Machine Intelligence,

38(10):2096-2109, 2016.

K. Zhang, L. Zhang, and M. Yang. Real-time compressive tracking. Furopean
Conference on Computer Vision, 7574:864-877, 2012.

T. Ba Dinh, N. Vo, and G. Medioni. Context tracker: Exploring supporters
and distracters in unconstrained environments. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1177-1184, 2011.

P. Pérez, C. Hue, J. Vermaak, and M. Gangnet. Color-based probabilistic

tracking. Furopean Conference on Computer Vision, 2350:661-675, 2002.

K. Nummiaro, E. Koller-Meier, and L. Van Gool. An adaptive color-based

particle filter. Image and Vision Computing, 21(1):99-110, 2003.

7. Zivkovic and B. Krose. An EM-like algorithm for color-histogram-based ob-
ject tracking. IEEE Conference on Computer Vision and Pattern Recognition,

2004.

M. Centir, P. Fragneto, D. Denaro, B. Rossi, and C. Marchisio. A combined
color-correlation visual model for object tracking using particle filters. Interna-

tional Symposium on Image and Signal Processing and Analysis, 2013.

151



[116]

[117]

[118]

119

[120]

121]

[122]

[123]

M. Danelljan, Shahbaz K.F., M. Felsberg, and J. Van de Weijer. Adaptive color
attributes for real-time visual tracking. IEEFE Confrence on Computer Vision

and Pattern Recognition, 2014.

J.F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the circu-
lant structure of tracking-by-detection with kernels. Furopean conference on

Computer Vision, LNCS 7575:702-715, 2012.

J. Van De Weijer, C. Schmid, J. Verbeek, and D. Larlus. Learning color names
for real-world applications. IEEE Trans. on Image Processing, 18(7):1512-1523,
2009.

B. Berlin and P. Kay. Basic color terms: Their universality and evolution. Univ

of California Press, 1991.

A. Bhattacharyya. On a measure of divergence between two multinomial pop-
ulations. Sankhya: The Indian Journal of Statistics (1933-1960), 7(4):401-406,
1946.

M. Kristan, J. Matas, et al. The visual object tracking VOT2015 challenge
results. IEEFE International Conference on Computer Vision Workshops, pages

1-23, 2015.
VOT-Challenge Group. http://www.votchallenge.net.

Martin. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg. Learning
spatially regularized correlation filters for visual tracking. In Proceedings of the

IEEFE International Conference on Computer Vision, pages 4310-4318, 2015.

152



[124]

[125]

[126]

[127]

[128]

[129]

[130]

F. Solera, S. Calderara, and R. Cucchiara. Learning to divide and conquer for
online multi-target tracking. In IEFEE International Conference on Computer

Vision, pages 43734381, 2015.

B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded
humans by bayesian combination of edgelet based part detectors. International

Journal of Computer Vision, 75(2):247-266, 2007.

H. Kieritz, S. Becker, W. Hiibner, and M. Arens. Online multi-person tracking
using integral channel features. In IEEFE International Conference on Advanced

Video and Signal Based Surveillance, pages 122-130, 2016.

C. Kuo and R. Nevatia. How does person identity recognition help multi-person
tracking? In IEFEE Conference on Computer Vision and Pattern Recognition,

pages 1217-1224, 2011.

L. Zhang, Y. Li, and R. Nevatia. Global data association for multi-object
tracking using network flows. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 1-8, 2008.

G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah. Part-based multiple-
person tracking with partial occlusion handling. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 1815-1821, 2012.

J. Prokaj and Gé. Medioni. Using 3D scene structure to improve tracking. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
1337-1344, 2011.

153



[131]

[132]

[133]

[134]

[135]

[136]

[137]

V. Reilly, H. Idrees, and M. Shah. Detection and tracking of large number of

targets in wide area surveillance. Furopean Conference on Computer Vision,

LNCS 6313:186-199, 2010.

X. Shi, P. Li, H. Ling, W. Hu, and E. Blasch. Using maximum consistency
context for multiple target association in wide area traffic scenes. In IFEE
International Conference on Speech and Signal Processing (ICASSP), pages
2188-2192, 2013.

Nguyen.T. L. Anh, F. Bremond, and J. Trojanova. Multi-object tracking of
pedestrian driven by context. In IEEFE International Conference on Advanced

Video and Signal Based Surveillance (AVSS), 2016.

L Marcenaro, M Ferrari, L Marchesotti, and Carlo S Regazzoni. Multiple object
tracking under heavy occlusions by using kalman filters based on shape match-
ing. In Proceedings of the IEEE International Conference on Image Processing,

volume 3, pages [TI-1I1, 2002.

Sanjivani Shantaiya, Kesari Verma, and Kamal Mehta. Multiple object tracking
using kalman filter and optical flow. Furopean Journal of Advances in Engi-

neering and Technology, 2(2):34-39, 2015.

Dan Mikami, Kazuhiro Otsuka, and Junji Yamato. Memory-based particle filter
for face pose tracking robust under complex dynamics. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 999-1006, 2009.

M. Naphade et al. The 2018 NVIDIA AI city challenge. In IFEE Conf. on

Computer Vision and Pattern Recognition Workshops, pages 53—-60, 2017.

154



[138]

[139]

[140]

[141]

[142]

[143]

[144]

P. Zhu et al. VisDrone-VDT2018: The vision meets drone video detection
and tracking challenge results. In Furopean Conference on Computer Vision

(ECCYV), volume LNCS 11133, pages 496—-518, 2019.

S. Lyu et al. UA-DETRAC 2017: Report of AVSS2017 & ITWT4S challenge on
advanced traffic monitoring. In IEEE Int. Conf. on Advanced Video and Signal
Based Surveillance (AVSS), pages 1-7, 2017.

D. Lam, R. Kuzma, K. McGee, S. Dooley, M. Laielli, M. Klaric, Y. Bulatov, and
B. McCord. xView: Objects in context in overhead imagery. arXiv:1802.07856,
2018.

M.E. Farmer, X. Lu, H. Chen, and A.K. Jain. Robust motion-based image
segmentation using fusion. IEEE Int. Conf. on Image Processing, 5:3375-3378,
2004.

T. Gautama and M.A. Van Hulle. A phase-based approach to the estimation of
the optical flow field using spatial filtering. IEEE Trans. on Neural Networks,
13(5):1127-1136, 2002.

A. Basharat et al. Real-time multi-target tracking at 210 megapixels/second
in wide area motion imagery. IEEE Workshop on Applications of Computer
Vision (WACYV), pages 839-846, 2014.

R.O. Chavez-Garcia and O. Aycard. Multiple sensor fusion and classification
for moving object detection and tracking. IEEFE Trans. on Intelligent Trans-

portation Systems, 17(2):525-534, 2016.

155



[145]

[146]

[147]

[148]

[149]

[150]

[151]

M. Siam, H. Mahgoub, M. Zahran, S. Yogamani, M. Jagersand, and A. El-
Sallab. MODNET: Moving object detection network with motion and appear-

ance for autonomous driving. Int. Conf. Intelligent Transportation Systems,

2017.

B. Heo, K. Yun, and J.Y. Choi. Appearance and motion based deep learning
architecture for moving object detection in moving camera. In IEEFE Int. Conf.

on Image Processing (ICIP), pages 1827-1831, 2017.

M.J. Shafiee, B. Chywl, F. Li, and A. Wong. Fast YOLO: A fast you
only look once system for real-time embedded object detection in video.

arXiw:1709.05943, 2017.

H. AliAkbarpour, K. Palaniappan, and G. Seetharaman. Parallax-tolerant
aerial image georegistration and efficient camera pose refinement—without
piecewise homographies. I[IEEFE Trans. on Geoscience and Remote Sensing,

55(8):4618-4637, 2017.

J. Redmon and A. Farhadi. YOLOv3: An incremental improvement. arXiv
preprint arXiw:1804.02767, 2018.

K. Palaniappan, I. Ersoy, and S.K. Nath. Moving object segmentation using
the flux tensor for biological video microscopy. In Pacific-Rim Conference on

Multimedia (PCM), pages 483-493, 2007.

S. Nath and K. Palaniappan. Adaptive robust structure tensors for orientation
estimation and image segmentation. In LNCS-3804: Proc. ISVC"05, pages 445
453, 2005.

156



[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

H.H. Nagel and A. Gehrke. Spatiotemporally adaptive estimation and segmen-
tation of OF-Fields. In FEuropean Conference on Computer Vision (ECCYV),
volume LNCS 1407, pages 86-102, 1998.

J. Van De Weijer, T. Gevers, and A.W.M. Smeulders. Robust photometric
invariant features from the color tensor. IEFE Trans. on Image Processing,

15(1):118-127, 2006.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Region-based
convolutional networks for accurate object detection and segmentation. [FEFE

Trans. on Pattern Analysis and Machine Intelligence, 38(1):142-158, 2016.

J. Deng, W. Dong, R. Socher, L. Li, Kai L., and Li F. ImageNet: a large-
scale hierarchical image database. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 248-255, 2009.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332—
1338, 2015.

H. Possegger, T. Mauthner, P. M Roth, and H. Bischof. Occlusion geodesics
for online multi-object tracking. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1306-1313, 2014.

W. Rahmaniar, W. Wang, and H. Chen. Real-time detection and recognition

of multiple moving objects for aerial surveillance. Electronics, 8(12):1373, 2019.

F. Yang, S. Sakti, Y. Wu, and S. Nakamura. A framework for knowing who is
doing what in aerial surveillance videos. IEEE Access, 7:93315-93325, 2019.

157



[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

E. Barmpounakis and N. Geroliminis. On the new era of urban traffic mon-
itoring with massive drone data: The pNEUMA large-scale field experiment.

Transportation Research Part C: Emerging Technologies, 111:50-71, 2020.

L. Wang, F. Chen, and H. Yin. Detecting and tracking vehicles in traffic by

unmanned aerial vehicles. Automation in Construction, 72:294-308, 2016.

H.L. Yang, D. Lunga, and J. Yuan. Toward country scale building detection
with convolutional neural network using aerial images. In IEEE International

Geoscience and Remote Sensing Symposium (IGARSS), pages 870-873, 2017.

L. Ivanovsky, V. Khryashchev, V. Pavlov, and A. Ostrovskaya. Building detec-
tion on aerial images using u-net neural networks. In IEEE Conference of Open

Innovations Association (FRUCT), pages 116-122, 2019.

J. V. Stafford. Implementing precision agriculture in the 21st century. Journal

of Agricultural Engineering Research, 76(3):267-275, 2000.

N. Zhang, M. Wang, and N. Wang. Precision agriculture—a worldwide

overview. Computers and Electronics in Agriculture, 36(2-3):113-132, 2002.

R. Aktar, D. E. Kharismawati, K. Palaniappan, H. Aliakbarpour, F. Bunyak,
A. E. Stapleton, and T. Kazic. Robust mosaicking of maize fields from aerial

imagery. Applications in Plant Sciences, 8(8):e11387, 2020.

A. Al-Kaff, M.J. Gémez-Silva, F.M. Moreno, A. de la Escalera, and J.M. Armin-
gol. An appearance-based tracking algorithm for aerial search and rescue pur-

poses. Sensors, 19(3):652, 2019.

158



[168]

[169]

[170]

[171]

172]

173]

C.D. Rodin, L.N. de Lima, de Alcantara A.F., D. Haddad, T.A. Johansen, and
R. Storvold. Object classification in thermal images using convolutional neural
networks for search and rescue missions with unmanned aerial systems. In I[EEFE

International Joint Conference on Neural Networks (IJCNN), pages 1-8, 2018.

H.S. Munawar, J. Z., H. Li, D. Mo, and L. Chang. Mining multispectral aerial
images for automatic detection of strategic bridge locations for disaster relief
missions. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,

pages 189-200, 2019.

H. Ling, Y. Wu, E. Blasch, et al. Evaluation of visual tracking in extremely low
frame rate wide area motion imagery. In International Conference on Informa-

tion Fusion, 2011.

E. Blasch, G. Seetharaman, S. Suddarth, K. Palaniappan, et al. Summary of
methods in wide-area motion imagery (WAMI). In Proceeding SPIE 9089, 2014.

K. Palaniappan, R. Rao, and G. Seetharaman. Wide-area persistent airborne
video: Architecture and challenges. In B. Banhu et al., editors, Distributed
Video Sensor Networks: Research Challenges and Future Directions, chapter 24,

pages 349-371. Springer, 2011.

C. Leong, T. Rovito, O. Mendoza-Schrockl, C. Menart, J. Bowser,
L. Moorel, S. Scarborough, M. Minardi, and D. Hascher. Unified coin-
cident optical and radar for recognition (UNICORN) 2008 Dataset, 2019.
https://github.com/AFRL-RY /data-unicorn-2008.

159



[174]

[175]

[176]

[177]

178]

[179]

C. Cohenour, F. van Graas, R. Price, and T. Rovito. Camera models for
the wright patterson air force base (WPAFB) 2009 wide-area motion imagery
(WAMI) data set. IEEE Aerospace and Electronic Systems Magazine, 30(6):4—
15, 2015.

C. Cohenour, R. Price, T. Rovito, and F. van Graas. Corrected
pose data for the wright patterson air force base 2009 wide area mo-
tion imagery data set. J. Applied Remote Sensing, 9(1):096048, 2015.

https://www.sdms.afrl.af.mil /index.php?collection=wpath2009.

R. llin and S. Clouse. Extraction and classification of moving targets in multi-
sensory MAMI-1 data collection. In National Aerospace and Electronics Con-

ference (NAECON), pages 387-391, 2015.
https://www.sdms.afrl.af.mil /index.php?collection=mami2013.

K. Palaniappan, M. Poostchi, H. Aliakbarpour, R. Viguier, J. Fraser, F. Bun-
yak, A. Basharat, S. Suddarth, E. Blasch, R. Rao, and G. Seetharaman. Moving
object detection for vehicle tracking in wide area motion imagery using 4D filter-
ing. In IEEFE International Conference. on Pattern Recognition (ICPR), pages
2830-2835, 2016.

M. Poostchi, H. Aliakbarpour, R. Viguier, F. Bunyak, K. Palaniappan, and
G. Seetharaman. Semantic depth map fusion for moving vehicle detection in

aerial video. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, pages 3240, 2016.

160



[180]

[181]

[182]

[183]

[184]

[185]

[186]

S. Razakarivony and F. Jurie. Vehicle detection in aerial imagery: A small target
detection benchmark. Journal of Visual Communication and Image Represen-

tation, 34:187-203, 2016.

L. Wen, D. Du, Z. Cai, et al. UA-DETRAC: A new benchmark and protocol
for multi-object detection and tracking. Computer Vision and Image Under-

standing, 193:102907, 2020.

R. Stiefelhagen, K. Bernardin, R. Bowers, J. Garofolo, D. Mostefa, and
P. Soundararajan. The CLEAR 2006 evaluation. In International evaluation
workshop on classification of events, activities and relationships, pages 1-44,

2006.

J. Luiten, A. Osep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, and
B. Leibe. HOTA: A higher order metric for evaluating multi-object tracking.
Int. J. Comp. Vision, 129(2):548-578, 2021.

MOT tool kit. https://motchallenge.net/devkit/.

H. Aliakbarpour, K. Palaniappan, and G. Seetharaman. Robust camera pose
refinement and rapid SfM for multiview aerial imagery—without RANSAC.
IEEE Geoscience and Remote Sensing Letters, 12(11):2203-2207, 2015.

H. Aliakbarpour, K. Palaniappan, and G. Seetharaman. Stabilization of air-
borne video using sensor exterior orientation with analytical homography mod-

eling. In Machine Vision and Navigation, pages 579-595. Springer, 2020.

161



[187]

[188)]

[189)]

[190]

[191]

[192]

193]

[194]

Caglayan Dicle, Octavia I Camps, and Mario Sznaier. The way they move:
Tracking multiple targets with similar appearance. In Proceedings of the IEEFE

International Conference on Computer Vision, pages 2304-2311, 2013.

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object
detection with region proposal networks. In Advances in neural information

processing systems, pages 91-99, 2015.

W. Tian and M. Lauer. Joint tracking with event grouping and temporal con-
straints. In IEEFE International Conference on Advanced Video and Signal Based
Surveillance (AVSS), pages 1-5, 2017.

L. Wen, P. Zhu, et al. VisDrone-MOT2019: the vision meets drone multiple
object tracking challenge results. In Proceedings of the IEEE International

Conference on Computer Vision Workshops, pages 0-0, 2019.

L. Wen, P. Zhu, D. Du, et al. VisDrone-MOT2019: the vision meets drone mul-
tiple object tracking challenge results. In International Conference on Computer

Vision (ICCV), 2019.

D. Sun, X. Yang, M. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using
pyramid, warping, and cost volume. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 8934-8943, 2018.

R. Ananthakrishnan and A. Ehrlicher. The forces behind cell movement. Int.

J. Biological Sciences, 3(5):303, 2007.

R. Evans, I. Patzak, L. Svensson, K. De Filippo, K. Jones, A. McDowall, and
N. Hogg. Integrins in immunity. J. Cell Science, 122(2):215-225, 2009.

162



[195]

[196]

[197]

[198]

[199]

[200]

201]

202]

D. Montell. Morphogenetic cell movements: Diversity from modular mechanical

properties. Science, 322:1502-1505, 2008.

F. Bunyak, K. Palaniappan, S. K. Nath, T. Baskin, and G. Dong. Quantitative
cell motility for in vitro wound healing using level set-based active contour
tracking. In IEEE Int. Symp. on Biomedical Imaging (ISBI), pages 1040-1043,
2006.

J. Condeelis and J. W. Pollard. Macrophages: obligate partners for tumor cell

migration, invasion, and metastasis. Cell, 124(2):263-266, 2006.

C. Zimmer, B. Zhang, A. Dufour, A. Thébaud, S. Berlemont, V. Meas-Yedid,
and J. Marin. On the digital trail of mobile cells. IEFE Signal Processing
Magazine, 23(3):54-62, 2006.

K. Palaniappan, F. Bunyak, S. Nath, and J. Goffeney. Parallel processing
strategies for cell motility and shape analysis. In High-throughput Image Re-

construction and Analysis, pages 39-87, 20009.

[. Ersoy, F. Bunyak, J. M. Higgins, and K. Palaniappan. Coupled edge pro-
file active contours for red blood cell flow analysis. In IEEE Int. Symp. on
Biomedical Imaging (ISBI), pages 748-751, 2012.

E. Meijering. Cell segmentation: 50 years down the road [life sciences|. IEEE
Signal Processing Magazine, 29(5):140-145, 2012.

T. Scherr, A. Bartschat, M. Reischl, J. Stegmaier, and R. Mikut. Best Practices
in Deep Learning-based Segmentation of Microscopy Images. KIT Scientific
Publishing, 2018.

163



[203]

1204]

[205]

[206]

1207]

[208]

209]

[210]

[211]

F. A G. Pena, P. Fernandez, P. T. Tarr, T. I. Ren, E. M. Meyerowitz, and
A. Cunha. J-regularization improves imbalanced multiclass segmentation. In

IEEFE Int. Symp. on Biomedical Imaging (ISBI), pages 1-5, 2020.

X. Li, Y. Wang, Q. Tang, Z. Fan, and J. Yu. Dual u-net for the segmentation
of overlapping glioma nuclei. IEEFE Access, 7:84040-84052, 2019.

J. Li, Z. Hu, and S. Yang. Accurate nuclear segmentation with center vector
encoding. In International Conference on Information Processing in Medical

Imaging, pages 394-404. Springer, 2019.
Cell Tracking Challenge. http://celltrackingchallenge.net.

K. Parvati, P. Rao, and M. Mariya Das. Image segmentation using gray-scale
morphology and marker-controlled watershed transformation. Discrete Dynam-

ics in Nature and Society, 2008, 2008.

J. Wang, K. Sun, et al. Deep high-resolution representation learning for visual
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2020.

P. Matula, M. Maska, D.V. Sorokin, P. Matula, C. Ortiz-de Solérzano, and
M. Kozubek. Cell tracking accuracy measurement based on comparison of
acyclic oriented graphs. Public Library of Science (PloS one), 10(12):€0144959,
2015.

KIT-Sch-GE. http://celltrackingchallenge.net/participants/KIT-Sch-GE.

PURD-US. http://celltrackingchallenge.net /participants/PURD-US.

164



212]

213]

[214]

[215]

[216]

217]

[218]

[219]

CALT-US. http://celltrackingchallenge.net /participants/ CALT-US.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in Neural Information

Processing Systems, 25:1097-1105, 2012.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: surpassing
human-level performance on ImageNet classification. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV), pages 1026-1034, 2015.

P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth,
K. Schindler, and L. Leal-Taixé. MOT20: a benchmark for multi object tracking

in crowded scenes. arXiv preprint arXiv:2003.09003, 2020.

K. Bernardin and R. Stiefelhagen. Evaluating multiple object tracking perfor-
mance: the CLEAR MOT metrics. FURASIP Journal on Image and Video
Processing, 2008:1-10, 2008.

E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi. Performance
measures and a data set for multi-target, multi-camera tracking. In European

Conference on Computer Vision, volume LNCS9914, pages 17-35, 2016.

Y. Li, C. Huang, and R. Nevatia. Learning to associate: Hybridboosted multi-
target tracker for crowded scene. In IEEFE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2953-2960, 2009.

Anton Andriyenko and Konrad Schindler. Multi-target tracking by continuous
energy minimization. In IEFEE Conference on Computer Vision and Pattern

Recognition, pages 1265-1272, 2011.

165



[220]

221]

[222]

[223]

[224]

[225]

Longyin Wen, Wenbo Li, Junjie Yan, Zhen Lei, Dong Yi, and Stan Z Li. Mul-
tiple target tracking based on undirected hierarchical relation hypergraph. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1282-1289, 2014.

Guang Han, Xiaoyi Yu, and Liu Liu. Robust multi-object tracking based on
higher-order graph and min-cost flow network. In IEEE International Confer-

ence on Systems and Informatics, pages 484-490, 2017.

Andreas Ess, Bastian Leibe, and Luc Van Gool. Depth and appearance for
mobile scene analysis. In IEEFE International Conference on Computer Vision,

pages 1-8, 2007.

Tino Kutschbach, Erik Bochinski, Volker Eiselein, and Thomas Sikora. Se-
quential sensor fusion combining probability hypothesis density and kernelized
correlation filters for multi-object tracking in video data. In IEEE Interna-
tional Conference on Advanced Video and Signal Based Surveillance (AVSS),
pages 1-5, 2017.

Y.C. Lim and M. Kang. Multi-pedestrian detection and tracking using unified
multi-channel features. In IEEFE International Conference on Advanced Video

and Signal Based Surveillance (AVSS), pages 1-5, 2017.

Y. Song, . Yoon, K. Yoon, and M. Jeon. Online and teal-time tracking with
the GM-PHD filter using group management and relative motion analysis. In
IEEE International Conference on Advanced Video and Signal Based Surveil-
lance (AVSS), pages 1-6, 2018.

166



[226] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part-based models. IEFEFE Transactions

on Pattern Analysis and Machine Intelligence, 32(9):1627-1645, 2009.

[227] MOT tool kit. https://motchallenge.net.

167



VITA

Noor Al-Shakarji was born in Baghdad/ Iraq as the first granddaughter to a big
family. She graduated from the Computer Science Department at the University of
Technology-Iraq with the top rank of over 200 students in her Bachelor’s study in
2005. She attended the graduated school, the Computer Science Department at the
University of Technology-Iraq to complete her master’s degree after getting the award
from The Ministry of Higher Education/Iraq for her top rank in Bachelor’s study. She
was also in the top rank for her Master’s study over 7 graduated students in 2008.
For that, she was hired at the Computer Science Department at the University of
Technology-Iraq in 2008 as a lecturer.

In 2009, She got married to Ahammd who worked with her at the same University,
and she gave birth to two kids Yaqgeen and Roya.

In 2013, she got a scholarship to complete her Ph.D. in Computer Science in The
United States which was rewarded by the Higher Committee for Education Develop-
ment in Iraq/ Prime minister’s office. She attended the Electrical Engineering and
Computer Science Department at The University of Missouri-Columbia to complete
her Ph.D. degree. She joins the Computational Imaging and Visualization Analysis
Laboratory (CIVA) supervised by Dr. Kannappan Palaniappan in 2015. She works
as a research assistant in the CIVA lab on different computer vision problems and
she worked on a collaborative project with the Biological Science Department — at
the University of Missouri Columbia on a Zebrafish jaw tracking movement project.

She won a number of computer vision challenges in the field of moving object

tracking such as the top 3 ranks for the ISBI 2021 Cell Tracking Challenge (CTC-6),

168



The top rank in the graduate student category at the 24th Conference on Neural and
Information Processing Systems (Neur[PS2020) SpaceNet 7 challenge, and the top 10
ranks among 300 international participant teams at the same previous conference for
the SpaceNet 7 challenge. In 2018, she was awarded the 1907 Women in Engineering
Student Award at the University of Missouri-Columbia. She received her Ph.D. degree

in Computer Science from the University of Missouri-Columbia in May 2022.

169



